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Abstract

We describe the universal target of annular Khovanov–Rozansky link homology functors
as the homotopy category of a free symmetric monoidal linear category generated by one
object and one endomorphism. This categorifies the ring of symmetric functions and admits
categorical analogues of plethystic transformations, which we use to characterize the annular
invariants of Coxeter braids. Further, we prove the existence of symmetric group actions on
the Khovanov–Rozansky invariants of cabled tangles and we introduce spectral sequences
that aid in computing the homologies of generalized Hopf links. Finally, we conjecture a
characterization of the horizontal traces of Rouquier complexes of Coxeter braids in other
types.
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1 Introduction

The positive part of the HOMFLY-PT skein algebra of the annulus is defined as a linear span
of annular closures of braids, modulo certain skein relations. A classical result of Turaev
[59] states that this skein algebra is isomorphic to the algebra �q of symmetric functions
in infinitely many variables over Z[q±1]. In particular, to any braid one can associate a
symmetric function which is invariant under conjugation of the braid.

Conversely, many interesting symmetric functions and relationships between them can
be represented in terms of (colored) braid closures. For example, if Schur functions corre-
spond to the colored unknots, then certain “plethystically transformed” skew Schur functions
sλ/μ[X(q − q−1)] are represented by “Coxeter braids” (see Sect. 2 for precise definitions).

Furthermore, the skein of the annulus acts on the (relative) skein of the disk. In particular,
after an extension of scalars, there is a homomorphism of �q to the Hecke algebra Hn for
any n, and its image coincides with the center of Hn .

(1)

The motivation for this paper is to study lifts of this homomorphism to the categorified
level.
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1.1 The annular category

In a series of recent papers [46, 47] Queffelec, Rose and Sartori categorified the skein of
the annulus using annular Khovanov–Rozansky homology. The target for this annular link
homology functor is a monoidal category whose objects are (complexes of) oriented webs in
the annulus, and the morphisms are given by annular foams. They prove that this category is
generated by collections of

∧
k-colored essential unknots, and provide an explicit algorithm

of simplification of a given web to this basis. The monoidal structure is given by placing one
annulus inside another. We reformulate their result and prove the following:

Theorem 1.1 The Karoubi completion (or bounded homotopy category) of the category of

positive annular webs and foams is equivalent to (the bounded homotopy category of) the

free symmetric monoidal graded Karoubian category P̂ generated by a single object E

(corresponding to the uncolored essential circle) with an endomorphism x ∈ End(E) (cor-

responding to a dotted cylinder on the circle) of degree two. Under this equivalence, the
∧

k-colored unknot corresponds to the antisymmetric component in E⊗k .

In other words, the target of the annular Khovanov–Rozansky invariant can be thought
of as a category of complexes of Schur functors of E , which categorify the corresponding
symmetric functions in �q . We will call the bounded homotopy category Kb(P̂) the annular

category.

Remark 1.2 It is important to mention that we work in characteristic zero, where the represen-
tation theory of Sn is semisimple, and Schur functors are well-defined. In finite characteristic,
one may need to use the formalism of strict polynomial functors [21, 26–28], but we do not
pursue it in this paper.

It is conjectured [46, Conjecture 5.4] that every annular web is actually isomorphic to a
direct sum of collections of

∧
k-colored essential unknots (that is, to a complex concentrated

in one homological degree). Here we prove that at least after Karoubi completion this is
indeed the case:

Theorem 1.3 Every positive annular web is isomorphic in the Karoubi completion of the

positive annular foam category to a direct sum of Schur functors of the uncolored essential

circle E.

We prove this theorem as Corollary 4.20. As a consequence, any annular chain complex,
in particular the invariant of an annular braid closure, is isomorphic (and not just homotopy
equivalent) to a complex of such Schur functors. Two further consequences are the following.

Corollary 1.4 The symmetric function corresponding to any annular web in the skein of the

annulus is Schur positive.

Corollary 1.5 The Karoubi completion of the horizontal (i.e. monoidal) trace of the monoidal

category of Soergel bimodules of type An−1 is equivalent to C[Sn]�C[x1, . . . , xn]−gpmod.

See Sect. 7.1 for more details on horizontal traces.

1.2 Spectral sequences

The annular simplification of Khovanov–Rozansky invariants is still possible if the annular
link appears as a cabling of a component of a framed link in R3. To make sense of this
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claim, we first need to explain what Schur functors are in this framework. Let L be a framed
link and K a distinguished component and λ a partition of n. Consider the link L(K n)

given by the n-fold parallel cabling of the component K in L (this uses the framing). By
functoriality of the Khovanov–Rozansky functor, the braid group Bn on n-strands acts on
KhR(L(K n)) by braiding parallel circles in the cabling around each other through isotopy-
cobordisms. Moreover, the braid group actions associated to cablings of different components
of L commute. In fact, these braid group actions factor through the symmetric group. This
generalizes a result of Grigsby–Licata–Wehrli [25] for sl2 Khovanov homology.

Theorem 1.6 The action of Bn on KhR(L(K n)) factors through the symmetric group Sn .

We can now define colorings by Young diagrams. For this, let L be a link with components
K1, . . . , Kl and we denote by L(K

n1
1 , . . . , K

nl

l ) the result of ni -fold parallel cabling of the
components Ki in L for 1 ≤ i ≤ l.

Definition 1.7 Let L be as above and λ1 . . . , λl Young diagrams with |λi | = ni . Let
L(K

λ1
1 · · · K

λl

l ) denote the link L with color label λi on the component Ki for 1 ≤ i ≤ l. Then

we define KhR(L(K
λ1
1 · · · K

λl

l )) as the image of the tensor product of Young idempotents of
shape λi in C[Sni

] for 1 ≤ i ≤ l on KhR(L(K
n1
1 · · · K

nl

l )).

Note that these colored link homologies are distinct from the colored homologies con-
structed by inserting categorified projectors into cables of knots. In particular, in the case
of finite-rank Khovanov–Rozansky homology, the colored homologies described here are
finite-dimensional for all colors.

Next, we show how annular simplification can be used to approximate the homology of
links L which split into a Hopf pairing of sub links L1 and L2 via a spectral sequence.

Theorem 1.8 Let L be a link which is a satellite of a framed Hopf link H(L1, L2) where

L1 and L2 are annular links and L1 is a braid closure. Suppose that the annular invariant

of L1 is isomorphic to a chain complex C∗(L1) of Schur functors of E. Then the chain

complex associated to H(L1, L2) is homotopy equivalent to a filtered chain complex, whose

associated graded is given by a direct sum of complexes associated to H(C i (L1), L2), where

C i (L1) is a direct sum of Schur-colored unknots as specified by the chain groups of C∗(L1).

Moreover, the differential of filtration degree one is induced by the differential on C∗(L1).

The following is a direct consequence.

Corollary 1.9 For L = H(L1, L2) and the annular complex of Schur functors C∗(L1) as

in the theorem above, there exists a spectral sequence computing KhR(H(L1, L2)), whose

E1 page has chain groups KhR(H(Sλ, L2)) where the Schur functors Sλ range through the

chain groups of C∗(L1), and the differential d1 is induced by the differential in C∗(L1).

Remark 1.10 An important caveat regarding Theorem 1.8 is that the annular chain complex
of L1 may in general not be assumed to be a minimal complex. Gaussian elimination on the
annular complex of L1 typically breaks the filtration which is the main point of the theorem.
Thus we restrict to isomorphic replacements by complexes of Schur functors.

1.3 Positive Coxeter braids

Next, we describe another natural generating set in the annular category, which appears in the
image of annular Khovanov–Rozansky functors, namely the images of closures of Coxeter
braids.
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Theorem 1.11 Let C+
n denote the annular Khovanov–Rozansky invariant of the closure of

the braid σn−1 · · · σ1 on n strands in Kb(P̂). Then

C+
n �

[

qn−1∧n(E)
�����

→ qn−3S2,1n−2
(E) → · · · → q3−nSn−1,1(E) → q1−n Sn(E)

]

.

We describe the differential in this complex explicitly. We also describe the spaces of
morphisms between various products of C+

n .

Theorem 1.12 We have

End(C+
n ) =

∧

(ξ1, . . . , ξn−1) ⊗ C[x],

where ξi are odd variables of homological degree −1 and q-degree 2i −2 and x has q-degree

2.

Moreover, there are natural “merge" and “split maps"

Mm,n : C+
m ⊗ C+

n → qC+
m+n[1], Sm,n : C+

m+n → qC+
m ⊗ C+

n .

and we expect that all morphisms between tensor products of C+
n are generated by these and

the action of ξi and x .

1.4 Other Coxeter lifts

We also describe the annular homology of other lifts of the Coxeter element sn−1 · · · s1 ∈ Sn

to the braid group. Such lifts σε := σ
εn−1
n−1 · · · σ

ε1
1 are parametrized by binary sequences

ε ∈ {+1,−1}n−1. Given such a sequence ε, consider a ribbon ν(ε), a skew Young diagram
obtained by the following rule: we start from a box, move right if we see a +1 in ε and
move down if we see a −1. For example, for ε = (+1,+1,−1,+1,−1,−1,+1) we get the
following shape (which represents the skew shape 5443/332):

To such skew shape one can associate a skew Schur function sν(ε) [35] which decom-
poses into usual Schur functions with positive coefficients. For example, the shape above
corresponds to

s5443/332 = s3,2,2,1 + s3,3,1,1 + 2s4,2,1,1 + s4,2,2 + s4,3,1 + s5,1,1,1 + s5,2,1.

More precisely (see Sect. 5.3 for details) for ribbon skew shapes there exists a canonical left
ideal Vε ⊂ C[Sn] with Frobenius character sν(ε), and C[Sn] ∼= ⊕εVε . We let pε ∈ C[Sn]

denote the idempotent projecting to Vε .

Theorem 1.13 (Theorem 5.25) Let Un = Span(xi − xi+1) be the (n − 1)-dimensional

reflection representation of Sn , there is a natural Sn-equivariant map D : Un ⊗ E⊗n → E⊗n .

Consider the Koszul complex

Cuben := (
∧•Un ⊗ En, D).
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Then the annular Khovanov–Rozansky complex Cε of σ
ε1
1 · · · σ

εn−1
n−1 satisfies

Cε[|ε|+] � pε · Cuben .

where |ε|+ denotes the number of entries +1 in ε.

Example 1.14 For ε = (+1, · · · ,+1) the skew shape ν(ε) has one row, so sν(ε) = sn ,
the corresponding representation Vε is trivial, and the corresponding projector pε is the
symmetrizer. Therefore pε · Cuben = (Cuben)Sn . In Lemma 3.20 we check that this indeed
agrees, up to a homological shift, with the description of the annular complex for the positive
Coxeter lift in Theorem 1.11, and yields immediately the differentials in it.

By a result of Solomon, the analogues of the projectors pε can be defined for all finite
Coxeter groups. We conjecture that Theorem 1.13 can be generalized too, see Conjecture 7.4.

1.5 Organization of the paper

In Sect. 2 we list various important results about the skein algebra of the annulus, following
Turaev [59], Aiston and Morton [3, 38]. We identify this skein with the algebra of symmetric
functions in infinitely many variables, and identify certain closed braids with explicit sym-
metric functions. In particular, we prove Theorem 2.20 which is a decategorified version of
Theorem 1.13. In Sect. 3 we use Schur functors in symmetric monoidal categories to describe
an explicit categorification of the algebra of symmetric functions and a plethystic transfor-
mation. In Sect. 4 we define and study the category of webs and foams and the corresponding
Khovanov–Rozansky functor. We prove Theorems 1.1 and 1.3 .

In Sect. 5 we identify the annular complexes for all lifts of the Coxeter element to the
braid group and prove Theorems 1.11 and 1.13.

In Sect. 6 we describe the operation of “wrapping” an annular link around a braid, and prove
Theorem 1.9. In Sect. 7 we briefly discuss a conjectural description of annular homology
(or, rather, a class in the horizontal trace) for Coxeter lifts outside of type A. Finally, in the
appendix we list some useful facts from homological algebra, in particular, on splitting of
homotopy idempotents and triangulated Karoubian categories.

2 The classical story

In this section we recall the classical constructions related to the skein algebra of the annulus.

2.1 The skein of the annulus

Let A denote an annulus on the plane. The closure of a braid is a link in A ×[0, 1]. We define
the positive part of the skein of the annulus Sk+(A) as the Z[q±1]-linear span of all braid
closures, considered up to regular isotopy, modulo the HOMFLY skein relation:

− = (q − q−1) .

This can be given an algebra structure by stacking (A × [0, 1]) � (A × [1, 2]) = A × [0, 2].
We will refer to this operation as to skein product, which should not be confused with the
product of braids. The skein product of two braid closures is isotopic to the disjoint union
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of the two braid closures, considered as living in two annuli, one outside of another. An
Eckmann–Hilton argument then implies that Sk+(A) is a commutative algebra with respect
to the skein product.

Theorem 2.1 [59] The skein algebra Sk+(A) is isomorphic to the algebra �q of symmetric

functions in infinitely many variables over Z[q±1].

There are several versions of the isomorphism in Theorem 2.1 which differ by automor-
phisms of the symmetric function ring, possibly after extending scalars. We outline one of
them in the next section.

2.2 Universal Hecke trace and symmetric functions

The Hecke algebra Hn is defined as the quotient of Z[q±1]Brn by the HOMFLY skein relation
shown above. It is easy to see that Hn is spanned by the images of positive permutation braids.
Moreover, taking braid closures in the annulus defines a linear map Tr : Hn → Sk+(A). Since
the closures of conjugate braids represent the same link in the annulus, we have Tr(ab) =

Tr(ba). In fact, it is easy to see from the construction that

Sk+(A) ∼= Hn/[Hn, Hn].

In other words, any linear map f : Hn → V such that f (ab) = f (ba) factors through the
map Tr : Hn → Sk+(A).

The identification of Sk+(A) with �q is also transparent in this construction. Indeed, the
irreducible representations Vλ of Hn are classified by Young diagrams λ with n boxes. Define
the map

Tr�q : Hn → �q , Tr�q (x) =
∑

λ

Tr(x, Vλ)sλ

where sλ is the Schur function. Clearly, Tr�q (ab) = Tr�q (ba), so by the above Tr�q factors
through Sk+(A):

Tr�q (x) = i(Tr(x)), i : Sk+(A) → �q . (2)

Theorem 2.1 states that i is an isomorphism.

Remark 2.2 The Hecke algebra can also be used to study invariants of oriented tangles with n

inputs and n outputs. More precisely, we consider the ring � := Z[q±1, a±1, (qk − q−k)−1]

for all k > 1, and the �-module Sk(n, n) spanned by all framed oriented tangles in an axis-
parallel rectangle in R2, with n inputs on the bottom boundary and n outputs on the top,
modulo the HOMFLY skein relation and:

=
a − a−1

q − q−1
, = −a−1

It is known [3, 39] that Sk(n, n) (with respect to composition) is isomorphic to the
Hecke algebra Hn ⊗ � with scalars extended to �. The extended trace is denoted by
Tr�a,q : Sk(n, n) → �q ⊗ � =: �a,q .

The universal trace can be specialized to the Jones–Ocneanu trace on the Hecke algebra
which yields the HOMFLY-PT polynomial or slN Reshetikhin–Turaev invariants of links
L ⊂ S3 presented as braid closures.
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Proposition 2.3 Let fL ∈ �q correspond to a braid closure L in the thickened annulus under

the isomorphism (2). Then the slN Reshetikhin–Turaev invariants 〈L〉N and the HOMFLY-PT

polynomial 〈L〉 can be computed as follows:

(a) 〈L〉N = fL(q N−1, q N−3, . . . , q1−N )

(b) 〈L〉 = ε( fL), where ε : �q → �a,q is the ring homomorphism defined by

ε(pk) = (ak − a−k)/(qk − q−k).

Here pk denotes the k-th power sum symmetric function.

Proof Part (a) is well-known. To obtain (b), observe that by (a)

〈pk〉N = pk(q
N−1, . . . , q−N−1) = qk(N−1) + · · · + q−k(N−1)

=
qk N − q−k N

qk − q−k
=

ak − a−k

qk − q−k

∣
∣
∣
∣

a=q N

.

��

2.3 Coxeter braids

In this section we compute the images of braid lifts of Coxeter elements in �q . To this end,
we introduce a particular plethysm operation. Recall that the power sum symmetric functions
pn for n > 1 give an algebraically independent set of generators of �q ⊗Z Q.

Lemma 2.4 There exists a unique Z[q±1]-algebra endomorphism of �q which sends pk to

its scalar multiple pk(q
−k − qk) for all k ≥ 1.

If f ∈ �q is a symmetric function, we denote its image under this endomorphism by
f [X(q−1 − q)].

Proof After extending to scalars to Q[q±1], it is clear that there is a unique endomorphism
with these properties. The fact that it is well-defined over Z[q±1] follows from the following
lemma, which can be used to compute the images of the algebraically independent integral
generators given by the elementary (or complete) symmetric functions en (or hn) for n ≥ 0.

��

Lemma 2.5 We have

1

q−1 − q
en[X(q−1 − q)] =

n−1
∑

i=0

(−1)n−1−i qn−1−2i sn−i,1i ,

(−1)n−1

q−1 − q
hn[X(q−1 − q)] =

n−1
∑

i=0

(−1)i−n+1q2i−n+1sn−i,1i .

Proof Consider the identity of generating functions

∞
∑

k=0

ek zk = exp

(
∞
∑

k=1

pk(−z)k

k

)

,

which implies

∞
∑

k=0

ek[X(q−1 − q)]zk = exp

(
∞
∑

k=1

pk(q
−k − qk)(−z)k

k

)
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=
exp

(
∑∞

j=1
pk q−k (−z)k

k

)

exp
(
∑∞

j=1
pk qk (−z)k

k

) =

(
∞
∑

k=0

ekq−k zk

)(
∞
∑

k=0

(−1)khkqk zk

)

.

(3)

By taking the coefficient at zn , we get

en[X(q−1 − q)] =

n
∑

i=0

(−1)n−i qn−2i ei hn−i

= (−1)nqnhn +

n−1
∑

i=1

(−1)n−i qn−2i (sn−i,1i + sn−i+1,1i−1) + q−nen

= (q−1 − q)

n−1
∑

i=0

(−1)n−1−i qn−1−2i sn−i,1i .

The other identity admits an analogous proof. ��

The following proposition describes the trace of the positive Coxeter braid σn−1 · · · σ1 in
terms of the plethysm operation introduced above.

Proposition 2.6 We have Tr�q (σn−1 · · · σ1) = (−1)n−1hn[X(q−1 − q)]/(q−1 − q).

