

1 **Ecology, in press**

2 Manuscript type: Article

3

4 **A healthy but depleted herd: predators decrease prey disease and density**

5

6 Laura K. Lopez¹, Michael H. Cortez², Turner S. DeBlieux³, Ilona A. Menel⁴,

7 Bruce O'Brien¹, Carla E. Cáceres⁴, Spencer R. Hall³, and Meghan A. Duffy^{1,*}

8

9 ¹Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI
10 48109, USA

11 ²Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA

12 ³Department of Biology, Indiana University, Bloomington, IN 47405 USA

13 ⁴School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801
14 USA

15

16 *Corresponding author: duffymeg@umich.edu

17 Open research statement: All data and code (Duffy et al. 2023) used for the analyses and figures
18 are available in Dryad at <https://doi.org/10.5061/dryad.w3r2280tm>

19

20 Key words/phrases: consumer-resource; density mediated indirect effects; healthy herds; host-
21 parasite; infection prevalence; parasitoid; pathogen; predation; predator spreader

22 **Abstract**

23 The healthy herds hypothesis proposes that predators can reduce parasite prevalence and thereby
24 increase density of their prey. However, evidence for such predator-driven reductions in
25 prevalence in prey remains mixed. Furthermore, even less evidence supports increases in prey
26 density during epidemics. Here, we used a planktonic predator-prey-parasite system to
27 experimentally test the healthy herds hypothesis. We manipulated density of a predator (the
28 phantom midge, *Chaoborus punctipennis*) and parasitism (the virulent fungus *Metschnikowia*
29 *bicuspidata*) in experimental assemblages. Because we know natural populations of the prey
30 (*Daphnia dentifera*) vary in susceptibility to both predator and parasite, we stocked experimental
31 populations with nine genotypes spanning a broad range of susceptibility to both enemies.
32 Predation significantly reduced infection prevalence, eliminating infection at the highest
33 predation level. However, lower parasitism did not increase densities of prey; instead, prey
34 density decreased substantially at the highest predation levels (a major density cost of healthy
35 herds predation). This density result was predicted by a model parameterized for this system. The
36 model specifies three conditions for predation to increase prey density during epidemics: (i)
37 predators selectively feed on infected prey, (ii) consumed infected prey release fewer infectious
38 propagules than unconsumed prey, and (iii) sufficiently low infection prevalence. While the
39 system satisfied the first two conditions, prevalence remained too high to see an increase in prey
40 density with predation. Low prey densities caused by high predation drove increases in algal
41 resources of the prey, fueling greater reproduction, indicating that consumer-resource
42 interactions can complicate predator-prey-parasite dynamics. Overall, in our experiment,
43 predation reduced prevalence of a virulent parasite but, at the highest levels, also reduced prey
44 density. Hence, while healthy herds predation is possible under some conditions, our empirical

45 results make it clear that manipulation of predators to reduce parasite prevalence may harm prey
46 density.

47

48 **Introduction**

49 Attack by multiple natural enemies seems like it should increase harm to a population. However,
50 a joy of ecology is that unexpected outcomes can occur when we put different interactions
51 together. This premise underlies the “healthy herds hypothesis”, which argues that adding
52 predators to a system can reduce parasite prevalence in their prey, thereby potentially increasing
53 prey density (Packer et al. 2003). If higher predation in natural populations routinely decreases
54 parasitism and increases prey density, predators could perhaps be used to manage disease in
55 vulnerable prey populations (Packer et al. 2003, Rohr et al. 2015) or to reduce the risk of
56 spillover of disease to other populations, such as humans. However, the generality of the
57 predictions of the healthy herds hypothesis has been questioned recently (Richards et al. 2022).
58 Indeed, predators can increase disease prevalence in their prey (Duffy et al. 2019, Richards et al.
59 2022). Moreover, in some systems, higher predation intensity *decreases* prey density during
60 epidemics (e.g., Mohammed 2018, Gallagher et al. 2019, Shang et al. 2019) – indicating a major
61 cost of lower prevalence via predators. Both patterns cast uncertainty about the promise of
62 predators to control disease and protect prey populations.

63 The appeal of the healthy herds hypothesis lies in alignment of multiple conservation
64 goals – simultaneous conservation of predators, reduction of parasitism, and protection of
65 vulnerable populations – as well as the potential to reduce spillover risk to other populations,
66 including humans. The original mathematical model for it proposed that healthy herds (i.e.,
67 predators decreasing parasitism and increasing prey density) is most likely with highly virulent

68 parasites, long-lived host-prey species (hereafter ‘prey’), selective predation on infected prey,
69 and, when applicable, high aggregation of macroparasites in individual prey individuals (Packer
70 et al. 2003). The well-studied system of red grouse prey, parasitic nematodes, and fox predators
71 meets these conditions (Hudson et al. 1992). In that system, predators reduce parasitism in prey.
72 Additionally, reduced parasitism stabilizes population densities, avoiding major population
73 declines and increasing average density (Hudson et al. 1998). Thus, in the grouse system adding
74 predators reduces parasitism and thereby increases prey density – supporting the healthy herds
75 hypothesis and showing that predator conservation can reduce parasitism and protect vulnerable
76 prey.

77 However, this grouse-predator-parasite pattern is not ubiquitous (Duffy et al. 2019,
78 Richards et al. 2022), and a recent meta-analysis concluded that reduction of parasitism in prey
79 by predators is “far from universal” (Richards et al. 2022). Predation often has no influence on
80 parasitism (e.g., Duffy 2007, Malek and Byers 2016, Flick et al. 2020) or is associated with
81 *greater* parasitism (e.g., Cáceres et al. 2009, Yin et al. 2011, Tan et al. 2016, Trandem et al.
82 2016, Shang et al. 2019). Similarly, in systems with parasites, predators sometimes do not affect
83 prey density (e.g., Duffy 2007, Laws et al. 2009, Strauss et al. 2016, Laundon et al. 2021) and
84 other times decrease it (e.g., Mohammed 2018, Gallagher et al. 2019, Shang et al. 2019).
85 Furthermore, in predator-prey-parasitoid interactions, a meta-analysis found that predators
86 reduce prey density as much as they increase it (Rosenheim and Harmon 2006).

87 Thus, twenty years after formalization of the healthy herds hypothesis, it is clear that
88 predators do not always protect their prey, even during epidemics of virulent parasites. With
89 more models and experiments, we might mechanistically sort out these disparate responses.
90 These experiments should track prey and parasite dynamics along predation gradients (rather

91 than with just two levels, as is currently most common; Richards et al. 2022). They should also
92 interweave other factors that might indirectly influence prey dynamics such as the resources of
93 prey (Murdoch et al. 2003). For example, if predators depress prey abundance well below
94 carrying capacity, prey reproduction may increase, leading to population recovery. In addition,
95 prey with short generation times may evolve rapidly during epidemics (Hairston et al. 2005),
96 potentially influencing healthy herds dynamics. For example, if prey populations rapidly evolve
97 resistance to the parasite, predators might depress prey abundance without reducing parasitism.
98 Thus, a robust test of the impacts of predation on disease and prey density should integrate a
99 gradient of predation with other ecological and evolutionary processes that occur concurrently.

100 We used a planktonic predator-prey-parasite (midge-zooplankton-fungus) system to test
101 the healthy herds hypothesis. This system possesses some features that should favor healthy
102 herds predation (that is, predation that reduces parasitism and increases prey density): the
103 parasite virulently suppresses survival and fecundity (Clay et al. 2019) and the predator
104 selectively culls infected prey (although not as intensively as fish, and not in all scenarios: Duffy
105 and Hall 2008, Cáceres et al. 2009; Appendix S3.2). At the same time, the short-lived prey can
106 strongly interact with resources and rapidly evolve during epidemics via clonal selection, both of
107 which might interfere with healthy herds dynamics. To evaluate the net outcomes of these
108 processes, we stocked mesocosms with nine clonal genotypes of prey that varied in susceptibility
109 to both natural enemies to capture the range of trait variation that we know exists in natural
110 populations. We created four levels of predation (from none to high) and added parasite spores to
111 half the populations. After multiple prey generations, predation reduced infection prevalence,
112 but, contrary to healthy herds expectations, also reduced prey density at the highest predation
113 levels. At lower predation levels, predators neither increased nor decreased total prey density (as

114 compared to the no predation treatment). A mathematical model parameterized for our system
115 species that, in order for predation to increase prey density at equilibrium, first, predators must
116 feed selectively on infected prey, second, infected prey that are consumed by predators must
117 release fewer infectious propagules (as compared to infected prey that are not consumed), and,
118 third, infection prevalence must be sufficiently low. Our system meets the first two of these
119 conditions but not the third, suggesting that we did not see healthy herds dynamics in our
120 experiment because infection levels were too high.

