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Abstract—Binary decision diagrams (BDDs) have been a huge
success story in hardware and software verification and are
increasingly applied to a wide range of combinatorial problems.

While BDDs can encode boolean-valued functions of boolean-
valued variables, many BDD variants have been proposed, not
just to improve their efficiency, but to manage multivalued
domains (a straightforward extension), multivalued ranges (us-
ing several competitive alternatives), and two-dimensional data
(relations and matrices instead of sets or vectors).

Orthogonally to these extensions, much effort has been spent
on variable order heuristics, an essential aspect that can affect
memory and time requirements by up to an exponential factor.

We survey some of these exciting results and discuss some
fruitful research directions for further work.

Index Terms—Binary decision diagrams, canonicity, discrete
function encoding, variable order heuristics, Markov chains

I. INTRODUCTION

Binary decision diagrams (BDDs) were introduced in 1959
by Lee [28] as a way to encode boolean functions of boolean
variables, but truly had a major impact only after Bryant’s
seminal 1986 paper [9]. Since then, many variants (notably,
zero-suppressed BDDs [40], to encode “sparse” boolean func-
tions, i.e., functions that often evaluate to 0 when some
input variables have value 1) and extensions (multivalued
decision diagrams [24] to manage non-boolean domains;
multiterminal [22] and edge-valued [27] BDDs, to manage
non-boolean ranges) have been defined and applied to fields
from VLSI verification of both combinatorial and sequential
circuits [12] and general symbolic model checking [23], to
various combinatorial problems involving enumeration of, or
search in, very large but finite structured domains [39].

We survey some of the most common BDD variants, de-
scribe our contributions to improve their efficiency and ex-
tend their applicability, and outline several research questions
whose answers, we believe, could further strengthen the impact
of this fundamental data structure.

II. BACKGROUND: BINARY DECISION DIAGRAMS

BDDs are directed acyclic graphs that encode boolean
functions of boolean variables. In the following, we limit
ourselves to ordered BDDs, and in particular we recall three
widely used variants, each of them canonical, i.e., able to
uniquely encode any function f:B” —B, once we impose an
order on the (input) variables {z1,...,xp}.

A. Definitions of OQBDDS, FBDDs, and ZBDD:.
We first introduce the concept of a generic ordered BDD.

Ordered BDDs. An L-level ordered BDD is an acyclic
directed edge-labeled graph with terminal nodes O and 1, at
level O (corresponding to the range of the functions encoded
by BDD nodes), while a nonterminal node p belongs to level
p.lol =k € {1, ..., L} (corresponding to boolean variable x})
and has a 0-child p[0] and a 1-child p[1] satisfying the ordered
property: k > pl0].lvl and k > p[1].lvl. O
The edge to the 0-child (also known as the “low” child) is
drawn with a dashed line, while the edge to the 1-child (or
“high” child) is drawn with a solid line. Without providing a
semantics for long edges (from a node at level k to a node at
level k£ — 2 or below, i.e., skipping one or more levels), the
function encoded by an ordered BDD cannot be defined.

QBDDs [26]. An L-level ordered BDD is a quasi-reduced
BDD (QBDD) if it has no duplicates, i.e., no nodes p and ¢ at
level k > 0 satisfy p[0] = ¢[0] and p[1] = ¢[1] (required of all
DD forms we consider) and no long edges, i.e., if node p is
at level k > 0, p[0].lvl = p[1].lvl = k — 1. Then, the function
fp: B! — B encoded by a QBDD node p at level & is defined
recursively as (let ip.; denote iy, ..., 1):

. - fp[ik](il;kfl) if p.lvl >0
f”(“ﬁ"‘)_{p ifpe{0,1}. O
Thus, only QBDD nodes at level L (called “roots”) encode
functions of all L variables.

FBDDs (Bryant’s BDDs) [9]. An L-level ordered BDD is
a fully-reduced BDD (FBDD) if it has no duplicates and no
redundant nodes, i.e., no nonterminal node p s.t. p[0] = p[1].
The function f, : BZ — B encoded by a FBDD node p at
level k is defined recursively as:

v fprig (i) if pul >0
fp(h:L)—{p if pe{0,1). -

Thus, any FBDD node encodes a function of all L variables
regardless of its level, and the meaning of a long edge is that
the skipped variables, including those above the level of the
node, are don’t-cares. This reduction is effective if it is often
the case that the value of the encoded function does not change
if we flip the value of some variable, as this corresponds to a
redundant QBDD node.



