
Logic Synthesis from Polynomials with Coefficients
in the Field of Rationals

Bhavani Sampathkumar1, Bailey Martin1, Ritaja Das1, Priyank Kalla1, and Florian Enescu2

1Electrical & Computer Engineering, University of Utah, Salt Lake City, UT, USA
2Mathematics & Statistics, Georgia State University, Atlanta, GA, USA

Abstract—This paper introduces a novel concept of performing
logic synthesis from multivariate polynomials with coefficients in
the field of rationals (Q), where the variables take only Boolean
values. Such polynomials are encountered during synthesis and
verification of arithmetic circuits using computer algebra and
algebraic geometry based techniques. The approach takes as
input a polynomial f over Q with binary variables, and derives
a corresponding polynomial ˜f over the finite field (F2) of two
elements, such that ˜f has the same variety (zero-set) as f . As F2

is isomorphic to Boolean algebra, ˜f can be translated to a Boolean
network by mapping the products and sums as AND and XOR
operators, respectively. We prove the correctness of our algebraic
transformation, and present a recursive algorithm for the same.
The translated ˜f ∈ F2 resultingly corresponds to a positive Davio
decomposition, and is computed using both explicit and implicit
representations. The approach is used to synthesize subfunctions
of arithmetic circuits, under the partial synthesis framework. The
efficacy of our approach is demonstrated over various integer
multiplier architectures, where other contemporary approaches
are infeasible.

I. INTRODUCTION

Modern formal verification techniques for integer arithmetic

circuits model the circuit’s functionality using a set of mul-

tivariate polynomials, where the variables take only Boolean

values, and the coefficients lie in the field of fractions (Q) [1]

[2] [3]. Verification is then solved by dividing a specification

(Spec) polynomial f by a Gröbner basis (GB) [4] of the set

of polynomials of the circuit, and checking if the obtained

remainder is 0.

Modeling integer arithmetic circuits using polynomials with

fractional coefficients has been an important contribution.

Since Q forms a field, while the set of integers Z does not due

to the lack of multiplicative inverses, the decision problems

(equivalence check) can be formulated over Q using the

Nullstellensatz (Ch. 4 in [5]). By representing the polynomials

using a specific term order, and by virtue of Z ⊂ Q, it

was shown that the GB-based reduction for digital circuits

never produces results with fractional coefficients, even though

the computations are performed over Q. The soundness and

completeness of such an algebraic model for verification was

proven in [1]. Its efficacy as compared to SAT and decision

diagrams was also demonstrated [2] [3].

Due to its success for verification, the algebraic model

has also been explored for partial synthesis of rectification
functions for buggy arithmetic circuits, both for finite field

circuits [6], as well as for integer arithmetic circuits [7].

This research is funded in part by the US National Science Foundation
grants CCF-1911007 and CCF-1910368.

These techniques also model the circuit by way of a set of

polynomials, and perform GB computations to compute rec-

tification functions. Interestingly, when the polynomial model

with coefficients in Q is utilized for partial synthesis of integer

arithmetic circuits, it is observed that the extended Gröbner
basis computations may result in polynomials with fractional
coefficients [8]. Subsequently, given a rectification polynomial

f with fractional coefficients, it is required to synthesize a

corresponding Boolean function f̃B to patch the circuit.

Objective: Given the above context, this paper addresses a

novel problem of logic synthesis from polynomials with binary

variables and coefficients in Q. Since the polynomial f can

evaluate to any value in Q, we have to further ensure that:

i) for those variable assignments where f evaluates to 0, f̃B
should too; and ii) for those input assignments where f �= 0,

we should have f̃B = 1. This ensures that f̃B is a Boolean

function that has the same zero-set as f .

Approach and Contributions: Our approach takes an al-

gebraic geometry view of the problem, and translates the

given polynomial f with fractional coefficients to another

polynomial f̃ with coefficients in the finite field F2 of 2

elements {0, 1}. Moreover, we ensure that both f and f̃
have the same zero-set (variety), when their variables are

restricted to binary Boolean values. Thus, when f evaluates

to nonzero values in Q, f̃ = 1, as f̃ evaluates in F2. We

prove the existence of such a transformation, and our proof

motivates a recursive algorithm for this computation. Since

Boolean algebra is isomorphic to polynomial algebra over F2,

the polynomial f̃ can be translated to a AND-XOR Boolean

expression f̃B by replacing (+, ·) with (XOR ⊕, AND ∧),

respectively. Such polynomials can be computed for both an

on-set function, as well as a don’t-care set function, which can

be then synthesized with a logic synthesis tool.

While our approach relies upon concepts from algebraic

geometry, it turns out that the (de)composition of f̃B resembles

a positive Davio decomposition, as implemented in functional

decision diagrams [9] [10]. We implement our approach to

transform f to f̃B as a recursive algorithm, with both an

explicit representation of f̃ as a set of monomial terms,

and also with an implicit set representation using the CUDD

decision diagrams package [11].

