
To appear, Proceedings of the 29th International Symposium on High-Performance Computer Architecture (HPCA), 2023

Phloem: Automatic Acceleration of Irregular

Applications with Fine-Grain Pipeline Parallelism

Quan M. Nguyen

MIT CSAIL

qmn@csail.mit.edu

Daniel Sanchez

MIT CSAIL

sanchez@csail.mit.edu

Abstract—Irregular applications are increasingly common in
diverse domains, like graph analytics and sparse linear algebra.
Accelerating these applications is challenging because of their
unpredictable data reuse and control flow. Recent work has
proposed hardware support for fine-grain pipeline parallelism,
hiding long latencies by decoupling irregular applications into
pipeline stages. However, this prior work requires programmers
to manually decouple applications. This tedious and error-prone
process limits the usefulness of such architectural support.

We address this problem with Phloem, a compiler that au-
tomatically discovers and exploits pipeline parallelism in irregu-
lar applications. Prior compilers for pipeline parallelism target
regular applications, which contain simple pipeline stages with
known latencies and fixed buffering needs. Designing Phloem
to target irregular applications, where these properties do not
hold, requires treating their unique challenges as first-class
considerations throughout its design. Phloem breaks down this
complex transformation into a series of simple passes that
together encode the insights that have been previously applied
by hand, producing code that targets architectures with support
for queue-based communication.

We evaluate Phloem by generating efficient pipelines on a
variety of irregular applications. Phloem’s contributions improve
performance by 1.7× on average, approaching (and sometimes
exceeding) the performance of manually optimized pipeline-
parallel code. These results show that, for the first time, automatic
parallelization for irregular applications is not only feasible, but
also profitable.

I. INTRODUCTION

Irregular applications are those with data-dependent memory

accesses and control flow. Irregular applications are the norm

in many domains, like graph analytics and sparse linear/tensor

algebra. Their data-dependent accesses and control are often

unpredictable, causing poor performance on CPUs and GPUs.

For concreteness, consider the following code:

for (int i = 0; i < N; i++)

if (A[i] > 0) work(B[A[i]]);

This simple snippet is representative of the challenges of

irregular applications (we will see fuller examples later on).

Assume that work() takes few cycles per call (e.g., about 10),

and that it does not modify arrays A[] or B[]. This code

runs very poorly on a CPU: if A[i] frequently alternates

between positive and negative, the if (A[i] > 0) branch is

unpredictable, serializing iterations and inducing a very low IPC.

Moreover, the indirect access B[A[i]] causes frequent memory

misses that are hard to prefetch, making execution memory

latency-bound. Data parallelism is of limited help: on a GPU

or vector processor, if (A[i] > 0) induces conditional/masked

execution that limits lane utilization, and the frequent memory

gather B[A[i]] causes expensive uncoalesced accesses.

Instead, consider the following pipeline-parallel implemen-

tation of the previous code snippet:

Fetch A[i] Filter A[i]> 0 Fetch B[A[i]] Call work()

Each stage runs in parallel, e.g., in a separate core. Stages

produce streams of values and communicate them to other

stages through queues. This decouples their execution, allowing

producers to run ahead of consumers. This decoupling also

hides latencies and uses resources better. For example, each

branch in the filter stage is resolved more quickly, since

A[i] comes from a fast queue instead of main memory;

and mispredictions no longer fill the core with misspeculated

instructions from work() or fetches from array B[].

The above pipeline is fine-grained: it has very frequent

communication, with each stage enqueueing or dequeueing

a value every 5–10 instructions. Thus, software-only queues

(which take hundreds of cycles per operation [16, 44]) would

add very high overheads. To enable fine-grained pipelining,

much prior work has proposed adding hardware queues across

cores or threads [9, 12, 17, 19, 34, 35, 38, 43, 47, 48, 52, 55, 60].

But most of these systems only work well when every pipeline

stage proceeds at a regular, predictable rate. By contrast, in

an irregular application, stages undergo rapid variations in

the amount of work, creating load imbalance. For instance,

consecutive runs of positive or negative A[i] values affect the

output rate of filter, quickly changing the ratio of work between

the first and last two stages. If these stages were distributed

spatially (e.g., scheduled on separate cores), some would

idle often while others would limit throughput. Recent work

addresses load imbalance by dynamically time-multiplexing

stages over the same processing element, like the threads of

a multithreaded core [34] or the contexts of a reconfigurable

fabric [35, 38, 58].

While the above techniques provide hardware support to

pipeline irregular applications, there is currently no automatic

way to generate efficient pipelines for irregular applications.

Existing compilers only produce regular pipelines [11, 18, 25,

39, 53, 54], and so far, irregular pipelines have been written by

hand. Creating an irregular application pipeline requires making

many choices that have significant impact on performance, and

it is tedious and error-prone to do so manually.

Specifically, pipelining an irregular application involves three

challenges. First, it requires decoupling straight-line code into

1

qmn@csail.mit.edu
sanchez@csail.mit.edu

pipeline stages, e.g., producing our example pipeline from

the code snippet. Second, and more importantly, it requires

selecting the right pipeline, which depends on the application

and architecture. For example, if A[] is prefetched accurately,

it may be better to combine the fetch A[i] and filter stages.

Third, because irregular applications have frequent control flow

and shared state, it is important to handle these efficiently when

partitioning it across stages. Otherwise, the resulting overheads

may negate the benefits of pipelining.

We present Phloem,1 a compiler that automatically discovers

and exploits pipeline parallelism in irregular applications.

Phloem’s key enabling insight is that the transformations

required for pipeline parallelism can be carried out as a series

of novel, simple, composable passes that leverage simple static

analyses and cost models. These analyses and models help

Phloem select effective decoupling points, tighten inner loops,

and reduce the impact of irregular control flow. Finally, Phloem

generates code that leverages hardware support that enables

irregular applications to run efficiently as pipelines.

Our Phloem implementation compiles serial C/C++ code,

unlike prior work requiring programmers to rewrite their appli-

cations in a new language. Phloem is a standalone compiler, but

can also be combined with existing domain-specific compilers

to produce efficient pipeline-parallel applications from high-

level code. We demonstrate this by combining Phloem with

Taco [23] to automatically pipeline sparse linear algebra kernels.

Phloem is the first technique that makes irregular applica-

tions efficient in out-of-order cores through hardware-compiler

codesign. Much prior work has explored some of the techniques

used by Phloem, such as decoupling, time-multiplexing, and

prefetching (Sec. II-C). But prior techniques targeted regular

applications or were hampered by software overheads or a

limited execution model. Phloem’s key novelty is in showing

the right combination of hardware and compiler techniques

that results in efficient acceleration.

Our evaluation shows that Phloem approaches the perfor-

mance of manually tuned pipelines. Averaging across all

evaluated applications, Phloem achieves gmean speedup 1.7×

over serial code, and 85% of the performance of manually tuned

code. In the best case, Phloem even exceeds the performance

of manually tuned code by 15%. We also show that Phloem

can be combined with existing domain-specific compilers to

produce efficient pipeline-parallel applications.

In summary, we make the following contributions:

• We show how to systematically partition irregular applica-

tions into stages in a way that maximizes performance.

