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Abstract

The healthy herds hypothesis proposes that predators can reduce parasite prevalence and thereby
increase density of their prey. However, evidence for such predator-driven reductions in
prevalence in prey remains mixed. Furthermore, even less evidence supports increases in prey
density during epidemics. Here, we used a planktonic predator-prey-parasite system to
experimentally test the healthy herds hypothesis. We manipulated density of a predator (the
phantom midge, Chaoborus punctipennis) and parasitism (the virulent fungus Metschnikowia
bicuspidata) in experimental assemblages. Because we know natural populations of the prey
(Daphnia dentifera) vary in susceptibility to both predator and parasite, we stocked experimental
populations with nine genotypes spanning a broad range of susceptibility to both enemies.
Predation significantly reduced infection prevalence, eliminating infection at the highest
predation level. However, lower parasitism did not increase densities of prey; instead, prey
density decreased substantially at the highest predation levels (a major density cost of healthy
herds predation). This density result was predicted by a model parameterized for this system. The
model specifies three conditions for predation to increase prey density during epidemics: (i)
predators selectively feed on infected prey, (ii) consumed infected prey release fewer infectious
propagules than unconsumed prey, and (iii) sufficiently low infection prevalence. While the
system satisfied the first two conditions, prevalence remained too high to see an increase in prey
density with predation. Low prey densities caused by high predation drove increases in algal
resources of the prey, fueling greater reproduction, indicating that consumer-resource
interactions can complicate predator-prey-parasite dynamics. Overall, in our experiment,
predation reduced prevalence of a virulent parasite but, at the highest levels, also reduced prey

density. Hence, while healthy herds predation is possible under some conditions, our empirical
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results make it clear that manipulation of predators to reduce parasite prevalence may harm prey

density.

Introduction

Attack by multiple natural enemies seems like it should increase harm to a population. However,
a joy of ecology is that unexpected outcomes can occur when we put different interactions
together. This premise underlies the “healthy herds hypothesis”, which argues that adding
predators to a system can reduce parasite prevalence in their prey, thereby potentially increasing
prey density (Packer et al. 2003). If higher predation in natural populations routinely decreases
parasitism and increases prey density, predators could perhaps be used to manage disease in
vulnerable prey populations (Packer et al. 2003, Rohr et al. 2015) or to reduce the risk of
spillover of disease to other populations, such as humans. However, the generality of the
predictions of the healthy herds hypothesis has been questioned recently (Richards et al. 2022).
Indeed, predators can increase disease prevalence in their prey (Duffy et al. 2019, Richards et al.
2022). Moreover, in some systems, higher predation intensity decreases prey density during
epidemics (e.g., Mohammed 2018, Gallagher et al. 2019, Shang et al. 2019) — indicating a major
cost of lower prevalence via predators. Both patterns cast uncertainty about the promise of
predators to control disease and protect prey populations.

The appeal of the healthy herds hypothesis lies in alignment of multiple conservation
goals — simultaneous conservation of predators, reduction of parasitism, and protection of
vulnerable populations — as well as the potential to reduce spillover risk to other populations,
including humans. The original mathematical model for it proposed that healthy herds (i.e.,

predators decreasing parasitism and increasing prey density) is most likely with highly virulent
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parasites, long-lived host-prey species (hereafter ‘prey’), selective predation on infected prey,
and, when applicable, high aggregation of macroparasites in individual prey individuals (Packer
et al. 2003). The well-studied system of red grouse prey, parasitic nematodes, and fox predators
meets these conditions (Hudson et al. 1992). In that system, predators reduce parasitism in prey.
Additionally, reduced parasitism stabilizes population densities, avoiding major population
declines and increasing average density (Hudson et al. 1998). Thus, in the grouse system adding
predators reduces parasitism and thereby increases prey density — supporting the healthy herds
hypothesis and showing that predator conservation can reduce parasitism and protect vulnerable
prey.

However, this grouse-predator-parasite pattern is not ubiquitous (Duffy et al. 2019,
Richards et al. 2022), and a recent meta-analysis concluded that reduction of parasitism in prey
by predators is “far from universal” (Richards et al. 2022). Predation often has no influence on
parasitism (e.g., Duffy 2007, Malek and Byers 2016, Flick et al. 2020) or is associated with
greater parasitism (e.g., Caceres et al. 2009, Yin et al. 2011, Tan et al. 2016, Trandem et al.
2016, Shang et al. 2019). Similarly, in systems with parasites, predators sometimes do not affect
prey density (e.g., Duffy 2007, Laws et al. 2009, Strauss et al. 2016, Laundon et al. 2021) and
other times decrease it (e.g., Mohammed 2018, Gallagher et al. 2019, Shang et al. 2019).
Furthermore, in predator-prey-parasitoid interactions, a meta-analysis found that predators
reduce prey density as much as they increase it (Rosenheim and Harmon 2006).