Example I.1. Let us illustrate the problem by means of an

example. Let f = (4/3)a0a1b0b1−2a0b0b1−(2/7)a1b0 with 4

Boolean variables and fractional coefficients. Then there exists

a corresponding polynomial f̃ = a0a1b0b1+a0b0b1+a1b0 over

F2 with the same zeros as f . Table I shows that for all variable

82

2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)

2378-2226/23/$31.00 ©2023 IEEE
DOI 10.1109/ISMVL57333.2023.00026

20
23

 IE
EE

 5
3r

d
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

M
ul

tip
le

-V
al

ue
d

Lo
gi

c
(I

SM
V

L)
 |

97
8-

1-
66

54
-6

41
6-

1/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IS

M
V

L5
73

33
.2

02
3.

00
02

6

Authorized licensed use limited to: Georgia State University. Downloaded on September 26,2023 at 21:03:24 UTC from IEEE Xplore. Restrictions apply.

assignments x where f(x) = 0, we have f̃(x) = 0. Whereas

when f(x) �= 0, we have f̃(x) = 1. Then, a Boolean function

can be generated from f̃ as f̃B = (a0a1b0b1) ⊕ (a0b0b1) ⊕
(a1b0).

{a1a0b1b0} f ˜f {a1a0b1b0} f ˜f
0000 0 0 1000 0 0
0001 0 0 1001 -2/7 1
0010 0 0 1010 0 0
0011 0 0 1011 -2/7 1
0100 0 0 1100 0 0
0101 0 0 1101 -2/7 1
0110 0 0 1110 0 0
0111 -2 1 1111 -20/21 1

TABLE I: Evaluation of the polynomials. The shaded rows

depict a few cases where f �= 0 implies f̃ = 1.

Paper Organization: The following section, Section II, cov-

ers the notation used and the preliminary background. Section

III reviews related previous work. Section IV formally states

the problem, proves the existence of such a translation of f in

Q to f̃ in F2. The algorithm and implementation is described

in Section V, whereas Section VI describes the experimental

results. Section VII concludes the paper.

II. NOTATION AND BACKGROUND CONCEPTS

Let B denote the Boolean domain, F2 = {0, 1} the finite

field of 2 elements, and Q the field of rational numbers. Let

{x1, . . . , xn} denote a set of variables. Let K be any field,

e.g. K = Q or K = F2; then R = K[x1, . . . , xn] denotes the

ring of polynomials in variables x1, . . . , xn, with coefficients

in K. A polynomial f ∈ R is written as a sum of terms,

f = c1X1 + c2X2 + · · ·+ ctXt, where ci denote elements in

K, Xi denote monomials, and ciXi is a term. A monomial is

a power-product of the form xα1
1 · · ·xαn

n , with αi ∈ Z≥0.

In our work, the variables {x1, . . . , xn} correspond to nets

in a circuit, and the gates of the circuit are modeled using a set

of polynomials F = {f1, . . . , fs}. Given a set of polynomials

F = {f1, . . . , fs} from R, the ideal generated by F is J =
〈F 〉 = 〈f1, . . . , fs〉 = {h1 ·f1+· · ·+hs ·fs : h1, . . . , hs ∈ R}.

The polynomials f1, . . . , fs form the basis of ideal J .

Let x = (x1, . . . , xn) ∈ Kn be a point in the affine space,

and f a polynomial in R. If f(x) = 0, we say that f vanishes
on x. We have to analyze the set of all common zeros of the

polynomials of F that lie within the field K. This zero set

is called the variety. It depends not just on the given set of

polynomials but rather on the ideal generated by them. We

denote it by VK(J), where: VK(J) = VK(f1, . . . , fs) = {x ∈
Kn : ∀f ∈ J, f(x) = 0}.

An ideal may have many different sets of generators that

have the same variety; i.e. it is possible to have J =
〈f1, . . . , fs〉 = 〈g1, . . . , gt〉 = · · · = 〈h1, . . . , hr〉, such that

VK(f1, . . . , fs) = VK(g1, . . . , gt) = · · · = VK(h1 . . . , hr). A

Gröbner basis (GB) of an ideal is one such generating set

G = {g1, . . . , gt}, that is a canonical representation of the

ideal, and helps in solving many polynomial decision and

quantification problems. A Gröbner basis can be computed

using the Buchberger’s algorithm (Alg. 1.7.1 in [4]). It takes

as input a set of polynomials {f1, . . . , fs} and computes its

GB G = {g1, g2, · · · , gt}.