Fig. 1. (a) QBDD, (b) FBDD, (c) ZBDD encoding Zzx2x1Vx3Z2T].

ZBDDs [30]. An L-level ordered BDD is a zero-suppressed
BDD (ZBDD) if it has no duplicates and no high-zero nodes,
i.e., no nonterminal node p satisfies p[1] = 0. The function
f» : B! — B encoded by a ZBDD node p at level k must be
defined recursively with respect to a level [ > k:

0 if >k and (ik+1\/'~-\/il):1
PN f;f(llk) if >k and (ig41V---Vi)=0
fp(ll:l)_ Z]:[;Cl](ilzkfl) ifl=k>0
D if [=k=0. ]

This reduction is effective when the function to be encoded is
sparse, i.e., it tends to be O when some variable has value 1,
as this corresponds to a high-zero QBDD node.

Figure 1 illustrates a specific function, T3rox1 V x3%2771,
encoded as a QBDD, FBDD, or ZBDD. In the following, we
might omit the “Q”, “F”, or “Z” reduction indicator when
we mean that what is being said holds true regardless of the
specific version of BDD.

We observe that multivalued DDs (MDDs) [24] have also
been defined, to encode and manipulate functions of the form
[ X% -xX, — B, where each X}, is a finite set, which can
be assumed to be {0, ..., ny } for some ny, € N. This extension
is straightforward (essentially we allow a multi-way choice at
each node of the diagram, instead of just a binary choice), and
can be simulated using multiple boolean variables to encode
each multivalued variable (nj, + 1 for a one-hot encoding, or
[log, (ny+1)] for a binary encoding), thus we consider it only
occasionally in the remainder of the paper, and stress that, for
most BDD/MDD variants, we can exchange “B” with “M”
and modify the definition accordingly.

B. Canonicity and efficiency

A fundamental property enjoyed by almost all decision
diagrams used in practical applications, and by all the ones
we consider, is that each function that can be encoded by
a decision diagram variant has a unique representation in it,
once we decide a variable order (i.e., a mapping of the L input
boolean variables to the L levels). If all nodes are stored in a
forest using a unique table to avoid duplicates, then function
equality can be decided in O(1) time, since functions are equal
iff they are encoded by the same node (or edge, depending on
the decision diagram variant).

This canonicity property has profound implications not only
for memory efficiency, since multiple nodes encoding the same
function are never stored, but also for time efficiency. This is
because any binary operation on decision diagrams recurses

down by levels and, thanks to the use of a cache, computing
f=/f'©f", where f' and f” are encoded as decision diagram
nodes and © is an elementwise operation (such as A or V in the
boolean case), requires O(|| f'|[ || f”||) time, where [|g]| is the
number of nodes in the decision diagram encoding function g.
Canonicity ensures that ||g|| is minimal (for the given variable
order and the particular decision diagram variant), since there
are no duplicate nodes.

III. IMPROVING BINARY DECISION DIAGRAMS

Each of the three BDD variants we recalled has distinct
advantages: QBDDs have smaller nodes and simpler algo-
rithms, FBDDs use fewer nodes when encoding functions with
many don’t cares, and ZBDDs use fewer nodes when encoding
functions that mostly evaluate to O if variables have value 1.
In practice, researchers rarely choose QBDDs, assuming that
the node savings of FBDDs or ZBDDs more than offset the
need for slightly larger nodes and more complex algorithms
(although we discuss in Section VI how, in certain classes of
applications, QBDDs and FBDDs always coincide). However,
having to choose between FBDDs and ZBDDs is unsatisfying
for two main reasons. First, users may not have a good a
priori intuition of which one will work better for their specific
application. Second, and most importantly, just because the
number of (redundant) nodes removed by using FBDDs may
be greater than the number of (high-zero) nodes removed by
using ZBDDs, this does not mean that we should not try to
remove both kind of nodes.

Two recent approaches achieved this goal. In 2017, Van
Dijk introduced tagged BDDs (TBDDs) [37], where either
FBDD reductions are implied from the source node to a
tag level associated to an edge, then ZBDD reductions are
implied below that, or ZBDD reductions are implied first
and FBDD reductions second. In 2018, Bryant introduced
chain-reduced FBDDs (CFBDDs) and chain-reduced ZBDDs
(CZBDDs) [10], which respectively allow FBDD nodes to
encode chains of high-zero nodes, or ZBDD nodes to encode
chains of redundant nodes. In the CFBDD variant, each node
specifies two levels, the first one indicating the level at which a
chain of high-zero nodes would have started (analogous to the
level of an ordinary BDD node), the second one indicating
where the chain would have ended, so that edges leaving a
CFBDD node have again the fully-reduced interpretation. In
the CZBDD variant, the meaning of edges is instead as in
ZBDDs, and nodes encode chains of redundant nodes.

