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Existing machine learning-based approaches to investigate and design concrete mainly use the mixture design
variables to predict concrete properties and do not consider the physicochemical properties of ingredients such as
the particle size distribution and chemical composition of various binders and aggregates. This paper presents an
approach to discover the intrinsic relationships between the physicochemical properties of the ingredients and
mechanical properties of concrete. Specifically, this research creates an artificial language to represent concrete
mixtures and the physicochemical information of their ingredients, develops a feature extraction method based
on character-level N-grams, and proposes a method to configure deep learning models automatically. The pro-
posed approach has been implemented to predict the compressive strength of complex concrete mixtures, assess
the importance of variables, and discover chemical reactions, showing high accuracy and high generalizability.
This research advances the capabilities of understanding the underlying reactions for complex concrete mixtures

and designing low-carbon cost-effective concrete.

1. Introduction

Concrete is one of the most widely used construction materials
worldwide, with an annual consumption of 30 billion tons in 2017
(Monteiro et al., 2017). The production of cement was responsible for
more than 8% of the total carbon emissions in 2018 (Lehne and Preston,
2018), which drives the development of low-carbon concrete, aiming to
mitigate climate change. Currently, the dominant approach to develop
low-carbon concrete is to use low-carbon ingredients such as recycled
concrete aggregates and/or fines (Long et al., 2022; Wang et al., 2020)
as well as green binders such as supplementary cementitious materials
(SCMs). Many types of SCMs have been utilized to produce concrete, and
the representative examples include fly ash (Aubert et al., 2004) and slag
(Shi et al., 2008). SCMs have been utilized to replace cement in pro-
ducing ultra-high-performance concrete (de Larrard and Sedran, 1994)
and strain-hardening cementitious composites (Li, 2003). It was found
that appropriate use of SCMs improved the workability (Hunger, 2010),
mechanical properties (Borosnyoi, 2016), and durability (Elahi et al.,
2021) due to their physical and chemical properties such as the small
particle sizes and chemical composition. Finely tuning particle size
distribution is able to maximize the particle packing density, and
tailoring the chemical composition is able to maximize the degree of
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hydration of cement and refine the microstructures of concrete. Recent
research has shown that off-specification fly ash, which was known to
degrade concrete properties, can be utilized to produce
ultra-high-performance concrete with high mechanical strengths, su-
perior durability, and the self-consolidating property (Du et al., 2022).

Existing design approaches of concrete incorporating SCMs are
mainly based on experiments. Usually, a large number of experiments
are conducted to investigate the effects of SCMs on the fresh and hard-
ened properties and optimize the mixture proportions. The experiments
of concrete are costly and time-consuming and involve additional car-
bon emissions. To reduce experiments, approaches guided by artificial
intelligence (AI) have been proposed based on machine learning.
Various machine learning models were developed to correlate concrete
mixtures with properties, such as the mechanical properties (Liang et al.,
2022; Mahjoubi et al., 2021; S. Mahjoubi et al., 2022; Asteris et al.,
2021; Zhang et al., 2022), interfacial properties (S. Mahjoubi et al.,
2022), workability (S. Mahjoubi et al., 2022), and porosity (S. Mahjoubi
et al., 2022). Those models were trained using experimental data and
applied to predict concrete properties by inputting mixture proportions
of ingredients, such as the water-to-binder ratio, the sand-to-binder
ratio, and the fiber content. Those models were able to consider
different types of ingredients such as cement, fly ash, slag, sand, and
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Fig. 1. Flowchart of the proposed data-driven approach to predict the mechanical properties and discover chemical reactions of cementitious composites.

fibers. Thermodynamics were coupled with machine learning methods
to develop alkali-activated mixtures (Ke and Duan, 2021). A trained
model predicted the properties of mixtures as the mixture proportions
were changed (S. Mahjoubi et al., 2022). The state-of-the-art models
achieved high accuracy in predicting the fresh and hardened concrete
properties when particular ingredients were used. Advanced techniques
have been employed to improve the datasets (S. Mahjoubi et al., 2022),
enrich the datasets by generating artificial data (Guo et al., 2021), and
optimize the architectures of machine learning models as well as
hyperparameters (Mahjoubi et al., 2021; S. Mahjoubi et al., 2022). The
predictive models have been integrated with multi-objective optimiza-
tion techniques for efficient design (Mahjoubi et al., 2021).

Despite the exciting advances, it remains challenging to predict
concrete properties when the ingredients and experimental conditions
are changed. For example, a predictive model trained using a dataset
with binder systems composed of cement and fly ash is invalid to predict
the concrete properties when the fly ash is replaced by slag or other
SCMs. In real practices, the problem is exacerbated by the large varia-
tions in the physicochemical properties of various SCMs. Two batches of
fly ash produced from the same power plant often have different particle
sizes and chemical compositions. Even for the same category of fly ash
such as the Class F fly ash, the chemical composition involves large
variations, thus disabling the use of the trained models (del Visoet al.,
2008). The above problems originated from the neglection of the
physicochemical natures of concrete ingredients, such as the change of
the particle sizes and chemical composition of fly ash. The applicability
of the existing machine learning models is limited to specific concrete
ingredients with specific physicochemical properties. Previous research
showed that the shape and size of specimens largely influence the test
results of concrete properties (del Visoet al., 2008; Zhang et al., 2021).
Different standards have been issued and utilized to regulate the shape
and size of specimens (ACI Committee 318 2022; China Academy of
Building Research 2010). Therefore, the data collected from various
publications involve different shapes and sizes of specimens. It is
essential to consider the shape and size of specimens as variables in

predicting concrete properties. Approaches that are robust to the
changes of concrete ingredients, physicochemical information, and
specimen geometry are highly desired.

This study intends to address these limitations by establishing a new
paradigm for Al-guided design of concrete. The idea is that the key
physicochemical information of concrete ingredients as well as curing
time and specimen type are considered in the representation of concrete
mixtures. Based on this idea, this paper creates an artificial language to
represent the particle size distribution and chemical composition of
concrete ingredients as well as concrete mixtures and experimental
conditions. With the novel representation of concrete, textual data is
converted into structured data through feature extraction (Shannon,
1948). Although this study presents feature extraction for textural data
of concrete mixtures to predict concrete properties and chemical reac-
tion discovery for the first time, feature extraction from biochemical
textual data has been proposed earlier for drug discovery (Oztiirk et al.,
2020). Next, a high-performance deep learning pipeline is automatically
configured and trained to link concrete mixture design variables,
including the physicochemical information of ingredients, and concrete
property (Jin et al., 2019). The trained deep learning model is then
utilized to evaluate the importance of physicochemical variables and
discover reactions between chemical compounds. Different types of
concrete are considered in this research to test the applicability of the
proposed method. The considered types of concrete include conven-
tional concrete, self-compacting concrete, high-strength concrete, and
ultra-high performance concrete. These types of concrete use various
types of ingredients, which are considered as input features. For
example, steel fibers are often used in high-strength concrete and
ultra-high performance concrete to enhance the tensile properties.

