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Abstract—This paper introduces a novel concept of performing
logic synthesis from multivariate polynomials with coefficients in
the field of rationals (Q), where the variables take only Boolean
values. Such polynomials are encountered during synthesis and
verification of arithmetic circuits using computer algebra and
algebraic geometry based techniques. The approach takes as
input a polynomial f over Q with binary variables, and derives
a corresponding polynomial f over the finite field (F2) of two
elements, such that f has the same variety (zero-set) as f. As >
is isomorphic to Boolean algebra, f can be translated to a Boolean
network by mapping the products and sums as AND and XOR
operators, respectively. We prove the correctness of our algebraic
transformation, and present a recursive algorithm for the same.
The translated f € 2 resultingly corresponds to a positive Davio
decomposition, and is computed using both explicit and implicit
representations. The approach is used to synthesize subfunctions
of arithmetic circuits, under the partial synthesis framework. The
efficacy of our approach is demonstrated over various integer
multiplier architectures, where other contemporary approaches
are infeasible.

I. INTRODUCTION

Modern formal verification techniques for integer arithmetic
circuits model the circuit’s functionality using a set of mul-
tivariate polynomials, where the variables take only Boolean
values, and the coefficients lie in the field of fractions (Q) [1]
[2] [3]. Verification is then solved by dividing a specification
(Spec ) polynomial f by a Grobner basis (GB) [4] of the set
of polynomials of the circuit, and checking if the obtained
remainder is O.

Modeling integer arithmetic circuits using polynomials with
fractional coefficients has been an important contribution.
Since Q forms a field, while the set of integers Z does not due
to the lack of multiplicative inverses, the decision problems
(equivalence check) can be formulated over Q using the
Nullstellensatz (Ch. 4 in [5]). By representing the polynomials
using a specific term order, and by virtue of Z C Q, it
was shown that the GB-based reduction for digital circuits
never produces results with fractional coefficients, even though
the computations are performed over Q. The soundness and
completeness of such an algebraic model for verification was
proven in [1]. Its efficacy as compared to SAT and decision
diagrams was also demonstrated [2] [3].

Due to its success for verification, the algebraic model
has also been explored for partial synthesis of rectification
functions for buggy arithmetic circuits, both for finite field
circuits [6], as well as for integer arithmetic circuits [7].
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These techniques also model the circuit by way of a set of
polynomials, and perform GB computations to compute rec-
tification functions. Interestingly, when the polynomial model
with coefficients in Q is utilized for partial synthesis of integer
arithmetic circuits, it is observed that the extended Grobner
basis computations may result in polynomials with fractional
coefficients [8]. Subsequently, given a rectification polynomial
f with fractional coefficients, it is required to synthesize a
corresponding Boolean function fg to patch the circuit.

Objective: Given the above context, this paper addresses a
novel problem of logic synthesis from polynomials with binary
variables and coefficients in Q. Since the polynomial f can
evaluate to any value in @Q, we have to further ensure that:
i) for those variable assignments where f evaluates to 0, fp
should too; and ii) for those input assignments where f # 0,
we should have fg = 1. This ensures that fp is a Boolean
function that has the same zero-set as f.

Approach and Contributions: Our approach takes an al-
gebraic geometry view of the problem, and translates the
given polynomial f with fractional coefficients to another
polynomial f with coefficients in the finite field Fy of 2
elements {0,1}. Moreover, we ensure that both f and f
have the same zero-set (variety), when their variables are
restricted to binary Boolean values. Thus, when f evaluates
to nonzero values in Q, f = 1, as f evaluates in Fy. We
prove the existence of such a transformation, and our proof
motivates a recursive algorithm for this computation. Since
Boolean algebra is isomorphic to polynomial algebra over Fa,
the polynomial f can be translated to a AND-XOR Boolean
expression fp by replacing (+,-) with (XOR @&, AND A),
respectively. Such polynomials can be computed for both an
on-set function, as well as a don’t-care set function, which can
be then synthesized with a logic synthesis tool.