Proof The traces of σn−1 · · · σ1 in various representations of the Hecke algebra can be found
in [30, Section 9]. Such a trace in Vλ vanishes if λ is not a hook, and equals (−1)i qn−1−2i

for the hook λi = (n − i, 1i ). It remains to apply Lemma 2.5. ��

Remark 2.7 In [38, Theorem 3.6] Morton obtained this result (in the form of equation (3))
by purely skein-theoretic methods.

Remark 2.8 In [59] Turaev identified the entire skein of the annulus Sk(A) with a polynomial
algebra in variables lk with k ∈ Z\{0}. These lk can be chosen to be the images of the closures
of positive Coxeter braids on |k| strands, winding positively or negatively around the annulus.
The positive half has generators lk for k ≥ 1 and is thus isomorphic to the ring of symmetric
functions.

We can also describe the annular invariants for all lifts of the Coxeter element sn−1 · · · s1 ∈

Sn . Such a lift has the form σ
εn−1
n−1 · · · σ

ε1
1 for some εi = ±1.

Definition 2.9 Consider the bijection between the set {±1}n−1 and the set C(n) of compo-
sitions of n with strictly positive parts, given as follows. To a sequence ε = (ε1, . . . , εn−1)

we associate the composition (a1, . . . , as) of n, which is determined by

εa1 = εa1+a2 = · · · = εa1+···+as−1 = −1,

and εi = +1 for all other i . Note that this implies as = n − (a1 + · · · + as−1).

For example,

ε = (+1,+1,−1,+1,−1,−1,+1) ↔ a = (3, 2, 1, 2).

For a composition (a1, . . . , as) we define its length l(a) = s. We will use the partial order
on C(n): a � b if a refines b. In this order, (n) is the maximal element (it corresponds to a
sequence of +1’s) and (1, . . . , 1) is the minimal one (it corresponds to a sequence of −1’s).

123



25 Page 10 of 57 E. Gorsky, P. Wedrich

Definition 2.10 Let a be a composition of n. We define a symmetric function

	(a) =
∑

a�b∈C(n)

(−1)l(b)−l(a)hb1 · · · hbl(b)
,

where hk are complete symmetric functions and l(a), l(b) are the lengths of a and b as above.

Example 2.11 In the above example a = (3, 2, 1, 2) we get

	(a) = h3h2h1h2 − h5h1h2 − h3h3h2 − h3h2h3 + h6h2 + h3h5 + h5h3 − h8.

Lemma 2.12 We have 	(a) = det M(a), where

Mi j (a) =

⎧

⎪
⎨

⎪
⎩

hai +···+a j
if i ≤ j,

1 if i = j + 1,

0 otherwise.

Proof Straightforward from the recursive formula

	(a1, . . . , as) = 	(a1, . . . , as−1)hs − 	(a1, . . . , as−2, as−1 + as). (4)

��

Example 2.13 In our running example we get

	(3, 2, 1, 2) =

∣
∣
∣
∣
∣
∣
∣
∣

h3 h5 h6 h8

1 h2 h3 h5

0 1 h1 h3

0 0 1 h2

∣
∣
∣
∣
∣
∣
∣
∣

Corollary 2.14 For ε = (+1, . . . ,+1
︸ ︷︷ ︸

k

,−1, . . . ,−1
︸ ︷︷ ︸

n−k−1

) we have a = (k + 1, 1, . . . , 1
︸ ︷︷ ︸

n−k−1

) and

	(a) = sk+1,1n−k−1 .

Proof Follows from the determinantal formula for 	(a) and the Jacobi-Trudy formula for
sk+1,1n−k−1 . ��

For general a, the Schur expansion for 	(a) is more complicated.

Example 2.15 One can check that

	(3, 2, 1, 2) = s3,2,2,1 + s3,3,1,1 + 2s4,2,1,1 + s4,2,2 + s4,3,1 + s5,1,1,1 + s5,2,1.

In particular, 	(3, 2, 1, 2) expands as a non-negative linear combination of Schur functions.
To see that this is the case for any composition a = (a1, . . . , as), consider a pair of partitions

λ = (a1 + · · · + as − s + 1, a1 + · · · + as−1 − s + 2, · · · , a1 + a2 − 1, a1),

μ = (a1 + · · · + as−1 − s + 1, . . . , a1 + a2 − 2, a1 − 1).

It is easy to see that μ ⊂ λ and λ − μ is a connected n-ribbon with rows of size ai . Now,
the determinantal expression for 	(a) in Lemma 2.12 is precisely the Jacobi–Trudi formula
defining the skew Schur function sλ/μ [35]:

sλ/μ = det(λi − μ j − i + j) = 	(a).
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Example 2.16 In our running example for a = (3, 2, 1, 2) we get λ = (5, 4, 4, 3), μ =

(3, 3, 2) (see figure in Sect. 1.4) and 	(a) = s5443/332.

Corollary 2.17 For all compositions a the coefficients of 	(a) in the Schur basis are non-

negative.

Proof We have 	(a) = sλ/μ with λ and μ as described above. The lemma now follows since
skew Schur polynomials expand in Schur polynomials with nonnegative coefficients given
by the Littlewood–Richardson rule: (sλ/μ, sν) = (sλ, sμsν). ��

Example 2.18 Let us determine the polynomials 	(a) for n = 4. We get the following table:

ε a λ μ 	(a) = sλ/μ

(+1, +1,+1) 4 4 ∅ s4
(+1, +1,−1) 31 33 2 s3,1
(+1, −1,+1) 22 32 1 s2,2 + s3,1
(−1, +1,+1) 13 31 ∅ s3,1
(+1, −1,−1) 211 222 11 s2,1,1
(−1, +1,−1) 121 221 1 s2,1,1 + s2,2
(−1, −1,+1) 112 211 ∅ s2,1,1
(−1, −1,−1) 1111 1111 ∅ s1,1,1,1

Lemma 2.19 We have
∑

a∈C(n) 	(a) = hn
1 .

Proof By definition, we have
∑

a∈C(n)

	(a) =
∑

a∈C(n)

∑

a�b∈C(n)

(−1)l(b)−l(a)hb1 · · · hbl(b)
.

If one fixes b, it is easy to see that the sum over a with a � b vanishes unless all parts of b

have size 1. ��

We are ready to connect these combinatorial results to knot theory.

Theorem 2.20 The annular invariant of the generalized Coxeter braid σε = σ
εn−1
n−1 · · · σ

ε1
1

equals

Tr�q (σε) =
(−1)|ε|+

q−1 − q
	(a)[X(q−1 − q)]

where the composition a corresponds to ε as in Definition 2.9 and |ε|+ is the number of +1
entries in ε.

In the following, we use the notation ca for the annular closure of σε and |a|+ := |ε|+.

Proof Let us prove the statement by induction on the number of entries −1 in ε. If ε =

(+1, · · · ,+1), this follows from Proposition 2.6. Otherwise, let a = (a1, . . . , as) be the
corresponding composition. The rightmost negative crossing in σε is at position a1 + · · · +

as−1. If we replace it by a positive one, we get the composition a′ = (a1, . . . , as−2, as−1+as).
If we erase that crossing, we get a disjoint union of a Coxeter braid for the composition

123



25 Page 12 of 57 E. Gorsky, P. Wedrich

a′′ = (a1, . . . , as−1) and a positive Coxeter braid on as strands. Now, by the skein relation
the we get

(−1)|a|+ Tr�q (ca) = (q−1 − q)(−1)|a
′′|+ Tr�q (ca′′ )(−1)as Tr�q (cas ) − (−)|a

′|+ Tr�q (ca′ )

=
1

q−1 − q
	(a′′)[X(q−1 − q)]has [X(q−1 − q)]

−
1

q−1 − q
	(a′)[X(q−1 − q)]

=
1

q−1 − q

(

	(a′′)[X(q−1 − q)]has [X(q−1 − q)] − 	(a′)[X(q−1 − q)]
)

=
1

q−1 − q
	(a)[X(q−1 − q)].

The last equation follows from the recursive formula (4). ��

Corollary 2.21 For ε = (+1, . . . ,+1
︸ ︷︷ ︸

k

,−1, . . . ,−1
︸ ︷︷ ︸

n−k−1

) we get

Tr�q (σε) =
(−1)k

q−1 − q
sk+1,1n−k−1 [X(q−1 − q)]

Proof Follows from Theorem 2.20 and Corollary 2.14. ��

Corollary 2.22 We have

(−1)n−1
n
∑

k=0

Tr�q (σ1 · · · σkσ
−1
k+1 · · · σ−1

n−1) = [n]pn

Proof This follows from Corollary 2.21 and the equations

pn =
∑

k

(−1)n−1−ksk+1,1n−k−1 , pn[X(q−1 − q)] = pn(q−n − qn).

��

Remark 2.23 This corollary was proved by Aiston [2] by different methods, see also [38].

2.4 From skein to the center of Hecke algebra

The skein of the annulus is closely related to the center of the Hecke algebra, as exemplified by
Morton [38]. Recall that the Jucys–Murphy braids are defined as Li = σi−1 · · · σ1σ1 · · · σi−1.
It is easy to see that LiL j = L jLi for all 1 ≤ i, j ≤ n. Note that L1 is a trivial braid. It is
well known that the center of Hn is spanned by the symmetric polynomials in L1, . . . ,Ln .

There is a natural homomorphism Tn from Sk+(A) to Hn ⊗ � ∼= Sk(n, n) given by
wrapping annular links L around the identity braid on n strands as in the following picture:

L

· · ·

· · · (5)

It is easy to see that for any annular link L the tangle Tn(L) is central in Sk(n, n) (and hence
in Hn ⊗ �), and Tn(L1 � L2) = Tn(L1)Tn(L2).
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Fig. 1 A standard Young tableau
and the content filling for the
Young diagram for
λ = (4, 3, 3, 2)

1

5

8

11

2

6

9

12

3

7

10

4 , 0

1

2

3

−1

0

1

2

−2

−1

0

−3

Theorem 2.24 [38, Theorem 3.9] Under the identification Sk+(A) ⊗ � ∼= �a,q one has

Tn( f ) = φn( f )(L1, . . . ,Ln), where f ∈ �q and φ : �a,q → �a,q is an endomorphism

defined by

φn(pk) = −(qk − q−k)a−k pk + ε(pk), (6)

where ε is the evaluation homomorphism defined in Proposition 2.3.1

It is sometimes helpful to rewrite (6) in terms of the eigenvalues of central elements Tn( f ).
Recall that Li can be simultaneously diagonalized using Jones–Wenzl-type projectors. For
each standard Young tableau T there is an element pT ∈ Sk(n, n) such that Li · pT =

q2ci (T ) pT , where ci denotes the content of the box labeled by i in T , see e.g. [50, Equation
(3.20)] (Fig. 1).

Lemma 2.25 Assume that λ has at most N parts. Given a symmetric function f ∈ �q and a

standard tableau T of shape λ, one has

Tn( f ) · pT |a=q N = f (q−2λ1+(1−N ), q−2λ2+(3−N ) . . . , q−2λN +(N−1)) · pT .

Proof Since pT is an eigenvector for all Li , by Theorem 6 it is an eigenvector for Tn( f ) for
any f , so

Tn( f ) · pT = μT ( f ) · pT

for some scalar μT ( f ). Clearly, the assignment f �→ μT ( f ) is a ring homomorphism, so it
is sufficient to compute the image of power sums. We have

(Lk
1 + · · · + L

k
n) · pT =

n
∑

i=1

q2kci (T ) · pT ,

so the eigenvalue of (Lk
1 + · · · + L

k
n) on pT equals

N
∑

j=1

q2k( j−1)(1 + q−2k + · · · + q−2k(λ j −1))

=

N
∑

j=1

q2k( j−1) q−2kλ j − 1

q−2k − 1
=

l(λ)
∑

j=1

q−2k(λ j +1− j) − q−2k(1− j)

q−2k − 1

By applying (6) we get

Tn(pk)|a=q N = −(qk − q−k)q−k N (Lk
1 + · · · + L

k
n) + (qk(N−1) + · · · + q−k(N−1)),

1 To compare with Morton’s conventions, note that his crossings are the negatives of ours, s = q−1, and
v = a.
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and

μT (pk) = −(qk − q−k)q−k N

N
∑

j=1

q−2k(λ j +1− j) − q−2k(1− j)

q−2k − 1
+ (qk(N−1) + · · · + q−k(N−1))

= qk−k N

N
∑

j=1

(q−2k(λ j +1− j) − q−2k(1− j)) + (qk(N−1) + · · · + q−k(N−1))

=

N
∑

j=1

q−2kλ j +k(1−N+2( j−1)) −

N
∑

j=1

qk(1−N+2( j−1)) +

N
∑

j=1

qk(1−N+2( j−1))

= pk(q
−2λ1+(1−N ), q−2λ2+(3−N ), . . . , q−2λN +(N−1)).

��

2.5 Generalized Hopf links

We can use the above results to describe the polynomial invariants of generalized Hopf links.
Consider the standard genus one Heegaard decomposition of S3 with two annular links L1, L2

in the two genus one handlebodies. Their union H(L1, L2) is a link in S3 which we call a
generalized Hopf link (indeed, the cores of the two solid tori yield a Hopf link). Note that it
is naturally framed by framings of L1 and L2. The following is clear from the definition:

Proposition 2.26 The slN polynomial 〈H(L1, L2)〉N depends only on classes of L1 and L2

in Sk+(A), and it is bilinear in these classes.

To compute this invariant, it is then sufficient to choose a basis in Sk+(A) � �q and to
compute the bilinear form in this basis. Lemma 2.25 immediately implies the following:

Proposition 2.27 The invariants of the generalized Hopf links are completely determined by

either of the following:

(a) If both components are colored by Schur functions then

〈H(sλ, sμ)〉N = sλ(q
−(N−1), . . . , q(N−1))sμ(q−2λ1−(N−1), . . . , q−2λN +(N−1)). (7)

(b) If one component is colored by a Schur function sλ and the other by an arbitrary symmetric

function f then

〈H(sλ, f )〉N = sλ(q
−(N−1), . . . , q(N−1)) f (q−2λ1−(N−1) . . . , q−2λN +(N−1)). (8)

Remark 2.28 It follows that the right hand side of (7) is symmetric in λ and μ for all N .

3 General facts about symmetric monoidal categories

3.1 A free symmetric monoidal category

We start by defining a useful PROP—a graded, additive version of a product and permutations
category [37, Chapter V, 2.4].

Definition 3.1 Let P denote the graded, strict symmetric monoidal C-linear additive category
that is freely generated by a single object E and a degree two endomorphism x . We will use
the notation P̂ = Kar(P) for its idempotent completion.
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The objects of P are formal direct sums of grading shifts of tensor powers of E and we
denote such grading shifts by powers of q . The morphisms of P are matrices whose entries can
be interpreted as C-linear combinations of string diagrams built from identity endomorphisms
of copies of E , the morphism x : qk E → qk−2 E and the basic braiding morphism σ : qk E ⊗

E → qk E ⊗ E . (We think of such string diagrams as dotted permutations). Explicitly, we
have:

HomP(qk E⊗m, ql E⊗n) =

{

(C[x1, . . . , xn] � C[Sn])k−l if m = n,

0 otherwise.
(9)

Here, the subscript k − l indicates taking the degree k − l component of this algebra, which
is graded by putting all xi in degree two and all permutations in degree zero. In other words,
we have:

Lemma 3.2 P̂ is equivalent to
⊕

n≥0 C[Sn] � C[x1, . . . , xn] − gpmod.

In the following K0(C) denotes the split Grothendieck group (ring) of an additive
(monoidal) category C and �q is the Z[q±1]-algebra of symmetric functions in infinitely
many variables.

Lemma 3.3 We have ring isomorphisms K0(P) ∼= Z[q±1, e] where [E] �→ e, and K0(P̂) ∼=
�q where [E] �→ e1.

Proof By definition, P is additively generated by qk E⊗n and there are no isomorphisms
between distinct such objects, so K0(P) ∼= Z[q±1, e] and [E⊗k] = ek .

To compute the Grothendieck group of P̂, we need to classify the idempotent endomor-
phisms of objects of the form qk E⊗n in P. Since x has positive degree, (9) implies that
idempotents appear only in C[Sn] and they are exactly the Young idempotents eλ, which are
parametrized (up to isomorphism) by Young diagrams λ with |λ| = n. Then K0(P̂) has a basis
given by the classes of such pairs (qk E⊗n, eλ). The fact that this gives a ring homomorphism
follows from the next section. ��

3.2 Schur functors and evaluation

Let C be a C-linear strict symmetric monoidal Karoubian category, and let E be an object in
C. For every n ≥ 1 there is an action of Sn on E

⊗n given by the permutation of the factors.
In other words, we have a homomorphism φn : Sn → End(E⊗n). For every partition λ of n

we pick the primitive Young idempotent eλ ∈ C[Sn] corresponding to a fixed Young tableau
of shape λ. Its image φn(eλ) is an idempotent endomorphism of E⊗n . Since C is Karoubian,
we can define the Schur functor of E as the image of this idempotent:

Sλ(E) := φn(eλ)E
⊗n .

For more details on Schur functors see [14]. We will write
∧

n(E) = S(1n)(E) and Sn(E) =

S(n)(E).

Definition 3.4 We say that the object E has rank at most N , if
∧

N+1(E) ∼= 0.

For example, CN is of rank at most N in the symmetric monoidal category of complex
vector spaces.

Proposition 3.5 If E is an object of rank at most N and λ is a partition with more than N

parts then Sλ(E) ∼= 0.
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Proof Follows from [14, Corollaire 1.7]. ��

Proposition 3.6 Let C be a graded, strict symmetric monoidal C-linear additive category, and

let E be an object in C with an endomorphism X. Then there is a unique braided monoidal C-

linear additive functor P → C which sends E to E and x to X. If, in addition, C is Karoubian

then this functor extends to a functor P̂ → C.

Proof By the assumptions, there is an action of C[X1, . . . , Xn] � C[Sn] on E
⊗n , so we can

define a monoidal functor P → C sending E⊗n to E
⊗n . It uniquely extends to the Karoubi

completions. ��

Remark 3.7 More generally, let C be a C-linear additive monoidal (but not necessary sym-
metric) Karoubian category. We shall say that an object E ∈ C with an endomorphism X is
self-commuting with symmetry s : E ⊗ E → E ⊗ E if there is an additive monoidal functor
P̂ → C sending E to E, σ to s, and x to X .

3.3 Complexes

The constructions from the previous subsection directly extend to the category Kom(C)

of complexes of objects in C and to the homotopy category of complexes Kb(C). We will
frequently use the following fact which is well-known to experts (e. g. [4]). For completeness,
we prove it in the appendix as Theorem A.10.

Theorem 3.8 The bounded homotopy category of a Karoubian category is Karoubian.