121

122 **Methods**

123 *Study system*

124 *Daphnia dentifera* is a dominant zooplankton species in stratified lakes in Midwestern North
125 America (Tessier and Woodruff 2002). It hosts the fungal parasite *Metschnikowia bicuspidata*,
126 becoming infected after incidentally ingesting spores while grazing (Stewart Merrill and Cáceres
127 2018). Infection shortens life span and decreases fecundity (Clay et al. 2019). Host death releases
128 infectious spores into the water column, where other *Daphnia* can ingest them.

129 Larvae of the phantom midge, *Chaoborus spp.*, including *C. punctipennis*, commonly prey
130 on *Daphnia* in North American temperate lakes (Tessier and Woodruff 2002, Garcia and
131 Mittelbach 2008). Lakes with abundant *Chaoborus* tend to have higher levels of disease (Cáceres
132 et al. 2009, Strauss et al. 2016), likely because they release spores in the water column when
133 feeding on infected *Daphnia* (Cáceres et al. 2009). This is important because the lakes in which
134 these interactions occur are stratified for much of the year, with limited resuspension of spores
135 from sediment spore banks and decomposing *Daphnia* during periods of stratification. However,
136 in unstratified environments such as the one used in this study, *Chaoborus* may not spread

137 disease (Cáceres et al. 2009); in these mixed mesocosms, spores released from dead prey will
138 still come in contact with new prey.

139

140 *Mesocosm experiment*

141 We experimentally manipulated predator density and parasite presence/absence to assess the
142 impacts of predation and parasitism on ecological and evolutionary prey-parasite dynamics. We
143 crossed the presence/absence of the parasite (*M. bicuspidata*) with four levels of predation (0,
144 0.1, 0.5, and 1 *C. punctipennis* per liter, using third or fourth instar larvae) to mimic realistic
145 predation levels in Midwestern United States (Garcia and Mittelbach 2008). This design resulted
146 in eight treatment combinations replicated six times each (48 mesocosms total). One low (0.1 L⁻¹)
147 predation treatment tank was excluded from analyses due to very high abundances of *C.*
148 *punctipennis*. Each replicate was housed within a 75 L polyethylene tank filled to 50 L with a
149 20:80 combination of filtered lake water and treated tap water. Water that was lost due to
150 evaporation was replaced with treated tap water weekly. At the start of the experiment, we added
151 nitrogen (300 ug L⁻¹ N as NaNO3) and phosphorus (20 ug L⁻¹ P as K2HPO4) to each tank.
152 Nutrients were replenished in tanks weekly (assuming 5% daily loss rate). Two days prior to the
153 addition of *D. dentifera* prey, tanks were inoculated with 50 mg dry weight of the green alga
154 *Ankistrodesmus falcatus*. Tanks were housed in a 16:8 light:dark cycle.

155 We stocked tanks with nine genotypes of *D. dentifera* that differed in susceptibility to
156 infection by *M. bicuspidata* and susceptibility to predation by *C. punctipennis*. These genotypes
157 span a wide range of phenotype space for these traits but do not experience a tradeoff between
158 susceptibility to infection and susceptibility to predation (see Appendix S1: Figure S1a). To
159 generate animals for the experiment, we raised single genotype monocultures in the same

160 conditions as experimental tanks. To add equal densities of each clone, we sampled each
161 monoculture in triplicate to estimate prey density. We then added a fixed volume from each
162 monoculture tank to each experimental tank to yield 70 individuals per genotype of all nine
163 isoclonal lines (week 0). Then, *M. bicuspisdata* spores (5000 spores L⁻¹; based on (Hite et al.
164 2016, Strauss et al. 2017) and *C. punctipennis* (3rd and 4th instar, collected from a nearby lake)
165 were introduced 7 days after adding *D. dentifera* (week 1). We checked tanks twice a week,
166 replacing any pupating or dead *C. punctipennis* observed. Our sampling methods did not
167 accurately quantify predator densities – given that the two intermediate predation treatments
168 were 0.1 and 0.5 predators per liter, we would expect 0 or 1 predator individuals in the 2L
169 sample for these two intermediate predation treatments. However, we know that predator
170 densities dropped in all treatments during the experiment. By the end, we recovered no predators
171 from 46 of the 47 mesocosms. We did not routinely record predator densities in the subsamples
172 during the experiment, but have notes indicating the predator was seen in subsamples up to week
173 4. Thus, while the predation treatments strongly differed in infection prevalence and prey density
174 (see below), predation levels likely converged beginning midway through the experiment. We
175 did not anticipate this prior to doing this experiment; as a result of this experience, we modified
176 our protocols for this type of experiment in the future to allow us to better track predator
177 densities over time.

178 Following addition of predators and parasites (week 1), we sampled tanks weekly for 56
179 days. During the weekly sampling in weeks 2-9 (July – August 2019), we quantified infection
180 prevalence and prey density to test the healthy herds hypothesis. We mixed tanks and collected
181 prey samples by sieving 2 L of water (80 µm mesh). We chose this volume because we
182 anticipated that it would provide enough animals to accurately quantify infection levels without

183 providing a substantial source of mortality; this destructive sampling (no animals were returned
184 to the tanks) resulted in a mortality rate on the population of 4% per week. This entire sample
185 was counted within 24 hours and infections were visually diagnosed (at 50x magnification,
186 focused on late stage (terminal) rather than earlier stage infections (Stewart Merrill and Cáceres
187 2018)). We also recorded densities of infected and uninfected adult and juvenile prey in the
188 sample. In addition, for up to twenty adult *Daphnia* from each replicate, we measured the
189 number of eggs (technically embryos) contained in the brood chamber (“egg ratio”). The average
190 sample size for the egg ratio analyses for the 0, 0.1, and 0.5 predators per L treatments was 11.5-
191 15.0 adult *Daphnia* per 2L sample per week; however, for the highest predation treatment,
192 average sample sizes were lower due to very low densities (3.4-5.3 adult *Daphnia* per 2L sample
193 per week). We then stored these adults in 95% ethanol at 2°C. We also collected a sieved water
194 sample to quantify a biomass proxy for the algal resource, chlorophyll *a*, using narrow-band
195 filters on a Trilogy fluorometer (Turner Designs, San Jose, CA, USA), following a chilled
196 ethanol extraction (Welschmeyer 1994).

197 To track evolution of the prey population, we genotyped the preserved (adult) individuals
198 on weeks 2, 6, and 9. The average sample size for the 0-0.5 predators per L treatments was 9.3-
199 14.5 adult *Daphnia* per 2L sample per week; however, for the highest predation treatment,
200 average sample sizes were again lower (4.6-6.2 adult *Daphnia* per 2L sample per week); see
201 Appendix S1: Section S1.3 for genotyping methods (after Allen et al. 2010). We did not estimate
202 parasite evolution because a) we only added a single parasite genotype, b) the parasite possesses
203 surprisingly little genetic variation (Shaw et al. 2021), and c) attempts to experimentally evolve it
204 have failed (Duffy and Sivars-Becker 2007, Auld et al. 2014, Cuco et al. 2020).

205

206 *Statistical analyses*

207 To test the healthy herds hypothesis, we analyzed data on infection prevalence, infected prey
208 density, and total prey density for weeks 2 through 9. A generalized linear model (glm) with
209 binomial error was overdispersed. Instead, we calculated the average for each of these metrics by
210 tank. For density metrics, we took the natural log of the density plus one prior to calculating
211 averages. For average infection prevalence and infected prey density, we performed an ANOVA
212 with predator treatment as a fixed effect. Given the likely shift in predation regimes over the
213 course of the experiment, as described above, we also tested to see if there was an effect of
214 predation in the middle of the experiment; because of overdispersion, we calculated the average
215 across the different replicates for each predation treatment at week 5, then regressed this against
216 predation level. For natural log-transformed average density of total prey density, we performed
217 an ANOVA with predator treatment, parasite presence/absence, and their interaction as fixed
218 effects. We then used the emmeans package (Lenth 2022) to compare specific treatments.