While our approach relies upon concepts from algebraic
geometry, it turns out that the (de)composition of f resembles
a positive Davio decomposition, as implemented in functional
decision diagrams [9] [10]. We implement our approach to
transform f to fp as a recursive algorithm, with both an
explicit representation of f as a set of monomial terms,
and also with an implicit set representation using the CUDD
decision diagrams package [11].

Example L.1. Let us illustrate the problem by means of an
example. Let f = (4/3)&0&1 bob1—2agbob1 — (2/7)(11[)0 with 4
Boolean variables and fractional coefficients. Then there exists
a corresponding polynomial f = aga1boby+agbobi+a1by over
F5 with the same zeros as f. Table I shows that for all variable
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assignments z where f(z) = 0, we have f(z) = 0. Whereas
when f(z) # 0, we have f(z) = 1. Then, a Boolean function
can be generated from f as fp = (agaibobr) ® (apbob1) @

(Cleo).

{a1a0bibo} | f | f || {a1a0bibo} | f | f
0000 010 1000 0 0
0001 010 1001 217 |1
0010 00 1010 0 0
0011 010 1011 217 |1
0100 010 1100 0 0
0101 00 1101 217 |1
0110 00 1110 0 0

[ omr  [-2[T[[ Tt [-20721]T]

TABLE I: Evaluation of the polynomials. The shaded rows
depict a few cases where f # 0 implies f = 1.

Paper Organization: The following section, Section II, cov-
ers the notation used and the preliminary background. Section
III reviews related previous work. Section IV formally states
the problem, proves the existence of such a translation of f in
Q to f in F. The algorithm and implementation is described
in Section V, whereas Section VI describes the experimental
results. Section VII concludes the paper.

II. NOTATION AND BACKGROUND CONCEPTS

Let B denote the Boolean domain, Fy = {0,1} the finite
field of 2 elements, and Q the field of rational numbers. Let
{z1,...,2,} denote a set of variables. Let K be any field,
e.g. K=Q or K = Fy; then R = K[z1,...,2,] denotes the
ring of polynomials in variables z1,...,x,, with coefficients
in K. A polynomial f € R is written as a sum of terms,
f=c1 X1+ coXo+ -+ ¢ Xy, where ¢; denote elements in
K, X; denote monomials, and ¢; X; is a term. A monomial is
a power-product of the form z{* ---z%", with a; € Z>o.

In our work, the variables {z1,...,2,} correspond to nets
in a circuit, and the gates of the circuit are modeled using a set
of polynomials F' = {fi,..., fs}. Given a set of polynomials
F ={f1,...,fs} from R, the ideal generated by F is J =
<F> = <f17. ..,f5> = {h]_f1+ +h§fb : h17~ ~~,h5 S R}
The polynomials fi, ..., fs form the basis of ideal .J.

Let £ = (x1,...,%,) € K" be a point in the affine space,
and f a polynomial in R. If f(z) = 0, we say that f vanishes
on z. We have to analyze the set of all common zeros of the
polynomials of F' that lie within the field K. This zero set
is called the variety. It depends not just on the given set of
polynomials but rather on the ideal generated by them. We
denote it by Vk(J), where: Vk(J) = Vk(f1,...,fs) ={z €
K" :Vf e J, f(z) =0}.

An ideal may have many different sets of generators that
have the same variety; i.e. it is possible to have J =
(fi,--» fs) = {g1,-.-,9t) = -+ = {(h1,...,hy), such that
VK(f17~"7fS) = VK(gly"'7gt) == VK(hl'--yhT)‘ A
Grobner basis (GB) of an ideal is one such generating set
G = {g1,...,9:}, that is a canonical representation of the
ideal, and helps in solving many polynomial decision and
quantification problems. A Grobner basis can be computed
using the Buchberger’s algorithm (Alg. 1.7.1 in [4]). It takes
as input a set of polynomials {fi,..., fs} and computes its
GB G ={g1,92,- ", 9t}
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A. The ideal of Vanishing Polynomials, Idempotency and
Quotient Rings

