ISOSceles: Accelerating Sparse CNNs
through Inter-Layer Pipelining

Yifan Yang
MIT CSAIL
yifany@csail.mit.edu

Abstract—Sparse CNNs dramatically reduce computation and
storage costs over dense ones. But sparsity also makes CNNs more
data-intensive, as each value is reused fewer times. Thus, current
sparse CNN accelerators, which process one layer at a time, are
bottlenecked by memory traffic.

We present ISOSceles, a new sparse CNN accelerator that dra-
matically reduces data movement through inter-layer pipelining:
overlapping the execution of consecutive layers so that a layer’s
output activations are quickly consumed by the next layer without
spilling them off-chip. Pipelining greatly increases reuse, but it is
challenging to implement with existing approaches, which are lim-
ited to dense CNNs. ISOSceles relies on a novel input-stationary
output-stationary (IS-0OS) dataflow that consumes inputs and pro-
duces outputs in the same order, greatly reducing intermediate
sizes over existing dataflows. ISOSceles implements IS-OS effi-
ciently and leverages time-multiplexing and dynamic scheduling
to pipeline multiple layers despite the large variations in work
that sparsity induces.

On a wide range of sparse CNNs, ISOSceles outperforms a
state-of-the-art accelerator by gmean 4.3x (up to 6.7x), and re-
duces traffic by 4.7x (up to 8.5x) while using less area.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) achieve state-of-the-
art performance on many machine learning tasks, but are com-
putationally expensive. Exploiting sparsity is a promising way
to reduce the compute and storage costs of CNNs. Sparse CNNs
leverage the fact that a substantial fraction of values in weights
and activations are zeros. Hardware accelerators exploit weight
and activation sparsity by skipping multiplications by zero [7]
and by not storing zero values [34].

Sparsity in weights and activations arises for different rea-
sons, and to different degrees. First, weight pruning removes
filter weights with near-zero values [19]. This process creates
significant weight sparsity: prior work has shown that 80% to
over 95% of weights can be pruned with negligible accuracy
loss [26]. Second, activation sparsity arises because common
non-linear activation functions like ReLU [29] convert negative
activations into zeros. Prior accelerators have exploited spar-
sity in weights [44], activations [2], or both [17, 34] to reduce
execution time, energy, and data movement over dense CNNS.

Sparse CNNs put more pressure on the memory system than
dense ones, so existing accelerators are dominated by data move-
ment rather than computation costs. This is because sparsity
reduces computation more than memory footprint and traffic.
For example, a convolutional layer with 90% sparse weights and
activations reduces the footprint by 10x, but reduces multipli-

Joel S. Emer
MIT CSAIL / NVIDIA
emer@csail.mit.edu

Daniel Sanchez
MIT CSAIL
sanchez@csail.mit.edu

cations by about (1 —0.9)-(1—0.9), i.e., 100x. Reuse is also
greatly decreased, as each weight and activation is used many
fewer times. This reduces arithmetic intensity, the number of
compute operations per byte of data fetched from memory. For
example, sparsifying the ResNet-50 model reduces arithmetic
intensity from 128 to 11 operations/byte.

Accelerating sparse CNNs requires techniques that reduce
off-chip traffic. In this paper, we show that pipelining consec-
utive CNN layers is an effective approach. Most accelerators
process one layer at a time, producing all output activations for a
given layer before starting the next layer. Since input and output
activations are large, they get spilled off-chip, causing substan-
tial memory traffic. Inter-layer pipelining avoids this traffic by
overlapping the execution of consecutive layers, so that each
output activation produced by one layer is quickly consumed
by the next layer. Thus, most activations are reused on-chip,
and only the first layer’s input activations and last layer’s out-
put activations incur off-chip traffic. Pipelining multiple layers
requires maintaining their weights on-chip, but sparsity makes
this practical. For example, with 90% weight sparsity, an accel-
erator can pipeline 10 layers with the same amount of on-chip
storage that a dense accelerator uses to store weights for one
layer. This improves activation reuse by about 10x.

Though inter-layer pipelining has major potential to accel-
erate sparse CNNgs, it requires solving two key challenges: (1)
finding a dataflow (i.e., a computation schedule) that minimizes
the amount of intermediate activations between layers (so they
can be consumed without spilling them off-chip) without adding
other types of traffic (e.g., sacrificing reuse in weights) and that
efficiently traverses the compressed data structures in sparse
CNNs; and (2) building an accelerator that achieves high utiliza-
tion despite the high dynamism introduced by sparsity: due to
zero activations and weights, different layers have large and fast
variations in work, so standard ways to pipeline them (e.g., run-
ning different layers on different parts of the chip) do not work
well. We tackle these challenges with ISOSceles, the first accel-
erator that exploits inter-layer pipelining effectively to improve
sparse CNN performance.

Prior accelerators use dataflows that cannot be pipelined effec-
tively [2, 17, 34, 44] (Sec. II). For example, a dataflow may be
output-stationary, producing outputs one element at a time but
inducing poor reuse of inputs, or input-stationary, consuming
inputs one element at a time but producing partial outputs out of
order. These dataflows can be tiled, so that a single output tile is

produced from an input tile. However, due to the nature of convo-
lutions, output tiles are smaller than input tiles. This causes far-
away reuse of input halos (the input elements used by multiple
output tiles) and deep pipelines must use large tiles, which add
substantial on-chip footprint. In fact, Fused-Layer [3] leverages
tiling to pipeline dense CNNs, but achieves limited benefits (-6%
to 27% speedups). This is mainly due to the higher arithmetic in-
tensity of dense CNNs, but also to the limited degree of pipelin-
ing that tiling allows. Some dense accelerators, Brein [4] and
Tangram [16], combine output- and input-stationary dataflows
to pipeline two layers, but they are limited to pipelining only
two layers. Finally, these pipelining approaches do not support
sparsity, forgoing its performance and efficiency gains.

To tackle these challenges, we introduce a novel input-sta-
tionary output-stationary (IS-OS) dataflow (Sec. III). IS-OS
consumes input activations and produces output activations in
the same order, producing outputs in thin wavefronts instead of
the 2D tiles of prior work. These wavefronts can be consumed
immediately by the next layer, minimizing inter-layer storage.
Moreover, IS-OS supports efficient indexing into compressed
data structures (input and output activations, weights, and par-
tial results), enabling all data to be stored in compressed form
to reap the footprint benefits of sparsity. Finally, IS-OS does
not add undue traffic to other structures (e.g., weights), and
supports the same optimizations as other dataflows (e.g., tiling
to accommodate layers whose weights do not fit on-chip).

We then present the ISOSceles architecture (Sec. IV), which
implements the IS-OS dataflow to pipeline sparse CNNs effec-
tively. ISOSceles processes each layer with a unit that contains
an input-stationary (IS) frontend and an output-stationary (OS)
backend. The IS frontend accepts an input wavefront fetched
from off-chip or delivered on-chip directly from the previous
layer, and its MAC units convolve it with sparse weights. The
OS backend features mergers that combine and reduce partial
results to generate an output wavefront that can be delivered
directly to another IS frontend or written off-chip. To achieve
high utilization under sparsity, ISOSceles time-multiplexes and
dynamically schedules PEs to avoid load imbalance and keep
intermediate activations small. A programmable interconnect
allows diverse CNN models to be mapped to ISOSceles.

We evaluate ISOSceles using cycle-level simulation and RTL
synthesis on a variety of sparse CNNs (Sec. VI). Over the dense
Fused-Layer [3] accelerator, ISOSceles is gmean 7.5x (up to
18.0x) faster, and reduces off-chip traffic by 3.6x by exploiting
sparsity. ISOSceles outperforms SparTen [17], a state-of-the-
art sparse CNN accelerator, by gmean 4.3x (up to 6.7x), and
reduces traffic by 4.7x (up to 8.5x) with significantly less area.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce the key CNN computa-
tions and relevant dense CNN accelerators, then describe the
advantages and challenges of sparse CNNs and accelerators.

A. Prior dense dataflows and accelerators

The key computation in a CNN layer is a 3D convolution of
a set of C input activation planes of H x W elements (with one

Fil Tensor (shape=[C,H,W])

3
]

rs Input activations Output activations 1

“ ; Tensor (shape=[K,C,R,S])
RI o = Tensor(shape=[K,P,Q])
5
“ for k = [0, K):

for p = [0, P):
for q = [0, Q):
for c = [0, C):
for r = [0, R):
for s = [0, S):
o[k,p,q] +=
i[c,p+r,q+s]
* f[k,c,r,s]

Loop iteration k=0

@]

Loop iteration k=1

< w
-..
K I_ P

Layer 1

(a) Datatypes and accesses (highlighted) for
first two iterations of outermost loop.

Fig. 1: Output-Stationary (OS) dataflow.

(b) Loop nest.

plane per input channel) with filters consisting of a C X R X S-
element set of weights, to produce an output activation plane
with P x Q elements (where P=H —R+1and Q=W —S§+1).
A layer may have multiple output channels K, resulting from
applying K filters to the input activations to produce K output
activation planes. Fig. 1a shows the filters, input activations,
and output activations, and their dimensions.

The computation of a layer can be expressed as a 6-level loop
nest (omitting the optional loop for batch size, N). A specific
ordering of the loop nest corresponds to a schedule for the
computation, and is referred to as a dataflow [7, 33, 39]. Tiling,
which changes the order of computation, can be represented
with additional loop levels. Tiling reorders the computation to
achieve reuse on smaller chunks, or tiles, of a tensor; tile sizes
are chosen to fit in on-chip buffers.