However, both tagged and chained proposals require larger
nodes (compared to FBDDs and ZBDDs, Van Dijk’s nodes
store three levels instead of one, Bryant’s nodes store two
levels instead of one). More importantly, the resulting BDD
size depends on the choice (FBDD-first vs. ZBDD-first for
tagged, CFBDDs vs. CZBDDs for chained), and choosing
between them is arguably even harder for a user than choosing
between FBDDs and ZBDDs.

We have more recently addressed this problem in a more
efficient and general way by explicitly attaching a “reduction
rule” to each edge, to specify how to interpret skipped levels.



We did so first in 2019 with the edge-specified-reduction
BDDs (ESRBDDs) [6], which allow one of three reductions:
an edge with reduction X means that the skipped variables
are don’t cares along that path, it arises from eliminating a
series of redundant nodes (FBDD semantic); an edge with
reduction Hy means that the function has value O if any of
the skipped variables has value 1, it arises from eliminating a
series of high-zero nodes (ZBDD semantic); finally, an edge
with reduction Ly means that the function has value 0 if any of
the skipped variables has value O (this is a natural alternative to
the Hy reduction, to eliminate low-zero nodes, thus is effective
when encoding functions that mostly evaluate to 0 if variables
have value 0). As short edges do not need a reduction, we
say they have reduction N, which is really a shorthand for
the set {X,Hp, Lo}, since these three reductions are equivalent
for short edges. In an implementation, ESRBDDs require only
four additional bits per node, yet allow more and more flexible
reductions than either tagged or chained BDDs. Theoretically,
ESRBDDs never require more nodes than FBDDs or ZBDDs,
never more than twice the nodes of CFBDDs or CZBDDs,
and never more than thrice the nodes of TBDDs; on the
other hand, all these other variants can require O(L) times as
many nodes as ESRBDDs. Experimentally, ESRBDDs were
always either the smallest (often by a factor of 2) or the
second smallest (and less than 1% larger than the smallest)
among FBDDs, ZBDDs, tagged BDDs, or chained BDDs,
on a variety of benchmarks: encoding dictionaries of English
words or passwords, combinatorial circuits, or the state space
of safe (1-bounded) Petri net models taken from the MCC
competition [I1]. Experiments indicate that ESRBDDs have
lower computation times as well, confirming that reducing
BDD sizes leads to savings in both memory and time.

Then, in 2022, we extended ESRBDDs by adding (output)
complement flags and further reduction options, resulting in
the CESRBDDs [5]. The additional reductions are L; and Hy,
which are the complement of Ly and Hy, in the sense that they
indicate that the value of the function is 1 (instead of 0) if
any of the skipped variables are low or high, respectively.
These additional reductions are not only naturally inspired
by symmetry considerations, but are also required to achieve
memory and time efficient BDD operations in conjunction
with the use of complement flags. A complement flag set
to 1 associated with an edge pointing to node ¢ indicates
that the function f; should be complemented. This avoids
the need to store node g encoding the complement f, of a
function f,, if node g is already present, and potentially halves
the number of required nodes. However, these savings can
only be realized with canonicity and, while complement flags
were introduced in 1978 [2], rules to achieve canonicity for
QBDDs or FBDDs with complement flags were discovered
only ten years later [25], [29]. One way to ensure canonicity
is to require a complement flag set to 0 on 0-edges (thus
complement flags require only one additional bit per node, to
store the complement flag of the 1-edge, and f,(0,...,0) =0
for any node ¢), and to eliminate terminal node 1 (edges to
terminal 1 become complemented edges to terminal 0).

In addition to reducing the number of nodes (thus memory
requirements), complemented edges also have the potential to
decrease the runtime requirements, both because fewer nodes
mean more potential cache hits, and because computing the
BDD encoding f can be done in O(1) time (by simply flipping
a complement flag) instead of in O(||f]||) time (by traversing
the BDD and building a second BDD exactly equal to the one
for f, except that the terminals O and 1 are exchanged).