• We introduce Phloem, which automatically transforms serial

source code into efficient pipeline-parallel implementations

through a series of simple passes.

• We demonstrate Phloem’s broad applicability by interfacing

it seamlessly with a domain-specific compiler.

• We implement and evaluate Phloem, achieving performance

comparable to hand-optimized code.

1Pronounced like “flow 'em”, phloem is a plant’s specialized vascular tissue
for conducting sugars and other metabolic products [1].

void bfs(Graph* g, int* cur_fringe, int* next_fringe,
int root, int* distances) {

int cur_fringe_idx = 0, next_fringe_idx = 0;
int cur_dist = 0;
// Add root to fringe
cur_fringe[cur_fringe_idx++] = root;
distances[root] = 0;
while (cur_fringe_idx != 0) {

cur_dist++;
// Process current fringe
for (int i = 0; i < cur_fringe_idx; i++) {

int v = cur_fringe[i];
// Enumerate neighbors
int edge_start = g->nodes[v];
int edge_end = g->nodes[v+1];
for (int e = edge_start; e < edge_end; e++) {

// Visit neighbor
int ngh = g->edges[e];
// If dist decreases, update it,
// add ngh to next fringe
int old_dist = distances[ngh];
if (cur_dist < old_dist) {

distances[ngh] = cur_dist;
next_fringe[next_fringe_idx++] = ngh;

}
}

}
swap(&cur_fringe, &next_fringe);
cur_fringe_idx = next_fringe_idx;
next_fringe_idx = 0;

}
}

Process

current fringe

Enumerate

neighbors

Visit

neighbors

Update data,

next fringe

Fig. 1: Decoupling BFS into a 4-stage pipeline by partitioning
across sources of irregularity.

II. BACKGROUND

To see the challenges of irregular applications in more depth,

consider breadth-first search (BFS), a common graph algorithm.

Given a root vertex, BFS finds the distance of all vertices

reachable from that root. Fig. 1 (left) shows sequential C code

for BFS. This version of BFS traverses a graph stored in the

commonly used Compressed Sparse Row (CSR) format [33,

46, 50]. The root vertex starts at distance zero, while all other

distances are set to INT_MAX. For each vertex in the fringe, BFS

accesses g->nodes to find the start and end of the vertex’s edge

list. Then, neighbor vertex ids are found by accessing g->edges.

Finally, if each neighbor’s current distance is less than its

currently recorded distance, the distance is set to cur_dist,

and the neighbor is added to the next fringe. Once the current

fringe is processed, BFS switches to the next fringe, and repeats

this process until no new vertex visits are recorded.

A. Challenges of irregularity

We examine two sources of irregularity in BFS that make it

difficult to accelerate on modern architectures.

First, BFS has unpredictable reuse: finding the distance of

a neighbor of a vertex requires four memory accesses that

are dependent on each other. While the access to cur_fringe

is a linear traversal, the other three accesses are extremely

difficult to predict: the addresses of accesses to distances

depend on values in g->edges, which in turn depend on

values in g->nodes. While caches and scratchpads can capture

short streaming patterns or small amounts of metadata, irreg-

ular applications often contain tricky multi-level indirections

through large datasets that do not fit on-chip. In conventional

out-of-order cores, the large reorder buffer (ROB) tries to

keep functional units highly utilized. However, the multi-level

indirections of an irregular application have hard-to-predict

memory addresses, resulting in costly consecutive cache misses.

To make things worse, these indirections are often followed

2

void bfs(Graph* g, int* cur_fringe, int* next_fringe,
int root, int* distances) {

int cur_fringe_idx = 0, next_fringe_idx = 0;
int cur_dist = 0;
// Add root to fringe
cur_fringe[cur_fringe_idx++] = root;
distances[root] = 0;
while (cur_fringe_idx != 0) {

cur_dist++;
// Process current fringe
for (int i = 0; i < cur_fringe_idx; i++) {

int v = cur_fringe[i];
// Enumerate neighbors
int edge_start = g->nodes[v];
int edge_end = g->nodes[v+1];
for (int e = edge_start; e < edge_end; e++) {

// Visit neighbor
int ngh = g->edges[e];
// If dist decreases, update it,
// add ngh to next fringe
int old_dist = distances[ngh];
if (cur_dist < old_dist) {

distances[ngh] = cur_dist;
next_fringe[next_fringe_idx++] = ngh;

}
}

}
swap(&cur_fringe, &next_fringe);
cur_fringe_idx = next_fringe_idx;
next_fringe_idx = 0;

}
}

void bfs_stage1(Graph* g, int* cur_fringe, int* next_fringe,
int root, int* distances) {

int cur_fringe_idx = 0;
int cur_dist = 0;
// Add root to fringe
cur_fringe[cur_fringe_idx++] = root;
distances[root] = 0;
while (cur_fringe_idx != 0) {

cur_dist++;
// Process current fringe
for (int i = 0; i < cur_fringe_idx; i++) {

int v = cur_fringe[i];
enq(1, v);
enq(1, v+1);

}
enq_ctrl(1, NEXT);
swap(&cur_fringe, &next_fringe);
cur_fringe_idx = deq(5);

}
enq_ctrl(1, LAST);

}

void bfs_stage2(Graph* g, int* cur_fringe, int* next_fringe,
int root, int* distances) {

setup_reference_accelerator(1, INDIRECT, g->nodes);
setup_control_value_handler(1, &&q1_handle_ctrl);
while (true) {

while (true) {
// Enumerate neighbors
int edge_start = deq(1);
int edge_end = deq(1);
for (int e = edge_start; e < edge_end; e++) {

enq(2, e);
}

}
q1_handle_ctrl:

if (deq(1) == LAST) {
enq_ctrl(2, LAST);
break;

}
enq_ctrl(2, NEXT);

}
}

void bfs_stage3(Graph* g, int* cur_fringe, int* next_fringe,
int root, int* distances) {

setup_reference_accelerator(2, INDIRECT, g->edges);
setup_control_value_handler(2, &&q2_handle_ctrl);
while (true) {

while (true) {
// Visit neighbor
int ngh = deq(2);
enq(3, ngh);
enq(4, ngh);

}
q2_handle_ctrl:

if (deq(2) == LAST) {
enq_ctrl(3, LAST);
break;

}
enq_ctrl(3, NEXT);

}
}

void bfs_stage4(Graph* g, int* cur_fringe, int* next_fringe,
int root, int* distances) {

int next_fringe_idx = 0;
int cur_dist = 0;
setup_reference_accelerator(4, INDIRECT, distances);
setup_control_value_handler(3, &&q3_handle_ctrl);
while (true) {

cur_dist++;
while (true) {

int ngh = deq(3);
// If dist decreases, update it,
// add ngh to next fringe
int old_dist = deq(4);
if (cur_dist < old_dist) {

distances[ngh] = cur_dist;
next_fringe[next_fringe_idx++] = ngh;

}
}

q3_handle_ctrl:
if (deq(3) == LAST)

break;
swap(&cur_fringe, &next_fringe);
enq(5, next_fringe_idx);
next_fringe_idx = 0;

}
}

Fig. 2: Sequential BFS code (left) and hand-optimized pipeline-parallel BFS implementation (right), with changes shaded in gray.
But, parallelizing this multithreaded code by hand is tedious and error-prone; we automate this process with Phloem.

by dozens of dependent instructions that fill the ROB, severely

reducing memory level parallelism. Prefetchers may be able

to fetch in edge lists, but because the length of edge lists

varies, such fetches may pollute the cache with the edge lists

of irrelevant vertices.

