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A B S T R A C T   

Existing machine learning-based approaches to investigate and design concrete mainly use the mixture design 
variables to predict concrete properties and do not consider the physicochemical properties of ingredients such as 
the particle size distribution and chemical composition of various binders and aggregates. This paper presents an 
approach to discover the intrinsic relationships between the physicochemical properties of the ingredients and 
mechanical properties of concrete. Specifically, this research creates an artificial language to represent concrete 
mixtures and the physicochemical information of their ingredients, develops a feature extraction method based 
on character-level N-grams, and proposes a method to configure deep learning models automatically. The pro
posed approach has been implemented to predict the compressive strength of complex concrete mixtures, assess 
the importance of variables, and discover chemical reactions, showing high accuracy and high generalizability. 
This research advances the capabilities of understanding the underlying reactions for complex concrete mixtures 
and designing low-carbon cost-effective concrete.   

1. Introduction 

Concrete is one of the most widely used construction materials 
worldwide, with an annual consumption of 30 billion tons in 2017 
(Monteiro et al., 2017). The production of cement was responsible for 
more than 8% of the total carbon emissions in 2018 (Lehne and Preston, 
2018), which drives the development of low-carbon concrete, aiming to 
mitigate climate change. Currently, the dominant approach to develop 
low-carbon concrete is to use low-carbon ingredients such as recycled 
concrete aggregates and/or fines (Long et al., 2022; Wang et al., 2020) 
as well as green binders such as supplementary cementitious materials 
(SCMs). Many types of SCMs have been utilized to produce concrete, and 
the representative examples include fly ash (Aubert et al., 2004) and slag 
(Shi et al., 2008). SCMs have been utilized to replace cement in pro
ducing ultra-high-performance concrete (de Larrard and Sedran, 1994) 
and strain-hardening cementitious composites (Li, 2003). It was found 
that appropriate use of SCMs improved the workability (Hunger, 2010), 
mechanical properties (Borosnyói, 2016), and durability (Elahi et al., 
2021) due to their physical and chemical properties such as the small 
particle sizes and chemical composition. Finely tuning particle size 
distribution is able to maximize the particle packing density, and 
tailoring the chemical composition is able to maximize the degree of 

hydration of cement and refine the microstructures of concrete. Recent 
research has shown that off-specification fly ash, which was known to 
degrade concrete properties, can be utilized to produce 
ultra-high-performance concrete with high mechanical strengths, su
perior durability, and the self-consolidating property (Du et al., 2022). 

Existing design approaches of concrete incorporating SCMs are 
mainly based on experiments. Usually, a large number of experiments 
are conducted to investigate the effects of SCMs on the fresh and hard
ened properties and optimize the mixture proportions. The experiments 
of concrete are costly and time-consuming and involve additional car
bon emissions. To reduce experiments, approaches guided by artificial 
intelligence (AI) have been proposed based on machine learning. 
Various machine learning models were developed to correlate concrete 
mixtures with properties, such as the mechanical properties (Liang et al., 
2022; Mahjoubi et al., 2021; S. Mahjoubi et al., 2022; Asteris et al., 
2021; Zhang et al., 2022), interfacial properties (S. Mahjoubi et al., 
2022), workability (S. Mahjoubi et al., 2022), and porosity (S. Mahjoubi 
et al., 2022). Those models were trained using experimental data and 
applied to predict concrete properties by inputting mixture proportions 
of ingredients, such as the water-to-binder ratio, the sand-to-binder 
ratio, and the fiber content. Those models were able to consider 
different types of ingredients such as cement, fly ash, slag, sand, and 
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fibers. Thermodynamics were coupled with machine learning methods 
to develop alkali-activated mixtures (Ke and Duan, 2021). A trained 
model predicted the properties of mixtures as the mixture proportions 
were changed (S. Mahjoubi et al., 2022). The state-of-the-art models 
achieved high accuracy in predicting the fresh and hardened concrete 
properties when particular ingredients were used. Advanced techniques 
have been employed to improve the datasets (S. Mahjoubi et al., 2022), 
enrich the datasets by generating artificial data (Guo et al., 2021), and 
optimize the architectures of machine learning models as well as 
hyperparameters (Mahjoubi et al., 2021; S. Mahjoubi et al., 2022). The 
predictive models have been integrated with multi-objective optimiza
tion techniques for efficient design (Mahjoubi et al., 2021). 

Despite the exciting advances, it remains challenging to predict 
concrete properties when the ingredients and experimental conditions 
are changed. For example, a predictive model trained using a dataset 
with binder systems composed of cement and fly ash is invalid to predict 
the concrete properties when the fly ash is replaced by slag or other 
SCMs. In real practices, the problem is exacerbated by the large varia
tions in the physicochemical properties of various SCMs. Two batches of 
fly ash produced from the same power plant often have different particle 
sizes and chemical compositions. Even for the same category of fly ash 
such as the Class F fly ash, the chemical composition involves large 
variations, thus disabling the use of the trained models (del Visoet al., 
2008). The above problems originated from the neglection of the 
physicochemical natures of concrete ingredients, such as the change of 
the particle sizes and chemical composition of fly ash. The applicability 
of the existing machine learning models is limited to specific concrete 
ingredients with specific physicochemical properties. Previous research 
showed that the shape and size of specimens largely influence the test 
results of concrete properties (del Visoet al., 2008; Zhang et al., 2021). 
Different standards have been issued and utilized to regulate the shape 
and size of specimens (ACI Committee 318 2022; China Academy of 
Building Research 2010). Therefore, the data collected from various 
publications involve different shapes and sizes of specimens. It is 
essential to consider the shape and size of specimens as variables in 

predicting concrete properties. Approaches that are robust to the 
changes of concrete ingredients, physicochemical information, and 
specimen geometry are highly desired. 

This study intends to address these limitations by establishing a new 
paradigm for AI-guided design of concrete. The idea is that the key 
physicochemical information of concrete ingredients as well as curing 
time and specimen type are considered in the representation of concrete 
mixtures. Based on this idea, this paper creates an artificial language to 
represent the particle size distribution and chemical composition of 
concrete ingredients as well as concrete mixtures and experimental 
conditions. With the novel representation of concrete, textual data is 
converted into structured data through feature extraction (Shannon, 
1948). Although this study presents feature extraction for textural data 
of concrete mixtures to predict concrete properties and chemical reac
tion discovery for the first time, feature extraction from biochemical 
textual data has been proposed earlier for drug discovery (Öztürk et al., 
2020). Next, a high-performance deep learning pipeline is automatically 
configured and trained to link concrete mixture design variables, 
including the physicochemical information of ingredients, and concrete 
property (Jin et al., 2019). The trained deep learning model is then 
utilized to evaluate the importance of physicochemical variables and 
discover reactions between chemical compounds. Different types of 
concrete are considered in this research to test the applicability of the 
proposed method. The considered types of concrete include conven
tional concrete, self-compacting concrete, high-strength concrete, and 
ultra-high performance concrete. These types of concrete use various 
types of ingredients, which are considered as input features. For 
example, steel fibers are often used in high-strength concrete and 
ultra-high performance concrete to enhance the tensile properties. 

