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Distributed fiber optic sensors with protective packages have shown unique capabilities in
measuring strain and crack distributions for structural health monitoring. However, the me-
chanics at the fiber-package interface remain unclear when debonding occurs. This paper in-
vestigates the interfacial mechanics for distributed fiber optic sensors undergoing debonding

Distributed fiber optic sensors

) through mechanical analysis and metaheuristic-based inverse analysis. First, the governing
Interface mechanics

Metaheuristic inverse analysis equation 'o'f the in'terfacial rnec%lanics is 'established and .solved‘ with e.lssistance from
Optical frequency domain reflectometry metaheuristic-based inverse analysis on the interfacial properties of fiber optic cables. Then,
(OFDR) experiments were conducted to validate the analysis results by measuring the strain distributions
in distributed fiber optic sensors based on optical frequency domain reflectometry. The results
showed that the proposed approach accurately quantified the interfacial mechanics, interfacial
properties, strain transfer, and debonding behavior in distributed fiber optic sensors. This
research advances the fundamental understandings of the sensing mechanisms of distributed fiber
optic sensors undergoing inelastic behaviors for structural health monitoring.

Structural health monitoring

1. Introduction

The conditions of structures during construction and operation concern public welfare and safety. The collapse of bridges and
leaking of pipes can cause catastrophic consequences and capital loss. Structural health monitoring plays important roles in restoring
structures through identifying, locating, and quantifying anomalies at early stages [ 1], enabling timely and efficient actions with high
efficacy and low cost. Various sensor technologies have been developed to monitor structural conditions. Fiber optic sensors are
attracting increasing interests due to their unique characteristics, such as high sensitivity, high accuracy, light weight, small size,
physical and chemical stability, immunity to electromagnetic interference, and multiplexability [2,3].

According to the spatial features, fiber optic sensors are categorized into point sensors and distributed sensors [4]. A point sensor
only provides measurements over its gauge length. Although it is possible to connect multiple point sensors to form a “quasi-
distributed” sensor for measuring multiple discrete spots, the cost associated with sensor preparation and operation is increased in
practice [2,3]. Alternatively, a distributed sensor has a unique advantage of utilizing a single fused silica optical fiber as both the
transmission line and the sensor with dense sensing points, thus providing spatially distributed measurements. It is promising for
automated condition monitoring and assessment of large-scale engineering structures [5]. With these attractive features, distributed
fiber optic sensors are used to measure strain distributions in various engineering structures [1-5].
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An optical fiber is usually composed of a sensing fiber and coatings used to protect the fiber from damage under mechanical loads or
various environmental effects [6,7]. The presence of the protective coatings influences the measurement from the sensor because the
coating deformation changes the deformation sensed by the sensing fiber [8,9], known as the “strain transfer effect” in the context of
fiber optic sensors [10]. Currently, fiber optic sensors are mainly operated under conditions with an intact fiber-coating interface
[8-10]. The strain transfer effect is quantitatively considered by calibrating the strain transfer coefficients for point fiber optic sensors
or analyzing the strain transfer equations for distributed fiber optic sensors [11-13].

Recent research found that fiber optic sensors were also applicable in the presence of fiber-coating interface debonding [11,14],
and the interface debonding showed benefits for fiber optic sensors [10]. Fig. 1 shows a fiber optic cable embedded in a matrix subject
to tensile forces. When the host matrix (e.g., steel or concrete) is cracked, the fiber-coating interface will be disturbed, and an
interfacial slip will occur, thus altering the axial stresses in the fiber. Basically, the abrupt local deformation caused by the crack is
redistributed over a longer length along the fiber. Such strain redistribution helps accommodate the localized deformation at the crack
opening, thus reducing the peak tensile stress in the fiber and protecting the fiber from rupture [2]. The fiber-coating interface
debonding helps avoid the rupture of distributed sensors crossing cracks [11,12]. Debonding is essential for using distributed fiber
optic sensors in structural health monitoring because the occurrence of discontinuity such as cracks [11,12] and delamination/
debonding [15] in host structures is unavoidable in practice.

Currently, there is lack of knowledge on the fiber-coating interfacial behavior [16]. Previous research on the interfacial strain
transfer of fiber optic sensors focused on the elastic stage, lacking consideration of interfacial debonding. The strain transfer of a fused
silica fiber with polymeric coating was studied in references [8-10,16]. It was assumed that the fused silica fiber was exposed to
constant shear stress at the fiber-coating interface when debonding occurred [16]. However, the derived strain distributions in fused
silica fibers were inconsistent with the strain distributions measured from high-resolution distributed sensors [11]. Multiple challenges
have been identified from previous research: (1) The fiber-coating interfacial behavior is unclear, hindering accurate interpretation of
sensor data. (2) It is difficult to determine the interfacial properties of sensors. Existing research on the interface laws relies on trial-
and-error methods with limited efficiency and accuracy. The parameters were manually selected in references [17,18]. When there are
many parameters, it will be challenging to obtain parameters using trial-and-error methods. In a nutshell, the interfacial bond-slip
behavior of optical fibers is still unclear. When a distributed sensor is used to measure strains, the following questions need to be
answered: (1) When will debonding be initiated between the fiber and coating? (2) How will the debonding propagate at the interface?
(3) How will the debonding affect the strain distribution in fused silica fiber under the strain transfer effect? These knowledge gaps
have stalled wider applications of distributed sensors because it is unknown how to properly interpret the distributed strain sensing
data in the presence of cracks.

Motivated by these challenges, this research has three main objectives: (1) to develop a unified cohesive interface law (CIL) and a
mechanical model to describe the interfacial behaviors; (2) to understand the fiber-coating interfacial behavior for distributed fiber
optic sensors; and (3) to utilize distributed fiber optic sensors to measure the strain distributions in fused silica fibers in the presence of
interfacial debonding. To this end, this research performed a mechanical analysis on the fiber-coating interface based on the CIL and
intrinsically linked the CIL to the force-slip results in the fiber pullout process. The link was then used to calibrate the parameters of the
CIL perform through a metaheuristic inverse analysis. Strain distributions in the fused silica fiber were directly measured using a fully
distributed fiber optic sensing technology.

The novelties of this research include three aspects: (1) This research proposes a unified CIL to describe the fiber-matrix interface
and derives closed-form solutions. (2) This research presents a metaheuristic inverse analysis approach to enabling the automatic
determination of interfacial parameters. (3) The proposed CIL and analytical solutions are validated by measurements from distributed
sensors. A unique feature of this research is that the research on interface mechanics and distributed sensing is integrated via a
metaheuristic inverse analysis. This research advances the fundamental understanding on the interfacial behavior of distributed
sensors and promotes the crack sensing capabilities. The clarification of interfacial behaviors will pave the theoretical way to un-
derstanding the sensor data and enable the use of distributed sensors in scenarios involving interface debonding, thus promoting the
applications of distributed sensors in measuring cracks.
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Fig. 1. Utilization of debonding at fiber-coating interface to avoid or delay fiber rupture in a distributed fiber optic sensor crossing a crack.
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2. Methods
2.1. Framework

Fig. 2 shows the research framework. The black arrows show the flow of solving the problems in previous research, and the
interface law is the key to addressing the challenges. The interface law is evaluated through the fiber pullout response, and the relation
is established via a forward mechanical analysis. This research presents a unified CIL and proposes to determine the interface law using
the fiber pullout test through the metaheuristic inverse analysis.

With the interface law, on one hand, the law is used to interpret the bond-slip behavior of the fiber-coating interface for fiber optic
sensors, thus enabling distributed fiber optic sensors to measure cracks in presence of interfacial debonding. The interface law is used
to predict the strain distributions in fused silica fiber during the fiber pullout process, and the prediction results are evaluated by using
a distributed fiber optic sensor. On the other hand, the proposed CIL are independent of the specific materials and applicable to
different types of composites to predict the mechanical properties of unknown fiber-reinforced interface, as marked by the green
arrows. This research mainly focuses on the mechanical analysis based on the interface law, metaheuristic inverse analysis, and
distributed sensing, as elaborated in Sections 2.2 to 2.4.

2.2. Mechanical analysis

2.2.1. Optical fiber

Fig. 3(a) shows the structure of a representative optical fiber (Corning, SMF-28e + ) packaged with two layers of polymeric coating.
The fiber has an 8.2-pm-diameter fused silica core, a 125-pm fused silica cladding, a 190-ym inner coating, and a 242-pym outer coating.
Thereafter, the fused silica core and cladding are referred to as fiber core, and the inner and outer coatings are referred to as coating
(see Fig. 3(b)). The sensing part is the fiber core. Light waves propagate along the fiber optic cable through total internal reflection at
the core-cladding interface. The inner coating is soft and rubbery which cushions the fused silica fiber from external mechanical loads.
Another important function of the inner coating is to facilitate operations such as stripping off the coatings without damaging the fused
silica fiber. The inner coating is surrounded by the stiff outer coating that protects the fiber and inner coating from abrasions and
environmental exposure.

In the manufacturing of optical fibers, the inner and outer coatings are applied sequentially in a liquid form as the glass fiber is
drawn and are sequentially cured by exposure to ultraviolet light sources. Table 1 presents the dimensions and the elastic moduli of the
different components of the optical fiber. There are three interfaces, which are the interfaces between: (i) fused silica fiber core and
cladding, (ii) fused silica fiber cladding and primary (inner) coating, and (iii) primary coating and secondary (outer) coating. There are
covalent bonds at the interfaces (i) and (iii) [19]. However, interface (ii) is mainly bonded via Van der Waals force [20]. Based on
energy, the covalent bonds are stronger than Van der Waals force, so debonding occurs at interface (ii) under pulling forces.

2.2.2. Governing equation

Fig. 4 shows an infinitesimal segment of a fiber embedded in a matrix. The representative types of matrices for structures include
the cementitious matrix such as mortar and the polymetric matrix such as epoxy resin. The optical fiber is composed of a fused silica
fiber core and polymeric coating. The coating of the optical fiber is in direct contact with the matrix.

