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A B S T R A C T   

Distributed fiber optic sensors with protective packages have shown unique capabilities in 
measuring strain and crack distributions for structural health monitoring. However, the me
chanics at the fiber-package interface remain unclear when debonding occurs. This paper in
vestigates the interfacial mechanics for distributed fiber optic sensors undergoing debonding 
through mechanical analysis and metaheuristic-based inverse analysis. First, the governing 
equation of the interfacial mechanics is established and solved with assistance from 
metaheuristic-based inverse analysis on the interfacial properties of fiber optic cables. Then, 
experiments were conducted to validate the analysis results by measuring the strain distributions 
in distributed fiber optic sensors based on optical frequency domain reflectometry. The results 
showed that the proposed approach accurately quantified the interfacial mechanics, interfacial 
properties, strain transfer, and debonding behavior in distributed fiber optic sensors. This 
research advances the fundamental understandings of the sensing mechanisms of distributed fiber 
optic sensors undergoing inelastic behaviors for structural health monitoring.   

1. Introduction 

The conditions of structures during construction and operation concern public welfare and safety. The collapse of bridges and 
leaking of pipes can cause catastrophic consequences and capital loss. Structural health monitoring plays important roles in restoring 
structures through identifying, locating, and quantifying anomalies at early stages [1], enabling timely and efficient actions with high 
efficacy and low cost. Various sensor technologies have been developed to monitor structural conditions. Fiber optic sensors are 
attracting increasing interests due to their unique characteristics, such as high sensitivity, high accuracy, light weight, small size, 
physical and chemical stability, immunity to electromagnetic interference, and multiplexability [2,3]. 

According to the spatial features, fiber optic sensors are categorized into point sensors and distributed sensors [4]. A point sensor 
only provides measurements over its gauge length. Although it is possible to connect multiple point sensors to form a “quasi- 
distributed” sensor for measuring multiple discrete spots, the cost associated with sensor preparation and operation is increased in 
practice [2,3]. Alternatively, a distributed sensor has a unique advantage of utilizing a single fused silica optical fiber as both the 
transmission line and the sensor with dense sensing points, thus providing spatially distributed measurements. It is promising for 
automated condition monitoring and assessment of large-scale engineering structures [5]. With these attractive features, distributed 
fiber optic sensors are used to measure strain distributions in various engineering structures [1–5]. 
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An optical fiber is usually composed of a sensing fiber and coatings used to protect the fiber from damage under mechanical loads or 
various environmental effects [6,7]. The presence of the protective coatings influences the measurement from the sensor because the 
coating deformation changes the deformation sensed by the sensing fiber [8,9], known as the “strain transfer effect” in the context of 
fiber optic sensors [10]. Currently, fiber optic sensors are mainly operated under conditions with an intact fiber-coating interface 
[8–10]. The strain transfer effect is quantitatively considered by calibrating the strain transfer coefficients for point fiber optic sensors 
or analyzing the strain transfer equations for distributed fiber optic sensors [11–13]. 

Recent research found that fiber optic sensors were also applicable in the presence of fiber-coating interface debonding [11,14], 
and the interface debonding showed benefits for fiber optic sensors [10]. Fig. 1 shows a fiber optic cable embedded in a matrix subject 
to tensile forces. When the host matrix (e.g., steel or concrete) is cracked, the fiber-coating interface will be disturbed, and an 
interfacial slip will occur, thus altering the axial stresses in the fiber. Basically, the abrupt local deformation caused by the crack is 
redistributed over a longer length along the fiber. Such strain redistribution helps accommodate the localized deformation at the crack 
opening, thus reducing the peak tensile stress in the fiber and protecting the fiber from rupture [2]. The fiber-coating interface 
debonding helps avoid the rupture of distributed sensors crossing cracks [11,12]. Debonding is essential for using distributed fiber 
optic sensors in structural health monitoring because the occurrence of discontinuity such as cracks [11,12] and delamination/ 
debonding [15] in host structures is unavoidable in practice. 

Currently, there is lack of knowledge on the fiber-coating interfacial behavior [16]. Previous research on the interfacial strain 
transfer of fiber optic sensors focused on the elastic stage, lacking consideration of interfacial debonding. The strain transfer of a fused 
silica fiber with polymeric coating was studied in references [8–10,16]. It was assumed that the fused silica fiber was exposed to 
constant shear stress at the fiber-coating interface when debonding occurred [16]. However, the derived strain distributions in fused 
silica fibers were inconsistent with the strain distributions measured from high-resolution distributed sensors [11]. Multiple challenges 
have been identified from previous research: (1) The fiber-coating interfacial behavior is unclear, hindering accurate interpretation of 
sensor data. (2) It is difficult to determine the interfacial properties of sensors. Existing research on the interface laws relies on trial- 
and-error methods with limited efficiency and accuracy. The parameters were manually selected in references [17,18]. When there are 
many parameters, it will be challenging to obtain parameters using trial-and-error methods. In a nutshell, the interfacial bond-slip 
behavior of optical fibers is still unclear. When a distributed sensor is used to measure strains, the following questions need to be 
answered: (1) When will debonding be initiated between the fiber and coating? (2) How will the debonding propagate at the interface? 
(3) How will the debonding affect the strain distribution in fused silica fiber under the strain transfer effect? These knowledge gaps 
have stalled wider applications of distributed sensors because it is unknown how to properly interpret the distributed strain sensing 
data in the presence of cracks. 

Motivated by these challenges, this research has three main objectives: (1) to develop a unified cohesive interface law (CIL) and a 
mechanical model to describe the interfacial behaviors; (2) to understand the fiber-coating interfacial behavior for distributed fiber 
optic sensors; and (3) to utilize distributed fiber optic sensors to measure the strain distributions in fused silica fibers in the presence of 
interfacial debonding. To this end, this research performed a mechanical analysis on the fiber-coating interface based on the CIL and 
intrinsically linked the CIL to the force-slip results in the fiber pullout process. The link was then used to calibrate the parameters of the 
CIL perform through a metaheuristic inverse analysis. Strain distributions in the fused silica fiber were directly measured using a fully 
distributed fiber optic sensing technology. 

The novelties of this research include three aspects: (1) This research proposes a unified CIL to describe the fiber–matrix interface 
and derives closed-form solutions. (2) This research presents a metaheuristic inverse analysis approach to enabling the automatic 
determination of interfacial parameters. (3) The proposed CIL and analytical solutions are validated by measurements from distributed 
sensors. A unique feature of this research is that the research on interface mechanics and distributed sensing is integrated via a 
metaheuristic inverse analysis. This research advances the fundamental understanding on the interfacial behavior of distributed 
sensors and promotes the crack sensing capabilities. The clarification of interfacial behaviors will pave the theoretical way to un
derstanding the sensor data and enable the use of distributed sensors in scenarios involving interface debonding, thus promoting the 
applications of distributed sensors in measuring cracks. 

Fig. 1. Utilization of debonding at fiber-coating interface to avoid or delay fiber rupture in a distributed fiber optic sensor crossing a crack.  
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2. Methods 

2.1. Framework 

Fig. 2 shows the research framework. The black arrows show the flow of solving the problems in previous research, and the 
interface law is the key to addressing the challenges. The interface law is evaluated through the fiber pullout response, and the relation 
is established via a forward mechanical analysis. This research presents a unified CIL and proposes to determine the interface law using 
the fiber pullout test through the metaheuristic inverse analysis. 

With the interface law, on one hand, the law is used to interpret the bond-slip behavior of the fiber-coating interface for fiber optic 
sensors, thus enabling distributed fiber optic sensors to measure cracks in presence of interfacial debonding. The interface law is used 
to predict the strain distributions in fused silica fiber during the fiber pullout process, and the prediction results are evaluated by using 
a distributed fiber optic sensor. On the other hand, the proposed CIL are independent of the specific materials and applicable to 
different types of composites to predict the mechanical properties of unknown fiber-reinforced interface, as marked by the green 
arrows. This research mainly focuses on the mechanical analysis based on the interface law, metaheuristic inverse analysis, and 
distributed sensing, as elaborated in Sections 2.2 to 2.4. 

2.2. Mechanical analysis 

2.2.1. Optical fiber 
Fig. 3(a) shows the structure of a representative optical fiber (Corning, SMF-28e + ) packaged with two layers of polymeric coating. 

The fiber has an 8.2-μm-diameter fused silica core, a 125-μm fused silica cladding, a 190-μm inner coating, and a 242-μm outer coating. 
Thereafter, the fused silica core and cladding are referred to as fiber core, and the inner and outer coatings are referred to as coating 
(see Fig. 3(b)). The sensing part is the fiber core. Light waves propagate along the fiber optic cable through total internal reflection at 
the core-cladding interface. The inner coating is soft and rubbery which cushions the fused silica fiber from external mechanical loads. 
Another important function of the inner coating is to facilitate operations such as stripping off the coatings without damaging the fused 
silica fiber. The inner coating is surrounded by the stiff outer coating that protects the fiber and inner coating from abrasions and 
environmental exposure. 