In this work, we consider f € R = Q[z1,...,,], where
f is derived from a circuit, so z1,...,z, take only Boolean
values 0 or 1. Equivalently, each variable z; is idempotent
in that 2?2 = x; or #2 — x; = 0. We call the polynomial
(x? —x;) a Boolean vanishing polynomial (BVP) as it vanishes
onz; =0,1. Let Fy = {22 — x1,...,22 — z,,} be the set of
all BVPs in Z[z1,...,z,], and Jy = (Fy). Note that there are
natural maps from Z[z1, ..., z,] to R = Q[z1,...,z,] and to
S = Fy[z1,...,2,], which lead to the ideals FyR in R and
FyS in S, generated by Fp in R and, respectively, S. In other
words, the same set of BVPs {22 —z; :i = 1,...,n} denotes
different ideals in different rings: FyR in R, and FyS in S.
We will use Jy to denote FyR.

Imposition of this Boolean idempotency for each variable
in f requires that f is always reduced (mod .Jp), ie. f
is divided by BVPs for all variables and the resulting re-

mainder r is taken as the result: denoted f (mod Jy) =
Jo=(z]—21,....22 —xp)

f : + 7. Thus, our computations are ef-
fectively performed over the quotient ring W, where
FoR = (22 — x1,...,22 — x,) is the ideal generated by all

BVPs in R. As a result, higher degree variables xf, k > 2, are
reduced to ; in the computations since z¥ = z; (mod Jp).
Thus f comprises terms with only multilinear monomials
- xy? - xf, with oy € {0, 1}

In other words, the Boolean idempotency on variables of f
is enforced by considering the the ideal (f, Fy R). Moreover,
the variety Vo (f, FoR) C {0,1}". Note that in Example 1.1,
f = (4/3)&0@1()0()1 - 2a0b061 - (2/7)(111)0 has multilinear
monomials, as it is already reduced (mod FyR = (a3 —
ag, b3 — by, a? — ay,b3 — b1)). In the sequel, we will assume
that every polynomial is reduced to its multilinear form
(mod F()R)

III. REVIEW OF RELATED WORK

Previous work has investigated the modeling of arithmetic
circuits using commutative algebra and algebraic geometry.
The work of [1] [2] [3] has addressed verification of arithmetic
circuits using Grobner basis techniques, but the synthesis
problem has not been solved by them. The verification problem
is formulated as an ideal membership test, which is a decision
problem. However, the synthesis problem is a quantification
problem, which is computationally more challenging.

The synthesis problem has been addressed in the context
of rectification for engineering change orders (ECO) as well
as for rectification of buggy arithmetic circuits. The ECO
rectification approaches are based on SAT and Craig Interpola-
tion based models [12], or Quantifier Boolean Formula (QBF)
and iterative-SAT based models [13] [14]. Recently, there has
been some interest in computing rectification functions for
arithmetic circuits using computer algebra techniques, such
as [15] [6] [7] [16], among others. Of these [15] [6] compute
Boolean rectification functions from polynomial models over
finite fields Fox of 2* elements. Since such binary finite fields
are k-dimensional extensions of Fs, translating polynomials
from For to AND-XOR networks is fairly straightforward.
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In [16], a buggy integer arithmetic circuit is patched at all
the primary outputs where the bug-effect is observable, by
implementing half-adders and carry-propagate logic at those
outputs. However, the paper does not provide a proof of
soundness or completeness of their approach. The approach
captures the functionality of a bug in a polynomial f with
integer coefficients and attempts to patch the bug at the primary
outputs using half and full adders. However, this approach
cannot synthesize a Boolean function from a polynomial f
with fractional coefficients.

The works that are closely related to this paper are by [8],
and [7]. In [8], the author shows that a rectification polynomial
f for an integer arithmetic circuit can be computed using
the extended Grobner basis algorithm, by operating over the
ring Q[z1,...,x,]. Interestingly, this work discovers that f
may have rational coefficients — which is not surprising as
a polynomial is computed over Q. Moreover, at an algebraic
level, this rectification polynomial f can patch the bug, in the
sense that replacing the polynomial f for a buggy gate passes
the verification test. However, no efficient logic synthesis
approach was presented to generate logic circuits from f.