The category of complexes Kom(C) is symmetric monoidal if the original category C

was so. To fix the sign conventions, we define the differential on the tensor product by the
equation

dAi ⊗B j
= dAi

⊗ idB j
+ (−1)i idAi

⊗ dB j
. (10)

The braiding � on Kom(C) differs from the braiding σ in C by sign placements.

�Ai ,B j
= (−1)i jσAi ,B j

(11)

This allows one to define arbitrary Schur functors for complexes. One can check that Schur
functors of homotopy equivalent complexes are homotopy equivalent, see e.g. Theorem A.5.
We refer to the appendix for more details on Schur functors for complexes. Also, we record
the following fact which immediately follows from the above discussion.

Proposition 3.9 Let C be a C-linear additive monoidal (but not necessary symmetric)

Karoubian category, assume E is a self-commuting complex in the bounded homotopy cate-

gory Kb(C). Then the Schur functors Sλ(E) are well defined.

The Schur functors interact non-trivially with the shift functor [1], for which we use the
convention A[1] = id[1] ⊗ A. First, note that for two complexes A and B the isomorphism
s : A[1] ⊗ B[1] → (A ⊗ B)[2] sends a ⊗ b �→ (−1)deg(a)−1a ⊗ b. Indeed, in agreement
with (10), the isomorphism

A[1] ⊗ B[1] = id[1] ⊗ A ⊗ id[1] ⊗ B ∼= id[1] ⊗ id[1] ⊗ A ⊗ B = (A ⊗ B)[2]

is given by the braiding c23.
Similarly, one can check that the chain of isomorphisms

A ⊗ B[2] ∼= A[1] ⊗ B[1] ∼= B[1] ⊗ A[1] ∼= B ⊗ A[2]
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differs from the composition of the braiding A ⊗ B ∼= B ⊗ A and the shift [2] by a factor of
−1. Therefore the representations of Sk on (A⊗k)[k] and on (A[1])⊗k differ by sign, and

Sλ(A[1]) = Sλt

(A)[|λ|]. (12)

This shows that the notion of the Schur functor of a complex is sensitive to the parity of
homological degrees of its terms.

Example 3.10 Let A = [E → F
�

], where E is in homological degree 1 and F is in degree 0.

Then:
∧k(A) = [Sk(E) → Sk−1(E) ⊗ F → · · · → E ⊗

∧k−1(F) →
∧k(F)
�����

],

where Sk(E) has homological degree k. However,
∧k(A[−1]) =

∧k[E
�

→ F] = [
∧k(E)
�����

→
∧k−1(E) ⊗ F → · · · → E ⊗ Sk−1(F) → Sk(F)]

where Sk(F) has homological degree −k.

Example 3.11 Consider a two-term complex over the category C[t] of C[t]-modules

A = [C[t]
tk

−→ C[t]
���

].

Since C[t] ⊗C[t] C[t] = C[t], we have S2(C[t]) ∼= C[t] and
∧2(C[t]) ∼= 0. Similarly,

Sk(C[t]) = C[t] and
∧

k(C[t]) = 0 for k ≥ 2. Therefore

Sk(A) = [
∧k(C[t]) → · · · →

∧1(C[t]) ⊗C[t] Sk−1(C[t]) → Sk(C[t])
������

]

∼= [C[t] ⊗C[t] C[t] → C[t]
���

] = A.

We will need the following result:

Theorem 3.12 Let P be the full tensor subcategory of P̂ generated by
∧

i (E). Then the

bounded homotopy categories of P and of P̂ are equivalent.

Proof Since P is a full subcategory of P̂, the homotopy category of P is a full subcategory
of the homotopy category of P̂. Furthermore, Kb(P) is dense (in the sense of [57]) in Kb(P̂)

since every complex in Kb(P̂) is even isomorphic to a direct summand in a complex in Kb(P),
i.e. a complex built out of several copies of E⊗n .

Every Schur functor of E is homotopy equivalent to a complex built out of
∧

i (E). Indeed,
the Schur functor Sλ(E) appears as a unique summand in

⊗

j

∧
λ j (E) and all other summands

are smaller than λ in dominance order, so we can inductively resolve Sλ(E) by the products
of
∧

i (E).
This means that K0(K

b(P)) ∼= K0(K
b(P̂)) and by Theorem A.1 we get Kb(P) � Kb(P̂).

��

3.4 Affine extensions and plethysms

Consider a symmetric monoidal Karoubian C-linear category C. We define its affine extension

C[t] as (the Karoubi completion of) the category with the objects E[t] where E ranges over
objects of C, and the hom spaces have the form

HomC[t](E[t],F[t]) = HomC(E,F) ⊗C C[t].
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In particular, each object E[t] in C[t] has endomorphisms tk for k ≥ 0. The tensor product on
C naturally induces a tensor product in C[t]. We define pullback and pushforward functors

π∗ : C → C[t], E �→ E[t]

π∗ : C[t] → C, E[t] �→ E ⊗ C[t] ∼= ⊕k≥0E

We assume that C is graded, and t has some nontrivial grading, so that the direct sum in
the definition of π∗(E) makes sense in an appropriate completion with respect to this grading
(we allow infinite direct sums which are finite in each grading).

Clearly, π∗ is monoidal, and left adjoint to π∗. These functors naturally extend to functors
between the homotopy categories of complexes of objects in C and C[t], respectively.

Example 3.13 If R is an algebra and C = R − mod , then C[t] � R[t] − mod . The functors
π∗ and π∗ are given by (derived) restriction and induction functors. In particular, if E is a
free R-module then E[t] is a free R[t]-module, and all free R[t]-modules appear this way.
Furthermore, the restriction of E[t] to R is isomorphic (as an R-module) to E ⊗ C[t], and

HomR[t](E[t],F[t]) = HomR(E,F) ⊗ C[t].

We now use affine extensions to define functors which model certain plethystic transfor-
mations. We define a two-term complex over P̂[t]:

K (E, x) := [qπ∗(E)
x−t
−−→ q−1π∗(E)

��������

]

Observe that K (E, x) still has an action of x as an endomorphism of a complex. By
Proposition 3.6, we can define an evaluation functor from P̂ to Kb(P̂[t]) which sends an
object F of P̂ to F(K (E, x)).

Definition 3.14 We define the functor 
 : P̂ → Kb(P̂) as the composite:


 : F �→ F(K (E, x)) �→ π∗(q F(K (E, x))).

Example 3.15 Recall that we have K0(P̂) ∼= �q and the functor 
 induces the following map
on the level of Grothendieck rings:


 : f �→ f [X(q−1 − q)] �→
f [X(q−1 − q)]

q−1 − q
.

Note that the first map is a ring homomorphism (induced by a monoidal functor), but the
second is not.

The “plethysm” functor 
 can be combined with the evaluation in the following way. Let
E be an object in a symmetric monoidal Karoubian category C with an endomorphism X .
As above, this data defines a braided monoidal functor P̂ → C which sends E to E and x to
X , which can be extended to a functor from Kb(P̂) to Kb(C). By the functoriality of affine
extension, we can also construct functors P̂[t] → C[t] and Kb(P̂[t]) → Kb(C[t]). It is easy
to see that for any object F of P̂ these send

K (E, x) �→ K (E, X) = [π∗(E)
X−t
−−→ π∗(E)

����

] in Kb(C[t]),

F(K (E, x)) �→ F(K (E, X) ∈ Kb(C[t]) and 
(F) �→ π∗(q F(K (E, X))) ∈ Kb(C).
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3.5 Examples of plethysms

Let us compute the action of 
 on some objects and morphisms.

Example 3.16 We have


(E) = π∗(q K (E, x)) =

[

q2 E ⊗ C[t]
x−t
−−→ E ⊗ C[t]

�������

]

� E,

where the last homotopy equivalence follows from “infinite Gaussian elimination”.

Definition 3.17 Let U � Cn−1 denote the reflection representation of Sn . Then we define
the Koszul complex

Cuben =
[

qn−1∧n−1(U ) ⊗ E⊗n → · · · → q3−nU ⊗ E⊗n → q1−n E⊗n
���

]

,

where the differential

dCuben : q2i+1−n∧i (U ) ⊗ E⊗n → q2i−1−n∧i−1(U ) ⊗ E⊗n

is induced by the linear map U → End(E⊗n) which sends the i-th basis vector in U to
xi − xi+1.

From the definition it is immediate that Cuben admits an action of Sn , which restricts to the
symmetry-induced action Sn → End(E⊗n) in homological degree zero.

Proposition 3.18 
(E⊗n) = π∗(q K (E, x)⊗n) = π∗(q[q E
x−t
−−→ q−1 E

�

]⊗n) � Cuben

Proof Note that [q E
�

x−t
−−→ q−1 E]⊗n is also a Koszul complex, and as such it can be recovered

from its last differential, which is the C-linear map

S : (q2−n E⊗n)⊕n (x1−t,...,xn−1−t,xn−t)
−−−−−−−−−−−−−→ q−n E⊗n,

by taking the exterior algebra on (E⊗n)⊕n and defining the differential as contraction with
S. We can obtain an isomorphic Koszul complex after a change of basis from:

S′ : (q2−n E⊗n)⊕n (x1−x2,...,xn−1−xn ,xn−t)
−−−−−−−−−−−−−−−→ q−n E⊗n

Considering this as a complex of C[x1, . . . , xn]-modules, we can apply Gaussian elimination
along the component −t of the differential to obtain Cuben . ��

Corollary 3.19 Let Cubeλ
n denote the chain complex obtained as the image of our chosen

Young idempotent eλ of shape λ acting on Cuben . Then we have:


(Sλ(E)) = π∗(qSλ(K (E, x))) ∼= Cubeλ
n

Proof The functor π∗ commutes with the action of C[Sn], so


(Sλ(E)) = π∗(qSλ(K (E, x))) ∼= π∗(q eλK (E, x)⊗n) ∼= eλ(π∗(q K (E, x)⊗n) ∼= Cubeλ
n .

��

We now describe a categorified version of the identity in Lemma 2.5.
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Lemma 3.20 The Sn–invariant part of Cuben can be written as

CubeSn
n

∼= 
(Sn(E)) ∼=

[

qn−1∧n(E) → · · · → q3−nSn−1,1(E) → q1−n Sn(E)
����

]

.

Proof It is well known that the exterior powers of U are irreducible representations
of Sn labeled by the hook Young diagrams. Then we have (

∧
i U ⊗ E⊗n)Sn ∼=

HomSn (
∧

i U , E⊗n) ∼= Sn−i,1i
(E). ��

Similarly, one can prove the following.

Lemma 3.21 The sign-isotypic component of Cuben can be written as

Cubesign
n � 
(

∧n(E)) �

[

qn−1Sn(E) → · · · → q3−nS2,1n−2
(E) → q1−n∧n(E)

�����

]

.

As we will see in Theorem 5.1, the complexes shown in the previous lemmas agrees (up to a
homological shift) with the annular invariants of the (n − 1)-fold positively and negatively
stabilized unknots respectively.

Next, we consider particular evaluations of these complexes.

Example 3.22 Let C = VectC. Consider an object E = C[X ]/X k . Observe that C[t] �

C[t] − mod , and

K (E, X) = [π∗(E)
X−t
−−→ π∗(E)

����

] = [C[X , t]/X k X−t
−−→ C[X , t]/X k

���������

] �C[t] [C[t]
tk

−→ C[t]
���

].

The shown homotopy equivalence holds in the category of complexes of free C[t]-modules.
We can write C[X , t]/X k as a direct sum of k copies of C[t] with the action of X shifting
them by one. Then we get the following complex of C[t]-modules:

C[t] C[t]

C[t] C[t]

· · · · · ·

C[t] C[t]
���

Here the horizontal arrows are given by multiplication by t and the diagonal ones correspond
to X and hence are multiplications by (±1). Gaussian elimination cancels everything except
the top left and bottom right copies of C[t], which are then connected by tk .

Now by Example 3.11 we have

Sn(K (E, X)) � K (E, X), π∗(Sn(K (E, X))) � π∗(K (E, X)) � E.

for all n ≥ 1.

Remark 3.23 The same proof applies to E = C[X ]/p(X) for an arbitrary polynomial p(X).
Indeed,

Sn(K (E, X)) � K (E, X) � C[t]
p(t)
−−→ C[t]

���

,

so

π∗(Sn(K (E, X))) � π∗(K (E, X)) � E.
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Generalizing the previous example, let E be a vector space with the action of a nilpotent
operator X with Jordan blocks of size k1, . . . , kn . Then we can write E = ⊕i C[X ]/X ki , and

K (E, X) ∼= ⊕i [C[t]
tki

−→ C[t]
���

]. Therefore

Sn(K (E, X)) ∼=
⊕

∑

ni =n

⊗

Sni [C[t]
tki

−→ C[t]
���

].

The effect of π∗ on the terms in the sum can be computed using the previous example.

Example 3.24 Suppose that E is a vector space with an endomorphism X which has two Jordan

blocks of sizes k1 and k2. Then Sn(K (E, X)) has (n + 1) direct summands: Sn[C[t]
tk1
−→

C[t]
���

] � C[t]/tk1 , Sn[C[t]
tk2
−→ C[t]

���

] � C[t]/tk2 and (n − 1) more summands of the form

Sn1 [C[t]
tk1
−→ C[t]

���

] ⊗ Sn2 [C[t]
tk2
−→ C[t]

���

] � [C[t]
tk1
−→ C[t]

���

] ⊗ [C[t]
tk2
−→ C[t]

���

],

n1 + n2 = n, n1, n2 > 0.

After applying the forgetful functor π∗, the latter complexes are isomorphic to their homology
which have dimension min(k1, k2) both in homological degrees one and zero. Therefore

π∗Sn K (E, X) � C[t]/tk1 ⊕ C[t]/tk2 ⊕ (n − 1)C[t]/tmin(k1,k2) ⊕ (n − 1)C[t]/tmin(k1,k2)[1].

4 Khovanov–Rozansky theory

4.1 Webs

The Reshetikhin–Turaev invariants of knots, links and tangles are defined as certain inter-
twiners of representations of quantum groups. In type A, these intertwiners and the relations
satisfied by them can be described by a graphical calculus of webs, see [13, 40]. The
basic building blocks in the cases of slN and glN are the fundamental representations
∧a

q CN
q and their identity endomorphisms, as well as two types of natural intertwiners

∧a
q CN

q ⊗
∧b

q CN
q →

∧a+b
q CN

q and
∧a+b

q CN
q →

∧a
q CN

q ⊗
∧b

q CN
q which are called

merge and split respectively:

a

,

a+b

a b

,
a+b

a b

Other intertwiners can be built by taking tensor products and composites of identities, merges
and splits, and such composites quickly become linearly dependent. Analogously, com-
plicated webs can be built by gluing together the shown basic pieces, which then satisfy
corresponding linear relations. We illustrate a few relations here and refer to [13] for a com-
plete list of web relations for slN and to [58] for the case of glN .

a

a−b b =

[
a

b

]

a

,

a

a+b b =

[
N − a

b

]

a
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a b c = a b c ,

k

r

s

l

=
∑

t

[
k − l + r − s

t

]

k

s − t

r − t

l

(13)

Definition 4.1 Let NWeb denote the additive, C(q)-linear category with:

• Objects: finite sequences a := (a1, . . . , am) with ai ∈ {1, . . . , N }.
• Morphisms: HomWeb(a, b) is the C(q)-module of webs properly embedded in the hor-

izontal strip R × [0, 1], with upward pointing boundary points with labels a in R × {0}

and b in R×{1}, considered modulo planar isotopy and the glN web relations from [58].
• Composition: the C(q)-bilinear extension of stacking webs.

Theorem 4.2 NWeb is equivalent to the full subcategory of representations of Uq(glN )whose

objects are the tensor products of exterior power representations
∧a

q CN
q for 0 ≤ a ≤ N.

The equivalence sends the object a := (a1, . . . , am) to
∧a1

q CN
q ⊗ · · · ⊗

∧am
q CN

q .

Proof This is a glN variant of the main result of [13], see also [48, 58]. ��

Now let S be an oriented surface of finite type, possibly with marked points on the boundary
with a labeling and a choice of inward or outward orientation. We denote by NWeb(S) the
Z[q±1]-module spanned by properly embedded webs in S, with boundary matching the data
on the marked points, modulo isotopy rel boundary and web relations supported in discs
D2 ⊂ S.

NWeb(S) is a version of the glN skein module of the surface S. Oriented, framed links
embedded in S × [0, 1] can be evaluated in NWeb(S) by projecting to S (enforcing the
blackboard framing) and resolving all crossings into alternating sums of webs according to
the following rule.

k l

=
∑

s−r=k−l

(−q)s−k

k

r

s

l

(14)

Negative crossings are resolved using an analogous formula with q inverted.
The class in NWeb(S) represented by an embedded link is invariant under regular isotopy

in S × [0, 1]. Framing changes and fork twists act by powers of q , but all fork slides hold on
the nose:

a

= (−1)aq−a(N−a+1)

a

k l

= qkl

k l

,

k l

m
=

k l

m
(15)

4.2 Foams

We still let S denote an oriented surface of finite type. The Z[q±1]-module NWeb(S) admits
a graded, additive, C-linear categorification NFoam(S) that is closely related to the canopolis
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NFoam of glN foams defined in [15] using the closed foam evaluation formula of Robert–
Wagner [52]. Here we only describe the essential features of NFoam(S) and comment on
the necessary variations relative to NFoam.

Definition 4.3 NFoam(S) is the additive closure of the graded, additive, C-linear category
determined by the following data:

• The objects are formal q-grading shifts of webs qk W embedded in S, without allowing
any isotopies.

• The morphisms are C-linear combinations of degree-preserving foams F : ql V → qk W

embedded in S × [0, 1], modulo isotopy relative to the boundary and modulo additional
local relations supported in embedded 3-balls B3 ⊂ S × [0, 1].

• The composition is given by the bilinear extension of the natural gluing of foams.

The foams making up the morphisms are decorated 2-dimensional CW-complexes, which
are carefully defined in [15, Definition 2.7]. They are graded and their facets are labeled
and may carry decorations by symmetric polynomials as explained in and just before [15,
Definition 2.11].2 The first elementary symmetric polynomial on a 1-labeled facet is called a
dot. The local foam relations in embedded 3-balls B3 ⊂ S ×[0, 1] are precisely the relations
that hold in the canopolis Foam as defined in [15, Definition 2.14].

A direct consequence of the local foam relations in NFoam(S) is that we have explicit
isomorphisms between webs, which induce the web relations (13) after passing to the
Grothendieck group.