Different dataflows induce different reuse for the input acti-
vations, output activations, and weights. For example, Fig. 1b
shows the loop nest for the output-stationary (OS) dataflow. OS
produces each output one element at a time, attaining maxi-
mum reuse of partial outputs. However, filter weights and input
activations have worse reuse. Fig. 1a shows how OS proceeds
over time, highlighting the inputs and filters used to produce
the first and second output planes (corresponding to the two
first iterations of the outermost loop in Fig. 1b). Similar to
OS, input-stationary (IS) and weight-stationary (WS) dataflows
prioritize reuse of inputs and weights [7].

Most dense CNN accelerators follow a fixed dataflow and
operate on one layer at a time, incurring a significant cost for
holding input and output activations off-chip [6, 7, 9, 14, 24].
We focus on the few that support inter-layer pipelining.
Dense accelerators with pipelining: The Fused-Layer CNN
accelerator [3] pipelines the execution of multiple layers. Fused-
Layer uses a tiled OS dataflow, producing output activations
tile by tile and reusing them as the input to the next layer.
Fig. 2 illustrates this dataflow across four layers, for the case
where each layer has a single input and output channel (i.e.,
C =K =1). Fig. 2 shows the input tiles required at previous
layers to produce an output tile at the last layer. Due to the
nature of convolutions, output tiles are smaller than input tiles,
causing far-away reuse of input halos, the elements of an input
tile shared by multiple output tiles. To reduce the impact of
halos, tiles need to be relatively large, requiring substantial on-
chip storage to hold tiles and halos. Furthermore, input halos

WAl

Layer1 Layer2 Layer3 Layer4
Fig. 3: Input-stationary output-
stationary (IS-OS) dataflow (using
layers with a single input and
output channel).

Layer 1 Layer2 Layer3 Layer4
Fig. 2: Fused-Layer CNN acceler-
ator dataflow (using layers with a
single input and output channel).
grow with the number of pipelined layers (Fig. 2), increasing
their overheads. While Fused-Layer reduces traffic substantially
for some CNNEGs, it yields modest speedups (-6% to 27%), largely
because dense networks are less bottlenecked by data movement
than sparse ones.

Fig. 3 shows how our novel IS-OS dataflow differs from
prior tile-based pipelining in the dense setting. Like Fig. 2, it
shows multiple layers. The key difference is that IS-OS pro-
duces thin and tall wavefronts instead of 2D tiles. Activations
are produced and consumed in the same order, and wavefronts
in earlier layers are ahead in the W dimension (by S positions
per layer, i.e., by the width of the filters). This reduces the sizes
of intermediates and avoids or greatly reduces halos, enabling
deeper pipelines. Moreover, IS-OS supports sparsity efficiently
by allowing the efficient (concordant) traversal of compressed
data structures in sparse CNNs, unlike Fused-Layer (Sec. II-B).
Finally, IS-OS spatially parallelizes loop dimensions like H (ac-
tivation height) to maximize vertical reuse and handle sparsity
with simple hardware. Fused-Layer parallelizes differently, on
channel dimensions C and K, to simplify inter-PE communica-
tion. Sec. III describes IS-OS in detail.

Prior work beyond Fused-Layer proposed dense dataflows that
allow some inter-layer pipelining. Brein [4] and Tangram [16]
pipeline two layers by chaining an output-stationary layer with
an input-stationary layer. While simpler than Fused-Layer, they
can only pipeline two layers. By contrast, our IS-OS dataflow
allows pipelining an arbitrary number of layers.

B. Leveraging sparsity in CNNs
Much prior work has lever- ;4

aged sparsity to reduce the

cost of CNN inference. Weight

}

pruning zeroes out weights 206

based on some criteria. In un- §0.4_

structured pruning [19], all '

weights below a threshold are o2 _ 'Vrv]eight
0.0

pruned away. Then the result-
ing sparse CNN is retrained
to retain accuracy. Prior work

Layers

Fig. 4: Input activation and weight
sparsity in ResNet-50.

has shown that 50-95% of weights can be trimmed with no
or negligible accuracy loss [18, 19, 20]. Structured pruning
techniques zero out a larger groups of weights, e.g., an entire
channel [21]. Structured pruning allows using existing hardware
efficiently, like GPUs, but quickly degrades accuracy by im-
posing strict constraints on weights. In this work, we focus on
unstructured pruning, which allows greater pruning but requires
new hardware to handle the resulting unstructured sparsity.
Another source of sparsity, activation sparsity, arises from
non-linear activation functions like ReLU [29], which turn nega-

location

F=[C,R,K,S] LF]
K_H
Rank C
Rank R
Rank K

Rank S "'|f124o|f1241| |f1270|f1z71| """

Fig. 5: A sparse weight tensor illustrated in the fibertree abstraction [39]
(left) and its Compressed Sparse Fiber (CSF) format (right).

tive activations into zeros. Activation sparsity is input-dependent
and unstructured, as negative values may appear at any location.

Leveraging both weight and activation sparsity yields the

largest reductions in execution time, energy, and data movement.
Fig. 4 shows the weight and activation sparsity of a pruned
ResNet-50 CNN [26]. Each data point represents one layer and
higher means sparser (100% denotes all zero values). As Fig. 4
shows, weights are typically sparser than activations, with 90%
sparsity across layers in this case. Activation sparsity varies
more, ranging from 20% to 80%.
Compressed data structures: An advantage of sparse data is
that it can be compressed, e.g., storing only nonzero values and
their coordinates, saving memory capacity and traffic. Sparse
tensors can be described abstractly (i.e., without the details of
their specific format) through the fibertree representation [39].
Fig. 5 (left) shows the fibertree of a 4D sparse filter tensor.
The fibertree shows only the nonzero values in the tensor, and
elements at each level, or rank [39], represent a sub-tensor that
includes all the children below that element. For example, the
root node F represents the entire sparse filter. F at the C rank
points to the set of nonzero weights with the same input channel
c¢=1(FIl,:,:,:]). Note that F, is not present, meaning that input
channel ¢ =2 is empty. Fj >4 at the K rank represents all filter
weights at input channel ¢ = 1, row id » = 2, and output channel
k=4 (F[1,2,4,:]). The leaf nodes are the filter weights; their
subscripts denote their coordinates at every rank.

Actual designs must store tensors using one of the myriad
concrete formats [10, 39] rather than the abstract representa-
tion above. Compressed Sparse Fiber (CSF) [25, 37], shown in
Fig. 5 (right), is a commonly used format for higher-dimensional
sparse tensors (CSF generalizes the CSR/CSC formats for 2D
matrices). CSF stores a sparse tensor using one array per rank.
Each array element is a tuple of the coordinate at the current
rank and an offset to the next rank’s array, where all the subse-
quent elements share the same coordinate. For example, tuple
(2,6) at rank R denotes that elements at rank K’s array at indices
[6,8) all share the same R coordinate of 2 (the upper bound 8
is indicated by the next tuple, (4,8)). The array at the bottom
rank (S) consists of tuples of coordinates (at rank S) and values.

Unlike uncompressed data structures, compressed formats
can be traversed efficiently only in some orders. For example,
in CSF, traversing all ranks sequentially is efficient. These are
called concordant traversals [39]. By contrast, other traversals,
i.e., discordant traversals, are inefficient. For example, accessing
elements at random in CSF would require a bisection search.

To be efficient, sparse CNN dataflows should maximize the

use of concordant traversals. This requires a careful codesign
of the dataflow and data structures, and makes some opera-
tions harder. For example, tiling and halos are more complex
with a representation like CSF. Specifically, Fused-Layer’s tiled
dataflow [3] would require discordant traversals of halos even if
activations were produced in a tiled CSF format, causing need-
less fetches. Instead, IS-OS traverses activations in wavefronts
(Fig. 3), achieving concordant traversals of all compressed data
structures, making IS-OS more efficient on sparse CNNs.
Sparse accelerators: SCNN, SparTen, and GoSPA are represen-
tative sparse single-layer CNN accelerators (Sec. VII discusses
other accelerators). SCNN [34] exploits both weight and activa-
tion sparsity. Its input-stationary dataflow allows efficient con-
cordant traversal of input activation and weights. SparTen [17]
improves on SCNN by introducing a novel intersection-based
PE design and a load balancing scheme. Sparse input activations
and weights are represented as bit masks, enabling efficient dot
products in the PEs. GoSPA [12] improves on SparTen through a
novel implicit intersection mechanism that uses statically known
weights to avoid fetching input activations that will not produce
output activations. These accelerators execute sparse CNNs
layer by layer. Their input/output stationary dataflows create
long output/input activation reuse. Thus, pipelining multiple
layers would require a large amount of on-chip storage.

III. IS-OS DATAFLOW

We now present the input-stationary-output-stationary (IS-
0S) dataflow for efficient pipelining in sparse CNNs. For ease
of understanding, Sec. III-A first presents IS-OS in a dense
setting. Sec. III-B then explains the sparse IS-OS dataflow.