Thus, twenty years after formalization of the healthy herds hypothesis, it is clear that
predators do not always protect their prey, even during epidemics of virulent parasites. With
more models and experiments, we might mechanistically sort out these disparate responses.

These experiments should track prey and parasite dynamics along predation gradients (rather
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than with just two levels, as is currently most common; Richards et al. 2022). They should also
interweave other factors that might indirectly influence prey dynamics such as the resources of
prey (Murdoch et al. 2003). For example, if predators depress prey abundance well below
carrying capacity, prey reproduction may increase, leading to population recovery. In addition,
prey with short generation times may evolve rapidly during epidemics (Hairston et al. 2005),
potentially influencing healthy herds dynamics. For example, if prey populations rapidly evolve
resistance to the parasite, predators might depress prey abundance without reducing parasitism.
Thus, a robust test of the impacts of predation on disease and prey density should integrate a
gradient of predation with other ecological and evolutionary processes that occur concurrently.
We used a planktonic predator-prey-parasite (midge-zooplankton-fungus) system to test
the healthy herds hypothesis. This system possesses some features that should favor healthy
herds predation (that is, predation that reduces parasitism and increases prey density): the
parasite virulently suppresses survival and fecundity (Clay et al. 2019) and the predator
selectively culls infected prey (although not as intensively as fish, and not in all scenarios: Duffy
and Hall 2008, Caceres et al. 2009; Appendix S3.2). At the same time, the short-lived prey can
strongly interact with resources and rapidly evolve during epidemics via clonal selection, both of
which might interfere with healthy herds dynamics. To evaluate the net outcomes of these
processes, we stocked mesocosms with nine clonal genotypes of prey that varied in susceptibility
to both natural enemies to capture the range of trait variation that we know exists in natural
populations. We created four levels of predation (from none to high) and added parasite spores to
half the populations. After multiple prey generations, predation reduced infection prevalence,
but, contrary to healthy herds expectations, also reduced prey density at the highest predation

levels. At lower predation levels, predators neither increased nor decreased total prey density (as
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compared to the no predation treatment). A mathematical model parameterized for our system
specifies that, in order for predation to increase prey density at equilibrium, first, predators must
feed selectively on infected prey, second, infected prey that are consumed by predators must
release fewer infectious propagules (as compared to infected prey that are not consumed), and,
third, infection prevalence must be sufficiently low. Our system meets the first two of these
conditions but not the third, suggesting that we did not see healthy herds dynamics in our

experiment because infection levels were too high.

Methods

Study system

Daphnia dentifera is a dominant zooplankton species in stratified lakes in Midwestern North
America (Tessier and Woodruff 2002). It hosts the fungal parasite Metschnikowia bicuspidata,
becoming infected after incidentally ingesting spores while grazing (Stewart Merrill and Caceres
2018). Infection shortens life span and decreases fecundity (Clay et al. 2019). Host death releases
infectious spores into the water column, where other Daphnia can ingest them.

Larvae of the phantom midge, Chaoborus spp., including C. punctipennis, commonly prey
on Daphnia in North American temperate lakes (Tessier and Woodruff 2002, Garcia and
Mittelbach 2008). Lakes with abundant Chaoborus tend to have higher levels of disease (Caceres
et al. 2009, Strauss et al. 2016), likely because they release spores in the water column when
feeding on infected Daphnia (Céaceres et al. 2009). This is important because the lakes in which
these interactions occur are stratified for much of the year, with limited resuspension of spores
from sediment spore banks and decomposing Daphnia during periods of stratification. However,

in unstratified environments such as the one used in this study, Chaoborus may not spread
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disease (Caceres et al. 2009); in these mixed mesocosms, spores released from dead prey will

still come in contact with new prey.

Mesocosm experiment

We experimentally manipulated predator density and parasite presence/absence to assess the
impacts of predation and parasitism on ecological and evolutionary prey-parasite dynamics. We
crossed the presence/absence of the parasite (M. bicuspidata) with four levels of predation (0,
0.1, 0.5, and 1 C. punctipennis per liter, using third or fourth instar larvae) to mimic realistic
predation levels in Midwestern United States (Garcia and Mittelbach 2008). This design resulted
in eight treatment combinations replicated six times each (48 mesocosms total). One low (0.1 L~
1) predation treatment tank was excluded from analyses due to very high abundances of C.
punctipennis. Each replicate was housed within a 75 L polyethylene tank filled to 50 L with a
20:80 combination of filtered lake water and treated tap water. Water that was lost due to
evaporation was replaced with treated tap water weekly. At the start of the experiment, we added
nitrogen (300 ug L' N as NaNO3) and phosphorus (20 ug L' P as K2HPO4) to each tank.
Nutrients were replenished in tanks weekly (assuming 5% daily loss rate). Two days prior to the
addition of D. dentifera prey, tanks were inoculated with 50 mg dry weight of the green alga
Ankistrodesmus falcatus. Tanks were housed in a 16:8 light:dark cycle.