This research will advance the concrete design capability, offer a new
approach to explore the reactions in complex mixtures, and greatly
facilitate the adoption of different SCMs into concrete for efficient
design and manufacturing of high-performance low-carbon cost-
effective concrete, offering an efficient avenue for the development of
sustainable concrete. The remainder of the paper is organized as follows:
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Section 2 presents the methods. Section 3 introduces the collected
dataset. Section 4 elaborates the results and discussion. Section 5 sum-
marizes the conclusions.

2. Methods
2.1. Overview

Fig. 1 shows the flowchart of the proposed approach to predict the
properties and discover the chemical reactions of cementitious com-
posites. A deep learning framework is proposed through integrating five
main steps: (1) A dataset is established to relate the concrete property,
such as the compressive strength, to the key concrete design variables,
such as the curing time, specimen type, mixture proportion, chemical
composition, and particle size distribution (see Section 2.2). (2) The
numerical data in the dataset are converted to textual data using an
artificial language created in this research (see Section 2.3). (3) Feature
extraction is performed using N-grams to convert the textual data into
structured data through text mining (see Section 2.4). (4) A high-
performance deep learning model is developed through token embed-
ding, neural search, and model retraining (see Section 2.5). (5) The
performance of the trained deep learning model is evaluated using three
performance metrics (see Section 2.6). With the predictive model, the
importance of chemical compositions is evaluated (see Section 2.7), and
chemical reactions of ingredients are discovered (see Section 2.8).

2.2. Dataset development

A dataset is developed to represent the mixture proportion, pro-
cessing, and testing of concrete. The dataset covers five types of nu-
merical variables: (1) Mixture proportion. In this study, the mass ratios
of ingredients are included in the dataset. (2) Particle size distribution.
Three statistical parameters are used to represent the particle size dis-
tribution of granular materials, which are Do, Dsg, and Dy, repre-
senting the 10th, 50th, and 90th percentiles of mass, respectively. (3)
Chemical composition. The chemical composition of each ingredient is
represented by the mass percentage of each compound in the ingredient.
(4) Curing time. The curing time is presented by the number of days. (5)
Specimen type. The shape and dimensions of specimens are included. To
develop the approach, this research focuses on the compressive strength
of concrete under the standard curing condition, but the approach will
be applicable to other properties such as the workability and the tensile
properties, as long as the training dataset of compressive strengths is
replaced by a dataset of the other properties or other curing conditions,
as elaborated in reference (Mahjoubi et al., 2021).

The generalizability of the model is evaluated based on a test dataset
unseen to the model, meaning that the dataset is not used to train the
model. In this study, the developed dataset is split into three datasets:
training (65%), validation (15%), and test (20%) sets, according to
references (Xu et al., 2021; Malinin et al., 2020). The training dataset is
utilized to train the deep learning model; the validation dataset is used
to estimate prediction performance for model selection; and the test
dataset is used to evaluate the generalizability.

2.3. Artificial language

This study creates an artificial language to provide an explanatory
essay for each cementitious composite. Particularly, the artificial lan-
guage converts the numerical data of the curing time, mixture propor-
tion, chemical composition, and particle size distribution of ingredients
into a unified textual form. The following linguistic rules are established:

o Notations and numbers are the words of this language. The notations
are as follows: “d”, “c”, and “cyl” represent the days of curing, cubic
specimens, and cylinder specimens, respectively. “D10”, “D50”, and
“D90” are used to describe particle size distribution. “SP” and “SF”
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represent the superplasticizer and steel fibers, respectively. Chemical
formulas are used to represent chemical compounds. For example,
H50, Ca0, and SiO» are used to represent water, calcium oxide, and
silica dioxide, respectively.
Each textual data instance comprises multiple sentence-like ele-
ments, as shown in Eq. (1):

W = [A][B][S:][S:]....[Sv] &)

where A is the sentence related to the curing time and test specimen;
sentence B describes the mixture proportions of admixtures and fi-
bers; and S; describes the mass proportion, particle size distribution,
and chemical composition of the i th ingredient, wherei=1, 2, ..., N,
and N is the number of raw materials. A is expressed as shown in Eq.

(2):
A = aged,sw x [ (2)

where age is the curing time of cementitious composite in days; s is the
shape of specimen which is either cube (“c”) or cylinder (“cyl”); w and [
are the width and length of specimen.

e The second sentence (B) describes the mixture proportions of
superplasticizer and fibers:

B =SP:sp, SF = sf 3)

where sp and sf are the mass of superplasticizer and fibers in a unit
volume of the mixture.

e The third to the last sentences describe the mixture proportions,
particle size distribution, and chemical composition of constituents.
The i th ingredient is defined as shown in Eq. (4):

S; = Wi, D10 : dyo;, D50 : dsg;, D90 : dog i, CC\ ;i = ccy i, CCoy
1 CCoy ey CCpy t CCpy (€))

where W; is the mass of the i th ingredient in a unit volume of the
cementitious composite; dyg,; dso,;, doo,i are the Dyg, Dsg, and Dgg of the
particle size distribution of the i th ingredient; cc;; is the percentage of
the j-th chemical compound in the i th ingredient.

To clarify the artificial language, an example is provided in
Appendix A based on a concrete mixture in reference (Horsakulthai,
2021). The numerical data related to the mixture proportions, physi-
cochemical properties of raw ingredients, curing time, and specimen
dimensions, as well as the compressive strengths are given in
Appendix A. Next, the textual data obtained from the artificial language
from the numerical data is reported.

2.4. N-grams characterization of cementitious composites

Feature extraction is utilized to convert the textual data into struc-
tured data based on character-level N-grams (Shannon, 1948) and
tokenization in two sequential steps. First, tokenization is performed to
segment a text into pieces known as tokens or N-grams. N-grams are the
sequence of either words or characters. A word is a sequence of char-
acters delimited by two delimiters, while a delimiter is a character that
specifies the boundaries of words, such as space and punctuation marks
(e.g., period and bracket) (Pibiri and Venturini, 2019). N-grams have
been extensively used in natural language processing, such as machine
translation, auto-completion in search engines, spelling correction, and
automatic speech recognition (Pibiri and Venturini, 2019; Reshamwala
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Fig. 2. Development of a high-fidelity deep learning model using token embedding, neural search, and model training.

et al., 2013).