In the manufacturing of optical fibers, the inner and outer coatings are applied sequentially in a liquid form as the glass fiber is 
drawn and are sequentially cured by exposure to ultraviolet light sources. Table 1 presents the dimensions and the elastic moduli of the 
different components of the optical fiber. There are three interfaces, which are the interfaces between: (i) fused silica fiber core and 
cladding, (ii) fused silica fiber cladding and primary (inner) coating, and (iii) primary coating and secondary (outer) coating. There are 
covalent bonds at the interfaces (i) and (iii) [19]. However, interface (ii) is mainly bonded via Van der Waals force [20]. Based on 
energy, the covalent bonds are stronger than Van der Waals force, so debonding occurs at interface (ii) under pulling forces. 

2.2.2. Governing equation 
Fig. 4 shows an infinitesimal segment of a fiber embedded in a matrix. The representative types of matrices for structures include 

the cementitious matrix such as mortar and the polymetric matrix such as epoxy resin. The optical fiber is composed of a fused silica 
fiber core and polymeric coating. The coating of the optical fiber is in direct contact with the matrix. 

When the matrix is fixed, the fused silica fiber is subject to a pullout force P. The length of the optical fiber embedded in the matrix 
is l , and the diameter of the fused silica fiber core is Df . The axial stress in the fiber core is σf (x), where x is the coordinate along the 
fiber length. The interfacial slip between fiber core and coating is s. The elastic modulus and section area of the representative types of 
host matrix for engineering structures are often much larger than those of the optical fiber. Therefore, the matrix deformation is 
neglected. Since the interfacial slip varies along the fiber length, s is written as s(x). The slip distances at the free end and the loaded 
end of the matrix are respectively denoted as sF = s(x = 0) and sG = s(x = l ). The shear stress at the fiber-coating interface is a 
function of s and expressed as τ(s). 

The equilibrium equation of the fused silica fiber along × direction is expressed as: 

σf (x) • Af + τ(s)dx • pf =
[
σf (x) + dσf (x)

]
• Af (1a) 

Fig. 2. Research framework integrating forward analysis, inverse analysis, and distributed fiber optic sensing of strains and cracks.  
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σc(x) • Ac = τ(s)dx • pf + [σc(x) + dσc(x) ] • Ac (1b) 

where σc(x) and Ac are the axial stress in the coating and the cross-sectional area of coating, respectively; Af and pf are the cross- 
sectional area and perimeter of fiber core, respectively, which are expressed as: 

Af =
1
4

πDf
2 (2a)  

pf = πDf (2b) 

Eq. (1) is rewritten as: 

Fig. 3. Structure of single mode optical fibers with dual-layer polymeric coating: (a) components of a single mode optical fiber; and (b) typical 
layers of an optical fiber. 

Table 1 
Main properties of the optical fiber.  

Components Material Outer diameter Elastic modulus 

Fiber core Core Fused silica 8.2 μm 70.2 GPa 

Cladding Fused silica 125 μm 70.2 GPa 
Coating Inner coating Acrylate 190 μm 0.6 MPa 

Outer coating Acrylate 242 μm 2550 MPa  

Fig. 4. Infinitesimal segment of an optical fiber embedded in a matrix and subject to a pulling force.  
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dσf (x)

dx
=

pf

Af
τ(s) (3a)  

dσc(x)

dx
= −

pf

Ac
τ(s) (3b) 

According to the Hooke’s Law, the relationship between the normal stress and strain along the fiber length is expressed in Eq. (4): 

σf (x) = Ef εf (x) = Ef
duf (x)

dx
(4a)  

σc(x) = Ecεc(x) = Ec
duc(x)

dx
(4b)  

s(x) = uf (x) − uc(x) (4c)  

Ec =
EciAci + EcoAco

Aci + Aco
(4d) 

where Ef , Eci, and Eco are the elastic moduli of the fiber core, inner coating, and outer coating, respectively; uf (x) and uc(x) are the 
displacement of fiber core and coating layers, respectively; Aci and Aco are the cross-sectional areas of the inner and outer coatings, 
respectively. 

Substituting Eq. (4) into Eq. (3) and Eq. (1), the governing equation is obtained: 

d2s(x)

dx2 − λ2τ(s) = 0 (5a)  

ds(x)

dx
= φεf (x) (5b)  

wc = 2
[
uf (l ) − uf (0)

]
=

2
φ

(sG − sF) = 2
∫ l

0
εf (x)dx (5c) 

where λ =
̅̅̅̅̅̅̅
pf •φ
Ef Af

√
; φ =

(
Af Ef
AcEc

+1
)

; wc refers to the crack width. 

The boundary conditions at the free end are: 

εf (x = 0) = 0 (6a)  

s(x = 0) = sF (6b) 

The axial stress in the fiber core at the loaded end is expressed as: 

εf (x = l ) =
P

Af Ef
(7) 

Eqs. (5a) and (5b) describe the relationship between the interfacial slip and shear stress [19]. Eq. (5c) provides a theoretical 
foundation for quantifying crack widths using the interfacial slip or integration of the strain distribution in vicinity of the crack. The 
interfacial bond-slip law is needed to solve the governing equation of the interface law, as elaborated in Section 2.2.3. 

2.2.3. Unified CIL 
This subsection presents a CIL to unify the bond-slip models of shear-softening and shear-hardening interfaces, as shown in Fig. 5. 

The CIL has three main stages: (i) a linear-elastic stage, (ii) a yielding stage, and (iii) a debonding stage. In the linear-elastic stage, as 
the slip increases from 0 to αsf (0 < α < 1), the shear stress linearly increases from 0 to βτf . In the yielding stage, as the slip increases 
from αsf to sf , the shear stress linearly changes from βτf to τf . If β > 1, the CIL describes a linear softening behavior, meaning that the 
interfacial shear stress deceases in the yielding stage. If β = 1, the CIL describes a constant behavior. If 0 < β < 1, the CIL describes a 
linear hardening behavior, meaning that the interfacial shear stress increases in the yielding stage. Finally, after the slip is larger than 
sf , the debonding stage occurs, and the shear stress decreases with the interface slip exponentially. 

The CIL is expressed as: 

τ(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

βτf

αsf
s, 0 ≤ s ≤ αsf

τf

1 − α

[
(1 − β)s

sf
+ (β − α)

]

, αsf < s ≤ sf

τf e
−τf (s−sf )

k , sf ≤ s

(8) 
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where τf , sf , α, β, and k are the unknown parameters of the CIL to be calibrated; τf (0 < β ≤ 1) or βτf (β > 1) refer to bond strength; sf 

and k are the slip corresponding to the bond strength and interfacial fracture energy, respectively; α and β determine the separating 
point in the linear elastic ascending part of the CIL; and β is of crucial importance in the CIL because β determines the type of the 
interface. With Eq. (8), Eq. (5) can be solved, as elaborated in Section 3. 

The main reason for adopting an exponential function in the debonding stage is that the exponential function can cover various 
cases, as shown in Fig. 6. When k approaches to 0 (e.g., k = 0.01), the exponential function tends to describe a null interfacial stress 
transfer (complete loss of adhesion) behavior. When k is between 3 and 100, the debonding stage shows a softening behavior. When k is 
larger than 100 (e.g., k = 400), the debonding stage tends to describe a constant residual stress behavior. 

An advantage of the presented approach is that there is no need for assuming the debonding stage in advance. The proposed 
cohesive law can be applied to various cases, and the model parameters can be determined through the proposed inverse analysis 
approach. This is particularly important for many applications when the interfacial properties are unknown. This is the case for our 
research because there is little research on fiber–matrix interfacial properties of optical fibers. 

2.3. Metaheuristic inverse analysis 

This section presents the metaheuristic inverse analysis method to accurately calibrate the parameters of the CIL, as illustrated in 
Fig. 7. Past research showed that the force-slip curves of pullout tests were determined when a CIL was given through a forward 
analysis [17,18,21–32]. However, the calibration of the model parameters is an inverse problem, which was usually solved through the 
trial-and-error method. Nevertheless, the trial-and-error method is inefficient and inaccurate, especially when there are multiple 
parameters that involve coupling effects. Inaccurate model parameters highly affect the analysis accuracy of interfacial behaviors. 

This study proposes to solve the inverse problem using the hypotrochoid spiral algorithm [33,34]. A set of initial values are 
assigned to the model parameters. With the initial values, the analytical solutions of force-slip data are calculated based on the forward 

Fig. 6. Parametric study of effect of k to the debonding stage of cohesive interface law. (sf = 1.092 mm; τf = 0.1158 MPa; α = 0.3689; β =

5.6786). 

Fig. 5. Illustration of CIL: (a) softening interface (β > 1); (b) constant interface (β = 1); and (c) hardening interface (0 < β < 1).  
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analysis. The calculation results are compared with the fiber pullout test results. The discrepancy between the calculation results and 
test results are obtained, and the hypotrochoid spiral algorithm is used to minimize the discrepancy by optimizing the model pa
rameters. The objective function in the minimization is defined as f(X): 

f (X) =
1
n

∑n

i=1
RMSE(P(l i, X), Yi(sGi) (9) 

where X is the vector composed of the five parameters of CIL; the fiber embedded in the matrix is divided into n segments, and l i is 
the i-th length; P(l i, X) is the calculated pullout force corresponding to l i; sGi is the slip corresponding to l i; Yi is a fitted model to 
estimate the magnitude of the tested pullout force; and the root mean square error (RMSE) is defined as: 

RMSE(P, Yi) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(pi − νi)

2

n

√
√
√
√
√

(10) 

where P = [p1, p2, …, pN] and A = [ν 1, ν 2, …, ν N] are the vectors for the calculated and tested values of the pullout forces, 
respectively. 