We stocked tanks with nine genotypes of D. dentifera that differed in susceptibility to
infection by M. bicuspidata and susceptibility to predation by C. punctipennis. These genotypes
span a wide range of phenotype space for these traits but do not experience a tradeoff between
susceptibility to infection and susceptibility to predation (see Appendix S1: Figure S1a). To

generate animals for the experiment, we raised single genotype monocultures in the same
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conditions as experimental tanks. To add equal densities of each clone, we sampled each
monoculture in triplicate to estimate prey density. We then added a fixed volume from each
monoculture tank to each experimental tank to yield 70 individuals per genotype of all nine
isoclonal lines (week 0). Then, M. bicuspidata spores (5000 spores L!; based on (Hite et al.
2016, Strauss et al. 2017) and C. punctipennis (3" and 4 instar, collected from a nearby lake)
were introduced 7 days after adding D. dentifera (week 1). We checked tanks twice a week,
replacing any pupating or dead C. punctipennis observed. Our sampling methods did not
accurately quantify predator densities — given that the two intermediate predation treatments
were 0.1 and 0.5 predators per liter, we would expect 0 or 1 predator individuals in the 2L
sample for these two intermediate predation treatments. However, we know that predator
densities dropped in all treatments during the experiment. By the end, we recovered no predators
from 46 of the 47 mesocosms. We did not routinely record predator densities in the subsamples
during the experiment, but have notes indicating the predator was seen in subsamples up to week
4. Thus, while the predation treatments strongly differed in infection prevalence and prey density
(see below), predation levels likely converged beginning midway through the experiment. We
did not anticipate this prior to doing this experiment; as a result of this experience, we modified
our protocols for this type of experiment in the future to allow us to better track predator
densities over time.

Following addition of predators and parasites (week 1), we sampled tanks weekly for 56
days. During the weekly sampling in weeks 2-9 (July — August 2019), we quantified infection
prevalence and prey density to test the healthy herds hypothesis. We mixed tanks and collected
prey samples by sieving 2 L of water (80 pm mesh). We chose this volume because we

anticipated that it would provide enough animals to accurately quantify infection levels without
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providing a substantial source of mortality; this destructive sampling (no animals were returned
to the tanks) resulted in a mortality rate on the population of 4% per week. This entire sample
was counted within 24 hours and infections were visually diagnosed (at 50x magnification,
focused on late stage (terminal) rather than earlier stage infections (Stewart Merrill and Céceres
2018)). We also recorded densities of infected and uninfected adult and juvenile prey in the
sample. In addition, for up to twenty adult Daphnia from each replicate, we measured the
number of eggs (technically embryos) contained in the brood chamber (“egg ratio”). The average
sample size for the egg ratio analyses for the 0, 0.1, and 0.5 predators per L treatments was 11.5-
15.0 adult Daphnia per 2L sample per week; however, for the highest predation treatment,
average sample sizes were lower due to very low densities (3.4-5.3 adult Daphnia per 2L sample
per week). We then stored these adults in 95% ethanol at 2°C. We also collected a sieved water
sample to quantify a biomass proxy for the algal resource, chlorophyll a, using narrow-band
filters on a Trilogy fluorometer (Turner Designs, San Jose, CA, USA), following a chilled
ethanol extraction (Welschmeyer 1994).

To track evolution of the prey population, we genotyped the preserved (adult) individuals
on weeks 2, 6, and 9. The average sample size for the 0-0.5 predators per L treatments was 9.3-
14.5 adult Daphnia per 2L sample per week; however, for the highest predation treatment,
average sample sizes were again lower (4.6-6.2 adult Daphnia per 2L sample per week); see
Appendix S1: Section S1.3 for genotyping methods (after Allen et al. 2010). We did not estimate
parasite evolution because a) we only added a single parasite genotype, b) the parasite possesses
surprisingly little genetic variation (Shaw et al. 2021), and c) attempts to experimentally evolve it

have failed (Duffy and Sivars-Becker 2007, Auld et al. 2014, Cuco et al. 2020).
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Statistical analyses

To test the healthy herds hypothesis, we analyzed data on infection prevalence, infected prey
density, and total prey density for weeks 2 through 9. A generalized linear model (glm) with
binomial error was overdispersed. Instead, we calculated the average for each of these metrics by
tank. For density metrics, we took the natural log of the density plus one prior to calculating
averages. For average infection prevalence and infected prey density, we performed an ANOVA
with predator treatment as a fixed effect. Given the likely shift in predation regimes over the
course of the experiment, as described above, we also tested to see if there was an effect of
predation in the middle of the experiment; because of overdispersion, we calculated the average
across the different replicates for each predation treatment at week 5, then regressed this against
predation level. For natural log-transformed average density of total prey density, we performed
an ANOVA with predator treatment, parasite presence/absence, and their interaction as fixed
effects. We then used the emmeans package (Lenth 2022) to compare specific treatments.