Then, the occurrences of N-grams are counted to convert the text into
the occurrence number (Masud et al., 2008). The method based on
character-level N-grams is proposed since the sequence of characters of a
corpus in the artificial language is more informative than the sequence
of words, as shown in Appendix B. This is because the textual data
representing the mixture proportions, particle size distribution, and
chemical composition have both digits and letters, as indicated in Sec-
tion 2.3. To clarify the character-level feature extraction method, an
example is shown in Appendix B, where the proposed feature extraction
method is applied to a textual data given in Appendix A.

The parameter N influences the extracted features. When N is equal
to 1, N-grams is known as unigram with limited semantic information
because the sequence of characters is not considered. When N exceeds a
certain value, the number of occurrences of N-grams will be small,
known as rare N-grams, with limited information as well. This study
proposes an approach to determine N according to the length of words in
a given text. First, the distribution of the number of characters in the
words is determined. Second, the lower boundary of N is set to 1 while
the upper boundary of N is set to the length of a word that is longer than
90% of the other words in the given text. In this way, the extracted N-
grams will cover most of the words while eliminating long and infre-
quent sequences of words. A parametric study is conducted to show the
effectiveness of the proposed method, and the results are reported in
Appendix B.

It is essential to ensure that the prediction accuracy of the deep
learning model is independent of the sequence of words. For example,
the semantic meaning of [...,a =%, b=y, ...] is the same as that of [..., b
=y, a=x ...]; and the semantic meaning of [A][B][S1]...[S;jI[Sj;1]...
[Sn] is the same as that of [A][B][S1]...[Sj+1][S;] ...[Sn]. The investi-
gation results are given in Section 4.3.

2.5. Deep learning pipeline

As shown in Fig. 2, the deep learning model is developed by
sequentially performing token embedding, model configuration, and
model retraining. Token embedding is applied to extract semantic in-
formation. Automatic model configuration is realized using a neural
search method based on Auto-Keras (Jin et al., 2019). Finally, the deep
learning model is retrained to improve accuracy. The three steps are
elaborated in Sections 2.5.1 to 2.5.3.

2.5.1. Token embedding

There are two main issues regarding the feature representations
obtained by converting a given text into a feature vector for feature
extraction: (1) The feature representation of a textual data reflects the

number of occurrences of tokens rather than their semantic meanings
(Tsai et al., 2020). Although a feature representation provides the fre-
quency of tokens, it has no semantic meaning of the words such as the
number expression and the chemical formula. (2) A component of a
feature vector is a non-negative integer representing the number of oc-
currences of specific N-grams. In mathematics, a continuous variable is a
variable that can be any value within a range, while a discrete variable is
a variable that is an integer. Discrete representations of the extracted
features are more difficult than continuous representations for neural
networks to learn (Zhou et al., 2019). To address the above issues, an
embedding approach is proposed to map textual data to a meaningful
continuous space, where the distance between textual data quantifies
semantic similarity, as shown in Eq. (5):

x=pD )

where p is the embedding matrix; D € Z™ is a feature vector with the
length of m containing the number of occurrences of N-grams; and y € R
m L s the projection of D in the embedding space with dimension L. The
components of the matrix p and the parameter L are the trainable pa-
rameters of the embedding layer. In this study, the embedding layer is a
part of the deep learning model, meaning that the parameters are tuned

during the learning process of the deep learning model.

2.5.2. A neural search method for semi-automated deep learning

This study implements Auto-Keras (Jin et al., 2019) to construct a
high-performance deep learning model for predicting the compressive
strength of concrete. The method configures a deep convolutional neural
network architecture customized for the specific dataset. The hyper-
parameters are tuned via neural search, aiming to maximize the pre-
diction accuracy.

Auto-Keras involves four main components: (i) A regression tech-
nique, called Gaussian process, is used to estimate the accuracy of a
given neural network with a specific architecture and hyperparameters.
(ii) A neural network is used to map the variables describing the ar-
chitecture and hyperparameters to a latent space. It is impractical to
directly vectorize a neural network architecture due to the uncertain
numbers of layers and parameters of a network (Jin et al., 2019).
Therefore, a neural network is used as a kernel to convert the vector of
each neural network architecture to a unified form. (iii) Bayesian opti-
mization is used to automatically search the architecture and the
hyperparameters of a neural network. (iv) An acquisition function is
defined to estimate the potential utility of a given architecture. The
acquisition function is minimized using the Bayesian optimization to
select the most promising architecture to test (Jin et al., 2019).

In this study, a search space is defined for Auto-Keras to search for a
high-performance deep learning model with a specific sequence of
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operations. The deep learning models selected by Auto-Keras have one
embedding layer, followed by one or multiple convolutional, max
pooling, flatten, and dense layers:

e Embedding layer: The layer is responsible for token embedding, as
discussed in Section 2.5.1.
e Convolutional block: Individual or multiple convolution layers with
dropouts. A dropout layer randomly sets a set of neurons to zero,
aiming to mitigate overfitting (Srivastava et al., 2014). Overfitting is
a modeling error that occurs when a predictive model learns the
training dataset so well that it performs poorly on unseen data. Max
pooling is a down-sampling convolution operation where the feature
map delivered by the convolutional layers is categorized into a set of
regions. The maximum values of the regions are selected, and other
values are discarded. This operation has two major benefits: (I) It
reduces the dimensionality of the feature map, and thus lowers the
computational burden for training. (II) It reduces the chance of
overfitting: The overfitting phenomenon may occur when the dataset
has many features. The model may learn spurious correlations in the
training data that are not reflected in the unseen data. Max pooling
layer reduces the dimensionality of the outputs obtained by con-
volutional layers while effectively preserving feature information.
Thus, the max pooling layer is able to avoid overfitting.
Flatten layer: Flattening converts the multidimensional feature vec-
tor from the convolution block into a 1-dimensional array. The layer
makes the feature vector linear and helps the vector pass a dense
layer.
Dense block: Dense layers are used to generate the output of the deep
models. The neurons of a dense layer are connected to every neuron
of its preceding layer. Dense block involves multiple dense and
activation layers to perform predictions based on the 1-dimensional
array of the previous flatten layer. The head of the network is a dense
layer with one neuron, which is responsible for generating the output
of the network.

