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Abstract—Sparse CNNs dramatically reduce computation and
storage costs over dense ones. But sparsity also makes CNNs more
data-intensive, as each value is reused fewer times. Thus, current
sparse CNN accelerators, which process one layer at a time, are
bottlenecked by memory traffic.

We present ISOSceles, a new sparse CNN accelerator that dra-
matically reduces data movement through inter-layer pipelining:
overlapping the execution of consecutive layers so that a layer’s
output activations are quickly consumed by the next layer without
spilling them off-chip. Pipelining greatly increases reuse, but it is
challenging to implement with existing approaches, which are lim-
ited to dense CNNs. ISOSceles relies on a novel input-stationary
output-stationary (IS-OS) dataflow that consumes inputs and pro-
duces outputs in the same order, greatly reducing intermediate
sizes over existing dataflows. ISOSceles implements IS-OS effi-
ciently and leverages time-multiplexing and dynamic scheduling
to pipeline multiple layers despite the large variations in work
that sparsity induces.

On a wide range of sparse CNNs, ISOSceles outperforms a
state-of-the-art accelerator by gmean 4.3× (up to 6.7×), and re-
duces traffic by 4.7× (up to 8.5×) while using less area.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) achieve state-of-the-

art performance on many machine learning tasks, but are com-

putationally expensive. Exploiting sparsity is a promising way

to reduce the compute and storage costs of CNNs. Sparse CNNs

leverage the fact that a substantial fraction of values in weights

and activations are zeros. Hardware accelerators exploit weight

and activation sparsity by skipping multiplications by zero [7]

and by not storing zero values [34].

Sparsity in weights and activations arises for different rea-

sons, and to different degrees. First, weight pruning removes

filter weights with near-zero values [19]. This process creates

significant weight sparsity: prior work has shown that 80% to

over 95% of weights can be pruned with negligible accuracy

loss [26]. Second, activation sparsity arises because common

non-linear activation functions like ReLU [29] convert negative

activations into zeros. Prior accelerators have exploited spar-

sity in weights [44], activations [2], or both [17, 34] to reduce

execution time, energy, and data movement over dense CNNs.

Sparse CNNs put more pressure on the memory system than

dense ones, so existing accelerators are dominated by data move-

ment rather than computation costs. This is because sparsity

reduces computation more than memory footprint and traffic.

For example, a convolutional layer with 90% sparse weights and

activations reduces the footprint by 10×, but reduces multipli-

cations by about (1−0.9) · (1−0.9), i.e., 100×. Reuse is also

greatly decreased, as each weight and activation is used many

fewer times. This reduces arithmetic intensity, the number of

compute operations per byte of data fetched from memory. For

example, sparsifying the ResNet-50 model reduces arithmetic

intensity from 128 to 11 operations/byte.

Accelerating sparse CNNs requires techniques that reduce

off-chip traffic. In this paper, we show that pipelining consec-

utive CNN layers is an effective approach. Most accelerators

process one layer at a time, producing all output activations for a

given layer before starting the next layer. Since input and output

activations are large, they get spilled off-chip, causing substan-

tial memory traffic. Inter-layer pipelining avoids this traffic by

overlapping the execution of consecutive layers, so that each

output activation produced by one layer is quickly consumed

by the next layer. Thus, most activations are reused on-chip,

and only the first layer’s input activations and last layer’s out-

put activations incur off-chip traffic. Pipelining multiple layers

requires maintaining their weights on-chip, but sparsity makes

this practical. For example, with 90% weight sparsity, an accel-

erator can pipeline 10 layers with the same amount of on-chip

storage that a dense accelerator uses to store weights for one

layer. This improves activation reuse by about 10×.

Though inter-layer pipelining has major potential to accel-

erate sparse CNNs, it requires solving two key challenges: (1)

finding a dataflow (i.e., a computation schedule) that minimizes

the amount of intermediate activations between layers (so they

can be consumed without spilling them off-chip) without adding

other types of traffic (e.g., sacrificing reuse in weights) and that

efficiently traverses the compressed data structures in sparse

CNNs; and (2) building an accelerator that achieves high utiliza-

tion despite the high dynamism introduced by sparsity: due to

zero activations and weights, different layers have large and fast

variations in work, so standard ways to pipeline them (e.g., run-

ning different layers on different parts of the chip) do not work

well. We tackle these challenges with ISOSceles, the first accel-

erator that exploits inter-layer pipelining effectively to improve

sparse CNN performance.