When the matrix is fixed, the fused silica fiber is subject to a pullout force P. The length of the optical fiber embedded in the matrix
is 7, and the diameter of the fused silica fiber core is Dy. The axial stress in the fiber core is o7(x), where x is the coordinate along the
fiber length. The interfacial slip between fiber core and coating is s. The elastic modulus and section area of the representative types of
host matrix for engineering structures are often much larger than those of the optical fiber. Therefore, the matrix deformation is
neglected. Since the interfacial slip varies along the fiber length, s is written as s(x). The slip distances at the free end and the loaded
end of the matrix are respectively denoted as sr = s(x = 0) and sg = s(x = /). The shear stress at the fiber-coating interface is a
function of s and expressed as z(s).

The equilibrium equation of the fused silica fiber along x direction is expressed as:

07(x) @ Ap +7(s)dx ® py = [o7(x) +doy(x) | ® Ay (1a)
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Fig. 2. Research framework integrating forward analysis, inverse analysis, and distributed fiber optic sensing of strains and cracks.
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Fig. 3. Structure of single mode optical fibers with dual-layer polymeric coating: (a) components of a single mode optical fiber; and (b) typical

layers of an optical fiber.

Table 1
Main properties of the optical fiber.

Components Material Outer diameter Elastic modulus
Fiber core Core Fused silica 8.2 ym 70.2 GPa
- Cladding Fused silica 125 pm 70.2 GPa
Coating Inner coating Acrylate 190 pm 0.6 MPa
Outer coating Acrylate 242 pm 2550 MPa
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Fig. 4. Infinitesimal segment of an optical fiber embedded in a matrix and subject to a pulling force.

(1b)

where o,(x) and A, are the axial stress in the coating and the cross-sectional area of coating, respectively; A; and py are the cross-
sectional area and perimeter of fiber core, respectively, which are expressed as:

1
Ar =—xD;?
f 4”f
pf:fer

Eq. (1) is rewritten as:

(2a)

(2b)
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do(x) _ py

o A o
do.(x) _

i = A 7(s) (3b)

According to the Hooke’s Law, the relationship between the normal stress and strain along the fiber length is expressed in Eq. (4):

o7(x) = Eper(x) = Efdué)(cx) (4a)

0u(x) = Ent(x) = Ecd”;ix) (4b)

s(x) = (%) — ue(x) (40)

E - EiAqi + EcAc, (4d)
A(‘i + Aco

where Ej, E;;, and E,, are the elastic moduli of the fiber core, inner coating, and outer coating, respectively; us(x) and u.(x) are the
displacement of fiber core and coating layers, respectively; A.; and A, are the cross-sectional areas of the inner and outer coatings,

respectively.
Substituting Eq. (4) into Eq. (3) and Eq. (1), the governing equation is obtained:

d*s(x) _
T~ Als) =0 (5a)

ds(x)
il (x) (5b)

2 o/
e =2l () = ()] =2 (56 =57) =2 [ e 50)
0

A

where 4 = , /g ";" = (;% +1); w, refers to the crack width.
The boundary conditions at the free end are:

&(x=0)=0 (6a)

s(x=0)=sp (6b)
The axial stress in the fiber core at the loaded end is expressed as:

P
— /) —
glx=7,)= AE 7)
Egs. (5a) and (5b) describe the relationship between the interfacial slip and shear stress [19]. Eq. (5¢) provides a theoretical
foundation for quantifying crack widths using the interfacial slip or integration of the strain distribution in vicinity of the crack. The
interfacial bond-slip law is needed to solve the governing equation of the interface law, as elaborated in Section 2.2.3.

2.2.3. Unified CIL

This subsection presents a CIL to unify the bond-slip models of shear-softening and shear-hardening interfaces, as shown in Fig. 5.
The CIL has three main stages: (i) a linear-elastic stage, (ii) a yielding stage, and (iii) a debonding stage. In the linear-elastic stage, as
the slip increases from 0 to as; (0 < a < 1), the shear stress linearly increases from 0 to fzy. In the yielding stage, as the slip increases
from as; to sy, the shear stress linearly changes from pzs to 7. If # > 1, the CIL describes a linear softening behavior, meaning that the
interfacial shear stress deceases in the yielding stage. If # = 1, the CIL describes a constant behavior. If 0 < < 1, the CIL describes a
linear hardening behavior, meaning that the interfacial shear stress increases in the yielding stage. Finally, after the slip is larger than
s, the debonding stage occurs, and the shear stress decreases with the interface slip exponentially.

The CIL is expressed as:

@LO <s<asy
asy
. 1—
(s) =4 2 ﬂJr(ﬂfa) sasp < s < sp 8)
iy (s=5)
e £ 5 <s
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Fig. 5. Illustration of CIL: (a) softening interface (§ > 1); (b) constant interface (f = 1); and (c) hardening interface (0 < g < 1).

where 14, 5, @, 5, and k are the unknown parameters of the CIL to be calibrated; 7; (0 < g < 1) or fizy (§ > 1) refer to bond strength; s¢
and k are the slip corresponding to the bond strength and interfacial fracture energy, respectively; @ and  determine the separating
point in the linear elastic ascending part of the CIL; and f is of crucial importance in the CIL because § determines the type of the
interface. With Eq. (8), Eq. (5) can be solved, as elaborated in Section 3.

The main reason for adopting an exponential function in the debonding stage is that the exponential function can cover various
cases, as shown in Fig. 6. When k approaches to 0 (e.g., k = 0.01), the exponential function tends to describe a null interfacial stress
transfer (complete loss of adhesion) behavior. When k is between 3 and 100, the debonding stage shows a softening behavior. When k is
larger than 100 (e.g., k = 400), the debonding stage tends to describe a constant residual stress behavior.

An advantage of the presented approach is that there is no need for assuming the debonding stage in advance. The proposed
cohesive law can be applied to various cases, and the model parameters can be determined through the proposed inverse analysis
approach. This is particularly important for many applications when the interfacial properties are unknown. This is the case for our
research because there is little research on fiber-matrix interfacial properties of optical fibers.

2.3. Metaheuristic inverse analysis

This section presents the metaheuristic inverse analysis method to accurately calibrate the parameters of the CIL, as illustrated in
Fig. 7. Past research showed that the force-slip curves of pullout tests were determined when a CIL was given through a forward
analysis [17,18,21-32]. However, the calibration of the model parameters is an inverse problem, which was usually solved through the
trial-and-error method. Nevertheless, the trial-and-error method is inefficient and inaccurate, especially when there are multiple
parameters that involve coupling effects. Inaccurate model parameters highly affect the analysis accuracy of interfacial behaviors.

This study proposes to solve the inverse problem using the hypotrochoid spiral algorithm [33,34]. A set of initial values are
assigned to the model parameters. With the initial values, the analytical solutions of force-slip data are calculated based on the forward

0.7 —K=T600
:k=400
0.6 1 k =100
s — - - k=25
0.5 - k=6
= k=3
204 k=15
o k=1
5 ] k=05
£03 k=025
= k=0.1
802 1 k=001
e 0.1 4= 2o Constant re51dual stress |
0 T T T T T T T
0 2 4 6 g8 10 12 14 16
Slip s (mm)

Fig. 6. Parametric study of effect of k to the debonding stage of cohesive interface law. (s; = 1.092 mm; 7; = 0.1158 MPa; a = 0.3689; f =
5.6786).
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Fig. 7. Comparison of the forward and inverse problems of the fiber pullout behavior.

analysis. The calculation results are compared with the fiber pullout test results. The discrepancy between the calculation results and
test results are obtained, and the hypotrochoid spiral algorithm is used to minimize the discrepancy by optimizing the model pa-
rameters. The objective function in the minimization is defined as f(X):

1
X) =— RMSE(P(7;, X), Yi(sc;

J0X) = S RMSE(P(/1, X). Yi(sc) ©

where X is the vector composed of the five parameters of CIL; the fiber embedded in the matrix is divided into n segments, and /; is

the i-th length; P(/;, X) is the calculated pullout force corresponding to /;; sg; is the slip corresponding to /;; Y; is a fitted model to
estimate the magnitude of the tested pullout force; and the root mean square error (RMSE) is defined as:

i

:1 (pi — Vi)2

RMSE(P,Y,) = (10)

n
where P = [p1, p2, ...,pnl and A = [v 1, v 9, ..., U N] are the vectors for the calculated and tested values of the pullout forces,
respectively.
The coefficient of determination (R?) and the maximum absolute error (MAE) are also used to evaluate the accuracy of the inverse
analysis:

n 2
RE=1— Yoimi(pi — i) . (11a)
S [vi — mean(y;) ]

MAE(P,Y,) = % > lpi— vl (11b)
i=1

The optimization algorithm was executed for 20 independent runs. The number of search agents was set to 50, and the optimization
process was terminated when the number of iterations reached 500. More details of the optimization algorithm are available in ref-
erences [33,34]. After parameters a, f3, 77, r, and k are determined through the inverse analysis, the CIL is determined and used to
derive the force-slip curve, the slip distribution and shear stress distribution at the fiber-matrix interface, as well as the axial strain
distribution of the fiber at an arbitrary slip level.

2.4. Distributed fiber optic sensing

Distributed fiber optic strain sensors have been categorized into Brillouin scattering-based sensors and Rayleigh scattering-based
sensors. Brillouin scattering is a type of inelastic scattering involving frequency shift caused by the interaction of sound waves and light
waves [35]. Rayleigh scattering is elastic because it retains the frequency of transmitted light. Rayleigh scattering is caused by
irregular microstructures [36]. The irregularity is generated in fiber fabrication, and the irregularity size is comparable with wave-
lengths of light waves. Compared with Rayleigh scattering, Brillouin scattering features a long operation distance and a low spatial
resolution. The resolution of Brillouin optical time domain analysis is about a half meter [5], leading to uncertainties in the mea-
surement of strains. Rayleigh scattering-based sensing technologies were proposed to achieve sub-millimeter spatial resolutions
[11,12,37]. With fine spatial resolution, distributed sensors are able to locate and quantify fine strain distributions and cracks [10-12].