The parameters of the neural search method are set as follows: The
search for a high-performance model is stopped when the number of
tried neural networks reaches 200. To balance the computational cost
and accuracy, the number of data points in each batch is set to 50. The
number of epochs to train each model during the search is set to 20. The
parameters were set based on trial-and-error. Early stopping is applied
to avoid overfitting. The training process is terminated if the loss func-
tion on the validation set is not improved for 5 consecutive epochs.
Finally, root mean square error (RMSE) is utilized to evaluate the ac-
curacy of the deep learning models:

n 2
RMSE(P, A) — Zﬂ%") ®)
where P = [p1, p2, ..., pnl and A = [ay, ay, ..., a,] are vectors containing
the predicted and the actual values; and n represents the number of
predictions.

An automated learning approach, Microsoft Azure automated ma-
chine learning (Fusi et al., 2018; Copeland et al., 2015), is used to
validate the proposed neural search method. Azure automated machine
learning creates a high-performance machine learning pipeline via
Bayesian optimization of ensemble learning and various machine
learning methods, such as extreme gradient boosting (Chen and Guest-
rin, 2016), light gradient boosting machine (Ke et al., 2017), and
random forest (Breiman, 2001).

2.5.3. Model retraining

The neural search method compares the performance of models
trained with 20 epochs to save computational cost. It is speculated that
the models suffer from undertraining, meaning the number of epochs
used to train the neural network models in the neural search is
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insufficient. It is promising to improve the generalizability by reducing
the validation loss through increasing the number of training epochs.
Therefore, the best performing trained deep learning model is retrained
with 100 more epochs, aiming to maximize the generalization
performance.

2.6. Performance metrics

Root mean square error (RMSE) indicates how far predictions fall
from actual values based on Euclidean distance (Barhemat et al., 2022;
Mahjoubi et al., 2023), as shown in Eq. (6). Apart from RMSE, three
other performance metrics were used to evaluate the performance of the
trained predictive models:

(1) Mean absolute error (MAE) measures the average significance of
absolute errors (Mahjoubi et al., 2021; Mahjoubi et al., 2023):

MAE(P,A) = |p; —ai’ 7)
i=1

(2) Median absolute deviation (MAD) measures the variability of
errors (Mahjoubi et al., 2021; Mahjoubi et al., 2023):

MAD(P, A) = median(|p, — ail, |p, — a2, ..., [P, — au|) 8)

(3) Coefficient of determination (R%) shows the extent of uncertainty
(Mahjoubi et al., 2021; Barhemat et al., 2022; Mahjoubi et al., 2023):

S (p— )’

2 A) = ke
A= >t la — mean(a;)]

)

The variables used in the performance metrics are defined in Section
2.5.2. In general, R? > 0.8 indicates a very strong correlation between
predictions and actual values, and the performance of the predictive
model is satisfying, according to reference (Miot, 2018).

2.7. Variable importance

A novel importance metric is presented to evaluate the importance of
the chemical compounds and the percentile values of particle size dis-
tribution on the concrete properties. The concept of the variable
importance metric is that the importance of a variable is reflected by the
increase of the error when the variable is removed from the training set.
The variable importance is defined as:

VI, = 6(R,7) — 5(E) (10)

where VI, is the variable importance of variable 7; §(R, 7) is the RMSE of
the model with the test dataset when the information about variable 7 is
removed from the test dataset; §(E) is the RMSE for the test set when all
information is provided in the test dataset. A high variable importance
means that the variable greatly impacts the concrete property.

2.8. Variable interaction

The chemical interactions between the chemical compounds are
identified using variable interaction. The interaction between two var-
iables, which are two chemical compounds, implies chemical reactions
between the two compounds (Wang et al., 2015). This study proposes a
measurement to quantify the interaction between variables, inspired by
mutual information (Kraskov et al., 2004). Variable interaction refers to
a two-way interaction measure that shows whether two variables
interact with each other and the extent of the interaction between the
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Table 1
Statistics of the chemical compounds of cement.
Variable Unit Range Skewness Kurtosis
Al;03 % 2.76 -7.31 0.83 1.21
CaO % 59.52 - 68.05 0.24 -0.49
Fe,03 % 2.24-5.1 1.18 1.69
K;0 % 0.11 - 1.027 0.69 0.51
MgO % 0.6 -4.7 0.38 -0.47
NaO % 0-0.85 1.17 1.30
P,0s % 0.06 - 0.74 2.29 5.48
SiOy % 19.03 - 23.25 0.11 -0.26
SO3 % 0.55 - 3.49 -1.55 5.39
Table 2
Statistics of the chemical compounds of SCMs.
Variable Unit Range Skewness Kurtosis
Al,O5 % 0-43 1.39 1.68
CaO % 0 - 66.06 1.40 0.69
Fe,03 % 0-21.93 2.22 4.53
K0 % 0-7.5 2.51 8.30
MgO % 0-10.8 1.83 2.20
NaO % 0-7.5 4.81 25.70
P,05 % 0-2.83 2.68 7.43
SiO, % 17.33 -99.8 -0.31 -1.61
SO3 % 0-4.85 2.58 7.68
0.5 T T T T T T T T T
> U
—_
—
=03
<
2 0.2
&

(=]

1 2 3 4 5 6 7 8 910
Number of characters

Fig. 3. Distribution of the length of characters in words. The vertical axis shows
the density of probability, while the horizontal axis shows the number
of characters.

two variables. The variable interaction between x and y is defined as:
VI(x,y) = [f(x,y) —=f(x) =f )] an

where x and y are two variables; f(x) is the range of average of pre-
dictions associated with the variability of x; the range of a variable is the
difference between the lowest and highest values; and f(x, y) is the range
of average of predictions associated with the variability of both vari-
ables. To determine f(x), variable x is randomly assigned for each data
points in the dataset, while all the other variables are kept constant. The
random value is within the range of the values in the dataset. This
process is repeated 50 times to obtain f(x) and f(x,y). Next, the outputs
of the machine learning model are determined for the manipulated data
points. Finally, f(x) is determined as the average of the outputs. The
normalized variable interaction can be expressed as:
VI(x, )

NVI(x,y) = max(V1) 12

where NVI(x,y) is the normalized variable interaction between x and y;
and max(VI) is the maximum of variable interactions for all possible
pairs of variables.
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3. Collected dataset

A total of 760 cementitious composites with their corresponding
compressive strengths were collected from references (Du et al., 2022;
Horsakulthai, 2021; Yu et al., 2015; Liu and Wei, 2021; Pezeshkian
et al., 2021; Huang et al., 2017; Kang et al., 2019; Jaturapitakkul et al.,
2004; Shi et al., 2021; Zhan et al., 2021; Li and Zhang, 2022; Hasnat and
Ghafoori, 2021; Wang et al., 2022; Van et al., 2014; Jamil et al., 2016).
The unit of compressive strength is MPa. In addition, the collected
compressive strengths are in the range of 0.04 MPa to 204.9 MPa. As
described in Section 2.2, the information on the mixture proportions,
chemical composition, percentile values of the particle size distribution
of ingredients, shape size and type of specimen, and curing time were
considered for each data instance.