A. The ideal of Vanishing Polynomials, Idempotency and
Quotient Rings

In this work, we consider f ∈ R = Q[x1, . . . , xn], where

f is derived from a circuit, so x1, . . . , xn take only Boolean

values 0 or 1. Equivalently, each variable xi is idempotent

in that x2
i = xi or x2

i − xi = 0. We call the polynomial

(x2
i −xi) a Boolean vanishing polynomial (BVP) as it vanishes

on xi = 0, 1. Let F0 = {x2
1 − x1, . . . , x

2
n − xn} be the set of

all BVPs in Z[x1, . . . , xn], and J0 = 〈F0〉. Note that there are

natural maps from Z[x1, . . . , xn] to R = Q[x1, . . . , xn] and to

S = F2[x1, . . . , xn], which lead to the ideals F0R in R and

F0S in S, generated by F0 in R and, respectively, S. In other

words, the same set of BVPs {x2
i −xi : i = 1, . . . , n} denotes

different ideals in different rings: F0R in R, and F0S in S.

We will use J0 to denote F0R.

Imposition of this Boolean idempotency for each variable

in f requires that f is always reduced (mod J0), i.e. f
is divided by BVPs for all variables and the resulting re-

mainder r is taken as the result: denoted f (mod J0) =

f
J0=〈x2

1−x1,...,x
2
n−xn〉−−−−−−−−−−−−−−→+ r. Thus, our computations are ef-

fectively performed over the quotient ring Q[x1,...,xn]
F0R

, where

F0R = 〈x2
1 − x1, . . . , x

2
n − xn〉 is the ideal generated by all

BVPs in R. As a result, higher degree variables xk
i , k ≥ 2, are

reduced to xi in the computations since xk
i = xi (mod J0).

Thus f comprises terms with only multilinear monomials
xα1
1 · xα2

2 · · ·xαn
n , with αi ∈ {0, 1}.

In other words, the Boolean idempotency on variables of f
is enforced by considering the the ideal 〈f, F0R〉. Moreover,

the variety VQ(f, F0R) ⊂ {0, 1}n. Note that in Example I.1,

f = (4/3)a0a1b0b1 − 2a0b0b1 − (2/7)a1b0 has multilinear

monomials, as it is already reduced (mod F0R = 〈a20 −
a0, b

2
0 − b0, a

2
1 − a1, b

2
1 − b1〉). In the sequel, we will assume

that every polynomial is reduced to its multilinear form

(mod F0R).

III. REVIEW OF RELATED WORK

Previous work has investigated the modeling of arithmetic

circuits using commutative algebra and algebraic geometry.

The work of [1] [2] [3] has addressed verification of arithmetic

circuits using Gröbner basis techniques, but the synthesis

problem has not been solved by them. The verification problem

is formulated as an ideal membership test, which is a decision

problem. However, the synthesis problem is a quantification

problem, which is computationally more challenging.

The synthesis problem has been addressed in the context

of rectification for engineering change orders (ECO) as well

as for rectification of buggy arithmetic circuits. The ECO

rectification approaches are based on SAT and Craig Interpola-

tion based models [12], or Quantifier Boolean Formula (QBF)

and iterative-SAT based models [13] [14]. Recently, there has

been some interest in computing rectification functions for

arithmetic circuits using computer algebra techniques, such

as [15] [6] [7] [16], among others. Of these [15] [6] compute

Boolean rectification functions from polynomial models over

finite fields F2k of 2k elements. Since such binary finite fields

are k-dimensional extensions of F2, translating polynomials

from F2k to AND-XOR networks is fairly straightforward.

83

Authorized licensed use limited to: Georgia State University. Downloaded on September 26,2023 at 21:03:24 UTC from IEEE Xplore. Restrictions apply.

In [16], a buggy integer arithmetic circuit is patched at all

the primary outputs where the bug-effect is observable, by

implementing half-adders and carry-propagate logic at those

outputs. However, the paper does not provide a proof of

soundness or completeness of their approach. The approach

captures the functionality of a bug in a polynomial f with

integer coefficients and attempts to patch the bug at the primary

outputs using half and full adders. However, this approach

cannot synthesize a Boolean function from a polynomial f
with fractional coefficients.

The works that are closely related to this paper are by [8],

and [7]. In [8], the author shows that a rectification polynomial

f for an integer arithmetic circuit can be computed using

the extended Gröbner basis algorithm, by operating over the

ring Q[x1, . . . , xn]. Interestingly, this work discovers that f
may have rational coefficients – which is not surprising as

a polynomial is computed over Q. Moreover, at an algebraic

level, this rectification polynomial f can patch the bug, in the

sense that replacing the polynomial f for a buggy gate passes

the verification test. However, no efficient logic synthesis

approach was presented to generate logic circuits from f .

Rao et al. in [7] address the problem of synthesizing a

Boolean rectification function f̃B from a polynomial f ∈
Q[x1, . . . , xn], such that f and f̃B have the same zero-set.