In this research, a distributed fiber optic sensing system (model: Luna ODiSi 6100 series) based on the optical frequency domain
reflectometry (OFDR) technology was adopted for strain measurements. The manufacturer-specified accuracy is + 5 pe [38]. The
measurement of strain and temperature is based on the comparison of scattering signals at the reference and perturbed states. In each
state, a light wave is beamed into the optical fiber, generating Rayleigh scattering. The backscattered signal is measured along the fiber
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length. At each point of the fiber, the amplitude of the signal is plotted against the wavelength of the light. The amplitude versus
wavelength data is converted into intensity versus frequency via Fast Fourier Transform, and a cross-correlation operation is per-
formed to identify frequency shift between the reference and the perturbed states at each spot along the fiber. The distance is
determined by the travelling time of the backscattered signals because the velocity of light waves can be calculated with the refractive
index of the fused silica fiber. The frequency shift is associated with strain and temperature changes:

Al A
AT:7;:&T+&8 12)

where 1 and v are the mean optical wavelength and frequency, and Kr and K, are the temperature and strain calibration constants,
respectively. At a constant temperature, the spectral shift can be converted into strain along the optical fiber with a calibrated
sensitivity coefficient. See calibration in reference [8]. More details of the working principle of the distributed fiber optic sensing
system are available in references [11,12].

3. Analytical studies

Previous research showed that the fiber pullout process and the failure mode were dependent on the fiber length () embedded in
the matrix, and there was a critical embedment length (/) for the fiber [18,32]. The critical embedment length is the minimum length
necessary to completely activate the whole CIL along embedded fiber length () in the matrix.

Based on the critical embedment length (/), the pullout behavior is investigated in two cases: (1) Case 1: the embedment length is
longer than the critical length (# > /). The pullout process in Case 1 included five stages, which are the elastic stage, elastic-yielding
stage, elastic-yielding-debonding stage, yielding-debonding stage, and debonding stage. (2) Case 2: the embedment length is shorter
than the critical length (# < /). The pullout process in Case 2 included five stages, which are the elastic stage, elastic-yielding stage,
yielding stage, yielding-debonding stage, and debonding stage. The difference between the two cases is that the elastic-yielding-
debonding stage in Case 1 is replaced by the yielding stage in Case 2. Section 3.1 elaborates the analysis for Case 1. Section 3.2
elaborates the analysis for Case 2.

Long embedment lengths enable the complete development of the interface capacity, and the snap-back behavior only occurs for
long embedment lengths. Short embedment lengths undergo lower strain and load levels. Therefore, it is essential to evaluate the
critical embedment length /y, considering that the failure mode of the fiber pullout test is fiber slip. The five main stages of the
fiber-matrix interface damage in the fiber pullout process are shown in Fig. 8. The mechanical behavior is related to the bond length
(©), which is the embedment length of the optical fiber in the matrix. More details of the critical embedment length are provided in the
following section.

R
§ Stage I: Elastic stage Stage II: Elastic-yielding stage
g t7(s) 7(s)
g i Elastic limit ,
= i >
= i |
g P S, S,
> * * L
—& 0 0
< S‘tage IV: Yielding-debonding stage S::ﬁg;;k Stage III: Elastic-yielding-debonding
T(S) stage (long embedment length )
1
i B T ( S) o
HE Yes [ &
b A
| I s ~
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Yielding limit 0
! Stage I1I: Yielding stage
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= behavior
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Fig. 8. Illustration of the main stages of the fiber—matrix damage in the single fiber pullout process.
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Table 2
Analytical solutions for long embedment length (#" > /).
Stage Analytical solutions
I s(x) = spcosh(41x) (13a)
7(x) = ﬂ—fswosh(/llx) (1sp)
g(x) = l/hstinh(/{lx) 39
P
11 The solution at the region of 0 < x < /:
s() —as cosh(21x) (14a)
B fcosh(/ll/el)
_ cosh(41x) (14b)
) = ﬂffcosh(h/’d)
1 sinh (A1) (140)
500 = O )
The solution at the region of /¢ < x < /:
1- A - 14d
( a)/}sf cosh[A2 (/g —x)] — lasf tanh(41/)sinh[A2 (/¢ — X) | _p asz/} #1 (144
-5 1-p
5(x) 1
Eﬁrf(/el —x)* — hagtanh(21 /) @ (Vo —X) +asp, =1
a(l — Bt . ) (14e)
) { frycoshlida (/e — x)] — %mnh(/ﬁ/d)smh[i2 (Va—)p#1
5, =1
1 ) (140
:011 asgtanh(21 /¢ )cosh[A2 (/g — x) ] — ;ﬁz la—X)],p#1
&) = 1 1
7/12ff(/e, —x)+ ;lllaftanh(,il/el ), p=
111 The solution at the region of 0 < x < /:
s(x) = as cosh(21x) (15a)
- fcosh(/ll/el)
B cosh(41x) (15b)
) = ﬂffcosh(il/’d)
B sinh(41x) (15¢)
&) = lasfcosh(ll/el)
The solution at the region of /'y < x < /g + /yqg:
(1 — a)fisy sinh[25(Zet + /ya —%)] (1 = a)sy sinh[da(/a = X)] /3 LAY (15d)
S ; s
) = 1-5 sinh(A2/ya) sinh (d2/yq) -p
Eﬂ, T/( ol — )(/’el+/yd7x) . (/BI*X)+(IS[A,ﬂ:1
 Sinh [A2(/a+/ya—%)] . sinh{Aa(Za —x (15¢)
) =47 sinh (12/yq) 7 sinh(22/yq)
7, p=1
1 -y cosh[42(Za +/ya =X)] 1. (1= a)ss cosh[lz(/e — X)] p41 (156
@ 1-p smh(/{z/yd) sinh(/{z/yd) ’
&) = 1 11 1 a)s,
—;/12@(/8, 03, “Rrl g p=1
The solution at the region of /¢y + /g <x < /-
2i
s(x) = —kln{cosh (VG -]} ke asg
f f
sy @5h)
C k
) = ; 177 e€
cosh®[A31/C1 (x — C2) |
12k 15i
£6(x) == =3/Crtanh [/13\/C1 (x— Cz)} asy
P T
v The solution at the region of 0 < x < /)4:
1—a cosh(lzx) p—a (16a)
S AN s p# 1
) = 1—p7cosh(darya) 1-47
1 2
5/12’[}’()(2 - /ydz) +s5,p=1
o cosh(l;/x) pL1 (16b)
7(x) = cosh (/12/},‘1)
7, p=1
1 1-—a_ sinh(d2x) (16¢)

—A — 1
o1 —ﬂfcosh(/lz/’yd) p#
£r(x) =

—Prx, =1

The solution at the region of /g < x < /:

(continued on next page)
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Table 2 (continued)

Stage Analytical solutions
1 s(x) = spcosh(41x) (13a)
2k k 16d
s(x) = ?ln{cosh PgﬂCg (x— C4)} } _Eln(Q) aed
7rSf (16e)
) = Carpee k
" cosh? [43vC5 (x = C4) ]
e(x) = % ZT—ng\/Cﬁanh [13\/c3 (- q)] ash
\% 2k 17
s(x) = ;]n{cosh {Agx/Cg, (x— CG)} } 7;1n(C5) aza
> (17b)
0 Cstpee k
o(x) = —S¥*e ™
cosh? [/13\/?5 (x—Ce) }
ep(x) = %Efi—fag Cstanh [ﬂg\/Cs (x— cﬁ)} azo

3.1. Case 1: Long embedment length (/' > /)

With the CIL in Fig. 4, the governing equation was solved to determine the slip, shear stress, and axial strain distributions along the
embedded fiber length, as summarized in Table 2. In Table 2, 7 and /4 are the elastic length and the yielding length, respectively,
which are determined by the boundary conditions. The constants 11, 42, 13 and C; to Ce were used to simplify the formulae. The
detailed derivation process of the formulae as well as the expressions of 1;, 43, 43 and C; to Cg are available in Appendix Al.

The elastic, yielding, and debonding stages simultaneously occur at the fiber-coating interface only when the embedment length ()
is longer than the critical embedment length (/) in Eq. (18). The detailed derivation process of Eq. (18) is shown in Appendix Al.

1 (1
ZCOSh (E)Ji#l

o= U b (18)
L RO=as
A Tr

The elastic stage (Stage I) ends when 7(/') = fz; (Point A in Fig. 9). The load and the corresponding loaded end slip at the end of the
elastic stage are:

1
Py = AfEf*ﬁltanh(ﬂl/)an (1 93)
@

SGA = Ay (19b)

The elastic-yielding stage (Stage II) ends when 7(/') = 7; (Point C in Fig. 9). The load and the corresponding loaded end slip at the
end of the elastic-yielding stage are:

D

P, .
=~ I
k= v
= \%
B Pc G E¢
s 11,
Q-‘ ]
N

P.J% I

A' I‘[I D' Shortlgggﬁddcc
s IV_E' Vs Il
SG=aS; Sy $7=5
Loaded end slip, s

Fig. 9. Analytical load-global slip curves for both long and short embedded lengths.

10



X. Tan et al. Mechanical Systems and Signal Processing 200 (2023) 110532

A,»Efizz% sinh(1,/),f # 1

PC: 1 (203)
AE~2tl p=1
f f(/) !