Rao et al. in [7] address the problem of synthesizing a
Boolean rectification function fg from a polynomial f &
Q[z1,...,2y], such that f and fp have the same zero-set.
Their approach is as follows: i) They compute a reduced
Grobner basis G = GB(f,Jo = (FoR)) = {g1,...,9:}. ii)
Then, the polynomial f € Fa[zy,...,x,] is computed using
the formula

F=0+g)1+g) -(1+g)+1

Then f is translated to an AND-XOR network from [,
which can be given to a logic synthesis tool for optimized
implementation.

While the approach theoretically solves the problem above,
computing a reduced Grobner basis G = GB(f,Jy) is
infeasible due to its very high complexity, even for small
rectification functions for 8-bit multipliers (shown in Table
I in the sequel). Therefore, there is a need for a non-Grobner
basis based approach to practically compute f from f.

This paper addresses the above problem by relating the
variety Vo(f, FoR) and Vg, (f, FoS). We do not explain how
a rectification polynomial computation may generate f with
rational coefficients. We refer the reader to [8] (Chapter 6)
and [7] for more details. We only address the problem of
synthesizing Boolean functions fp from f.

(mod 2).

IV. TRANSLATING POLYNOMIALS FROM Q TO Fy
Problem Statement: Given the polynomial f € R =
Q[x1,...,wy], derive a corresponding polynomial f €
Folz1,...,2,], such that f and f have the same variety when

their variables are restricted to O and 1. More precisely, given
f, find f such that

VQ(fv FOR) =

(0,1)-tuple in Q

Ve, (f, FoS) . (1)

(0,1)-tuple in Fo

Note that, although they are distinct sets, there is a one-
to-one correspondence between the set {0,1}" C Q™ and

{0,1}™ C F% where 0 in Q corresponds to 0 in Fy and 1
in Q corresponds to 1 in F5. We denote this correspondence
simply by the identity function to avoid cumbersome notations.
Moreover, Vo(f, Folt) = V&, (f, FoS) implies that: i) for all
points z € Vo(f, FoR) we have f(z) = f(i) = 0; and ii) for
all points z ¢ Vo (f, FoR), we have that f(z) =1, as f only
evaluates to O or 1.

Approach: We describe the transformation approach as
follows. To begin with, assume that f € R = Q[x1,..., %)
is reduced (mod FyR), so that f consists of only multilinear
terms. Impose a lexicographic term order on f, with variable
order 1 > x9 > --- > x,. Without loss of generality,
assume x; = xp is the largest variable in the order that
appears in f (otherwise, we can relabel the variables). Then
one can factorize f w.rt. x1, so that f = hz; + g, where
h,g € Qxa,...,x,] and h # 0. We state and prove the
following result.

Theorem IV.1 (The Translation Theorem). Let f be a poly-
nomial in R = Q[z1,...,2,], written in the form f =
hzy + g as shown above. Then there exists a polynomial

[ € Falxy,...,x,] where f and f have the same variety
as {0, 1}-tuples, i.e. Vo(f, FoR) = Vi, (f, FoS).

Proof: Consider f = ha1+gin R. Let (x1,22,...,2,) €
{0,1}™ be a point which we denote as (xy,y), where y =
(x2,...,2n). Then:

flz1,y) =0 (@)

= h(y) 21 +9(y) =0 ©)

= h(y) -1 =—9(y). O]

From Eqn. (4), we have that when z; = 1, h(y) = —g(y),
or h(y) + g(y) = 0. Also, z; = 0 implies that g(y) = 0. So,

from Eqn. (4) we conclude that

Vo(f, FoR) ={(L,y) : y € Vo(h + g, FoRR)}
U{(0,y) 1y € Valg, FoR)}- (&)