Their approach is as follows: i) They compute a reduced
Gröbner basis G = GB(f, J0 = 〈F0R〉) = {g1, . . . , gt}. ii)

Then, the polynomial f̃ ∈ F2[x1, . . . , xn] is computed using

the formula

f̃ = (1 + g1)(1 + g2) · · · (1 + gt) + 1 (mod 2).

Then f̃ is translated to an AND-XOR network from F2,

which can be given to a logic synthesis tool for optimized

implementation.

While the approach theoretically solves the problem above,

computing a reduced Gröbner basis G = GB(f, J0) is

infeasible due to its very high complexity, even for small

rectification functions for 8-bit multipliers (shown in Table

II in the sequel). Therefore, there is a need for a non-Gröbner

basis based approach to practically compute f̃ from f .

This paper addresses the above problem by relating the

variety VQ(f, F0R) and VF2
(f̃ , F0S). We do not explain how

a rectification polynomial computation may generate f with

rational coefficients. We refer the reader to [8] (Chapter 6)

and [7] for more details. We only address the problem of

synthesizing Boolean functions f̃B from f .

IV. TRANSLATING POLYNOMIALS FROM Q TO F2

Problem Statement: Given the polynomial f ∈ R =
Q[x1, . . . , xn], derive a corresponding polynomial f̃ ∈
F2[x1, . . . , xn], such that f and f̃ have the same variety when

their variables are restricted to 0 and 1. More precisely, given

f , find f̃ such that

VQ(f, F0R)
︸ ︷︷ ︸
(0,1)-tuple in Q

= VF2
(f̃ , F0S)

︸ ︷︷ ︸
(0,1)-tuple in F2

. (1)

Note that, although they are distinct sets, there is a one-

to-one correspondence between the set {0, 1}n ⊂ Qn and

{0, 1}n ⊂ Fn
2 where 0 in Q corresponds to 0 in F2 and 1

in Q corresponds to 1 in F2. We denote this correspondence

simply by the identity function to avoid cumbersome notations.

Moreover, VQ(f, F0R) = VF2
(f̃ , F0S) implies that: i) for all

points x ∈ VQ(f, F0R) we have f(x) = f̃(x) = 0; and ii) for

all points x /∈ VQ(f, F0R), we have that f̃(x) = 1, as f̃ only

evaluates to 0 or 1.

Approach: We describe the transformation approach as

follows. To begin with, assume that f ∈ R = Q[x1, . . . , xn]
is reduced (mod F0R), so that f consists of only multilinear

terms. Impose a lexicographic term order on f , with variable

order x1 > x2 > · · · > xn. Without loss of generality,

assume xi = x1 is the largest variable in the order that

appears in f (otherwise, we can relabel the variables). Then

one can factorize f w.r.t. x1, so that f = hx1 + g, where

h, g ∈ Q[x2, . . . , xn] and h �= 0. We state and prove the

following result.

Theorem IV.1 (The Translation Theorem). Let f be a poly-

nomial in R = Q[x1, . . . , xn], written in the form f =
hx1 + g as shown above. Then there exists a polynomial

f̃ ∈ F2[x1, . . . , xn] where f and f̃ have the same variety

as {0, 1}-tuples, i.e. VQ(f, F0R) = VF2(f̃ , F0S).

Proof: Consider f = hx1+g in R. Let (x1, x2, . . . , xn) ∈
{0, 1}n be a point which we denote as (x1, y), where y =
(x2, . . . , xn). Then:

f(x1, y) = 0 (2)

=⇒ h(y) · x1 + g(y) = 0 (3)

=⇒ h(y) · x1 = −g(y). (4)

From Eqn. (4), we have that when x1 = 1, h(y) = −g(y),
or h(y) + g(y) = 0. Also, x1 = 0 implies that g(y) = 0. So,

from Eqn. (4) we conclude that

VQ(f, F0R) ={(1, y) : y ∈ VQ(h+ g, F0R)}
∪ {(0, y) : y ∈ VQ(g, F0R)}. (5)

In other words, VQ(f, F0R) consists of tuples (1, y) where

h+ g vanishes on y, and tuples (0, y) where g vanishes on y.

This observation allows to prove the theorem by induction.

The verification for n = 1 (one variable) is straightforward.

When x1 is the only variable, then f = hx1 + g is such that

h, g are constants in Q. We can consider the following 4 cases:

1) Case 1: h = 0, g = 0. Then f̃ = 0.

2) Case 2: h �= 0, g = 0. Then f̃ = x1, because VQ(f =

hx1, F0R) = VF2
(f̃ = x1, F0S) = {(0)}.

3) Case 3: h = 0, g �= 0. Then f̃ = 1, because a non-zero

constant has no roots.