“;ﬂcoshuz/) - /1} Ly
Sgc = =/ 4 (20b)

1
z/{sz//z + (IS/,/} =1

The elastic-yielding-debonding stage (Stage III) ends when 7(0) = ffz; (Point D in Fig. 9). The load and the corresponding loaded
end slip at the end of elastic-yielding-debonding stage are:

1 2k
Pp = AfEf; T—/lz vV Cltanh [/13'\/ Cl (/ — Cz)} s (when/).d = /0) (213)
f
2
S6p = —kln{cosh {/13\/@ (/- c4)] } —ZIn(C3), (when/,y = /) (21b)
T I

The yielding-debonding stage (Stage IV) ends when 7(0) = 77 (Point E in Fig. 9). The load and the corresponding loaded end slip at
the end of the elastic stage are:

sy Ty

P = A Ef% i—fzgef (%) tanh <,13e7( ) 2 (22a)

SGE = i—fln [cosh (1387 <%> / ) } + 57 (22b)

3.2. Case 2: Short embedment length (/' < /)

When the embedment length of fiber is shorter than the critical embedment length (/" < /), the elastic-yielding-debonding stage in
Case 1 is replaced by a yielding stage. The other stages in Cases 1 and 2 are the same, so they are not duplicated. This section only
elaborates the yielding stage (Stage III), and the corresponding formulae of slip, shear stress, and axial strain distributions along the
embedded fiber length are summarized in Table 3. The detailed derivation process of the formulae is available in Appendix A2.

The yielding stage (Stage III) is ended when sgp = s¢. The corresponding load at the end of the yielding stage is:

D =

1—
PAE, (1 - Z) splatanh(7,/), f # 1 o0

PAE Tl =1
3.3. Analytical results

As discussed in Section 3.1, five stages are identified from the load response of an optical fiber when the fiber embedded length is
longer than the critical embedded length: (I) elastic; (II) elastic-softening; (III) elastic-softening-debonding; (IV) softening-debonding;
and (V) debonding stages. These stages are shown in orange color in Fig. 9. A snap-back phenomenon is observed, although it is usually
not captured in laboratory experiments due to the adopted testing method which is either force or displacement that is controlled to
increase monotonically [17,18]. More discussions on the snap-back phenomenon are available in references [17,18]. The snap-back

Table 3
Analytical solutions for short embedment length (/" < /).
Stage Analytical solutions
1 (sF +/13 : asf> cosh(A2x) — /13 : asﬂ, B#1 (233)
s(x) = p p
%AZfoz +sp,fp=1
1-pry_  p-a (23b)
) = { {(1 — a)sst + -7 cosh(42x),f # 1
7, p=1
ok (sF 2= "sf) sinh(42x), f # 1 (239
g (x) = 1-4
piPrpx,p=1
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Fig. 10. Evolution of interfacial shear stresses for a long embedment length: (a, b) elastic stage; (c, d) elastic-yielding stage; (e, ) elastic-yielding-
debonding stage; (g, h) yielding-debonding stage; and (i) debonding stage. I, II and III are elastic, yielding and debonding stress states, respectively.
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phenomenon is usually more interesting to research focusing on the mechanical properties of composites, but it is not the main focus of
this research, which mainly focuses on the sensing performance of distributed fiber optic sensors.

When the fiber embedded length is shorter than the critical embedded length, the load response of an optical fiber also can be
divided into five stages, shown in blue color in Fig. 9. The curve is a typical fiber pullout curve showing a softening trend.

Based on the unified CIL and analytical solutions, the shear stress distributions along the interface are obtained by solving the
governing equation at each loading stage. Fig. 10 illustrates the evolution of the interfacial shear stress when the embedment length is
longer than the critical embedment length (/" > /).

The evolution of the interfacial shear stresses for a long embedment length is characterized by five stages. In the first stage, the
load—-displacement response is linear elastic. The shear stress distributions along the interface are shown in Fig. 10(a) and Fig. 10(b). At
the end of the elastic stage, a portion of the interface enters the yielding stage, while the remaining portion is still in the elastic stage.
The corresponding shear stress distributions along the interface are depicted in Fig. 10(c) and Fig. 10(d). Specifically, the parameter
has a significant effect on the shear stress distribution. When 8 > 1, the shear stress distribution shows a softening effect for the portion
of interface in the yielding stage; when =1, the shear stress distribution is constant; and when 0 < g < 1, the shear stress distribution
shows a hardening effect. At the end of the elastic-yielding stage, a portion of the interface enters the debonding stage, while the
remaining part is still in the elastic-yielding stage. The corresponding shear stress distributions along the interface are depicted in
Fig. 10(e) and Fig. 10(f). In the elastic-yielding-debonding stage, the applied force increases due to the debonding at the interface. At
the end of the elastic-yielding-debonding stage, there is no elastic stage at the interface. The shear stress distributions are shown in
Fig. 10(g) and Fig. 10(h). At the end of the yielding-debonding stage, the shear stress is equal to the bond strength (zf) at the free end.
Finally, Fig. 10(i) depicts the shear stress distribution at debonding stage.

When the embedment length is shorter than the critical embedment length (/' < /), the shear stress distribution at the end of the
elastic-debonding stage is shown in Fig. 11(a). There is no elastic stage along the fiber, and the interface is in the softening stage along
the whole fiber length. At the end of the softening phase, the shear distribution is shown in Fig. 11(b). Then, the shear stress distri-
bution evolves to the yielding-debonding stage.

4. Implementation

The presented interface law and analysis is implemented into optical fibers that were used to validate the approaches. Validation of
the approaches took advantage of the unique sensing capability of the distributed fiber optic sensors. The proposed CIL and the
derivation of the analytical formulae (see Section 3 and Appendix A) are independent of the specific materials (optical fibers) and
applicable to different types of composites.

4.1. Pullout tests

Single fiber pullout tests were carried out as shown in Fig. 12(a). In each test, an optical fiber was attached using adhesive (ethyl
cyanoacrylate super glue) on two aluminum plates (length x width x thickness: 200 mm x 30 mm x 5 mm). Two U-shape channels
were used as slideways to regulate the deformation of the aluminum plates. With the U-shape channels, the aluminum plates could only
slide along the channels along the length direction, which is also the loading direction, and there was no out-of-plane deformation or
torsion of the aluminum plates. Before the loading test, the two aluminum plates were in direct contact with each other, and they were
attached together by using a drop of super glue. The optical fiber was glued to the surface of the aluminum plates along the length

By s CODSTAE . s ft=7 (B=1)

Softening

> 7 (ﬂ > 1)
(a)
4
t<pr (B>1) Softening
T L )Y — r=1
................................ Hardening i
t>Br, (0<f<1) /
End of yielding stage
(b) 1 i
f ¢ N

Fig. 11. Evolution of interfacial shear stress distribution of yielding stage for a short embedment length and propagation of debonding.
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Fig. 12. Fiber pullout test: (a) photograph of the test set-up; (b) illustration of the test set-up; (c) representative pullout load versus crack width
curves; and (d) representative experimental strain distribution curves with crack width opening. “Exp.” represents the experimental results.

direction and passed through the joint of the two aluminum plates. The joint was used to simulate an artificial crack that was
perpendicular to the optical fiber, as shown in Fig. 12(b). One end of the optical fiber was connected to the distributed data acquisition
system for measuring the strain distributions along the optical fiber, and the other end of the optical fiber was free. The two ends of the
aluminum plate were gripped by the wedges of a low-capacity load frame (load capacity: 1 kN; accuracy: £0.2 N) to apply tensile
forces to the specimen. The embedment fiber length with the coating was / = 160 mm at each aluminum plate. The test was repeated
eight times. The fused silica fiber was pulled under displacement control at a constant rate of 0.5 mm/min. The applied force was
measured from the load cell embedded in the load frame. An extensometer measured the relative displacement between the two
aluminum plates representing the crack width increase.

Representative results are shown in Fig. 12(c). The pullout curves indicate a transition behavior, which can be attributed to the
occurrence of debonding in the optical fiber. When the crack widths about 0.3 mm, the trend of the curve is significantly changed,
because the strain transfer behavior between the matrix and the optical fiber is altered after debonding occurs. The small load drop
near the transition joint is attributed to the loading rate (0.5 mm/min), because it is difficult for the load frame to accurately react to
the sudden occurrence of interface debonding in pullout process. Fig. 12(d) shows the representative strain distribution curves with
crack width opening. The peak indicates the location of the crack. The strain distributions are almost symmetrical to the peak. The
development of the strain distribution is consistent with pullout curves. When the crack width is increased from 0 to 0.19 mm, the
corresponding strain distribution shows a sharp peak at the location of the crack, indicating the crack initiation. When the crack width
is larger than 0.4 mm, the strain peak is widened with the increase of the crack width due to debonding in the optical fiber, and the
abrupt elongation of the optical fiber at the crack was averaged over a longer length, reducing the peak strain. The debonding length
then propagates along the fiber length. Eventually, after the debonding length is significantly developed, the distributed sensor fails to
provide further measurement.

14



X. Tan et al. Mechanical Systems and Signal Processing 200 (2023) 110532

4.2. Metaheuristic inverse analysis

The model parameters a, f, 17, s¢, and k were determined through the metaheuristic inverse analysis based on the fiber pull-out test
results. Fig. 13 shows the optimization convergence curves for the 20 independent runs of the inverse analysis. The curves indicate that
the adopted algorithm effectively minimizes the objective function and avoids premature convergence. Table 4 lists the results of the
parameters of the CIL and performance metrics. The results indicate that the force-slip results obtained from the inverse analysis agree
with the test results. Fig. 14(a) compares the experimental and analytical results of the force-crack width curves based on inverse
analysis.