In other words, V(f, FoR) consists of tuples (1,y) where
h + g vanishes on y, and tuples (0,y) where g vanishes on .
This observation allows to prove ‘the theorem by induction.
The verification for n = 1 (one variable) is straightforward.
When z is the only variable, then f = hxy + ¢ is such that
h, g are constants in Q. We can consider the following 4 cases:
1) Case 1: h =0,g9 = 0. Then ff 0.
2) Case 2: h # 0,9 = 0. Then f = z;, because Vo(f =
hl‘l, F(]R) = V]FQ(f =, F()‘SL) = {(0)}
3) Case 3: h = 0,9 # 0. Then f = 1, because a non-zero
constant has no roots.
4) Case 4: h # 0,9 # 0. In this case, Eqn. (5) tells us that
if h+ g =0, then f = z; + 1; otherwise, f = 1.
Thus, for every f(xz1) € Q[x1], there exists a corresponding
f € Fylzy] with Vo(f, 22 —x1) = Vi, (f, 22 — zy).
Now assume that the theorem statement is true for polyno-
mials with up to and including n — 1 variables. Therefore, we
can find p and g € Fy[zs,. .., x,] that satisfy the following:
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1) The polynomial p is such that Vi, (p, Fo.S) = Vg(h +
g, FoR) C {0,1}"~1, i.e. the varieties of p and h+ g are
equal as {0, 1}-tuples. That is, for a polynomial h + g
in n — 1 variables, there exists a corresponding p with
coefficients in Fs.

2) The polynomial g is such that Vg,(g,FpS) =
Vo(g, Fo) € {0, 1},

_ Let h =p—g. As above, considering the polynomial f =
hzy+g = (p — g)z1 + g over Fy, and a point (z1,y) €
Ve, (f, FoS) € {0,1}", we see that:

fla1,y) =0 (6)
= ((y) —9() - 21 = —4(y) ©)
= (Ply) —9(v)) - 21 = 9(y), ®)

as —1 = 41 (mod 2). Therefore,
z =1 = ply) —9(y) = 9() ©
= p(y) =0 10)
=y € Vi, (D, Fo) (11)
r1=0=4(y) =0 (12)
=y € Vr, (9, Fo). (13)

€ V]Fz(ﬁv FOS)}
U{( ’ ) ZQE VFz(gaFOS)}

But’ {(]‘VQ) :g € V]FQ(?Z FOS)} ) {(OVQ) :g € V]Fz(gv FOS)}
={(L,y):y € Vo(h + g, FoR)} U{(0,y) : y € Vo(g, FoR) }-

This proves our claim that for every f € Q[ry,...,2y],
there exists a corresponding f € Fa[xy, ..., x,], s.t.
Vo(f. FoR) = Vi, (f, FoS).
| ]

V. ALGORITHM & IMPLEMENTATION

The proof of the theorem inspires an algorithm to recur-
sively compute f — actually, directly the Boolean function
fs — from f. Impose a lex term order on the given f, with
variable order x; > xo > - -+ > x,. Assume that f is already
multilinear in the variables; if not, then it can be reduced
(mod FyR) to make it multilinear. Decompose f = hzy + g,
by dividing f by variable z;, and obtaining the quotient h
and remainder g in Q[zs,...,z,]. Let p = h+ g. Recursively
decompose polynomials p, g, until the decomposed polynomi-
als contain only one term cX. Then, recursion bottoms out
as follows: i) if the decomposed polynomial p (resp. g) is O,
return p = 0 (resp. g = 0); ii) if p (resp. g) is a non-zero
constant, return p = 1 (resp. g = 1); iii) if p = ¢X € R (resp.
g = cX), is a single term, then return p = X € [y [X] (resp.
g = X). Reconstruct f = (p—g) - z; + g. Since —1 = +1
(mod 2) = @, the required Boolean expression can be re-
constructed as: fg = (p®g) -z, D g.

Algorithm 1 shows the recursive procedure. Lines 2-7 show
the terminal cases of recursion. Lines 9-12 decompose f =
hx; + g, and compute compute h, g,p = h+ g. Line 9 applies
a heuristic to select a variable x; for factorization/division.
From the polynomial f, we select the variable that has the
highest activity — i.e. the variable that appears in the most
number of terms in f. This is done so to keep the recursion
tree as balanced as possible, or to bottom-out the recursion
early. When p, g are returned by the recursive calls in lines 13-
14, the Boolean function fp (or equivalently the polynomial
f € Falxy,...,x,))is constructed in line 15, where & denotes
addition (mod 2), or the XOR operation.