A. Dense IS-OS dataflow

Input-output behavior: A key characteristic of IS-OS is that
it consumes input activations and produces output activations
in the same order, resulting in thin wavefronts between pipeline
stages instead of wide tiles. Fig. 3 from Sec. II showed this basic
idea for the case with a single input and output channel. Fig. 6
shows this input-output behavior in more detail for the general
case, with multiple input and output channels. Fig. 6 highlights
the input and output wavefronts for one layer at two different
points in time. Each wavefront is a single column, i.e., a vertical
slice of a single activation plane at a specific channel. Over time,
the IS-OS layer consumes the input wavefront by wavefront,
advancing first through the input channels, C and then in the
horizontal input dimension, W. The output wavefront is always
S positions behind the input wavefront in the horizontal output
dimension, Q, i.e., it lags by the horizontal size of the filters. This
is because, in a convolution, the output wavefront at horizontal
dimension P =i —S is dependent on input wavefronts with
horizontal dimension W in (i — S, i]. Thus, output wavefronts
are produced when their dependencies are cleared.

Fig. 7 shows the input-output behavior at a finer granularity,
showing how wavefronts are produced and consumed channel by
channel. Fig. 7 shows a single intermediate layer. It’s important
to note that an IS-OS layer will consume input wavefronts and
produce output wavefronts independently within the channels.

F|Iters

RI

Output activations

Input activations

I.

Wavefront col i

Q

Layer 1 K/ Layer 2

s-os\» »|1s-0s [
P

Wavefront col i-S

~

.. Stepl Chamelz
Layer 1 Layer 2
RI * V V
K ‘ IS-0S % 1S-0S [®
_| P
Wavefront col i+1 Wavefront col i-S+1
channel 2 Step i+n Channel 0

Fig. 6: Input-stationary-output-stationary (IS-OS) dataflow.

Activations Activations
Step 1 Step 2
P ca(ky, W2AY, P ca(ky, W2,
P
»|1s-0s »g »|1S-0S [: B|1s-0S »g H(15-0S (&
o~ ~
X T
Layer 1 Layer 2 Layer 1 Layer 2
Col i, channel 0 Col i, channel 1
Step 3 cp(yy), W2AL, Step 4 cp(q),N2QL),
»|i1s-0s | E i » IS-OS|‘ 1505 [» T ! »|1s-0s |
~N ~
X T
Layer 1 Layer 2 Layer 1 Layer 2
Col i, channel 2 Col i+1, channel 0

Fig. 7: Step by step example of IS-OS dataflow.
Tensor(shape=[H,W,C]) # compressed
Tensor(shape=[C,R,K,S]) # compressed
Tensor(shape=[P,Q,K]) # compressed

i
f
o

IS frontend
tmpl = Tensor(shape=[H,R,K,Q]) # uncompressed on Q
for h = [Q,H): # spatial
Ifor w = [0,W): # pipeline
for ¢ = [0,C):
for r in [Q,R):
for k in [0,K):
for s in [@,S): # spatial
tmpi[h,r,k,w-s] += i[h,w,c] * f[c,r,k,s]
tmpl_t = tmpl.transpose() # [H,R,K,Q] -> [K,Q,H,R]
0S backend
tmp2 = Tensor(shape=[P,K,Q]) # compressed
for p = [0,P): # spatial
:for k = [0,K):
| for q = [0,Q): # pipeline
: for r in [@,R):
1 h=p+r
i tmp2[p,k,q] += tmpl_t[k,q,h,r]
o = tmp2.transpose() # [P,K,Q] -> [P,Q,K]
Fig. 8: Loop nest for the IS-OS dataflow. Black code describes the dense
IS-OS dataflow. Red code denotes additions for the sparse IS-OS dataflow.

In other words, the input and output channels are not the same
at a given point in time, as the two diagrams in Fig. 6 show.
But they are always S columns apart.

IS-OS loop nest: Fig. 8 shows the IS-OS loop nest, i.e., the
implementation of each IS-OS block in Fig. 6.

Unlike prior dataflows, we write IS-OS not using a single loop
nest, but two: an input-stationary (IS) frontend and an output-
stationary (OS) backend. Importantly, frontend and backend are
pipelined, using a small amount of intermediate storage to com-
municate. This intra-layer pipelining of frontend and backend
enables the input-output behavior described above, which in

turn enables inter-layer pipelining.

While for the dense case, the code in Fig. 8 could be writ-
ten as a single loop nest, this would require costly discordant
traversals for the sparse case. Instead, Fig. 8 is written using
two loop nests that access all data structures in a single order,
plus two transposition operations. The transpositions enable
efficient concordant traversal of the data structures, and also
have a straightforward sparse implementation (mergers).

The IS frontend (top loop in Fig. 8) consumes input activa-
tions wavefront by wavefront (proceeding through channels, C
and then input activation horizontal dimension, W). Each input
value at channel C is multiplied with K x R x S filter values cor-
responding to the K output channels. This produces K X R X §
values per input element. These values are buffered and accu-
mulated along the S (horizontal filter) dimension to produce a
stream of partial results, which are written to the tmpl array.

The OS backend (bottom loop in Fig. 8) produces output
activations wavefront by wavefront (proceeding along output
channels, K, and output activation horizontal dimension, P). To
do this, the backend consumes partial results, which the frontend
placed in tmpl, and accumulates them along the R (vertical
filter) dimension. However, tmpl has dimension order H X
R x K x Q, so reducing across R would require non-contiguous
accesses. To avoid these, tmp1 is transposed (i.e., its dimensions
are permuted) between the frontend and backend, creating a
tmpl t array with dimension order K X Q x H X R, so that
the backend can accumulate across the innermost dimension.
Similarly, the OS backend performs one final transpose to leave
the output channel, K, as the innermost dimension, so that output
wavefronts are produced channel by channel, then column by
column (consistent with how inputs are consumed).

It is important to realize that the intermediate arrays (tmpl,
tmpl t, and tmp2) need not be produced completely before
being consumed (which would occupy a lot of storage): pipelin-
ing the frontend and backend, and pipelining the backend with
the frontend of the next layer, means that all intermediates are
pipelined across the Q dimension (output activation column).
Pipelining still needs some intermediate storage to hold par-
tial results (essentially the size of K x R X S output activation
wavefronts), but this is reasonably small in practice.

B. Sparse IS-OS dataflow

The previous section has introduced the dense IS-OS dataflow
in a way that lends itself well to sparsity. We describe the high-
level effects of sparsity here, and present the full ISOSceles
implementation of this sparse dataflow in the next section.

Assume that input activations, output activations, and filters
are in a compressed format like CSF (Sec. II-B). This brings
several benefits. First, this reduces the sizes of all structures, as
only nonzeros are stored. Second, because the code in Fig. 8 tra-
verses all data structures sequentially, resulting in efficient con-
cordant traversals on CSF structures; and transposes of sparse
data structures, as we will see later, can be efficiently imple-
mented with high-radix mergers. Third, sparse IS-OS avoids
ineffectual work: specifically, only nonzero inputs and weights
are multiplied to produce partial results.

¥
}

0s Basckend

1S-0S Block 1
Fig. 9: ISOSceles spatial components.

Feffh |--> Lane 4

Fetch k

v

= Lane5

Fetch
T, > Lane6

IS Frontend

¥
}

22019 SO-SI
'
€312019 SO-SI

Despite these benefits, sparsity also brings challenges. Specifi-
cally, it introduces large and fast variations of work across layers,
as the number of effectual multiplications in a layer is unknown
in advance. This requires techniques to load balance hardware
resources across layers to avoid low utilization.

Finally, since input and output activations are sparse, input
and output wavefronts need not be simple columns as Fig. 6
showed: because zeros are not represented, each wavefront will
be a wavy line consisting of the earliest unprocessed nonzero
along the input channel dimension at the input (and output
channel dimension at the output). This lets different parts of
the layer run at slightly different positions, with synchronization
dictated only by data dependences. Though this is difficult to
visualize, the hardware is simple, since it just streams in nonzero
values and their coordinates.

IV. ISOSCELES ARCHITECTURE

We now present the ISOSceles architecture, which efficiently
implements the IS-OS dataflow and pipelines multiple layers.
For ease of understanding, Sec. IV-A first presents ISOSceles’s
structure. This shows the key implementation techniques with-
out concerns for limited resources or low utilization. Sec. IV-B
shows how time-multiplexing helps ISOSceles achieve high
hardware utilization. Finally, Sec. IV-C discusses how ISOSce-
les can handle both large and small layers through tiling and
spatial/temporal mapping.

A. ISOSceles spatial structure

Overview: Fig. 9 shows a version of ISOSceles that is fully
spatial, i.e., without time-multiplexing. Each ISOSceles IS-OS
block processes one neural network layer. To pipelines multiple
layers, this implementation handles each layer with a separate
hardware IS-OS block, and blocks communicate intermediate
activations through FIFO queues. This spatial design is a step-
ping stone to ISOSceles’s full implementation, which we will
extend with time-multiplexing in Sec. IV-B to handle multiple
layers with a single IS-OS block.

Because each layer uses a different set of filters, in this spatial
design each IS-OS block uses a separate filter buffer that stores
all the layer’s filter weights on-chip. (We will later share a
single filter buffer across layers, and tile large layers whose
weights do not fit on-chip.) ISOSceles uses the Compressed
Sparse Fiber (CSF) [25, 37] format for all data structures.
IS-OS block overview: Each ISOSceles IS-OS block consists
of an IS frontend and an OS backend that implement the two
loop nests described in Fig. 8. The frontend and backend are

I=[H,W,C] m F=[CRKS]m T1=[H,RK,Q]m
— —

T2=[PK,Q]

O0=[P,Q,K] mm
——

H-mmm- ¢ “mmm H -@m-m- P @ P "
— o
[Py N
C K K Q"'It2372|t2371|'"|t2347|t2“5|t23“|--- K _

S“'If1271|f1z7olf1u1|f1240|“'

Q"'Itlsusltlsuzl“'It14147|t14142|'"

Fig. 10: Data structures used in ISOSceles. I: input activation, r: filter weight, 77, 7»:

, 0: output activation.