Since CESRBDDs appear to be even more competitive
(from slightly better to much better) than ESRBDDs and all
other BDD variants discussed so far, on all the benchmarks
we tried [5], we are currently investigating and implementing
further reduction possibilities, ensuring that canonicty is still
preserved (this was already a major challenge to overcome for
CESRBDDs). Furthermore, we are also exploring theoretical
comparisons between BDD variants, such as what is the
worst case or average case size for each BDD variant when
encoding a function of L variables. This question can be
tackled by a brute approach only up to L = 5, since already
for L = 6, the number of possible functions to consider,
22° = 264 &~ 1.8 x 109, is too large to even just enumerate
them; thus, we are investigating analytical approaches from
first principles to answer this question for large values of L.

IV. ENCODING NON-BOOLEAN FUNCTIONS

BDDs can be easily extended to encode non-boolean valued
functions of the form BY — S by allowing an arbitrary
set S of terminal nodes instead of just {0,1}. The multi-
terminal BDDs [22] are then a natural extension of BDDs
and can be defined analogously to the QBDDs, resulting in
MTQBDDs, where edges never skip levels, or in MTFBDDs,
where redundant nodes are eliminated; in either case, the
terminal nodes are the elements of S, at level 0. Indeed, there
is no restriction on &, thus it can even be infinite (e.g., N
or R), since only a finite set of at most 2L elements from S
can be reached from any given root (i.e., any function of L
boolean variables can at most have 27 different valuations).
We observe that an analogous extension of ZBDDs to encode
multivalued functions is also in principle possible, but, to the
best of our knowledge, it has not been proposed, probably
because the type of applications where this extension would
be needed do not lend themselves to an efficient “zero-
suppressed” encoding.

However, a multi-terminal approach is not necessarily the
most efficient in practice; in fact, it rarely is. An alternative
approach consists then in attaching values to the edges of
the BDD, so that the encoded function is evaluated on input
(i1,...,i) by summing the values encountered along the
edges, including the value o on the root edge, until reaching
the only terminal node, €2, which carries no value. These are
the EVBDDs of [27], which can encode any function BY — Z,
and achieve canonicity by requiring that the value associated to
the 0-edge of each nonterminal node be 0; this in turn implies
f(0,...,0) = o, and requires storing only the value associated
to the 1-edge of each terminal node, which can be any value
in Z. As originally defined, EVBDDs forbid redundant nodes



(which have both outgoing edges pointing to the same node
with value 0), so they should be called EVFBDDs, while
the term EVQBDDs should be used to indicate the EVBDD
version that retains all redundant nodes.

An important application that requires storing and comput-
ing over integer functions is the building the distance function
(of each reachable state from an initial state i;,;;) in system
analysis or model checking: d(iq,...,4,) = “the minimum
number of steps required to go from i, to i = (i1, ...,i1)".
However, § is normally a partial function, since the distance
of any unreachable state is undefined, which is algorithmically
equivalent to being (positive) oo, and this reveals an inherent
limitation of the original EVBDD definition: canonicity re-
quires that the path corresponding to iy, = 0, ...,7; = 0 from
a nonterminal node at level k to £ be labeled with 0 values,
so no state with 7 = 0,...,49; = 0 can be unreachable. In
other words, EVBDDs can encode all functions of the form
BL — Z, but only some functions of the form BY — ZU{cc},
or even just BY — N U {co}, which would suffice because
distances are non-negative.

We then defined an alternative form of EVBDDs, called
EV*tBDDs (actually, EVTMDDs [19], as we assume non-
boolean domains, but that is a separate extension), which can
encode any partial function of the form BL — Z U {oo} by
imposing different canonicity rules: the values associated to
the edges leaving a node are all non-negative (thus only the
root edge value o can be negative), at least one of them must
be 0 (thus o equals the minimum value of the function), and
edges with value oo must point to {2 (since, once we add oo to
the sum of the values seen so far, the value of any further edge
becomes irrelevant). Again, both quasi-reduced, EVTQBDDs,
or fully-reduced, EVTFBDDs, versions can be defined.

It can be shown that the number of nodes in an EVTBDD
can never be larger than that of the equivalent MTBDD, and
it is often smaller (up to exponentially so), even when encod-
ing partial functions. However, storing edge values requires
slightly more memory: since one of the two edge values
must be zero, it is enough to store one bit plus one integer
per node, thus just one more bit than EVBDDs (in practical
implementations, the value oo is best encoded by pointing to
a special “oo-node” with an edge value of 0, rather than by
pointing to Q) with an “co-edge-value”).