Algorithm 1: Compute ,}?[B from f
Input : f€Qzy,x0,...,2,],21 > >y

Qutput: Boolean function ]?]B with same zeros as f
function: PolyQtolFs(f)
if f == 0 then
‘ return fB =0;
else if f == ¢ # 0 then
// f is a non-zero constant c¢
return f]vﬂg =1;
else if f == single term cX then
| return fy = X; // Vg(eX, Fy) = Vi, (X, Fyp)
else

B W N =

R R B

x; = select_high_activity_variable(f);

// Decompose f w.r.t. m;:=hx;+g
10 h= f/x;; // h=quotient, division by uz;
1 g=f (mod z;);// g= remainder

12 p=h+g;

13 | p= PolyQtoFy(p); // p has the same
variety as Vg(h+g)

14 g = PolyQtoFy(g); // g has the same
variety as Vg(g)

5| fo=(Ged) men

16 return fp;

17 end

Example V.1. We demonstrate the algorithm on the polyno-
mial [ = (4/3)a0a1b0b1 — 2agbgby — (2/7)&1()0. The highest
activity variable is by, so we factorize f = ((4/3)apaib; —
2a9b1 —(2/7)a1)bo. We denote by subscript ¢, the decomposed
polynomials p;, g; at recursion-level i.

At the first recursion level: hy = (4/3)agaiby — 2agby —
(2/7)&1, and g1 = 0. Then pP1 = h1 +0 = (4/3)0,0&1[)1 -
2(101)1 — (2/7)0,1 Since g1 = O,g~1 =0.

At second recursion level, f = p;1 = (4/3)agaib; —
2apby — (2/7)a;. Expansion variable selected is ag. Then
hg = (4/3)(11171 - le,gg = *(2/7)&1,]?2 = (4/3)a1b1 —
2by — (2/7)a;. Since go is terminal case, ga = aq, and so on.

Fig. 1 depicts the recursion tree. The returned Boolean
functions p, g at each recursion step are shown in red color.
The final returned Boolean function fp = (apaibobi) B
(apbob1) @ (a1bp), which matches the one in Example I.1.

While the algorithm exhibits exponential worst-case com-
plexity, experiments in the sequel show that the number
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f = @43)agaybyb, — 2aghyb, — (2/Tab,

v

p1 = hy = @4/3)aga;b; — 2a4b, — (2/T)a,

p1 = aparby @ agb; @ a,

/

Py = @13)ayb, — 2b, — 2/,

/

fs = ((4/3)b = 2/ T))a; = 2b,
p3 = (=2/3)b, — (2/7)
p=1

“\

Pr=(P3®8)a @& =ba @a @b

I=(5®8)b® &
= aya,byb, @ agbiby @ a by

& =0

T
Il
(=}

& =-Q2/MNa,
& =aq

8 =—12b
& =D

Fig. 1: Recursion tree and the ﬁ; computation for Example V.1.

of recursive calls is often much less than 2". Also note
that in line 15 of the algorithm, fz = P @ G) -z ® g
resembles a positive Davio decomposition. The positive Davio
decomposition_decomposes a Boolean_function f based on
its cofactors f, = f(x = 1) and for = f(z = 0) as:

f=(fa® for) @ for. In our case, p, g correspond to the
positive and negative cofactors of fp w.r.t. x;, respectively.

A. Implementation

Our recursive algorithm is a stand-alone software program
implemented in C++. We have built a custom polynomial data
structure for a polynomial f = 1 X7 4+ coXo + -+ + ¢t X4
where C; are coefficients and X; are monomials, and f is
defined as a list of terms. A term is implemented as a typedef
structure of coefficients (¢;) and monomials (X;), a monomial
is a vector of tuples of the form [z",...,x%"] where «; €
0, 1. A coefficient is a typedef structure of sign, numerator and
denominator. We have also implemented functions to impose a
lex term order for a given polynomial as well as a function to
perform multivariate polynomial division. At every recursion
level, we divide the polynomial f by x; and obtain the p and
g polynomials, and compute the p and g. We recombine p and
g to obtain f = ((p® §)x;) + g. This stand-alone tool is used
for experiments.