4.3. Distributed fiber optic sensing

With the model parameters, the mechanical model was used to derive the slip distribution and the shear stress distribution at the
fiber-coating interface and the strain distribution in the fiber along the fiber length at an arbitrary crack width opening. Fig. 14(a) plots
nine selected crack width levels at the loaded end, w, = [0.05 mm, 0.12 mm, 0.22 mm, 0.32 mm, 0.59 mm, 0.78 mm, 1.33 mm, 1.89
mm, 2.49 mm], in the pullout force-crack width curve when the embedment length is 160 mm. The nine crack width levels were
selected to represent nine stages of the pullout process. This analytical analysis provides a theoretical foundation for measuring the
crack widths using the empirical relationship between the magnitude of strain peak measured from distributed fiber optic sensors and
crack width, as elaborated in reference [11].

Fig. 14(b) compares the analysis results of the strain distributions in the fused silica fiber against the measurement results from the
distributed fiber optic sensor based on OFDR. The analysis and measurement results of the strain distributions agree, indicating that
the presented interface law and inverse analysis are effective in analyzing the interfacial behavior of the fused silica fiber with the
package. The gained understanding of the interfacial behavior enables the operation of distributed fiber optic sensors and the inter-
pretation of the sensing data in the presence of debonding at the fiber-coating interface. In the presence of cracks, the theoretical
formula that relates the slip of the optical fiber and the crack opening width is determined according to the governing equation Eq. (5),
and the crack width is calculated by the integration of the tensile strains in the vicinity of the crack. This analytical analysis also paves
the theoretical way to quantifying the crack widths using the strain distributions measured from distributed fiber optic sensors, as
elaborated in reference [11]. The developed approaches enable accurate interpretation of the results from the distributed fiber optic
Sensors.

Fig. 14(c) shows the slip distributions along the fiber length at different crack width openings. The slip reaches the maximum value
at the loaded end (x = /) and gradually decreases towards the free end (x = 0) of the fiber. When the slip is small (s¢ < 0.284 mm or
we < 0.12 mm), the entire interface is elastic. When s increases from 0.284 mm to 1.746 mm (or 0.12 mm < w, < 0.59 mm), the
interface is in the elastic-yielding stage. When s¢ increases from 1.746 mm to 7.310 mm (or 0.59 mm < w, < 2.49 mm), the fiber core-
cladding interface is in the elastic-yielding-debonding stage.

Fig. 14(d) shows the shear stress distributions along the fiber length at different crack width openings. When the crack width
opening is small (w, < 0.12 mm), the shear stress reaches the maximum value at the loaded end and gradually decreases towards the
free end of the fiber. When the crack width opening increases from 0.12 mm to 0.59 mm, the maximum shear stress reaches the peak
shear, the maximum shear stress reaches the peak at the intersection between the elastic and yielding sections. The position of
maximum shear stress moves toward the free end of the embedded section when the crack width opening increases. When the crack
width opening is larger than 0.59 mm, the loaded end of the embedded section reaches the debonding section, and the position of peak
shear stress moves further toward the free end of the embedded fiber.
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Fig. 13. Convergence curves of the hypotrochoid spiral optimization algorithm for 20 independent runs. The red line represents the best result, and
the gray lines represent the other results. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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Table 4
Parameters of the bond-slip relationships.
Samples sp(mm) 75(MPa) a B k(N/mm) RMSE R? MAE
(# =160 mm)
Exp._1 1.092 0.1158 0.3689 5.6786 1621.54 0.1225 0.984 0.0901
Exp. 2 0.1032 0.991 0.0715
Exp. 3 0.1009 0.994 0.0791
Exp._4 0.1102 0.992 0.0804
Exp. 5 0.1231 0.995 0.1002
Exp. 6 0.1068 0.987 0.0787
Exp. .7 0.1242 0.993 0.1013
Exp._ 8 0.1097 0.989 0.0925
Exp._average 0.1125 0.991 0.0867
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Fig. 14. Assessment of the analytical solution for nine levels of crack width: (a) the crack widths at nine loading levels; (b) comparison of the
analytical and experimental results of axial strain distributions; (c) slip distributions; and (d) shear stress distributions. “Exp.” and “Ana.” represent
the experimental results and the analytical results, respectively.

4.4. Discussion on unsymmetrical cases

The former investigations on the relationship between fiber end slip and crack width were built on an assumption that an optical
fiber crossing a crack experiences symmetrical loaded end slips. However, that is not always the case. In general, the loaded end slips of
the fiber at the two sides of the crack are unequal due to the randomness of material properties. This section discusses the unsym-
metrical case, as shown in Fig. 15. When the right side of the fiber enters the debonding stage (Stage 3 in Fig. 5), the left side of the fiber
is still in the yielding stage (Stage 2 in Fig. 5). Under such circumstances, it is inappropriate to use the fiber end slip at one side of the
crack to calculate the crack width. The fiber end slips at both the left and right sides of the crack should be used, and the crack width w,
is equal to the sum of the loaded end slips of the left and right sides, which are denoted as w;, and wg, respectively, according to the
compatibility of deformations, as shown in Eq. (25a)-c). According to the equations of equilibrium, Eq. (25d) is obtained.
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Fig. 15. Illustration of the unsymmetrical fiber pullout cases for determining the crack width.
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Fig. 16. Experimental results of unsymmetrical fiber pullout cases: (a) a typical unsymmetrical strain distribution result at different crack widths;
and (b) measurement accuracy of the crack width.

We = WL +Wg (25a)
/L
wp = / & (x)dx (25b)
0
/R
wg = / € (x)dx (25¢)
0
Ef(x = /L) = ef(x = /R) (25d)

Fig. 16(a) shows representative results of the unsymmetrical strain distributions measured from an optical fiber crossing a crack
with the increase of the crack width. When the crack width is small (up to 0.25 mm), symmetrical strain distributions are observed, and
there is no debonding. When the crack width is 0.40 mm or larger, debonding occurs at the right side, but does not occur at the left side.
Fig. 16(b) compares the calculation and measurement results of crack widths. The crack widths were calculated by integrating the
strain distributions in the distributed sensor at the two sides of the crack and measured using an extensometer. The calculation and
measurement results of crack widths agree well with each other. A straight line can be used to fit the data, and the coefficient of
determination (R?) is 0.9996, which indicates a high correlation. The results corroborate that the proposed approach is applicable to
unsymmetric cases.

5. Conclusions
This study presents a unified cohesive interface law to describe the bond-slip behavior of fused silica fiber with polymeric coating in

the fiber pullout process, performs a mechanical analysis on fiber pullout responses based on the presented interface law, develops a
metaheuristic inverse analysis to calibrate the model parameters, and applies a distributed fiber optic sensing technology based on
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optical frequency domain reflectometry to measure the strain distributions in optical fibers. The developed method is applied to
analyze the measurement from a distributed fiber optic sensor. The following findings are drawn:

e The presented CIL reasonably reflected the bond-slip behavior for fused silica fiber with polymeric coating and has the potential for
other types of fiber-matrix interface. With the proposed CIL, the mechanical analysis on the fiber-coating interface can establish the
intrinsic relationship between the CIL and the fiber pullout force-crack width response.

e The parameters of the unified CIL were automatically determined through the metaheuristic inverse analysis with high efficiency

and accuracy. For the investigated embedment fiber lengths, the RMSE is lower than 0.13, R? is higher than 0.98, and MAE is lower

than 0.11.

The presented method provides reasonable predictions of the slip distribution and shear stress distribution at the fiber-coating

interface as well as the strain distributions in the fused silica fiber. The results of the strain distributions agreed with the strain

distributions measured from the distributed fiber optic sensors throughout the pullout process.

e This research establishes fundamental understanding of the fiber-coating interfacial behavior, and the understanding enables
distributed fiber optic sensors to be operated in presence of debonding at the fiber-coating interface at crack, as well as accurate
measurement of crack width opening by interpretation results obtained from distributed fiber optic sensors.
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Appendix

Appendix A. . Derivation process of analytical solutions

Al. Case 1: Long embedment length (/' > /)

With the CIL defined in Fig. 4, the governing equation was solved to determine the slip, shear stress, and axial strain distributions
along the embedded fiber length, as well as the load-slip response of the fiber throughout the fiber pullout process, as elaborated in this
section.

Al.1. Stage I: Elastic stage

Under small loads, the entire fiber-matrix interface remains elastic. When the shear stress at the loaded end of fiber reaches fr;, in
other words s¢ = asy, the elastic stage is ended. The bonded length is governed by the first stage of CIL, as expressed by Eq. (A.1):

d*s(x
dx(z ) —2i%s(x) = 0,0 < s < asy v
=2 Py
asy

By considering the boundary conditions in Eq. (6) and Eq. (7), the slip s(x), shear stress 7(x), and axial strain ¢(x) along the fiber are
obtained as:

s(x) = spcosh(4;x) (A.2a)

7(x) = &spcosh(/hx) (A.2b)
asy

&(x) = %ﬁlstinh(ﬂ]x) (A.2¢)
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Eq. (A.2a) is used to obtain the slip at the loaded end s¢:
s¢ = s(/) = spcosh(4,7) (A.3)
By substituting Eq. (A.2¢) into Eq. (7), the applied load P is obtained:

1 1
P :A,Ef;llsinh(/ll/)sp iA/E_[ﬂ];[&l’lh(ll/)SG (A4)

Eq. (A.4) indicates that P is proportional to s; and sy. The elastic stage is ended when 7(/’) = pry, in other words s; = asy, and the
load at the end of the elastic stage is:

1
PA :AfEf/ll—tanh(/l]/)asf (A.S)
@

A1l.2. Stage II: Elastic-yielding stage

As sg > asy, the second stage of the bond-slip curve commences at the loaded end, and the position of the shear stress 7y moves
towards the free end of the fiber. When the shear stress at the loaded end reaches ¢, in other words s¢ = sy, the elastic-yielding stage is
ended, and the elastic-yielding-debonding stage is started. The entire bonded length is governed by the first and second stages of the
CIL, expressed as:

2
dds(zx) —1%s5(x) =0,0< s < asy
; 3 (A.62)
SX —a
% — lzzS(x) = ‘fT/}S/'/lzz, asy <s< N
(A.6b).
1-pz
M| ——==,0 1
Ay 0=/
where 15 = 0,p=1 , and i is the imaginary unit.
(B—V)ry.
— 1
(1—a)s b=
Eq. (A.6) is solved using the boundary conditions:
P 1
_ — A.
)= WAE sh(h) (A.72)
e (Vu) =& () (A.7b)
s (//el) =" (/g/) = asy (A.7C)

where 7, = ﬁ:osh’1 (%) is defined as the elastic length using the boundary conditions. The yielding length is defined as /4 =

=l q.
The solution at the region of 0 < x < /,; is expressed as:

B cosh(4,x)
s(x) = as,-m (A.8a)

. cosh(4,x)
7(x) = ﬂz'/m (A.8b)

1 sinh(4,x)
=—-has————— A.
&) ) 19 cosh(4,7) (A.80)
The solution at the region of /; < x < / is expressed as:
1-— A -
7( 1 :l)ﬁﬂsf cosh[A, (£ —x)] — —fsf tanh(4,/)sinh[A (/' — x) | — ‘f—i ZSf»ﬁ #1

s(x) = ? (A.9a)

—/lz'rf(/d - x)2 — Ahagtanh(A, /) ® (£ —x) +asp, f=1
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o) = prreosh(dy (g —x)] — %tanh(i Za)sinh[a(Fy —x) |, # 1 (A.9b)
T, =1
l/1]ozs/tanh(/u/e,)cosh[/b(/;, —x)] - —/12( )by sinh[4, (/o — %)), 8 # 1
¢ -
Ef(x) = 1 1 (A~9c)
——l (Lo — X) + ;/lqutanh(ll/;,)ﬁ =1

Eq. (A.9a) can be used to obtain s; by letting x = /:

U;ﬂcosh[lz(/d /)] - ’1‘5’ 7 tanh(A, /)sinh[A (7o — /)] —f_—asf,/; #1
s¢ = -/ -/ (A.10)

iﬂ. T/( ol — ) — lla/tanh(l /(.]) (/el — /) + (ZS/,[)’ =1
By substituting Eq. (A.9c¢) into Eq. (7), the applied load P is obtained:
o , ) 1, (1—a)fs
ArEs |—Aasptanh(4, /g )cosh(Ay (Fo — /) ] — lz —j sinh[A(Zu — )] |, # 1
P= ! 1, | (A11)
AfE/ |:— —}. Tf( el — /) +(—llaftanh(ll/",,)} ,/f =1
7]

When sg = sy, the shear stress at the loaded end reaches 7, so substituting 7(x) = 7y into Eq.(A.9b) leads to:

(1-a)k {1 — peosh (/)

a(l =P sinh(42/q) } = tanh(Li/a) (A-12)

Eq.(A.12) can be interactively solved to compute the value yielding length at the debonding load (/) when considering:

la=0 =1l (A.13)

Then the elastic length at the debonding load (/) and the corresponding value of free end slip (sg¢) can be determined. Finally,
the debonding load Py is expressed as:

AfEf|: ﬂ.lantdl’lh(ﬂ /d(;)CObh(/lz/yd C) + 12( — ’)Bﬂ A blnh(lz/}»dvc) :| “ﬂ 7/: 1

Pc = . (A.14)
AfEf |:(pl Tf( wlC) + l[(lrtanh(l /eIC) :| ,/} =1

A1.3. Stage III: Elastic-yielding-debonding stage

As sg > sp, the elastic-yielding-debonding stage is started. The interface has a combination of elastic, yielding, and debonding
regions. When the free end slip sy reaches asy at x = 0 (sr = asy), the elastic-yielding-debonding stage is ended. The governing
equations are expressed as:

dZL(zx) —M%s(x) =0,0 < s < ass
dx
dizc(zx) — Zs(x) = f - Zsfﬂzza asp <5 < s¢ (4-15)
dzdifzx) — ,132‘2;—:( W = =0,5> s
b= 1yfE oL

* 2%

Eq. (A.15) can be solved using the boundary conditions:

P 1
0)=sp=e A16
$O)=sr =30 F, Smh(07) (A.162)
& (La) =€ (F0) (A.16b)
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Si(//d) = S+(/€[) = asy (A16C)
& (Ca+ya) = & (Ca+7ya) (A.16d)
s (Catla) =st(Catlia) =5 (A.16€)

where 7/ and /4 are the elastic length and the yielding length, respectively, which are determined by the boundary conditions. The
solution of Eq. (A.15a) is the same as Eq. (A.8a).
In addition, based on Egs. (A.16¢) and (A.16e), the solution of Eq. (A.15b) is expressed as:

(1 —a)psy sinh [ (Zu + 7 —x)] (1 —a)s; sinh[lo(Zu —x)] f—a 541
o) = 1-p sinh (4/,4) 1—p  sinh(L/y) 1—p" A1)
%ﬂzrf(/e, =X)L+ ya—x) — m (Coa—x)+as,f=1
/yd
sinh [ (Za+ya—x)] sinh[l (£ —x)]
_ , 1
(x) = & sinh(42/q) 7 sinh (tya) da (A.17b)
7, p=1
_La 1* a)ﬂﬁsf cosh [/124(/}/1 eé/;r// y; —x) ] " l/b(ll* a;sj COSf}[/llz((j e; *)X) ]" f£1
- S1n. 2 — S1n. /v
g =4 7 R ! R (A170)

(1-a)

1 11 1 5
20 (L = xX) — = PP g+ — L p=1
P (Lo — x) 29 Ut B

Based on the reducing order approach [24], the solution of Eq. (A.15c¢) is expressed as:

2k k
s(x) = —ln{cosh [ﬁgw/c, (x — cz)} } —Z(cy) (A.18a)
Tf Tf
TS
C[ T ® er
7(x) = : A.18b
) = oo [43VCl (x — C) | ( )
12k
Ef()C) :;T—ﬂg\/ Cltanh[/lg\/ C1 (X* Cz)] (A.].SC)
¥
where constants C; and C, are determined by Egs. (A.16d) and (A.16e):
2 s
Tfoﬂz(l — a) (COSh(lz/yd) — ﬁ) 4 e* (T/> ﬂ # 1
2UA3(1 — ) sinh(2,74) ’
C = - 2 ( ) (A.192)
W2 g+ (=
Ay /i T o
ki te p=1
1 S — h(A2/ ) —
Lt l o= tanh™"! 7siha (1 — a) (COSV( 2/5a) = B) BA1
13/ Cr 2ky/CiA3(1— ) sinh(42/}q)
G = | %ﬂszz/yd 4 (1 7/a)sf7f (A.19Db)
la+ya— tanh™' T xd B=1
LG 2k\/C1 A
Substituting Eq. (7) into Eq. (A.18c¢), the following equation is obtained:
1 2k
P = Ak /Crianh [/13 VCi(/— cz)] (A.20)
|
When x = /, the expression of the slip at the loaded end is obtained from Eq. (A.18a):
2k k
s6 = —ln{cosh [,13\/01 (/- CZ)} } ~Z(cy) (A.21)
% 7
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According to Eq. (A.16b), the relational expression between the yielding length /,; and the elastic length /,; is obtained:

(1 —a) [1 = peosh(dr/y4) ]
1-— ﬁ Sil’lh(lz/yd)

= llatanh(ﬂl/e,),ﬁ 7é 1
(A.22)

1 1 —a)s
I +(/7a)s, = Ahatanh(4,7,),f =1
2 va

Considering /7y = %cosh’1 (%), the general solution of /, is given as:
Lo | (hal=a\* () (se )
p Ap(1 = p) asy
—cosh™!
A - ha(l—a)\> 1 si2
i = Lp(1 = p) asy (A.232)

2
o () () e
Aty asy Aty asy Aty

This stage is ended when / = 0. Then, the following relationship is obtained:

icosh’1 (1) N/ES!

b p
vamar = (A.23b)
LRy
A 7

Given Eq. (A.23), it is found that /ygm« = #o. The elastic, yielding, and debonding stages can occur at the fiber-coating interface
simultaneously only when / is longer than /.

Al.4. Stage IV: Yielding-debonding stage

When sr > asy, the elastic region ended at the free end of the fiber, and the shear stress decreases from 7y to zero along the
debonding length (/' g,). When the shear stress at the free end is 7; (sr = s¢), the yielding-debonding stage is ended, and the debonding
stage starts. The entire interface enters the debonding stage at the end of the yielding-debonding stage when /g, = /.