We found a strong reduction in parasitism in some treatments. To test whether evolution
of resistance to parasitism could explain this reduction, we combined data on the genotypic
composition of each prey population with estimates of infection susceptibility of each genotype.
The infection rate of clone i, B; = p;fs,, is the product of filtering rate (fs,) and per spore
probability of infection (p;). Thus, the mean infection rate for a population is the weighted
average, ).; £:q;(t), where q;(t) is the frequency of clone i at time £. We computed this mean at
weeks 2, 6, and 9. We then analyzed evolution (changes in mean ) using a linear mixed effects
model with time (week 2, 6, or 9), predator treatment, parasite presence/absence, and all two-

and three-way interactions and tank as a random effect (using the nlme package; Pinheiro et al.

2022).
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As shown below, prey density declined sharply in high predation treatments over the first
half of the experiment. To test whether this decline drove changes in prey-resource dynamics, we
analyzed data on chlorophyll a and prey reproduction (egg ratio). We averaged natural log (LN)
chlorophyll a and egg ratios from the first half of the experiment (weeks 2-5) and fit ANOVAs
with predator treatment, parasite presence/absence, and their interaction as fixed effects. We did
not analyze data on chlorophyll a or egg ratio from the second half of the experiment because of
uncertainty about predator densities (see above). All analyses used R v 4.1.2 (R Core Team

2022).

Theoretical methods overview

To gain additional insight about the observed dynamics, we analyzed a mathematical model
parameterized to our system. We used it to answer two main questions: (i) Why did outbreaks
occur in the lower predation treatments, but not the highest predation treatment? (i1) What
biological conditions prevented increased predation from leading to increased total prey density?
Multi-clone model of prey-parasite dynamics

Our model describes the dynamics of multiple prey clones, an environmentally transmitted

parasite, and predators held at a fixed density. The model equations are

reproduction  non-disease mortality infection predation sampling

dsS: — —t— —_— —_—— ~
d_tl = Gl() - miSi - ﬁiSiZ - aiSiP - Mi €q. l.a
infection mortality predation  sampling
: ~
% = ﬁiSiZ - (ml' + H'l')li — Cl)aiIiP - }\Il €q. 1.b
spore release ingestion degradation  sampling
dZ ~ ~
E = ZiXi(mi + W + xia)aiP)Ii - Zi(fSiSi + f,lll)Z - 6Z - AZ €q. l.c

where S; and /; are the densities of susceptible and infected individuals of clone i, respectively,

11
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and Z is the density of infectious propagules (spores; see Table 1 for a complete list of model
state variables and parameters). In equation (1.a), susceptible individuals of clone i increase due
to reproduction (G;(-)) and decrease due to mortality from non-disease sources (m;S;), infection
(pifs;SiZ), predation (a;S;P), and destructive sampling (AS;). The reproduction rate G;(-) is left
unspecified because we did not collect the density-dependent growth rates needed to
parameterize it; however, that information is not needed for our equilibrium-based analyses.
Infection rate (f; = p;fs,) is the product of the per spore probability of infection (p;) and the
filtering rate of susceptible individuals (f,). The predation term assumes fixed predator density
(P) (based on the experimental design) and predators have a linear functional response with
attack rate a;. In equation (1.b), infected individuals increase due to infection (S;S;Z) and
decrease due to mortality from disease (l;/;) and non-disease sources (m;[;), predation (wa;I;P),
and destructive sampling (Al;). The parameter w allows for predators to have higher attack rates
(w > 1) on infected prey. In Appendix S1, we also consider non-selective predation (w = 1); the
results differ only modestly (see Appendix S1: Sections S4.1 and S4.2). In equation (1.c), spores
increase when released by infected prey (3; x; (m; + w; + x;wa;P)I;) and decrease due to
ingestion (Zi( fs,Si + f,ill-)Z ), degradation (82), and destructive sampling (AZ). Release rate
upon host death is the product of the spore burst size ();) and mortality rates of infected prey.
Predators reduce burst size (x; <1) when they kill hosts before parasites reach the maximum
within-host density (see Appendix S1: Section S3.2). Ingestion removes spores, with susceptible
individuals having higher filtering rates than infected ones (fs, > f;,) (e.g., Penczykowski et al.
2022).

Details about estimation of parameters from smaller, ancillary experiments and their

values are given in Appendix S1: Sections S1 and S3.2. As indicated above, susceptibilities to
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predation (predator attack rates, a;) and susceptibilities to infection (infection rates, ;) were

uncorrelated (Appendix S1: Figure S1a).