This research will advance the concrete design capability, offer a new 
approach to explore the reactions in complex mixtures, and greatly 
facilitate the adoption of different SCMs into concrete for efficient 
design and manufacturing of high-performance low-carbon cost- 
effective concrete, offering an efficient avenue for the development of 
sustainable concrete. The remainder of the paper is organized as follows: 

Fig. 1. Flowchart of the proposed data-driven approach to predict the mechanical properties and discover chemical reactions of cementitious composites.  
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Section 2 presents the methods. Section 3 introduces the collected 
dataset. Section 4 elaborates the results and discussion. Section 5 sum
marizes the conclusions. 

2. Methods 

2.1. Overview 

Fig. 1 shows the flowchart of the proposed approach to predict the 
properties and discover the chemical reactions of cementitious com
posites. A deep learning framework is proposed through integrating five 
main steps: (1) A dataset is established to relate the concrete property, 
such as the compressive strength, to the key concrete design variables, 
such as the curing time, specimen type, mixture proportion, chemical 
composition, and particle size distribution (see Section 2.2). (2) The 
numerical data in the dataset are converted to textual data using an 
artificial language created in this research (see Section 2.3). (3) Feature 
extraction is performed using N-grams to convert the textual data into 
structured data through text mining (see Section 2.4). (4) A high- 
performance deep learning model is developed through token embed
ding, neural search, and model retraining (see Section 2.5). (5) The 
performance of the trained deep learning model is evaluated using three 
performance metrics (see Section 2.6). With the predictive model, the 
importance of chemical compositions is evaluated (see Section 2.7), and 
chemical reactions of ingredients are discovered (see Section 2.8). 

2.2. Dataset development 

A dataset is developed to represent the mixture proportion, pro
cessing, and testing of concrete. The dataset covers five types of nu
merical variables: (1) Mixture proportion. In this study, the mass ratios 
of ingredients are included in the dataset. (2) Particle size distribution. 
Three statistical parameters are used to represent the particle size dis
tribution of granular materials, which are D10, D50, and D90, repre
senting the 10th, 50th, and 90th percentiles of mass, respectively. (3) 
Chemical composition. The chemical composition of each ingredient is 
represented by the mass percentage of each compound in the ingredient. 
(4) Curing time. The curing time is presented by the number of days. (5) 
Specimen type. The shape and dimensions of specimens are included. To 
develop the approach, this research focuses on the compressive strength 
of concrete under the standard curing condition, but the approach will 
be applicable to other properties such as the workability and the tensile 
properties, as long as the training dataset of compressive strengths is 
replaced by a dataset of the other properties or other curing conditions, 
as elaborated in reference (Mahjoubi et al., 2021). 

The generalizability of the model is evaluated based on a test dataset 
unseen to the model, meaning that the dataset is not used to train the 
model. In this study, the developed dataset is split into three datasets: 
training (65%), validation (15%), and test (20%) sets, according to 
references (Xu et al., 2021; Malinin et al., 2020). The training dataset is 
utilized to train the deep learning model; the validation dataset is used 
to estimate prediction performance for model selection; and the test 
dataset is used to evaluate the generalizability. 

2.3. Artificial language 

This study creates an artificial language to provide an explanatory 
essay for each cementitious composite. Particularly, the artificial lan
guage converts the numerical data of the curing time, mixture propor
tion, chemical composition, and particle size distribution of ingredients 
into a unified textual form. The following linguistic rules are established:  

• Notations and numbers are the words of this language. The notations 
are as follows: “d”, “c”, and “cyl” represent the days of curing, cubic 
specimens, and cylinder specimens, respectively. “D10”, “D50”, and 
“D90” are used to describe particle size distribution. “SP” and “SF” 

represent the superplasticizer and steel fibers, respectively. Chemical 
formulas are used to represent chemical compounds. For example, 
H2O, CaO, and SiO2 are used to represent water, calcium oxide, and 
silica dioxide, respectively. 

• Each textual data instance comprises multiple sentence-like ele
ments, as shown in Eq. (1): 

W = [A][B][S1][S2]…[SN ] (1)  

where A is the sentence related to the curing time and test specimen; 
sentence B describes the mixture proportions of admixtures and fi
bers; and Si describes the mass proportion, particle size distribution, 
and chemical composition of the i th ingredient, where i = 1, 2, …, N, 
and N is the number of raw materials. A is expressed as shown in Eq. 
(2): 

A = aged, sw × l (2)   

where age is the curing time of cementitious composite in days; s is the 
shape of specimen which is either cube (“c”) or cylinder (“cyl”); w and l 
are the width and length of specimen.  

• The second sentence (B) describes the mixture proportions of 
superplasticizer and fibers: 

B = SP : sp, SF = sf (3)   

where sp and sf are the mass of superplasticizer and fibers in a unit 
volume of the mixture.  

• The third to the last sentences describe the mixture proportions, 
particle size distribution, and chemical composition of constituents. 
The i th ingredient is defined as shown in Eq. (4): 

Si = Wi, D10 : d10,i, D50 : d50,i, D90 : d90,i, CC1,i : cc1,i, CC2,i

: cc2,i, …, CCn,i : ccn,I (4)   

where Wi is the mass of the i th ingredient in a unit volume of the 
cementitious composite; d10,i, d50,i, d90,i are the D10, D50, and D90 of the 
particle size distribution of the i th ingredient; ccj,i is the percentage of 
the j-th chemical compound in the i th ingredient. 

To clarify the artificial language, an example is provided in 
Appendix A based on a concrete mixture in reference (Horsakulthai, 
2021). The numerical data related to the mixture proportions, physi
cochemical properties of raw ingredients, curing time, and specimen 
dimensions, as well as the compressive strengths are given in 
Appendix A. Next, the textual data obtained from the artificial language 
from the numerical data is reported. 

2.4. N-grams characterization of cementitious composites 

Feature extraction is utilized to convert the textual data into struc
tured data based on character-level N-grams (Shannon, 1948) and 
tokenization in two sequential steps. First, tokenization is performed to 
segment a text into pieces known as tokens or N-grams. N-grams are the 
sequence of either words or characters. A word is a sequence of char
acters delimited by two delimiters, while a delimiter is a character that 
specifies the boundaries of words, such as space and punctuation marks 
(e.g., period and bracket) (Pibiri and Venturini, 2019). N-grams have 
been extensively used in natural language processing, such as machine 
translation, auto-completion in search engines, spelling correction, and 
automatic speech recognition (Pibiri and Venturini, 2019; Reshamwala 
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et al., 2013). 
Then, the occurrences of N-grams are counted to convert the text into 

the occurrence number (Masud et al., 2008). The method based on 
character-level N-grams is proposed since the sequence of characters of a 
corpus in the artificial language is more informative than the sequence 
of words, as shown in Appendix B. This is because the textual data 
representing the mixture proportions, particle size distribution, and 
chemical composition have both digits and letters, as indicated in Sec
tion 2.3. To clarify the character-level feature extraction method, an 
example is shown in Appendix B, where the proposed feature extraction 
method is applied to a textual data given in Appendix A. 