The entire bonded length is governed by the second and third stages of CIL, as expressed by Eq. (A.24):

d -
;ng) — lo2s(x) = 'f — Zs,-/1227 asy <5 < 5
e - (A.24)
SW) g 22K T — 05>
PR A3 Tfek 8> 8y
Eq. (A.24) is solved by the boundary conditions:
P 1 p—a
. — Sr, 1
5(0) = sp = { AAGE; sinh(L/) 18 s (A.252)
spp=1
& (F1a) = & (/1a) (A.25b)
s (/a) =57 (Fa) = 5 (A.25¢)
p—a
1 Sf + me
/I—COSh’1 —F—a ) p#1
) _
where /'y = S¢ F 1-— ﬁsf , to be determined using Egs. (A.25b) and (A.25c).
1 Rlr=s) 5y
A 5

The solutions of the Eq. (A.24a) are expressed as:

22



X. Tan et al. Mechanical Systems and Signal Processing 200 (2023) 110532

1—a cosh(lhx) p-—a
o) -
1—p7cosh(iaryg) 1-p

3}‘,/} #1

s(x) = (A.26a)
1
FU =)+ =1
sh
- cos (lzfc) Bl
7(x) = { " cosh(42¢) (A.26b)
T.f?/} =1
1. 1—a sinh(Ax
Ay Sf#,ﬁ #£1
@ "1 =" cosh(1/a)
g (x) = . (A.26¢)
—Vrx, f =1
@
The solutions of the Eq. (A.24b) are expressed as:
2
s(x) = —kln{cosh [13\/C3 (x— C4)} } ——1In(G) (A.27a)
T T
Cs1, oerf%
37
_ A.27b
7 cosh® [A3v/C5 (x — Cy) | ( )
1 2k
() =~ sy/Ctanh [/13 VG (x — c4)] (A.27¢)
7
The constants, C; and C4, are determined as:
M1 — 2
Mtanh(lz/yd) te < f )75 £1
2kA;(1 — p)
C; = ( ) (A.28a)
22 1/2 /v 2 —(zx
) -
{ 2k } te b
, 1 ] #sia(l —a)
Oya — tan ]{ i tanh (4,7, },ﬂ;él
MG 2k/Cs 13(1 - ) (a?2)
Cy = ey (A.28b)
1 _ T v
L yd — tanhl{ ! y]ﬂl}:l
G 2%\/C5 A
Eq. (A.27a) is used to obtain the slip at the loaded end:
2k k
s6 =s(/) = —ln{cosh [,13\/(:3 (/- c4)] } ~Lin(cy) (A.29)
T T
By substituting Eq. (A.27c¢) into Eq. (7), the applied load P is obtained as:
12
P= AfEf* 7kl3 RV C3tanh [/13 RV C3 (/ — C4)] (A.SO)
P T
12k, -(% -\ %
Py = AcEy— —Ase <'k)tanh<ﬂ3e (4 )/) (A.31)
@

The yielding-debonding stage is ended when the entire length of the interface enters the debonding stage (s;z = s¢), and the
corresponding load Py is expressed as:
The corresponding global slip sg  is expressed as:

o

So5 = %m [cosh (zge’ (T) /) } +s (A.32)

23



X. Tan et al. Mechanical Systems and Signal Processing 200 (2023) 110532
Al.5. Stage V: Debonding stage

The debonding stage starts when /g = /. In the debonding stage, the bonded length /4 decreases from / to zero. Then, the load-
carry capacity is provided by the interface friction.
The entire bonded length is governed by the third stage of CIL, as expressed by Eq. (A.33):

d*s(x)
dx?

2k -
713276%.\@ =0,5 < sp (A.33)
f

The slip s(x), shear stress 7(x), and axial strain ¢(x) in the debonding region are expressed as:

2,
s(x) = —kln{cosh [,13\/c5 (x— cﬁ)} } —ZIn(Cs) (A.34)
T T
Cst, oer/%
5tf g
_ A.34b
7(x) cosh® [431/Cs (x — Cg) | ( )
12k
()= sy/Cotanh [av/Cs (x = ) (A.340)
f
The constants Cs and Cg are determined as:
(e
Cs—e ( : ) (A.352)
Cs=0 (A.35b)

Eq. (A.34a) is used to obtain the slip at the loaded end:

s6=s(/) = ?m [cosh (/13{ <L) /) } +sp (A.36)
f

By substituting Eq. (A.34c) into Eq. (7), the applied load P is obtained as:

P= AfEf% i—fl;{ (%) tanh (e (%) 2 (A.37)

A2. Case 2: Short embedment length (/' < /)

When the embedment length of fiber is shorter than the critical embedment length (# < /), the elastic-yielding-debonding stage in
Case 1 is replaced by a yielding stage. The other stages in Cases 1 and Case 2 are the same, so they are not duplicated. This section only
elaborates the yielding stage.

When sp > asy, stage III starts, and the entire bonded length enters the yielding stage. The shear stress along the entire embedment
length is within the yielding stage (/¢ = /). When the shear stress at the loaded end of the fiber reaches 7¢, in other words s¢ = sy, the
yielding stage is ended and the yielding-debonding stage is started. The entire bonded length is governed by the second stage of CIL, as
expressed by Eq. (A.38):

d*s(x)
dx?

p—a
1

—/1225()6) = sf/lgz, asp < s < sf (A.38)
where /' = /4 in the yielding stage.
The solutions of slip s(x), shear stress 7(x), and axial strain ¢(x) in the yielding stage are:

<sF + %y) cosh(4,x) — Hsf,ﬂ #1

s(x) = (A.39a)
%ﬂzrfﬁ +sp, =1
=Py F-a
) = {m# + T ar,}cosh(lzx),/} #1 (A.39b)
T.faﬁ =1

24



X. Tan et al. Mechanical Systems and Signal Processing 200 (2023) 110532

l/12 (Sp + /1;%;‘?/) sinh(4x),f # 1
g =4" (A.390)

1
Nrx,p=1
@

Eq. (A.39a) is used to determine the slips at the free end and loaded end, respectively:

P 1 ﬁ—as fA
sp = { WAE; sinh(Lr) 1—f7 (A.40)
spp=1
P 1 p—a
- s, 1
HAE tanh(2,/) 1 -7 s
sG = » (A.41)
—— I +sp,f=1
2ArE;

Stage III is ended when sgp = s;. The corresponding load is Pp:

AEL G :Z) syatanh(As/), B # 1
Pp— ¢ (A.42)

1
AfEf*ﬂszl,ﬁ =1

References

[1]
[2]
[3]
[4]
[5]
[6]
71
(8]
[91
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]

[21]

M. Li, X. Feng, Y. Han, Brillouin fiber optic sensors and mobile augmented reality-based digital twins for quantitative safety assessment of underground
pipelines, Autom. Constr. 144 (2022), 104617, https://doi.org/10.1016/j.autcon.2022.104617.

S. Zhang, H. Liu, J. Cheng, M.J. DeJong, A mechanical model to interpret distributed fiber optic strain measurement at displacement discontinuities. Structural
Health Monitoring, Struct. Health Monit. 20 (5) (2021) 2584-2603.

J.M. Henault, M. Quiertant, S. Delepine-Lesoille, J. Salin, G. Moreau, F. Taillade, K. Benzarti, Quantitative strain measurement and crack detection in RC
structures using a truly distributed fiber optic sensing system, Constr. Build. Mater. 37 (2012) 916-923, https://doi.org/10.1016/j.conbuildmat.2012.05.029.
L. Fan, Y. Bao, Review of fiber optic sensors for corrosion monitoring in reinforced concrete, Cem. Concr. Compos. 120 (2021), 104029, https://doi.org/
10.1016/j.cemconcomp.2021.104029.

Y. Yao, M. Yan, Y. Bao, Measurement of cable forces for automated monitoring of engineering structures using fiber optic sensors: A review, Autom. Constr. 126
(2021), 103687, https://doi.org/10.1016/j.autcon.2021.103687.

B.K. Oh, H.S. Park, B. Glisic, Prediction of long-term strain in concrete structure using convolutional neural networks, air temperature and time stamp of
measurements, Autom. Constr. 126 (2021), 103665, https://doi.org/10.1016/j.autcon.2021.103665.

D. Meng, F. Ansari, X. Feng, Detection and monitoring of surface micro-cracks by PPP-BOTDA, Appl. Opt. 54 (16) (2015) 4972-4978, https://doi.org/10.1364/
A0.54.004972.

X. Tan, Y. Bao, Q. Zhang, H. Nassif, G. Chen, Strain transfer effect in distributed fiber optic sensors under an arbitrary field, Autom. Constr. 124 (2021), 103597,
https://doi.org/10.1016/j.autcon.2021.103597.

S. Mahjoubi, X. Tan, Y. Bao, Inverse analysis of strain distributions sensed by distributed fiber optic sensors subject to strain transfer, Mech. Syst. Sig. Process.
166 (2022), 108474, https://doi.org/10.1016/j.ymssp.2021.108474.

M. Yan, X. Tan, S. Mahjoubi, Y. Bao, Strain transfer effect on measurements with distributed fiber optic sensors, Autom. Constr. 139 (2022), 104262, https://doi.
org/10.1016/j.autcon.2022.104262.

X. Tan, Y. Bao, Measuring crack width using a distributed fiber optic sensor based on optical frequency domain reflectometry, Measurement 172 (2021),
108945, https://doi.org/10.1016/j.measurement.2020.108945.

X. Tan, A. Abu-Obeidah, Y. Bao, H. Nassif, W. Nasreddine, Measurement and visualization of strains and cracks in CFRP post-tensioned fiber reinforced concrete
beams using distributed fiber optic sensors, Autom. Constr. 124 (2021), 103604, https://doi.org/10.1016/j.autcon.2021.103604.

H. Li, G. Zhou, L. Ren, D. Li, Strain transfer coefficient analyses for embedded fiber Bragg grating sensors in different host materials, J. Eng. Mech. 135 (12)
(2009) 1343-1353, https://doi.org/10.1061/(ASCE)0733-9399(2009)135:12(1343).

A. Bassil, X. Wang, X. Chapeleau, E. Niederleithinger, O. Abraham, D. Leduc, Distributed fiber optics sensing and coda wave interferometry techniques for
damage monitoring in concrete structures, Sensors 19 (2) (2019) 356, https://doi.org/10.3390/519020356.

Y. Bao, M. Valipour, W. Meng, K.H. Khayat, G. Chen, Distributed fiber optic sensor-enhanced detection and prediction of shrinkage-induced delamination of
ultra-high-performance concrete overlay, Smart Mater. Struct. 26 (8) (2017), 085009, https://doi.org/10.1088/1361-665X/aa71f4.

X. Feng, J. Zhou, C. Sun, X. Zhang, F. Ansari, Theoretical and experimental investigations into crack detection with BOTDR-distributed fiber optic sensors,
J. Eng. Mech. 139 (12) (2013) 1797-1807, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000622.

A.S. Calabrese, P. Colombi, T. D’ Antino, Analytical solution of the bond behavior of FRCM composites using a rigid-softening cohesive material law, Compos. B
Eng. 174 (2019), 107051, https://doi.org/10.1016/j.compositesb.2019.107051.