Two versions of the tool are implemented where the p, g,
and fp are computed using: i) explicit set representations using
the polynomial data-structure described above; and ii) using
implicit representations, particularly the ROBDD representa-
tion using the CUDD package [11].

VI. EXPERIMENTS

Using our tool, we have conducted some experiments to
compute a Boolean function fp, given a polynomial f &
Q[z1,...,zy]. The polynomials f have been taken from the
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work of [6], [8], and [7]. These approaches address the prob-
lem of computing rectification functions from buggy integer
multiplier circuits. The tools developed as part of [6] [8] [7]
perform symbolic algebra based computations to compute a
rectification polynomial f to patch a buggy circuit. These tools
integrate a Grobner basis reduction on circuits using amulet [2]
and revsca [3], with an extended Grobner Basis computation
using the SINGULAR computer algebra tool [17]. Once a
rectification polynomial f € Qz1,...,x,] is computed, [7]
performs a reduced Grébner basis computation GB(f, Jo) to
compute fp, which is computationally very prohibitive. Our
objective is to replace the expensive GB(f,.JJy) computation
with our PolyQtoFs(f) algorithm.

The experiments are conducted on a desktop computer with
a 3.5GHz Intel CoreTM i7-4770K Quad-core CPU, 16 GB
RAM, running 64-bit Linux OS. Table II presents the results
on computing a Boolean function corresponding to rectifi-
cation polynomials for the following multiplier structures:
1) a multiplier with simple partial product generators, array
multiplier architecture with a ripple-carry adder in the final
stage, denoted sp-ar-rc, and ii) an architecture with simple
partial product generation, Wallace tree structure and a carry
lookahead adder in the final stage of the design, denoted sp-
wt-cl. The columns denote the datapath size of the faulty
benchmarks, the number of terms in input polynomial f, the
number of variables in f, the number of terms in the output
polynomial in Fy (explicit approach), the number of BDD
nodes (implicit approach), and the execution time taken by
our recursive algorithms for both approaches, the maximum
number of recursive calls, and the time taken by GB based
approach [7].

As it can be seen from the results, the ROBDD based
implementation outperforms the explicit approach, as well as
the GB-based approach. For example, consider the second row
in SP-AR-RC structure, a case of a rectification polynomial

Authorized licensed use limited to: Georgia State University. Downloaded on September 26,2023 at 21:03:24 UTC from |IEEE Xplore. Restrictions apply.



TABLE II: Experimental results to compute a Boolean function fB from a polynomial f with coefficients in Q; n = operand
width/word-length of benchmark multiplier designs; ¢ = time taken to for the proposed recursive algorithm, in seconds; d =
max recursive calls; GBC = time taken to compute a rectification function over Fo with a GB based approach [7], Time-Out
(TO) = 15000s, N A = a rectification polynomial f in QQ couldn’t be computed by [8] [7].

Benchmarks | n | Polynomials over Q Polynomials over Fa BDD Construction d= GBC
(input data) (output: explicit representation) || (output: implicit representation) # of
# of # of #of |# of t # of t recursive
Terms vars Terms | vars (sec) BDD nodes (sec) calls
4 22 8 14 8 0.1 23 0.06 82 1.2
8 [ 14338 16 6254 | 16 1283 5326 81.96 68484 | TO
16 | 718 32 702 | 32 24 1327 11.8 11619 | 7696
SP-AR-RC | 32 | 226 64 190 | 64 16.5 654 8.9 4944 0.2
64 3 4 3 4 0.1 7 0.01 4 0.5
28] 14 15 327671 15 12925 16 85 16383 | TO
256 16 17 TO [ TO TO 13 751.74 65535 | TO
4 32 [ 12 [ 0.3 93 0.2 1029 0.3
8 | 492 16 101 16 2.1 147 1.6 1291 3.7
SP-WT-CL | 16 | 28099 28 16009 | 28 10436 291 4569 2921618 | 1872
32 [ NA NA NA [ NA NA NA NA NA NA
64 3 2 I 2 0.009 3 0.006 2 1.8
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