Remark 4.4 The use of foams in the categorification of link and tangle invariants has a long
history, starting with Bar–Natan’s use of linearized cobordism categories in his description of
Khovanov homology [5]. Khovanov’s categorification of the sl3 link polynomial [31] is the
first one that uses foams with singularities. The matrix factorization categories underlying
Khovanov–Rozansky glN link homologies were given a topological interpretation via foams
in [32], which was used in a new construction of glN link homologies by Mackaay–Stošić–Vaz
[36]. Blanchet demonstrated that gl2 foams support a version of Khovanov homology that is
functorial under link cobordisms [11]. Better control over glN foam categories was gained by
Lauda–Queffelec–Rose through their connections to categorified quantum groups [33, 45].
Finally, Robert–Wagner [52] found a mathematically rigorous and entirely combinatorial
construction of glN foams, which is the basis for the foam categories used here and in the
proof of the functoriality of Khovanov–Rozansky homologies under cobordisms in [15].

4.3 Categorical invariants for links in a thickened surface

It is now a routine task to define a categorical invariant of links (or tangles) in S ×[0, 1] (with
boundary in ∂(S) × {1/2}) that takes values in Kb(NFoam(S)), the homotopy category
of chain complexes over NFoam(S). Indeed, for a generic tangle embedding, the natural
projection S × [0, 1] → S gives a tangle diagram. The alternating sum in the crossing
formula (14) gets lifted to a chain complex and if several crossings occur, the alternating
multi-sums become tensor product chain complexes. In fact, there are two natural conventions

2 Note, however, that we use the opposite convention to denote grading shifts. E.g. a foam F of degree 2 maps
from a shifted web qk W to another shifted web qk−2V .
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for the chain complexes that can be associated to a positive3 uncolored crossing:

� � = q
2

→

�����

(16)

� �fr =
2

�����

→ q−1 (17)

In both cases the differential is given by an unzip foam. For more details about these
Khovanov–Rozansky constructions using foams, see e.g. [15, Section 3.1] and [49, Section
4].

Definition 4.5 Let TD be a tangle diagram in S, then we denote the chain complexes con-
structed based on the local models (16) and (17) (and their colored versions) by �TD� and
�TD�fr respectively. We shall consider these complexes as objects in Kb(NFoam(S)).

The chain complex �TD� is invariant under all Reidemeister moves up to chain homotopy
equivalence, see e.g. [15, Theorem 3.5]. The chain complex �TD�fr is invariant under framed
Reidemeister moves up to chain homotopy equivalence. While we favour the framed version
�TD�fr in this paper, we also introduce �TD� since it is known to admit a functorial assignment
of chain maps to tangle cobordisms as we describe next.

Definition 4.6 We denote by STan the category with objects given by tangles that are properly
embedded in S × [0, 1] and with morphisms given by isotopy classes of tangle cobordisms
embedded in S × [0, 1]2. For surfaces without specified boundary points, we also denote
STan by SLink.

Theorem 4.7 ([15, Theorem 4.5], [49, Theorem 4.4]) The Khovanov–Rozansky construction

extends to a functor STan → Kb(NFoam(S)), under which the image of a tangle T with

diagram TD is given by �TD�.

Since �TD�fr differs from �TD� only in grading shifts in tensor factors, this implies that
�−�fr can also be equipped with functorial cobordism maps. However, we currently do not
know whether there is a unique (or at least a distinguished) way of lifting Theorem 4.7 to the
framed setting. Another open question is the following.

Conjecture 4.8 [49, Conjecture 4.8] The Khovanov–Rozansky functor extends to a func-

tor from the category of tangled webs and framed foams in four-dimensional space to

Kb(NFoam(S)).

4.4 Annular links, webs, and foams

In this section we consider the case S = A := S1 × [0, 1] without marked points on the
boundary, and fix an orientation of the core circle of A.

We define a monoidal structure on ALink as follows. Given two annular links L1 and L2 in
A×[0, 1] = S1 ×[0, 1]×[0, 1], we relabel the copy in which L2 lives as S1 ×[1, 2]×[0, 1].
The tensor product L1�L2 is defined by taking the disjoint union L1�L2 in S1×[0, 2]×[0, 1]

and shrinking the second coordinate back to S1 × [0, 1] × [0, 1]. The definition of � on
morphisms is analogous. It is a simple exercise to check that this defines a monoidal structure

3 Sometimes the shown complexes are associated to negative crossings, but we strongly prefer the convention
here. For this convention, the triply-graded homology of positive torus knots satisfies a parity condition.
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with unit given by the empty link and with unitors and associators given by isotopies. In fact,
the existence of “vertical” and “horizontal” isotopies give rise to a (non-symmetric) braiding
on ALink.

We say an annular link is consistently oriented if it is given as the closure of a braid
with orientation matching the orientation of the core circle. We then denote by ALink+ the
subcategory of ALink given by consistently oriented links and cobordisms whose time-slices
are consistently oriented.

It is clear that two braids closures are isotopic in the annulus (and the corresponding
objects in ALink+ are isomorphic) if and only if the braids are conjugate.

For consistently oriented annular links, there exists a universal categorified link invariant
from which all annular and planar Khovanov–Rozansky homologies can be recovered. In
order to describe its target category, we say a web W in A is consistently oriented if the
tangent vectors project positively to the core circle.

The subcategory NAFoam+ of NAFoam is cut out by requiring webs to be consistently
oriented and foams to have generic cross-sections that are isotopic to such consistently
oriented webs.

We denote by AFoam+ the category obtained from NAFoam+ by stabilizing N → ∞.
In other words, AFoam+ is the category of consistently oriented annular webs and foams,
without restriction on the labeling set and with a free action of the dot on 1-labeled facets.
The component of AFoam+ of winding degree n can be identified with the horizontal trace
(see Sect. 7.1) of the category of singular Soergel bimodules of type An−1.

Theorem 4.9 [46] The annular Khovanov–Rozansky homologies factor through the functor

�−�fr : ALink+ → Kb(AFoam+).

Furthermore, the annular disjoint union yields a natural monoidal structure on AFoam+

and its homotopy category, which is respected by the Khovanov–Rozansky functor.

Proposition 4.10 The annular Khovanov–Rozansky functor ALink+ → Kb(AFoam+) is

monoidal.

4.5 Reduction to essential circles

Definition 4.11 We define AFoam+
S1

to be the full subcategory of AFoam+ whose objects
are direct sums of grading shifts of webs that are collections of essential concentric circles
in the annulus.

The notation AFoam+
S1

is to suggest that the objects in this category are S1-equivariant,
i.e. that they are invariant under rotation along the core of the annulus. In fact, the same is
true for morphisms.

Theorem 4.12 [47, Theorem 3.2] The morphism spaces in AFoam+
S1

are generated by S1-

equivariant, decorated foams. In particular, they are non-negatively graded.

Queffelec–Rose conjecture that the inclusion AFoam+
S1

↪→ AFoam+ is an equivalence
of categories [46, Conjecture 5.4]. They prove a slightly weaker result.

Proposition 4.13 [46, Proposition 5.1] The inclusion AFoam+
S1

↪→ AFoam+ induces an

equivalence of categories Kb(AFoam+) � Kb(AFoam+
S1

).

The main step in the proof of this result is that each annular web, considered as a complex
concentrated in homological degree zero, is isomorphic in Kb(AFoam+) to a chain complex
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built out of concentric circle webs. In fact, this is true more generally, see Proposition 6.6.
For now, we take note of the implication that the categorical invariants of braid closures can
be assumed to take values in Kb(AFoam+

S1
). In the next session we will obtain an alternative

description of this category.

4.6 Decorated webs

We can now take quotients of the webs and foams in AFoam+
S1

by their free S1-symmetry.
Under this dimensional reduction, collections of labeled concentric circles are mapped to
finite sequences of labeled points on a line R. Rotationally symmetric foams are mapped
to isotopy classes of webs in the strip R × [0, 1], whose edges inherit the decorations by
symmetric functions of the foam facets.

Definition 4.14 Let DecWeb denote the non-negatively graded, additive, C-linear category
of decorated webs in R × [0, 1] that is isomorphic to AFoam+

S1
via the functor

DecWeb
−×S1

−−−→ AFoam+
S1

that takes boundary sequences to collections of concentric circles and decorated webs to
decorated rotationally symmetric foams.

Lemma 4.15 The degree zero part of DecWeb satisfies the first, third and fourth web relation

from (13) and isotopies relative to the boundary which preserve the upward-directedness of

webs.

Proof See [47, Section 4.5]. ��

Lemma 4.16 The following relations hold in DecWeb.

er

a+b

a b

=
∑

s+t=r
etes

a+b

a b

(18)

•

2

11

−
•

2

11

= •

11

− •

11

=
•

2

11

−

•

2

11

(19)

Lemma 4.17 DecWeb admits a symmetric monoidal structure.

Proof The tensor product is given by placing webs side by side. The symmetry is an isomor-
phism of degree zero and given on objects of the form (k, l) by the q = 1 specialization of
(14), with a

���

sign
���������

correction:

k l

= (−1)kl

�����

∑

s−r=k−l

(−1)s−k

k

r

s

l
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The symmetry on other pairs of objects is constructed as composition of these basic symme-
tries. For checking the naturality of the symmetry, note that vertices still slide through other
strands as in (15) despite the sign correction. It remains to verify that decorations migrate
through such crossings. In the case k = l = 1, this follows directly from (19). In the more
general case, one first blows up both strands into blisters of parallel 1-labeled strands via
relation (13). These blisters fork-slide underneath the crossing, decorations migrate onto the
1-labeled strands by (18) and then through all remaining 1-1-crossings. Then one reverses
the process on the other side. ��

In Theorem 4.19, we will get a more intrinsic characterisation of DecWeb. To prove
this theorem, we take a technical detour through modules for Schur quotients of current
algebras. Let U̇(glm[t]) denote Lusztig’s idempotent form of the universal enveloping algebra
of the current algebra glm[t], which can be considered as a category with objects given
by glm-weights [a1, . . . , am]. The superscript ≥ 0 indicates that we have taken the Schur

quotient by morphisms which factor through an object with negative entries. For every
m′ ≥ m, there exists an embedding ι : U̇(glm[t])≥0 → U̇(glm′ [t])≥0 given on objects by
[a1, . . . , am] �→ [a1, . . . , am, 0 . . . , 0].

Proposition 4.18 DecWeb is isomorphic to the direct limit U of U̇(glm[t])≥0 for m → ∞

with transition functors ι.

Proof Queffelec–Rose–Sartori [47, Diagram (4.6)], building on work of Beliakova–Habiro–
Lauda-Webster [7], proved that there is a system of functors vTr(
∞) : U̇(glm[t])≥0 →

DecWeb compatible with the inclusions ι, which become eventually full and eventually faith-

ful. Eventual fullness means that for any morphism F in DecWeb we have F = vTr(
∞)( f )

for a morphism f in U̇(glm[t])≥0 in a sufficiently large m ≥ 0. Eventual faithfulness means
that for morphisms with coinciding images vTr(
∞)( f ) = vTr(
∞)(g), there exists an
m ≥ 0 such that ι( f ) = ι(g) in U̇(glm[t])≥0. This implies that the system of functors
vTr(
∞) defines an isomorphism as claimed. ��

We denote this isomorphism from U to DecWeb again by vTr(
∞).

Theorem 4.19 DecWeb is isomorphic to a full subcategory of the symmetric monoidal

Karoubian C-linear category P̂, which is freely generated by a single object and an endo-

morphism of degree 2. More specifically, it is isomorphic to the full subcategory P whose

objects are tensor products of antisymmetric Schur functors in the generating object.

The following proof is inspired by Cautis–Kamnitzer–Morrison’s use of skew Howe dual-
ity (a generalisation of Schur–Weyl duality) to describe diagrammatic categories in [13]. For
an instance of Schur–Weyl duality for current algebras, see [22, Section 6].

Proof There is an obvious full, essentially surjective functor 	 from the said full subcategory
P of P̂ to DecWeb, but it remains to show that it is faithful. This will follow from the fact that
there is an isomorphism α : P → U such that 	 = vTr(
∞) ◦ α. It suffices to prove this for
P, the free symmetric monoidal category on one object E and one endomorphism x (without
insisting on any partial idempotent-completeness), and U

′, the direct limit of idempotent
truncations of the form 1[1,...,1,0,...0]U̇(glm[t])≥01[1,...,1,0,...,0].

We define a functor α : P → U
′ by sending:

• E⊗m to 1[1,...,1] in U̇(glm[t])≥0,
• an x on the i-th component of E⊗m to Em · · · Ei Fi [t]Fi+1 · · · Fm1[1,...,1,0] in U̇(glm+1[t])

≥0,
• the transposition σi on E⊗m to 1[1,...,1] − Ei Fi 1[1,...,1] in U̇(glm[t])≥0.
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and then onward to U
′ via the component maps. With this definition of α, we have 	 =

vTr(
∞) ◦ α.
A standard argument shows that α is surjective. Namely, a spanning set for morphism

spaces in U
′ is given by the images of dotted permutations

⊔

m≥0{α(σ x
n1
1 · · · x

nm
m )|σ ∈

Sm, ni ≥ 0}. It suffices to show that these remain linear independent. To this end, consider
U(glm[t]) as an algebra and the U(glm[t])-module

∧
a(Cm ⊗C[X ]), which decomposes into

glm-weight spaces
∧

a1(C[X ])⊗· · ·⊗
∧

am (C[X ]). For the weight [1, . . . , 1] we simply get
the weight space C[X1, . . . , Xm]. Since only non-negative weights arise, this descends to
a U(glm[t])≥0-module. It is straightforward to check that pre-composing with α, we obtain
the natural action of P where permutations act on indices and x on the i-th strand acts by
multiplication by X i . It is then clear that the α-images of dotted permutations act by linearly
independent operators, and are thus linearly independent. ��

Corollary 4.20 There is an equivalence of graded C-linear tensor categories Kar(AFoam+) �

P̂.

Proof We already know that there exists a fully faithful functor P̂ → Kar(DecWeb) →

Kar(AFoam+) and we shall show that it is essentially surjective. To this end, let W be an
annular web. Proposition 4.13 allows us to express W as a chain complex, whose chain
groups are collections of concentric circles. After proceeding to the Karoubi envelope, we
can decompose these further into Schur functors of a single circle. When considered as a
chain complex concentrated in homological degree zero, W is homotopy equivalent to an
object C(W ) in Kb(P̂). We may assume this object to be represented by a minimal chain
complex. Since P̂ is non-negatively graded and semi-simple in degree zero, the homotopy
equivalence between W and C(W ) is an isomorphism of chain complexes, and thus C(W )

is concentrated in degree zero. This shows that every object in AFoam+ is isomorphic to
an object in P̂, and since the latter is idempotent complete by definition, the same holds for
every object in Kar(AFoam+). This verifies essential surjectivity and finishes the proof. ��

Remark 4.21 It might be helpful to give a more direct explanation why an arbitrary annular
web is isomorphic to an object in P̂, and not just in the homotopy category. Indeed, we can
follow the annular simplification algorithm from [46] and use bubble removal and square
switch relations to reduce a web to a collection of essential circles. At each step of the
algorithm, one either replaces a web by an isomorphic one, or presents it as a direct sum of
simpler webs, or presents it as a direct summand in a simpler web. Since P̂ is Karoubian, all
these steps show that a web is isomorphic to an object in P̂, if the simpler webs are.

Note that in [46] Queffelec and Rose used a slightly different algorithm where, if a web
is presented as a direct summand in a simpler web, it is expressed as a cone of the inclusion
of complimentary summands. This way [46] avoids Karoubi completion, but steps into the
homotopy category. By Theorem 3.12 the two algorithms actually agree in the homotopy
category of the Karoubi completion P̂.

4.7 Braiding for annular webs

The category of annular links and cobordisms between them has a natural braided monoidal
structure. The annular Khovanov–Rozansky functor from this category to the homotopy
category of complexes of annular webs and foams preserves the monoidal structure, but a
priori it is not clear whether the latter has any braiding.

Proposition 4.22 Kb(AFoam+) has a symmetric braiding.
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Proof By Lemma 4.17, DecWeb and thus AFoam+
S1

have a symmetric braiding. This immedi-

ately extends to Kb(AFoam+
S1

). Then we use the equivalence of Proposition 4.13 to transport

this symmetric braiding to Kb(AFoam+). ��

Note that every object W in AFoam+ and thus Kb(AFoam+) has a grading [W ] ∈ N by
weighted winding number around the annulus. Besides the braiding σV ,W : V ⊗W → W ⊗V

on Kb(AFoam+) that was obtained in Proposition 4.22, we will also consider the sign-twisted

braiding σ , which is defined by σ V ,W = (−1)[V ][W ]σV ,W . Transported back to DecWeb,
this braiding is described by the q = 1 specialization of (14), i.e. the formula shown in
Lemma 4.17 without

����

sign
��������

correction.
For the following, let ALink+

S1
denote the full subcategory of ALink+ with objects being

collections of concentric colored circles.

Theorem 4.23 The restricted annular Khovanov–Rozansky functor �−� : ALink+
S1

→

Kb(AFoam+) is braided with respect to the standard braiding on Kb(AFoam+). The framed

version �−�fr is braided with respect to the sign-twisted braiding.

Proof The braiding on ALink+ is given by braiding isotopies, i.e. certain cobordisms which
braid annular links radially past each other. Under the Khovanov–Rozansky functor �−�,
such maps induce invertible morphisms in Kb(AFoam+), and we shall check that these
morphisms agree with the symmetric braiding morphisms in Kb(AFoam+) that were defined
in Proposition 4.22. (The case of �−�fr is analogous and will be omitted.) It suffices to compare
these braiding morphisms on pairs of monoidal generators, i.e. two colored circles.