The coefficient of determination (R2) and the maximum absolute error (MAE) are also used to evaluate the accuracy of the inverse 
analysis: 

R2 = 1 −

∑n
i=1(pi − νi)

2

∑n
i=1[νi − mean(νi) ]

2 (11a)  

MAE(P, Yi) =
1
n

∑n

i=1
|pi − νi| (11b) 

The optimization algorithm was executed for 20 independent runs. The number of search agents was set to 50, and the optimization 
process was terminated when the number of iterations reached 500. More details of the optimization algorithm are available in ref
erences [33,34]. After parameters α, β, τf , sf , and k are determined through the inverse analysis, the CIL is determined and used to 
derive the force-slip curve, the slip distribution and shear stress distribution at the fiber–matrix interface, as well as the axial strain 
distribution of the fiber at an arbitrary slip level. 

2.4. Distributed fiber optic sensing 

Distributed fiber optic strain sensors have been categorized into Brillouin scattering-based sensors and Rayleigh scattering-based 
sensors. Brillouin scattering is a type of inelastic scattering involving frequency shift caused by the interaction of sound waves and light 
waves [35]. Rayleigh scattering is elastic because it retains the frequency of transmitted light. Rayleigh scattering is caused by 
irregular microstructures [36]. The irregularity is generated in fiber fabrication, and the irregularity size is comparable with wave
lengths of light waves. Compared with Rayleigh scattering, Brillouin scattering features a long operation distance and a low spatial 
resolution. The resolution of Brillouin optical time domain analysis is about a half meter [5], leading to uncertainties in the mea
surement of strains. Rayleigh scattering-based sensing technologies were proposed to achieve sub-millimeter spatial resolutions 
[11,12,37]. With fine spatial resolution, distributed sensors are able to locate and quantify fine strain distributions and cracks [10–12]. 

In this research, a distributed fiber optic sensing system (model: Luna ODiSi 6100 series) based on the optical frequency domain 
reflectometry (OFDR) technology was adopted for strain measurements. The manufacturer-specified accuracy is ± 5 με [38]. The 
measurement of strain and temperature is based on the comparison of scattering signals at the reference and perturbed states. In each 
state, a light wave is beamed into the optical fiber, generating Rayleigh scattering. The backscattered signal is measured along the fiber 

Fig. 7. Comparison of the forward and inverse problems of the fiber pullout behavior.  
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length. At each point of the fiber, the amplitude of the signal is plotted against the wavelength of the light. The amplitude versus 
wavelength data is converted into intensity versus frequency via Fast Fourier Transform, and a cross-correlation operation is per
formed to identify frequency shift between the reference and the perturbed states at each spot along the fiber. The distance is 
determined by the travelling time of the backscattered signals because the velocity of light waves can be calculated with the refractive 
index of the fused silica fiber. The frequency shift is associated with strain and temperature changes: 

Δλ
λ

=
Δυ
υ = KT T + Kεε (12) 

where λ and υ are the mean optical wavelength and frequency, and KT and Kε are the temperature and strain calibration constants, 
respectively. At a constant temperature, the spectral shift can be converted into strain along the optical fiber with a calibrated 
sensitivity coefficient. See calibration in reference [8]. More details of the working principle of the distributed fiber optic sensing 
system are available in references [11,12]. 

3. Analytical studies 

Previous research showed that the fiber pullout process and the failure mode were dependent on the fiber length (l ) embedded in 
the matrix, and there was a critical embedment length (l 0) for the fiber [18,32]. The critical embedment length is the minimum length 
necessary to completely activate the whole CIL along embedded fiber length (l ) in the matrix. 

Based on the critical embedment length (l 0), the pullout behavior is investigated in two cases: (1) Case 1: the embedment length is 
longer than the critical length (l > l 0). The pullout process in Case 1 included five stages, which are the elastic stage, elastic-yielding 
stage, elastic-yielding-debonding stage, yielding-debonding stage, and debonding stage. (2) Case 2: the embedment length is shorter 
than the critical length (l < l 0). The pullout process in Case 2 included five stages, which are the elastic stage, elastic-yielding stage, 
yielding stage, yielding-debonding stage, and debonding stage. The difference between the two cases is that the elastic-yielding- 
debonding stage in Case 1 is replaced by the yielding stage in Case 2. Section 3.1 elaborates the analysis for Case 1. Section 3.2 
elaborates the analysis for Case 2. 

Long embedment lengths enable the complete development of the interface capacity, and the snap-back behavior only occurs for 
long embedment lengths. Short embedment lengths undergo lower strain and load levels. Therefore, it is essential to evaluate the 
critical embedment length l 0, considering that the failure mode of the fiber pullout test is fiber slip. The five main stages of the 
fiber–matrix interface damage in the fiber pullout process are shown in Fig. 8. The mechanical behavior is related to the bond length 
(l ), which is the embedment length of the optical fiber in the matrix. More details of the critical embedment length are provided in the 
following section. 

Fig. 8. Illustration of the main stages of the fiber–matrix damage in the single fiber pullout process.  
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Table 2 
Analytical solutions for long embedment length (l > l 0).  

Stage Analytical solutions 
I s(x) = sFcosh(λ1x) (13a)  

τ(x) =
βτf

αsf
sFcosh(λ1x)

(13b)  

εf (x) =
1
φ

λ1sFsinh(λ1x)
(13c) 

II The solution at the region of 0 ≤ x ≤ l el:   

s(x) = αsf
cosh(λ1x)

cosh(λ1 l el)

(14a)  

τ(x) = βτf
cosh(λ1x)

cosh(λ1 l el)

(14b)  

εf (x) =
1
φ

λ1αsf
sinh(λ1x)

cosh(λ1 l el)

(14c)  

The solution at the region of l el ≤ x ≤ l :   

s(x) =

⎧
⎪⎨

⎪⎩

(1 − α)βsf

1 − β
cosh[λ2(l el − x) ] −

λ1αsf

λ2
tanh(λ1 l el)sinh[λ2(l el − x) ] −

β − α
1 − β

sf , β ∕= 1

1
2

λ2τf (l el − x)
2

− λ1αf tanh(λ1 l el) • (l el − x) + αsf , β = 1 

(14d)  

τ(x) =

⎧
⎨

⎩

βτf cosh[λ2(l el − x) ] −
α(1 − β)λ1τf

(1 − α)λ2
tanh(λ1 l el)sinh[λ2(l el − x) ], β ∕= 1

τf , β = 1 

(14e)  

εf (x) =

⎧
⎪⎨

⎪⎩

1
φ

λ1αsf tanh(λ1 l el)cosh[λ2(l el − x) ] −
1
φ

λ2
(1 − α)βsf

1 − β
sinh[λ2(l el − x) ], β ∕= 1

−
1
φ

λ2τf (l el − x) +
1
φ

λ1αf tanh(λ1 l el), β = 1 

(14f) 

III The solution at the region of 0 ≤ x ≤ l el:   

s(x) = αsf
cosh(λ1x)

cosh(λ1 l el)

(15a)  

τ(x) = βτf
cosh(λ1x)

cosh(λ1 l el)

(15b)  

εf (x) =
1
φ

λ1αsf
sinh(λ1x)

cosh(λ1 l el)

(15c)  

The solution at the region of l el ≤ x ≤ l el + l yd:   

s(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − α)βsf

1 − β
sinh

[
λ2

(
l el + l yd − x

) ]

sinh
(
λ2 l yd

) −
(1 − α)sf

1 − β
sinh[λ2(l el − x) ]

sinh
(
λ2 l yd

) −
β − α
1 − β

sf , β ∕= 1

1
2

λ2τf (l el − x)
(
l el + l yd − x

)
−

(1 − α)sf

l yd
(l el − x) + αsf , β = 1 

(15d)  

τ(x) =

⎧
⎪⎨

⎪⎩

βτf
sinh

[
λ2

(
l el + l yd − x

) ]

sinh
(
λ2 l yd

) − τf
sinh[λ2(l el − x) ]

sinh
(
λ2 l yd

) , β ∕= 1

τf , β = 1 

(15e)  

εf (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−
1
φ

λ2
(1 − α)βsf

1 − β
cosh

[
λ2

(
l el + l yd − x

) ]

sinh
(
λ2 l yd

) +
1
φ

λ2
(1 − α)sf

1 − β
cosh[λ2(l el − x) ]

sinh
(
λ2 l yd

) , β ∕= 1

−
1
φ

λ2τf (l el − x) −
1
2

1
φ

λ2τf l yd + φ
(1 − α)sf

l yd
, β = 1 

(15f)  