Predicting the impact of predation on prey density

We identified conditions under which predators increase total prey density by calculating the
response of total prey density at equilibrium (N™) to increased predator density (P). Specifically,
the partial derivative dN*/dP determines if higher predation increases (N*/dP > 0) or
decreases (ON* /9P < 0) prey density. This analysis focused on a single-clone version of model
(1) because analysis of the full version requires parameterization of reproduction rates, G;(+) (see

Appendix S1: Section S4.2).

Defining and computing Roand R:
To explore why outbreaks occurred in the lower, but not the highest, predation treatments, we
used the multi-clone model (eq. 1) to estimate the parasite’s basic reproduction number (R,). R,
is the average number of new infections produced by a single infected individual in a completely
susceptible population (analogous to our ‘No parasites’ treatment). Outbreaks are predicted to
occur if Ry > 1. To make comparisons between treatments with and without parasites, we also
computed the parasite’s reproduction number (R). The reproduction number is the average
number of new infections produced by an infected individual in a population made up of both
susceptible and infected prey (analogous to our ‘Parasite’ treatment). Assuming prey densities
remain fixed, an infected individual infects more than one prey in its lifetime if R > 1.

We calculated Ro and R with the next generation matrix approach (van den Driessche and

Watmough 2008, Diekmann et al. 2010),
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i(mi+ui+xjwa;P B;aiN
RO — Zi Xi(mi+pi+x;wa;P) . idi eq. 24
mi+ui+wa;P 5+ij5jq]'N
i(mi+uj+x;wa;P B;qi(N=I)
R = Zi)(l( itihitxiwa;P) . idi eq. 2D

m;+u;+wa;P 5+Yj fsjqj(N—I)+f1jqu

where N is the total prey density, / is the total density of infected prey, S = N — I is the total
density of susceptible prey, and g is the frequency of clone i (see Appendix S1: Section S3.3).
Note that because equation (2.a) assumes all prey are susceptible, the total density N is equal to
the total density of susceptible prey (S = N). In both sums, the first fraction is the production
rate of spores by infected individuals of clone i multiplied by the average lifespan of an infected
individual of clone i (1/[m; + u; + wa;P]). This ratio defines the average lifetime production of
spores by an infected individual of clone i. The second fraction in both sums is the infection rate
of susceptible individuals of clone i multiplied by the average lifespan of a spore (1/[ § +

2 fs;aiN]or 1/[6 + 2 fs;4; (N-D+ f1;4;1]). It defines the average lifetime production of
new infected individuals of clone i by a spore. We computed R, and R using the estimated
parameter values and measured prey densities and clone frequencies at weeks 0 and 2; weeks 6

and 9 were not analyzed because of possible changes in predator density.

Results

Empirical result: Predation reduced infection prevalence and infected prey density without
increasing total prey density

Predation reduced infection prevalence (Fig. 1a,b) and the density of infected prey (Fig.1c,d).
After week 2, infection prevalence dropped to zero in all prey populations experiencing the
highest levels of predation. Conversely, infections persisted throughout the experiment in all

populations without predation. Predation significantly impacted average infection prevalence

14
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(F320=8.46, p = 0.0008; Fig. 1b) and average density of infected prey (F3.20=15.2, p <0.0001;
Fig. 1d), with a significant negative effect of predator density treatment on infection prevalence
(tz =-8.0, p=0.015) and average density of infected prey (13 =-10.2, p = 0.0096) at week 5.
This reduction did not arise due to evolution of resistance to infection. Prey populations became
significantly more resistant (lower mean infection rate) by the end of the experiment (Fig. 1g;
time: F7, 77 = 112.0, p <0.0001). Resistance evolved even in populations not exposed to
parasites, but more so in those with them (Fig. 1g,h; parasitism: F13; = 4.86, p = 0.033).
Importantly, susceptibility to infection was increasing when parasites disappeared from the high
predation populations (Fig. 1a,g), and predation did not significantly influence the evolution of
infection rate (predation: F339 =2.16, p = 0.108). For this analysis, all interactions were not
significant (see Appendix S1: Table S1). Overall, the reduction in parasitism cannot be attributed
to evolution of resistance to infection.

Reduction of parasite prevalence did not increase prey densities (Fig. le,f). Instead, the
highest predation treatment cleared infection but had much lower prey density. Higher predation
decreased prey density (predation: F3,39 = 37.3, p <0.0001) while parasitism did not change it
(parasitism: F'1,39 = 2.54, p = 0.12, predation x parasitism: F339 = 0.82, p = 0.49; Fig. 1f).
Comparing across treatments, the highest predation treatments with and without parasites did not
differ from one another (#; = 1.54, p = 0.78), but these two treatments (that is, 1.0 predator per L,
with and without parasites) differed significantly from all of the other treatments; none of those
other treatments differed significantly from one another (see Appendix S1: Table S1). Thus, the
highest predation treatments had lower prey densities than the other predation treatments, and the

extent of density reduction in prey did not depend on whether the population was parasitized.
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Theoretical result: High predation lowers parasite reproduction number to near or below 1
Consistent with the experiment, predation lowered the basic reproduction number, Ry, and the
reproduction number, R. More specifically, R, and R were highest without predation and lowest
in the highest predation treatment (Fig. 2a,b). The reason is that high predation levels mean that
more infected prey die from predation (with reduced burst size) than from infection (with full
burst size). This reduction in burst size reduces R, and R.