For two uncolored circles, the computation of the maps induced by the braiding cobordism
and its inverse is simple—both involve two Reidemeister II moves—and they agree with
the braiding from Proposition 4.22. A version of this argument (without foams) appears in
Grigsby–Licata–Wehrli [25]. We show the details here for convenience. The braiding of two
uncolored circles can be described as a movie of annular link diagrams as follows:

RI I
−−→

1 2 isotopy
−−−−→

2 1 RI I
−−→ (20)

This is a composite of a Reidemeister II move, an isotopy of the positive crossing around
the annulus, and an inverse Reidemeister II move. In order to compute the composite chain
map, we will recall the Reidemeister II chain maps. Here and in the following, we borrow
notation from Soergel bimodules for the webs that appear:

R := , B :=
2

Consider the cube of resolutions chain complex for a Reidemeister II tangle:

=�
1 2

�fr
q−1 R ⊗ B

R ⊗ R

B ⊗ B

q B ⊗ R

−zip

unzip

unzip

zip

Here, the Koszul signs in the tensor product depend on an (arbitrary) ordering of the crossings
of the tangle, which is shown on the left. The Reidemeister II chain maps, which connect the
complex R ⊗ R of the trivial tangle to this complex (and vice versa), are given by identities
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on R ⊗ R, as well as the negative of the following more complicated composite foam (and
its reflection in a horizontal plane):

(21)

Similarly, the other variant of the Reidemeister II move relates the invariant of the tangle

=�
2 1

�fr
q−1 B ⊗ R

R ⊗ R

B ⊗ B

q R ⊗ B

−zip

unzip

unzip

zip

to the trivial tangle diagram. The corresponding chain maps are again assembled from the
identities on R ⊗ R, the negative of the foam in (21), or its reflection respectively. Here we
have chosen an ordering of the crossings which is compatible with previously chosen ordering
under the isotopy in (20). The composite of the chain maps in (20) thus is a difference of
two terms, an identity foam over the two concentric circles, as well as a foam built as a
composition of (21), the foam realising the isotopy of one copy of B around the annulus, and
a reflected version of (21):

(22)

This agrees with the braiding on AFoam+ defined in Proposition 4.22.
An analogous argument applies in the case of two colored circles—it uses an explicit

description of the chain maps associated to colored Reidemeister II moves—and shows that
the braiding of such is given by the rotation foam generated by the linear combination of
webs shown in the proof of Lemma 4.17. ��

In fact, we expect that the annular Khovanov–Rozansky functors are braided on the entire
annular link category, but we do not know how to prove this without assuming a stronger
functoriality property, which has not been established yet.

Conjecture 4.24 The annular Khovanov–Rozansky functors ALink+ → Kb(AFoam+) are

braided.

For later use, we also record the following observation, where we write σ for the linear
combination of foams shown in (22).

Lemma 4.25 In the Karoubi envelope of AFoam+ the image of the anti-symmetrizer in Q[Sk]

under �−� is isomorphic to the k-colored essential circle.

Proof For k = 2, the anti-symmetrizer is (id − σ)/2. Note that this is exactly 1/2 times
the foam shown on the left-hand side of (22). Cutting this foam in half by a horizontal
plane produces a merge foam M and a splitter foam S. We have (id − σ)/2 = S ◦ M/2
and M/2 ◦ S = id2. This implies that S and M/2 represent the desired mutually inverse
isomorphisms in Kar(AFoam+).
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The case k > 2 follows, since the anti-symmetrizers in C[Sk] and also the projections
onto k-colored essential circles in AFoam+ can be constructed from the k = 2 cases in the
same way. ��

Everything in this subsection works in the finite-rank case, i.e. for annular glN foam
categories NAFoam+. In this setting, essential circles of label N + 1 are isomorphic to the
zero object, which implies that the uncolored essential circle is of rank (at most) N in the
sense of Definition 3.4.

Remark 4.26 An analogue of Lemma 4.25 shows that the framed Khovanov–Rozansky func-
tors �−�fr send the symmetrizer in C[Sk] to the k-colored unknot. This is at odds with our
interpretation of that colored circle as corresponding to the exterior power

∧
k of the uncol-

ored circle. The origin for this discrepancy is the relative homological shift between the two
conventions for crossings (16) and (17), which translates into a sign-twist on the braiding.

4.8 Evaluation

Here we recall the evaluation of annular homology developed by Queffelec and Rose. Let L

be an annular link, then Khovanov–Rozansky functor sends it to a complex of webs, and by
Corollary 4.20 we can replace it by a complex of Schur functors of E in Kb(P̂). The object E

appears as the invariant of the essential planar unknot in the annulus and the endomorphism X

encodes information about the C[X ]-actions in link homologies that are typically associated
with the choice of a base point on the link. Proposition 2.3 now immediately implies the
following:

Theorem 4.27 Let C be an arbitrary additive symmetric monoidal category, and let Kb(C) be

the corresponding homotopy category. Suppose that E is an object of C with an endomorphism

X. Then there is a unique functor

AKhR(E, X) : ALink+ → Kb(C)

which factors through the Khovanov–Rozansky functor, sends the essential planar unknot to

E, the base point action to X, and the braiding of two unknots to the symmetry on E ⊗ E.

The results of [46] can be then rephrased in the following way:

Theorem 4.28 [46] If C = grZVect, the category of Z-graded vector spaces (with the swap

symmetry), E = C[X ]/X N , and X is the endomorphism given by multiplication by x, then the

functor AKhR(E, X) agrees with the glN Khovanov–Rozansky homology. If E = C[X ]/P(X)

for a degree N monic polynomial, then AKhR(E, X) agrees with the deformed Khovanov–

Rozansky homology studied in [53, 62]. If C = grZ Rep(U (glN )) and E = V = CN is

the vector representation of U (glN ), then the functor AKhR(E, 0) agrees with the annular

Khovanov–Rozansky homology.

5 Coxeter braids, categorified

5.1 Positive Coxeter braids

The purpose of this section is to prove the following theorem.
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Xn,l := qn−1+l

�

�

�

�

�

�

�

�

�

�

�

�

�

σn−1 · · · σ1

l

. . . l + 1

×

�

�

�

�

�

�

�

�

�

�

�

�

�

fr

[n − 1]

Fig. 2 The complex Xn,l

Theorem 5.1 Let now C−
n and C+

n denote the annular complexes of the (n−1)-fold negatively

and positively stabilized unknots. Then we have:

C−
n � [qn−1Sn(E) → · · · → q3−n S2,1n−2

(E) → q1−n∧n(E)
�����

] ∼= Cubesign
n

C+
n [n − 1] � [qn−1∧n(E) → · · · → q3−n Sn−1,1(E) → q1−n Sn(E)

����

] ∼= CubeSn
n

Lemma 5.2 Upon evaluation as in Theorem 4.28, these complexes compute the planar glN

Khovanov–Rozansky homologies of stabilized unknots.

Proof This follows from Example 3.22. ��

To start the proof of Theorem 5.1, note that it suffices to prove one of the homotopy
equivalences. The other one follows by symmetry. We focus on the positive stabilization and
consider the shifted complex C

+
n := qn−1C+

n [n − 1], which has its terminal chain group in
homological and q-degree zero. We also define annular complexes Xn,l as in Fig. 2. Clearly,

Xn,0 = C
+
n .

Lemma 5.3 For l ≥ 0 and n > 1 we have

X1,l
∼= [l + 1]q

∧l+1(E), Xn,l � [Xn−1,l+1 → C
+
n−1 ⊗

∧l+1(E)
�������������

]

where [l + 1]q = (1 + q2 + · · · + q2l) is an asymmetric quantum integer.

Proof The isomorphism for X1,l is due to a bigon removal. To check the homotopy equiva-
lence for Xn,l , we resolve the right-most crossing σn−1 and simplify as follows.
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

qn−1+l �

σn−2 · · · σ1

l
. . .

l + 1

×

�fr

����������������������

→ qn−2+l�

σn−2 · · · σ1

l
. . .

l + 1

×

�fr

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[n − 1]
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∼=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

qn−1+l�

σn−2 · · · σ1

l
. . .

l + 1

×

�fr[n − 2] → [l + 1]q C
+
n−1 ⊗

∧l+1(E)
������������������

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∼=

[

Xn−1,l+1 ⊕ q2[l]q C
+
n−1 ⊗

∧l+1(E) → [l + 1]q C
+
n−1 ⊗

∧l+1(E)
������������������

]

In the second step we have used the bigon relation, and in the last step the square-switch
relation. The degree zero components of the differential between the copies of C

+
n−1 ⊗

∧
l+1(E) are identities up to non-zero scalars [62, Direct Sum Decomposition (IV)], and

after Gaussian elimination, we obtain the claimed form. ��

Corollary 5.4 There is a natural map a : C
+
n−1 ⊗ E → Xn,0 = C

+
n .

Corollary 5.5 One can write

C
+
n �

[

[n]q

∧n(E) ⊕

n−1
⊕

i=1

C
+
i ⊗

∧n−i (E), D

]

, (23)

where [n]q

∧
n(E) :=

∧
n(E)⊕ q2∧n(E)⊕· · ·⊕ q2n−2∧n(E). The differential D consists

of the internal differential in C
+
i , degree zero maps C

+
k−1 ⊗

∧
n−k+1(E) → C

+
k ⊗

∧
n−k(E)

obtained as compositions

C
+
k−1 ⊗

∧n−k+1(E) → C
+
k−1 ⊗ E ⊗

∧n−k(E)
a
−→ C

+
k ⊗

∧n−k(E),

and some differentials out of [n]q

∧
n(E), as well as possibly some higher differentials.

Proof We prove by induction the existence of a more general expression

Xn,l �

[

[n + l]q

∧n+l(E) ⊕

n−1
⊕

i=1

C
+
i ⊗

∧n+l−i (E), D

]

,

where the differentials are described as above. Indeed, for n = 1 we get X1,l
∼= [l +

1]q

∧
l+1(E), and for n > 1 we use the induction hypothesis and

Xn,l � [Xn−1,l+1 → C
+
n−1 ⊗

∧l+1(E)
�������������

].

Now, for l = 0 we get Xn,0 = C
+
n . ��

Theorem 5.6 We have

C
+
n � [q2n−2∧n(E) → · · · → q2 Sn−1,1(E) → Sn(E)

����

]. (24)

Note that Theorem 5.1 follows from Theorem 5.6 by grading shifts and symmetry. We
will prove Theorem 5.6 by induction in n using the recursive description (23). To illustrate
this, we first consider the examples n = 2, 3.
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Example 5.7 For n = 2 the complex (23) has the form C
+
2

∼= [(1 + q2)
∧2(E) → E ⊗ E

�����

],

and after cancellation we get C
+
2 � q2∧2(E) → S2(E)

����

.

Example 5.8 For n = 3 the complex (23) has the form

C
+
3 �

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

E ⊗
∧2(E) S2(E) ⊗ E

��������

(1 + q2 + q4)
∧3(E) q2∧2(E) ⊗ E

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

The degree zero differentials are organized in three subquotient complexes:

[
∧3(E) → E ⊗

∧2(E) → S2(E) ⊗ E
��������

] � S3(E)
����

,

[q2∧3(E) → q2∧2(E) ⊗ E] � q2S2,1(E),

and q4∧3(E). Here, in cancelling, we assume that the shown differentials are non-zero. Then
we get

C
+
3 � [q4∧3(E) → q2S2,1(E) → S3(E)].

The case where some of the shown degree zero differentials are zero can be excluded, because
then, in specialization E = C[x]/x N , the homology would be larger than expected, contra-
dicting Lemma 5.2.

Proof of Theorem 5.6 Assume that (24) holds for all k < n. The terms in (23) in homological
degree k are assembled from the terms in C

+
n− j ⊗

∧
j (E) in homological degree k +1− j . By

the induction hypothesis, the latter is homotopic to q2k+2−2 j Sn−k−1,1k+1− j
(E)⊗

∧
j (E). The

differential decreases the homological degree k by one, and acts between C
+
n− j ⊗

∧
j (E) →

C
+
n− j ′ ⊗

∧
j ′(E) with j ′ ≤ j . For j ′ < j −1 we get k − j ′ > k +1− j , and such a differential

can be ruled out as it would have negative q-degree. Therefore, in this presentation, the only
surviving differentials are internal for C

+
n− j (that is, j ′ = j) of q-degree two, and between

the neighbors j ′ = j − 1, of q-degree zero. The example for n = 3 above illustrates this
point.

This means that we have explicitly identified all differentials in (23) except for the ones
connecting the leftmost copies of

∧
n(E) to C

+
n− j ⊗

∧
j (E).

To simplify this complex, we first consider the degree zero differentials. In q-degree 2t we
get the following complex (ignoring the leftmost term), terminating in homological degree
t :

∧t+1(E) ⊗
∧n−t−1(E) → S2,1t

⊗
∧n−t−2(E) → · · · → Sn−1−t,1t

⊗ E

The differentials are induced by compositions

Sm,1t

(E) ⊗
∧n−t−m(E) → Sm(E) ⊗

∧t (E) ⊗
∧n−t−m(E) →

→ Sm−1(E) ⊗
∧t (E) ⊗

∧n−t−m+1(E) → Sm−1,1t

(E) ⊗
∧n−t−m+1(E),

and, in particular, they are non-trivial. One can check that these cancel almost everything,
except for a copy of q2t

∧
n(E) in homological degree (n − 2) and q2tSn−t,1t

(E) in homo-
logical degree t .
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We claim that the leftmost term [n]q

∧
n(E) cancels all q2 j

∧
n(E) except for q2n−2∧n(E).

Moreover, the remaining differentials are all non-zero and, thus, determined up to scalars.
Both claims hold because otherwise, in specialization E = C[X ]/X N , the homology would
be larger than expected, contradicting Lemma 5.2. ��

Remark 5.9 The annular sl2 homology of the stabilized unknot was computed by Grigsby,
Licata and Wehrli [25]. It agrees with our computation up to conventions, as we shall now
explain. Let Vn denote the (n + 1)-dimensional irreducible representation of sl2. Note that
Sn(V1) ∼= Vn , Sn−1,1(V1) ∼= Vn−2 and Sn−i,1i

(V2) = 0 for i > 1. Thus, for E = V1 and

x = 0 we evaluate C+
n+1 � [0 → · · · → 0 → q2−n Vn−1

0
−→ q−n Vn+1]. As in [25, Section

9.2], the annular sl2 homology of the n-fold stabilized unknot consists of the two irreducible
sl2-representations Vn+1 and Vn−1 in adjacent homological degrees, with a difference in
q-degrees of 2.

5.2 Morphisms

We shall now describe the hom spaces between the annular complexes associated to closures
of Coxeter braids. We start by describing basic chain maps between complexes associated to
braids. In doing so, we again borrow notation from the theory of Soergel bimodules.

Definition 5.10 Consider the following chain map:

�σ �fr

f

B
�

id

q−1 R

�σ−1�fr q R B
�

The distinguished triangle �σ �fr f
�σ−1�fr Cone( f ) �σ �fr[1] is called

the skein triangle. Here we have

Cone( f ) � [ q R
x1−x2

q−1 R
�

].

Note that the annular closure of Cone( f ) is precisely Cube2. We have seen that Cube2 ∼=

CubeS2
2 ⊕ Cubesign

2 � C+
2 [1]⊕ C−

2 . In other words, under annular closure, the skein triangle
splits:

0 �σ̂−1�fr Cone( f̂ ) �σ̂ �fr[1] 0

Here we want to emphasize that the dashed maps only appear in the annular closure.

Remark 5.11 There are also non-zero cobordism-induced maps R → q�σ �fr[1] and
q−1�σ−1�fr[−1] → R, which can be interpreted as gluing in a twisted band that increases
the writhe:

R R
�

id

q�σ �fr[1] q B R
�

q−1�σ−1�fr[−1] R
�

id

q−1 B

R R
�
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In the glN -evaluations, there also exist non-trivial maps R → q1−2N �σ−1�fr[−1] and
q2N−1�σ �fr[1] → R associated to twisted bands that decrease the writhe.

In both cases, these cobordism-induced chain maps are unrelated to the maps in the skein
triangle.

Remark 5.12 Under glN -evaluation, we have a partially topological description of the chain
map f in the skein triangle. We start with �σ �fr and follow the Reidemeister II chain map to
�σ−1σσ �fr and then a saddle cobordism map to q1−N �σ−1#H�fr where H denotes a positive
Hopf link and the connect sum is taken on the new over-strand. Finally, the projection to the
top degree generator of the reduced Hopf link homology (which is not cobordism-induced)
induces an onward map to �σ−1�fr . The composition is the chain map f .

Lemma 5.13 Let Un be the (n−1)-dimensional reflection representation of Sn . Let p1, . . . , pn

be an algebraically independent generating set for (C[x1, . . . , xn])Sn , for example, power

sum symmetric polynomials. Then HomSn (
∧

kUn, C[x1, . . . , xn]) is a free module over

(C[x1, . . . , xn])Sn generated by the coefficients of dpi1 ∧ · · · ∧ dpik
for all 2 ≤ i1 < i2 <

· · · < ik ≤ n.

Proof Clearly, HomSn (
∧

kUn, C[x1, . . . , xn]) is free over
∑

xi , so we can consider
HomSn (

∧
kUn, C[Un]) instead. It can be identified with the space of Sn–invariant differ-

ential forms on Un , which by a theorem of Solomon [55] is isomorphic to the space of
differential forms on Un/Sn = Spec C[p2, . . . , pn]. ��

Let Cuben , as before, denote the Koszul complex for xi − xi+1 acting on E⊗n . Then we
have:

Theorem 5.14 The morphisms between the tensor products of Cuben can be described as

follows:

• The endomorphism algebra of Cuben is:

End(Cuben) ∼=
∧•(Un) ⊗ C[x] � C[Sn],

where Un is the (n − 1)-dimensional reflection representation of Sn and Sn acts trivially

on x. Moreover, x is of q-degree 2 and Un is supported in homological degree −1 and

q-degree −2.

• The spaces of morphisms between Cuben ⊗ Cubem and Cuben+m are generated by the

canonical maps implicit in the description of

Cuben+m
∼= Cone(qCuben ⊗ Cubem

xn−xn+1
−−−−−→ q−1Cuben ⊗ Cubem

������������

).

The actions of x ∈ End(Cubei ) on this space agree (up to homotopy) for i = n, m, n+m,

and the actions of exterior algebras are naturally identified under the induction and

restriction maps between Un ⊕ Um and Un+m .

• All other morphisms are induced by these.

Proof Let us compute the endomorphism ring of Cuben . We have End(E⊗n) = C[x1, . . . , xn]�

C[Sn], so End(Cuben) is isomorphic to a complex built out of these. Since the differential
does not involve the action of Sn , we can ignore the C[Sn] factor for a while. Now

End(
∧•(Un) ⊗ E⊗n) ∼=

∧•(Un) ⊗
∧•(U∗

n ) ⊗ End(E⊗n)

∼=
∧•(Un) ⊗

∧•(Un) ⊗ C[x1, . . . , xn] � C[Sn].
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Here we have identified Un with its dual via the Sn–invariant nondegenerate bilinear form.
This space of maps carries the natural differential

D(α ⊗ β ⊗ f ) = d(α) ⊗ β ⊗ f ± α ⊗ d(β) ⊗ f , (25)

where d is the Koszul differential on
∧

•(Un)⊗C[x1, . . . , xn]. Since (x1−x2, . . . , xn−1−xn)

is a regular sequence in R = C[x1, . . . , xn], the homology of (
∧

•(Un)⊗ R, d) is isomorphic
to C[x].

Equation (25) presents D as a sum of two anticommuting differentials, which induces a
spectral sequence. The first differential has homology

∧
•(Un) ⊗ C[x] � C[Sn]. Now the

second differential vanishes, so the spectral sequence collapses at E2 page, and

End(Cuben) ∼=
∧•(Un) ⊗ C[x] � C[Sn].