The solution at the region of l el + l yd ≤ x ≤ l :   

s(x) =
2k
τf

ln
{

cosh
[
λ3

̅̅̅̅̅̅
C1

√
(x − C2)

] }
−

k
τf

ln(C1)
(15 g)  

τ(x) =
C1τf • e

τf sf

k
cosh2[

λ3
̅̅̅̅̅̅
C1

√
(x − C2)

]

(15 h)  

εf (x) =
1
φ

2k
τf

λ3
̅̅̅̅̅̅
C1

√
tanh

[
λ3

̅̅̅̅̅̅
C1

√
(x − C2)

] (15i) 

IV The solution at the region of 0 ≤ x ≤ l yd:   

s(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 − α
1 − β

sf
cosh(λ2x)

cosh
(
λ2 l yd

) −
β − α
1 − β

sf , β ∕= 1

1
2

λ2τf

(
x2 − l yd

2
)

+ sf , β = 1 

(16a)  

τ(x) =

⎧
⎨

⎩

τf
cosh(λ2x)

cosh
(
λ2 l yd

), β ∕= 1

τf , β = 1 

(16b)  

εf (x) =

⎧
⎪⎪⎨

⎪⎪⎩

1
φ

λ2
1 − α
1 − β

sf
sinh(λ2x)

cosh
(
λ2 l yd

), β ∕= 1

1
φ

λ2τf x, β = 1 

(16c)  

The solution at the region of l yd ≤ x ≤ l :  

(continued on next page) 
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3.1. Case 1: Long embedment length (l > l 0) 

With the CIL in Fig. 4, the governing equation was solved to determine the slip, shear stress, and axial strain distributions along the 
embedded fiber length, as summarized in Table 2. In Table 2, l el and l yd are the elastic length and the yielding length, respectively, 
which are determined by the boundary conditions. The constants λ1, λ2, λ3 and C1 to C6 were used to simplify the formulae. The 
detailed derivation process of the formulae as well as the expressions of λ1, λ2, λ3 and C1 to C6 are available in Appendix A1. 

The elastic, yielding, and debonding stages simultaneously occur at the fiber-coating interface only when the embedment length (l ) 
is longer than the critical embedment length (l 0) in Eq. (18). The detailed derivation process of Eq. (18) is shown in Appendix A1. 

l 0 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
λ2

cosh−1
(

1
β

)

, β ∕= 1

1
λ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2(1 − α)sf

τf

√

, β = 1
(18) 

The elastic stage (Stage I) ends when τ(l ) = βτf (Point A in Fig. 9). The load and the corresponding loaded end slip at the end of the 
elastic stage are: 

PA = Af Ef
1
φ

λ1tanh(λ1l )αsf (19a)  

sG,A = αsf (19b) 

The elastic-yielding stage (Stage II) ends when τ(l ) = τf (Point C in Fig. 9). The load and the corresponding loaded end slip at the 
end of the elastic-yielding stage are: 

Table 2 (continued ) 

Stage Analytical solutions 
I s(x) = sFcosh(λ1x) (13a)  

s(x) =
2k
τf

ln
{

cosh
[
λ3

̅̅̅̅̅̅
C3

√
(x − C4)

] }
−

k
τf

ln(C3)
(16d)  

τ(x) =
C3τf • e

τf sf

k
cosh2[

λ3
̅̅̅̅̅̅
C3

√
(x − C4)

]

(16e)  

εf (x) =
1
φ

2k
τf

λ3
̅̅̅̅̅̅
C3

√
tanh

[
λ3

̅̅̅̅̅̅
C3

√
(x − C4)

] (16f) 

V s(x) =
2k
τf

ln
{

cosh
[
λ3

̅̅̅̅̅̅
C5

√
(x − C6)

] }
−

k
τf

ln(C5)
(17a)  

τ(x) =
C5τf • e

τf sf

k
cosh2[

λ3
̅̅̅̅̅̅
C5

√
(x − C6)

]

(17b)  

εf (x) =
1
φ

Ef
2k
τf

λ3
̅̅̅̅̅̅
C5

√
tanh

[
λ3

̅̅̅̅̅̅
C5

√
(x − C6)

] (17c)  

Fig. 9. Analytical load-global slip curves for both long and short embedded lengths.  
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PC =

⎧
⎪⎪⎨

⎪⎪⎩

Af Ef
1
φ

λ2
(1 − α)βsf

1 − β
sinh(λ2l ), β ∕= 1

Af Ef
1
φ

λ2τf l, β = 1
(20a)  

sG,C =

⎧
⎪⎪⎨

⎪⎪⎩

(1 − α)βsf

1 − β
cosh(λ2l ) −

β − α
1 − β

sf , β ∕= 1

1
2
λ2τf l

2 + αsf , β = 1
(20b) 

The elastic-yielding-debonding stage (Stage III) ends when τ(0) = βτf (Point D in Fig. 9). The load and the corresponding loaded 
end slip at the end of elastic-yielding-debonding stage are: 

PD = Af Ef
1
φ

2k
τf

λ3
̅̅̅̅̅̅
C1

√
tanh

[
λ3

̅̅̅̅̅̅
C1

√
(l − C2)

]
, (whenl yd = l 0) (21a)  

sG,D =
2k
τf

ln
{

cosh
[
λ3

̅̅̅̅̅̅
C3

√
(l − C4)

] }
−

k
τf

ln(C3), (whenl yd = l 0) (21b) 

The yielding-debonding stage (Stage IV) ends when τ(0) = τf (Point E in Fig. 9). The load and the corresponding loaded end slip at 
the end of the elastic stage are: 

PE = Af Ef
1
φ

2k
τf

λ3e
−

(
τf sf
2k

)

tanh
(

λ3e
−

(
τf sf
2k

)

l

)
(22a)  

sG,E =
2k
τf

ln
[
cosh

(
λ3e

−

(
τf sf
2k

)

l

) ]
+ sf (22b)  

3.2. Case 2: Short embedment length (l < l 0) 

When the embedment length of fiber is shorter than the critical embedment length (l < l 0), the elastic-yielding-debonding stage in 
Case 1 is replaced by a yielding stage. The other stages in Cases 1 and 2 are the same, so they are not duplicated. This section only 
elaborates the yielding stage (Stage III), and the corresponding formulae of slip, shear stress, and axial strain distributions along the 
embedded fiber length are summarized in Table 3. The detailed derivation process of the formulae is available in Appendix A2. 

The yielding stage (Stage III) is ended when sG,D = sf . The corresponding load at the end of the yielding stage is: 

PD =

⎧
⎪⎨

⎪⎩

φAf Ef

(
1 − α
1 − β

)

sf λ2tanh(λ2l ), β ∕= 1

φAf Ef λ2τf l, β = 1
(24)  

3.3. Analytical results 

As discussed in Section 3.1, five stages are identified from the load response of an optical fiber when the fiber embedded length is 
longer than the critical embedded length: (I) elastic; (II) elastic-softening; (III) elastic-softening-debonding; (IV) softening-debonding; 
and (V) debonding stages. These stages are shown in orange color in Fig. 9. A snap-back phenomenon is observed, although it is usually 
not captured in laboratory experiments due to the adopted testing method which is either force or displacement that is controlled to 
increase monotonically [17,18]. More discussions on the snap-back phenomenon are available in references [17,18]. The snap-back 

Table 3 
Analytical solutions for short embedment length (l < l 0).  

Stage Analytical solutions 
III 

s(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(

sF +
β − α
1 − β

sf

)

cosh(λ2x) −
β − α
1 − β

sf , β ∕= 1

1
2

λ2τf x2 + sF, β = 1  

(23a)  

τ(x) =

⎧
⎨

⎩

[
(1 − β)τf

(1 − α)sf
sF +

β − α
1 − ατf

]

cosh(λ2x), β ∕= 1

τf , β = 1 

(23b)  

εf (x) =

⎧
⎨

⎩

φλ2

(

sF +
β − α
1 − β

sf

)

sinh(λ2x), β ∕= 1

φλ2τf x, β = 1  

(23c)  

X. Tan et al.                                                                                                                                                                                                            



Mechanical Systems and Signal Processing 200 (2023) 110532

12

Fig. 10. Evolution of interfacial shear stresses for a long embedment length: (a, b) elastic stage; (c, d) elastic-yielding stage; (e, f) elastic-yielding- 
debonding stage; (g, h) yielding-debonding stage; and (i) debonding stage. I, II and III are elastic, yielding and debonding stress states, respectively. 
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phenomenon is usually more interesting to research focusing on the mechanical properties of composites, but it is not the main focus of 
this research, which mainly focuses on the sensing performance of distributed fiber optic sensors. 

When the fiber embedded length is shorter than the critical embedded length, the load response of an optical fiber also can be 
divided into five stages, shown in blue color in Fig. 9. The curve is a typical fiber pullout curve showing a softening trend. 

Based on the unified CIL and analytical solutions, the shear stress distributions along the interface are obtained by solving the 
governing equation at each loading stage. Fig. 10 illustrates the evolution of the interfacial shear stress when the embedment length is 
longer than the critical embedment length (l > l 0). 