219 We found a strong reduction in parasitism in some treatments. To test whether evolution
220 of resistance to parasitism could explain this reduction, we combined data on the genotypic
221 composition of each prey population with estimates of infection susceptibility of each genotype.
222 The infection rate of clone i , $\beta_i = p_i f_{S_i}$, is the product of filtering rate (f_{S_i}) and per spore
223 probability of infection (p_i). Thus, the mean infection rate for a population is the weighted
224 average, $\sum_i \beta_i q_i(t)$, where $q_i(t)$ is the frequency of clone i at time t . We computed this mean at
225 weeks 2, 6, and 9. We then analyzed evolution (changes in mean β) using a linear mixed effects
226 model with time (week 2, 6, or 9), predator treatment, parasite presence/absence, and all two-
227 and three-way interactions and tank as a random effect (using the nlme package; Pinheiro et al.
228 2022).

229 As shown below, prey density declined sharply in high predation treatments over the first
 230 half of the experiment. To test whether this decline drove changes in prey-resource dynamics, we
 231 analyzed data on chlorophyll *a* and prey reproduction (egg ratio). We averaged natural log (LN)
 232 chlorophyll *a* and egg ratios from the first half of the experiment (weeks 2-5) and fit ANOVAs
 233 with predator treatment, parasite presence/absence, and their interaction as fixed effects. We did
 234 not analyze data on chlorophyll *a* or egg ratio from the second half of the experiment because of
 235 uncertainty about predator densities (see above). All analyses used R v 4.1.2 (R Core Team
 236 2022).

237

238 *Theoretical methods overview*

239 To gain additional insight about the observed dynamics, we analyzed a mathematical model
 240 parameterized to our system. We used it to answer two main questions: (i) Why did outbreaks
 241 occur in the lower predation treatments, but not the highest predation treatment? (ii) What
 242 biological conditions prevented increased predation from leading to increased total prey density?

243 *Multi-clone model of prey-parasite dynamics*

244 Our model describes the dynamics of multiple prey clones, an environmentally transmitted
 245 parasite, and predators held at a fixed density. The model equations are

$$246 \frac{dS_i}{dt} = \widehat{G_i(\cdot)} - \widehat{m_i S_i} - \widehat{\beta_i S_i Z} - \widehat{a_i S_i P} - \widehat{\lambda S_i} \quad \text{eq. 1.a}$$

$$247 \frac{dI_i}{dt} = \widehat{\beta_i S_i Z} - \widehat{(m_i + \mu_i) I_i} - \widehat{\omega a_i I_i P} - \widehat{\lambda I_i} \quad \text{eq. 1.b}$$

$$248 \frac{dZ}{dt} = \widehat{\sum_i \chi_i (m_i + \mu_i + x_i \omega a_i P) I_i} - \widehat{\sum_i (f_{S_i} S_i + f_{I_i} I_i) Z} - \widehat{\delta Z} - \widehat{\lambda Z} \quad \text{eq. 1.c}$$

249 where S_i and I_i are the densities of susceptible and infected individuals of clone i , respectively,

250 and Z is the density of infectious propagules (spores; see Table 1 for a complete list of model
251 state variables and parameters). In equation (1.a), susceptible individuals of clone i increase due
252 to reproduction ($G_i(\cdot)$) and decrease due to mortality from non-disease sources ($m_i S_i$), infection
253 ($p_i f_{S_i} S_i Z$), predation ($a_i S_i P$), and destructive sampling (λS_i). The reproduction rate $G_i(\cdot)$ is left
254 unspecified because we did not collect the density-dependent growth rates needed to
255 parameterize it; however, that information is not needed for our equilibrium-based analyses.
256 Infection rate ($\beta_i = p_i f_{S_i}$) is the product of the per spore probability of infection (p_i) and the
257 filtering rate of susceptible individuals (f_{S_i}). The predation term assumes fixed predator density
258 (P) (based on the experimental design) and predators have a linear functional response with
259 attack rate a_i . In equation (1.b), infected individuals increase due to infection ($\beta_i S_i Z$) and
260 decrease due to mortality from disease ($\mu_i I_i$) and non-disease sources ($m_i I_i$), predation ($\omega a_i I_i P$),
261 and destructive sampling (λI_i). The parameter ω allows for predators to have higher attack rates
262 ($\omega > 1$) on infected prey. In Appendix S1, we also consider non-selective predation ($\omega = 1$); the
263 results differ only modestly (see Appendix S1: Sections S4.1 and S4.2). In equation (1.c), spores
264 increase when released by infected prey ($\sum_i \chi_i (m_i + \mu_i + x_i \omega a_i P) I_i$) and decrease due to
265 ingestion ($\sum_i (f_{S_i} S_i + f_{I_i} I_i) Z$), degradation (δZ), and destructive sampling (λZ). Release rate
266 upon host death is the product of the spore burst size (χ_i) and mortality rates of infected prey.
267 Predators reduce burst size ($x_i < 1$) when they kill hosts before parasites reach the maximum
268 within-host density (see Appendix S1: Section S3.2). Ingestion removes spores, with susceptible
269 individuals having higher filtering rates than infected ones ($f_{S_i} > f_{I_i}$) (e.g., Penczykowski et al.
270 2022).

271 Details about estimation of parameters from smaller, ancillary experiments and their
272 values are given in Appendix S1: Sections S1 and S3.2. As indicated above, susceptibilities to

273 predation (predator attack rates, a_i) and susceptibilities to infection (infection rates, β_i) were
274 uncorrelated (Appendix S1: Figure S1a).

275

276 *Predicting the impact of predation on prey density*

277 We identified conditions under which predators increase total prey density by calculating the
278 response of total prey density at equilibrium (N^*) to increased predator density (P). Specifically,
279 the partial derivative $\partial N^* / \partial P$ determines if higher predation increases ($\partial N^* / \partial P > 0$) or
280 decreases ($\partial N^* / \partial P < 0$) prey density. This analysis focused on a single-clone version of model
281 (1) because analysis of the full version requires parameterization of reproduction rates, $G_i(\cdot)$ (see
282 Appendix S1: Section S4.2).

283

284 *Defining and computing R_0 and R :*

285 To explore why outbreaks occurred in the lower, but not the highest, predation treatments, we
286 used the multi-clone model (eq. 1) to estimate the parasite's basic reproduction number (R_0). R_0
287 is the average number of new infections produced by a single infected individual in a completely
288 susceptible population (analogous to our 'No parasites' treatment). Outbreaks are predicted to
289 occur if $R_0 > 1$. To make comparisons between treatments with and without parasites, we also
290 computed the parasite's reproduction number (R). The reproduction number is the average
291 number of new infections produced by an infected individual in a population made up of both
292 susceptible and infected prey (analogous to our 'Parasite' treatment). Assuming prey densities
293 remain fixed, an infected individual infects more than one prey in its lifetime if $R > 1$.

294 We calculated R_0 and R with the next generation matrix approach (van den Driessche and
295 Watmough 2008, Diekmann et al. 2010),

296
$$R_0 = \sum_i \frac{\chi_i(m_i + \mu_i + x_i \omega a_i P)}{m_i + \mu_i + \omega a_i P} \cdot \frac{\beta_i q_i N}{\delta + \sum_j f_{S_j} q_j N} \quad \text{eq. 2.a}$$

297
$$R = \sum_i \frac{\chi_i(m_i + \mu_i + x_i \omega a_i P)}{m_i + \mu_i + \omega a_i P} \cdot \frac{\beta_i q_i (N - I)}{\delta + \sum_j f_{S_j} q_j (N - I) + f_{I_j} q_j I} \quad \text{eq. 2.b}$$

298 where N is the total prey density, I is the total density of infected prey, $S = N - I$ is the total
 299 density of susceptible prey, and q_i is the frequency of clone i (see Appendix S1: Section S3.3).
 300 Note that because equation (2.a) assumes all prey are susceptible, the total density N is equal to
 301 the total density of susceptible prey ($S = N$). In both sums, the first fraction is the production
 302 rate of spores by infected individuals of clone i multiplied by the average lifespan of an infected
 303 individual of clone i ($1/[m_i + \mu_i + \omega a_i P]$). This ratio defines the average lifetime production of
 304 spores by an infected individual of clone i . The second fraction in both sums is the infection rate
 305 of susceptible individuals of clone i multiplied by the average lifespan of a spore ($1/[\delta +$
 306 $\sum_j f_{S_j} q_j N]$ or $1/[\delta + \sum_j f_{S_j} q_j (N - I) + f_{I_j} q_j I]$). It defines the average lifetime production of
 307 new infected individuals of clone i by a spore. We computed R_0 and R using the estimated
 308 parameter values and measured prey densities and clone frequencies at weeks 0 and 2; weeks 6
 309 and 9 were not analyzed because of possible changes in predator density.