A third approach to encode non-boolean functions has not
been explored much in the literature, but should be mentioned:
given f : BY — S, we can store the collection of disjoint sets

{fladaes, flad = {(iy,....ip) : flir,.yig) = a} # 0}

using a “forest” of BDDs, with as many roots as the number of
different values the function actually takes for at least one tuple
in the domain. Intuitively, this looks like “flipping the MTBDD
on its head”, in the sense that now there are as many BDD
roots as there are reachable MTBDD terminals. Surprisingly,
the overall size of the BDD forest is not comparable to that
of the MTBDD encoding the same information, meaning that
we have been able to show that either approach may be best
(i.e., require fewer nodes), depending on the function being

encoded. We suspect that the same holds even considering
EV*BDDs instead of MTBDDs. One disadvantage of a BDD
forest is that evaluating f(é1,...,41) requires evaluating each
fl9l(iy,...,iz) sequentially in some order, until we find the
one that evaluates to 1 (of course, a parallel evaluation is
also possible, if the hardware is available and the goal is to
minimize evaluation time, not total CPU time).

A fundamental question is then how to characterize a
priori what will be the best encoding among MTBDDs,
EVBDDs, EVTBDDs, and forests of BDDs, for certain classes
of functions, either in terms of nodes or, better, in terms of
memory (so that MTBDDs, which employ smaller nodes, have
a fighting change against EVBDDs and EVTBDDs, which can
never have more nodes).

V. ENCODING RELATIONS AND MATRICES

Model checking is an important application where the use of
BDDs has been quite successful, allowing verification of prop-
erties on discrete-state, discrete-event models with huge num-
bers of states [13]. A BDD can be used to encode a set of states
X cH{o, 1}L, by encoding the boolean characteristic function
of the set fr, where fx(i1,...,i5) = 1 iff (iq,...,i1) € X.
The behavior of the model can be captured by a transition
relation, as a subset of all pairs of states. Again, this can
be encoded as a characteristic function, this time over 2L
variables, where fg(i1,...,%L,1],...,47) evaluates to one iff
the model can change from state (i1, ..., i1,) to state (i}, ...,i7)
due to some event. For most practical models, an interleaved
variable order, e.g., (i1,1}, ...,%r, ¢} ), leads to a much smaller
BDD than the state pair order (i1, ...,%r, 4}, ..., 97, ). Intuitively,
this is because the boolean variables correspond to model state
variables, and the new value of a state variable after an event
occurs tends to depend strongly on its previous value.

Even using the interleaving heuristic, building a single,
monolithic transition relation for a model can be time con-
suming and produce a large BDD. Some research efforts
over the years have addressed this problem. The transition
relation is typically partitioned into several relations, where
the overall relation is the disjunction or conjunction of the
smaller relations [I1]. For asynchronous systems, a natural
partitioning is to use a relation for each model event; if the
choice of which event should occur among the set of enabled
model events is nondeterministic (or probabilistic), the overall
relation is the disjunction of the relations for each event.