591 571 j _

N .
", *

—-

From previous
layer Broadcast

IS Frontend Lane 5

Fetch o

f1,2,4,1 f1,2,4,0

II,Er=2,k=4

v

! Partial
result
register

MAC1

L 15247 i

PE, 7 [30E1]
eee

From Lane 4 PE _, ,,

o

Reduce value

e | 123,45 I t2372It2342 I t2371|
2 7'y 2 7'y

------ with same g
ITMI ese
From Lane 5 T J_l =
PE phea oo "._---|t2i“| 2 [0 - POU .
R R 3 > BN T T
y | 2 = [t :
- = il) W A = Merge output —ReLU :
= fr°m allK " To next layer
From Lane 5 LRE=22 oy
PE, 7 - T oS Backend Lane 3

Fig. 11:

pipelined to reduce intermediate storage. Internally, frontend
and backend both consist of a number of lanes. The vertical
dimension of activations (H for the frontend and P for the
backend) is spatially mapped across lanes, so each lane handles
a single row of input or output activations. (For now, assume we
have enough lanes to accommodate the whole layer; Sec. IV-C
describes how to handle larger layers.)

Overview of lanes and cross-lane communication: Each lane
of the IS frontend reads across the horizontal input activation
dimension (W) and performs a partial convolution, accumulating
across the horizontal filter dimension (S). Each lane of the OS
backend collects partial results from the frontend and produces

results along the horizontal output activation dimension (Q).

To do this, each OS backend lane accumulates partial results
along the vertical filter dimension (R). These partial results
are generated by different lanes of the IS frontend, so each

backend lane consumes values from R nearby frontend lanes.

For example, Fig. 9 shows the cross-lane communication pattern
with R =3 filters: each backend lane consumes partial results
from the R = 3 surrounding frontend lanes, e.g., backend lane 5
consumes partial results from frontend lanes 4, 5, and 6. Modern
CNNs typically use small filter kernels (e.g. R = 1,3,5), so
the NoC overhead of this cross-lane communication is limited.
Each backend lane connects with the five closest frontend lanes

ISOSceles IS frontend and OS backend.

directly. Larger kernels (R > 5) can be executed through multi-
hop communication between backend lanes. Furthermore, lanes
are decoupled through queues to tolerate load imbalance and
on-chip memory access latency.

Main memory accesses: ISOSceles interfaces with off-chip
memory through input activation fetchers and output activation
writers, shown in Fig. 9. Each per-lane fetcher reads one input
activation row (dimension H) of the first layer from main mem-
ory. No other off-chip reads are needed in the entire pipeline
because all subsequent IS-OS blocks consume output activa-
tions from the previous IS-OS block. Similarly, each per-lane
writer streams one output activation row (dimension P) of the
last layer to main memory.

The IS-OS dataflow enables efficient concordant traversals of
input and output activations. Therefore, fetchers and writers are
implemented as simple FSMs that traverse compressed tensors
(like prior work [22, 42, 43]). To hide memory latency, they
are decoupled from the main execution pipeline using queues.

We now detail the implementation of frontend and backend
lanes using a concrete example, shown in Fig. 11. Fig. 10 shows
the format of the sparse tensors used in the example.

IS frontend lane: Each frontend lane computes a partial con-
volution of one input activation row and its associated weights.
The lane (/) consumes the input activation row element by ele-

ment, (2) fetches the filter weights based on the input activation’s
channel (C), and (3) sends the activation value and filter weights
to a set of PEs, which perform the multiply-accumulates.

Fig. 11 illustrates this process for frontend lane 5. The front-
end consumes input activation sub-tensor /5 (shown as a stream
of nonzeros s ...), one element per cycle. Since the
current input activation is from input channel 1, the filter sub-
tensor F; is fetched. The filter fetcher fetches the correspond-
ing weights (, ...) from the shared filter buffer. These
weights are associated with different rows, r, and output chan-
nels, k, and are sent to different PEs.

The filter buffer is shared across lanes, so it needs to support
the highest throughput in our design (serving up to 4096 ele-
ments/cycle in our implementation). We achieve this cheaply
with three techniques. First, since each input fetches many
weights, the filter buffer uses wide words to supply many
weights in parallel. Second, the filter buffer is heavily banked,
especially along input channels. Third, when multiple lanes
request weights for the same input channel, we coalesce their
requests and serve them with one access, avoiding stalls.

Each frontend lane has R x K PEs. PE,; is responsible for
handling a filter sub-tensor with a specific row, r, and output
channel, k. In our example, filter (along with input ac-
tivation) is sent to PE,_, ;4. The PE conducts a vector
(weight) scalar (input activation) product and accumulates re-
sults in partial result registers and . Upon receiv-
ing input activation , the PE outputs partial result
if it is not zero. This is because input () at column 7 can
only contribute to output activation at column 6 and 7 (assum-
ing a length § = 2 filter). The PE then knows that the partial
convolution on column 5 is completed and thus pushes partial
result at column 5 () to its output queue, to be consumed
by the backend. Each PE only holds S partial results,
and . By generating partial results (tmp1 in Fig. 8)
in a pipelined fashion, ISOSceles never needs to materialize

entirely and stores it compressed on-chip. As described in
Sec. III-A, the uncompressed size needed to hold partial results
is a reasonably small R X K x S per lane.
OS backend lane: Each OS backend lane produces one output
activation row (along dimension Q) by accumulating partial re-
sults 71 produced by the frontend. Accumulation happens along
the R (vertical filter) dimension. Each backend lane sources par-
tial results from R (adjacent) frontend lanes. To do this, the lane
(1) consumes partial result tensors from appropriate frontend
queues, (2) reorders them using a set of mergers to leave H and
R as the innermost dimensions, (3) accumulates partial results
over the R dimension to complete the convolution, and (4) se-
rializes all accumulated values using a final merger. The lane
also implements batch normalization and non-linear activation
functions to produce the final output activations.

Fig. 11 shows backend lane 3, which is responsible for pro-
ducing output row 3. We first focus on output channel k = 4:
(1) The lane consumes partial result sub-tensors (from
frontend lane 4 PE,_{ ;—4) and (from frontend lane 5
PE,_> x—4) (we omit partial results from other lanes for simplic-
ity). (2) The R-merger at k = 4 reorders (h=4r=1)

and (h=15,r =2) so that H and R appears at the in-
nermost dimension in the merged stream. As a consequence Q
appears at the outermost dimension (2, 2, s

...), which reduces memory footprint for the upcoming
reduction process. (3) The reducer accumulates partial results
(with the same column index, e.g., ¢ =2) over the R (vertical
filter) dimension using a simple adder. This completes the con-
volution. » and » are added together (and so are
subsequent elements with same column index ¢g). The resulting

is output activation element of row 3 at channel k = 4.

There are K (output channel dimension) R-mergers, each
working to produce one row of a specific output channel k. In
our example of lane 3, other than generated by R-merger
(k =4), output row 3 at channel 7 () is generated by R-
merger (k=7). 7> in lane 3 is organized as a compressed tensor
of shape K x Q. However, the IS frontend of the next layer con-
sumes activations channel by channel then column by column
(K is the innermost loop). (4) A final K-merger serializes all K
accumulated streams (, ...) so that K is the innermost
loop at the output activation O5. This emits output in the same
order they’re consumed by the next layer. Finally, O3 is passed
to the Point-wise Operation Unit (POU), including batch nor-
malization (BN) and ReLU (increasing activation sparsity). The
final output activation row is then sent to the next layer.

The backend uses cheap scalar mergers, which suffice be-
cause each frontend lane consumes a single element per cycle.
R-mergers have a low radix and are implemented using a com-
binational comparator tree [43]. K-mergers need a higher radix
(K =256), so we implement them with a pipelined min-heap [5].

B. Time-multiplexing in ISOSceles

The spatial design described so far (Fig. 9) uses one IS-OS
block per layer and one lane per activation row. Fig. 12 shows
the ISOSceles design with time-multiplexing support, which
instead has a single 1S-OS block with a fixed number of lanes.
Multiple lanes are pipelined temporally instead of spatially, by
time-multiplexing them over the single IS-OS block.

In this section, we discuss the rationale and changes needed
to temporally pipeline multiple layers. In Sec. IV-C, we discuss
how to use a fixed number of lanes efficiently.

The key motivation for temporal pipelining is that the spa-
tial approach, where each IS-OS block handles a single layer,
suffers from severe underutilization. First, sparsity introduces
underutilization within each layer. For example, the MAC units
in the PE arrays often spend cycles idle because filter weights
are often zero. Second, work imbalance across layers causes
underutilization too: each layer requires a different amount of
work (e.g., because layers use filters with different sizes and
sparsities), and this amount of work changes over time (e.g.,
due to zero input activations). When consecutive layers are
pipelined spatially, using multiple IS-OS blocks, one of them
becomes the bottleneck and leaves others even more underuti-
lized. By time-multiplexing layers over a single IS-OS block,
we can avoid both of these issues.