This dataset includes 15 types of cement, 37 types of SCMs, 8 types of
fillers, and 14 types of aggregates, which had different particle sizes and
chemical compositions. The included SCMs are different fly ash (Yu
et al., 2015; Jaturapitakkul et al., 2004; Shi et al., 2021; Li and Zhang,
2022; Hasnat and Ghafoori, 2021), silica fume (Liu and Wei, 2021;
Pezeshkian et al., 2021; Huang et al., 2017; Kang et al., 2019; Jatur-
apitakkul et al., 2004; Shi et al.,, 2021; Hasnat and Ghafoori, 2021;
Wang et al., 2022; Van et al., 2014), nano silica (Yu et al., 2015; Shi
et al., 2021), natural zeolite (Pezeshkian et al., 2021), natural pozzolan
(Hasnat and Ghafoori, 2021), slag (Yu et al., 2015; Shi et al., 2021; Zhan
et al., 2021; Li and Zhang, 2022; Hasnat and Ghafoori, 2021; Van et al.,
2014), metakaolin (Zhan et al., 2021), glass powder (Zhan et al., 2021),
rice husk ash (Van et al., 2014; Jamil et al., 2016), and recycled concrete
powder (Horsakulthai, 2021). The fillers were limestone powder (Yu
etal., 2015; Huang et al., 2017; Kang et al., 2019; Wang et al., 2022), red
mud (Li and Zhang, 2022), and quartz powder (Liu and Wei, 2021; Kang
etal., 2019; Van et al., 2014). The aggregates were calcined bauxite (Liu
and Wei, 2021), river sand (Liu and Wei, 2021; Jaturapitakkul et al.,
2004; Hasnat and Ghafoori, 2021; Wang et al., 2022; Jamil et al., 2016),
glass sand (Pezeshkian et al., 2021), quartz sand (Pezeshkian et al.,
2021; Huang et al., 2017; Shi et al., 2021; Li and Zhang, 2022), masonry
sand (Du et al., 2022), dolomite (Li and Zhang, 2022), and gold mine
tailings (Wang et al., 2022). Straight steel fibers measuring 13 mm in
length and 0.2 mm in nominal diameter (Du et al., 2022; Liu and Wei,
2021; Shi et al., 2021; Hasnat and Ghafoori, 2021; Van et al., 2014) were
adopted. Different types of concrete were included in the dataset:
self-compacting mortar (Horsakulthai, 2021; Jamil et al., 2016),
ultra-high performance concrete (Du et al., 2022; Yu et al., 2015; Liu and
Wei, 2021; Pezeshkian et al., 2021; Huang et al., 2017; Kang et al., 2019;
Shi et al., 2021; Zhan et al., 2021; Hasnat and Ghafoori, 2021; Wang
et al., 2022; Van et al., 2014), high-strength concrete (Jaturapitakkul
et al., 2004), and conventional concrete (Li and Zhang, 2022).

Table 1 and Table 2 respectively list the statistics of the chemical
compounds of cement and SCMs. Skewness and kurtosis are used to
measure the non-normality. Skewness reflects the asymmetry of distri-
bution, and kurtosis indicates the outlier-prone extent of distribution.

4. Results and discussions

This section presents the results including feature extraction of tex-
tual data (Section 4.1), development, configuration, and performance
evaluation of the deep learning model (Section 4.2), effect of the order of
information on the prediction accuracy (Section 4.3), importance of
chemical composition (Section 4.4), and chemical discovery in cemen-
titious composites (Section 4.5).

4.1. Artificial language processing

Fig. 3 shows the distribution of the number of characters for words in
the textual data obtained from the developed dataset. The figure in-
dicates that 90% of words have five or fewer characters. Based on the
discussions in Section 2.4, the upper bound of N in the feature extractor
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Table 3
The configuration of the final deep learning model.

Layer Output Kernel Stride Activation Number of

shape size length function parameters
Input 9766 N.A. N.A. N.A. 0
Embedding 9766 %256 N.A. N.A. N.A. 5120,256
Dropout 9766 %256 N.A. N.A. N.A. 0
ConvlD-1 9764 %32 3 1 ReLu 24,608
Conv1lD-2 9762x512 3 1 ReLu 49,664
Max 4881 %512 2 2 N.A. 0

pooling-1
ConvlD-3 4879x32 3 ReLu 49,184
ConvlD-4 4877 %32 3 1 ReLu 3104
Max 2438x32 2 2 N.A. 0
pooling-2
Flatten 78,016 N.A. N.A. N.A. 0
Dense-1 128 N.A. N.A. ReLu 9986,176
Dense-2 32 N.A. N.A. ReLu 4128
Dense-3 1 N.A. N.A. ReLu 33
Total 15,237,153
parameters:

* “N.A.” stands for “not applicable”.

is N = 5. The N-grams with five or fewer unique characters are extracted
from textural data for tokenization. Next, the frequencies of the
extracted tokens are fed to the token embedding layer. A total of 9766 N-
grams were identified in the training set by the feature extractor. Each
data was converted to a vector with 9766 components, meaning that the

Table 4

Performance metrics of the deep learning model.
Dataset MAE (MPa) MAD (MPa) RMSE (MPa) RZ(1)
Training 3.06 2.19 5.08 0.99
Validation 5.79 4.58 7.46 0.97
Test 6.31 4.15 9.15 0.96

number of input variables of the deep learning model is 9766, and each
variable represents the frequency of a unique N-grams.

4.2. Deep learning model

This section describes the development, configuration, and perfor-
mance of the deep learning model. Section 4.2.1 elaborates the model
development. Section 4.2.2 describes the architecture and hyper-
parameters of the model. Section 4.2.3 evaluates the performance of the
trained model.

4.2.1. Development process

Fig. 4(a) shows the performance of Auto-Keras on the feature vectors
extracted by N-grams feature extractor. The RMSE decreased from
31.14 MPa to 12.02 MPa as the number of iterations increased from 1 to
200, indicating that the method iteratively obtained better solutions.
Fig. 4(b) shows the learning curves of the final model obtained from
neural search and model retraining. The loss function increases when
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the retraining phase is started, as artificial neural networks are prone to
abruptly forget previously learned information (Kirkpatrick et al.,
2017). Although the loss function increases at the beginning of the
retraining phase, model retraining improved the validation loss by about
38%. The lowest validation loss obtained in the neural search phase was
12.02 MPa, and the lowest validation loss obtained in the model
retraining phase was 7.46 MPa. Fig. 4(b) indicates that 20 epochs were
sufficient to obtain a high-performance model. Further increasing the
number of epochs increased the computational burden.