4) Case 4: h �= 0, g �= 0. In this case, Eqn. (5) tells us that

if h+ g = 0, then f̃ = x1 + 1; otherwise, f̃ = 1.

Thus, for every f(x1) ∈ Q[x1], there exists a corresponding

f̃ ∈ F2[x1] with VQ(f, x
2
1 − x1) = VF2

(f̃ , x2
1 − x1).

Now assume that the theorem statement is true for polyno-

mials with up to and including n− 1 variables. Therefore, we

can find p̃ and g̃ ∈ F2[x2, . . . , xn] that satisfy the following:

84

Authorized licensed use limited to: Georgia State University. Downloaded on September 26,2023 at 21:03:24 UTC from IEEE Xplore. Restrictions apply.

1) The polynomial p̃ is such that VF2
(p̃, F0S) = VQ(h +

g, F0R) ⊆ {0, 1}n−1, i.e. the varieties of p̃ and h+g are

equal as {0, 1}-tuples. That is, for a polynomial h + g
in n − 1 variables, there exists a corresponding p̃ with

coefficients in F2.

2) The polynomial g̃ is such that VF2
(g̃, F0S) =

VQ(g, F0) ⊆ {0, 1}n−1.

Let h̃ = p̃− g̃. As above, considering the polynomial f̃ =
h̃x1 + g̃ = (p̃ − g̃)x1 + g̃ over F2, and a point (x1, y) ∈
VF2

(f̃ , F0S) ⊂ {0, 1}n, we see that:

f̃(x1, y) = 0 (6)

=⇒ (p̃(y)− g̃(y)) · x1 = −g̃(y) (7)

=⇒ (p̃(y)− g̃(y)) · x1 = g̃(y), (8)

as −1 = +1 (mod 2). Therefore,

x1 = 1 =⇒ p̃(y)− g̃(y) = g̃(y) (9)

=⇒ p̃(y) = 0 (10)

=⇒ y ∈ VF2
(p̃, F0) (11)

x1 = 0 =⇒ g̃(y) = 0 (12)

=⇒ y ∈ VF2
(g̃, F0). (13)

In conclusion,

VF2(f̃ , F0S) ={(1, y) : y ∈ VF2(p̃, F0S)}
∪ {(0, y) : y ∈ VF2(g̃, F0S)}.

But, {(1, y) : y ∈ VF2
(p̃, F0S)} ∪ {(0, y) : y ∈ VF2

(g̃, F0S)}
={(1, y) : y ∈ VQ(h+ g, F0R)} ∪ {(0, y) : y ∈ VQ(g, F0R)}.

This proves our claim that for every f ∈ Q[x1, . . . , xn],
there exists a corresponding f̃ ∈ F2[x1, . . . , xn], s.t.

VQ(f, F0R) = VF2
(f̃ , F0S).

V. ALGORITHM & IMPLEMENTATION

The proof of the theorem inspires an algorithm to recur-

sively compute f̃ – actually, directly the Boolean function

f̃B – from f . Impose a lex term order on the given f , with

variable order x1 > x2 > · · · > xn. Assume that f is already

multilinear in the variables; if not, then it can be reduced

(mod F0R) to make it multilinear. Decompose f = hx1 + g,

by dividing f by variable x1, and obtaining the quotient h
and remainder g in Q[x2, . . . , xn]. Let p = h+ g. Recursively

decompose polynomials p, g, until the decomposed polynomi-

als contain only one term cX . Then, recursion bottoms out

as follows: i) if the decomposed polynomial p (resp. g) is 0,

return p̃ = 0 (resp. g̃ = 0); ii) if p (resp. g) is a non-zero

constant, return p̃ = 1 (resp. g̃ = 1); iii) if p = cX ∈ R (resp.

g = cX), is a single term, then return p̃ = X ∈ F2[X] (resp.

g̃ = X). Reconstruct f̃ = (p̃ − g̃) · xi + g̃. Since −1 ≡ +1
(mod 2) ≡ ⊕, the required Boolean expression can be re-

constructed as: f̃B = (p̃⊕ g̃) · xi ⊕ g̃.

Algorithm 1 shows the recursive procedure. Lines 2-7 show

the terminal cases of recursion. Lines 9-12 decompose f =
hxi+ g, and compute compute h, g, p = h+ g. Line 9 applies

a heuristic to select a variable xi for factorization/division.

From the polynomial f , we select the variable that has the

highest activity – i.e. the variable that appears in the most

number of terms in f . This is done so to keep the recursion

tree as balanced as possible, or to bottom-out the recursion

early. When p̃, g̃ are returned by the recursive calls in lines 13-

14, the Boolean function f̃B (or equivalently the polynomial

f̃ ∈ F2[x1, . . . , xn]) is constructed in line 15, where ⊕ denotes

addition (mod 2), or the XOR operation.