310

311 **Results**

312 *Empirical result: Predation reduced infection prevalence and infected prey density without
 313 increasing total prey density*

314 Predation reduced infection prevalence (Fig. 1a,b) and the density of infected prey (Fig. 1c,d).
 315 After week 2, infection prevalence dropped to zero in all prey populations experiencing the
 316 highest levels of predation. Conversely, infections persisted throughout the experiment in all
 317 populations without predation. Predation significantly impacted average infection prevalence

318 ($F_{3,20} = 8.46, p = 0.0008$; Fig. 1b) and average density of infected prey ($F_{3,20} = 15.2, p < 0.0001$;
319 Fig. 1d), with a significant negative effect of predator density treatment on infection prevalence
320 ($t_3 = -8.0, p = 0.015$) and average density of infected prey ($t_3 = -10.2, p = 0.0096$) at week 5.
321 This reduction did not arise due to evolution of resistance to infection. Prey populations became
322 significantly more resistant (lower mean infection rate) by the end of the experiment (Fig. 1g;
323 time: $F_{1,71} = 112.0, p < 0.0001$). Resistance evolved even in populations not exposed to
324 parasites, but more so in those with them (Fig. 1g,h; parasitism: $F_{1,31} = 4.86, p = 0.033$).
325 Importantly, susceptibility to infection was increasing when parasites disappeared from the high
326 predation populations (Fig. 1a,g), and predation did not significantly influence the evolution of
327 infection rate (predation: $F_{3,39} = 2.16, p = 0.108$). For this analysis, all interactions were not
328 significant (see Appendix S1: Table S1). Overall, the reduction in parasitism cannot be attributed
329 to evolution of resistance to infection.

330 Reduction of parasite prevalence did not increase prey densities (Fig. 1e,f). Instead, the
331 highest predation treatment cleared infection but had much lower prey density. Higher predation
332 decreased prey density (predation: $F_{3,39} = 37.3, p < 0.0001$) while parasitism did not change it
333 (parasitism: $F_{1,39} = 2.54, p = 0.12$, predation x parasitism: $F_{3,39} = 0.82, p = 0.49$; Fig. 1f).
334 Comparing across treatments, the highest predation treatments with and without parasites did not
335 differ from one another ($t_1 = 1.54, p = 0.78$), but these two treatments (that is, 1.0 predator per L,
336 with and without parasites) differed significantly from all of the other treatments; none of those
337 other treatments differed significantly from one another (see Appendix S1: Table S1). Thus, the
338 highest predation treatments had lower prey densities than the other predation treatments, and the
339 extent of density reduction in prey did not depend on whether the population was parasitized.

340

341 *Theoretical result: High predation lowers parasite reproduction number to near or below 1*
342 Consistent with the experiment, predation lowered the basic reproduction number, R_0 , and the
343 reproduction number, R . More specifically, R_0 and R were highest without predation and lowest
344 in the highest predation treatment (Fig. 2a,b). The reason is that high predation levels mean that
345 more infected prey die from predation (with reduced burst size) than from infection (with full
346 burst size). This reduction in burst size reduces R_0 and R .

347 The decreasing values of R_0 and R with increased predation provide indirect support for
348 the first prediction of the healthy herds hypothesis (that predation should reduce disease in prey
349 populations). In our experiment, the parasite did not persist in the highest predation treatment
350 (black lines in Fig. 1a,c), indicating that R_0 and R were less than 1. In partial agreement with
351 this, about one half of the predicted values of R_0 and R were less than 1 for the highest predation
352 treatment at all times (black points in Fig. 2). The other values remained near 1. Hence, the R_0
353 and R calculations qualitatively captured the proportion infected signal in the experiment.

354 Additionally, R_0 and R increased for all low predation treatments between weeks 0 and 2,
355 but only for some of the high predation treatments (Fig. 2a,b). As described in Appendix S1:
356 Section S4.1, we used the Geber Method (Hairston et al. 2005) to show that the changes in R_0
357 and R were primarily driven by changes in prey densities rather than changes in clone
358 frequencies (i.e., evolution). Specifically, large increases in prey density elevated R_0 and R in the
359 low predation treatments (blue lines in Fig. 1e). The smaller changes in the highest predation
360 treatment were due to decreases or smaller increases in prey density (black lines in Fig. 1e).

361

362 *Theoretical result: High infection prevalence prevented predators from increasing prey density*
363 Our analysis of a single-clone version of the model (eq. 1) in Appendix S1: Section S4.2 shows

364 that higher prey density with increased predator density, $\partial N^*/\partial P > 0$, requires that (i) predators
365 have sufficiently higher attack rates on infected prey than susceptible prey ($\omega > 1$) and (ii)
366 consumed infected prey have sufficiently smaller burst sizes than infected prey that were not
367 consumed ($x_i < 1$). These two conditions were met (Appendix S1: Sections S3.2, S4.2). The
368 third condition is that (iii) the proportion of infected prey (I/N) is sufficiently low. Under these
369 conditions, prey density is highest in the absence of the predator and parasite, lower in the
370 presence of just the predator, even lower in the presence of the predator and parasite, and lowest
371 in the presence of just the parasite. These conditions result in stronger regulation of the prey
372 population by the parasite than by predators.

373 Our empirical results (Fig. 1e) show that prey density decreased from the lower to highest
374 predation treatments. This suggests that $\partial N^*/\partial P < 0$, and because conditions (i) and (ii) were met
375 in our system, we infer that predators decreased prey density because infection prevalence was
376 too high. To verify this inference, we parameterized the single-clone version of the model using
377 averaged parameter values computed from the clone frequencies observed at weeks 0 and 2 of
378 our mesocosm experiments (Appendix S1: Section S4.2). The parameterized single clone model
379 predicted that increased prey density with increased predation required infection prevalence of
380 approximately 5% or less (Appendix S1: Figure S6) – a condition rarely met in the experiment
381 (Fig. 1a). Thus, despite satisfying conditions about selectivity and burst size, predators likely did
382 not increase prey densities because infection prevalence remained too high.

383 Why does infection prevalence need to be sufficiently low for predators to increase prey
384 density? Increased predator density has a negative direct effect on prey density because it
385 increases mortality for infected and susceptible prey. At the same time, predators have positive
386 indirect effects on prey density because increased predator density (i) reduces intraspecific

387 competition for resources (by reducing density) and (ii) decreases rates of infection (and thus
388 rates of disease-induced mortality) by reducing spore burst sizes of consumed infected prey. If
389 infection prevalence is low, then the negative direct effect of increased mortality from predation
390 is counteracted by the positive indirect effects of decreased intraspecific competition and
391 decreased infection rates. The net result increases prey density with higher predation.
392 Alternatively, with higher infection prevalence, decreased intraspecific competition and burst
393 sizes cannot counteract the increased mortality from predation.

394

395 *Empirical result: Predator-driven reductions in prey influenced prey-resource dynamics*
396 High predation prevented epidemics but inflicted major density costs on prey (Fig. 1e). After
397 prey density dropped, chlorophyll increased, especially in the highest predation treatment (Fig.
398 3a; analysis of average LN chl in weeks 2-5: predation: $F_{3,39} = 7.32, p = 0.0005$, parasitism: $F_{1,39}$
399 $= 0.88, p = 0.35$, predation x parasitism: $F_{3,39} = 1.47, p = 0.24$). This increase fueled higher
400 reproduction of prey (egg ratios) (Fig. 3c,d; analysis of average egg ratios in weeks 2-5:
401 predation: $F_{3,39} = 18.5, p < 0.0001$, parasitism: $F_{1,39} = 0.53, p = 0.47$, predation x parasitism: $F_{3,39}$
402 $= 0.20, p = 0.90$).