The decreasing values of Ry and R with increased predation provide indirect support for
the first prediction of the healthy herds hypothesis (that predation should reduce disease in prey
populations). In our experiment, the parasite did not persist in the highest predation treatment
(black lines in Fig. 1a,c), indicating that Ry and R were less than 1. In partial agreement with
this, about one half of the predicted values of Ry and R were less than 1 for the highest predation
treatment at all times (black points in Fig. 2). The other values remained near 1. Hence, the R,
and R calculations qualitatively captured the proportion infected signal in the experiment.

Additionally, Ry and R increased for all low predation treatments between weeks 0 and 2,
but only for some of the high predation treatments (Fig. 2a,b). As described in Appendix S1:
Section S4.1, we used the Geber Method (Hairston et al. 2005) to show that the changes in R
and R were primarily driven by changes in prey densities rather than changes in clone
frequencies (i.e., evolution). Specifically, large increases in prey density elevated R, and R in the
low predation treatments (blue lines in Fig. 1e). The smaller changes in the highest predation

treatment were due to decreases or smaller increases in prey density (black lines in Fig. 1e).

Theoretical result: High infection prevalence prevented predators from increasing prey density

Our analysis of a single-clone version of the model (eq. 1) in Appendix S1: Section S4.2 shows
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that higher prey density with increased predator density, ON"/OP > 0, requires that (i) predators
have sufficiently higher attack rates on infected prey than susceptible prey (w > 1) and (ii)
consumed infected prey have sufficiently smaller burst sizes than infected prey that were not
consumed (x; < 1). These two conditions were met (Appendix S1: Sections S3.2, S4.2). The
third condition is that (iii) the proportion of infected prey (//N) is sufficiently low. Under these
conditions, prey density is highest in the absence of the predator and parasite, lower in the
presence of just the predator, even lower in the presence of the predator and parasite, and lowest
in the presence of just the parasite. These conditions result in stronger regulation of the prey
population by the parasite than by predators.

Our empirical results (Fig. 1e) show that prey density decreased from the lower to highest
predation treatments. This suggests that ON*/OP < 0, and because conditions (i) and (ii) were met
in our system, we infer that predators decreased prey density because infection prevalence was
too high. To verify this inference, we parameterized the single-clone version of the model using
averaged parameter values computed from the clone frequencies observed at weeks 0 and 2 of
our mesocosm experiments (Appendix S1: Section S4.2). The parameterized single clone model
predicted that increased prey density with increased predation required infection prevalence of
approximately 5% or less (Appendix S1: Figure S6) — a condition rarely met in the experiment
(Fig. 1a). Thus, despite satisfying conditions about selectivity and burst size, predators likely did
not increase prey densities because infection prevalence remained too high.

Why does infection prevalence need to be sufficiently low for predators to increase prey
density? Increased predator density has a negative direct effect on prey density because it
increases mortality for infected and susceptible prey. At the same time, predators have positive

indirect effects on prey density because increased predator density (i) reduces intraspecific
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competition for resources (by reducing density) and (ii) decreases rates of infection (and thus
rates of disease-induced mortality) by reducing spore burst sizes of consumed infected prey. If
infection prevalence is low, then the negative direct effect of increased mortality from predation
is counteracted by the positive indirect effects of decreased intraspecific competition and
decreased infection rates. The net result increases prey density with higher predation.
Alternatively, with higher infection prevalence, decreased intraspecific competition and burst

sizes cannot counteract the increased mortality from predation.

Empirical result: Predator-driven reductions in prey influenced prey-resource dynamics

High predation prevented epidemics but inflicted major density costs on prey (Fig. le). After
prey density dropped, chlorophyll increased, especially in the highest predation treatment (Fig.
3a; analysis of average LN chl in weeks 2-5: predation: F339 = 7.32, p = 0.0005, parasitism: F7,39
=0.88, p = 0.35, predation x parasitism: F339 = 1.47, p = 0.24). This increase fueled higher
reproduction of prey (egg ratios) (Fig. 3c,d; analysis of average egg ratios in weeks 2-5:
predation: 339 = 18.5, p <0.0001, parasitism: F7,30 = 0.53, p = 0.47, predation x parasitism: 73 39

=0.20, p = 0.90).