Second, BFS has irregular control flow: a vertex may have

few neighbors or hundreds of neighbors. This causes unpre-

dictable branches in serial code, causing frequent mispredictions

in general-purpose cores that limit performance. And trying

to exploit data parallelism by enumerating neighbors across

multiple workers would suffer from load imbalance: workers

would proceed at uneven rates, determined by the degree of the

workers’ processed vertices. This imbalance makes it difficult

for data-parallel architectures like GPUs to effectively accelerate

irregular applications. For example, GPUs try to get good lane

utilization by combining the edge lists of multiple vertices [59],

but this results in awkward and inefficient marshaling of data,

e.g. replicating vertex data to align with each of its edges.

Existing architectures do not adequately meet the needs

of irregular applications, and we also show in Sec. II-C that

software-only solutions are also not enough. A significant body

of prior work proposes modest architectural additions to support

fine-grain decoupled communication between cores or threads.

In this paper, we focus on compiler support for these systems.

B. Irregular applications readily decompose into pipelines

Phloem relies on prior work’s observation that irregular

applications have plentiful pipeline parallelism [34, 35]: they

can be easily decoupled into feed-forward networks of pipeline

stages. Each stage receives data from other producers and sends

data to downstream consumers. Crucially, these stages can be

decoupled from each other with FIFO queues, allowing them

to run ahead of each other: a stage can continue working on

buffered data, even if neighboring stages stall.

In the case of an irregular application, decoupling across

sources of irregularity yields simple stages that can run

at high throughput. In BFS, for example, these sources of

irregularity are its multi-level indirections; Fig. 1 shows a

possible decoupling of BFS into a multi-stage pipeline.

Although pipeline parallelism can be exploited at many gran-

ularities, several factors make fine-grain pipeline parallelism

especially practical for irregular applications. First, the amount

of data communicated between stages is small (often just a

single 32- or 64-bit word), but communication occurs very

frequently (in BFS, one in every six operations uses a queue).

Second, the amount of work between each stage is often small,

such as a simple address computation. Finally, thanks to their

leanness, fine-grain stages built from irregular applications have

simple communication patterns of few elements from stage to

stage. A successful data-parallel implementation, on the other

hand, must ensure that all units perform the same computation

across all elements at the same rate.

C. Compiler support for pipeline parallelism

Much prior work has proposed compiler techniques that

exploit pipeline parallelism and decoupled execution. While

Phloem’s passes also leverage these techniques, a combination

of two key features set Phloem apart from prior work.

First, Phloem targets irregular applications. Without support

for irregularity as the primary consideration, prior works wind

up unable to effectively cope with irregularity. Much of

this prior work, including StreamIt [18, 53, 54], Piper [26],

SGMS [25], Team Scheduling [39], and some polyhedral

approaches [37] targets regular programs, where the amount of

work and input/output of each stage are known ahead of time.

This information is used to produce fixed thread schedules

that maintain load balance and achieve decoupling with limited

buffers. This approach does not extend to irregular applications,

3

tion, the process current fringe stage only needs to enqueue v

to a reference accelerator configured to indirect on g->nodes.

The enumerate neighbors stage simply dequeues the value of

edge_start as an output of the RA.

Chained reference accelerators allow Phloem to exploit the

fact that some stages simply dequeue values from one RA only

to enqueue it to another one. We extend Pipette to support

chained RAs, which perform the work of several consecutive

indirections. BFS contains an opportunity for chained RAs.

Extending the example above, the RA performs indirections on

g->nodes to produce edge_start and edge_end. These two

values form the starting and ending indices for g->edges, so

we can chain this to a second scanning RA to read neighbors

(ngh) out of g->edges. Chained RAs free us to devote general-

purpose threads and core resources to application compute,

rather than manipulating queues.

Making control flow efficient: Despite the judicious use of

queues, each stage’s loop could still be tightened for better

performance. Computing loop bounds becomes relatively

expensive as the body—the actual useful work—becomes

smaller as it is decoupled from other stages. But, the loop

condition can often be inferred, or sent by the producer. Pipette

adds hardware support for control values, which are passed

through queues just like data, but they cannot be interpreted

as data. The special enq_ctrl(q, cv) instruction enqueues

control values, which appear in-band with data values.

Now, a consumer stage using control values no longer needs

to determine the trip count of the enclosing loop—in our

implementation, any loop that uses a control value becomes a

while (true) {...} statement. The consumer simply needs to

examine whether the most recently dequeued value is a control

value; if so, it acts on the value as needed by the program,

such as breaking out of a loop.

Checking for control values still has overhead but control

values are infrequent. Pipette adds hardware support for control

value handlers, which eliminate repeated checking for control

values. The core jumps to the control value handler whenever

it is about to dequeue a control value, letting it process the

control value externally, rather than within the inner loop.

IV. PHLOEM DESIGN

We now present Phloem’s design and key techniques. We first

explain Phloem’s programming interface, introduce Phloem’s

core transformations to produce efficient pipelines, and present

additional features.

A. Phloem interface

Phloem transforms serial code, starting with a program

written in C. Other interfaces are also possible, e.g., we later

combine Phloem with the Taco domain-specific compiler. We

do not find a C-based interface limiting: while C provides

serial semantics, it has enough semantic information to divide

execution into pipeline stages. Phloem’s key challenge is not

to find pipeline parallelism, but to generate efficient multi-stage

pipelines for irregular applications. Specifically, the bulk of the

techniques we present are code analyses and transformations

TABLE II
SUMMARY OF PHLOEM ANNOTATIONS.

#pragma Function

phloem Mark this function for automatic pipeline parallelization.
decouple Separate the following instructions into a new stage.
replicate Make copies of the pipeline to fill hardware resources.
distribute Send values to another replica specified by a user function.

on already-pipelined code. These techniques do not depend on

the semantics of our frontend language (serial C in our case),

and would apply equally to any other frontend language.

Phloem is automatic, but programmers can control some

aspects through the pragma annotations shown in Table II.

Phloem transforms single procedures: Phloem currently

works on a single procedure; this is not a major limitation in

our experience, as the main kernel of an irregular application

typically fits in a concise definition in a single function. Calls

to other functions are supported, but Phloem does not decouple

within those calls. Inlining could remove this limitation; we

leave this to future work.

Memory and aliasing: To preserve the semantics of the serial

program, Phloem requires information about memory beyond

C’s standard semantics. Specifically, the programmer must

provide precise aliasing information, e.g., by tagging point-

ers with C’s restrict keyword. Modern high-performance

programs often do this already, as it enables other compiler

optimizations; we shortly discuss how to handle situations

without precise aliasing information. This enables Phloem to

safely transform code that reads and writes memory, by ensuring

involved operations cannot alias. In addition, Phloem does not

attempt to track and transform value communication through

memory (i.e., load-store telescoping).