The parameter N influences the extracted features. When N is equal 
to 1, N-grams is known as unigram with limited semantic information 
because the sequence of characters is not considered. When N exceeds a 
certain value, the number of occurrences of N-grams will be small, 
known as rare N-grams, with limited information as well. This study 
proposes an approach to determine N according to the length of words in 
a given text. First, the distribution of the number of characters in the 
words is determined. Second, the lower boundary of N is set to 1 while 
the upper boundary of N is set to the length of a word that is longer than 
90% of the other words in the given text. In this way, the extracted N- 
grams will cover most of the words while eliminating long and infre
quent sequences of words. A parametric study is conducted to show the 
effectiveness of the proposed method, and the results are reported in 
Appendix B. 

It is essential to ensure that the prediction accuracy of the deep 
learning model is independent of the sequence of words. For example, 
the semantic meaning of […, a = x, b = y, …] is the same as that of […, b 
= y, a = x, …]; and the semantic meaning of [A][B][S1]…[Sj][Sjþ1]… 
[SN] is the same as that of [A][B][S1]…[Sjþ1][Sj] …[SN]. The investi
gation results are given in Section 4.3. 

2.5. Deep learning pipeline 

As shown in Fig. 2, the deep learning model is developed by 
sequentially performing token embedding, model configuration, and 
model retraining. Token embedding is applied to extract semantic in
formation. Automatic model configuration is realized using a neural 
search method based on Auto-Keras (Jin et al., 2019). Finally, the deep 
learning model is retrained to improve accuracy. The three steps are 
elaborated in Sections 2.5.1 to 2.5.3. 

2.5.1. Token embedding 
There are two main issues regarding the feature representations 

obtained by converting a given text into a feature vector for feature 
extraction: (1) The feature representation of a textual data reflects the 

number of occurrences of tokens rather than their semantic meanings 
(Tsai et al., 2020). Although a feature representation provides the fre
quency of tokens, it has no semantic meaning of the words such as the 
number expression and the chemical formula. (2) A component of a 
feature vector is a non-negative integer representing the number of oc
currences of specific N-grams. In mathematics, a continuous variable is a 
variable that can be any value within a range, while a discrete variable is 
a variable that is an integer. Discrete representations of the extracted 
features are more difficult than continuous representations for neural 
networks to learn (Zhou et al., 2019). To address the above issues, an 
embedding approach is proposed to map textual data to a meaningful 
continuous space, where the distance between textual data quantifies 
semantic similarity, as shown in Eq. (5): 

χ = ρD (5)  

where ρ is the embedding matrix; D ∈ ℤm is a feature vector with the 
length of m containing the number of occurrences of N-grams; and χ ∈ ℝ 
m × L is the projection of D in the embedding space with dimension L. The 
components of the matrix ρ and the parameter L are the trainable pa
rameters of the embedding layer. In this study, the embedding layer is a 
part of the deep learning model, meaning that the parameters are tuned 
during the learning process of the deep learning model. 

2.5.2. A neural search method for semi-automated deep learning 
This study implements Auto-Keras (Jin et al., 2019) to construct a 

high-performance deep learning model for predicting the compressive 
strength of concrete. The method configures a deep convolutional neural 
network architecture customized for the specific dataset. The hyper
parameters are tuned via neural search, aiming to maximize the pre
diction accuracy. 

Auto-Keras involves four main components: (i) A regression tech
nique, called Gaussian process, is used to estimate the accuracy of a 
given neural network with a specific architecture and hyperparameters. 
(ii) A neural network is used to map the variables describing the ar
chitecture and hyperparameters to a latent space. It is impractical to 
directly vectorize a neural network architecture due to the uncertain 
numbers of layers and parameters of a network (Jin et al., 2019). 
Therefore, a neural network is used as a kernel to convert the vector of 
each neural network architecture to a unified form. (iii) Bayesian opti
mization is used to automatically search the architecture and the 
hyperparameters of a neural network. (iv) An acquisition function is 
defined to estimate the potential utility of a given architecture. The 
acquisition function is minimized using the Bayesian optimization to 
select the most promising architecture to test (Jin et al., 2019). 

In this study, a search space is defined for Auto-Keras to search for a 
high-performance deep learning model with a specific sequence of 

Fig. 2. Development of a high-fidelity deep learning model using token embedding, neural search, and model training.  
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operations. The deep learning models selected by Auto-Keras have one 
embedding layer, followed by one or multiple convolutional, max 
pooling, flatten, and dense layers:  

• Embedding layer: The layer is responsible for token embedding, as 
discussed in Section 2.5.1.  

• Convolutional block: Individual or multiple convolution layers with 
dropouts. A dropout layer randomly sets a set of neurons to zero, 
aiming to mitigate overfitting (Srivastava et al., 2014). Overfitting is 
a modeling error that occurs when a predictive model learns the 
training dataset so well that it performs poorly on unseen data. Max 
pooling is a down-sampling convolution operation where the feature 
map delivered by the convolutional layers is categorized into a set of 
regions. The maximum values of the regions are selected, and other 
values are discarded. This operation has two major benefits: (I) It 
reduces the dimensionality of the feature map, and thus lowers the 
computational burden for training. (II) It reduces the chance of 
overfitting: The overfitting phenomenon may occur when the dataset 
has many features. The model may learn spurious correlations in the 
training data that are not reflected in the unseen data. Max pooling 
layer reduces the dimensionality of the outputs obtained by con
volutional layers while effectively preserving feature information. 
Thus, the max pooling layer is able to avoid overfitting. 

• Flatten layer: Flattening converts the multidimensional feature vec
tor from the convolution block into a 1-dimensional array. The layer 
makes the feature vector linear and helps the vector pass a dense 
layer.  

• Dense block: Dense layers are used to generate the output of the deep 
models. The neurons of a dense layer are connected to every neuron 
of its preceding layer. Dense block involves multiple dense and 
activation layers to perform predictions based on the 1-dimensional 
array of the previous flatten layer. The head of the network is a dense 
layer with one neuron, which is responsible for generating the output 
of the network. 