Here x has q-degree 2 and homological degree 0 while the generators ε1, . . . , εn−1 of
∧

•(Un)

have homological degree −1 and q-degree −2. See also Example 5.17 for an alternative
computation of End(Cuben).

We can apply the same method in a more general situation. To compute Hom(⊗i

Cubeni
,⊗ j Cubem j

) (with
∑

ni =
∑

m j = n), we first observe that both complexes con-
sist of several copies of E⊗n . Now we replace the Hom space between two such copies by
End(E⊗n) = C[x1, . . . , xn]�C[Sn], and write two sets of differentials. The first differential
is given by multiplication by xi − xi+1 if i, i + 1 are in the same block of the partition
n =

∑

ni , and the second is given by multiplication by xi − xi+1 if i, i + 1 are in the same
block of the partition n =

∑

mi .
Although the differentials do not involve C[Sn], we still need to keep track of its action.

Let

Hom pol(⊗i Cubeni
,⊗ j Cubem j

)

denote the space of polynomial maps, that is, the ones induced by the polynomial action on
E⊗n . Any endomorphism of E⊗n can be uniquely written as f =

∑

σ∈Sn
fσ σ for some poly-

nomials fσ . Similarly, any morphism Hom(⊗i Cubeni
,⊗ j Cubem j

) can be uniquely written
as f =

∑

σ∈Sn
fσ σ where fσ are polynomial chain maps. The space of such fσ is isomor-

phic to Hom pol(σ (⊗i Cubeni
),⊗ j Cubem j

). To sum up, to describe all morphisms between
products of cubes it is sufficient to describe the polynomial morphisms between products of
cubes where the variables in one product are possibly relabeled. Note that before we did not
have this problem since Sn preserves Cuben .

After relabeling, we get two set partitions � and �′ with r blocks of size ni and s blocks
of size m j respectively. We will refer to the products of cubes as to Cube� and Cube�′ . Let
�′′ be the finest set partition which is a coarsening of both � and �′. If �′′ has more than
one block then Hom pol(Cube�, Cube�′) factors over the blocks of �′′ and we can proceed
by induction.

From now on we will assume that�′′ = {1, . . . , n}. Let us compute Hom pol(Cube�, Cube�′)

using the spectral sequence as above. After applying the first differential we get a polynomial
algebra with one variable per block in �. After applying the second differential we identify
all these variables and obtain an exterior algebra with generators εi j for all i, j such that i, j

are in the same block in both partitions �,�′.
We can describe all these chain maps and their gradings more explicitly. Recall that

Cubea+b � Cone(qCubea ⊗ Cubeb
xa−xa+1
−−−−−→ q−1Cubea ⊗ Cubeb

������������

),
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so there are natural chain maps

q−1Cubea ⊗ Cubeb → Cubea+b, Cubea+b → qCubea ⊗ Cubeb[1].

By combining these, we get maps

q1−r Cube� → Cuben, Cuben → qs−1Cube�′ [s − 1].

Every polynomial morphism from Cube� to Cube�′ can be obtained as a composition of these
merge and split maps with a polynomial endomorphism in End pol(Cuben) =

∧
•(Un)⊗C[x].

In particular, the identity on Cuben induces a chain map of q-degree s+r −2 and homological
degree s − 1. The odd variable εi j can be identified with εi + · · · + ε j−1 in Un dual to

xi − x j = (xi − xi+1) + · · · + (x j−1 − x j ).

which acts on Cuben . Note that if i and j are not in the same block for � or �′ then εi j acts
by 0. For i, j, k in the same block for both partitions �,�′ the actions of εi j , ε jk and εik

satisfy an obvious linear relation. ��

Corollary 5.15 dimq Hom(Cubeλ
n, Cubeμ

n ) ∈ δλ,μ + q2N[q].

Example 5.16 Let us describe the endomorphisms of Cube2 = [q E⊗2 x1−x2
−−−→ q−1 E⊗2]. In

homological degree zero we have C[x1, x2] � C[S2]. In homological degree −1 we have a
chain map ε of q-degree −2 which sends the first copy of E⊗2 to the second one, and the
right copy to zero:

q E⊗2 q−1 E⊗2

q E⊗2 q−1 E⊗2

ε

Note that in this case the projection to the first copy of E⊗2 yields the split map Cube2 →

q E2[1] while the inclusion of the second copy yields the merge q−1 E2 → Cube2. The
composition of split and merge coincides with ε. There is also another map h of homological
degree one:

q E⊗2 q−1 E⊗2

q E⊗2 q−1 E⊗2
h

This is not a chain map, but [d, h] = x1 − x2. Similarly, [d, hε] = (x1 − x2)ε = d . So the
endomorphism ring of Cube2 in the homotopy category is isomorphic to

C[x1, x2] ⊗
∧

(ε) � C[S2]/(x1 − x2) ∼= C[x] ⊗
∧

(ε) � C[S2].

Example 5.17 Similarly to Example 5.16, for Cuben we have chain maps ε1, . . . , εn−1

and homotopies h1, . . . , hn−1, and [d, hi ] = xi − xi+1, so End(Cuben) ∼= C[x] ⊗
∧

(ε1, . . . , εn−1) � C[Sn]. As above, εi span a copy of the reflection representation Un .

Example 5.18 Let us illustrate the difference between polynomial morphisms (which were
discussed in the proof of Theorem 5.14) and all morphisms. For example, let us compute

Hom pol(Cube1 ⊗ Cube2, Cube2 ⊗ Cube1).
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We have the following diagram:

q E⊗3 q−1 E⊗3

q E⊗3 q−1 E⊗3

x2−x3

ε
α

h
β

x1−x2

Now [d, α] = (x1−x2)ε, [d, β] = −(x2−x3)ε, [d, h] = (x1−x2)β−(x2−x3)α, [d, ε] =

0. The homology of (C[x1, x2, x3]〈α, β, h, ε〉, [d,−]) is isomorphic to

C[x1, x2, x3]

(x1 − x2, x2 − x3)
〈ε〉 ∼= C[x]〈ε〉

Here ε has q-degree −2 and homological degree −1.
Alternatively, ε can be obtained as a composition of the split and merge maps:

E⊗3 q−2 E⊗3 q−1Cube1 ⊗ Cube2

q2 E⊗3 E⊗3 ⊕ E⊗3 q−2 E⊗3 Cube3

q2 E⊗3 E⊗3 qCube2 ⊗ Cube1[1]

x2−x3

(x1−x2,x2−x3) (x2−x3,x1−x2)

x1−x2

Finally, observe that the transposition (1 3) ∈ S3 yields an obvious degree zero isomorphism
between Cube1 ⊗ Cube2 and Cube2 ⊗ Cube1. This isomorphism is not polynomial, in fact,
the above computation shows that there are no polynomial morphisms of degree zero.

Example 5.19 Let us use the description of End(Cube2) to describe End(C+
2 ). Recall that

C+
2 [1] � (Cube2)

S2 . The maps ε and h are not S2–invariant and vanish when symmetrized.
However, ε(x1 − x2) and h(x1 − x2) are S2–invariant. Since [d, h(x1 − x2)] ∼= (x1 − x2)

2,
we get

End(C+
2 ) ∼= C[x1, x2]

S2 ⊗
∧

(ε(x1 − x2))/(x1 − x2)
2 ∼= C[x] ⊗

∧

(ξ),

where ξ = ε(x1 − x2) and x = x1 + x2. Note that ξ has q-degree zero and homological
degree −1.

We can now describe End(C+
n ) in a similar fashion.

Theorem 5.20 We have End(C+
n ) ∼=

∧

(ξ1, . . . , ξn−1)⊗C[x], where ξi have q-degree 2i −2
and homological degree −1.

Proof Observe that the hi and εi from Example 5.17 both span copies of the reflection
representation Un under the action of Sn . Therefore by Lemma 5.13 Sn–invariant chain
endomorphisms of Cuben are given by

(
∧

(ε1, . . . , εn−1) ⊗ C[x1, . . . , xn])Sn ∼=
∧

(ξ1, . . . , ξn−1) ⊗ C[x1, . . . , xn]Sn ,

where

ξi =
∑

j

ε j

∂

∂(x j − x j+1)
pi+1.
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Note that pi+1 has q-degree 2i + 2, so its partial derivatives have degree 2i and hence ξi

have q-degree 2i − 2 and homological degree −1. Similarly, the Sn–invariant homotopies
are built out of hi so that

(
∧

(h1, . . . , hn−1) ⊗ C[x1, . . . , xn])Sn ∼=
∧

(H1, . . . , Hn−1) ⊗ C[x1, . . . , xn])Sn .

By construction, [d, hi ] = (xi − xi+1), so [d, Hi ] = pi+1(x1, . . . , xn). Therefore we have

End(C+
n ) =

∧

(ξ1, . . . , ξn−1) ⊗ C[x1, . . . , xn]Sn /(p2, . . . , pn) ∼=
∧

(ξ1, . . . , ξn−1) ⊗ C[x].

��

Remark 5.21 It is easy to see that the split and merge maps between Cuben induce similar
split and merge maps between C+

n . Since εi can be obtained as a composition Cuben →

qCubei ⊗ Cuben−i [1] → q2Cuben[1], the seemingly mysterious endomorphisms ξk can be
obtained as sums over all i of compositions

Cuben → qCubei ⊗ Cuben−i [1]
φi,k (x)
−−−−→ q1−2kCubei ⊗ Cuben−i [1] → q2−2kCuben[1]

for some explicit polynomials φi,k(x) of degree k.
It is likely that all morphisms between various tensor products of C+

n are generated by
splits, merges and the action of polynomials. It would be interesting to describe all relations
between these morphisms, categorifying Turaev’s description of the skein of the annulus
(Theorem 2.1). We plan to pursue this in a future work.

Example 5.22 Let us describe the maps from C−
2 = [q S2 E → q−1∧2 E

����

] to qC−
1 ⊗C−

1 [1] =

[q E ⊗ E → 0]. Since C−
2 is a summand in Cube2, every such map factors through Cube2.

Thus we have a map

q S2 E q−1∧2 E
����

q E ⊗ E q−1 E ⊗ E
�����

q E ⊗ E

Now we have Hom(Cube2, Cube2
1) = C[x]⊗C[S2]. But C−

2 is the antisymmetric component
of Cube2, so we get Hom(C−

2 , qC−
1 ⊗ C−

1 [1]) ∼= C[x]. A generator of minimal degree is
given by the twisted band map from Remark 5.11.

Let eλ ∈ Sn denote our chosen Young symmetrizer in C[Sn] of shape λ. As before, we
denote by Cubeλ

n = eλCuben the direct summand of Cuben cut out by the action of eλ. Then
we have the following corollary of Theorem 5.14.

Remark 5.23 The category Kb(P̂) has a t-structure, whose heart is given by the complexes
whose chain groups are q-shifted by twice the homological degree. Cuben as well as all
Cubeλ

n are shifted perverse.
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5.3 Other Coxeter braids

To categorify the formula from Theorem 2.20, we would like to give a more categorical per-
spective on ribbon skew Schur functions, following Solomon [56]. Given a binary sequence
ε of length n, we can define two parabolic subgroups Wε, W ′

ε of Sn generated by simple
reflections with positive (resp. negative) signs. Let sε and sε denote the symmetrizer for Wε

and antisymmetrizer for W ′
ε .

Theorem 5.24 [56] The group algebra C[Sn] can be presented as a direct sum of left ideals:

C[Sn] =
⊕

ε∈{±1}n

C[Sn]sεsε (26)

Furthermore, the character of the Sn–representation C[Sn]sεsε equals the ribbon skew

Schur function 	(a) for the composition a corresponding to ε.

We denote by pε ∈ C[Sn] the idempotent projecting to C[Sn]sεsε . Now we are ready to
describe the annular invariants of the Coxeter braids σε = σ

ε1
1 · · · σ

εn−1
n−1 .

Theorem 5.25 The annular complex Cε of the Coxeter braid σε is determined by

Cε[|ε|+] � pεCuben .

Proof We induct on the length of ε and the number of minus signs in ε. Suppose there is just
one minus sign in the a-th place. Then the skein triangle gives us a homotopy equivalence:

Cone(C+
n → Cε)[n − 2] � Cone(qC+

a ⊗ C+
b

x−y
−−→ q−1C+

a ⊗ C+
b )[(a − 1) + (b − 1)]

(27)

Now we use that the right-hand side is a direct summand in

Cone(qCubea ⊗ Cubeb
x−y
−−→ q−1Cubea ⊗ Cubeb) ∼= Cuben,

cut out by the idempotent pa ⊗ pb ∈ C[Sa−1 × Sb−1] ⊂ C[Sn−1]. We also know that
C+

n [n − 1] is a direct summand in Cuben cut out by the idempotent pn ∈ C[Sn−1]. The
projection onto this summand Cuben → C+

n [n − 1] factors through the right hand side of
(27), so the skein triangle (27) splits and C+

n [n − 1] is a direct summand in the right hand
side. Hence Cε[n − 2] is also a direct summand in Cuben defined by the difference of the
two idempotents pn − pa ⊗ pb = pε .

A similar argument works for the induction step. Here we use the skein triangle to get:

Cone(Cε′ → Cε)[|ε|+] � Cone(qCα ⊗ Cβ
x−y
−−→ q−1Cα ⊗ C+

β )[|ε|+]

Then we use the induction hypothesis to find Cα ⊗Cβ [|ε|+] as a direct summand in Cubea ⊗

Cubeb, such that the inclusion intertwines the operators x − y. If follows that the cones are
direct summands of Cuben , and so is Cε′ [|ε′|+] and hence Cε[|ε|+].

It remains to check that the projectors for all these summands agree with pε . Indeed, they
can be computed recursively by successively subtracting induced smaller projectors from the
bigger ones (this categorifies (4)). On the other hand, pε satisfy the same recursion by [56,
Theorem 3]. ��

We are now in a position to prove a conjecture of Hunt–Keese–Licata–Morrison about the
annular Khovanov homology of Coxeter braids and the spectral sequence to planar Khovanov
homology.
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For this, we will use that the annular Khovanov homology can be computed via annular
evaluation along the functor AKhR(V1, 0) where V1 is considered as the vector representation
of sl2 with graded dimension qz+q−1z−1 and z encodes the weight space grading. The planar
Khovanov homology can similarly be obtained via AKhR(V1, e), with e ∈ End(V1) provided
by the sl2 action. The spectral sequence from annular to planar Khovanov homology arises
by filtering AKhR(V1, e) along the weight space grading.

Theorem 5.26 [29, Conjecture 4.1] The generators of the annular Khovanov homology of Cε

that survive to planar Khovanov homology have tri-degree (tq2z)n−1−2|ε|+(qz + q−1z−1).

Proof We first use that the symmetric function (−1)|ε|+	(a)[X(q−1 − q)]/(q−1 −

q) evaluates on the variables (q, q−1, 0, . . . ) to the Jones polynomial of Cε , namely
(−q2)n−1−2|ε|+(q + q−1). Framing considerations imply that the surviving generators are
supported in homological degree tn−1−2|ε|+ . Since the annular complex Cε becomes perverse
after a shift by qn−1t |ε|+ , this implies that the surviving generators live in the chain group with
shift (tq)n−1−2|ε|+ . We also have the following bigraded dimension of the sl2-evaluations
dimq,z(S

n−i,i (V1)) = dimq,z(Vn−2i ) = hn−2i (qz, q−1z−1). In particular, the sl2-weight
shift inside these Schur functor evaluations is always equal the internal shift in q-grading.
Thus, the z = 1 and t = −1 specialization (−q2)n−1−2|ε|+(q + q−1) of the desired for-
mula and the knowledge of the chain group shift (tq)n−1−2|ε|+ determine the internal q-shift
uniquely as qn−1−2|ε|+ , and thus also zn−1−2|ε|+ . ��

6 Annuli in tangle diagrams

In this section we study applications of annular evaluation to Khovanov–Rozansky invariants
of tangles which contain a cabling of a framed unknot as a sublink. This includes tangles
obtained by wrapping an annular link around a tangle as in (5).

6.1 A symmetric group action on cables

The following theorem is due to Grigsby–Wehrli–Licata in the context of Khovanov homol-
ogy [25]. The version here applies to all sufficiently functorial Khovanov–Rozansky link
homologies of type A.

Theorem 6.1 Let T be a link or a tangle, which has n parallel closed 1-colored components.

Then T carries an action of Brn by endo-cobordisms that braid these parallel components

around each other. Let KhR denote a Khovanov–Rozansky-type invariant, which is functorial

under such cobordisms.4 Then the induced action of Brn on KhR(T ) factors through Sn .

Proof It suffices to prove that the braiding is symmetric on two parallel components. We have
already seen this in the proof of Theorem 4.23 for the case when L has the two components as
a disjoint split factor. Now, we consider the general case, which can be modelled as follows.

RI I
−−→

1 2 isotopy
−−−−→

2 1

RIIIs
−−→

2 1 RI I
−−→ (28)

4 E.g. for the triply-graded homology, we require that L is represented as a partial braid closure.
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Here, T is compressed into the small box shown, except for the two parallel components in
question (if the tangle is not a link, then some additional strands might connect this box to
the boundary). The braiding of the two circles starts with a Reidemeister II move, followed
by isotoping the 1-labeled crossing all the way through the rest of T , and then eliminating
both crossings again by an inverse Reidemeister II move. Contrary to the case treated in
Theorem 4.23, we do not intend to compute this chain map σ explicitly. We only need to
show that it is equivalent to its inverse σ−1, which has a movie description as in (28), except
that the bottom strand passes over the top strand first, and it is a negative crossing instead of
a positive crossing that slides all the way through T . In the absence of other components, we
have seen that these chain maps are plainly equal, since the different Reidemeister II chain
maps uses in these variants agree (up to to cancelling signs).

In the present case, we additionally have to take into account moving the crossing labeled
1 through the box, i.e. through the rest of T . There are three key observations which allow
to compare the contributions of this process to σ and σ−1.

First, isotoping the crossing through the rest of T is realized as a sequence of braid-like
Reidemeister III moves. A braid-like Reidemeister III move is one in which the relevant
local tangle 6-ended tangle has the following sequence of boundary orientations up to cyclic
reordering: out-out-out-in-in-in. In contrast, a star-like Reidemeister III tangle would have
an alternating sequence of boundary orientations out-in-out-in-out-in.

Second, the intermediate chain complexes in (28) can be seen as total complexes of double
complexes, with a horizontal differential contributed by the crossings in T , and a vertical
differential contributed by the extra crossings created by the initial Reidemeister II move.
Note that the initial and the final chain complex in this sequence are supported in the single
vertical degree zero.