X. Zou, L.H. Sneed, T. D’Antino, Full-range behavior of fiber reinforced cementitious matrix (FRCM)-concrete joints using a trilinear bond-slip relationship,
Compos. Struct. 239 (2020), 112024, https://doi.org/10.1016/j.compstruct.2020.112024.

T.R.E. Simpson, J.L. Keddie, Evidence from infrared ellipsometry for covalent bonding at a polymer/polymer interface with relevance to* lock-up” in pressure-
sensitive adhesive laminates, J. Adhes. 79 (12) (2003) 1207-1218, https://doi.org/10.1080/714906164.

H. Park, S.H. Lee, Review on interfacial bonding mechanism of functional polymer coating on glass in atomistic modeling perspective, Polymers 13 (14) (2021)
2244, https://doi.org/10.3390/polym13142244.

Z. Chen, W. Yan, A shear-lag model with a cohesive fibre-matrix interface for analysis of fibre pull-out, Mech. Mater. 91 (2015) 119-135, https://doi.org/
10.1016/j.mechmat.2015.07.007.

25


https://doi.org/10.1016/j.autcon.2022.104617
http://refhub.elsevier.com/S0888-3270(23)00440-5/h0010
http://refhub.elsevier.com/S0888-3270(23)00440-5/h0010
https://doi.org/10.1016/j.conbuildmat.2012.05.029
https://doi.org/10.1016/j.cemconcomp.2021.104029
https://doi.org/10.1016/j.cemconcomp.2021.104029
https://doi.org/10.1016/j.autcon.2021.103687
https://doi.org/10.1016/j.autcon.2021.103665
https://doi.org/10.1364/AO.54.004972
https://doi.org/10.1364/AO.54.004972
https://doi.org/10.1016/j.autcon.2021.103597
https://doi.org/10.1016/j.ymssp.2021.108474
https://doi.org/10.1016/j.autcon.2022.104262
https://doi.org/10.1016/j.autcon.2022.104262
https://doi.org/10.1016/j.measurement.2020.108945
https://doi.org/10.1016/j.autcon.2021.103604
https://doi.org/10.1061/(ASCE)0733-9399(2009)135:12(1343)
https://doi.org/10.3390/s19020356
https://doi.org/10.1088/1361-665X/aa71f4
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000622
https://doi.org/10.1016/j.compositesb.2019.107051
https://doi.org/10.1016/j.compstruct.2020.112024
https://doi.org/10.1080/714906164
https://doi.org/10.3390/polym13142244
https://doi.org/10.1016/j.mechmat.2015.07.007
https://doi.org/10.1016/j.mechmat.2015.07.007

X. Tan et al. Mechanical Systems and Signal Processing 200 (2023) 110532

[22] Q. Meng, M. Chang, Interfacial crack propagation between a rigid fiber and a hyperelastic elastomer: Experiments and modeling, Int. J. Solids Struct. 188 (2020)
141-154, https://doi.org/10.1016/j.ijsolstr.2019.10.006.

[23] O. Tiirkmen, S.N. Wijte, J. Vaculik, B. De Vries, J. Ingham, High-speed pullout behavior of deep-mounted CFRP strips bonded with a flexible adhesive to clay
brick masonry, Structures 28 (2020) 1153-1172, https://doi.org/10.1016/j.istruc.2020.09.026.

[24] H. Yuan, X. Lu, D. Hui, L. Feo, Studies on FRP-concrete interface with hardening and softening bond-slip law, Compos. Struct. 94 (12) (2012) 3781-3792,
https://doi.org/10.1016/j.compstruct.2012.06.009.

[25] E. Cosenza, G. Manfredi, R. Realfonzo, Behavior and modeling of bond of FRP rebars to concrete, J. Compos. Constr. 1 (2) (1997) 40-51, https://doi.org/
10.1061/(ASCE)1090-0268(1997)1:2(40).

[26] A. Caggiano, E. Martinelli, A unified formulation for simulating the bond behaviour of fibres in cementitious materials, Mater. Des. 42 (2012) 204-213, https://
doi.org/10.1016/j.matdes.2012.05.003.

[27] Y.W. Zhou, Y.F. Wu, Y. Yun, Analytical modeling of the bond-slip relationship at FRP-concrete interfaces for adhesively-bonded joints, Compos. B Eng. 41 (6)
(2010) 423-433, https://doi.org/10.1016/j.compositesb.2010.06.004.

[28] E. Radi, L. Lanzoni, A. Sorzia, Analytical modelling of the pullout behavior of synthetic fibres treated with nano-silica, Procedia Eng. 109 (2015) 525-532,
https://doi.org/10.1016/j.proeng.2015.06.260.

[29] T. D’Antino, P. Colombi, C. Carloni, L.H. Sneed, Estimation of a matrix-fiber interface cohesive material law in FRCM-concrete joints, Compos. Struct. 193
(2018) 103-112, https://doi.org/10.1016/j.compstruct.2018.03.005.

[30] L.A. Le, G.D. Nguyen, H.H. Bui, A.H. Sheikh, A. Kotousov, Incorporation of micro-cracking and fibre bridging mechanisms in constitutive modelling of fibre
reinforced concrete, J. Mech. Phys. Solids 133 (2019), 103732, https://doi.org/10.1016/j.jmps.2019.103732.

[31] X. Zou, L.H. Sneed, T. D’Antino, C. Carloni, Analytical bond-slip model for fiber-reinforced cementitious matrix-concrete joints based on strain measurements,
J. Mater. Civ. Eng. 31 (11) (2019) 04019247, https://doi.org/10.1061/(ASCE)MT.1943-5533.0002855.

[32] S.K. Woo, Y. Lee, Experimental study on interfacial behavior of CFRP-bonded concrete, KSCE J. Civ. Eng. 14 (3) (2010) 385-393, https://doi.org/10.1007/
512205-010-0385-0.

[33] S. Mahjoubi, R. Barhemat, Y. Bao, Optimal placement of triaxial accelerometers using hypotrochoid spiral optimization algorithm for automated monitoring of
high-rise buildings, Autom. Constr. 118 (2020), 103273, https://doi.org/10.1016/j.autcon.2020.103273.

[34] A. Kaveh, S. Mahjoubi, Hypotrochoid spiral optimization approach for sizing and layout optimization of truss structures with multiple frequency constraints,
Eng. Comput. 35 (4) (2019) 1443-1462, https://doi.org/10.1007/s00366-018-0675-6.

[35] Y. Bao, Y. Chen, M.S. Hoehler, C.M. Smith, M. Bundy, G. Chen, Experimental analysis of steel beams subjected to fire enhanced by Brillouin scattering-based
fiber optic sensor data, J. Struct. Eng. 143 (1) (2017) 04016143, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001617.

[36] L. Palmieri, L. Schenato, Distributed optical fiber sensing based on Rayleigh scattering, Open Opt. J. 7 (1) (2013) 104-127, https://doi.org/10.2174/
1874328501307010104.

[37] Z. Ding, C. Wang, K. Liu, J. Jiang, D. Yang, G. Pan, Z. Pu, T. Liu, Distributed optical fiber sensors based on optical frequency domain reflectometry: A review,
Sensors 18 (4) (2018) 1072, https://doi.org/10.3390/518041072.

[38] “LUNA ODiSI 6000 data sheet.” https://lunainc.com/sites/default/files/assets/files/data-sheet/LUNA%200DiSI%206000%20Data%20Sheet.pdf. Accessed on
January 1, 2023.

26


https://doi.org/10.1016/j.ijsolstr.2019.10.006
https://doi.org/10.1016/j.istruc.2020.09.026
https://doi.org/10.1016/j.compstruct.2012.06.009
https://doi.org/10.1061/(ASCE)1090-0268(1997)1:2(40)
https://doi.org/10.1061/(ASCE)1090-0268(1997)1:2(40)
https://doi.org/10.1016/j.matdes.2012.05.003
https://doi.org/10.1016/j.matdes.2012.05.003
https://doi.org/10.1016/j.compositesb.2010.06.004
https://doi.org/10.1016/j.proeng.2015.06.260
https://doi.org/10.1016/j.compstruct.2018.03.005
https://doi.org/10.1016/j.jmps.2019.103732
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002855
https://doi.org/10.1007/s12205-010-0385-0
https://doi.org/10.1007/s12205-010-0385-0
https://doi.org/10.1016/j.autcon.2020.103273
https://doi.org/10.1007/s00366-018-0675-6
https://doi.org/10.1061/(ASCE)ST.1943-541X.0001617
https://doi.org/10.2174/1874328501307010104
https://doi.org/10.2174/1874328501307010104
https://doi.org/10.3390/s18041072

	Metaheuristic inverse analysis on interfacial mechanics of distributed fiber optic sensors undergoing interfacial debonding
	1 Introduction
	2 Methods
	2.1 Framework
	2.2 Mechanical analysis
	2.2.1 Optical fiber
	2.2.2 Governing equation
	2.2.3 Unified CIL

	2.3 Metaheuristic inverse analysis
	2.4 Distributed fiber optic sensing

	3 Analytical studies
	3.1 Case 1: Long embedment length (l﹥l0)
	3.2 Case 2: Short embedment length (l<l0)
	3.3 Analytical results

	4 Implementation
	4.1 Pullout tests
	4.2 Metaheuristic inverse analysis
	4.3 Distributed fiber optic sensing
	4.4 Discussion on unsymmetrical cases

	5 Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix Acknowledgements
	Appendix A . Derivation process of analytical solutions
	A1. Case 1: Long embedment length (l﹥l0)


	A1.1. Stage I: Elastic stage
	A1.2. Stage II: Elastic-yielding stage
	A1.3. Stage III: Elastic-yielding-debonding stage
	A1.4. Stage IV: Yielding-debonding stage
	A1.5. Stage V: Debonding stage
	A2. Case 2: Short embedment length (l<l0)
	References