The evolution of the interfacial shear stresses for a long embedment length is characterized by five stages. In the first stage, the 
load–displacement response is linear elastic. The shear stress distributions along the interface are shown in Fig. 10(a) and Fig. 10(b). At 
the end of the elastic stage, a portion of the interface enters the yielding stage, while the remaining portion is still in the elastic stage. 
The corresponding shear stress distributions along the interface are depicted in Fig. 10(c) and Fig. 10(d). Specifically, the parameter β 
has a significant effect on the shear stress distribution. When β > 1, the shear stress distribution shows a softening effect for the portion 
of interface in the yielding stage; when β = 1, the shear stress distribution is constant; and when 0 < β < 1, the shear stress distribution 
shows a hardening effect. At the end of the elastic-yielding stage, a portion of the interface enters the debonding stage, while the 
remaining part is still in the elastic-yielding stage. The corresponding shear stress distributions along the interface are depicted in 
Fig. 10(e) and Fig. 10(f). In the elastic-yielding-debonding stage, the applied force increases due to the debonding at the interface. At 
the end of the elastic-yielding-debonding stage, there is no elastic stage at the interface. The shear stress distributions are shown in 
Fig. 10(g) and Fig. 10(h). At the end of the yielding-debonding stage, the shear stress is equal to the bond strength (τf ) at the free end. 
Finally, Fig. 10(i) depicts the shear stress distribution at debonding stage. 

When the embedment length is shorter than the critical embedment length (l < l 0), the shear stress distribution at the end of the 
elastic-debonding stage is shown in Fig. 11(a). There is no elastic stage along the fiber, and the interface is in the softening stage along 
the whole fiber length. At the end of the softening phase, the shear distribution is shown in Fig. 11(b). Then, the shear stress distri
bution evolves to the yielding-debonding stage. 

4. Implementation 

The presented interface law and analysis is implemented into optical fibers that were used to validate the approaches. Validation of 
the approaches took advantage of the unique sensing capability of the distributed fiber optic sensors. The proposed CIL and the 
derivation of the analytical formulae (see Section 3 and Appendix A) are independent of the specific materials (optical fibers) and 
applicable to different types of composites. 

4.1. Pullout tests 

Single fiber pullout tests were carried out as shown in Fig. 12(a). In each test, an optical fiber was attached using adhesive (ethyl 
cyanoacrylate super glue) on two aluminum plates (length × width × thickness: 200 mm × 30 mm × 5 mm). Two U-shape channels 
were used as slideways to regulate the deformation of the aluminum plates. With the U-shape channels, the aluminum plates could only 
slide along the channels along the length direction, which is also the loading direction, and there was no out-of-plane deformation or 
torsion of the aluminum plates. Before the loading test, the two aluminum plates were in direct contact with each other, and they were 
attached together by using a drop of super glue. The optical fiber was glued to the surface of the aluminum plates along the length 

Fig. 11. Evolution of interfacial shear stress distribution of yielding stage for a short embedment length and propagation of debonding.  
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direction and passed through the joint of the two aluminum plates. The joint was used to simulate an artificial crack that was 
perpendicular to the optical fiber, as shown in Fig. 12(b). One end of the optical fiber was connected to the distributed data acquisition 
system for measuring the strain distributions along the optical fiber, and the other end of the optical fiber was free. The two ends of the 
aluminum plate were gripped by the wedges of a low-capacity load frame (load capacity: 1 kN; accuracy: ±0.2 N) to apply tensile 
forces to the specimen. The embedment fiber length with the coating was l = 160 mm at each aluminum plate. The test was repeated 
eight times. The fused silica fiber was pulled under displacement control at a constant rate of 0.5 mm/min. The applied force was 
measured from the load cell embedded in the load frame. An extensometer measured the relative displacement between the two 
aluminum plates representing the crack width increase. 

Representative results are shown in Fig. 12(c). The pullout curves indicate a transition behavior, which can be attributed to the 
occurrence of debonding in the optical fiber. When the crack widths about 0.3 mm, the trend of the curve is significantly changed, 
because the strain transfer behavior between the matrix and the optical fiber is altered after debonding occurs. The small load drop 
near the transition joint is attributed to the loading rate (0.5 mm/min), because it is difficult for the load frame to accurately react to 
the sudden occurrence of interface debonding in pullout process. Fig. 12(d) shows the representative strain distribution curves with 
crack width opening. The peak indicates the location of the crack. The strain distributions are almost symmetrical to the peak. The 
development of the strain distribution is consistent with pullout curves. When the crack width is increased from 0 to 0.19 mm, the 
corresponding strain distribution shows a sharp peak at the location of the crack, indicating the crack initiation. When the crack width 
is larger than 0.4 mm, the strain peak is widened with the increase of the crack width due to debonding in the optical fiber, and the 
abrupt elongation of the optical fiber at the crack was averaged over a longer length, reducing the peak strain. The debonding length 
then propagates along the fiber length. Eventually, after the debonding length is significantly developed, the distributed sensor fails to 
provide further measurement. 

Fig. 12. Fiber pullout test: (a) photograph of the test set-up; (b) illustration of the test set-up; (c) representative pullout load versus crack width 
curves; and (d) representative experimental strain distribution curves with crack width opening. “Exp.” represents the experimental results. 
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4.2. Metaheuristic inverse analysis 

The model parameters α, β, τf , sf , and k were determined through the metaheuristic inverse analysis based on the fiber pull-out test 
results. Fig. 13 shows the optimization convergence curves for the 20 independent runs of the inverse analysis. The curves indicate that 
the adopted algorithm effectively minimizes the objective function and avoids premature convergence. Table 4 lists the results of the 
parameters of the CIL and performance metrics. The results indicate that the force-slip results obtained from the inverse analysis agree 
with the test results. Fig. 14(a) compares the experimental and analytical results of the force-crack width curves based on inverse 
analysis. 

4.3. Distributed fiber optic sensing 

With the model parameters, the mechanical model was used to derive the slip distribution and the shear stress distribution at the 
fiber-coating interface and the strain distribution in the fiber along the fiber length at an arbitrary crack width opening. Fig. 14(a) plots 
nine selected crack width levels at the loaded end, wc = [0.05 mm, 0.12 mm, 0.22 mm, 0.32 mm, 0.59 mm, 0.78 mm, 1.33 mm, 1.89 
mm, 2.49 mm], in the pullout force-crack width curve when the embedment length is 160 mm. The nine crack width levels were 
selected to represent nine stages of the pullout process. This analytical analysis provides a theoretical foundation for measuring the 
crack widths using the empirical relationship between the magnitude of strain peak measured from distributed fiber optic sensors and 
crack width, as elaborated in reference [11]. 

Fig. 14(b) compares the analysis results of the strain distributions in the fused silica fiber against the measurement results from the 
distributed fiber optic sensor based on OFDR. The analysis and measurement results of the strain distributions agree, indicating that 
the presented interface law and inverse analysis are effective in analyzing the interfacial behavior of the fused silica fiber with the 
package. The gained understanding of the interfacial behavior enables the operation of distributed fiber optic sensors and the inter
pretation of the sensing data in the presence of debonding at the fiber-coating interface. In the presence of cracks, the theoretical 
formula that relates the slip of the optical fiber and the crack opening width is determined according to the governing equation Eq. (5), 
and the crack width is calculated by the integration of the tensile strains in the vicinity of the crack. This analytical analysis also paves 
the theoretical way to quantifying the crack widths using the strain distributions measured from distributed fiber optic sensors, as 
elaborated in reference [11]. The developed approaches enable accurate interpretation of the results from the distributed fiber optic 
sensors. 

Fig. 14(c) shows the slip distributions along the fiber length at different crack width openings. The slip reaches the maximum value 
at the loaded end (x = l ) and gradually decreases towards the free end (x = 0) of the fiber. When the slip is small (sG < 0.284 mm or 
wc < 0.12 mm), the entire interface is elastic. When sG increases from 0.284 mm to 1.746 mm (or 0.12 mm < wc < 0.59 mm), the 
interface is in the elastic-yielding stage. When sG increases from 1.746 mm to 7.310 mm (or 0.59 mm < wc < 2.49 mm), the fiber core- 
cladding interface is in the elastic-yielding-debonding stage. 

Fig. 14(d) shows the shear stress distributions along the fiber length at different crack width openings. When the crack width 
opening is small (wc < 0.12 mm), the shear stress reaches the maximum value at the loaded end and gradually decreases towards the 
free end of the fiber. When the crack width opening increases from 0.12 mm to 0.59 mm, the maximum shear stress reaches the peak 
shear, the maximum shear stress reaches the peak at the intersection between the elastic and yielding sections. The position of 
maximum shear stress moves toward the free end of the embedded section when the crack width opening increases. When the crack 
width opening is larger than 0.59 mm, the loaded end of the embedded section reaches the debonding section, and the position of peak 
shear stress moves further toward the free end of the embedded fiber. 