Prior accelerators use dataflows that cannot be pipelined effec-

tively [2, 17, 34, 44] (Sec. II). For example, a dataflow may be

output-stationary, producing outputs one element at a time but

inducing poor reuse of inputs, or input-stationary, consuming

inputs one element at a time but producing partial outputs out of

order. These dataflows can be tiled, so that a single output tile is













ment, (2) fetches the filter weights based on the input activation’s

channel (C), and (3) sends the activation value and filter weights

to a set of PEs, which perform the multiply-accumulates.

Fig. 11 illustrates this process for frontend lane 5. The front-

end consumes input activation sub-tensor I5I5I5 (shown as a stream

of nonzeros I5,7,1I5,7,1I5,7,1, I5,9,0I5,9,0I5,9,0...), one element per cycle. Since the

current input activation is from input channel 1, the filter sub-

tensor FFF111 is fetched. The filter fetcher fetches the correspond-

ing weights (F1,2,4F1,2,4F1,2,4, F1,2,7F1,2,7F1,2,7...) from the shared filter buffer. These

weights are associated with different rows, r, and output chan-

nels, k, and are sent to different PEs.

The filter buffer is shared across lanes, so it needs to support

the highest throughput in our design (serving up to 4096 ele-

ments/cycle in our implementation). We achieve this cheaply

with three techniques. First, since each input fetches many

weights, the filter buffer uses wide words to supply many

weights in parallel. Second, the filter buffer is heavily banked,

especially along input channels. Third, when multiple lanes

request weights for the same input channel, we coalesce their

requests and serve them with one access, avoiding stalls.

Each frontend lane has R×K PEs. PEr,k is responsible for

handling a filter sub-tensor with a specific row, r, and output

channel, k. In our example, filter F1,2,4F1,2,4F1,2,4 (along with input ac-

tivation I5,7,1I5,7,1I5,7,1) is sent to PEr=2,k=4. The PE conducts a vector

(weight) scalar (input activation) product and accumulates re-

sults in partial result registers t15,2,4,6t15,2,4,6t15,2,4,6 and t15,2,4,7t15,2,4,7t15,2,4,7. Upon receiv-

ing input activation I5,7,1I5,7,1I5,7,1, the PE outputs partial result t15,2,4,5t15,2,4,5t15,2,4,5

if it is not zero. This is because input (I5,7,1I5,7,1I5,7,1) at column 7 can

only contribute to output activation at column 6 and 7 (assum-

ing a length S = 2 filter). The PE then knows that the partial

convolution on column 5 is completed and thus pushes partial

result at column 5 (t15,2,4,5t15,2,4,5t15,2,4,5) to its output queue, to be consumed

by the backend. Each PE only holds S partial results, t15,2,4,6t15,2,4,6t15,2,4,6

and t15,2,4,7t15,2,4,7t15,2,4,7. By generating partial results T 1T 1T 1 (tmp1 in Fig. 8)

in a pipelined fashion, ISOSceles never needs to materialize

T 1T 1T 1 entirely and stores it compressed on-chip. As described in

Sec. III-A, the uncompressed size needed to hold partial results

is a reasonably small R×K ×S per lane.

OS backend lane: Each OS backend lane produces one output

activation row (along dimension Q) by accumulating partial re-

sults t1t1t1 produced by the frontend. Accumulation happens along

the R (vertical filter) dimension. Each backend lane sources par-

tial results from R (adjacent) frontend lanes. To do this, the lane

(1) consumes partial result tensors from appropriate frontend

queues, (2) reorders them using a set of mergers to leave H and

R as the innermost dimensions, (3) accumulates partial results

over the R dimension to complete the convolution, and (4) se-

rializes all accumulated values using a final merger. The lane

also implements batch normalization and non-linear activation

functions to produce the final output activations.

Fig. 11 shows backend lane 3, which is responsible for pro-

ducing output row 3. We first focus on output channel k = 4:

(1) The lane consumes partial result sub-tensors T 14,1,4T 14,1,4T 14,1,4 (from

frontend lane 4 PEr=1,k=4) and T 15,2,4T 15,2,4T 15,2,4 (from frontend lane 5

PEr=2,k=4) (we omit partial results from other lanes for simplic-

ity). (2) The R-merger at k = 4 reorders T 14,1,4T 14,1,4T 14,1,4 (h = 4,r = 1)

and T 15,2,4T 15,2,4T 15,2,4 (h = 5,r = 2) so that H and R appears at the in-

nermost dimension in the merged stream. As a consequence Q

appears at the outermost dimension (t14,1,4,t14,1,4,t14,1,4,222, t15,2,4,t15,2,4,t15,2,4,222, t15,2,4,5t15,2,4,5t15,2,4,5,

t14,1,4,7t14,1,4,7t14,1,4,7...), which reduces memory footprint for the upcoming

reduction process. (3) The reducer accumulates partial results

(with the same column index, e.g., q = 2q = 2q = 2) over the R (vertical

filter) dimension using a simple adder. This completes the con-

volution. t14,1,4,t14,1,4,t14,1,4,222 and t15,2,4,t15,2,4,t15,2,4,222 are added together (and so are

subsequent elements with same column index q). The resulting

T 23,4T 23,4T 23,4 is output activation element of row 3 at channel k = 4.