The parameters of the neural search method are set as follows: The 
search for a high-performance model is stopped when the number of 
tried neural networks reaches 200. To balance the computational cost 
and accuracy, the number of data points in each batch is set to 50. The 
number of epochs to train each model during the search is set to 20. The 
parameters were set based on trial-and-error. Early stopping is applied 
to avoid overfitting. The training process is terminated if the loss func
tion on the validation set is not improved for 5 consecutive epochs. 
Finally, root mean square error (RMSE) is utilized to evaluate the ac
curacy of the deep learning models: 

RMSE(P, A) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(pi − ai)
2

n

√

(6)  

where P = [p1, p2, …, pn] and A = [a1, a2, …, an] are vectors containing 
the predicted and the actual values; and n represents the number of 
predictions. 

An automated learning approach, Microsoft Azure automated ma
chine learning (Fusi et al., 2018; Copeland et al., 2015), is used to 
validate the proposed neural search method. Azure automated machine 
learning creates a high-performance machine learning pipeline via 
Bayesian optimization of ensemble learning and various machine 
learning methods, such as extreme gradient boosting (Chen and Guest
rin, 2016), light gradient boosting machine (Ke et al., 2017), and 
random forest (Breiman, 2001). 

2.5.3. Model retraining 
The neural search method compares the performance of models 

trained with 20 epochs to save computational cost. It is speculated that 
the models suffer from undertraining, meaning the number of epochs 
used to train the neural network models in the neural search is 

insufficient. It is promising to improve the generalizability by reducing 
the validation loss through increasing the number of training epochs. 
Therefore, the best performing trained deep learning model is retrained 
with 100 more epochs, aiming to maximize the generalization 
performance. 

2.6. Performance metrics 

Root mean square error (RMSE) indicates how far predictions fall 
from actual values based on Euclidean distance (Barhemat et al., 2022; 
Mahjoubi et al., 2023), as shown in Eq. (6). Apart from RMSE, three 
other performance metrics were used to evaluate the performance of the 
trained predictive models: 

(1) Mean absolute error (MAE) measures the average significance of 
absolute errors (Mahjoubi et al., 2021; Mahjoubi et al., 2023): 

MAE(P, A) =
∑n

i=1
|pi − ai|

2 (7)   

(2) Median absolute deviation (MAD) measures the variability of 
errors (Mahjoubi et al., 2021; Mahjoubi et al., 2023): 

MAD(P, A) = median(|p1 − a1|, |p2 − a2|, …, |pn − an|) (8)   

(3) Coefficient of determination (R2) shows the extent of uncertainty 
(Mahjoubi et al., 2021; Barhemat et al., 2022; Mahjoubi et al., 2023): 

R2(P, A) = 1 −

∑n
i=1(pi − ai)

2

∑n
i=1[ai − mean(ai)]

2 (9)   

The variables used in the performance metrics are defined in Section 
2.5.2. In general, R2 > 0.8 indicates a very strong correlation between 
predictions and actual values, and the performance of the predictive 
model is satisfying, according to reference (Miot, 2018). 

2.7. Variable importance 

A novel importance metric is presented to evaluate the importance of 
the chemical compounds and the percentile values of particle size dis
tribution on the concrete properties. The concept of the variable 
importance metric is that the importance of a variable is reflected by the 
increase of the error when the variable is removed from the training set. 
The variable importance is defined as: 

VIτ = δ(R, τ) − δ(E) (10)  

where VIτ is the variable importance of variable τ; δ(R, τ) is the RMSE of 
the model with the test dataset when the information about variable τ is 
removed from the test dataset; δ(E) is the RMSE for the test set when all 
information is provided in the test dataset. A high variable importance 
means that the variable greatly impacts the concrete property. 

2.8. Variable interaction 

The chemical interactions between the chemical compounds are 
identified using variable interaction. The interaction between two var
iables, which are two chemical compounds, implies chemical reactions 
between the two compounds (Wang et al., 2015). This study proposes a 
measurement to quantify the interaction between variables, inspired by 
mutual information (Kraskov et al., 2004). Variable interaction refers to 
a two-way interaction measure that shows whether two variables 
interact with each other and the extent of the interaction between the 
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two variables. The variable interaction between x and y is defined as: 

VI(x, y) = |f (x, y) − f (x) − f (y)| (11)  

where x and y are two variables; f(x) is the range of average of pre
dictions associated with the variability of x; the range of a variable is the 
difference between the lowest and highest values; and f(x, y) is the range 
of average of predictions associated with the variability of both vari
ables. To determine f(x), variable x is randomly assigned for each data 
points in the dataset, while all the other variables are kept constant. The 
random value is within the range of the values in the dataset. This 
process is repeated 50 times to obtain f(x) and f(x,y). Next, the outputs 
of the machine learning model are determined for the manipulated data 
points. Finally, f(x) is determined as the average of the outputs. The 
normalized variable interaction can be expressed as: 

NVI(x, y) =
VI(x, y)

max(VI)
(12)  

where NVI(x, y) is the normalized variable interaction between x and y; 
and max(VI) is the maximum of variable interactions for all possible 
pairs of variables. 

3. Collected dataset 

A total of 760 cementitious composites with their corresponding 
compressive strengths were collected from references (Du et al., 2022; 
Horsakulthai, 2021; Yu et al., 2015; Liu and Wei, 2021; Pezeshkian 
et al., 2021; Huang et al., 2017; Kang et al., 2019; Jaturapitakkul et al., 
2004; Shi et al., 2021; Zhan et al., 2021; Li and Zhang, 2022; Hasnat and 
Ghafoori, 2021; Wang et al., 2022; Van et al., 2014; Jamil et al., 2016). 
The unit of compressive strength is MPa. In addition, the collected 
compressive strengths are in the range of 0.04 MPa to 204.9 MPa. As 
described in Section 2.2, the information on the mixture proportions, 
chemical composition, percentile values of the particle size distribution 
of ingredients, shape size and type of specimen, and curing time were 
considered for each data instance. 