One of the most significant benefits of this approach is that

it prevents race conditions; nevertheless, Phloem can work with

such code provided that some care is taken. Fig. 4 shows such

a race in BFS: if we pipelined the lookup of neighbors, a given

neighbor (for instance, neighbor 37) may appear as a neighbor

of multiple edges. If we also pipeline the lookup of old_dist,

and the update data stage updates the distance of neighbor 37,

then any already-queued copies of neighbor 37 will have a

stale value for old_dist, as it has changed.

Avoiding these races requires a simple compiler analysis:

placing reads and writes to the same data structure, or doing so

through pointers that may alias, in separate stages is disallowed.

However, Phloem may still prefetch data in this case. In Fig. 4’s

example, visit neighbors and update data can still be decoupled

to prefetch neighbor distances, but update data must read and

update the distances itself to avoid observing stale data.

Visit neighbors

Update data, next fringe

ngh = deq();

old_dist = deq();

if (cur_dist < old_dist) {

distances[ngh] = cur_dist;

// update next fringe

}

37

...

INT_MAX
28 1

7 INT_MAX

37 INT_MAX

...

ngh old_dist

1

2

cur_dist

3

1
Neighbor 37 dequeued with

old distance INT_MAX

2
Another neighbor 37 enqueued

with old distance INT_MAX

3
Distance of first neighbor 37

updated to cur_dist

4
Update data stage receives

stale old_dist value from

second copy of neighbor 37

(gets INT_MAX again)4

old_dist = distances[ngh];

enq(ngh);

enq(old_dist);

Fig. 4: A race condition in BFS that would arise with an incorrect
decoupling into pipeline-parallel stages.

5

this loop. Now, stages simply check for a control value rather

than recompute the loop condition.

5. Use control value handlers: Instead of checking for control

values in the inner loop, Phloem sets up control handlers: these

process control values and, if necessary, send more control

values to downstream stages and break out of inner loops. At

initialization, Phloem configures Pipette with the address of

the control handler (the code uses the && unary operator to

indicate taking the address of a label).

6. Inter-stage dead code elimination: Finally, Phloem im-

proves decoupling by performing inter-stage dead code elim-

ination on superfluous control values. In BFS, all vertices

visited in one iteration are compared to the same distance.

It is unnecessary to know which vertex a particular neighbor

belonged to. A naive implementation of control values, however,

would send an unnecessary control value after the end of each

edge list. By eliminating this control value, downstream stages

can simply process all vertices until the iteration ends.

Fig. 6 shows the impact of applying these techniques. To

better understand the performance impact of each pass, we

show multiple intermediate combinations of theses passes. For

instance, three of the control-based passes (corresponding to CV,

DCE, CH in Fig. 6) build successively on each other, culminating

in a 1.85× speedup. Note that eliminating unnecessary uses

of control values and checks for them is critical. Adding

control values in isolation (CV, R, Q) actually diminishes

performance compared to not having them at all, because of

the overheads resulting from instructions needed to check for

control values (is_control() in Pass 4 of Fig. 5). Finally,

reference accelerators (RA) greatly increase performance, but

they depend on the other optimizations: RAs truly shine when

stages are fast enough to keep them busy.

With a 4.7× speedup over the original code, the perfor-

mance of Phloem’s emitted BFS now even exceeds that of

hand-optimized code. Moreover, Phloem accomplishes this

performance through simple static inspection of the program,

whereas the manually optimized version needed to leverage

application-specific insight about communication patterns.

C. Composing data and pipeline parallelism

Data parallelism and pipeline parallelism flexibly compose;

pipeline replication, enabled by Pipette’s support for cross-core

queue communication, lets us fully exploit the resources of

modern multicore systems.

For instance, a single BFS pipeline (as we saw in Sec. II) can

be replicated over many cores so that each pipeline works on

a specific part of the input graph, as shown in Fig. 7. Working

on disjoint parts of the input eliminates the need for expensive

synchronization operations across shared memory.

With time-division multiplexing of stages in each core, each

replicated pipeline can also mitigate load imbalance. This

implementation can then use a simple partitioning scheme,

like examining bits of the neighbor vertex id, to determine

which replica to send neighbors to. This shows that exploiting

pipeline and data parallelism together can lead to simpler

implementations than exploiting data parallelism alone.

Proc

fringe

Enum

nghs

Visit

nghs

Update

data

#pragma phloem

void bfs(Graph* g, int* cur_fringe, int* next_fringe,

int root, int* distances) ...

#pragma phloem replicate

void bfs(Graph* g, int* cur_fringe, int* next_fringe,

int root, int* distances) {

...

int ngh = g->edges[e];

// If dist decreases, update it,

// add ngh to next fringe

#pragma phloem distribute

int old_dist = distances[ngh];

if (cur_dist < old_dist) {

distances[ngh] = cur_dist;

...

#pragma phloem replicate

void bfs(Graph* g, int* cur_fringe, int* next_fringe,

int root, int* distances) ...

Replica 0

Replica 1

Replica 2

Replica 3

Decouple

Replicate

Replicate

and

Distribute
if (ngh & 0x3 == 0)

// send to replica 0

else if (ngh & 0x3 == 1)

// send to replica 1

...

// set up replica 0 fringe

// set up replica 1 fringe

...

Fig. 7: Replicating a decoupled pipeline and distributing work
across replicas.

Phloem lets programmers create data-parallel pipelines by

marking the function with #pragma replicate and specifying

the number of replicas. By default, these pipelines operate

independently but over the same data; Phloem does not

automatically infer which data structures are shared or repli-

cated. Instead, by defining a simple replicate_arguments()

function, a programmer can indicate how to partition work

across the pipelines. For instance, in a replicated BFS, each

replica works on its own fringe array, so this function would

allocate new cur_fringe and next_fringe arrays for each

one. The partition need not be complex, because each pipeline

is automatically load-balanced by the underlying hardware. As

a result, the replicas proceed at roughly the same rate, even

with irregularities in the stages.

To better exploit locality, Phloem also allows pipelines to

distribute work in a data-centric way, by allowing one replica to

enqueue work to not only its next stage but also the correspond-

ing stage of any replica. The programmer defines another simple

function to describe how to select which replica will receive the

enqueued value. In BFS, adding #pragma distribute between

the visit neighbor and the update data stages splits the replicas

into source-centric and destination-centric sections; selecting

the replica simply involves inspecting bits in the neighbor id.

This improves data locality in the update data stage because

each replica works on separate parts of the graph.

D. Making efficient domain-specific pipelines

C/C++ remains the lingua franca of domain-specific ac-

celerator compilers [3, 5, 23, 42, 62] and frameworks [4, 46]:

they either use C directly or emit C code. Thus, Phloem’s

C-based frontend makes it possible to seamlessly pass code to

and from these compilers and frameworks. These compilers

emit code with structure that Phloem can easily discover, a

process that would take considerable time to do manually.

Furthermore, compilers emit code that already meet Phloem’s

input requirements; for example, their data structures are

already qualified with the C/C++ restrict keyword. As a

case study, we examine Phloem’s performance on a variety of

automatically generated sparse linear algebra kernels from the

Tensor Algebra Compiler (Taco) [23]. Taco accepts a tensor

expression that represents operations on sparse tensors, such as

7

Evaluate

Evaluate

..
.