Effective time-multiplexing requires two extensions: the ad-
dition of per-layer contexts that hold the intermediate values

Memory

; 2 Mapping configuration
FetchI (» Wit scheduler Lane 0 OS Backend Layer 0 E3 - :rﬁ dst
2 L ., FetchF PE 8 T e
o [} , Layer1 | [| POUy |queue,
8 - {[[[}—~ FetchF —A—’?ﬂ’ 3 = 2 | POU, [queue,
5 | : i Layer 2 | |5 | Pou2 [Merger
3 o .t | % | % :I‘ POV 3 Fetcher|Merger
Lane 0 IS nter-layer — Array | yﬂper T P Merger| Writer
queues (in shared SRAM)
Frontend Fig. 13: Mapping ResNet block to

Fig. 12: ISOSceles with time-multiplexing.

for each layer, and dynamic scheduling to decide which layer
(context) to process among the ready ones at different points in
the pipeline. These modifications are the same as those needed
to make a processor pipeline multi-threaded.

Contexts: Fig. 12 shows the addition of per-layer contexts at
different points in the frontend and backend lanes. These are
SRAM memories that hold the distinct intermediate state of
each layer. The main points where this happens are at the PE
arrays in the frontend (where contexts hold partial results that
are then consumed by backend lanes), and the R-mergers (where
contexts hold the 7’1 tensors being transposed).

Our implementation supports pipelining 2—16 layers, so our
contexts increase state by a factor of 16. Different contexts share
the same physical SRAM memories, so when fewer contexts
are used, more space can be allocated to each context (e.g.,
each PE array context can hold more partial results, increasing
decoupling between frontend and backend lanes).

Replicated fetchers, K-mergers, and POUs: Since time-
multiplexing increases utilization, the very first and last stages
of each lane can bottleneck throughput. Therefore, as Fig. 12
shows, we replicate the filter fetchers in the frontend, and both
the final K-mergers and POUs in the backend, instead of time-
multiplexing them (using 16 replicas in our implementation).
This allows each frontend/backend lane to consume/produce
multiple elements per cycle, and is a small cost (Sec. V).

PE array: Because convolution layers have different filter sizes
(§ =1,3,5), using a fixed number of MAC units per PE (as
in the spatial design) causes underutilization. For example, if
the PE is designed to handle S =5, when a layer with S =1
is mapped to the PE, 80% of the MAC units are idle, creating
significant internal fragmentation. ISOSceles addresses this by
having coarse-grain PEs, where each PE contains more than S
MAC units (e.g. 8 in our implementation). The filter fetcher now
sends a long vector of compressed weights (which may span
multiple r and k) along with the input activation value to the PE
each cycle. The PE performs the same scalar vector products
and accumulates them to the wider partial result registers. This
coarse-grain PE design also benefits the context array’s design:
it adopts the same wide-word design as the filter buffer, because
partial results are read/written contiguously to the context array
from the PE. The PE double-buffers partial results to hide the
access latency of the context array SRAM.

Dynamic scheduling: ISOSceles performs dynamic schedul-
ing of the PE arrays to control the overall throughput of stages.
Because the amount of work per stage changes over time, a

ISOSceles.

static schedule that apportions a fixed number of PEs to each
layer is insufficient and would cause load imbalance. However,
doing cycle-by-cycle dynamic scheduling would be too expen-
sive, as there are many PEs and multiple contexts. Instead, dy-
namic scheduling is performed periodically: every 100 cycles,
the scheduler reallocates the PEs among layers based on the
demand of each layer in the prior 100-cycle interval. The sched-
uler monitors the number of MACs requested by each layer in
an 100-cycle interval and allocates PEs to layers proportionally
to their demand. In practice, we find this dynamic scheduling
algorithm to effectively smooth out load imbalance.
Programmable interconnect: Diverse CNN models can be
mapped to ISOSceles by configuring the interconnect shown
in Fig. 12. Fig. 13 shows an example of how we map one
ResNet block to ISOSceles. Each ResNet block (left) consists
of a three-layer main branch and a skip connection. At the
end of the block, activations from the main branch and the
skip branch are added together. Each inter-layer connection is
directly translated into a hardware unit connection. For layer0,
the fetcher pushes input activation from off-chip to queueO.
Queue0 connects with the pipeline (from intersect0 to POUO)
responsible for the inference of layer 0. The output of layer O
is pushed from POUO to queuel (to be consumed by layer 1).
The same is true for other layers.

Configuring ISOSceles: Beyond mapping layer connections
onto the interconnect, ISOSceles hardware is configured with
the layer information. This includes configuring the activation
fetchers and writers, filter fetcher, context array, and POUs. We
currently write this manually, but this can be automated with
simple extensions to deep learning frameworks like PyTorch.

C. Handling different layer sizes and types

ISOSceles is flexible enough to process convolutional layers
of widely varying sizes. Because ISOSceles streams through in-
put and output activation wavefronts horizontally (i.e., over the
W and Q dimensions), there is no limit to how large these can
be. But the vertical dimensions (H and P) are spatially mapped
across lanes and ISOSceles uses a fixed number of frontend and
backend lanes (64 in our implementation). In addition, ISOSce-
les handles other layer types like depth-wise convolution and
fully-connected layers with minimal hardware changes.
Handling large layers: In ISOSceles, each frontend lane con-
sumes one input activation row, and each backend lane produces
one output activation row. When the number of rows (P) in the
activation exceeds the number of hardware lanes, ISOSceles

TABLE 1
CONFIGURATION OF THE ISOSCELES SYSTEM.

TABLE 11
AREA BREAKDOWN OF ISOSCELES.

TABLE III
CONFIGURATION OF THE SPARTEN SYSTEM.

Lane Parameter ~ Value |ISOSceles Parameter Value ISOSceles Area (mm?)| Lane Area (mm?) Cluster Parameter Value|SparTen Parameter ~Value
Multiplier width ~ 8b # Lanes 64 64 Lanes 184 164 MAC Units 0.069 Multiplier width ~ 8b # Clusters 64
Accumulator width 16b Filter buffer 1MB Filter buffer 7.5 Mergers 0.060 Accumulator width 16b Filter buffer IMB
MAC units 64 | DRAM bandwidth 128GB/s Buffers 0.121 # MAC units 64 |DRAM bandwidth 128GB/s
Context array ~ 8KB Summary Fetcher 0.010 Buffers 64KB Summary
Queues 8KB | Total # MAC units 4096 Crossbar 0021 Frequency 1GHz|Total # MAC units 4096
Merger 16 | Total memory size 2MB Others 0.007 Total memory size 5MB
Merger radix 256 Frequency 1GHz Total 26.0 ‘ Total 0.288

tiles the output row dimension P to accommodate it. Tiling P
is also conducted when the context array memory requirement
(proportional to P) exceeds its capacity. Without considering
striding and padding, due to the nature of convolution, input
activations (H x W) are slightly larger than output activations
(P x Q). For each output tile, the corresponding input activation
tile is slightly larger. Therefore, for two disjoint output tiles,
their corresponding input tiles will have some overlapping rows
at the boundary, also referred as input halos [15, 34]. When
processing the output tiles, ISOSceles needs to read the input
halos from off-chip memory. Traversing these halos in the com-
pressed input are concordant since each row of input belongs
to a separate sub-tensor. With a large number of lanes, halos
are a small portion of the input activation, so their effect on
off-chip memory traffic and performance is limited.

When the sizes of filters in large layers exceed filter buffer
capacity, ISOSceles runs them layer by layer and, if necessary,
tiles the output channel K dimension so that each tile fits on-
chip. We show later (Sec. VI-C) that, even in this single-layer
execution mode, ISOSceles is still incurs less traffic than prior
accelerators thanks to the IS-OS dataflow.

Handling small layers: When P is significantly smaller than
the number of lanes (e.g., 16 with 64 lanes), mapping a whole
activation row to one lane is inefficient (e.g., leaving 75% of
lanes idle in our example). ISOSceles solves this by mapping
one row to multiple adjacent processing lanes. In the frontend,
at every step, one input activation element is consumed and the
corresponding weight sub-tensor (K x R x §) is fetched. Instead
of sending the input activation and weight sub-tensor to one
frontend lane, ISOSceles splits the weight sub-tensor according
to its output channel dimension K and dispatches each weight
partition to one frontend lane. Each frontend and backend lane
only handles a subset of K and all backend lanes in aggregate
handle all output activations. In the loop nest view (Fig. 8),
ISOSceles makes the K dimension partially spatial. Reflected
in Fig. 7, when P=16 and we have 64 lanes, we consume 4
columns in parallel to fill all lanes.

Handling other layers: The POU handles point-wise layers
like batch normalization and ReLU. Depth-wise convolution is
supported by simply disabling input channel C accumulation
and fetching filters from only one output channel K per input
activation. Grouped convolution can be supported with a similar
mechanism. ISOSceles executes fully-connected layers in an
input-stationary way, reusing most of the frontend structure. For
batch 1 inference, it performs an SpMV between the sparse
weight matrix and input activation vector. Weights are streamed
from DRAM (as they exhibit no reuse). All frontend lanes share

the same input activation; each lane processes a weight sub-
column to generate a partial result sub-column. The operation is
completed once all inputs are consumed. Fully connected layers
bypass the backend logic and directly send output from the
context array. Global average pooling is supported by treating
it as a convolution where kernel size matches input size.