Third, the chain maps associated to the braid-like Reidemeister III moves are filtered with
respect to the vertical degree. This means that these chain maps are sums of components that
preserve the vertical degree, and components which, at most, increase the vertical degree,
but never decrease it. Moreover, in a pair of Reidemeister III moves, which differ only in
the sign of the 1-labeled crossing which is pushed under (or over) another strand in T , the
filtration-preserving components agree. For 1-colored strands, this is well-known to experts
and can be read off from the explicit descriptions of Reidemeister III chain maps for Rouquier
complexes in [17]. The general case follows via the strategy of exploding strands of higher
color into 1-colored strands before sliding the crossing, see e.g. [63, Section 14.1].

The chain maps obtained by isotoping a positive or a negative crossing through the rest of
T are both filtered, and their filtration-preserving components agree. Finally, σ and σ−1 are
obtained from these chain maps by pre- and postcomposing with Reidemeister II chain maps.
Since the latter have non-zero components only in vertical degree zero, these composite only
depend on the filtration-preserving parts of the intermediate Reidemeister III chain maps. As
noted above, these agree. ��

In particular, Theorem 6.1 holds for the the glN Khovanov–Rozansky invariants �T � and
�T �fr valued in Kb(NFoam). In the following, we write T = T (E⊗n) for tangles as in the
theorem.

Corollary 6.2 The Schur-colored invariants �T (Sλ(E))� and �T (Sλ(E))�fr are well defined

in Kb(Kar(NFoam)).

Proof By Theorem A.10, we have that Kb(Kar(NFoam)) is Karoubian. By Theorem 4.7
there is a braid group action on �T (E⊗n)�fr , which factors through the symmetric group.
Hence by Proposition A.12 the Schur functors are well defined up to homotopy equivalence.

��
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Corollary 6.3 For a tangle as in the theorem, �T (E⊗n)� and �T (E⊗n)�fr have actions of

C[x1, . . . , xn] � C[Sn].

Proof The C[Sn] part is obtained by linearising the symmetric group action from the theorem.
In the polynomial part, xi acts by a dot on the i-th component of the cable. The proof of
the theorem and the fact that dots slide through crossings up to homotopy implies that stated
compatibility. ��

We can summarize the two corollaries as follows.

Corollary 6.4 Each tangle as in Theorem 6.1 provides an additive functor from P̂ to

Kb(Kar(NFoam)).

As before, we also get a version of Lemma 4.25 in the presence of other strands. For
this, let T (En) denote the tangle T with a n-colored component in place of the n parallel
uncolored components.

Corollary 6.5 We have isomorphisms �T (
∧

n(E))� ∼= �T (En)� and �T (Sn(E))�fr ∼=
�T (En)�fr in Kb(Kar(NFoam)).

Proof The proof proceeds analogous to the one for Lemma 4.25 by identifying the chain map
for the k = 2 anti-symmetrizer on �T (E ⊗ E)�fr with the projection onto �T (E2)�

fr . ��

This implies that cobordism-induced braiding is also symmetric for colored circles, as
proved for uncolored circles in Theorem 6.1.

6.2 Annular simplification

If an annular link L appears as a sublink of a tangle T which is a cabling of a framed unknot,
then the associated Khovanov–Rozansky chain complex �T �fr can be simplified to a complex
in which the annular link L is replaced by the a complex of

∧

-colored concentric circles or
Schur functors. Here we prove that this induces filtrations and spectral sequences as claimed
in Theorem 1.8 and Corollary 1.9.

Proposition 6.6 Let L denote a link diagram in the thickened annulus, T a tangle diagram

with a blackboard-framed unknot component without self-crossings, and T (L) the tangle

diagram obtained by cabling this unknot component in T by L. Then the chain complex

�T (L)�fr is isomorphic in Kb(NFoam) to a filtered chain complex C̃, whose associated

graded is isomorphic to a formal direct sum of grading shifts of chain complexes of the form

�T (CC)�fr where CC denotes the collections of concentric
∧

-colored circles that appear

in the annular simplification of L. Moreover, the component of the differential that increases

the filtration degree by one is induced by the corresponding annular differential.

Interesting examples of tangles T (L) are tangles obtained by wrapping as in (5) and cabled
Hopf links H(L, L2) as in the introduction.

Proof We write C := �T (L)�fr . The key idea of the proof is that annular simplification is still
possible in the presence of additional strands. Indeed, the annular simplification algorithm
of Queffelec–Rose [46, Proposition 5.1] utilizes two types of web isomorphisms, which both
continue to hold in these settings: namely certain local isomorphisms (rung combination and
square switch) which hold on the nose, and the global rung slide move, which uses fork-slide
moves in the presence of additional strands.
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Fig. 3 The result of substituting a
single column (C i,∗, dv) in a
bicomplex by a homotopy
equivalent complex (Di,∗, d)

along chain homotopy
equivalences f and g with
g ◦ f + dv ◦ h + h ◦ dv = 0

Ci−1,j−1 Di−1,j Ci−1,j+1

Ci,j−1 Di,j Ci,j+1

Ci+1,j−1 Di+1,j Ci+1,j+1

f◦dh dh◦g

f◦dh

dh◦h◦dh

dh◦g

f◦dh

dh◦h◦dh

dh◦g

The chain complex C can be viewed as a total complex of a tricomplex with one direction
(horizontal) corresponding to crossings internal to the annular link L1, the second direction
(vertical) to crossings of that annular link and the rest, and the third direction (depth) to
crossings purely in the rest. Since the third direction will not play an important role, we will
suppress it and consider C as total complex of a bicomplex C∗,∗. The columns C∗,i in such
bicomplexes are complexes in their own right, which are isomorphic to the invariants of the
annular webs appearing in the cube of resolutions of L1, interacting with other additional
link and tangle components.

By annular simplification, each column C∗,i is homotopy equivalent to the total complex
˜C∗,i of a bicomplex whose columns are of the form T (CC), where CC is a collection of

concentric circles. Now we substitute the columns in the bicomplex C∗,∗ by the homotopy
equivalent complexes C̃∗,i . In doing so, we collapse the two “horizontal” directions: the one
already present in C∗,∗ and the additional direction in each C̃∗,i . Because of the column
substitutions, C̃∗,∗ will typically no longer be a bicomplex. Besides the vertical differential
d0 : C̃∗,∗ → C̃∗+1,∗ and the horizontal component d1 : C̃∗,∗ → C̃∗,∗+1, there are now also
higher components dk : C̃∗,∗ → C̃∗+1−k,∗+k . In Fig. 3, we illustrate the result of a single
column substitution.

The perturbed bicomplex ˜C∗,∗ still carries the horizontal filtration F j =
⊕

j ′≥ j C̃∗, j ′ ,
whose associated graded is isomorphic to the direct sum of the columns, with differential d0,
which we identify with the invariants of collections of colored circles interacting with the
remaining strands. The filtration degree one component of the total differential is d1 and its
components originate from crossings in the annular link or the resolution of annular webs by
concentric circles— in this sense, it is induced by the annular differential computed by the
annular simplification algorithm of Queffelec–Rose. ��

Example 6.7 If we apply Proposition 6.6 in the case of the Hopf link cable H(L1,∅), we
obtain C̃∗,∗ = C̃0,∗ and the only non-trivial component of the differential is d1.

Corollary 6.8 The complex C̃ from Proposition 6.6, considered as an object of Kb(Kar
(NFoam)), can be decomposed further into a filtered complex C ′ with associated graded

given by Schur-colored unknots interacting with the remaining strands.

Proof This follows from Proposition 6.6 and Corollary 6.5, which identifies colored circles
with tensor products of antisymmetric Schur functors, which we can then decompose further.

��

This completes the proof of Theorem 1.8 and implies Corollary 1.9.

Remark 6.9 Corollary 6.8 can also be proved directly following the strategy of the proof of
Proposition 6.6, but with the Queffelec–Rose annular evaluation algorithm replaced by the
alternative annular evaluation algorithm outlined in Remark 4.21.
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6.3 Generalized Hopf links, categorified

Here we show how the above results can be used to compute Khovanov–Rozansky homologies
of generalized Hopf links. First, we consider annular links wrapped around a single vertical
strand colored by

∧
k . We reduce on this vertical strand, so that the corresponding tangle

has no non-trivial endomorphisms, and the invariants in question are valued in complexes of
graded vector spaces. For the definition of reduced colored Khovanov–Rozansky homologies,
we refer to [61].

Theorem 6.10 Let L be an annular link diagram and let T (
∧

i , L) be the tangle consisting

of L wrapped around the reduced vertical strand colored by
∧

i . Consider the following

bigraded vector space with an action of C[X ]:

E∧i = q N−1C[X ]/X N−i ⊕ t−2q2i−3−N C[X ]/X i .

Then there is a spectral sequence with the E2 page given by the evaluation of the annular

complex of L at E∧i and E∞ page isomorphic to �T (
∧

i , L)�fr .

Note that we have dimq,t E∧i = q i [N − i] + t−2q i−2−N [i], where [n] =
qn−q−n

q−q−1 .

Proof If L is a single
∧

j -colored unknot, then the invariant of T (
∧

i , L) was computed by
second author in [60, Proposition 4.15]. For j = 1, it agrees with E∧i as a bigraded vector
space. The action of the dot on L can be easily computed, and it agrees with the action of X

above.
Suppose that now L is an arbitrary annular link. By Proposition 6.6 the Khovanov–

Rozansky complex of T (
∧

i , L) is filtered with associated graded given by the evaluation of
the annular complex of L at (E∧i , X). More precisely, the differential splits into two parts:
the annular differential dann for L and the additional differential dwrap responsible for the
crossings between the webs in the resolution of L and the vertical strand. We get a spectral
sequence by first applying dwrap and then the induced differential d∗

ann. It converges to the
homology of the total complex. By Proposition 6.6 the homology with respect to dwrap is
isomorphic to the evaluation of the annular complex for L at (E∧i , X) (with no differential).
On the next page of the spectral sequence we compute the homology with respect to d∗

ann,
which is just the homology of the annular complex for L evaluated at (E∧i , X). ��

Corollary 6.11 Let L be a
∧

i -colored unknot, and T (
∧

i ,
∧

j ) = T (
∧

i , L) as above. Then

the Khovanov–Rozansky homology of T (
∧

i ,
∧

j ) is isomorphic to
∧

j (E∧i ) as above. In

particular, its graded dimension is

i
∑

k=0

q i j−k(2+N )t−2k

[
N − i

k

][
i

j − k

]

.

This agrees with [60, Proposition 4.15].

We expect that Theorem 6.10 can be generalized to other projectors, categorifying
Lemma 2.25. Specifically, Elias and Hogancamp recently constructed [16] a family of pro-
jectors Pλ in the homotopy category of Soergel bimodules which categorify the projectors pλ

from Sect. 2. These are idempotent complexes which are bounded from above. Let 〈Pλ〉 be the
smallest triangulated subcategory of the homotopy category containing Pλ. After specialising
to the glN theory, we expect the following.
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Conjecture 6.12 Let L be an annular link and let T (Pλ, L) denote the tangle consisting of

L wrapped around Pλ. Then �T (Pλ, L)�fr is an object of the category 〈Pλ〉. If L is a single

unknot then

�T (Pλ, L)�fr �
[

(q1−N (qt)−2λ1 + q3−N (qt)−2λ2 + · · · + q N−1(qt)−2λN )Pλ, D
]

(29)

for some differential D.

Example 6.13 If λ = (1i ) then (29) can be interpreted as saying that L acts on Pλ with
“eigenvalue”

q1−N (qt)−2 + · · · + q2i−N−1(qt)−2 + q2i−N+1

+ · · · + q N−1 = q i [N − i] + t−2q i−2−N [i].

This agrees with Theorem 6.10.

Remark 6.14 At t = −1 equation (29) specializes to Lemma 2.25.

Remark 6.15 This conjecture gives a precise categorical context to the “refined S-matrix”
defined by Aganagic and Shakirov, see [1]. Specifically, they conjecture that (a) the projectors
Pλ in certain sense correspond to Macdonald polynomials Hλ(x; q, t), and (b) the “refined
Chern–Simons invariant” of the generalized Hopf link with components labeled by Pλ and
Pμ equals

Hλ(q
1−N , . . . , q N−1)Hμ(q1−N (qt)−2λ1 , q3−N (qt)−2λ2 , . . . , q N−1(qt)−2λN ).

While we are unable to comment on (a) at the moment, we can interpret (b) by cutting the
component with Pλ open. Then the invariant of the corresponding tangle equals

Pλ Hμ(q1−N (qt)−2λ1 , q3−N (qt)−2λ2 , . . . , q N−1(qt)−2λN ).

Since this is linear in Hμ, we can instead consider a tangle where one component is colored
by Pλ and the other is a closed circle colored by an arbitrary symmetric function f . The
“refined Chern–Simons invariant” of this tangle equals

Pλ f (q1−N (qt)−2λ1 , q3−N (qt)−2λ2 , . . . , q N−1(qt)−2λN ),

which agrees with a certain decategorification of (29).

We would like to comment on possible (but yet mostly conjectural) connections between
the results of this paper and the work of the first author, Negut, and Rasmussen [24], as well
as the series of papers of Oblomkov and Rozansky [42–44]. One of the main conjectures of
[24] assumes the existence of a monoidal functor

ι∗ : Db Coh(Hilbn(C2)) → Kb(SBimn),

where Hilbn(C2) is the Hilbert scheme of n points on the plane and Db Coh denotes the
derived category of coherent sheaves. On the Hilbert scheme of points we have two important
sheaves: T is the tautological bundle of rank n while I is the tautological ideal sheaf (of infinite
rank). The fibers of T and I over a given ideal I ⊂ C[x, y] are equal to C[x, y]/I and to I ,
respectively. Both T and I enjoy the action of two commuting endomorphisms X and Y .

Conjecture 6.16 The glN invariant of a single unknot wrapped around n vertical strands is

isomorphic to the glN reduction of the object ι∗(I/(Y , X N )I).
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As explained in [24], the projectors Pλ should correspond to the fixed points of the torus
action on Hilbn(C2), that is, to the monomial ideals Iλt .5 At such a monomial ideal, the fiber
of I/(Y , X N )I has a bigraded character which agrees with (29). This means that Conjec-
tures 6.12 and 6.16 are compatible with each other. See also [41] for more detailed relation
between the refined S-matrix and the geometry of the Hilbert scheme of points.

Finally, we would like to comment on the relation between this work and [19]. There, Elias
constructed a family of objects Xλ (labeled by Young diagrams λ) in the Drinfeld center of
the category of (extended) affine Soergel bimodules. It is expected that Xλ descend to the
homotopy category of Soergel bimodules, and their images are filtered by the products of
Jucys–Murphy braids Li according to the weight decomposition of the irreducible repre-
sentation Vλ of glN . For example, for λ = � the complex X� is filtered by Li , each with
multiplicity one.

We expect Xλ to be closely related, but not identical to our annular links wrapped around
vertical strands. In the notations of Conjecture 6.16 we expect

Xλ = ι∗(Sλ(T)),

in particular, X� = ι∗(T). This relation is expected to categorify Lemma 6.

6.4 A note on wrapping

The initial motivation for this paper was to categorify the wrapping operation (1). In
HOMFLY-PT skein theory, the action of encircling braids by positive annular links descends
to an action of the cocenter of all Hecke algebras Hm of type A on the center of Hn ⊗ �. On
the topological level, and with a view towards categorification, the encircling operation can
be described as a functor from ALink+, the 1-cocenter (horizontal trace, see Sect. 7.1) of the
braided monoidal 2-category of braids and their cobordisms, to the centralizer Z(Braidn) of
the 2-category of braids (and their cobordisms) on n coherently oriented strands inside the
2-category of tangles Tann with the same boundary data.

In this paper, we have described and studied the universal target for the currently available
Khovanov–Rozansky functors for positive annular links, namely the category Kb(P̂). The
categorified analog of the Hecke algebra Hn is the homotopy category of Soergel bimodules
Kb(SBimn). A first approximation to what a categorification of the wrapping operation could
be is given in Fig. 4, ignoring the second column.

Unfortunately, Kb(P̂) does not seem to be rich enough to admit a functor to the Drinfeld
center Z(Kb(SBimn)) that intertwines the Khovanov–Rozansky functors for annular links
and partial braid closures, as we will explain next.

Example 6.17 Let L be an annular link and T a tangle. Consider the cobordism that rotates L

once around the annulus. This cobordism induces the identity map on the annular invariant in
Kb(P̂). However, after wrapping L around the tangle T , the cobordism that rotates L around
T is not expected to induce the identity map on the tangle invariant in Kb(SBimn).

To get a categorified wrapping operation, we thus need an upgraded annular Khovanov–
Rozansky functor with a target category that remembers such rotation cobordisms. A natural
candidate for such a category is the derived horizontal trace of the dg category SBimdg

n of
complexes of Soergel bimodules. This and a related notion of derived center feature in the
second column of Fig. 4 and are the focus of the follow-up paper [23] of the authors with
Matthew Hogancamp.

5 Note that the diagram λ should be transposed.
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Fig. 4 Wrapping operations: wrapped annular links centralize n-strand braids in the category Tann (first
column); derived horizontal trace of SBimm maps to the Drinfeld center of SBimn and is approximated by
the category Kb(P̂) (second and third column); these categorify the relation between the map from trace of
Hm to the center of Hn (fourth column)

7 Traces outside of type A

7.1 Categorical traces

We briefly review the definitions of categorical traces following [8].
If C is a k-linear category, its vertical trace vTr(C) (also known as zeroth Hochschild

homology) is a k-vector space spanned by all possible f ∈ EndC(X) for X ∈ Ob C modulo
the relations f g ∼ g f for any f ∈ Hom(X , Y ) and g ∈ Hom(Y , X). If C is monoidal then
vTr(C) has a natural algebra structure.

If C is a monoidal k-linear category, one can also define its horizontal trace hTr(C). This
is a k-linear category where the objects are the same as the objects in C, and the morphisms
are defined by

HomhTr(C)(X , Y ) =
⊕

Z

HomC(X ⊗ Z , Z ⊗ Y )/ ∼

where for any f ∈ HomC(X⊗Z , W ⊗Y ) and g ∈ HomC(W , Z) we identify the compositions

X ⊗ Z
f

−→ W ⊗ Y
g⊗idY
−−−→ Z ⊗ Y

and

X ⊗ W
idX ⊗g
−−−→ X ⊗ Z

f
−→ W ⊗ Y .

It is easy to see from this definition that

HomhTr(C)(1, 1) = vTr(C).

For the definition of composition of morphisms and further details we refer to [8]. There is
a natural trace functor

hTr : C → hTr(C)

which sends any object of C to the namesake object in hTr(C). If C has duals then hTr(X⊗Y ) �

hTr(Y ⊗ X).
Informally, one can think of objects of hTr(C) as of annular closures of objects in C. In

particular, the horizontal trace for the category of webs (with morphisms given by foams) is
the category of annular webs (with morphisms given by annular foams).
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Finally, there is a derived version of the above definitions developed in detail in the follow-
up paper [23]. The vertical trace is replaced by full Hochschild homology of C, while the
horizontal trace becomes a dg category.