Discussion

The healthy herds hypothesis suggests that increasing predation can reduce parasitism and, as a
result, increase densities of prey populations. However, a recent meta-analysis questioned the
generality of healthy herds dynamics (Richards et al. 2022). In our study manipulating predation
levels in a predator-prey-parasite system, we found partial support for healthy herds. Increasing

predation reduced parasitism (both prevalence and infected prey density). Thus, if a management
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goal centers on low(er) parasitism in a population (e.g., because of concerns about spillover of
parasites to humans or other populations), adding predators can help. The theoretical analysis
supports this conclusion: high enough predation decreased the reproductive number of the
parasite to near or below 1, inhibiting parasite spread. However, predation greatly decreased prey
population sizes at the highest predation levels, despite eliminating the virulent parasite. This
result arose both in mesocosms and the theoretical analysis. Thus, if our primary concern is
overall population size (e.g., to conserve genetic diversity or avoid stochastic extinctions),
adding high levels of predation that eliminate disease could be detrimental. Interestingly,
intermediate predation levels reduced parasitism without incurring a cost in terms of overall prey
density — a situation that would reduce spillover risk without harming prey density.

The experiment supported the first but not second part of the healthy herds hypothesis:
predation reduced infection prevalence, but prey density did not increase as a result. Why did
epidemic suppression not increase prey density? In its original formulation (Packer et al. 2003),
the healthy herds effect of decreased parasitism and increased prey density was most likely for 1)
highly virulent parasites, 2) highly aggregated macroparasites, 3) long-lived prey, and 4)
selective predation on infected prey. Our plankton system satisfies conditions one and four. Our
theoretical analysis revealed a fifth condition: sufficiently low infection prevalence (see
Appendix S1: Section S4 for details). This fifth condition occurs because, at low prevalence,
enhanced reproduction by susceptible hosts can compensate for the mortality imposed by
selective predators; however, if prevalence becomes too high, mortality from predation becomes
too high for such compensation. Therefore, our analysis reveals that increased prey density with
increased predation can only arise if infection prevalence is sufficiently low.

In our experiment, intermediate levels of predation reduced parasitism but not prey
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density. This result does not meet the full healthy herds prediction yet remains of interest
because it suggests predation can reduce infection levels (and, therefore, risk of spillover to
nearby populations) without harming prey density. However, too much predation (as at the
highest level here) can greatly deplete prey. Hence, lower spillover risk can come at a severe
density cost in prey, depending on the exact level of predation. Therefore, any management
decisions would need to weigh the potential costs and benefits associated with increasing
predation. The result from the intermediate predation levels also shows how qualitative results
can differ along a predation gradient. Unfortunately, most studies of the healthy herds hypothesis
use only two predation levels (presence/absence or high/low; Richards et al. 2022). We
recommend that future work at the predation-parasitism interface span predation gradients
instead.

The healthy herds hypothesis has similarities with another dominant topic in disease
ecology, the dilution effect: both of these community modules of disease highlight how adding a
species can reduce disease prevalence (Civitello et al. 2015a, Johnson et al. 2015, Rohr et al.
2020). For instance, both can reduce disease encounter (i.e., removal of propagules), via direct
consumption of propagules or selective removal of infected hosts. However, work on the dilution
effect and healthy herds hypothesis has proceeded largely independently. To develop a more
robust understanding of the factors driving infection levels in natural populations, we must build
towards studies recognizing that focal hosts play a multitude of roles in food webs. We require
studies that combine food web modules (as in Rohr et al. 2015, Strauss et al. 2016), allowing us
to better integrate the multiple roles that species play simultaneously (hosts, competitors, prey).
Doing so will allow better management of populations where there are multiple, potentially

competing, goals (e.g., reducing disease levels vs. maintaining high densities).
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Our experiment did not measure resources through time, but resources likely varied over
time because resources were replenished weekly. While we know that resource levels have the
potential to strongly influence host-parasite dynamics (Johnson et al. 2007, Pedersen and Greives
2008, Civitello et al. 2015b) and the effects of predators on parasitism (Hall et al. 2005), our
model suggests that variation in resource availability is unlikely to qualitatively affect the
observed reduction in total prey density due to predation in our experiment. The way equilibrium
prey density is affected by changes in predator density is given by equation (S26). Variation in
resources causes variation in prey growth rate and variation in prey growth rate would
qualitatively alter our results only if equation (S26) were to change sign. As explained in more
detail at the end of Appendix S2: Section S4.2, equation (S26) can change signs only if 1) the
prey per capita growth rate is an increasing function of prey density or 2) infection prevalence
drops below 5%. The former is unlikely because at the high prey densities in our experiment, the
variation in prey growth rates caused by variation in resource availability is unlikely to alter the
negative relationship between prey density and prey per capita growth rate. The latter is also
unlikely because infection prevalence was greater than 10% at the end of the experiment and
variation in resources is unlikely to cause a large enough decrease in prey density that the
infection prevalence drops by more than half. In total, our model suggests that the variation in
resource availability is unlikely to have affected the negative relationship between total prey
density and predator density level.