4.2.2. Deep learning architecture and hyperparameters

Fig. 5 shows the architecture of the deep learning model determined
by the neural search method. The features obtained by the character-
level extractor are fed to the embedding layer, followed by a dropout
layer with a rate of 0.25. Next, there are two convolution blocks. Each
block includes two 1D convolution layers and one max pooling layer,
followed by a flatten layer and finally three dense layers.

The output shapes, hyperparameters, and number of trainable pa-
rameters of the layers of the final model are provided in Table 3. The
model has more than 15 million trainable parameters to be tuned in the
learning process. Nearly two-thirds of the parameters belong to the
dense layers, and about one-third of parameters belong to the embed-
ding layer.

4.2.3. Performance evaluation

Table 4 lists the performance metrics of the trained deep learning
model in predicting the compressive strength of cementitious compos-
ites. The R? value of the model for the test set is 0.96, indicating high
accuracy and high generalizability of the trained model.

Fig. 6 compares the predictions made using deep learning against the
experimental data for the compressive strength. The figure indicates that
the predictions agree well with the experimental data, demonstrating
the high precision and high accuracy of the proposed method.

The effectiveness of feature extraction is evaluated by comparing the
prediction performance of the deep learning model trained on the fea-
tures extracted from the characters, words, and varied hyperparameter
settings. In Appendix B, the proposed character-level feature extraction
leads to the highest accuracy. It is concluded that the feature extraction
method provides representative features that reflect the characteristics
of cementitious composites, and the deep learning model is able to learn
from the extracted features.

The ensemble machine learning model automatically designed by
Azure automated machine learning is described in Appendix C. The
performance metrics indicate that the developed deep learning model
achieves the higher accuracy and certainty. The RMSE and R? of the
deep learning model for the test dataset are 9.15 MPa and 0.97,
respectively. The RMSE and R? of the ensemble learning model are
10.84 MPa and 0.92, respectively. The RMSE of the deep learning model

40 1 1 1 T 1 1 1 T T 1 1 |
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o W
o o

10F .
SR22A82023223
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Fig. 8. The various importance of chemical compounds and three properties regarding particle gradation for (a) SCMs and (b) cement. Vertical axes show the

variable importance of materials.
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Table Al
Mixture design and information of ingredients (Horsakulthai, 2021).
Portland Recycled Sand Water  Superplasticizer
cement concrete
powder
Proportion 400 100 875 175 16.5
(kg/m>)
Chemical composition
Si05 (%) 19.95 55.19 97.7 0 N/A
Al,03 (%) 5.18 2.18 0.5 0
Fe,03 (%) 3.25 4.85 0.1 0
CaO (%) 67.84 35.02 1.4 0
MgO (%) 0.79 0.29 0 0
Na,0 (%) 0.01 0.22 0 0
K50 (%) 0.31 0.7 0 0
P,05 (%) 0.07 0.38 0 0
SO3 (%) 2.36 0.51 0 0
LOI (%) 0.29 1.42 0 0
H,0 (%) 0 0 0 100
Particle size distribution
Dio (mm) 3.10 6.80 9.93 N/A N/A
Dso (mm) 13.11 8.20 50.32
Dgo (mm) 25.38 28.94 90.70
30 T T T T T T T T
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Fig. B1. The effects of parameters of feature extraction method on the pre-
diction accuracy of deep learning; the horizontal axis shows the maximum
length of N-grams, while the vertical axis shows the RMSE of deep learning
models for the test set.

is 19% lower than that of the ensemble model, which indicates that the
deep learning model has superior performance over the ensemble
model.

4.3. Order of information

Fig. 7 shows the distribution of absolute errors of the data instances
when the sentences and information in those sentences are randomly
shuffled. Each of the 10 error distributions is related to all the textual
data in the test set with randomly shuffled information. The R? values of
all the ten trials ranged from 0.95 to 0.96, indicating that the order of
information does not significantly impact the predictions made by deep
learning.

4.4. Influencing chemical compounds

The variable importance is defined as the range of average
compressive strength associated with the variability of each variable.
The measurement quantifies how strong is the effect of each variable on
the compressive strength. Fig. 8 shows the variable importance of the
chemical compounds and the three percentile values that describes
particle size distribution. The summation of importance of the three
percentile values of cement and SCMs is significant. Therefore, the re-
sults confirm that particle size distribution has significant effects on the
compressive strength. For both cement and SCMs, SiO2, CaO, Al;03, and
FeoO3 are the most important chemical compounds, consistent with
previous research (Kolovos et al., 2002).

4.5. Discovery of chemical reactions

Fig. 9(a) shows the variable interactions between the chemical
compounds of cement in the prediction of compressive strength. Sig-
nificant interactions between the chemical compounds of cement are
revealed. The strongest interaction effects with their corresponding
normalized variable importance (NVI) are listed as follows:

(1) Al,O3 — CaO interaction (NVI = 1): The identified chemical
compounds participate in multiple chemical reactions during hy-
dration of cement (Gu et al., 1997; Taylor, 1997):

C3A + 3CSH, + 26H=>CsAS;H;, 13)

C;A + CH + 21H=C,AH,, 14
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Fig. C1. The machine learning pipeline design automatically by Azure automated machine learning to predict the compressive strength of cementitious composites.
Pi is the prediction made by the i th machine learning algorithm. The predictions from the machine learning models are multiplied by ensemble weights to obtain the

final prediction.

Table C1
Comparison of performance metrics between the deep learning and ensemble
models.
Model Dataset MAE MAD RMSE R?
(MPa) (MPa) (MPa) (€Y]
Deep learning Training 3.06 2.19 5.08 0.99
Ensemble 3.24 2.42 5.39 0.97
learning
Deep learning Validation ~ 5.79 4.58 7.46 0.97
Ensemble 7.21 5.67 9.23 0.93
learning
Deep learning Test 6.31 4.15 9.15 0.96
Ensemble 7.48 5.05 10.84 0.92
learning
C;AF + 4CH + 22H=>C,AH,5 + C4FH;3 (15)
CA + 3CSH, + 26H=>C4AS;H;, (16)

where C, A, S, F, and H represent CaO, Al;03, SO3, Fes03, and Hy0,
respectively; CsA is Celite (tricalcium aluminate); and C3AF is Felite
(calcium aluminoferrite). Previous studies showed that C3A has large
effect on the mechanical strengths and C3AF has little effect on the
mechanical strengths (Hewlett and Liska, 2019). CgAS3Hsy is
ettringite which is a primary constituent of hydration of cement and
contributes to the early strength of cement (Gu et al., 1997).