403

404 **Discussion**

405 The healthy herds hypothesis suggests that increasing predation can reduce parasitism and, as a
406 result, increase densities of prey populations. However, a recent meta-analysis questioned the
407 generality of healthy herds dynamics (Richards et al. 2022). In our study manipulating predation
408 levels in a predator-prey-parasite system, we found partial support for healthy herds. Increasing
409 predation reduced parasitism (both prevalence and infected prey density). Thus, if a management

410 goal centers on low(er) parasitism in a population (e.g., because of concerns about spillover of
411 parasites to humans or other populations), adding predators can help. The theoretical analysis
412 supports this conclusion: high enough predation decreased the reproductive number of the
413 parasite to near or below 1, inhibiting parasite spread. However, predation greatly decreased prey
414 population sizes at the highest predation levels, despite eliminating the virulent parasite. This
415 result arose both in mesocosms and the theoretical analysis. Thus, if our primary concern is
416 overall population size (e.g., to conserve genetic diversity or avoid stochastic extinctions),
417 adding high levels of predation that eliminate disease could be detrimental. Interestingly,
418 intermediate predation levels reduced parasitism without incurring a cost in terms of overall prey
419 density – a situation that would reduce spillover risk without harming prey density.

420 The experiment supported the first but not second part of the healthy herds hypothesis:
421 predation reduced infection prevalence, but prey density did not increase as a result. Why did
422 epidemic suppression not increase prey density? In its original formulation (Packer et al. 2003),
423 the healthy herds effect of decreased parasitism and increased prey density was most likely for 1)
424 highly virulent parasites, 2) highly aggregated macroparasites, 3) long-lived prey, and 4)
425 selective predation on infected prey. Our plankton system satisfies conditions one and four. Our
426 theoretical analysis revealed a fifth condition: sufficiently low infection prevalence (see
427 Appendix S1: Section S4 for details). This fifth condition occurs because, at low prevalence,
428 enhanced reproduction by susceptible hosts can compensate for the mortality imposed by
429 selective predators; however, if prevalence becomes too high, mortality from predation becomes
430 too high for such compensation. Therefore, our analysis reveals that increased prey density with
431 increased predation can only arise if infection prevalence is sufficiently low.

432 In our experiment, intermediate levels of predation reduced parasitism but not prey

433 density. This result does not meet the full healthy herds prediction yet remains of interest
434 because it suggests predation can reduce infection levels (and, therefore, risk of spillover to
435 nearby populations) without harming prey density. However, too much predation (as at the
436 highest level here) can greatly deplete prey. Hence, lower spillover risk can come at a severe
437 density cost in prey, depending on the exact level of predation. Therefore, any management
438 decisions would need to weigh the potential costs and benefits associated with increasing
439 predation. The result from the intermediate predation levels also shows how qualitative results
440 can differ along a predation gradient. Unfortunately, most studies of the healthy herds hypothesis
441 use only two predation levels (presence/absence or high/low; Richards et al. 2022). We
442 recommend that future work at the predation-parasitism interface span predation gradients
443 instead.

444 The healthy herds hypothesis has similarities with another dominant topic in disease
445 ecology, the dilution effect: both of these community modules of disease highlight how adding a
446 species can reduce disease prevalence (Civitello et al. 2015a, Johnson et al. 2015, Rohr et al.
447 2020). For instance, both can reduce disease encounter (i.e., removal of propagules), via direct
448 consumption of propagules or selective removal of infected hosts. However, work on the dilution
449 effect and healthy herds hypothesis has proceeded largely independently. To develop a more
450 robust understanding of the factors driving infection levels in natural populations, we must build
451 towards studies recognizing that focal hosts play a multitude of roles in food webs. We require
452 studies that combine food web modules (as in Rohr et al. 2015, Strauss et al. 2016), allowing us
453 to better integrate the multiple roles that species play simultaneously (hosts, competitors, prey).
454 Doing so will allow better management of populations where there are multiple, potentially
455 competing, goals (e.g., reducing disease levels vs. maintaining high densities).

456 Our experiment did not measure resources through time, but resources likely varied over
457 time because resources were replenished weekly. While we know that resource levels have the
458 potential to strongly influence host-parasite dynamics (Johnson et al. 2007, Pedersen and Greives
459 2008, Civitello et al. 2015b) and the effects of predators on parasitism (Hall et al. 2005), our
460 model suggests that variation in resource availability is unlikely to qualitatively affect the
461 observed reduction in total prey density due to predation in our experiment. The way equilibrium
462 prey density is affected by changes in predator density is given by equation (S26). Variation in
463 resources causes variation in prey growth rate and variation in prey growth rate would
464 qualitatively alter our results only if equation (S26) were to change sign. As explained in more
465 detail at the end of Appendix S2: Section S4.2, equation (S26) can change signs only if 1) the
466 prey per capita growth rate is an increasing function of prey density or 2) infection prevalence
467 drops below 5%. The former is unlikely because at the high prey densities in our experiment, the
468 variation in prey growth rates caused by variation in resource availability is unlikely to alter the
469 negative relationship between prey density and prey per capita growth rate. The latter is also
470 unlikely because infection prevalence was greater than 10% at the end of the experiment and
471 variation in resources is unlikely to cause a large enough decrease in prey density that the
472 infection prevalence drops by more than half. In total, our model suggests that the variation in
473 resource availability is unlikely to have affected the negative relationship between total prey
474 density and predator density level.

475 An interesting finding of our experiment was that parasitism was reduced in the
476 intermediate predation treatments but prey density was not, which would mean reduced risk of
477 disease spillover to neighboring populations without the host population suffering reduced
478 densities. However, we know that predation levels declined to low levels in all treatments

479 midway through the experiment, meaning that the predation effects we measured are likely
480 conservative. If predation levels had stayed at the intended levels, it's possible that we would
481 have seen an impact on prey density in these intermediate predation treatments. This uncertainty
482 – along with the challenges associated with trying to maintain particular predation levels even in
483 relatively controlled settings such as our environment – mean that caution is warranted for
484 managers seeking to manipulate predation levels. Achieving and maintaining a predation level
485 that reduces parasitism without harming density might be equivalent to threading the proverbial
486 needle.

487 Here, we found that increased predation reduced prevalence of a virulent parasite,
488 illustrating the potential for predation to lower disease in prey. However, even though this
489 virulent parasite could not persist in the presence of high predation, prey population size did not
490 benefit, contrary to the healthy herds hypothesis. Instead, high predation led to healthy but
491 depleted herds. Together, the prevalence vs. density results showcase the pros and cons of
492 disease control by predators: predation could reduce spillover risk but also harm prey population
493 sizes. Interestingly, a different type of interaction – that between prey and their resources – was
494 clearly impacted by the variation in predation, reminding us that predator-prey-parasite
495 interactions do not occur in isolation. Expanding our focus to include a broader perspective on
496 the many roles that individual species play in a food web will allow us to better understand – and
497 hopefully even predict – how populations will respond to changing predation regimes and along
498 broad predation gradients.

499

500 **Acknowledgments**

501 Thanks to M. Baker for assistance, and S. Calhoun, N. Manuszak, and K. Monell for help with

502 data entry and checking. We also thank R. Holt and his extended lab group for engaging
503 discussions and Elizabeth Borer, Jason Rohr, and two anonymous reviewers for helpful
504 comments on an earlier draft of this manuscript. This work was supported by NSF DEB-1655856
505 to MAD, NSF DEB-2015280 to MHC, NSF DEB-1655656 to SRH, NSF DEB-1655665 to CEC,
506 and by the Gordon and Betty Moore Foundation (GBMF9202 to MAD; DOI:
507 <https://doi.org/10.37807/GBMF9202>).

508 **Author contributions**

509 CEC, MAD, and SRH initiated the study. The experiment was designed by CEC, TSD, MAD,
510 SRH, and LKL and was carried out by LKL, TSD, BO, and SRH. Genotyping was carried out by
511 IAM and CEC; trait measurements were carried out by LKL, IAM, and CEC. Model
512 development and analysis was led by MHC, with feedback from MAD, LKL, and SRH. MAD,
513 MHC, and LKL wrote the initial draft of the manuscript; all authors contributed to editing.