Algorithm 1: Compute f̃B from f

Input : f ∈ Q[x1, x2, . . . , xn], x1 > · · · > xn

Output: Boolean function f̃B with same zeros as f
1 function: PolyQtoF2(f)
2 if f == 0 then
3 return f̃B = 0;

4 else if f == c �= 0 then
// f is a non-zero constant c

5 return f̃B = 1;

6 else if f == single term cX then
7 return f̃B = X; // VQ(cX, F0) = VF2

(X,F0)
8 else
9 xi = select high activity variable(f);

// Decompose f w.r.t. xi := hxi + g
10 h = f/xi; // h =quotient, division by xi

11 g = f (mod xi);// g = remainder
12 p = h+ g;

13 p̃ = PolyQtoF2(p); // p̃ has the same
variety as VQ(h+ g)

14 g̃ = PolyQtoF2(g); // g̃ has the same
variety as VQ(g)

15 f̃B = (p̃⊕ g̃) · xi ⊕ g̃;

16 return f̃B;

17 end

Example V.1. We demonstrate the algorithm on the polyno-

mial f = (4/3)a0a1b0b1 − 2a0b0b1 − (2/7)a1b0. The highest

activity variable is b0, so we factorize f = ((4/3)a0a1b1 −
2a0b1−(2/7)a1)b0. We denote by subscript i, the decomposed

polynomials pi, gi at recursion-level i.

At the first recursion level: h1 = (4/3)a0a1b1 − 2a0b1 −
(2/7)a1, and g1 = 0. Then p1 = h1 + 0 = (4/3)a0a1b1 −
2a0b1 − (2/7)a1. Since g1 = 0, g̃1 = 0.

At second recursion level, f = p1 = (4/3)a0a1b1 −
2a0b1 − (2/7)a1. Expansion variable selected is a0. Then

h2 = (4/3)a1b1 − 2b1, g2 = −(2/7)a1, p2 = (4/3)a1b1 −
2b1 − (2/7)a1. Since g2 is terminal case, g̃2 = a1, and so on.

Fig. 1 depicts the recursion tree. The returned Boolean

functions p̃, g̃ at each recursion step are shown in red color.

The final returned Boolean function f̃B = (a0a1b0b1) ⊕
(a0b0b1)⊕ (a1b0), which matches the one in Example I.1.

While the algorithm exhibits exponential worst-case com-

plexity, experiments in the sequel show that the number

85

Authorized licensed use limited to: Georgia State University. Downloaded on September 26,2023 at 21:03:24 UTC from IEEE Xplore. Restrictions apply.

f = (4/3)a0a1b0b1 − 2a0b0b1 − (2/7)a1b0

b0

p1 = h1 = (4/3)a0a1b1 − 2a0b1 − (2/7)a1
g1 = 0 g̃1 = 0

p̃1 = a0a1b1 ⊕ a0b1 ⊕ a1

f̃ = (p̃1 ⊕ g̃1)b0 ⊕ g̃1

= a0a1b0b1 ⊕ a0b1b0 ⊕ a1b0

a0

g2 = − (2/7)a1

g̃2 = a1

p2 = (4/3)a1b1 − 2b1 − (2/7)a1

a1

g3 = − 2b1

g̃3 = b1

f3 = ((4/3)b1 − (2/7))a1 − 2b1

p3 = (−2/3)b1 − (2/7)

p̃3 = 1

p̃2 = (p̃3 ⊕ g̃3)a1 ⊕ g̃3 = b1a1 ⊕ a1 ⊕ b1

Fig. 1: Recursion tree and the f̃B computation for Example V.1.

of recursive calls is often much less than 2n. Also note

that in line 15 of the algorithm, f̃B = (p̃ ⊕ g̃) · xi ⊕ g̃
resembles a positive Davio decomposition. The positive Davio

decomposition decomposes a Boolean function f̃ based on

its cofactors f̃x = f̃(x = 1) and f̃x′ = f̃(x = 0) as:

f̃ = (f̃x ⊕ f̃x′) · x ⊕ f̃x′ . In our case, p̃, g̃ correspond to the

positive and negative cofactors of f̃B w.r.t. xi, respectively.

A. Implementation

Our recursive algorithm is a stand-alone software program

implemented in C++. We have built a custom polynomial data

structure for a polynomial f = c1X1 + c2X2 + · · · + ctXt

where Ci are coefficients and Xi are monomials, and f is

defined as a list of terms. A term is implemented as a typedef

structure of coefficients (ci) and monomials (Xi), a monomial

is a vector of tuples of the form [xα1
1 , . . . , xαn

n] where αi ∈
0, 1. A coefficient is a typedef structure of sign, numerator and

denominator. We have also implemented functions to impose a

lex term order for a given polynomial as well as a function to

perform multivariate polynomial division. At every recursion

level, we divide the polynomial f by xi and obtain the p and

g polynomials, and compute the p̃ and g̃. We recombine p̃ and

g̃ to obtain f̃ = ((p̃⊕ g̃)xi)+ g̃. This stand-alone tool is used

for experiments.