An interesting finding of our experiment was that parasitism was reduced in the
intermediate predation treatments but prey density was not, which would mean reduced risk of
disease spillover to neighboring populations without the host population suffering reduced

densities. However, we know that predation levels declined to low levels in all treatments
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midway through the experiment, meaning that the predation effects we measured are likely
conservative. If predation levels had stayed at the intended levels, it’s possible that we would
have seen an impact on prey density in these intermediate predation treatments. This uncertainty
— along with the challenges associated with trying to maintain particular predation levels even in
relatively controlled settings such as our environment — mean that caution is warranted for
managers seeking to manipulate predation levels. Achieving and maintaining a predation level
that reduces parasitism without harming density might be equivalent to threading the proverbial
needle.

Here, we found that increased predation reduced prevalence of a virulent parasite,
illustrating the potential for predation to lower disease in prey. However, even though this
virulent parasite could not persist in the presence of high predation, prey population size did not
benefit, contrary to the healthy herds hypothesis. Instead, high predation led to healthy but
depleted herds. Together, the prevalence vs. density results showcase the pros and cons of
disease control by predators: predation could reduce spillover risk but also harm prey population
sizes. Interestingly, a different type of interaction — that between prey and their resources — was
clearly impacted by the variation in predation, reminding us that predator-prey-parasite
interactions do not occur in isolation. Expanding our focus to include a broader perspective on
the many roles that individual species play in a food web will allow us to better understand — and
hopefully even predict — how populations will respond to changing predation regimes and along

broad predation gradients.
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Table 1. Model parameters and state variables for the multi-clone model (eq. 1). Specific

estimates for each of the clone-specific parameters are given in Appendix S1: Table S3.

Parameter or | Units Description
state variable
Si indiv/L density of susceptible prey of clone i
Ii indiv/L density of infected prey of clone i
Z spores/L density of infectious propagules (spores)
pi indiv/spore per spore probability of infection of clone i
s fi L/ht/indiv filtering rates of susceptible and infected individuals,
respectively, of clone i
Bi L/hr/spore infection rate for clone i, defined as pi fs,
mi 1/hr prey mortality rate due to factors other than disease for clone i
W 1/hr disease-induced mortality rate for clone i
ai L/hr/predator predator attack rate on susceptible individuals of clone i
® unitless increase in attack rate on infected individuals
P predator/L predator density
Xi spores/indiv spore burst size (that is, spores released from a dead infected
individual) for clone i
Xi unitless fractional reduction in spore burst size of consumed individuals
é 1/hr spore degradation rate
A 1/hr liquid removal rate (during destructive sampling)

indiv = individual
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Figure captions

Figure 1. Predation decreased the prevalence of infection (a,b), the density of infected prey (D.
dentifera; c,d), and total prey density (e,f). Prey evolved resistance to infection (i.e., lower mean
weighed infection rate; g,h) after the parasite went extinct in the high predation treatments.
Panels a,c,e,&g show time series data averaged across replicates, whereas b,d,&f show the
averages across replicates and time; for c-f, the y-axis is the natural log (LN) of infected or total
prey density per liter plus 1. Error bars on panels a,c,e,g,&h represent standard errors. In panels
b,d,&f, individual replicates are shown, jittered horizontally to increase visibility. In panel f, the
points are grouped by whether they were the no parasite treatment (“-“ label at top, left set of
symbols for each predation treatment) or whether they were the + parasite treatment (“+” label at
top, right set of symbols for each predation level, black outlines around symbols.) Panel h shows
the same data as in panel f, averaged across predation treatments; lower infection rate means
higher infection resistance.

Figure 2: Predation reduced (a) the parasite’s basic reproduction number (Ro) and (b)
reproduction number (R). Values of Ry and R were computed using equations (2.a,b), estimated
parameter values, and the measured clone frequencies and prey densities at weeks 0 and 2. Each
point connected by lines represents an estimated value of Ry or R for a particular tank. Line
coloring indicates the predation treatment. Some replicates are missing points because very low
prey density eliminated estimation of clone frequencies. The dashed line indicates Ry=R=1.
Figure 3. Algal abundance (as measured by chlorophyll @) increased in the highest predation
treatments early in the experiment, driving higher egg ratios in the first half of the experiment.
Panels a&b show chlorophyll data, while c&d show egg ratio (number of embryos per adult D.

dentifera) data. Panels a&c show time series data; error bars represent standard errors. We could
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not estimate egg ratio in any population of the high predation + parasitism treatment in week 3
because prey densities reached such low levels. Panels b&d show averages for the first half of
the experiment (weeks 2-5) for each replicate, jittered to increase visibility and with the points
grouped by whether they were the no parasite treatment (“-* label at top, left set of symbols for
each predation treatment) or the + parasite treatment (“+” label at top, right set of symbols for

each predation level, black outlines around symbols.)
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