Training inputsCost model

C

code

Decoupling points:
Score: Load:

old_dist = distances[edge]

edge = g->edges[i]

edge_start = g->nodes[current]

edge_end = g->nodes[current+1]

...

Identify

irregular
loads

Generate

candidate
decouplings

..
.

..
.

Communicate

or recompute

..
.

Communicate

or recompute

Communicate

or recompute

..
.

Evaluate

..
. Select

best
pipeline

Cost model

Pipeline search and profile-guided optimization flow (optional)

Static compilation flow

(fastest; default)

Fig. 8: How Phloem selects decoupling points, generates pipelines, communicates data between stages, and outputs a pipeline.

the multiplication of a matrix A by a vector x with the expression

y(j) = A(i,j) * x(i), and emits C code. Phloem uses this

code to produce an efficient pipeline-parallel implementation.

E. Targeting other architectures

Although we evaluate Phloem on the Pipette architecture,

several recent accelerator architectures, including Fifer [35],

Aurochs [58], and SPU [10], also provide hardware support for

fine-grain irregular pipelines. These systems are programmed

manually and lack compiler support, highlighting the need

for automation. Phloem could target these systems, as their

ingredients are similar to Pipette.

V. AUTOMATIC DECOUPLING

The previous section presented the techniques that enable

Phloem to produce efficient pipeline-parallel programs. The

remaining challenge in implementing Phloem is finding decou-

pling points. Choosing where to decouple is crucial, as missing

frequent irregular accesses hurts performance and these accesses

are not always easy to identify.

Phloem intermediate representation (IR): Phloem trans-

forms the C abstract syntax tree into a custom IR that represents

fine-grain operations (e.g., load, add). This IR allows any two

operations in a program to be decoupled. It is not necessary to

decouple every operation; decoupling at just a few points (3 or

4) is enough for good performance. Unlike conventional IRs

like LLVM’s, Phloem’s IR adds support for queue operations

and conveying control flow changes.

Determining decoupling points statically: Phloem’s static

analysis mode finds decoupling points by ranking expensive

operations (e.g., memory accesses) with a simple cost model.

Then, it selects the (N −1) highest-ranked points to build an

N-stage pipeline. Each stage is assigned to a separate thread.

Phloem’s cost model prioritizes decoupling points by its

(1) predicted cost and (2) frequency. The cost of the memory

access depends on whether it is indirect or sequential and the

presence of nearby accesses. For example, BFS has two nearby

accesses to g->nodes. The first access is an indirection, so it is

predicted to be costly. However, the second access touches the

location after the first one, so it is very likely a cache hit, and is

predicted to be cheap. This biases these two accesses to happen

together, rather than in two separate stages. To estimate access

frequency, Phloem gives higher weight to memory references

located in the innermost loops and less weight to infrequent

accesses in the outer loop. Accordingly, the access to g->edges

is considered more even more costly than to g->nodes, and

would be prioritized for decoupling.

This simple static analysis works well and produces pipelines

that approach manually optimized versions. This makes sense,

as the innermost loops typically demand the highest throughput

but also come at the end of the longest chains of indirections.

Building stages from the innermost loop outwards usually

produces pipelines that decouple the most performance-critical

sources of irregularity.

Phloem makes it simple to target the stage count that matches

the number of threads supported by the architecture: 2, 4, or

even 8. Phloem can generate pipelines with more stages than

there are threads on a core; just as we generated replicated

pipelines (Sec. IV-C), it is similarly possible to generate non-

replicated pipelines spanning multiple cores.

Autotuning decoupling points: The static approach produces

reasonable pipelines, but its cost model is by necessity ap-

proximate: in irregular applications, cache misses to each data

structure and loop lengths are highly input-dependent, and often

vary over time. To improve performance, Phloem includes

a profile-guided optimization mode. In this mode, Phloem

selects more than (N −1) candidate decoupling points from

the highest-ranked ones, and then builds the candidate pipelines

from combinations of these points. These pipelines are then

profiled on small training inputs to find the best one. Fig. 8

shows this process, with the pipeline search and profile-guided

optimization shaded in gray. This process, which completes in

seconds, allows exploiting decoupling points that are statically

ranked below the bar, but happen to be more profitable.

Fig. 8 (upper right) also shows the static compilation flow,

in which only one pipeline is generated and no training occurs.

This static compilation process also completes within seconds,

and its pipelines work well in practice. Our evaluation compares

the performance of both modes.

VI. METHODOLOGY

We implement Phloem as a source-to-source compiler. For

each of our benchmarks, we start with high-quality serial

implementations. Phloem automatically identifies decoupling

points based on a simple heuristic of the costliest operations

(long chains of dependent references in deep loop nests), and

produces pipeline-parallel versions. We then compile Phloem-

generated code with gcc -O3.

A. Evaluated systems

We evaluate Phloem’s generated benchmarks on an extended

version of Pipette (Sec. III). We use Pipette’s evaluation con-

figuration, whose cores are modeled after Intel’s Skylake [14]

microarchitecture and scaled to four SMT threads. Table III

8

TABLE III
CONFIGURATION PARAMETERS OF THE EVALUATED SYSTEM.

Cores 1 or 4 cores, 3.5 GHz, x86-64 ISA, Skylake-like: 6-wide out-of-order

issue; 4-thread SMT

Pipette 16 queues max; 4 RAs; queues up to 24 elements deep

L1 cache 32 KB/core, 8-way set-associative, 4 cycle latency

L2 cache 256 KB/core, 8-way set-associative, 12 cycle latency

L3 cache 2 MB/core, 16-way set-associative, 40 cycle latency

Main mem 120-cycle minimum latency, 2 controllers, 25 GB/s each

lists the parameters of our evaluation configuration. We use

an event-driven, cycle-level simulator based on Pin [30]. To

be consistent with Pipette’s energy models, we also model

core and uncore energy at 22 nm with McPAT [28] and main

memory with Micron DDR3L datasheets [31].

B. Benchmarks

Our initial evaluation uses five diverse C benchmarks: four

from graph analytics and one from sparse linear algebra. We use

Phloem to automatically generate pipelines for each application

from the serial code. We compare the Phloem-generated version

to its original serial implementation, a competitive data-parallel

implementation, as well as a manually pipelined version.

Breadth-First Search (BFS) is the graph algorithm intro-

duced in Sec. II. It discovers the distance of all vertices

reachable from a root vertex. The data-parallel implementation

is based on work-efficient PBFS [27].

Connected Components (CC) assigns labels to connected

components of a graph by running searches from each vertex in

the graph until all vertices are assigned a label. PageRank-Delta

(PRD) is like the PageRank algorithm in that it determines the

importance of vertices by distributing weights, except that the

change in weight must exceed a threshold for it to be applied.

Radii estimates the radius of a graph by performing multiple

searches from randomly sampled vertices. CC, PRD, and Radii

are derived from their data-parallel implementations in the

Ligra framework [46].