Two versions of the tool are implemented where the p̃, g̃,
and f̃B are computed using: i) explicit set representations using

the polynomial data-structure described above; and ii) using

implicit representations, particularly the ROBDD representa-

tion using the CUDD package [11].

VI. EXPERIMENTS

Using our tool, we have conducted some experiments to

compute a Boolean function f̃B, given a polynomial f ∈
Q[x1, . . . , xn]. The polynomials f have been taken from the

work of [6], [8], and [7]. These approaches address the prob-

lem of computing rectification functions from buggy integer

multiplier circuits. The tools developed as part of [6] [8] [7]

perform symbolic algebra based computations to compute a

rectification polynomial f to patch a buggy circuit. These tools

integrate a Gröbner basis reduction on circuits using amulet [2]

and revsca [3], with an extended Gröbner Basis computation

using the SINGULAR computer algebra tool [17]. Once a

rectification polynomial f ∈ Q[x1, . . . , xn] is computed, [7]

performs a reduced Gröbner basis computation GB(f, J0) to

compute f̃B, which is computationally very prohibitive. Our

objective is to replace the expensive GB(f, J0) computation

with our PolyQtoF2(f) algorithm.

The experiments are conducted on a desktop computer with

a 3.5GHz Intel CoreTM i7-4770K Quad-core CPU, 16 GB

RAM, running 64-bit Linux OS. Table II presents the results

on computing a Boolean function corresponding to rectifi-

cation polynomials for the following multiplier structures:

i) a multiplier with simple partial product generators, array

multiplier architecture with a ripple-carry adder in the final

stage, denoted sp-ar-rc, and ii) an architecture with simple

partial product generation, Wallace tree structure and a carry

lookahead adder in the final stage of the design, denoted sp-
wt-cl. The columns denote the datapath size of the faulty

benchmarks, the number of terms in input polynomial f , the

number of variables in f , the number of terms in the output

polynomial in F2 (explicit approach), the number of BDD

nodes (implicit approach), and the execution time taken by

our recursive algorithms for both approaches, the maximum

number of recursive calls, and the time taken by GB based

approach [7].

As it can be seen from the results, the ROBDD based

implementation outperforms the explicit approach, as well as

the GB-based approach. For example, consider the second row

in SP-AR-RC structure, a case of a rectification polynomial

86

Authorized licensed use limited to: Georgia State University. Downloaded on September 26,2023 at 21:03:24 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Experimental results to compute a Boolean function f̃B from a polynomial f with coefficients in Q; n = operand

width/word-length of benchmark multiplier designs; t = time taken to for the proposed recursive algorithm, in seconds; d =
max recursive calls; GBC = time taken to compute a rectification function over F2 with a GB based approach [7], Time-Out

(TO) = 15000s, NA = a rectification polynomial f in Q couldn’t be computed by [8] [7].

Benchmarks n Polynomials over Q Polynomials over F2 BDD Construction d= GBC
(input data) (output: explicit representation) (output: implicit representation) # of

of # of # of # of t # of t recursive
Terms vars Terms vars (sec) BDD nodes (sec) calls

SP-AR-RC

4 22 8 14 8 0.1 23 0.06 82 1.2
8 14338 16 6254 16 128.3 5326 81.96 68484 TO

16 718 32 702 32 24 1327 11.8 11619 7696
32 226 64 190 64 16.5 654 8.9 4944 0.2
64 3 4 3 4 0.1 7 0.01 4 0.5
128 14 15 32767 15 12925 16 85 16383 TO
256 16 17 TO TO TO 18 751.74 65535 TO

SP-WT-CL

4 82 8 12 8 0.3 93 0.2 1029 0.3
8 492 16 101 16 2.1 147 1.6 1291 3.7

16 28099 28 16009 28 10436 291 4569 2921618 1872
32 NA NA NA NA NA NA NA NA NA
64 3 2 1 2 0.009 3 0.006 2 1.8

computed for a small 8-bit multiplier. The GB based approach

of [7] fails when the size of the polynomial f is large.

However, our recursion computes the desired Boolean function

orders of magnitude faster. In case of the 256-bit circuit, our

explicit approach failed to compute f̃B in the stipulated time,

whereas the ROBDD was constructed. This is because when

we reconstruct f̃B in Alg. 1 line 15, there is scope for logic

simplification to reduce the number of terms. However, our

explicit approach does not employ that simplification, so it

unnecessarily processes more terms, which takes more time.

For the entries are marked with NA, the approaches of [8]

[7] could not compute a rectification polynomial f due to a

potentially very large size of f .