There are K (output channel dimension) R-mergers, each

working to produce one row of a specific output channel k. In

our example of lane 3, other than T 23,4T 23,4T 23,4 generated by R-merger

(k = 4), output row 3 at channel 7 (T 23,7T 23,7T 23,7) is generated by R-

merger (k = 7). T2T2T2 in lane 3 is organized as a compressed tensor

of shape K×Q. However, the IS frontend of the next layer con-

sumes activations channel by channel then column by column

(K is the innermost loop). (4) A final K-merger serializes all K

accumulated streams (T 23,4T 23,4T 23,4, T 23,7T 23,7T 23,7...) so that K is the innermost

loop at the output activation O3O3O3. This emits output in the same

order they’re consumed by the next layer. Finally, O3O3O3 is passed

to the Point-wise Operation Unit (POU), including batch nor-

malization (BN) and ReLU (increasing activation sparsity). The

final output activation row is then sent to the next layer.

The backend uses cheap scalar mergers, which suffice be-

cause each frontend lane consumes a single element per cycle.

R-mergers have a low radix and are implemented using a com-

binational comparator tree [43]. K-mergers need a higher radix

(K = 256), so we implement them with a pipelined min-heap [5].

B. Time-multiplexing in ISOSceles

The spatial design described so far (Fig. 9) uses one IS-OS

block per layer and one lane per activation row. Fig. 12 shows

the ISOSceles design with time-multiplexing support, which

instead has a single IS-OS block with a fixed number of lanes.

Multiple lanes are pipelined temporally instead of spatially, by

time-multiplexing them over the single IS-OS block.

In this section, we discuss the rationale and changes needed

to temporally pipeline multiple layers. In Sec. IV-C, we discuss

how to use a fixed number of lanes efficiently.

The key motivation for temporal pipelining is that the spa-

tial approach, where each IS-OS block handles a single layer,

suffers from severe underutilization. First, sparsity introduces

underutilization within each layer. For example, the MAC units

in the PE arrays often spend cycles idle because filter weights

are often zero. Second, work imbalance across layers causes

underutilization too: each layer requires a different amount of

work (e.g., because layers use filters with different sizes and

sparsities), and this amount of work changes over time (e.g.,

due to zero input activations). When consecutive layers are

pipelined spatially, using multiple IS-OS blocks, one of them

becomes the bottleneck and leaves others even more underuti-

lized. By time-multiplexing layers over a single IS-OS block,

we can avoid both of these issues.

Effective time-multiplexing requires two extensions: the ad-

dition of per-layer contexts that hold the intermediate values





TABLE I
CONFIGURATION OF THE ISOSCELES SYSTEM.

Lane Parameter Value ISOSceles Parameter Value

Multiplier width 8b # Lanes 64
Accumulator width 16b Filter buffer 1MB

# MAC units 64 DRAM bandwidth 128GB/s
Context array 8KB Summary

Queues 8KB Total # MAC units 4096
# Merger 16 Total memory size 2MB

Merger radix 256 Frequency 1GHz

TABLE II
AREA BREAKDOWN OF ISOSCELES.

ISOSceles Area (mm2) Lane Area (mm2)

64 Lanes 18.4 64 MAC Units 0.069
Filter buffer 7.5 Mergers 0.060

Buffers 0.121
Fetcher 0.010

Crossbar 0.021
Others 0.007

Total 26.0 Total 0.288

TABLE III
CONFIGURATION OF THE SPARTEN SYSTEM.

Cluster Parameter Value SparTen Parameter Value

Multiplier width 8b # Clusters 64
Accumulator width 16b Filter buffer 1MB

# MAC units 64 DRAM bandwidth 128GB/s
Buffers 64KB Summary

Frequency 1GHz Total # MAC units 4096
Total memory size 5MB

tiles the output row dimension P to accommodate it. Tiling P

is also conducted when the context array memory requirement

(proportional to P) exceeds its capacity. Without considering

striding and padding, due to the nature of convolution, input

activations (H ×W ) are slightly larger than output activations

(P×Q). For each output tile, the corresponding input activation

tile is slightly larger. Therefore, for two disjoint output tiles,

their corresponding input tiles will have some overlapping rows

at the boundary, also referred as input halos [15, 34]. When

processing the output tiles, ISOSceles needs to read the input

halos from off-chip memory. Traversing these halos in the com-

pressed input are concordant since each row of input belongs

to a separate sub-tensor. With a large number of lanes, halos

are a small portion of the input activation, so their effect on

off-chip memory traffic and performance is limited.