514 **Conflict of Interest Statement**

515 The authors report no conflict of interest.

516 **References**

517 Allen, M. R., R. A. Thum, and C. E. Cáceres. 2010. Does local adaptation to resources explain
518 genetic differentiation among *Daphnia* populations? *Molecular Ecology* **19**:3076-3087.
519 Auld, S. K., S. R. Hall, J. H. Ochs, M. Sebastian, and M. A. Duffy. 2014. Predators and patterns
520 of within-host growth can mediate both among-host competition and evolution of
521 transmission potential of parasites. *American Naturalist* **18**:S77-S90.
522 Cáceres, C. E., C. J. Knight, and S. R. Hall. 2009. Predator spreaders: predation can enhance
523 parasite success in a planktonic host-parasite system. *Ecology* **90**:2850-2858.
524 Civitello, D. J., J. Cohen, H. Fatima, N. T. Halstead, J. Liriano, T. A. McMahon, C. N. Ortega, E.
525 L. Sauer, T. Sehgal, S. Young, and J. R. Rohr. 2015a. Biodiversity inhibits parasites:
526 Broad evidence for the dilution effect. *Proceedings of the National Academy of Sciences*
527 **112**:8667-8671.
528 Civitello, D. J., R. M. Penczykowski, A. N. Smith, M. S. Shocket, M. A. Duffy, and S. R. Hall.
529 2015b. Resources, key traits, and the size of fungal epidemics in *Daphnia* populations.
530 *Journal of Animal Ecology* **84**:1010-1017.
531 Clay, P. A., K. L. Dhir, V. H. W. Rudolf, and M. A. Duffy. 2019. Within host priority effects
532 systematically alter pathogen coexistence. *American Naturalist* **193**:187-199.

533 Cuco, A. P., J. Wolinska, J. I. Santos, N. Abrantes, F. J. M. Gonçalves, and B. B. Castro. 2020.
534 Can parasites adapt to pollutants? A multigenerational experiment with a *Daphnia* ×
535 *Metschnikowia* model system exposed to the fungicide tebuconazole. *Aquatic Toxicology*
536 **226**:105584.

537 Diekmann, O., J. A. P. Heesterbeek, and M. G. Roberts. 2010. The construction of next-
538 generation matrices for compartmental epidemic models. *Journal of The Royal Society*
539 *Interface* **7**:873-885.

540 Duffy, M. A. 2007. Selective predation, parasitism, and trophic cascades in a bluegill-*Daphnia*-
541 parasite system. *Oecologia* **153**:453-460.

542 Duffy, M. A., C. E. Cáceres, and S. R. Hall. 2019. Healthy herds or predator spreaders? Insights
543 from the plankton into how predators suppress and spread disease. Pages 458-479 in K.
544 Wilson, D. M. Tompkins, and A. Fenton, editors. *Wildlife Disease Ecology: Linking*
545 *Theory to Data and Application*. Cambridge University Press, Cambridge, UK.

546 Duffy, M. A., and S. R. Hall. 2008. Selective predation and rapid evolution can jointly dampen
547 effects of virulent parasites on *Daphnia* populations. *American Naturalist* **171**:499-510.

548 Duffy, M. A., L. Lopez, and M. H. Cortez. 2023. Data and code for: A healthy but depleted herd:
549 predators decrease prey disease and density. Dryad, dataset.
550 <https://doi.org/10.5061/dryad.w3r2280tm>

551 Duffy, M. A., and L. Sivars-Becker. 2007. Rapid evolution and ecological host-parasite
552 dynamics. *Ecology Letters* **10**:44-53.

553 Flick, A. J., T. A. Coudron, and B. D. Elderd. 2020. Intraguild predation decreases predator
554 fitness with potentially varying effects on pathogen transmission in a herbivore host.
555 *Oecologia* **193**:789-799.

556 Gallagher, S. J., B. J. Tornabene, T. S. DeBlieux, K. M. Pochini, M. F. Chislock, Z. A. Compton,
557 L. K. Eiler, K. M. Verble, and J. T. Hoverman. 2019. Healthy but smaller herds:
558 Predators reduce pathogen transmission in an amphibian assemblage. *Journal of Animal*
559 *Ecology* **88**:1613-1624.

560 Garcia, E. A., and G. G. Mittelbach. 2008. Regional coexistence and local dominance in
561 *Chaoborus*: Species sorting along a predation gradient. *Ecology* **89**:1703-1713.

562 Hairston, N. G., Jr., S. P. Ellner, M. A. Geber, T. Yoshida, and J. A. Fox. 2005. Rapid evolution
563 and the convergence of ecological and evolutionary time. *Ecology Letters* **8**:1114-1127.

564 Hall, S. R., M. A. Duffy, and C. E. Cáceres. 2005. Selective predation and productivity jointly
565 drive complex behavior in host-parasite systems. *American Naturalist* **165**:70-81.

566 Hite, J. L., R. M. Penczykowski, M. S. Shocket, A. T. Strauss, P. A. Orlando, M. A. Duffy, C. E.
567 Cáceres, and S. R. Hall. 2016. Parasites destabilize host populations by shifting stage-
568 structured interactions. *Ecology* **97**:439-449.

569 Hudson, P. J., A. P. Dobson, and D. Newborn. 1992. Do parasites make prey vulnerable to
570 predation? Red grouse and parasites. *Journal of Animal Ecology* **61**:681-692.

571 Hudson, P. J., A. P. Dobson, and D. Newborn. 1998. Prevention of population cycles by parasite
572 removal. *Science* **282**:2256-2258.

573 Johnson, P. T. J., J. M. Chase, K. L. Dosch, R. B. Hartson, J. A. Gross, D. J. Larson, D. R.
574 Sutherland, and S. R. Carpenter. 2007. Aquatic eutrophication promotes pathogenic
575 infection in amphibians. *Proceedings of the National Academy of Sciences* **104**:15781-
576 15786.

577 Johnson, P. T. J., R. S. Ostfeld, and F. Keesing. 2015. Frontiers in research on biodiversity and
578 disease. *Ecology Letters* **18**:1119-1133.

579 Laundon, D., T. Mock, G. Wheeler, and M. Cunliffe. 2021. Healthy herds in the phytoplankton:
580 the benefit of selective parasitism. *The ISME Journal* **15**:2163-2166.

581 Laws, A. N., T. C. Frauendorf, J. E. Gómez, and I. M. Algaze. 2009. Predators mediate the
582 effects of a fungal pathogen on prey: an experiment with grasshoppers, wolf spiders, and
583 fungal pathogens. *Ecological Entomology* **34**:702-708.

584 Lenth, R. V. 2022. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package
585 version 1.7.3.

586 Malek, J. C., and J. E. Byers. 2016. Predator effects on host-parasite interactions in the eastern
587 oyster *Crassostrea virginica*. *Marine Ecology Progress Series* **556**:131-141.

588 Mohammed, A. A. 2018. *Lecanicillium muscarium* and *Adalia bipunctata* combination for the
589 control of black bean aphid, *Aphis fabae*. *BioControl* **63**:277-287.

590 Murdoch, W. W., C. J. Briggs, and R. M. Nisbet. 2003. Consumer-Resource Dynamics.
591 Princeton University Press.

592 Packer, C., R. D. Holt, P. J. Hudson, K. D. Lafferty, and A. P. Dobson. 2003. Keeping the herds
593 healthy and alert: implications of predator control for infectious disease. *Ecology Letters*
594 **6**:797-802.

595 Pedersen, A. B., and T. J. Greives. 2008. The interaction of parasites and resources cause crashes
596 in a wild mouse population. *Journal of Animal Ecology* **77**:370-377.

597 Penczykowski, R. M., M. S. Shocket, J. H. Ochs, B. C. P. Lemanski, H. Sundar, M. A. Duffy,
598 and S. R. Hall. 2022. Virulent disease epidemics can increase host density by depressing
599 foraging of hosts. *The American Naturalist* **199**:75-90.

600 Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R Core Team. 2022. nlme: linear and nonlinear
601 mixed effects models.

602 R Core Team. 2022. R: A Language and Environment for Statistical Computing. R Foundation
603 for Statistical Computing, Vienna, Austria.

604 Richards, R. L., J. M. Drake, and V. O. Ezenwa. 2022. Do predators keep prey healthy or make
605 them sicker? A meta-analysis. *Ecology Letters* **25**:278-294.

606 Rohr, J. R., D. J. Civitello, P. W. Crumrine, N. T. Halstead, A. D. Miller, A. M. Schotthoefer, C.
607 Stenoien, L. B. Johnson, and V. R. Beasley. 2015. Predator diversity, intraguild
608 predation, and indirect effects drive parasite transmission. *Proceedings of the National
609 Academy of Sciences* **112**:3008-3013.

610 Rohr, J. R., D. J. Civitello, F. W. Halliday, P. J. Hudson, K. D. Lafferty, C. L. Wood, and E. A.
611 Mordecai. 2020. Towards common ground in the biodiversity-disease debate. *Nature
612 Ecology & Evolution* **4**:24-33.