This dataset includes 15 types of cement, 37 types of SCMs, 8 types of 
fillers, and 14 types of aggregates, which had different particle sizes and 
chemical compositions. The included SCMs are different fly ash (Yu 
et al., 2015; Jaturapitakkul et al., 2004; Shi et al., 2021; Li and Zhang, 
2022; Hasnat and Ghafoori, 2021), silica fume (Liu and Wei, 2021; 
Pezeshkian et al., 2021; Huang et al., 2017; Kang et al., 2019; Jatur
apitakkul et al., 2004; Shi et al., 2021; Hasnat and Ghafoori, 2021; 
Wang et al., 2022; Van et al., 2014), nano silica (Yu et al., 2015; Shi 
et al., 2021), natural zeolite (Pezeshkian et al., 2021), natural pozzolan 
(Hasnat and Ghafoori, 2021), slag (Yu et al., 2015; Shi et al., 2021; Zhan 
et al., 2021; Li and Zhang, 2022; Hasnat and Ghafoori, 2021; Van et al., 
2014), metakaolin (Zhan et al., 2021), glass powder (Zhan et al., 2021), 
rice husk ash (Van et al., 2014; Jamil et al., 2016), and recycled concrete 
powder (Horsakulthai, 2021). The fillers were limestone powder (Yu 
et al., 2015; Huang et al., 2017; Kang et al., 2019; Wang et al., 2022), red 
mud (Li and Zhang, 2022), and quartz powder (Liu and Wei, 2021; Kang 
et al., 2019; Van et al., 2014). The aggregates were calcined bauxite (Liu 
and Wei, 2021), river sand (Liu and Wei, 2021; Jaturapitakkul et al., 
2004; Hasnat and Ghafoori, 2021; Wang et al., 2022; Jamil et al., 2016), 
glass sand (Pezeshkian et al., 2021), quartz sand (Pezeshkian et al., 
2021; Huang et al., 2017; Shi et al., 2021; Li and Zhang, 2022), masonry 
sand (Du et al., 2022), dolomite (Li and Zhang, 2022), and gold mine 
tailings (Wang et al., 2022). Straight steel fibers measuring 13 mm in 
length and 0.2 mm in nominal diameter (Du et al., 2022; Liu and Wei, 
2021; Shi et al., 2021; Hasnat and Ghafoori, 2021; Van et al., 2014) were 
adopted. Different types of concrete were included in the dataset: 
self-compacting mortar (Horsakulthai, 2021; Jamil et al., 2016), 
ultra-high performance concrete (Du et al., 2022; Yu et al., 2015; Liu and 
Wei, 2021; Pezeshkian et al., 2021; Huang et al., 2017; Kang et al., 2019; 
Shi et al., 2021; Zhan et al., 2021; Hasnat and Ghafoori, 2021; Wang 
et al., 2022; Van et al., 2014), high-strength concrete (Jaturapitakkul 
et al., 2004), and conventional concrete (Li and Zhang, 2022). 

Table 1 and Table 2 respectively list the statistics of the chemical 
compounds of cement and SCMs. Skewness and kurtosis are used to 
measure the non-normality. Skewness reflects the asymmetry of distri
bution, and kurtosis indicates the outlier-prone extent of distribution. 

4. Results and discussions 

This section presents the results including feature extraction of tex
tual data (Section 4.1), development, configuration, and performance 
evaluation of the deep learning model (Section 4.2), effect of the order of 
information on the prediction accuracy (Section 4.3), importance of 
chemical composition (Section 4.4), and chemical discovery in cemen
titious composites (Section 4.5). 

4.1. Artificial language processing 

Fig. 3 shows the distribution of the number of characters for words in 
the textual data obtained from the developed dataset. The figure in
dicates that 90% of words have five or fewer characters. Based on the 
discussions in Section 2.4, the upper bound of N in the feature extractor 

Table 1 
Statistics of the chemical compounds of cement.  

Variable Unit Range Skewness Kurtosis 

Al2O3 % 2.76 – 7.31 0.83 1.21 
CaO % 59.52 – 68.05 0.24 -0.49 
Fe2O3 % 2.24 – 5.1 1.18 1.69 
K2O % 0.11 – 1.027 0.69 0.51 
MgO % 0.6 – 4.7 0.38 -0.47 
Na2O % 0 – 0.85 1.17 1.30 
P2O5 % 0.06 – 0.74 2.29 5.48 
SiO2 % 19.03 – 23.25 0.11 -0.26 
SO3 % 0.55 – 3.49 -1.55 5.39  

Table 2 
Statistics of the chemical compounds of SCMs.  

Variable Unit Range Skewness Kurtosis 

Al2O3 % 0 – 43 1.39 1.68 
CaO % 0 – 66.06 1.40 0.69 
Fe2O3 % 0 – 21.93 2.22 4.53 
K2O % 0 – 7.5 2.51 8.30 
MgO % 0 – 10.8 1.83 2.20 
Na2O % 0 – 7.5 4.81 25.70 
P2O5 % 0 – 2.83 2.68 7.43 
SiO2 % 17.33 – 99.8 -0.31 -1.61 
SO3 % 0 – 4.85 2.58 7.68  

Fig. 3. Distribution of the length of characters in words. The vertical axis shows 
the density of probability, while the horizontal axis shows the number 
of characters. 
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is N = 5. The N-grams with five or fewer unique characters are extracted 
from textural data for tokenization. Next, the frequencies of the 
extracted tokens are fed to the token embedding layer. A total of 9766 N- 
grams were identified in the training set by the feature extractor. Each 
data was converted to a vector with 9766 components, meaning that the 

number of input variables of the deep learning model is 9766, and each 
variable represents the frequency of a unique N-grams. 

4.2. Deep learning model 

This section describes the development, configuration, and perfor
mance of the deep learning model. Section 4.2.1 elaborates the model 
development. Section 4.2.2 describes the architecture and hyper
parameters of the model. Section 4.2.3 evaluates the performance of the 
trained model. 

4.2.1. Development process 
Fig. 4(a) shows the performance of Auto-Keras on the feature vectors 

extracted by N-grams feature extractor. The RMSE decreased from 
31.14 MPa to 12.02 MPa as the number of iterations increased from 1 to 
200, indicating that the method iteratively obtained better solutions. 
Fig. 4(b) shows the learning curves of the final model obtained from 
neural search and model retraining. The loss function increases when 

Fig. 4. Exploration for a high-performance model: (a) RMSE of the models iteratively selected by Auto-Keras, and (b) learning curves of the final model in neural 
search and model retraining. 

Fig. 5. Architecture of the deep neural network developed to predict the concrete properties. DO stands for dropout, and Conv1d stands for 1D convolution layer.  

Table 3 
The configuration of the final deep learning model.  

Layer Output 
shape 

Kernel 
size 

Stride 
length 

Activation 
function 

Number of 
parameters 

Input 9766 N.A. N.A. N.A. 0 
Embedding 9766×256 N.A. N.A. N.A. 5120,256 
Dropout 9766×256 N.A. N.A. N.A. 0 
Conv1D-1 9764×32 3 1 ReLu 24,608 
Conv1D-2 9762×512 3 1 ReLu 49,664 
Max 

pooling-1 
4881×512 2 2 N.A. 0 

Conv1D-3 4879×32 3 1 ReLu 49,184 
Conv1D-4 4877×32 3 1 ReLu 3104 
Max 

pooling-2 
2438×32 2 2 N.A. 0 

Flatten 78,016 N.A. N.A. N.A. 0 
Dense-1 128 N.A. N.A. ReLu 9986,176 
Dense-2 32 N.A. N.A. ReLu 4128 
Dense-3 1 N.A. N.A. ReLu 33     

Total 
parameters: 

15,237,153 

* “N.A.” stands for “not applicable”. 

Table 4 
Performance metrics of the deep learning model.  