In many types of models, an event typically affects,
or depends on, only a few of the state variables. If a
state variable xj is independent of an event, then the
next state will never be affected by xi, the enabling
of the event will not depend on zj, and =z, will re-
main unchanged when the event occurs. Formally we have
fe(iv, iy, . ig, i, "L?;L’ i) = felin, i), sk, Uy oy ir,97)
and fe(i1,4), ..., %, tky -.siL,47) = 0 where f, is the char-
acteristic function for the transition relation of event e. This
leads to a distinct identity pattern in the BDD, illustrated in
Fig. 2(a) for an event that is independent of variable xs. If
unprimed and primed levels are merged together into a matrix
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diagram (MxD) node [31] (2 x 2 for BDDs, n xn for MDDs),
then the identity pattern corresponds to an identity matrix: all
edges along the diagonal are to the same node, and all non-
diagonal edges are to terminal node O, see Fig. 2(b). Matrix
diagrams thus use an identity reduction, where identity pattern
nodes are eliminated instead of redundant nodes, which would
correspond to a full matrix (state variable ¢, can change to any
value) and are unlikely to occur in most models. In practice,
though, an L-level matrix diagram can be implemented as
a 2L-level BDD (or MDD) using a special fully-identity
reduction rule [20], where unprimed levels eliminate redundant
nodes, and primed levels eliminate “singleton nodes” whose
children are all to O except for a single v-child, but only when
the node itself is the v-child of a node at the the unprimed
level immediately above. For example, in Fig. 2(a), nodes ¢
and r are singleton nodes, where ¢’s 0-child, and r’s 1-child,
are nonzero. Since ¢ is the 0O-child of p, and r is the 1-child
of p, nodes ¢ and r would be eliminated, causing updated the
p to become redundant (since both of its edges now point to
t); node p, belonging to an unprimed level, would then be in
turn eliminated. The use of identity reductions lead to more
compact transition relation encodings, and can be exploited by
algorithms for state space generation and model checking, in
particular saturation [15], [14], [21], which has been shown
to be often many orders of magnitude better in terms of
both memory and runtime than simpler breadth-first symbolic
iterations when analyzing discrete-state asynchronous systems.
The idea of identity patterns can be extended to other
common patterns, for example i) = i;, + ¢ for a constant c.
This is more relevant for the case of non-binary state variables
and for generating reachable states encoded as MDDs. The
use of implicit nodes [7] allows for small, fixed-size relations,
compatible with BDD and MDD, even when the model state
variables are unbounded (or, more likely, are bounded but
the bounds are not known). Each implicit node is associated
with a single state variable, and contains enabling and update
expressions in terms of that state variable (see Fig. 2(c)).
For stochastic model checking, instead of a transition re-
lation we need to encode a stochastic process, typically a
continuous-time Markov chain (CTMC). This can be viewed

as changing the encoded function f from a characteristic
function of the form B2~ — {0, 1} to a real-valued function of
the form B2 — R, where f returns the non-negative transition
rate from one state to another in the CTMC. Similar to the
previous discussion in Section IV, this can be done using
several real-valued terminal nodes (i.e., using MTBDDs or
MTMDDs), or by attaching real values to the edges. However,
unlike EVBDDs and EVYBDDs, which sum integer edge
values along a path, for encoding the rate matrix of a CTMC
it is better to multiply real edge values along a path, in part
because the identity reduction can still be utilized. This gives
rise to matrix diagrams with edge values that are multiplied
along a path (e.g., [17]), which again can be implemented as
(EV*BDDs or) EV*MDDs [18].

Of course, storing large CTMCs compactly using EV*BDD
or EV*MDDs is only the beginning, as one normally wants
to compute the transient or steady-state probabilities for the
CTMG,; this is conceptually a vector 7 encoding a function
of the form BY — [0,1]. In general, 7 does not have a
particularly compact encoding as an EV*MDD, but we have
been able to show that it does, under certain product-form
conditions, leading to exact fully-EV*MDD-based extremely
efficient solution of enormous CTMCs when these conditions
hold [32], [38]. More interestingly, the same fully-EV*MDD-
based approach can be used when the product-form conditions
“don’t quite hold”, resulting in a fixpoint style approximation,
but more research is needed toward quantifying (bounding)
the approximation error in this case.

VI. VARIABLE ORDER HEURISTICS

It is well known that the variable order, i.e., the mapping
of the L domain variables to the L levels of a BDD, can
have a dramatic impact on the size of the encoding for given
function: A few “good” functions may have a linear (or low-
degree polynomial) size encoding for any variable order; most
functions are “bad” and have an exponential size encoding for
any variable order; however, many functions of interest may
have an encoding size that ranges from linear to exponential
depending on the variable order, or at least polynomial with a
degree that depends on the variable order.

It is also well-known that finding an optimal variable order
is NP-hard [8], thus much research effort has been spent
on fast variable-order heuristics that aim at “good” orders
rather than optimal orders that minimize the BDD size. These
heuristics can be classified as static or dynamic, depending on
whether they propose a variable order prior to building any
decision diagram for the problem at hand (thus they attempt to
exploit structure in the high-level description of the problem),
or whether they periodically attempt to improve the current
variable order based on the current structure of the BDD.
Of course, it is possible to employ both a static heuristic
that attempts to start with a good order, and then a dynamic
heuristic to further improve the order as the BDDs are being
manipulated. In practical applications, several BDDs are be
stored in a single BDD forest, all with the same variable order;
this makes the concept of optimal variable order even more



elusive, as different orders could be optimal at different stages
of the computation.