Fig. 13. Convergence curves of the hypotrochoid spiral optimization algorithm for 20 independent runs. The red line represents the best result, and 
the gray lines represent the other results. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.) 
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4.4. Discussion on unsymmetrical cases 

The former investigations on the relationship between fiber end slip and crack width were built on an assumption that an optical 
fiber crossing a crack experiences symmetrical loaded end slips. However, that is not always the case. In general, the loaded end slips of 
the fiber at the two sides of the crack are unequal due to the randomness of material properties. This section discusses the unsym
metrical case, as shown in Fig. 15. When the right side of the fiber enters the debonding stage (Stage 3 in Fig. 5), the left side of the fiber 
is still in the yielding stage (Stage 2 in Fig. 5). Under such circumstances, it is inappropriate to use the fiber end slip at one side of the 
crack to calculate the crack width. The fiber end slips at both the left and right sides of the crack should be used, and the crack width wc 
is equal to the sum of the loaded end slips of the left and right sides, which are denoted as wL and wR, respectively, according to the 
compatibility of deformations, as shown in Eq. (25a)-c). According to the equations of equilibrium, Eq. (25d) is obtained. 

Table 4 
Parameters of the bond-slip relationships.  

Samples 
(l = 160 mm) 

sf (mm) τf (MPa) α β k(N/mm) RMSE R2 MAE 

Exp._1 1.092 0.1158 0.3689 5.6786 1621.54  0.1225  0.984  0.0901 
Exp._2  0.1032  0.991  0.0715 
Exp._3  0.1009  0.994  0.0791 
Exp._4  0.1102  0.992  0.0804 
Exp._5  0.1231  0.995  0.1002 
Exp._6  0.1068  0.987  0.0787 
Exp._7  0.1242  0.993  0.1013 
Exp._8  0.1097  0.989  0.0925 
Exp._average  0.1125  0.991  0.0867  

Fig. 14. Assessment of the analytical solution for nine levels of crack width: (a) the crack widths at nine loading levels; (b) comparison of the 
analytical and experimental results of axial strain distributions; (c) slip distributions; and (d) shear stress distributions. “Exp.” and “Ana.” represent 
the experimental results and the analytical results, respectively. 
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wc = wL + wR (25a)  

wL =

∫ l L

0
εf (x)dx (25b)  

wR =

∫ l R

0
εf (x)dx (25c)  

εf (x = l L) = εf (x = l R) (25d) 

Fig. 16(a) shows representative results of the unsymmetrical strain distributions measured from an optical fiber crossing a crack 
with the increase of the crack width. When the crack width is small (up to 0.25 mm), symmetrical strain distributions are observed, and 
there is no debonding. When the crack width is 0.40 mm or larger, debonding occurs at the right side, but does not occur at the left side. 
Fig. 16(b) compares the calculation and measurement results of crack widths. The crack widths were calculated by integrating the 
strain distributions in the distributed sensor at the two sides of the crack and measured using an extensometer. The calculation and 
measurement results of crack widths agree well with each other. A straight line can be used to fit the data, and the coefficient of 
determination (R2) is 0.9996, which indicates a high correlation. The results corroborate that the proposed approach is applicable to 
unsymmetric cases. 

5. Conclusions 

This study presents a unified cohesive interface law to describe the bond-slip behavior of fused silica fiber with polymeric coating in 
the fiber pullout process, performs a mechanical analysis on fiber pullout responses based on the presented interface law, develops a 
metaheuristic inverse analysis to calibrate the model parameters, and applies a distributed fiber optic sensing technology based on 

Fig. 15. Illustration of the unsymmetrical fiber pullout cases for determining the crack width.  

Fig. 16. Experimental results of unsymmetrical fiber pullout cases: (a) a typical unsymmetrical strain distribution result at different crack widths; 
and (b) measurement accuracy of the crack width. 
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optical frequency domain reflectometry to measure the strain distributions in optical fibers. The developed method is applied to 
analyze the measurement from a distributed fiber optic sensor. The following findings are drawn:  

• The presented CIL reasonably reflected the bond-slip behavior for fused silica fiber with polymeric coating and has the potential for 
other types of fiber–matrix interface. With the proposed CIL, the mechanical analysis on the fiber-coating interface can establish the 
intrinsic relationship between the CIL and the fiber pullout force-crack width response.  

• The parameters of the unified CIL were automatically determined through the metaheuristic inverse analysis with high efficiency 
and accuracy. For the investigated embedment fiber lengths, the RMSE is lower than 0.13, R2 is higher than 0.98, and MAE is lower 
than 0.11.  

• The presented method provides reasonable predictions of the slip distribution and shear stress distribution at the fiber-coating 
interface as well as the strain distributions in the fused silica fiber. The results of the strain distributions agreed with the strain 
distributions measured from the distributed fiber optic sensors throughout the pullout process.  

• This research establishes fundamental understanding of the fiber-coating interfacial behavior, and the understanding enables 
distributed fiber optic sensors to be operated in presence of debonding at the fiber-coating interface at crack, as well as accurate 
measurement of crack width opening by interpretation results obtained from distributed fiber optic sensors. 
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Appendix 

Appendix A. . Derivation process of analytical solutions 

A1. Case 1: Long embedment length (l > l 0) 
With the CIL defined in Fig. 4, the governing equation was solved to determine the slip, shear stress, and axial strain distributions 

along the embedded fiber length, as well as the load-slip response of the fiber throughout the fiber pullout process, as elaborated in this 
section. 

A1.1. Stage I: Elastic stage 

Under small loads, the entire fiber–matrix interface remains elastic. When the shear stress at the loaded end of fiber reaches βτf , in 
other words sG = αsf , the elastic stage is ended. The bonded length is governed by the first stage of CIL, as expressed by Eq. (A.1): 

d2s(x)

dx2 − λ1
2s(x) = 0, 0 ≤ s ≤ αsf (A.1)  

λ1 = λ

̅̅̅̅̅̅̅
βτf

αsf

√

By considering the boundary conditions in Eq. (6) and Eq. (7), the slip s(x), shear stress τ(x), and axial strain ε(x) along the fiber are 
obtained as: 

s(x) = sFcosh(λ1x) (A.2a)  

τ(x) =
βτf

αsf
sFcosh(λ1x) (A.2b)  

εf (x) =
1
φ

λ1sFsinh(λ1x) (A.2c) 
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Eq. (A.2a) is used to obtain the slip at the loaded end sG: 

sG = s(l ) = sFcosh(λ1l ) (A.3) 

By substituting Eq. (A.2c) into Eq. (7), the applied load P is obtained: 

P = Af Ef
1
φ

λ1sinh(λ1l )sF = Af Ef λ1
1
φ

tanh(λ1l )sG (A.4) 

Eq. (A.4) indicates that P is proportional to sG and sF. The elastic stage is ended when τ(l ) = βτf , in other words sG = αsf , and the 
load at the end of the elastic stage is: 

PA = Af Ef λ1
1
φ

tanh(λ1l )αsf (A.5)  

A1.2. Stage II: Elastic-yielding stage 

As sG ≥ αsf , the second stage of the bond-slip curve commences at the loaded end, and the position of the shear stress βτf moves 
towards the free end of the fiber. When the shear stress at the loaded end reaches τf , in other words sG = sf , the elastic-yielding stage is 
ended, and the elastic-yielding-debonding stage is started. The entire bonded length is governed by the first and second stages of the 
CIL, expressed as: 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d2s(x)

dx2 − λ1
2s(x) = 0, 0 ≤ s ≤ αsf

d2s(x)

dx2 − λ2
2s(x) =

β − α
1 − β

sf λ2
2, αsf ≤ s ≤ sf

(A.6a) 

(A.6b). 

where λ2 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(1 − β)τf

(1 − α)sf

√

, 0 < β < 1

0, β = 1

λ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(β − 1)τf

(1 − α)sf

√

i, β > 1

, and i is the imaginary unit. 

Eq. (A.6) is solved using the boundary conditions: 

s(0) =
P

λ1Af Ef

1
sinh(λ1l )

= sF (A.7a)  

ε−
f (l el) = ε+

f (l el) (A.7b)  

s−(l el) = s+(l el) = αsf (A.7c) 

where l el = 1
λ1

cosh−1
(

αsf
sF

)
is defined as the elastic length using the boundary conditions. The yielding length is defined as l yd =

l −l el. 
The solution at the region of 0 ≤ x ≤ l el is expressed as: 

s(x) = αsf
cosh(λ1x)

cosh(λ1l el)
(A.8a)  

τ(x) = βτf
cosh(λ1x)

cosh(λ1l el)
(A.8b)  

εf (x) =
1
φ

λ1αsf
sinh(λ1x)

cosh(λ1l el)
(A.8c) 

The solution at the region of l el ≤ x ≤ l is expressed as: 

s(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(1 − α)βsf

1 − β
cosh[λ2(l el − x) ] −

λ1αsf

λ2
tanh(λ1l el)sinh[λ2(l el − x) ] −

β − α
1 − β

sf , β ∕= 1

1
2
λ2τf (l el − x)

2
− λ1αf tanh(λ1l el) • (l el − x) + αsf , β = 1

(A.9a)  
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τ(x) =

⎧
⎪⎨

⎪⎩

βτf cosh[λ2(l el − x) ] −
α(1 − β)λ1τf

(1 − α)λ2
tanh(λ1l el)sinh[λ2(l el − x) ], β ∕= 1

τf , β = 1
(A.9b)  