V. EXPERIMENTAL METHODOLOGY

System: We build a cycle-level simulator to evaluate ISOSceles.
Table I shows its configuration. Our design consists of 64 lanes
(frontend and backend), an 1 MB global filter buffer, and an
128 GB/s High-Bandwidth Memory (HBM) interface. Each lane
contains 64 8-bit multipliers, 8 KB of context arrays to hold
partial results, 8 KB of queues to support inter-layer pipelining,
and 16 radix-256 throughput-1 mergers. The full system has
4096 MAC units with a total of 2 MB on-chip storage.

We have implemented ISOSceles’s components in RTL and
synthesized them in 45nm using the FreePDK library [30],
with a 1 GHz target frequency. Table II shows ISOSceles’s area
breakdown by component. Overall, this is a small accelerator
even at 45 nm, and ISOSceles would take just 4.7 mm? when
scaled to 16 nm [34]. By comparison, a single HBM2e interface
is about 15mm? [11, 31]. ISOSceles is able to saturate this
interface while using a small amount of area.

Baselines: We compare with Fused-Layer [3] and SparTen [17].
Fused-Layer is a dense CNN accelerator that pipelines multiple
layers. We implement its 2D tile-based dataflow and configure
it to have similar area as ISOSceles, using a 2.5MB filter buffer
and the same memory bandwidth and number of MAC units as
ISOSceles. SparTen is a state-of-the-art accelerator for sparse
CNNs. We model its output-stationary dataflow, memory traf-
fic, and layer-by-layer execution strategy for sparse CNNs. We
enhance our SparTen baseline with GoSPA’s activation filtering
optimization [12] to reduce further traffic (Sec. II). Table III
lists its configuration. SparTen is sized to match ISOSceles’s
bandwidth and number of MAC units. However, SparTen re-
quires 5MB (over 2x more) on-chip storage.

Workloads: We use ResNet-50 [20], MobileNetV1 [23], VGG-
16 [36], and GoogLeNet [40] as representative sparse CNNs
on ImageNet [13]. ResNet-50 and MobileNetV1 are pruned
using STR [26] to achieve 6 different levels of weight sparsity
for ResNet-50 (81%, 90%, 95%, 96%, 98%, and 99%) and 2
levels for MobileNetV1 (75% and 89%). We prune VGG-16 and
GoogLeNet with magnitude-based pruning so that their weight
sparsities (68% and 58%) match prior work [17, 34]. We further
emulate an aggressive version of VGG-16, where 90% of the
weights are pruned to show that increasing weight sparsity has

B Fused-Layer W SparTen ISOSceles

@leG

E o Bm Fused-Layer
8 q>)‘15_ P SparTen
Q_S D 1s- I1SOSceles
S5 10 - o
o3 >1.0-
U 5)
098 s5-
o 0.5-
n alaldad) J A
0 = ol 0.0
— O N wYWowo wno O W C S O 1n W o
0O OO0~ 0 OO 1N © 0 O O o O
rTErEcxrEss>>02 X X X x x
(a) Speedup over Fused-Layer.

(b) Cycles comparison.

o3

8% | Outlact|vat|on

th-- We|ght .

=F EEE |n activation

S o

Ez

f 1-

oY

=5 LI

O o M0 Wn a0 R AR A AR
o FSI FSI FSI FSI FSI FSI FSI FSI FSI FSI FSI FSI
0 C — O 1N W 0 O 1N O W O 0 C
n @ 0 & O 0O OO O~ 0 O O 1 ©
Qg ccn:n:o:ncncgz>>@§

(c) Oft-chip traffic of ISOSceles (I) and SparTen (S)
normalized to Fused-Layer (F).

Fig. 14: ISOSceles speedups, and comparison of cycles and off-chip traffic across CNNs. R81-R99: ResNet-50 w/ 81%-99% weight sparsity. V68, V90:
VGG-16 w/ 68% and 90% weight sparsity. G58: GoogLeNet w/ 58% weight sparsity. M75, M89: MobileNetV1 w/ 75% and 89% weight sparsity.

TABLE IV
PIPELINEABLE WORKLOADS IN RESNET-50 WITH 96% WEIGHT SPARSITY
(R96), L: NUMBER OF LAYERS.

Workload Workload
L layers L layers
name name
] layer1.0.conv{1,2,3}, . layerl.T.conv{1,2,3},
11.0.convl 4 layer1.0.downsample IL.1convl 6 layerl.2.conv{1,2,3}
Doconvl 4 1ver20comv{l23h [, 3 ayera teonv{12,3}
H-eony layer2.0.downsample Seonv ayer=.1.co o
layer2.2.conv{1,2,3}, layer3.0.conv{1,2,3},
12.2.convl 6 layer2.3.conv{1,2,3} 13.0.convl 4 layer3.0.downsample
. N layer3.2.conv{1,2,3},
13.1.convl 3 layer3.l.conv{1,23} | 13.2.convl 6 layer3.3.conv{1.2.3}
layer3.4.conv{1,2,3}, layer4.0.conv{1,2,3},
13.4.convl 6 layer3.5.conv{1,2,3} 14.0.convl 4 layer4.0.downsample
layer4.T.conv{1,2,3},
H.1.convl 6 layer4.2.conv{1,2,3}

a compounding factor on compute intensity reduction. Overall,
we evaluate 11 sparse CNNs (6 ResNet-50: R81, R90, R95,
R96, R98, R99; 2 MobileNetV1: M75, M89; 2 VGG-16: V68,
V90; 1 GooglLeNet:G58). Fused-Layer runs the dense CNNs
on uncompressed data.

Benchmarks: We execute ResNet-50, MobileNetV1 and VGG-
16 end-to-end, including all layers (FC, batch normalization,
etc.); for GoogleNet, we evaluate a subset of representative
layers. We pipeline layers greedily from the start of network
to the end until the storage requirements (filter buffer, context
array, or queues) exceed on-chip resource availability. Since
pooling layers are not amenable to pipelining, we run them
unpipelined. If a single layer is too large to fit on-chip, it is
tiled (following Sec. IV-C).

For ResNet-50, ISOSceles pipelines at ResNet block granu-
larity. For denser ResNet, it usually pipelines 1-2 ResNet blocks
(4-6 convolutional layers) including the skip connection. In later
layers (e.g. 14.0.conv1), weights are large, so ISOSceles can only
execute them layer by layer to not overflow the filter buffer.
Table IV shows all the pipelineable layers in R96 (only the
first convolution layer and FC layer are not pipelined). Sparser
ResNet-50 (R98 and R99) can pipeline more layers, typically
9-15 layers. On average, ISOSceles pipelines 3-5 layers per
run for ResNet-50 with different sparsity levels. To model the
extra traffic incurred by the skip connection in SparTen, we
fuse the skip connection with the last convolutional layer in a
ResNet block. For MobileNetV1, we can pipeline 3-7 layers
until the context array reaches its capacity and pooling layer
serves as pipeline boundary. In VGG-16, ISOSceles tiles the
first 4 layers on P because their activation heights exceeds the

number of lanes. Then we can pipeline 2-3 convolutional layers
until the pooling layer. For the sparser VGG (V90), we further
tile on P for convolutional layers in the middle (even though
their activation heights are smaller than number of lanes) to
reduce the context array capacity requirement for each layer. In
this way, ISOSceles can turn 6 non-pipelineable convolutional
layers (features.24-40) into two pipelines (each containing
a group of three convolutional layers). Finally, we evaluate the
Inception 3a block in GoogleNet. Branches 2 and 3 (each con-
taining 2 layers) are pipelined, and the single-layer branches 1
and 4 are executed separately. We evaluate inference without
batching, since it will provide no benefit for these designs.

VI. EVALUATION
A. Performance and memory traffic

Fig. 14a reports the speedups of SparTen and ISOSceles over
Fused-Layer on all 11 sparse CNNs. Fused-Layer and ISOSceles
pipeline multiple layers (as described in Sec. V), but SparTen
does not. SparTen and ISOSceles leverage weight and activation
sparsity, but Fused-Layer does not.

By leveraging sparsity, ISOSceles outperforms Fused-Layer
by gmean 7.5x (and up to 18.0x on R99). Speedups grow with
sparsity, as sparser networks have less compute and memory
traffic. Furthermore, sparser networks have smaller filter weights,
which allows ISOSceles to pipeline even more layers (from up
to 6 layers in R81, to up to 15 layers in R99). For example,
speedups on ResNet increase from 5.9x to 18.0x when weight
sparsity grows from 81% to 99%.

By leveraging inter-layer pipelining, [ISOSceles outperforms
SparTen by gmean 4.3x (and up to 6.7x, on MobileNetV1
with 89% weight sparsity). Speedups on ResNet with various
weight sparsity level range from 3.9x to 5.6x. ISOSceles is
5.6x and 6.7x faster than SparTen on MobileNetV1 with two
sparsity levels. SparTen performs worse than Fused-Layer on
MobileNetV1 due to frequent depth-wise convolutions, which
have low compute intensity. Inter-layer pipelining reduces traffic
more than sparsity for these layers, resulting in better perfor-
mance. For VGG-16, ISOSceles is 1.9x and 5.3 x faster on the
variants with 68% and 90% weight sparsity, respectively. Finally,
ISOSceles outperforms SparTen by 1.7x on GoogLeNet.