613 Rosenheim, J. A., and J. P. Harmon. 2006. The influence of intraguild predation on the
614 suppression of a shared prey population: an empirical reassessment. Pages 1-20 in J.
615 Brodeur and G. Boivin, editors. *Trophic and guild interactions in biological control*.
616 Springer, New York.

617 Shang, G.-Z., Y.-H. Zhu, Y. Wu, Y.-F. Cao, and J.-H. Bian. 2019. Synergistic effects of
618 predation and parasites on the overwinter survival of root voles. *Oecologia* **191**:83-96.

619 Shaw, C. L., R. Bilich, B. O'Brien, C. E. Cáceres, S. R. Hall, T. Y. James, and M. A. Duffy.
620 2021. Genotypic variation in an ecologically important parasite is associated with host
621 species, lake and spore size. *Parasitology* **148**:1303-1312.

622 Stewart Merrill, T. E., and C. E. Cáceres. 2018. Within-host complexity of a plankton-parasite
623 interaction. *Ecology* **99**:2864-2867.

624 Strauss, A. T., J. L. Hite, M. S. Shocket, C. E. Cáceres, M. A. Duffy, and S. R. Hall. 2017. Rapid
625 evolution rescues hosts from competition and disease but—despite a dilution effect—
626 increases the density of infected hosts. *Proceedings of the Royal Society B: Biological
627 Sciences* **284**.

628 Strauss, A. T., M. S. Shocket, D. J. Civitello, J. L. Hite, R. M. Penczykowski, M. A. Duffy, C. E.
629 Cáceres, and S. R. Hall. 2016. Habitat, predators, and hosts regulate disease in *Daphnia*
630 through direct and indirect pathways. *Ecological Monographs* **86**:393-411.

631 Tan, X., N. Hu, F. Zhang, R. Ramirez-Romero, N. Desneux, S. Wang, and F. Ge. 2016. Mixed
632 release of two parasitoids and a polyphagous ladybird as a potential strategy to control
633 the tobacco whitefly *Bemisia tabaci*. *Scientific Reports* **6**:28245.

634 Tessier, A. J., and P. Woodruff. 2002. Cryptic trophic cascade along a gradient of lake size.
635 *Ecology* **83**:1263-1270.

636 Trandem, N., R. Berdinesen, J. K. Pell, and I. Klingen. 2016. Interactions between natural
637 enemies: Effect of a predatory mite on transmission of the fungus *Neozygites floridana* in
638 two-spotted spider mite populations. *Journal of Invertebrate Pathology* **134**:35-37.

639 van den Driessche, P., and J. Watmough. 2008. Further notes on the basic reproduction number.
640 Pages 159-178 in F. Brauer, P. van den Driessche, and J. Wu, editors. *Mathematical
641 Epidemiology*. Springer Berlin Heidelberg, Berlin, Heidelberg.

642 Welschmeyer, N. A. 1994. Fluorometric analysis of chlorophyll-a in the presence of chlorophyll-
643 b and pheopigments. *Limnology and Oceanography* **39**:1985-1992.

644 Yin, M., C. Laforsch, J. N. Lohr, and J. Wolinska. 2011. Predator-induced defense makes
645 *Daphnia* more vulnerable to parasites. *Evolution* **65**:1482-1488.

646

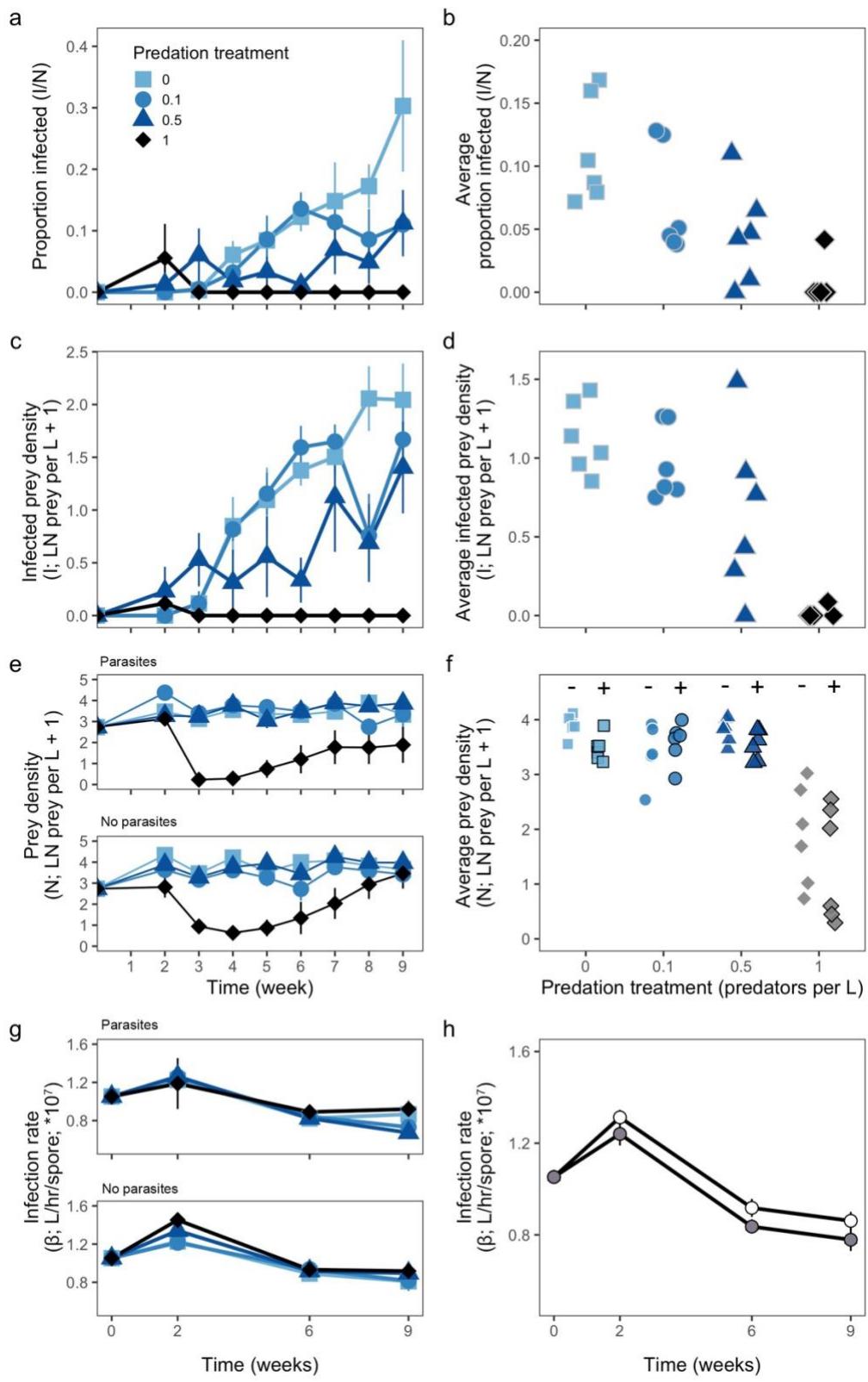
647 **Table 1.** Model parameters and state variables for the multi-clone model (eq. 1). Specific
 648 estimates for each of the clone-specific parameters are given in Appendix S1: Table S3.