Finally, Sparse Matrix-Matrix Multiplication (SpMM) mul-

tiplies two compressed matrices. It uses an inner-product, or

output-stationary, dataflow, meaning that each element of the

output matrix is computed one element after another from a dot

product of an input row and column. The coordinates of non-

zero values are sorted, so identifying non-zero partial products

of the dot product requires a merge-intersection that jointly

iterates through these two vectors.

Taco benchmarks: We integrate Phloem with the Tensor

Algebra Compiler (Taco) [23] to automatically compile ten-

sor algebra expressions into pipeline-parallel programs. We

compare Phloem-generated pipelines with Taco-generated se-

rial and data-parallel versions. We use the following Taco

benchmarks: Sparse Matrix-Vector Product (SpMV) evalu-

ates y = Ax, where x and y are dense vectors and A is a

sparse matrix. Sampled Dense-Dense Matrix Multiplication

(SDDMM) evaluates A = B◦ (CD), where C and D are dense

matrices, A and B are sparse matrices, and the ◦ operator

represents component-wise multiplication. Matrix-Transpose

Multiplication (MTMul) evaluates y = αA⊺x+ β z, where α

TABLE IV
INPUT GRAPHS, SORTED BY THE NUMBER OF EDGES.

Domain Graph Vertices Edges Avg. deg.

Training inputs

Training internet graph internet 126K 207K 1.7
Training road network USA-road-d-NY 264K 734K 2.8

Test inputs

Human collaboration coAuthorsDBLP-symmetric 299K 1.9M 6.4
Dynamic simulation hugetrace-00000 4.6M 14M 3.0
Circuit simulation Freescale1 3.4M 19M 5.6
Internet graph as-Skitter 1.7M 22M 12.9
Road network USA-road-d-USA 24M 58M 2.4

TABLE V
INPUT MATRICES, SORTED BY AVERAGE NON-ZEROS PER ROW.

SPMM ALSO USES pwtk.

Domain Matrix Size (n×n) Avg. nnz/row

SpMM training inputs

Training graph as matrix 1 email-Enron 36,692 10.0
Training graph as matrix 2 wiki-Vote 8,297 12.5

SpMM test inputs

File sharing p2p-Gnutella31 62,586 2.4
Graph as matrix amazon0312 400,727 8.0
Gel electrophoresis cage12 130,228 15.6
Electromagnetics 2cubes_sphere 101,492 16.2
Fluid dynamics rma10 46,835 49.7

Taco (MTMul, Residual, SpMV, SDDMM) test inputs

Circuit simulation scircuit 170,998 5.6
Economics mac_econ_fwd500 206,500 6.2
Particle physics cop20k_A 121,192 21.7
Structural pwtk 217,918 52.9
Cantilever cant 62,451 64.2

and β are constants; x, y, and z are vectors; and A is a sparse

matrix. Lastly, Residual evaluates y = b−Ax, where b, x, and

y are vectors and A is a sparse matrix.

Inputs and sampling: We execute the graph analytics work-

loads (BFS, CC, PRD, and Radii) on graphs listed in Table IV,

which arise from many real-world domains. SpMM is evaluated

using the matrices listed in Table V. We evaluated the Taco

benchmarks using the same matrices as its original evaluation;

Table V also lists these matrices.

In PRD and Radii, simulations of the largest graphs take tens

of billions of cycles. To keep simulation times reasonable, runs

of PRD and Radii on the largest graphs use iteration sampling,

simulating a subset of iterations. Even with sampling, these

applications exceed billions of simulated cycles.

C. Automatic pipeline generation and search

When evaluating Phloem’s profile-guided compilation flow

(Sec. V), we automatically generate all pipelines of up to four

threads (this results in no fewer than fifty different pipelines for

each benchmark). We then select the best pipeline by running

each pipeline configuration on a small set of training inputs: for

graph applications, internet and USA-road-d-NY; for SpMM,

email-Enron and wiki-Vote. We then use the best-performing

pipeline as determined by these training inputs and evaluate

its performance on the test input set. Importantly, we do not

present results for the best pipeline over all inputs a priori;

nevertheless, training may identify the globally optimal pipeline.

Finally, for simplicity, we use the static compilation flow for

the Taco benchmarks.

9

deep chains of dependent memory accesses have no meaningful

analogue in image processing.

Phloem sidesteps the limitations of domain-specific accel-

erators by exploiting pipeline parallelism, a more broadly

applicable technique. Despite having orthogonal goals to

these frameworks, we demonstrated that Phloem can be easily

integrated with them to produce efficient pipeline-parallel code

using the code that these frameworks emit.

Hardware-software codesigned frameworks: Decoupled

Software Pipelining (DSWP) [43], the line of work most similar

to Phloem, accelerates irregular applications by targeting data

structures with multiple levels of indirection. However, DSWP

is limited to a single irregular pattern, parallelizing a single

loop, and only separates code into two stages: a producer and

a consumer stage. By contrast, Phloem decouples applications

into arbitrarily many stages, which as we have shown, is crucial

to decouple long-latency events effectively.

SpecDSWP [57] extends DSWP with support for speculation.

While SpecDSWP supports more than one level of indirection,

it has several key differences. First, because it speculates

on control dependences, SpecDSWP is unable to effectively

decouple chains of data-dependent lookups, such as the CSR

data structure. Instead of speculating on control dependences,

Phloem decouples them, enabling producers to take and convey

control decisions before consumers need them to avoid control-

flow penalties. Second, it requires considerably more hardware

support, such as hardware multiversioned memory and register

checkpointing, while the Pipette programming model relies on

simple non-speculative hardware queues. Finally, SpecDSWP

still lacks the ingredients needed for building effective fine-

grain pipelines, like lightweight reference acceleration and

communicating control decisions.

HELIX [7] and HELIX-RC [6] propose co-designed compiler

and architectural support for inter-core communication, but they

are still limited to parallelizing a single loop.

Control-Flow Decoupling (CFD) [45] also proposes a

hardware architecture combined with a compiler pass for

accelerating applications. However, it can only split applications

into two stages—irregular applications need to be decoupled

at every source of irregularity to run efficiently. Moreover,

decoupling at more than one point significantly increases the

space of possible pipelines—something that Phloem explores

with a profile-guided optimization mode.

Unlike DSWP, HELIX, and CFD, Phloem parallelizes across

loop levels and thus offers more flexibility in decoupling. This

enables a more comprehensive search for the best mapping of an

irregular application to stages and also offers more optimization

opportunities. This flexibility lends an advantage over prior

analytical models for pipeline parallelism [32], as such models

rely on the application already being structured as a pipeline.

Compilers for spatial architectures and high-level synthesis

(HLS): SARA [61] exploits coarse-grain data parallelism in

mapping applications to the Plasticine architecture [41]. Some

compilers identify parallel patterns for FPGA implementation,

including pipelines [29, 40]. LegUp [8] is an HLS system that

supports streaming semantics. Calyx [36] is an intermediate

representation intended for hardware implementation. Aether-

ling [15] produces statically scheduled streaming hardware

circuits. These prior systems all fall short for several reasons:

mapping to spatial architectures works best when applications

are compute-heavy regular applications with little control.

They also assume that the entire pipeline can be mapped

to the hardware at once, which results in different tradeoffs.