Fig. 14b reports the number of cycles (lower is better) that
Fused-Layer, SparTen, and ISOSceles take to run each sparse
CNN, and Fig. 14c shows the total off-chip memory traffic

C C
o o
S s9
- Fused Layer © L
N 0.8 - N 0.8
= . I SparTen =
506k ISOSceles 5 06-
>
% 0.4 - E 0.4 -
—
g 02- < o02-
O
€ 0.0 < oo
[Oe -4 O 1 VW ® O 1 O W O 0 C = —- o
s ® O O O O O~ ® OV O N © K o
€ & & & &&=z = > > 00 @

Fig. 15: Memory bandwidth utilization.

(lower is better). Each bar is normalized to Fused-Layer’s traffic,
and is broken down by weight and activation traffic.

Fig. l4c shows that ISOSceles enjoys dramatically lower
memory traffic than both Fused-Layer and SparTen, highlight-
ing the synergy between inter-layer pipelining and sparsity. By
contrast, there is no clear winner between Fused-Layer and
SparTen. Thanks to pipelining, Fused-Layer features little acti-
vation traffic. But Fused-Layer is dominated by weight traffic,
since weights are dense. SparTen has much lower weight traf-
fic owing to its use of sparsity. But SparTen is dominated by
activation traffic since it does not pipeline layers. Except in the
sparsest ResNet variants, this limitation makes SparTen incur
more traffic than Fused-Layer, sometimes by large amounts (up
to 2.4x more in M75), and 1.3x more on average.

By contrast, Fig. 14c¢ shows that ISOSceles achieves both low
weight traffic (thanks to sparsity) and activation traffic (thanks
to pipelining). ISOSceles enjoys 3.6 x less traffic than Fused-
Layer, and 4.7 x less traffic than SparTen.

B. Architectural analysis

Fig. 15 compares the off-chip memory bandwidth utilization
for the baselines and ISOSceles across CNNs. The height of
each bar shows the average fraction of time memory is being
used; 1.0 means bandwidth is saturated all the time. Fused-
Layer only utilizes 47% of the off-chip bandwidth. This is
because dense CNN inference has high compute intensity and
is compute-bound most of the time. SparTen, on the other hand,
always saturates memory bandwidth, and thus is memory-bound
on sparse CNNs. This is caused by its single-layer execution
strategy, which generates large off-chip transfers of activations.
By contrast, ISOSceles reduces memory bandwidth pressure
through inter-layer pipelining. As a result, 3 of the 11 networks
no longer need the full 128GB/s bandwidth, and are mainly
compute-bound. This is why its traffic reductions over SparTen
are generally larger than its performance gains. For the other
8 networks, ISOSceles is also bandwidth-bound, so its higher
compute intensity translates directly into speedups.

Fig. 16 shows the MAC array utilization rate across all net-
works. ISOSceles achieves an average 35% MAC array utiliza-
tion, 3.4x larger than SparTen. This is because the improved
compute intensity due to inter-layer pipelining increases utiliza-
tion. Fused-Layer achieves nearly 100% MAC utilization, again
showing that it is compute-bound. Because sparse CNNs have
15x fewer MACs than dense ones, ISOSceles widely outper-
forms Fused-Layer despite having lower MAC array utilization.

Fig. 16: MAC array utilization.

®

B Fused-Layer N SRAM
Bm SparTen 1.5 Em Compute
ISOSceles Emm DRAM

Per Image Energy (m))
_O -
w o

o
o

n
~

=

R95 F-_-
R96 F-_-

L =d
0 O
[aaaq

Fig. 17: Energy

© o
o)) ©
o =

RO5 mummmm—

RO6 mm——
= R98 mmmm

R99 mmm

M75

M89 mm

Mean

R99

reakdown.

Note that, while Fused-Layer is more compute-bound than
ISOSceles, it also incurs much more memory traffic. Therefore,
if we increase the number of MACs in Fused-Layer to make it
memory-bound (which would cost significant area), [ISOSceles
would still be about 3x faster than Fused-Layer.

ISOSceles’s MAC array utilization decreases when ResNet
becomes sparser. This is because higher sparsity reduces the
number of effectual operations and makes ResNet more memory-
bound. VGG-16, on the other hand, achieves a relatively high
MAC utilization, over 50%. We note that 100% average uti-
lization is not achieved for several reasons. First, each network
contains a mix of compute- and memory-bound phases. For
example, in VGG-16, convolutional layers are heavily pipelined
and expose decent reuse so that they are compute-bound. The
final three FC layers are essentially SpMV operations and the
large weight matrix exhibits no reuse. Therefore, ISOSceles is
memory-bound in these layers. The accelerator spends about
60% time in compute-bound phases, and about 40% in memory-
bound phases. Second, the dynamic scheduler reallocates MAC
units across layers every 100 cycles. The fragmentation caused
by load imbalance causes some underutilization.

Fig. 17 shows the energy per end-to-end inference (obtained
using a 14/12nm process with commercial tools) on the ResNet-
50 and MobileNetV1 CNNs, broken down by component. En-
ergy consumption per image ranges from 0.2mJ to 1.9mJ across
CNNs. SRAM energy is mainly associated with filter buffer
reads and context array accesses for MAC operations. As CNNs
become sparser, operational intensity falls, reducing the contri-
bution of SRAM and compute energy. Overall, DRAM energy
dominates, especially for sparser networks. This shows that
reducing DRAM traffic (through inter-layer pipelining) is the
correct way to improve energy efficiency on sparse CNN in-
ference: due to their much higher traffic, the other accelerators
will be even more severely dominated by DRAM energy, even
if their on-chip structures are simpler. VGG-16 end-to-end con-
sumes 10.1mJ (V68) and 3.7mJ (V90) per image and shows
similar breakdowns. The large model size and number of MACs
contribute to the higher energy consumption.

C. Effect of pipelining

We now break down ISOSceles’s benefits over SparTen by fo-
cusing on one CNN, ResNet-50 with 96% weight sparsity (R96).
Beyond ISOSceles and SparTen, we also evaluate ISOSceles-
single, which uses the IS-OS dataflow but executes the inference
layer by layer instead of pipelining. Fig. 18 reports the cycles

1.0 -
B SparTen
$ [ISOSceles-single
O 05 - 1SOSceles
>
0.0 L -
F Y¥YYYYYYLYYYY LIS
< < < < < < < < < < < < o
S & & & e e e & EeEe&EEee <

Y S Y ANS YN YOS
YLV LY LY OO YT

Fig. 18: Execution time (cycles) of different layer groups/pipelines on R96.

taken by each of the different layer pipelines that make up R96
(each group of bars shows an ISOSceles pipeline, or their equiv-
alent group of layers for the other accelerators). Because the
number of activation rows in the first layer exceeds the number
of lanes, ISOSceles tiles the first layer on P (Sec. IV-C) and
executes it tile by tile. Therefore ISOSceles has the same perfor-
mance as [SOSceles-single. For other parts of the CNN, ISOSce-
les pipelines 4-6 convolutional layers (1-2 ResNet blocks) based
on storage requirements. ISOSceles runs FC layer by layer.

ISOSceles-single reduces execution time by 1.9x over
SparTen. Its off-chip traffic reductions match its speedups
for all layers, because R96 is memory-bound (as we saw in
Fig. 15). This shows that the IS-OS dataflow has merits over
prior dataflows by itself. This is because the IS-OS dataflow
reads/writes input/output activations once per layer, incurring
only compulsory traffic. SparTen’s OS dataflow has poor reuse
of input activations and may read them multiple times. Tiling
in SparTen helps input reuse but it still causes more traffic
than compulsory. In this ResNet execution, layers that are not
pipelined (first convolution and FC layer), running in ISOSceles-
single mode, only account for 16% of execution time.

Comparing ISOSceles and ISOSceles-single shows the bene-
fits of inter-layer pipelining. From Fig. 18, ISOSceles reduces
execution time by 2.6x over ISOSceles-single. Since ResNet is
memory-bound, traffic reductions are again similar: ISOSceles
incurs 2.7x less traffic than ISOSceles-single.

VII. ADDITIONAL RELATED WORK

Prior work has proposed accelerators that leverage sparsity
beyond SCNN, SparTen, and GoSPA (Sec. II-B). Cambricon-
X [44] exploits weight sparsity by storing weights compressed
on-chip. It uses sparse weights to fetch the corresponding input
activations in an irregular way. Eyeriss [7] gates MAC units
when an input is 0 to save energy, but this incurs idle cycles. Cn-
vlutin [2] skips ineffectual multiplications caused by activation
sparsity, reducing cycles over Eyeriss. Eyeriss v2 [8] proposes a
flexible NoC to handle sparse layers with varying reuse. ESCA-
LATE [27] decomposes convolution using SVD into lower-rank
operations: a small set of kernels and a large coefficient matrix
that is more amenable to pruning. Its architecture maximizes
reuse of these structures. Dual-side sparse tensor core [41] lever-
ages bitmap-based im2col and outer-product based SpGEMM
to support weight and activation sparsity in GPU tensor cores.

The work mentioned above exploits value sparsity in CNNs,
i.e., eliminating ineffectual work cause by values that are zero.
Another line of work focuses on exploiting bit-level sparsity by

performing bit-serial computation and skipping zero bits. Bit-
pragmatic [1] skips zero bits in input activations and weights.
A new encoding scheme and compute schedule reduce its area
and energy. Bitlet [28] introduces bit interleaving to condense
multiple values (with zero bits) into fewer values (with all 1
bits) to improve the utilization of bit-serial PEs. Bit Fusion [35]
leverages the fact that different CNN layers require different
bit precision. It proposes a flexible multiplier array that han-
dles variable-precision operations. Bit sparsity is orthogonal to
ISOSceles. ISOSceles could be extended to leverage it.