7.2 Cubes and Coxeter braids in other types

Let (W , S) be a Coxeter system of rank r with a realization ( [20]) consisting of a R-linear
representation h =

⊕

s∈S Rα∨
s of W and simple roots {αs | s ∈ S} ⊂ h∗ = HomR(h, R)

defined such that 〈α∨
t , αs〉 = −2 cos(π/mst ) where mss = 1 and π/∞ = 0. The Coxeter

group W acts on h by reflections.

s(v) := v − 〈v, αs〉α
∨
s

for s ∈ S and v ∈ h. We let R := C[h] =
⊕

k≥0 Symk
C
(h∗ ⊗ C) denote the coordinate ring

of the representation, i.e. the polynomial ring generated by the simple roots. We let SBim
(and SSBim) denote the category of (singular) Soergel bimodules associated to (W , S) and
the above realization.

Definition 7.1 Let CubeW denote the Koszul complex of C[W ]-modules determined by its
degree one differential h∗ ⊗C R → R given by multiplication m : αs ⊗ x �→ αs x . More
explicitly

CubeW =
∧•

R(h∗ ⊗ R)

=
[

qr∧r (h∗) ⊗ R → qr−2∧r−1(h∗) ⊗ R → · · · → q2−rh∗ ⊗ R → q−r R
�

]

with differentials induced by co-multiplication and multiplication

∧k(h∗) ⊗ R
�k−1,1⊗id
−−−−−−→

∧k−1(h∗) ⊗ h∗ ⊗ R
id⊗m
−−−→

∧k−1(h∗) ⊗ R

Recall that R is the monoidal unit in SBim, and we will think of CubeW as a complex
in Kb(SBim), and in particular, as a complex of R − R-bimodules. To this, we can apply
the horizontal trace functor term-wise. Here, the horizontal trace is nothing but H H0, i.e.
the functor of tensoring with R over R ⊗ R, which identifies the left- and right actions. We
consider the resulting objects as R-modules.

Since CubeW is built from copies of R and hTr(R) = R, we could identify it with its
image hTr(CubeW ) in Kb(hTr(SBim)). Note that C[W ] � R acts on R and the differentials
in hTr(CubeW ) are equivariant for this action, so we will consider hTr(CubeW ) as a complex
of C[W ] � R-modules.

Next we chose a total ordering on S and consider the corresponding Coxeter element
sk · · · s1 ∈ W as well as the Coxeter braids σε := σ

εk

k · · · σ
ε1
1 for ε = (ε1, . . . , εk) ∈ {±1}k

in the Artin–Tits group corresponding to (W , S).

Definition 7.2 Let Cε denote the chain complex in Kb(hTr(SBim)) obtained from the (suit-
ably normalized6) Rouquier complex [54] of σε by applying the horizontal trace functor
term-wise.

Let ε ∈ {±1}k and partition the set S = S+ � S− according to the chosen order of simple
roots. We denote the corresponding parabolic subgroups by Wε and W ′

ε . Let sε ∈ C[W ] be
the symmetrizer corresponding to Wε , and sε ∈ C[W ] the anti-symmetrizer corresponding
to W ′

ε . The following is a generalization of Theorem 5.24.

6 We use the following convention for Rouquier complexes: σs �→ [Bs
�

→ q−1 R] for s ∈ S.
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Theorem 7.3 [56, Theorem 2] The group algebra C[W ] can be presented as a direct sum of

left ideals:

C[W ] =
⊕

ε∈{±1}r

C[W ]sεsε (30)

Let pε ∈ C[W ] denote the idempotent projecting onto the summand C[W ]sεsε .

Conjecture 7.4 Cε[|ε|+] � pε hTr(CubeW ) in Kb(hTr(SBim)).

In particular, we expect that C−1,··· ,−1 is homotopy equivalent to hTr(CubeW )sign and
C+1,··· ,+1[r ] is homotopy equivalent to hTr(CubeW )W .

7.3 Annular simplification in other types

In type An−1, we know (and have made ample use of the fact) that Kar(hTr(SBim)) ∼=
C[Sn] � R − gpmod. In this section, we pursue an analogous description for other finite
Coxeter groups.

A key tool is Elias-Lauda’s computation [18] of the vertical trace decategorification
of SBim. To describe this, we consider SBim∗, the category whose objects are objects
in SBim without grading shifts, and hom spaces are graded by HomSBim∗(A, B) ∼=
⊕

m HomSBim(A, q−m B). The vertical trace is the quotient

vTr(SBim∗) =
⊕

A∈Ob(SBim∗)

EndSBim∗(A)

/

span{ f g − g f }

where the span is taken over pairs of f ∈ HomSBim∗(A, B) and g ∈ HomSBim∗(B, A). Since
SBim∗ is graded and monoidal, vTr(SBim∗) has the structure of a graded algebra.

Theorem 7.5 [18, Theorem 3.2] There is an isomorphism φ : vTr(SBim∗) → C[W ] � R of

graded algebras.

Recall that the 2-category of singular Soergel bimodules SSBim for (W , S) is the closure
under grading shifts, taking direct sums and summands of the 2-category of bimodules
generated by singular Bott–Samelson bimodules R I ⊗R I∪J R J for I , J ⊂ S. Here we denote
by R I the ring of invariants for the parabolic subgroup WI ⊂ W generated by reflections in
I .

We identify the objects of SSBim with subsets I ⊂ S and 1-morphisms from J to I are
R I − R J -bimodules. The full 2-subcategory of SSBim generated by the object ∅ ⊂ S is
canonically identified with SBim. We can think of SSBim as a partial idempotent completion
of SBim in the 1-morphism direction.

Lemma 7.6 Considering the vertical trace of the bicategory SSBim as an idempo-

tented algebra, we have an algebra isomorphism given on idempotent truncations by

ψ : vTr(SSBim(I , J )) ∼= 1I (C[W ] � R)1J . Here I and J denote subsets of S and 1I

and 1J are the corresponding symmetrizers in C[W ].

Proof All singular Soergel (R I , R J )-bimodules B, B ′ can be turned into ordinary Soergel
bimodules by tensoring on both sides with R, considered as an (R, R I )-bimodule or as an
(R J , R)-bimodule respectively. For I ⊂ S we let rI denote the rank of R I ⊗ R ⊗ R I as a free

R I -module (this is the size of the double coset WI \W/WI ). For morphisms B
f

−→ B ′ g
−→ B,

we now define

ψ([ f ◦ g]) := r−1
I r−1

J φ([idR ⊗ ( f ◦ g) ⊗ idR]).
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It is straightforward to check that this defines an algebra map and ψ agrees with φ on the
traces of endomorphisms of Soergel bimodules. Furthermore, the image of vTr(SSBim(I , J ))

under ψ lands in 1I (C[q±1][W ]� R)1J since φ([idR⊗
RI R]) = rI 1I ∈ C[W ]. An analogous

argument shows that ψ is injective and surjective. ��

The following is straightforward:

Proposition 7.7 The natural functors vTr(SSBim) ↪→ hTr(SBim) and Kb(vTr(SSBim)) ↪→

Kb(hTr(SBim)) are fully faithful.

In type A, these functors yield a subcategory of the horizontal trace generated by col-
lections of circles colored by

∧
i , and by complexes thereof. Proposition 4.13 then implies

that the latter functor is an equivalence. As explained in Sect. 4, this is related to the fact
that every representation of Sn can be resolved by representations induced from the trivial
representations of the parabolic subgroups.

Outside of type A, this is no longer true. For example, if W = In is a dihedral group of
order 2n, then it has four parabolic subgroups {e}, {s}, {t}, W . The corresponding induced
trivial representations have dimensions 2n, n, n and 1 and it is easy to see that for n > 3
the irreducible two-dimensional representation h cannot be resolved by these. On the other
hand, by Conjecture 7.4 the horizontal trace of the positive Coxeter braid corresponds to the
complex

[∧2h → h → triv
]

,

where we identify an irreducible representation τ of W with HomW (τ, hTr(R)). Therefore we
do not expect the functor Kb(vTr(SSBim)) ↪→ Kb(hTr(SBim)) to be essentially surjective.

Remark 7.8 The category Kb(hTr(SBim)) is expected to be closely related to the category
of character sheaves [34, 51] in the corresponding type. The object E , or the trace of identity
object in SBim, corresponds to so-called Springer sheaf, and its endomorphisms match the
vertical trace vTr(SBim∗) from Theorem 7.5. In type A, it is known that the summands of
the Springer sheaf generate the category of character sheaves, but this is no longer true in
other types due to the existence of so-called cuspidal sheaves.

By analogy, we do not expect the functor Kb(vTr(SSBim)) ↪→ Kb(hTr(SBim)) to become
essentially surjective even after Karoubi completion on both sides. The cuspidal sheaves
should correspond to certain objects in Kar(Kb(hTr(SBim))) which do not belong to the
essential image of Kar(Kb(vTr(SSBim))). It would be very interesting to construct cuspidal
objects explicitly by Soergel-theoretic methods. See also [23, Section 1.4] and [9, 10] for a
further discussion.
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Appendix A: Some facts from homological algebra

A.1. Thomason’s theorem

Suppose that C is a full triangulated subcategory of a triangulated category A. Following
Thomason [57], we say that C is dense in A if every object of A is a direct summand of an
object isomorphic to an object in C.

Theorem A.1 [57] Let A be a triangulated category. There is a bijective correspondence

between full dense triangulated subcategories of A and the subgroups of the Grothendieck

group K0(A).

Given a subgroup H ⊂ K0(A), the corresponding full subcategory CH consists of objects
of A with equivalence classes in H . The theorem states that CH is actually triangulated and
dense in A, and all full dense triangulated subcategories appear this way.

Corollary A.2 Suppose that C is a full dense triangulated subcategory of A and K0(C) =

K0(A). Then C = A.

A.2. Strict idempotents

Suppose now that C is Karoubian. Suppose that we are given an idempotent endomorphism
ε : X → X . Then ε = 1 − ε is also an idempotent. There is a canonical splitting

X = Xε ⊕ Xε (31)

such that ε = id on Xε and ε = 0 on Xε .

Lemma A.3 Suppose that a : X → Y is a morphism in C, and X , Y have idempotent endo-

morphisms ε (which we will denote by the same letter) such that aε = εa. Then a preserves

the splitting (31).

Proof Since C is additive, a morphism between direct sums is determined by its components.
It is easy to see that the components Xε → Yε and Xε → Yε vanish. ��

Similarly, if A is a chain complex over C and ε : A → A is an idempotent chain endo-
morphism of A then by Lemma A.3 we have a splitting A = Aε ⊕ Aε . If f : A → B is a
chain map and A, B have two idempotent endomorphisms ε : A → A and ε : B → B then
f preserves the splitting.

Remark A.4 Here we need to use that ε2 = id exactly, not up to a homotopy.

Suppose now that C is not only Karoubian, but also symmetric monoidal.
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Theorem A.5 Suppose that A and B are two chain complexes over C, then the following are

true:

(a) If f : A → B is a chain map, then there is a chain map

Sλ( f ) : Sλ(A) → Sλ(B).

(b) If f and g are homotopic then Sλ( f ) and Sλ(g) are homotopic

(c) If A and B are homotopy equivalent, then so are Sλ(A) and Sλ(B).

Proof For (a) observe that there is an Sn-equivariant morphism f ⊗n : A⊗n → B⊗n . Since
it is Sn-equivariant, it commutes with all the idempotents in C[Sn], and hence defines a
map between Schur functors. For (b), observe that there is an Sn-equivariant homotopy
between f ⊗n and g⊗n , so it defines a homotopy between Sλ( f ) and Sλ(g). Finally, (c) is a
straightforward consequence of (b). ��

A.3. Homotopy idempotents

Recall that to any additive category K, one can associate another category Kar(K) called
its Karoubi completion. The objects of Kar(K) are pairs (A, e) where e : A → A is an
idempotent. A morphism between (A, e) and (A′, e′) is a morphism f : A → A′ such that
f e = e′ f = f . There is a natural functor i : K → Kar(K) which sends A to (A, idA).

The following is well known (e.g. [4, Proposition 1.3]).

Proposition A.6 Let K be an additive category, let Kar(K) denote the Karoubi completion of

K. Then Kar(K) is additive and Karoubian. The natural functor i : K → Kar(K) is additive

and fully faithful.

The next theorem is the main result of [4].

Theorem A.7 [4, Theorem 1.12] Let K be a triangulated category. Then Kar(K) is also

triangulated, and the natural functor K → Kar(K) is triangulated.

Let C be an additive category, and let K be the bounded homotopy category of C.

Lemma A.8 Let A be an object in K with an idempotent endomorphism represented by a

chain map p : A → A—in other words, p2 is homotopic to p. For all odd n ≥ 1 there exist

objects Pn, Qn in K such that Pn ⊕ Qn � A ⊕ A[n], where p acts as the identity on Pn and

by zero on Qn .

Proof We construct Pn and Qn inductively. For n = 1 let P1 := Cone(1 − p) and Q1 :=

Cone(p). It is easy to see that they satisfy the desired properties.
Assume that we constructed Pn and Qn . We will construct Pn+2 and Qn+2 as cones

Pn+2 = Cone[P1[n]
fn

−→ Pn] and Qn+2 = Cone[Q1[n]
gn
−→ Qn] for certain chain maps fn

and gn , which we will also construct.
Let us embed K into its Karoubi completion Kar(K). By Theorem A.7 the latter is trian-

gulated. Since A has a homotopy idempotent p, we can split A � P ′ ⊕ Q′ for some objects
P ′, Q′ in Kar(K) such that p acts by 1 on P ′ and by 0 on Q′. Now

P1 = Cone[A
1−p
−−→ A] �Kar(K) Cone[P ′ ⊕ Q′

(

0 0
0 1

)

−−−−→ P ′ ⊕ Q′] � P ′ ⊕ P ′[1].
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Similarly, Q1 � Q′ ⊕ Q[1]. Observe that in Kar(K) there is a chain map f1 : P1[1] → P1

such that Cone( f1) � P ′ ⊕ P ′[3]. Since the embedding K → Kar(K) is fully faithful, the
map f1 is well defined in K, and we can define P3 := Cone( f1). Similarly, if we already
defined Pn � P ′ ⊕ P ′[n] then in Kar(K) there is a chain map fn : P1[n] → Pn such that

Pn+2 := Cone( fn) � P ′ ⊕ P ′[n + 2].

Again, since the embedding is fully faithful the map fn (and hence Pn+2) is well defined in K.
Analogously, one can define Qn such that Qn � Q′ ⊕ Q′[n] in Kar(K). Then Pn ⊕ Qn �

A ⊕ A[n]. ��

Remark A.9 One can write

Pn = [A
1−p
−−→ A

p
−→ A · · · A

1−p
−−→ A],

Qn = [A
p
−→ A

1−p
−−→ A · · · A

p
−→ A].

Since p(1− p) vanishes up to homotopy, one can hope that the above sequences can be lifted
to actual complexes by adding higher differentials. It is proved in [12, Propositions 3.1 and
3.2] that this construction is unobstructed.

Theorem A.10 The bounded homotopy category of a Karoubian category is Karoubian.

Proof As above, letCbe a Karoubian category andK its bounded homotopy category. Suppose
that A is a complex in K with a homotopy idempotent p, we need to prove that A splits.

Since A is bounded, we can pick a large enough odd positive integer n such that A and A[n]

are supported in non-overlapping homological degrees. By Lemma A.8, one can decompose
A ⊕ A[n] � P ⊕ Q where p is homotopic to identity on P and to 0 on Q. Let us pick some
homological degree i such that A is supported in degrees strictly smaller than i and A[n] is
supported in degrees strictly bigger than i . Then (A ⊕ A[n])i = 0.

Let h be a homotopy between p and identity on P . Since (A ⊕ A[n])i = 0 we get
dhi + hi+1d = 1 as endomorphisms of P i . Let q = dhi and q ′ = hi+1d , then q + q ′ = 1,
q2 = dhi dhi = (dhi + hi+1d)dhi = dhi = q and similarly (q ′)2 = q ′. Therefore q

and q ′ are orthogonal idempotents acting on P i , so (since C is Karoubian) we can rewrite
P i = (P i )′ + (P i )′′.

Moreover, we can split P into two parts: P ′ = P<i → (P i )′, and P ′′ = (P i )′′ → P>i .
The same splitting works for Q. It is now easy to see that the map h<i induces a homotopy
between (A ⊕ A[n])≤i = A and P ′ ⊕ Q′. ��

Remark A.11 Similarly to [4], one can instead deduce Theorem A.10 from Theorem A.7
and Theorem A.1. The proof presented here is slightly more explicit, following Proposition
1.5.6(iii) of [6].

A.4. Schur functors in homotopy categories

Proposition A.12 LetCbe a Karoubian monoidal category and letKbe its homotopy category.

Suppose that (E, s) is self-commuting in the sense of Remark 3.7. Then the Schur functors

Sλ(E) are well defined up to homotopy equivalence.

Proof By the assumption, there is an action of Sn on E⊗n . If eλ is an idempotent in C[Sn]

then by Theorem A.10 there exists a splitting E⊗n � Sλ(E) ⊕ E ′ where eλ acts by identity
on Sλ(E) and by 0 on E ′. This splitting is unique up to isomorphism in K. Since {eλ} form
an orthogonal system of idempotents, it is easy to see that E⊗n �

⊕

|λ|=n Sλ(E). ��

123



25 Page 56 of 57 E. Gorsky, P. Wedrich

References

1. Aganagic, M., Shakirov, S.: Knot homology and refined Chern–Simons index. Commun. Math. Phys.
333(1), 187–228 (2015)

2. Aiston, A.K.: Adams operators and knot decorations. arXiv:q-alg/971101 (1997)
3. Aiston, A.K., Morton, H.R.: Idempotents of Hecke algebras of type A. J. Knot Theory Ramif. 7(4),

463–487 (1998)
4. Balmer, P., Schlichting, M.: Idempotent completion of triangulated categories. J. Algebra 236(2), 819–834

(2001)
5. Bar-Natan, D.: Khovanov’s homology for tangles and cobordisms. Geom. Topol. 9, 1443–1499 (2005)
6. Beilinson, A., Vologodsky, V.: A DG guide to Voevodsky’s motives. Geom. Funct. Anal. 17(6), 1709–1787

(2008)
7. Beliakova, A., Habiro, K., Lauda, A.D., Webster, B.: Current algebras and categorified quantum groups.

J. Lond. Math. Soc. (2) 95(1), 248–276 (2017)
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