(2) CaO - SOg interaction with variable interaction of 0.99: The two
compounds participate in two chemical reactions given in Eq. (13)
and Eq. (16).

(3) CaO - SiO4 interaction (NVI = 0.99): It is well known that the two
compounds participate in the reactions of calcium silicate phases
(Brouwers, 2003):

C3S+ (3—x+y) H=>C,SH, + (3 —x) Ca(OH), 17

CoS + (2 —x+y) HC,SH, + (2 —x) Ca(OH), (18)

where C and S represent CaO and SiOj. Ca(OH), is calcium hy-
droxide. C3S and C,S represent Alite (tricalcium silicate) and Belite
(dicalcium silicate). C,SH, represents calcium silicate hydrate (also
known as C-S-H) which is the main hydration product of cement, and
directly contributes to the strength of concrete (Hewlett and Liska,

10

2019). The stoichiometry of C-S-H in cement is varied; therefore, x
and y are varied (Goni et al., 2010).

(4) Aly03 - SiO; interaction (NVI = 0.98): The two compounds react
with CaO and Hy0, according to Eqs. (13) — (18). Therefore, the
percentage of Al,O3 may indirectly affect the reactivity of SiOz with
CaO and formation of C-S-H gel.

(5) Fey03 — SiOs interaction (NVI = 0.81): FeoO3 and SiO separately
react with CaO and H;O, according to Eq. (15), (17), and (18).
Consequently, the percentage of FeyOj3 indirectly influences the
reactivity of SiOz with CaO and the formation of C-S-H gel.

Fig. 9(b) shows the variable interactions between chemical com-

pounds of SCMs and cement in the prediction of compressive strength.
The strongest interaction effects are listed as follows:

SiO2 of cement — CaO of SCMs interaction (NVI = 1): The chemical
compounds participate in hydration reactions given in Eqs. (17) and
(18). The interaction between CaO of cement and SiO2 of SCMs is not
significant. Perhaps, the reason is the difference between the reac-
tivity of chemical compounds in cement and SCMs.

Al203 of cement — CaO of SCMs interaction (NVI = 0.97): There is a
strong interaction between CaO of cement and Al203 of SCMs.
Similar to SiO2 of cement — CaO of SCMs interaction, there is no
significant reaction between Al1203 of SCMs and CaO of cement.
SiO2 of cement — A1203 of SCMs interaction (NVI = 0.94): The two
chemical compounds react with CaO and H20, according to the
chemical reactions given in Egs. (13) — (18). The percentage of A1203
in SCMs indirectly affects the reactivity of SiO2 with CaO.

. Conclusions

This paper presents an approach to link the physicochemical prop-

erties of concrete ingredients and the mechanical properties, aiming at
overcoming the major challenges of considering the physicochemical
properties of ingredients in existing machine learning approaches. This
research created an artificial language to represent concrete mixtures
and the physicochemical information of their ingredients, developed a
feature extraction method based on character-level N-grams, and pro-
posed a method to automatically configure deep learning models. The
proposed approach was implemented to predict the compressive
strength of complex concrete mixtures, assess the importance of vari-
ables, and discover the chemical reactions. Based on the above in-
vestigations, the following conclusions are drawn:
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e The presented approach is able to consider the physicochemical in-
formation such as the chemical composition and particle size dis-
tribution of the ingredients as well as the other variables such as the
mixture proportion, specimen type, and curing time of concrete in
predicting concrete properties. The prediction results agree well with
the experimental results, with the coefficient of determination being
0.96. The capability of considering the physicochemical information
makes the approach applicable to different types of concrete in-
gredients with different chemical compositions and/or particle size
distributions. The machine learning model was trained using a
dataset encompassing various SCMs such as fly ash, slag, recycled
concrete, and waste glass, indicating that the model is applicable to
various SCMs. The developed capability facilitates the valorization of
solid wastes in the design and applications of high-performance low-
carbon cost-effective concrete.

The presented approach is able to handle datasets with nonuniform
physicochemical information of concrete ingredients. In this study, a
deep learning model was trained using a dataset with the physico-
chemical information of cement, SCMs, and aggregate, while the
physicochemical information of superplasticizer and fibers were
missing.

The proposed approach is able to evaluate the effects of variables
representing the particle size distribution and chemical composition
on the compressive strength of concrete and rank the importance of
those variables. The results of the importance of the oxides and the
particle sizes of cement and SCMs were consistent with established
knowledge.

The proposed approach is capable of discovering and assessing the
chemical reactions in concrete. The interactions of the oxides of
cement differ from the interactions of the oxides of cement and
SCMs. Specifically, Al,O3 and CaO in cement showed the highest
interaction, while the interaction between CaO in SCMs and Al,O3 in
cement was low, because the oxides in cement and SCMs exist in
different phases.

Based on the above investigations, future research opportunities are
identified:

e The relationships between the deep learning architecture, feature
extraction method, and prediction performance are still unknown. It
is interesting to investigate the accuracy of various deep learning
models with respect to architecture variables, such as the number of
layers. In addition, it is important to investigate the performance of
deep learning models developed by using other feature extraction
and text mining techniques.

Appendix A: Textual characterization
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e The importance and interactions of other physiochemical properties
are still unknown. It is significant to investigate the variable
importance of mixture proportions of cement, water, various SCMs,
and inert materials in future studies. Variable interaction between
the percentile values representing the particle size distributions
should be studied too.

It is unknown whether the deep learning model provides reasonable

predictions when the number of N-grams is out of range of the input

variables of the training dataset. The prediction accuracy of various
deep learning models with respect to the range of N-grams can be
investigated in future research.

e It is promising to apply the proposed framework to design low-
carbon concrete containing multiple types of SCMs. The proposed
paradigm opens a new avenue for the design of low-carbon concrete
with multiple types of by-products and/or waste materials because
the deep learning method is not limited to specific ingredients.
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Appendix A shows the conversion of the numerical data representing a concrete mixture into textual data based on the developed artificial lan-
guage. Table Al presents the numerical data about physicochemical properties of raw ingredients of a mixture investigated in reference (Horsa-
kulthai, 2021). Cubic specimens with a side length of 50 mm were used. The 7-day compressive strength was 66.3 MPa.