Dataset MAE (MPa) MAD (MPa) RMSE (MPa) R2 (1) 

Training 3.06 2.19 5.08 0.99 
Validation 5.79 4.58 7.46 0.97 
Test 6.31 4.15 9.15 0.96  
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the retraining phase is started, as artificial neural networks are prone to 
abruptly forget previously learned information (Kirkpatrick et al., 
2017). Although the loss function increases at the beginning of the 
retraining phase, model retraining improved the validation loss by about 
38%. The lowest validation loss obtained in the neural search phase was 
12.02 MPa, and the lowest validation loss obtained in the model 
retraining phase was 7.46 MPa. Fig. 4(b) indicates that 20 epochs were 
sufficient to obtain a high-performance model. Further increasing the 
number of epochs increased the computational burden. 

4.2.2. Deep learning architecture and hyperparameters 
Fig. 5 shows the architecture of the deep learning model determined 

by the neural search method. The features obtained by the character- 
level extractor are fed to the embedding layer, followed by a dropout 
layer with a rate of 0.25. Next, there are two convolution blocks. Each 
block includes two 1D convolution layers and one max pooling layer, 
followed by a flatten layer and finally three dense layers. 

The output shapes, hyperparameters, and number of trainable pa
rameters of the layers of the final model are provided in Table 3. The 
model has more than 15 million trainable parameters to be tuned in the 
learning process. Nearly two-thirds of the parameters belong to the 
dense layers, and about one-third of parameters belong to the embed
ding layer. 

4.2.3. Performance evaluation 
Table 4 lists the performance metrics of the trained deep learning 

model in predicting the compressive strength of cementitious compos
ites. The R2 value of the model for the test set is 0.96, indicating high 
accuracy and high generalizability of the trained model. 

Fig. 6 compares the predictions made using deep learning against the 
experimental data for the compressive strength. The figure indicates that 
the predictions agree well with the experimental data, demonstrating 
the high precision and high accuracy of the proposed method. 

The effectiveness of feature extraction is evaluated by comparing the 
prediction performance of the deep learning model trained on the fea
tures extracted from the characters, words, and varied hyperparameter 
settings. In Appendix B, the proposed character-level feature extraction 
leads to the highest accuracy. It is concluded that the feature extraction 
method provides representative features that reflect the characteristics 
of cementitious composites, and the deep learning model is able to learn 
from the extracted features. 

The ensemble machine learning model automatically designed by 
Azure automated machine learning is described in Appendix C. The 
performance metrics indicate that the developed deep learning model 
achieves the higher accuracy and certainty. The RMSE and R2 of the 
deep learning model for the test dataset are 9.15 MPa and 0.97, 
respectively. The RMSE and R2 of the ensemble learning model are 
10.84 MPa and 0.92, respectively. The RMSE of the deep learning model 

Fig. 6. The predictions of compressive strength obtained by the deep learning 
model versus the actual values obtained by experimental tests. 

Fig. 7. Effect of the order of information on the accuracy. Dashed lines show 
the median. 

Fig. 8. The various importance of chemical compounds and three properties regarding particle gradation for (a) SCMs and (b) cement. Vertical axes show the 
variable importance of materials. 
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is 19% lower than that of the ensemble model, which indicates that the 
deep learning model has superior performance over the ensemble 
model. 

4.3. Order of information 

Fig. 7 shows the distribution of absolute errors of the data instances 
when the sentences and information in those sentences are randomly 
shuffled. Each of the 10 error distributions is related to all the textual 
data in the test set with randomly shuffled information. The R2 values of 
all the ten trials ranged from 0.95 to 0.96, indicating that the order of 
information does not significantly impact the predictions made by deep 
learning. 

4.4. Influencing chemical compounds 

The variable importance is defined as the range of average 
compressive strength associated with the variability of each variable. 
The measurement quantifies how strong is the effect of each variable on 
the compressive strength. Fig. 8 shows the variable importance of the 
chemical compounds and the three percentile values that describes 
particle size distribution. The summation of importance of the three 
percentile values of cement and SCMs is significant. Therefore, the re
sults confirm that particle size distribution has significant effects on the 
compressive strength. For both cement and SCMs, SiO2, CaO, Al2O3, and 
Fe2O3 are the most important chemical compounds, consistent with 
previous research (Kolovos et al., 2002). 

4.5. Discovery of chemical reactions 

Fig. 9(a) shows the variable interactions between the chemical 
compounds of cement in the prediction of compressive strength. Sig
nificant interactions between the chemical compounds of cement are 
revealed. The strongest interaction effects with their corresponding 
normalized variable importance (NVI) are listed as follows: 

(1) Al2O3 – CaO interaction (NVI = 1): The identified chemical 
compounds participate in multiple chemical reactions during hy
dration of cement (Gu et al., 1997; Taylor, 1997): 

C3A + 3CSH2 + 26H⇒C6AS3H32 (13)  

C3A + CH + 21H⇒C4AH22 (14) 

Fig. 9. Normalized variable interaction of chemical compounds in cement and SCMs: (a) interactions between chemical compounds of cement and (b) interactions 
between the chemical compounds of cement and the chemical compounds of SCMs. 

Table A1 
Mixture design and information of ingredients (Horsakulthai, 2021).   

Portland 
cement 

Recycled 
concrete 
powder 

Sand Water Superplasticizer 

Proportion 
(kg/m3) 

400 100 875 175 16.5 

Chemical composition 
SiO2 (%) 19.95 55.19 97.7 0 N/A 
Al2O3 (%) 5.18 2.18 0.5 0 
Fe2O3 (%) 3.25 4.85 0.1 0 
CaO (%) 67.84 35.02 1.4 0 
MgO (%) 0.79 0.29 0 0 
Na2O (%) 0.01 0.22 0 0 
K2O (%) 0.31 0.7 0 0 
P2O5 (%) 0.07 0.38 0 0 
SO3 (%) 2.36 0.51 0 0 
LOI (%) 0.29 1.42 0 0 
H2O (%) 0 0 0 100 
Particle size distribution     
D10 (mm) 3.10 6.80 9.93 N/A N/A 
D50 (mm) 13.11 8.20 50.32 
D90 (mm) 25.38 28.94 90.70  

Fig. B1. The effects of parameters of feature extraction method on the pre
diction accuracy of deep learning; the horizontal axis shows the maximum 
length of N-grams, while the vertical axis shows the RMSE of deep learning 
models for the test set. 
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C3AF + 4CH + 22H⇒C4AH13 + C4FH13 (15)  

CA + 3CSH2 + 26H⇒C6AS3H32 (16)   

where C, A, S, F, and H represent CaO, Al2O3, SO3, Fe2O3, and H2O, 
respectively; C3A is Celite (tricalcium aluminate); and C3AF is Felite 
(calcium aluminoferrite). Previous studies showed that C3A has large 
effect on the mechanical strengths and C3AF has little effect on the 
mechanical strengths (Hewlett and Liska, 2019). C6AS3H32 is 
ettringite which is a primary constituent of hydration of cement and 
contributes to the early strength of cement (Gu et al., 1997). 
(2) CaO – SO3 interaction with variable interaction of 0.99: The two 
compounds participate in two chemical reactions given in Eq. (13) 
and Eq. (16). 
(3) CaO – SiO2 interaction (NVI = 0.99): It is well known that the two 
compounds participate in the reactions of calcium silicate phases 
(Brouwers, 2003): 