Dynamic time-multiplexing of pipeline stages, as the Pipette-

style baseline system does, offers considerably more flexibility

in structuring stages. Finally, some systems lack support for

key elements: Calyx explicitly mentions the need for compiler

support for (explicit) pipeline parallelism, and Aetherling does

not support variable-latency operators, a hallmark of irregular

applications.

IX. CONCLUSION

Irregular applications use conventional architectures poorly.

Software-only techniques are insufficient and many previous

hardware-software codesign approaches have programming

models that are ill-suited to accelerating irregular applications.

An emerging class of architectures exploits fine-grain pipeline

parallelism with a simple but powerful programming model,

but applications needed to be written by hand. Phloem is

the first system to show that a series of simple passes can

systematize the insights needed to transform serial code into

high-performance pipeline-parallel code. Therefore, Phloem is

a comprehensive solution for automatic high performance on

irregular applications.

ACKNOWLEDGMENTS

We thank Joel Emer, Fares Elsabbagh, Axel Feldmann, Hyun

Ryong (Ryan) Lee, Nikola Samardzic, Shabnam Sheikhha,

Yifan Yang, Victor Ying, Robert Durfee, Nithya Attaluri, Kendall

Garner, Aleksandar Krastev, and the anonymous reviewers for

their feedback. This work was supported in part by SRC under

contract 2020-AH2985, by DARPA under contract N00014-21-

1-2960, and by NSF under grant CCF-2217099. This research

was, in part, funded by the U.S. Government. The views and

conclusions contained in this document are those of the authors

and should not be interpreted as representing the official policies,

either expressed or implied, of the U.S. Government.

REFERENCES

[1] “phloem, n.” in OED Online. Oxford University Press, 2021.
[2] S. Ainsworth and T. M. Jones, “Software prefetching for indirect memory

accesses,” in Proc. CGO, 2017.
[3] R. Baghdadi, J. Ray, M. B. Romdhane, E. D. Sozzo, A. Akkas, Y. Zhang,

P. Suriana, S. Kamil, and S. P. Amarasinghe, “Tiramisu: A polyhedral
compiler for expressing fast and portable code,” in Proc. CGO, 2019.

[4] A. Brahmakshatriya and S. P. Amarasinghe, “BuildIt: A type-based multi-
stage programming framework for code generation in C++,” in Proc.

CGO, 2021.
[5] K. J. Brown, A. K. Sujeeth, H. Lee, T. Rompf, H. Chafi, M. Odersky, and

K. Olukotun, “A heterogeneous parallel framework for domain-specific
languages,” in Proc. PACT-20, 2011.

[6] S. Campanoni, K. Brownell, S. Kanev, T. M. Jones, G. Wei, and D. M.
Brooks, “HELIX-RC: an architecture-compiler co-design for automatic
parallelization of irregular programs,” in Proc. ISCA-41, 2014.

[7] S. Campanoni, T. M. Jones, G. H. Holloway, V. J. Reddi, G. Wei, and
D. M. Brooks, “HELIX: automatic parallelization of irregular programs
for chip multiprocessing,” in Proc. CGO, 2012.

12

[8] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,
S. D. Brown, and T. S. Czajkowski, “LegUp: high-level synthesis for
FPGA-based processor/accelerator systems,” in Proc. FPGA, 2011.

[9] N. C. Crago and S. J. Patel, “OUTRIDER: Efficient memory latency
tolerance with decoupled strands,” in Proc. ISCA-38, 2011.

[10] V. Dadu, J. Weng, S. Liu, and T. Nowatzki, “Towards general purpose
acceleration by exploiting common data-dependence forms,” in Proc.

MICRO-52, 2019.

[11] A. Das, W. J. Dally, and P. Mattson, “Compiling for stream processing,”
in Proc. PACT-15, 2006.

[12] B. D. de Dinechin, R. Ayrignac, P.-E. Beaucamps, P. Couvert, B. Ganne,
P. G. de Massas, F. Jacquet, S. Jones, N. M. Chaisemartin, F. Riss, and
T. Strudel, “A clustered manycore processor architecture for embedded
and accelerated applications,” in Proc. HPEC’13, 2013.

[13] J. B. Dennis and D. Misunas, “A preliminary architecture for a basic
data flow processor,” in Proc. ISCA-2, 1974.

[14] J. Doweck and W. Kao, “Inside 6th Gen Intel core: New microarchitecture
code named Skylake,” 2016, Hot Chips.

[15] D. Durst, M. Feldman, D. Huff, D. Akeley, R. G. Daly, G. L. Bernstein,
M. Patrignani, K. Fatahalian, and P. Hanrahan, “Type-directed scheduling
of streaming accelerators,” in Proc. PLDI, 2020.

[16] J. Giacomoni, T. Moseley, and M. Vachharajani, “FastForward for efficient
pipeline parallelism: a cache-optimized concurrent lock-free queue,” in
Proc. PPoPP, 2008.

[17] J. Goodman, J. Hsieh, K. Liou, A. Pleszkun, P. Schechter, and H. Young,
“PIPE: A VLSI decoupled architecture,” in Proc. ISCA-12, 1985.

[18] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting coarse-grained
task, data, and pipeline parallelism in stream programs,” in Proc. ASPLOS-

XII, 2006.

[19] T. J. Ham, J. L. Aragón, and M. Martonosi, “DeSC: decoupled supply-
compute communication management for heterogeneous architectures,”
in Proc. MICRO-48, 2015.

[20] C. Jonathan, U. F. Minhas, J. Hunter, J. J. Levandoski, and G. V. Nishanov,
“Exploiting Coroutines to Attack the "Killer Nanoseconds",” Proc. VLDB

Endow., vol. 11, no. 11, 2018.

[21] L. Josipovic, R. Ghosal, and P. Ienne, “Dynamically scheduled high-level
synthesis,” in Proc. FPGA, 2018.

[22] V. Kiriansky, H. Xu, M. C. Rinard, and S. P. Amarasinghe, “Cimple:
instruction and memory level parallelism: a DSL for uncovering ILP and
MLP,” in Proc. PACT-27, 2018.

[23] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. P. Amarasinghe, “The
tensor algebra compiler,” in Proc. OOPSLA, 2017.

[24] Y. O. Koçberber, B. Falsafi, and B. Grot, “Asynchronous Memory Access
Chaining,” Proc. VLDB Endow., vol. 9, no. 4, 2015.

[25] M. Kudlur and S. Mahlke, “Orchestrating the execution of stream
programs on multicore platforms,” in Proc. PLDI, 2008.

[26] I. A. Lee, C. E. Leiserson, T. B. Schardl, J. Sukha, and Z. Zhang, “On-
the-fly pipeline parallelism,” in Proc. SPAA, 2013.

[27] C. E. Leiserson and T. B. Schardl, “A work-efficient parallel breadth-first
search algorithm (or how to cope with the nondeterminism of reducers),”
in Proc. SPAA, 2010.

[28] S. Li, J. H. Ahn, R. D. Strong, J. Brockman, D. Tullsen, and N. Jouppi,
“McPAT: An integrated power, area, and timing modeling framework for
multicore and manycore architectures,” in Proc. MICRO-42, 2009.