Based on the numerical data in Table A1 and linguistic rules given in Section 2.3, the sentence-like elements are built in Egs. (A.1) and (A.2):

[A] = [aged, sw x 1] = [7d, ¢50 x 50]

[B] = [SP : sp, SF =sf] = [SP : 16.5]

(A1)

(A.2)

where A and B are sentence-like elements that contain information about the curing time, specimen dimensions, and mixture proportions of
superplasticizer and fibers. Since the mixture did not have steel fiber, the term for steel fiber was removed from sentence B. The remaining sentences
describe the physicochemical properties of raw ingredients. For example, S; describes the information about the first ingredient, which is the Portland
cement, as shown in Eq. (A.3):

[S1] = [W1, D10: d10,1, D50 : d50,1, D90 : 90,1, CC1,1: ccl,1, CC2,1: ec2,1, ..., CCI1,1: cell, 1] (A.3)

where S; is a sentence describing the physicochemical properties of Portland cement. With the values of the variables such as Wy and dy¢,1, Eq. (A.3) is

11
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rewritten as Eq. (A.4):

[S1] = [400.00 : D10 : 3.10, D50 : 13.11, D90 : 25.38, Si02 : 19.95, A1203 : 5.18, Fe203 : 3.25,CaO : 67.84, MgO : 0.79, Na20 : 0.01, K20 : 0.31, P205
:0.07, 503 : 2.36,LOI : 0.29]
A4

Similarly, the other sentences are written to describe the properties of the other ingredients. All the sentences are gathered to generate the textual
data of the mixture, as shown in Egs. (A.5) and (A.6):

W = [A][B][S1][S:][S3][S4] (A.5)

W = [A][B][S1][S2][S3][S4] (A.5)
W =[7d, ¢ 50x50][SP:16.5][400: D10:3.10, D50:13.11, D90:25.38, S102:19.95,
Al203:5.18, Fe203:3.25, Ca0:67.84, Mg0:0.79, Na20:0.01, K20:0.31,

P205:0.07, S03:2.36, LOIL:0.29][100: D10:6.80, D50:8.20, D90:28.94, Si02:55.19,
(A.6)
A1203:2.18, Fe203:4.85, Ca0:35.02, Mg0:0.29, Na20:0.22, K20:0.70,

P205:0.38, SO3:0.51, LOI:1.42][875: D10:9.93, D50:50.32, D90:90.70,

S102:97.70, A1203:0.50, Fe203:0.10, Ca0:1.40][175: H20:100.00]
(A.6)

Appendix B: Feature extraction

Appendix B shows the effects of the hyperparameters of feature extraction method. There are two main hyperparameters: (1) Level of extraction:
The N-grams are extracted based on either the sequence of characters or words. As discussed in Section 2.4, a word is a sequence of characters
separated by two delimiters, such as space and punctuation marks. (2) The length of N-grams: The length of N-grams has an impact on the extracted
features, as discussed in Section 2.4.

Fig. B1 shows the effect of the two parameters on the prediction accuracy of the deep learning model. Noted that a feature extraction method and a
high-performance deep learning model is developed for each trial. The reason is that the size of feature vector changes by changing the two pa-
rameters. The deep learning models were developed automatically by the proposed neural search method. The figure shows the superiority of
character-level feature extraction: The minimum RMSE of character-level feature extractors is 9.17 MPa, while the minimum RMSE obtained by the
word-level feature extractors is 16.42 MPa. Fig. B1 indicates the effectiveness of the proposed parameter setting method elaborated in Section 2.4: The
minimum RMSE of the character-level feature extractors corresponds to the maximum length of N-grams is 5. By setting this parameter to 5, 90% of the
sequence of characters and words are covered by the N-grams.

According to Fig. B1, the sequence of characters is more informative than words in a piece of text. The reason is that textual data in the artificial
language contain numerical values representing the mixture proportions, particle size distribution, and chemical composition. Each number is a
sequence of digits. A chemical formula also contains digits and letters. It is concluded that the sequence of characters of a corpus in the artificial
language is more informative than words.

The textual data in Eq. (A.6) is used as an example to demonstrate the proposed character-level feature extraction method. Among 9906 unique N-
grams, five different N-grams with varied lengths are selected: (1) unigram: “5”, (2) bigrams: “03%, (3) trigrams: “203”, (4) 4-grams: “ D50:”, and (5)
5-grams: “AL203”. Assuming the first five components of the feature vector obtained by the feature extraction method corresponds to the five selected
N-grams, the feature vector of the textual data is derived as:

FV = (a1, a,a3,a4,0s..., aj) (B.1)

where FV is the feature vector of the textual data, given in Eq. (A.6), determined by the feature extraction method; h is the number of unique N-grams,
and is equal to 9906; a; denotes the number of occurrences of the i th N-grams; a;, as,as,a4, and as are the numbers of occurrences of the five selected
N-grams, respectively; a; is 20 because the unigram “5” is repeated in the textual data for 20 times; a, is 8 because the bigrams “O3” is repeated for 8
times; as is 6 because the trigrams “203” is repeated for 6 times; a4 and as are 3 because the 4-grams “D50:” and 5-grams “AL203” are repeated for 3
times.

Appendix C: Ensemble machine learning

Fig. C1 illustrates the machine learning pipeline automatically designed by Azure automated machine learning. The pipeline consists of three steps:
data preprocessing, machine learning algorithms, and ensemble learning. In data preprocessing, the numerical data extracted by the feature extractor
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is transformed based on two different methods, namely standard scaler, and maximum absolute scaler. The methods transform the features according
to the following equations:

s§ = r=m (C.1)
c

mas =2 "™ (€.2)
max (x)

where ss and mas are the transformed values of x, the input variable, according to standard scaler and maximum absolute scaler; m and o represent the
average and standard deviation of x; and max(x) is the maximum value of x.

As shown in Fig. C1, the pipeline includes six machine learning models based on four different machine learning algorithms: extreme gradient
boosting (XGBoost) (Chen and Guestrin, 2016), extremely randomized trees (Geurts et al., 2006), elastic net (Zou and Hastie, 2005), and light gradient
boosting machine (LightGBM) (Ke et al., 2017). Finally, weighted voting ensemble combines the predictions from the machine learning models:
Predictions from the six models were combined with assigned weights to determine the final prediction; voting weights were tuned by the automated
machine learning method, aiming to maximize prediction performance.

Table C1 compares the performance metrics between deep learning and ensemble learning models. It indicates that RMSE and R? of the ensemble
machine learning model for the test dataset are 10.84 MPa and 0.92, respectively, while the RMSE and R of the deep learning model are 9.15 MPa and
0.96, respectively. It can be concluded that the prediction accuracy of the deep learning model is higher than that of the ensemble machine learning
model.
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