C3S + (3 − x + y) H⇒CxSHy + (3 − x) Ca(OH)2 (17)  

C2S + (2 − x + y) H⇒CxSHy + (2 − x) Ca(OH)2 (18)   

where C and S represent CaO and SiO2. Ca(OH)2 is calcium hy
droxide. C3S and C2S represent Alite (tricalcium silicate) and Belite 
(dicalcium silicate). CxSHy represents calcium silicate hydrate (also 
known as C-S-H) which is the main hydration product of cement, and 
directly contributes to the strength of concrete (Hewlett and Liska, 

2019). The stoichiometry of C-S-H in cement is varied; therefore, x 
and y are varied (Goñi et al., 2010). 
(4) Al2O3 – SiO2 interaction (NVI = 0.98): The two compounds react 
with CaO and H2O, according to Eqs. (13) – (18). Therefore, the 
percentage of Al2O3 may indirectly affect the reactivity of SiO2 with 
CaO and formation of C-S-H gel. 
(5) Fe2O3 – SiO2 interaction (NVI = 0.81): Fe2O3 and SiO2 separately 
react with CaO and H2O, according to Eq. (15), (17), and (18). 
Consequently, the percentage of Fe2O3 indirectly influences the 
reactivity of SiO2 with CaO and the formation of C-S-H gel. 

Fig. 9(b) shows the variable interactions between chemical com
pounds of SCMs and cement in the prediction of compressive strength. 
The strongest interaction effects are listed as follows:  

• SiO2 of cement – CaO of SCMs interaction (NVI = 1): The chemical 
compounds participate in hydration reactions given in Eqs. (17) and 
(18). The interaction between CaO of cement and SiO2 of SCMs is not 
significant. Perhaps, the reason is the difference between the reac
tivity of chemical compounds in cement and SCMs.  

• Al2O3 of cement – CaO of SCMs interaction (NVI = 0.97): There is a 
strong interaction between CaO of cement and Al2O3 of SCMs. 
Similar to SiO2 of cement – CaO of SCMs interaction, there is no 
significant reaction between Al2O3 of SCMs and CaO of cement.  

• SiO2 of cement – Al2O3 of SCMs interaction (NVI = 0.94): The two 
chemical compounds react with CaO and H2O, according to the 
chemical reactions given in Eqs. (13) – (18). The percentage of Al2O3 
in SCMs indirectly affects the reactivity of SiO2 with CaO. 

5. Conclusions 

This paper presents an approach to link the physicochemical prop
erties of concrete ingredients and the mechanical properties, aiming at 
overcoming the major challenges of considering the physicochemical 
properties of ingredients in existing machine learning approaches. This 
research created an artificial language to represent concrete mixtures 
and the physicochemical information of their ingredients, developed a 
feature extraction method based on character-level N-grams, and pro
posed a method to automatically configure deep learning models. The 
proposed approach was implemented to predict the compressive 
strength of complex concrete mixtures, assess the importance of vari
ables, and discover the chemical reactions. Based on the above in
vestigations, the following conclusions are drawn: 

Fig. C1. The machine learning pipeline design automatically by Azure automated machine learning to predict the compressive strength of cementitious composites. 
Pi is the prediction made by the i th machine learning algorithm. The predictions from the machine learning models are multiplied by ensemble weights to obtain the 
final prediction. 

Table C1 
Comparison of performance metrics between the deep learning and ensemble 
models.  

Model Dataset MAE 
(MPa) 

MAD 
(MPa) 

RMSE 
(MPa) 

R2 

(1) 

Deep learning Training 3.06 2.19 5.08 0.99 
Ensemble 

learning 
3.24 2.42 5.39 0.97 

Deep learning Validation 5.79 4.58 7.46 0.97 
Ensemble 

learning 
7.21 5.67 9.23 0.93 

Deep learning Test 6.31 4.15 9.15 0.96 
Ensemble 

learning 
7.48 5.05 10.84 0.92  
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• The presented approach is able to consider the physicochemical in
formation such as the chemical composition and particle size dis
tribution of the ingredients as well as the other variables such as the 
mixture proportion, specimen type, and curing time of concrete in 
predicting concrete properties. The prediction results agree well with 
the experimental results, with the coefficient of determination being 
0.96. The capability of considering the physicochemical information 
makes the approach applicable to different types of concrete in
gredients with different chemical compositions and/or particle size 
distributions. The machine learning model was trained using a 
dataset encompassing various SCMs such as fly ash, slag, recycled 
concrete, and waste glass, indicating that the model is applicable to 
various SCMs. The developed capability facilitates the valorization of 
solid wastes in the design and applications of high-performance low- 
carbon cost-effective concrete.  

• The presented approach is able to handle datasets with nonuniform 
physicochemical information of concrete ingredients. In this study, a 
deep learning model was trained using a dataset with the physico
chemical information of cement, SCMs, and aggregate, while the 
physicochemical information of superplasticizer and fibers were 
missing.  

• The proposed approach is able to evaluate the effects of variables 
representing the particle size distribution and chemical composition 
on the compressive strength of concrete and rank the importance of 
those variables. The results of the importance of the oxides and the 
particle sizes of cement and SCMs were consistent with established 
knowledge.  

• The proposed approach is capable of discovering and assessing the 
chemical reactions in concrete. The interactions of the oxides of 
cement differ from the interactions of the oxides of cement and 
SCMs. Specifically, Al2O3 and CaO in cement showed the highest 
interaction, while the interaction between CaO in SCMs and Al2O3 in 
cement was low, because the oxides in cement and SCMs exist in 
different phases. 

Based on the above investigations, future research opportunities are 
identified:  

• The relationships between the deep learning architecture, feature 
extraction method, and prediction performance are still unknown. It 
is interesting to investigate the accuracy of various deep learning 
models with respect to architecture variables, such as the number of 
layers. In addition, it is important to investigate the performance of 
deep learning models developed by using other feature extraction 
and text mining techniques.  

• The importance and interactions of other physiochemical properties 
are still unknown. It is significant to investigate the variable 
importance of mixture proportions of cement, water, various SCMs, 
and inert materials in future studies. Variable interaction between 
the percentile values representing the particle size distributions 
should be studied too.  

• It is unknown whether the deep learning model provides reasonable 
predictions when the number of N-grams is out of range of the input 
variables of the training dataset. The prediction accuracy of various 
deep learning models with respect to the range of N-grams can be 
investigated in future research.  