When the sizes of filters in large layers exceed filter buffer

capacity, ISOSceles runs them layer by layer and, if necessary,

tiles the output channel K dimension so that each tile fits on-

chip. We show later (Sec. VI-C) that, even in this single-layer

execution mode, ISOSceles is still incurs less traffic than prior

accelerators thanks to the IS-OS dataflow.

Handling small layers: When P is significantly smaller than

the number of lanes (e.g., 16 with 64 lanes), mapping a whole

activation row to one lane is inefficient (e.g., leaving 75% of

lanes idle in our example). ISOSceles solves this by mapping

one row to multiple adjacent processing lanes. In the frontend,

at every step, one input activation element is consumed and the

corresponding weight sub-tensor (K×R×S) is fetched. Instead

of sending the input activation and weight sub-tensor to one

frontend lane, ISOSceles splits the weight sub-tensor according

to its output channel dimension K and dispatches each weight

partition to one frontend lane. Each frontend and backend lane

only handles a subset of K and all backend lanes in aggregate

handle all output activations. In the loop nest view (Fig. 8),

ISOSceles makes the K dimension partially spatial. Reflected

in Fig. 7, when P=16 and we have 64 lanes, we consume 4

columns in parallel to fill all lanes.

Handling other layers: The POU handles point-wise layers

like batch normalization and ReLU. Depth-wise convolution is

supported by simply disabling input channel C accumulation

and fetching filters from only one output channel K per input

activation. Grouped convolution can be supported with a similar

mechanism. ISOSceles executes fully-connected layers in an

input-stationary way, reusing most of the frontend structure. For

batch 1 inference, it performs an SpMV between the sparse

weight matrix and input activation vector. Weights are streamed

from DRAM (as they exhibit no reuse). All frontend lanes share

the same input activation; each lane processes a weight sub-

column to generate a partial result sub-column. The operation is

completed once all inputs are consumed. Fully connected layers

bypass the backend logic and directly send output from the

context array. Global average pooling is supported by treating

it as a convolution where kernel size matches input size.

V. EXPERIMENTAL METHODOLOGY

System: We build a cycle-level simulator to evaluate ISOSceles.

Table I shows its configuration. Our design consists of 64 lanes

(frontend and backend), an 1 MB global filter buffer, and an

128 GB/s High-Bandwidth Memory (HBM) interface. Each lane

contains 64 8-bit multipliers, 8 KB of context arrays to hold

partial results, 8 KB of queues to support inter-layer pipelining,

and 16 radix-256 throughput-1 mergers. The full system has

4096 MAC units with a total of 2 MB on-chip storage.

We have implemented ISOSceles’s components in RTL and

synthesized them in 45 nm using the FreePDK library [30],

with a 1 GHz target frequency. Table II shows ISOSceles’s area

breakdown by component. Overall, this is a small accelerator

even at 45 nm, and ISOSceles would take just 4.7 mm2 when

scaled to 16 nm [34]. By comparison, a single HBM2e interface

is about 15 mm2 [11, 31]. ISOSceles is able to saturate this

interface while using a small amount of area.

Baselines: We compare with Fused-Layer [3] and SparTen [17].

Fused-Layer is a dense CNN accelerator that pipelines multiple

layers. We implement its 2D tile-based dataflow and configure

it to have similar area as ISOSceles, using a 2.5MB filter buffer

and the same memory bandwidth and number of MAC units as

ISOSceles. SparTen is a state-of-the-art accelerator for sparse

CNNs. We model its output-stationary dataflow, memory traf-

fic, and layer-by-layer execution strategy for sparse CNNs. We

enhance our SparTen baseline with GoSPA’s activation filtering

optimization [12] to reduce further traffic (Sec. II). Table III

lists its configuration. SparTen is sized to match ISOSceles’s

bandwidth and number of MAC units. However, SparTen re-

quires 5 MB (over 2× more) on-chip storage.

Workloads: We use ResNet-50 [20], MobileNetV1 [23], VGG-

16 [36], and GoogLeNet [40] as representative sparse CNNs

on ImageNet [13]. ResNet-50 and MobileNetV1 are pruned

using STR [26] to achieve 6 different levels of weight sparsity

for ResNet-50 (81%, 90%, 95%, 96%, 98%, and 99%) and 2

levels for MobileNetV1 (75% and 89%). We prune VGG-16 and

GoogLeNet with magnitude-based pruning so that their weight

sparsities (68% and 58%) match prior work [17, 34]. We further

emulate an aggressive version of VGG-16, where 90% of the

weights are pruned to show that increasing weight sparsity has
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