VII. CONCLUSION

This paper has presented a new problem and approach to

synthesize Boolean logic functions from multivariate polyno-

mials with coefficients in the field of fractions (Q), where

the variables take only Boolean values. We have presented

a recursive algorithm that takes as input a polynomial f
over Q with binary variables, and derives a corresponding

polynomial f̃ over the finite field (F2) of two elements,

such that f̃ has the same variety (zero-set) as f . As F2

is isomorphic to Boolean algebra, f̃ can be translated to a

Boolean network or function by replacing the products and

sums to AND and XOR operators, respectively. We have

proved the existence of f̃ , and have developed an algorithm to

perform this transformation. We have shown that our approach

results in a positive Davio decomposition of f̃B. We have

applied our approach to translate rectification polynomials to

Boolean functions and compared against GB-based methods.

Our approach is implemented using both explicit and implicit

set representations. Our ROBDD based implementation is

orders of magnitude faster than that of a GB-based approach,

particularly for large circuits and polynomials.

REFERENCES

[1] D. Ritirc, A. Biere, and M. Kauers, “Column-Wise Verification of
Multipliers Using Computer Algebra,” in Formal Methods in Computer-
Aided Design (FMCAD), 2017, pp. 23–30.

[2] D. Kaufmann and A. Biere, “Amulet 2.0 for verifying multiplier
circuits,” Tools and Algorithms for the Construction and Analysis of
Systems, vol. 12652, pp. 357 – 364, 2021.

[3] A. Mazhoon, D. Große, and R. Drechsler, “PolyCleaner: Clean your
Polynomials before Backward Rewriting to Verify Million-Gate Mul-
tipliers,” in IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2018.

[4] W. W. Adams and P. Loustaunau, An Introduction to Gröbner Bases.
American Mathematical Society, 1994.

[5] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms: An
Introduction to Computational Algebraic Geometry and Commutative
Algebra. Springer, 2007.

[6] V. Rao, U. Gupta, A. Srinath, I. Ilioaea, P. Kalla, and F. Enescu, “Post-
Verification Debugging and Rectification of Finite Field Arithmetic
Circuits using Computer Algebra Techniques,” in Formal Methods in
Computer-Aided Design (FMCAD), 2018, pp. 1–9.

[7] V. Rao, H. Ondricek, P. Kalla, and F. Enescu, “Rectification of integer
arithmetic circuits using computer algebra techniques,” in IEEE Interna-
tional Conference on Computer Design (ICCD), Oct. 2021, pp. 186–195.

[8] A. Srinath, “Rectification of Integer Arithmetic Circuits,” Master’s
thesis, ECE Dept., The University of Utah, USA, 2019.

[9] U. Kebschull, E. Schubert, and W. Rosenstiel, “Multilevel Logic Synthe-
sis based on Functional Decision Diagrams,” in EDAC, 92, pp. 43–47.

[10] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M. Perkowski,
“Efficient Representation and Manipulation of Switching Functions
based on Order Kronecker Function Decision Diagrams,” in DAC, 1994,
pp. 415–419.

[11] F. Somenzi, “Colorado Decision Diagram Package,” Computer Pro-
gramme, 1997.

[12] K. F. Tang, C. A. Wu, P. K. Huang, and C. Y. Huang, “Interpolation-
Based Incremental ECO Synthesis for Multi-Error Logic Rectification,”
in Proc. Design Automation Conf. (DAC), 2011, pp. 146–151.

[13] M. Fujita, “Toward Unification of Synthesis and Verification in Topo-
logically Constrained Logic Design,” Proceedings of the IEEE, 2015.

[14] K. Gitina, S. Reimer, M. Sauer, R. Wimmer, C. Scholl, and B. Becker,
“Equivalence Checking of Partial Designs Using Dependency Quantified
Boolean Formulae,” in IEEE International Conference on Computer
Design (ICCD), 2013, pp. 396–403.

[15] U. Gupta, I. Ilioaea, V. Rao, A. Srinath, P. Kalla, and F. Enescu, “Recti-
fication of Arithmetic Circuits with Craig Interpolants in Finite Fields,”
in VLSI-SoC: Design and Engineering of Electronics Systems Based on
New Computing Paradigms. Springer International Publishing, June
2019, vol. 561, ch. 5, pp. 79–106.

[16] N. A. Sabbagh and B. Alizadeh, “Arithmetic Circuit Correction by
Adding Optimized Correctors Based on Groebner Basis Computation,”
in Proc. Eur. Test Symp. (ETS), 2021, pp. 1–6.

[17] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, “SINGULAR

4-1-0 — A computer algebra system for polynomial computations,” http:
//www.singular.uni-kl.de, 2016.

87

Authorized licensed use limited to: Georgia State University. Downloaded on September 26,2023 at 21:03:24 UTC from IEEE Xplore. Restrictions apply.