• It is promising to apply the proposed framework to design low- 
carbon concrete containing multiple types of SCMs. The proposed 
paradigm opens a new avenue for the design of low-carbon concrete 
with multiple types of by-products and/or waste materials because 
the deep learning method is not limited to specific ingredients. 
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Appendix A: Textual characterization 

Appendix A shows the conversion of the numerical data representing a concrete mixture into textual data based on the developed artificial lan
guage. Table A1 presents the numerical data about physicochemical properties of raw ingredients of a mixture investigated in reference (Horsa
kulthai, 2021). Cubic specimens with a side length of 50 mm were used. The 7-day compressive strength was 66.3 MPa. 

Based on the numerical data in Table A1 and linguistic rules given in Section 2.3, the sentence-like elements are built in Eqs. (A.1) and (A.2): 

[A] = [aged, sw × l] = [7d, c50 × 50] (A.1)  

[B] = [SP : sp, SF = sf ] = [SP : 16.5] (A.2)  

where A and B are sentence-like elements that contain information about the curing time, specimen dimensions, and mixture proportions of 
superplasticizer and fibers. Since the mixture did not have steel fiber, the term for steel fiber was removed from sentence B. The remaining sentences 
describe the physicochemical properties of raw ingredients. For example, S1 describes the information about the first ingredient, which is the Portland 
cement, as shown in Eq. (A.3): 

[S1] = [W1, D10 : d10, 1, D50 : d50, 1, D90 : d90, 1, CC1, 1 : cc1, 1, CC2, 1 : cc2, 1, …, CC11, 1 : cc11, 1] (A.3)  

where S1 is a sentence describing the physicochemical properties of Portland cement. With the values of the variables such as W1 and d10,1, Eq. (A.3) is 
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rewritten as Eq. (A.4): 

[S1] = [400.00 : D10 : 3.10, D50 : 13.11, D90 : 25.38, SiO2 : 19.95, Al2O3 : 5.18, Fe2O3 : 3.25, CaO : 67.84, MgO : 0.79, Na2O : 0.01, K2O : 0.31, P2O5

: 0.07, SO3 : 2.36, LOI : 0.29]

(A.4) 

Similarly, the other sentences are written to describe the properties of the other ingredients. All the sentences are gathered to generate the textual 
data of the mixture, as shown in Eqs. (A.5) and (A.6): 

W = [A][B][S1][S2][S3][S4] (A.5)   

(A.6)  

Appendix B: Feature extraction 

Appendix B shows the effects of the hyperparameters of feature extraction method. There are two main hyperparameters: (1) Level of extraction: 
The N-grams are extracted based on either the sequence of characters or words. As discussed in Section 2.4, a word is a sequence of characters 
separated by two delimiters, such as space and punctuation marks. (2) The length of N-grams: The length of N-grams has an impact on the extracted 
features, as discussed in Section 2.4. 

Fig. B1 shows the effect of the two parameters on the prediction accuracy of the deep learning model. Noted that a feature extraction method and a 
high-performance deep learning model is developed for each trial. The reason is that the size of feature vector changes by changing the two pa
rameters. The deep learning models were developed automatically by the proposed neural search method. The figure shows the superiority of 
character-level feature extraction: The minimum RMSE of character-level feature extractors is 9.17 MPa, while the minimum RMSE obtained by the 
word-level feature extractors is 16.42 MPa. Fig. B1 indicates the effectiveness of the proposed parameter setting method elaborated in Section 2.4: The 
minimum RMSE of the character-level feature extractors corresponds to the maximum length of N-grams is 5. By setting this parameter to 5, 90% of the 
sequence of characters and words are covered by the N-grams. 

According to Fig. B1, the sequence of characters is more informative than words in a piece of text. The reason is that textual data in the artificial 
language contain numerical values representing the mixture proportions, particle size distribution, and chemical composition. Each number is a 
sequence of digits. A chemical formula also contains digits and letters. It is concluded that the sequence of characters of a corpus in the artificial 
language is more informative than words. 

The textual data in Eq. (A.6) is used as an example to demonstrate the proposed character-level feature extraction method. Among 9906 unique N- 
grams, five different N-grams with varied lengths are selected: (1) unigram: “5′′, (2) bigrams: “O3“, (3) trigrams: “2O3”, (4) 4-grams: “ D50:”, and (5) 
5-grams: “AL2O3”. Assuming the first five components of the feature vector obtained by the feature extraction method corresponds to the five selected 
N-grams, the feature vector of the textual data is derived as: 

FV = [a1, a2, a3, a4, a5…, ah] (B.1)  

where FV is the feature vector of the textual data, given in Eq. (A.6), determined by the feature extraction method; h is the number of unique N-grams, 
and is equal to 9906; ai denotes the number of occurrences of the i th N-grams; a1, a2,a3,a4, and a5 are the numbers of occurrences of the five selected 
N-grams, respectively; a1 is 20 because the unigram “5′′ is repeated in the textual data for 20 times; a2 is 8 because the bigrams “O3” is repeated for 8 
times; a3 is 6 because the trigrams “2O3” is repeated for 6 times; a4 and a5 are 3 because the 4-grams “D50:” and 5-grams “AL2O3” are repeated for 3 
times. 

Appendix C: Ensemble machine learning 

Fig. C1 illustrates the machine learning pipeline automatically designed by Azure automated machine learning. The pipeline consists of three steps: 
data preprocessing, machine learning algorithms, and ensemble learning. In data preprocessing, the numerical data extracted by the feature extractor 
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is transformed based on two different methods, namely standard scaler, and maximum absolute scaler. The methods transform the features according 
to the following equations: 

ss =
x − m

σ (C.1)  

mas =
x − m

max(x)
(C.2)  

where ss and mas are the transformed values of x, the input variable, according to standard scaler and maximum absolute scaler; m and σ represent the 
average and standard deviation of x; and max(x) is the maximum value of x. 

As shown in Fig. C1, the pipeline includes six machine learning models based on four different machine learning algorithms: extreme gradient 
boosting (XGBoost) (Chen and Guestrin, 2016), extremely randomized trees (Geurts et al., 2006), elastic net (Zou and Hastie, 2005), and light gradient 
boosting machine (LightGBM) (Ke et al., 2017). Finally, weighted voting ensemble combines the predictions from the machine learning models: 
Predictions from the six models were combined with assigned weights to determine the final prediction; voting weights were tuned by the automated 
machine learning method, aiming to maximize prediction performance. 

Table C1 compares the performance metrics between deep learning and ensemble learning models. It indicates that RMSE and R2 of the ensemble 
machine learning model for the test dataset are 10.84 MPa and 0.92, respectively, while the RMSE and R2 of the deep learning model are 9.15 MPa and 
0.96, respectively. It can be concluded that the prediction accuracy of the deep learning model is higher than that of the ensemble machine learning 
model. 
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