Prior accelerators on sparse matrix-sparse matrix multipli-
cation can also be used to accelerate sparse convolution by
leveraging the Toeplitz transformation [39], though at an effi-
ciency cost. ExTensor [22] leverages hierarchical intersection to
eliminate ineffectual work. OuterSPACE [32] and SpArch [45]
use an outer-product based dataflow. And Gamma [43] and Ma-
tRaptor [38] implement Gustavson’s dataflow to reduce memory
traffic and accelerator area. SpArch and Gamma use high-radix
mergers for efficiency, which ISOSceles takes inspiration from.
But these accelerators are not designed for CNNs: they cannot
pipeline operations, run a single matrix multiplication at a time,
and are tuned for very sparse matrices, so they have far less
compute throughput (32-64 MACs) than ISOSceles.

While ISOSceles and these prior accelerators target different
problems, ISOSceles’s techniques are general and should apply
to sparse matrix and tensor acceleration. For instance, small
changes to ISOSceles would allow it to support Gustavson’s
dataflow (by using the fetcher, PE array, and K-merger, and
bypassing other modules), which pipelines naturally. Supporting
sparse matrix-sparse matrix multiplication would allow lever-
aging ISOSceles’s sparse pipelining in other applications, like
transformers and sparse tensor algebra.

VIII. CONCLUSION

Sparse CNNs are dramatically more efficient than dense ones,
but also more memory-bound due to their limited reuse. We
have shown that inter-layer pipelining is an effective way to
increase reuse for sparse CNNs and substantially improve perfor-
mance. We have presented a novel dataflow, [S-OS, that allows
pipelining many CNN layers with a minimal amount of interme-
diate state; and ISOSceles, an accelerator that implements this
dataflow and leverages time-multiplexing to pipeline multiple
layers at high utilization, avoiding the load imbalance issues
caused by sparsity. ISOSceles outperforms a state-of-the-art
accelerator by 4.3x gmean, chiefly by dramatically reducing
off-chip traffic by 4.7x.

ACKNOWLEDGMENTS

We sincerely thank Nithya Attaluri, Robert Durfee, Fares
Elsabbagh, Axel Feldmann, Kendall Garner, Aleksandar Krastev,
Hyun Ryong (Ryan) Lee, Quan Nguyen, Nikola Samardzic,
Shabnam Sheikhha, Victor Ying, and the anonymous reviewers
for their helpful feedback. This work was supported in part by
the Semiconductor Research Corporation under contract 2020-
AH-2985, and by the National Science Foundation under grant
CCF-2217099.

[1]

[2]

[3]

[4

=

[6

=

[7]

[8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]

[22]

[23]

[24]

[25]

REFERENCES

J. Albericio, A. Delmads, P. Judd, S. Sharify, G. O’Leary, R. Genov, and
A. Moshovos, “Bit-pragmatic deep neural network computing,” in Proc.
MICRO-50, 2017.

J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” in Proc. ISCA-43, 2016.

M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer CNN
accelerators,” in Proc. MICRO-49, 2016.

K. Ando, K. Ueyoshi, K. Orimo, H. Yonekawa, S. Sato, H. Nakahara,
S. Takamaeda-Yamazaki, M. Ikebe, T. Asai, T. Kuroda et al., “Brein
memory: A single-chip binary/ternary reconfigurable in-memory deep
neural network accelerator achieving 1.4 TOPS at 0.6 W.,” IEEE Journal
of Solid-State Circuits, 2017.

R. Bhagwan and B. Lin, “Fast and scalable priority queue architecture
for high-speed network switches,” in Proc. of the IEEE Infocom, 2000.
T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“DianNao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in Proc. ASPLOS-XIX, 2014.

Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: a spatial architecture for energy-
efficient dataflow for convolutional neural networks,” in Proc. ISCA-43,
2016.

Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, 2019.
Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun et al., “DaDianNao: A machine-learning supercomputer,” in Proc.
MICRO-47, 2014.

S. Chou, E. Kjolstad, and S. Amarasinghe, “Format abstraction for sparse
tensor algebra compilers,” in Proc. OOPSLA, 2018.

S. Dasgupta, T. Singh, A. Jain, S. Naffziger, D. John, C. Bisht, and P. Ja-
yaraman, “Radeon RX 5700 Series: The AMD 7nm Energy-Efficient
High-Performance GPUs,” in Proc. ISSCC, 2020.

C. Deng, Y. Sui, S. Liao, X. Qian, and B. Yuan, “GoSPA: an energy-
efficient high-performance globally optimized sparse convolutional neural
network accelerator,” in Proc. ISCA-48, 2021.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. CVPR, 2009.

Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “ShiDianNao: Shifting vision processing closer to the
sensor,” in Proc. ISCA-42, 2015.

M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris: Scal-
able and efficient neural network acceleration with 3d memory,” in Proc.
ASPLOS-XXII, 2017.

M. Gao, X. Yang, J. Pu, M. Horowitz, and C. Kozyrakis, “Tangram: Op-
timized coarse-grained dataflow for scalable nn accelerators,” in Proc.
ASPLOS-XXIV, 2019.

A. Gondimalla, N. Chesnut, M. Thottethodi, and T. Vijaykumar, “SparTen:
A sparse tensor accelerator for convolutional neural networks,” in Proc.
MICRO-52, 2019.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman coding,”
in Proc. ICLR, 2015.

S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Proc. NeurIPS, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. CVPR, 2016.

Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep
neural networks,” in Proc. ICCV, 2017.

K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago, A. Jaleel,
E. Solomonik, J. Emer, and C. W. Fletcher, “ExTensor: An accelerator
for sparse tensor algebra,” in Proc. MICRO-52, 2019.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient con-
volutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter perfor-
mance analysis of a tensor processing unit,” in Proc. ISCA-44, 2017.
F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe, “The
tensor algebra compiler,” in Proc. OOPSLA, 2017.

[26]

[27]

(28]

[29]
(30]

[31]

(32]

[33]

[34]

[35]

(36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

A. Kusupati, V. Ramanujan, R. Somani, M. Wortsman, P. Jain, S. Kakade,
and A. Farhadi, “Soft threshold weight reparameterization for learnable
sparsity,” in Proc. ICML, 2020.

S. Li, E. Hanson, X. Qian, H. H. Li, and Y. Chen, “ESCALATE: Boosting
the efficiency of sparse cnn accelerator with kernel decomposition,” in
Proc. MICRO-54, 2021.

H. Lu, L. Chang, C. Li, Z. Zhu, S. Lu, Y. Liu, and M. Zhang, “Distilling bit-
level sparsity parallelism for general purpose deep learning acceleration,”
in Proc. MICRO-54, 2021.

V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proc. ICML, 2010.

Nangate Inc., “The NanGate 45nm Open Cell Library,” http://www.
nangate.com/?page_id=2325, 2008.

NVIDIA, “NVIDIA DGX station A100 system architecture,”
https://images.nvidia.com/aem-dam/Solutions/Data-Center/nvidia-
dgx-station-al00-system-architecture- white-paper.pdf, 2021.

S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng, C. Chakrabarti,
H.-S. Kim, D. Blaauw, T. Mudge, and R. Dreslinski, “OuterSPACE: An
outer product based sparse matrix multiplication accelerator,” in Proc.
HPCA-24, 2018.

A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop: A
systematic approach to dnn accelerator evaluation,” in Proc. ISPASS, 2019.
A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany,
J. Emer, S. W. Keckler, and W. J. Dally, “SCNN: An accelerator for
compressed-sparse convolutional neural networks,” in Proc. ISCA-44,
2017.

H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Es-
maeilzadeh, “Bit fusion: Bit-level dynamically composable architecture
for accelerating deep neural network,” in Proc. ISCA-45, 2018.

K. Simonyan and A. Zisserman, ‘“Very deep convolutional networks for
large-scale image recognition,” in Proc. ICLR, 2015.

S. Smith and G. Karypis, “Tensor-matrix products with a compressed
sparse tensor,” in Proc. of the 5th Workshop on Irregular Applications:
Architectures and Algorithms, 2015.

N. Srivastava, H. Jin, J. Liu, D. Albonesi, and Z. Zhang, “MatRaptor: A
sparse-sparse matrix multiplication accelerator based on row-wise product,”
in Proc. MICRO-53, 2020.

V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks,” Synthesis Lectures on Comp. Arch., 2020.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
Proc. CVPR, 2015.

Y. Wang, C. Zhang, Z. Xie, C. Guo, Y. Liu, and J. Leng, “Dual-side sparse
tensor core,” in Proc. ISCA-48, 2021.

Y. Yang, J. S. Emer, and D. Sanchez, “SpZip: Architectural support for
effective data compression in irregular applications,” in Proc. ISCA-48,
2021.

G. Zhang, N. Attaluri, J. S. Emer, and D. Sanchez, “Gamma: Leveraging
Gustavson’s algorithm to accelerate sparse matrix multiplication,” in Proc.
ASPLOS-XXVI, 2021.

S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen, “Cambricon-X: An accelerator for sparse neural networks,” in
Proc. MICRO-49, 2016.

Z. Zhang, H. Wang, S. Han, and W. J. Dally, “SpArch: Efficient archi-
tecture for sparse matrix multiplication,” in Proc. HPCA-26, 2020.