εf (x) =

⎧
⎪⎪⎨

⎪⎪⎩

1
φ

λ1αsf tanh(λ1l el)cosh[λ2(l el − x) ] −
1
φ

λ2
(1 − α)βsf

1 − β
sinh[λ2(l el − x) ], β ∕= 1

−
1
φ

λ2τf (l el − x) +
1
φ

λ1αf tanh(λ1l el), β = 1
(A.9c) 

Eq. (A.9a) can be used to obtain sG by letting x = l : 

sG =

⎧
⎪⎪⎨

⎪⎪⎩

(1 − α)βsf

1 − β
cosh[λ2(l el − l ) ] −

λ1αsf

λ2
tanh(λ1l el)sinh[λ2(l el − l ) ] −

β − α
1 − β

sf , β ∕= 1

1
2
λ2τf (l el − l )

2
− λ1αf tanh(λ1l el) • (l el − l ) + αsf , β = 1

(A.10) 

By substituting Eq. (A.9c) into Eq. (7), the applied load P is obtained: 

P =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Af Ef

[
1
φ

λ1αsf tanh(λ1l el)cosh[λ2(l el − l ) ] −
1
φ

λ2
(1 − α)βsf

1 − β
sinh[λ2(l el − l ) ]

]

, β ∕= 1

Af Ef

[

−
1
φ

λ2τf (l el − l ) +
1
φ

λ1αf tanh(λ1l el)

]

, β = 1
(A.11) 

When sG = sf , the shear stress at the loaded end reaches τf , so substituting τ(x) = τf into Eq.(A.9b) leads to: 

(1 − α)λ2

α(1 − β)λ1

[
1 − βcosh

(
λ2l yd

)

sinh
(
λ2l yd

)

]

= tanh(λ1l el) (A.12) 

Eq.(A.12) can be interactively solved to compute the value yielding length at the debonding load (l yd,C) when considering: 

l yd = l − l el (A.13) 

Then the elastic length at the debonding load (l el,C) and the corresponding value of free end slip (sF,C) can be determined. Finally, 
the debonding load Pdeb is expressed as: 

PC =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Af Ef

[
1
φ

λ1αsf tanh
(
λ1l el,C

)
cosh

(
λ2l yd,C

)
+

1
φ

λ2
(1 − α)βsf

1 − β
sinh

(
λ2l yd,C

)
]

, β ∕= 1

Af Ef

[
1
φ

λ2τf
(
l yd,C

)
+

1
φ

λ1αf tanh
(
λ1l el,C

)
]

, β = 1
(A.14)  

A1.3. Stage III: Elastic-yielding-debonding stage 

As sG ≥ sf , the elastic-yielding-debonding stage is started. The interface has a combination of elastic, yielding, and debonding 
regions. When the free end slip sF reaches αsf at x = 0 (sF = αsf ), the elastic-yielding-debonding stage is ended. The governing 
equations are expressed as: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2s(x)

dx2 − λ1
2s(x) = 0, 0 ≤ s ≤ αsf

d2s(x)

dx2 − λ2
2s(x) =

β − α
1 − β

sf λ2
2, αsf ≤ s ≤ sf

d2s(x)

dx2 − λ3
22k
τf

e
−τf

k s(x) = 0, s > sf

(A.15)  

λ3 = λ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

e
τf sf

k •
τf

2

2k

√

Eq. (A.15) can be solved using the boundary conditions: 

s(0) = sF =
P

λ1Af Ef

1
sinh(λ1l )

(A.16a)  

ε−
f (l el) = ε+

f (l el) (A.16b) 
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s−(l el) = s+(l el) = αsf (A.16c)  

ε−
f

(
l el + l yd

)
= ε+

f

(
l el + l yd

)
(A.16d)  

s−
(
l el + l yd

)
= s+

(
l el + l yd

)
= sf (A.16e) 

where l el and l yd are the elastic length and the yielding length, respectively, which are determined by the boundary conditions. The 
solution of Eq. (A.15a) is the same as Eq. (A.8a). 

In addition, based on Eqs. (A.16c) and (A.16e), the solution of Eq. (A.15b) is expressed as: 

s(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1 − α)βsf

1 − β
sinh

[
λ2

(
l el + l yd − x

) ]

sinh
(
λ2l yd

) −
(1 − α)sf

1 − β
sinh[λ2(l el − x) ]

sinh
(
λ2l yd

) −
β − α
1 − β

sf , β ∕= 1

1
2
λ2τf (l el − x)

(
l el + l yd − x

)
−

(1 − α)sf

l yd
(l el − x) + αsf , β = 1

(A.17a)  

τ(x) =

⎧
⎪⎨

⎪⎩

βτf
sinh

[
λ2

(
l el + l yd − x

) ]

sinh
(
λ2l yd

) − τf
sinh[λ2(l el − x) ]

sinh
(
λ2l yd

) , β ∕= 1

τf , β = 1
(A.17b)  

εf (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−
1
φ

λ2
(1 − α)βsf

1 − β
cosh

[
λ2

(
l el + l yd − x

) ]

sinh
(
λ2l yd

) +
1
φ

λ2
(1 − α)sf

1 − β
cosh[λ2(l el − x) ]

sinh
(
λ2l yd

) , β ∕= 1

−
1
φ

λ2τf (l el − x) −
1
2

1
φ

λ2τf l yd +
1
φ

(1 − α)sf

l yd
, β = 1

(A.17c) 

Based on the reducing order approach [24], the solution of Eq. (A.15c) is expressed as: 

s(x) =
2k
τf

ln
{

cosh
[
λ3

̅̅̅̅̅̅
C1

√
(x − C2)

] }
−

k
τf

ln(C1) (A.18a)  

τ(x) =
C1τf • e

τf sf
k

cosh2[
λ3

̅̅̅̅̅̅
C1

√
(x − C2)

] (A.18b)  

εf (x) =
1
φ

2k
τf

λ3
̅̅̅̅̅̅
C1

√
tanh

[
λ3

̅̅̅̅̅̅
C1

√
(x − C2)

]
(A.18c) 

where constants C1 and C2 are determined by Eqs. (A.16d) and (A.16e): 

C1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
τf sf λ2(1 − α)

2kλ3(1 − β)

(
cosh

(
λ2l yd

)
− β

)

sinh
(
λ2l yd

)

]2

+ e
−

(
τf sf

k

)

, β ∕= 1

⎡

⎢
⎢
⎣

1
2λ

2τf
2l yd +

(1−α)sf τf
l yd

2kλ3

⎤

⎥
⎥
⎦

2

+ e
−

(
τf sf

k

)

, β = 1

(A.19a)  

C2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l el + l yd −
1

λ3
̅̅̅̅̅̅
C1

√ tanh−1

[
τf sf λ2(1 − α)

2k
̅̅̅̅̅̅
C1

√
λ3(1 − β)

(
cosh

(
λ2l yd

)
− β

)

sinh
(
λ2l yd

)

]

, β ∕= 1

l el + l yd −
1

λ3
̅̅̅̅̅̅
C1

√ tanh−1

⎡

⎢
⎢
⎣

1
2

λ2τf
2l yd +

(1 − α)sf τf

l yd

2k
̅̅̅̅̅̅
C1

√
λ3

⎤

⎥
⎥
⎦, β = 1

(A.19b) 

Substituting Eq. (7) into Eq. (A.18c), the following equation is obtained: 

P = Af Ef
1
φ

2k
τf

λ3
̅̅̅̅̅̅
C1

√
tanh

[
λ3

̅̅̅̅̅̅
C1

√
(l − C2)

]
(A.20) 

When x = l , the expression of the slip at the loaded end is obtained from Eq. (A.18a): 

sG =
2k
τf

ln
{

cosh
[
λ3

̅̅̅̅̅̅
C1

√
(l − C2)

] }
−

k
τf

ln(C1) (A.21) 
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According to Eq. (A.16b), the relational expression between the yielding length l yd and the elastic length l el is obtained: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ2(1 − α)

1 − β

[
1 − βcosh

(
λ2l yd

) ]

sinh
(
λ2l yd

) = λ1αtanh(λ1l el), β ∕= 1

−
1
2
λ2τf l yd +

(1 − α)sf

l yd
= λ1αtanh(λ1l el), β = 1

(A.22) 

Considering l el = 1
λ1

cosh−1
(

αsf
sF

)
, the general solution of l yd is given as: 

l yd =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
λ2

cosh−1

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
β

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

λ1α(1 − α)

λ2β(1 − β)

)2
(

1 −

(
sF

αsf

)2
)√

√
√
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

λ1α(1 − α)

λ2β(1 − β)

)2
(

1 −

(
sF

αsf

)2
)

+

(

1 −
1
β2

)
√
√
√
√

1 +

(
λ1α(1 − α)

λ2β(1 − β)

)2
(

1 −

(
sF

αsf

)2
)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, β ∕= 1

−
λ1α
λ2τf

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

(
sF

αsf

)2
√

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

λ1α
λ2τf

)2(

1 −

(
sF

αsf

)2
)

+
2(1 − α)sf

λ2τf

√
√
√
√ , β = 1

(A.23a) 

This stage is ended when l el = 0. Then, the following relationship is obtained: 

l yd,max =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
λ2

cosh−1
(

1
β

)

, β ∕= 1

1
λ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2(1 − α)sf

τf

√

, β = 1
(A.23b) 

Given Eq. (A.23), it is found that l yd,max = l 0. The elastic, yielding, and debonding stages can occur at the fiber-coating interface 
simultaneously only when l is longer than l 0. 