[29] Z. Li, L. Liu, Y. Deng, S. Yin, Y. Wang, and S. Wei, “Aggressive pipelining
of irregular applications on reconfigurable hardware,” in Proc. ISCA-44,
2017.

[30] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood, “Pin: Building customized program
analysis tools with dynamic instrumentation,” in Proc. PLDI, 2005.

[31] Micron, “1.35V DDR3L power calculator (4Gb x16 chips),” 2013.

[32] A. G. Navarro, R. Asenjo, S. Tabik, and C. Cascaval, “Analytical Modeling
of Pipeline Parallelism,” in Proc. PACT-18, 2009.

[33] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infrastructure
for graph analytics,” in Proc. SOSP-24, 2013.

[34] Q. Nguyen and D. Sanchez, “Pipette: Improving core utilization on
irregular applications through intra-core pipeline parallelism,” in Proc.

MICRO-53, 2020.

[35] Q. Nguyen and D. Sanchez, “Fifer: Practical acceleration of irregular
applications on reconfigurable architectures,” in Proc. MICRO-54, 2021.

[36] R. Nigam, S. Thomas, Z. Li, and A. Sampson, “A compiler infrastructure
for accelerator generators,” in Proc. ASPLOS-XXVI, 2021.

[37] N. M. Nobre, “Polyhedral analysis of streaming task-parallel applications,”
Ph.D. dissertation, University of Manchester, 2021.

[38] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. C. Crago, D. Lustig,
V. Pavlov, A. Zhai, M. Gambhir, A. Jaleel, R. L. Allmon, R. Rayess,
S. Maresh, and J. S. Emer, “Triggered instructions: a control paradigm
for spatially-programmed architectures,” in Proc. ISCA-40, 2013.

[39] J. Park and W. J. Dally, “Buffer-space efficient and deadlock-free
scheduling of stream applications on multi-core architectures,” in Proc.

SPAA-22, 2010.
[40] R. Prabhakar, D. Koeplinger, K. J. Brown, H. Lee, C. D. Sa, C. Kozyrakis,

and K. Olukotun, “Generating configurable hardware from parallel
patterns,” in Proc. ASPLOS-XXI, 2016.

[41] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis,
A. Pedram, C. Kozyrakis, and K. Olukotun, “Plasticine: A reconfigurable
architecture for parallel paterns,” in Proc. ISCA-44, 2017.

[42] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. P. Amarasinghe, and
F. Durand, “Decoupling algorithms from schedules for easy optimization
of image processing pipelines,” ACM Trans. Graph., vol. 31, no. 4, 2012.

[43] R. Rangan, N. Vachharajani, M. Vachharajani, and D. I. August, “De-
coupled software pipelining with the synchronization array,” in Proc.

PACT-13, 2004.
[44] D. Sanchez, R. M. Yoo, and C. Kozyrakis, “Flexible architectural support

for fine-grain scheduling,” in Proc. ASPLOS-XV, 2010.
[45] R. Sheikh, J. Tuck, and E. Rotenberg, “Control-flow decoupling,” in Proc.

MICRO-45, 2012.
[46] J. Shun and G. E. Blelloch, “Ligra: a lightweight graph processing

framework for shared memory,” in Proc. PPoPP, 2013.
[47] J. E. Smith, “Decoupled access/execute computer architectures,” in Proc.

ISCA-9, 1982.
[48] J. E. Smith, G. E. Dermer, B. D. Vanderwarn, S. D. Klinger, C. M.

Rozewski, D. L. Fowler, K. R. Scidmore, and J. Laudon, “The ZS-1
central processor,” in Proc. ASPLOS-II, 1987.

[49] N. K. Srivastava, H. Rong, P. Barua, G. Feng, H. Cao, Z. Zhang, D. H.
Albonesi, V. Sarkar, W. Chen, P. Petersen, G. Lowney, A. Herr, C. J.
Hughes, T. G. Mattson, and P. Dubey, “T2S-Tensor: Productively gener-
ating high-performance spatial hardware for dense tensor computations,”
in Proc. FCCM, 2019.

[50] N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor, M. J. Anderson,
S. G. Vadlamudi, D. Das, and P. Dubey, “GraphMat: High performance
graph analytics made productive,” Proc. VLDB, 2015.

[51] N. Talati, K. May, A. Behroozi, Y. Yang, K. Kaszyk, C. Vasiladiotis,
T. Verma, L. Li, B. Nguyen, J. Sun et al., “Prodigy: Improving the
memory latency of data-indirect irregular workloads using hardware-
software co-design,” in Proc. HPCA-27, 2021.

[52] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,
H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal,
“The Raw microprocessor: a computational fabric for software circuits
and general-purpose programs,” in Proc. MICRO-35, 2002.

[53] W. Thies, V. Chandrasekhar, and S. P. Amarasinghe, “A practical approach
to exploiting coarse-grained pipeline parallelism in C programs,” in Proc.

MICRO-40, 2007.
[54] W. Thies, M. Karczmarek, and S. P. Amarasinghe, “StreamIt: A language

for streaming applications,” in Proc. Compiler Construction, 2002.
[55] N. P. Topham and K. McDougall, “Performance of the decoupled ACRI-1

architecture: the perfect club,” in Proc. HPCN, 1995.
[56] K.-A. Tran, T. E. Carlson, K. Koukos, M. Själander, V. Spiliopoulos,

S. Kaxiras, and A. Jimborean, “Clairvoyance: Look-ahead compile-time
scheduling,” in Proc. CGO, 2017.

[57] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and D. I.
August, “Speculative decoupled software pipelining,” in Proc. PACT-16,
2007.

[58] M. Vilim, A. Rucker, and K. Olukotun, “Aurochs: An architecture for
dataflow threads,” in Proc. ISCA-48, 2021.

[59] Y. Wang, A. A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: a high-performance graph processing library on the GPU„” in
Proc. PPoPP, 2016.

[60] Y. Yang, J. S. Emer, and D. Sanchez, “SpZip: Architectural support for
effective data compression in irregular applications,” in Proc. ISCA-48,
2021.

[61] Y. Zhang, N. Zhang, T. Zhao, M. Vilim, M. Shahbaz, and K. Olukotun,
“SARA: Scaling a reconfigurable dataflow accelerator,” in Proc. ISCA-48,
2021.

[62] Y. Zhang, M. Yang, R. Baghdadi, S. Kamil, J. Shun, and S. P. Amarasinghe,
“GraphIt: A high-performance DSL for graph analytics,” in Proc.

OOPSLA, 2018.

13

	Introduction
	Background
	Challenges of irregularity
	Irregular applications readily decompose into pipelines
	Compiler support for pipeline parallelism

	Baseline Architecture
	Phloem Design
	Phloem interface
	Producing efficient fine-grain pipelines
	Composing data and pipeline parallelism
	Making efficient domain-specific pipelines
	Targeting other architectures

	Automatic Decoupling
	Methodology
	Evaluated systems
	Benchmarks
	Automatic pipeline generation and search

	Evaluation
	Analysis of generated pipelines
	Replicating pipelines

	Additional Related Work
	Conclusion
	References