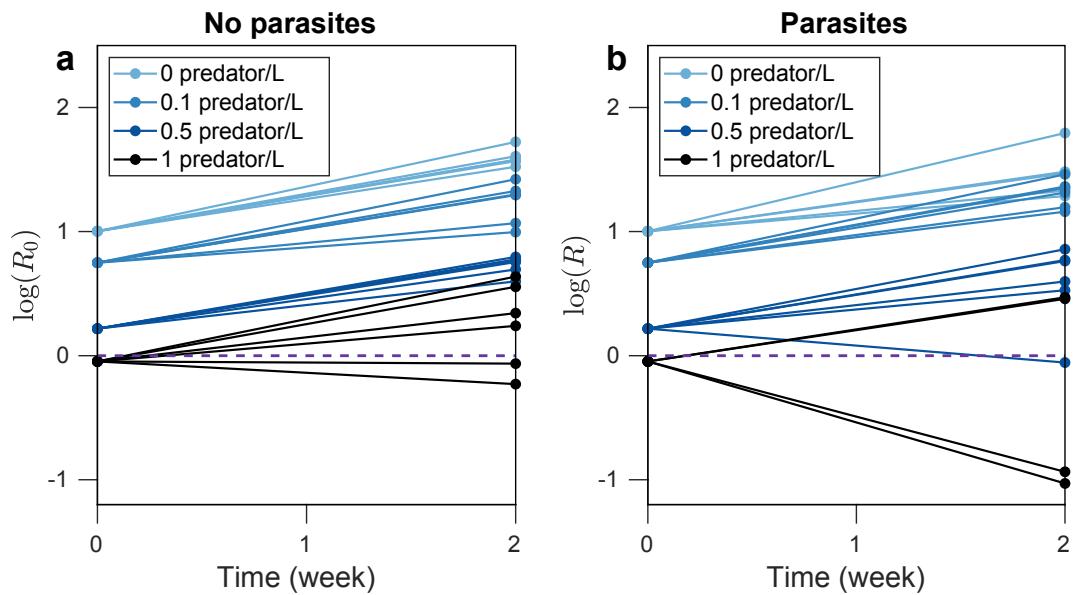
649

Parameter or state variable	Units	Description
S_i	indiv/L	density of susceptible prey of clone i
I_i	indiv/L	density of infected prey of clone i
Z	spores/L	density of infectious propagules (spores)
p_i	indiv/spore	per spore probability of infection of clone i
f_S, f_I	L/hr/indiv	filtering rates of susceptible and infected individuals, respectively, of clone i
β_i	L/hr/spore	infection rate for clone i , defined as $p_i f_S$
m_i	1/hr	prey mortality rate due to factors other than disease for clone i
μ_i	1/hr	disease-induced mortality rate for clone i
a_i	L/hr/predator	predator attack rate on susceptible individuals of clone i
ω	unitless	increase in attack rate on infected individuals
P	predator/L	predator density
χ_i	spores/indiv	spore burst size (that is, spores released from a dead infected individual) for clone i
x_i	unitless	fractional reduction in spore burst size of consumed individuals
δ	1/hr	spore degradation rate
λ	1/hr	liquid removal rate (during destructive sampling)

650 indiv = individual

651


652 **Figure captions**


653 **Figure 1.** Predation decreased the prevalence of infection (a,b), the density of infected prey (*D.*
654 *dentifera*; c,d), and total prey density (e,f). Prey evolved resistance to infection (i.e., lower mean
655 weighed infection rate; g,h) after the parasite went extinct in the high predation treatments.
656 Panels a,c,e,&g show time series data averaged across replicates, whereas b,d,&f show the
657 averages across replicates and time; for c-f, the y-axis is the natural log (LN) of infected or total
658 prey density per liter plus 1. Error bars on panels a,c,e,g,&h represent standard errors. In panels
659 b,d,&f, individual replicates are shown, jittered horizontally to increase visibility. In panel f, the
660 points are grouped by whether they were the no parasite treatment (“-“ label at top, left set of
661 symbols for each predation treatment) or whether they were the + parasite treatment (“+” label at
662 top, right set of symbols for each predation level, black outlines around symbols.) Panel h shows
663 the same data as in panel f, averaged across predation treatments; lower infection rate means
664 higher infection resistance.

665 **Figure 2:** Predation reduced (a) the parasite’s basic reproduction number (R_0) and (b)
666 reproduction number (R). Values of R_0 and R were computed using equations (2.a,b), estimated
667 parameter values, and the measured clone frequencies and prey densities at weeks 0 and 2. Each
668 point connected by lines represents an estimated value of R_0 or R for a particular tank. Line
669 coloring indicates the predation treatment. Some replicates are missing points because very low
670 prey density eliminated estimation of clone frequencies. The dashed line indicates $R_0=R=1$.

671 **Figure 3.** Algal abundance (as measured by chlorophyll *a*) increased in the highest predation
672 treatments early in the experiment, driving higher egg ratios in the first half of the experiment.
673 Panels a&b show chlorophyll data, while c&d show egg ratio (number of embryos per adult *D.*
674 *dentifera*) data. Panels a&c show time series data; error bars represent standard errors. We could

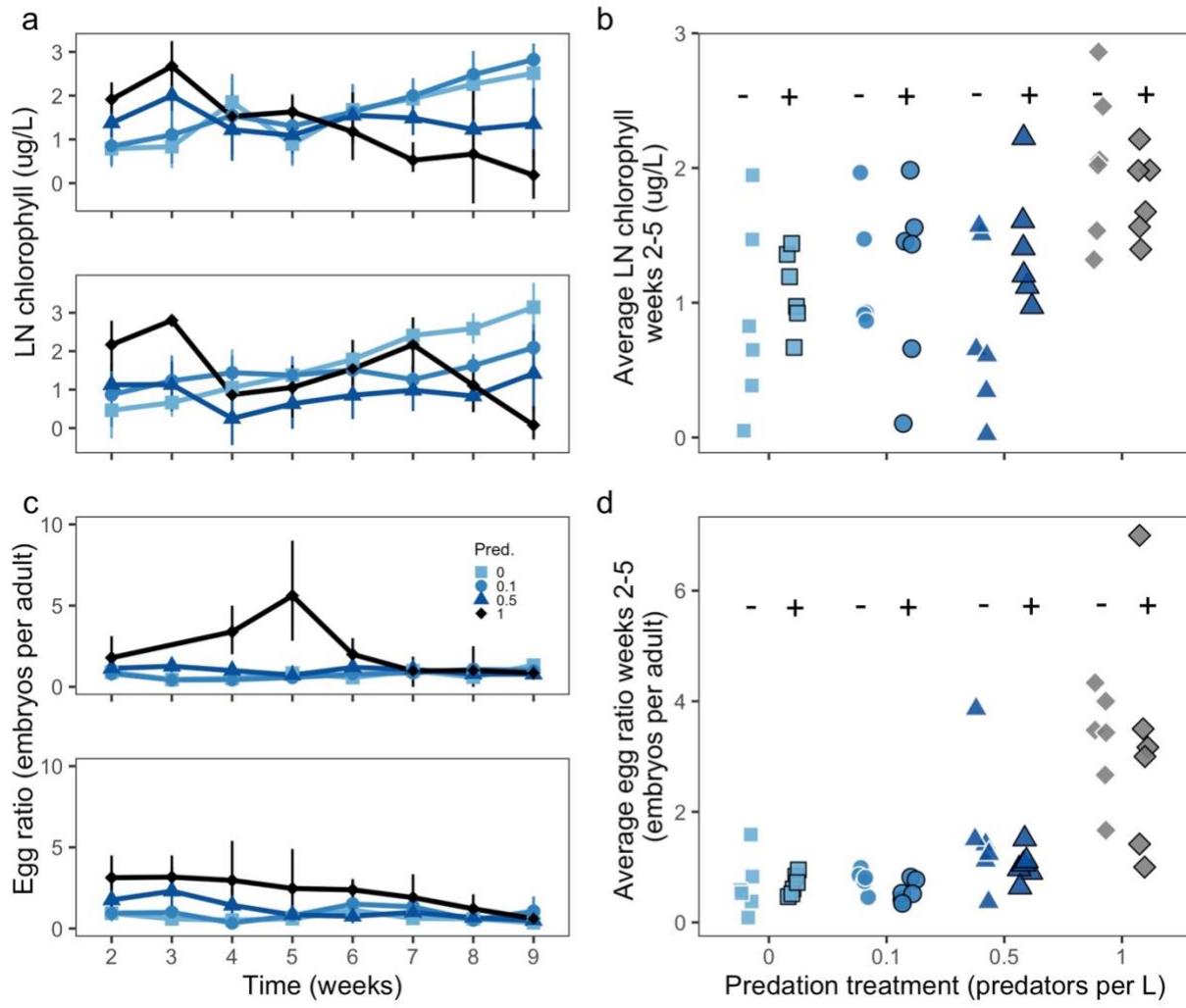

675 not estimate egg ratio in any population of the high predation + parasitism treatment in week 3
676 because prey densities reached such low levels. Panels b&d show averages for the first half of
677 the experiment (weeks 2-5) for each replicate, jittered to increase visibility and with the points
678 grouped by whether they were the no parasite treatment (“-“ label at top, left set of symbols for
679 each predation treatment) or the + parasite treatment (“+” label at top, right set of symbols for
680 each predation level, black outlines around symbols.)

Figure 1.

684
685

Figure 2.

686
687
688

Figure 3.