A1.4. Stage IV: Yielding-debonding stage 

When sF ≥ αsf , the elastic region ended at the free end of the fiber, and the shear stress decreases from τf to zero along the 
debonding length (l db). When the shear stress at the free end is τf (sF = sf ), the yielding-debonding stage is ended, and the debonding 
stage starts. The entire interface enters the debonding stage at the end of the yielding-debonding stage when l db = l . 

The entire bonded length is governed by the second and third stages of CIL, as expressed by Eq. (A.24): 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d2s(x)

dx2 − λ2
2s(x) =

β − α
1 − β

sf λ2
2, αsf ≤ s < sf

d2s(x)

dx2 − λ3
22k
τf

e
−τf

k s(x) = 0, s ≥ sf

(A.24) 

Eq. (A.24) is solved by the boundary conditions: 

s(0) = sF =

⎧
⎪⎨

⎪⎩

P
λ2Af Ef

1
sinh(λ2l )

−
β − α
1 − β

sf , β ∕= 1

sF , β = 1
(A.25a)  

ε−
f

(
l yd

)
= ε+

f

(
l yd

)
(A.25b)  

s−
(
l yd

)
= s+

(
l yd

)
= sf (A.25c) 

where l yd =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
λ2

cosh−1

(sf +
β − α
1 − β

sf

sF +
β − α
1 − β

sf

)

, β ∕= 1

1
λ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2

(
sF − sf

)

τf

√

, β = 1

, to be determined using Eqs. (A.25b) and (A.25c). 

The solutions of the Eq. (A.24a) are expressed as: 
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s(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − α
1 − β

sf
cosh(λ2x)

cosh
(
λ2l yd

) −
β − α
1 − β

sf , β ∕= 1

1
2

λ2τf
(
x2 − l yd

2)
+ sf , β = 1

(A.26a)  

τ(x) =

⎧
⎪⎨

⎪⎩

τf
cosh(λ2x)

cosh
(
λ2l yd

), β ∕= 1

τf , β = 1
(A.26b)  

εf (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
φ

λ2
1 − α
1 − β

sf
sinh(λ2x)

cosh
(
λ2l yd

), β ∕= 1

1
φ

λ2τf x, β = 1
(A.26c) 

The solutions of the Eq. (A.24b) are expressed as: 

s(x) =
2k
τf

ln
{

cosh
[
λ3

̅̅̅̅̅̅
C3

√
(x − C4)

] }
−

k
τf

ln(C3) (A.27a)  

τ(x) =
C3τf • e

τf sf
k

cosh2[
λ3

̅̅̅̅̅̅
C3

√
(x − C4)

] (A.27b)  

εf (x) =
1
φ

2k
τf

λ3
̅̅̅̅̅̅
C3

√
tanh

[
λ3

̅̅̅̅̅̅
C3

√
(x − C4)

]
(A.27c) 

The constants, C3 and C4, are determined as: 

C3 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
τf sf λ2(1 − α)

2kλ3(1 − β)
tanh

(
λ2l yd

)
]2

+ e
−

(
τf sf

k

)

, β ∕= 1

[
λ2τf

2l yd

2kλ3

]2

+ e
−

(
τf sf

k

)

, β = 1

(A.28a)  

C4 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

l yd −
1

λ3
̅̅̅̅̅̅
C3

√ tanh−1
[

τf sf λ2(1 − α)

2k
̅̅̅̅̅̅
C3

√
λ3(1 − β)

tanh
(
λ2l yd

)
]

, β ∕= 1

l yd −
1

λ3
̅̅̅̅̅̅
C3

√ tanh−1
[

λ2τf
2l yd

2k
̅̅̅̅̅̅
C3

√
λ3

]

, β = 1
(A.28b) 

Eq. (A.27a) is used to obtain the slip at the loaded end: 

sG = s(l ) =
2k
τf

ln
{

cosh
[
λ3

̅̅̅̅̅̅
C3

√
(l − C4)

] }
−

k
τf

ln(C3) (A.29) 

By substituting Eq. (A.27c) into Eq. (7), the applied load P is obtained as: 

P = Af Ef
1
φ

2k
τf

λ3
̅̅̅̅̅̅
C3

√
tanh

[
λ3

̅̅̅̅̅̅
C3

√
(l − C4)

]
(A.30)  

PE = Af Ef
1
φ

2k
τf

λ3e
−

(
τf sf
2k

)

tanh
(

λ3e
−

(
τf sf
2k

)

l

)
(A.31) 

The yielding-debonding stage is ended when the entire length of the interface enters the debonding stage (sF,E = sf ), and the 
corresponding load PE is expressed as: 

The corresponding global slip sG,E is expressed as: 

sG,E =
2k
τf

ln
[
cosh

(
λ3e

−

(
τf sf
2k

)

l

) ]
+ sf (A.32)  
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A1.5. Stage V: Debonding stage 

The debonding stage starts when l db = l . In the debonding stage, the bonded length l db decreases from l to zero. Then, the load- 
carry capacity is provided by the interface friction. 

The entire bonded length is governed by the third stage of CIL, as expressed by Eq. (A.33): 

d2s(x)

dx2 − λ3
22k
τf

e
−τf

k s(x) = 0, sf ≤ sF (A.33) 

The slip s(x), shear stress τ(x), and axial strain ε(x) in the debonding region are expressed as: 

s(x) =
2k
τf

ln
{

cosh
[
λ3

̅̅̅̅̅̅
C5

√
(x − C6)

] }
−

k
τf

ln(C5) (A.34a)  

τ(x) =
C5τf • e

τf sf
k

cosh2[
λ3

̅̅̅̅̅̅
C5

√
(x − C6)

] (A.34b)  

εf (x) =
1
φ

2k
τf

λ3
̅̅̅̅̅̅
C5

√
tanh

[
λ3

̅̅̅̅̅̅
C5

√
(x − C6)

]
(A.34c) 

The constants C5 and C6 are determined as: 

C5 = e
−

(
τf sF

k

)

(A.35a)  

C6 = 0 (A.35b) 

Eq. (A.34a) is used to obtain the slip at the loaded end: 

sG = s(l ) =
2k
τf

ln
[
cosh

(
λ3e

−

(
τf sF

2k

)

l

) ]
+ sF (A.36) 

By substituting Eq. (A.34c) into Eq. (7), the applied load P is obtained as: 

P = Af Ef
1
φ

2k
τf

λ3e
−

(
τf sF

2k

)

tanh
(

λ3e
−

(
τf sF

2k

)

l

)
(A.37)  

A2. Case 2: Short embedment length (l < l 0) 

When the embedment length of fiber is shorter than the critical embedment length (l < l 0), the elastic-yielding-debonding stage in 
Case 1 is replaced by a yielding stage. The other stages in Cases 1 and Case 2 are the same, so they are not duplicated. This section only 
elaborates the yielding stage. 

When sF ≥ αsf , stage III starts, and the entire bonded length enters the yielding stage. The shear stress along the entire embedment 
length is within the yielding stage (l yd = l ). When the shear stress at the loaded end of the fiber reaches τf , in other words sG = sf , the 
yielding stage is ended and the yielding-debonding stage is started. The entire bonded length is governed by the second stage of CIL, as 
expressed by Eq. (A.38): 

d2s(x)

dx2 − λ2
2s(x) =

β − α
1 − β

sf λ2
2, αsf ≤ s ≤ sf (A.38) 

where l = l yd in the yielding stage. 
The solutions of slip s(x), shear stress τ(x), and axial strain ε(x) in the yielding stage are: 

s(x) =

⎧
⎪⎪⎪⎨
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(

sF +
β − α
1 − β
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)
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1
2
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(A.39a)  
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(A.39b)  
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εf (x) =

⎧
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φ

λ2

(

sF +
β − α
1 − β
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)

sinh(λ2x), β ∕= 1

1
φ

λ2τf x, β = 1
(A.39c) 

Eq. (A.39a) is used to determine the slips at the free end and loaded end, respectively: 

sF =

⎧
⎪⎨

⎪⎩

P
λ2Af Ef

1
sinh(λ2l )

−
β − α
1 − β

sf , β ∕= 1
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(A.40)  

sG =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P
λ2Af Ef

1
tanh(λ2l )

−
β − α
1 − β

sf , β ∕= 1

P
2Af Ef

l + sF , β = 1
(A.41) 

Stage III is ended when sG,D = sf . The corresponding load is PD: 

PD =

⎧
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Af Ef
1
φ

(
1 − α
1 − β

)
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1
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(A.42)  
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