The most commonly used dynamic variable-order heuristic
is sifting [34], where each of the L variables is sequentially
moved to each of the other L — 1 positions, keeping track of
the resulting BDD size. This is usually achieved by swapping
a pair of adjacent variables at a time, an operation requiring
only time proportional to the number of nodes at the two
levels being swapped, even for FBDDs, which may have edges
skipping over either or both levels. Of course, this approach
is a greedy heuristic that overall explores only O(L?) of the
possible L! orders, so it is not guaranteed to find a global
optimum. Furthermore, the cost of each sifting attempt is still
quite high, so that it often happens that, while peak memory
consumption may be lowered, the overall runtime may sub-
stantially worsen compared to not using sifting altogether.

One of the advantages of sifting (or any other dynamic
variable-order heuristic) is that it is application-agnostic: it
only operates on the BDD without needing to know the mean-
ing of its variables, but this is also its greatest weakness. Static
variable-order heuristics offer instead the possibility of finding
a good order in a more informed way, by considering how
the variables describing the problem at hand are interrelated.
For example, static heuristics for VLSI combinatorial circuits
attempt to keep variables (corresponding to inputs and gate
outputs) feeding to the same gate close to each other [3]; static
heuristics for discrete-event models such as Petri nets [33]
attempt to keep variables (Petri net places) that are input
or output for the same event (Petri net transition) close to
each other [16], [36], and so on. Of course, not all variables
that should be close to each other can be, because each
input may be connected to many gates of the circuit, or each
place may be connected to several transition in the Petri net.
This, too, becomes an NP-hard problem (related to finding a
minimum sum-of-column-spans in a boolean matrix through
row reordering), but it applies to a much more compact input
(a circuit or a Petri net, instead of the large BDD encoding
their possible states): relocating variables in a tentative order
for a circuit or a Petri net is a much faster operation than
swapping variables in a BDD.

Our recently proposed iganx metric [4] performs very well
to guide a simulated annealing search for a good order of
the places of a Petri net subject to a set of linear invariants,
resulting in generally excellent static variable orders computed
at relatively low cost. Nevertheless, this is of course a heuristic
approach, so improving it by taking into account, for example,
the domains of the (non-boolean) variables, i.e., the possible
number of tokens in each place, instead of just considering
their position in the order, is a challenge worth exploring.

Incidentally, this work on encoding sets of reachable states
for Petri nets has led us to the discovery that, for this type
of problem, the QBDD and the FBDD encoding coincide
perfectly if all places are part of at least one linear invariant:
the QBDD cannot contain redundant nodes, thus there is no
reason to use FBDDs which require slightly larger nodes and
slower algorithms, but offer no advantages for this application.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

It is indisputable that BDDs have enabled great progress in
the practice of digital design, hardware and software verifi-
cation, and combinatorial search and optimization in discrete
systems. This paper surveyed the key ideas in BDDs and some
successful research efforts that have extended their efficiency
and applicability.

We can summarize the common features of all the BDD
variants we considered as follows: they are directed, acyclic
graphs arranged by levels; they are a canonical representation;
duplicate nodes at a particular level are merged together
into a single node; operations are typically recursive, and
require computation time that depends (usually linearly) on
the number of nodes in the graph. The various forms of
BDDs attempt to reduce storage and computation costs for
particular applications, by lowering the number of nodes
required to encode functions seen in practice. So far, this has
been achieved by two main approaches. The first is to assign
different meanings to the long edges (e.g., QBDDs vs. FBDDs
vs. ZBDDs), so that node patterns that hopefully appear often
can be eliminated entirely. The second is to assign information
to the graph edges to modify the function encoded by the target
node in some way (e.g., a complement bit complements the
function, an integer edge value in EVBDDs adds an integer
constant to the function); this essentially allows a single node
to encode a set of functions, by encoding one representative
from the set. Thus, these variants attempt to make the graph
smaller either by removing the need to store nodes entirely,
or by increasing the amount of node sharing in the graph.

Potential for further BDD improvements can continue these
efforts in at least three directions. The first direction is to
explore other node patterns that can be eliminated entirely
(e.g., FBDDs vs. ZBDDs vs. identity reduced BDDs). The
second direction is to explore different edge attributes for
increased node sharing. Two ideas that have already been
proposed along these lines, but have not yet gained much
traction, are input complement bits and variable shifters, both
proposed in [35]. Each of these edge attributes modifies the
input variable associated with the non-terminal node pointed
by the edge; the first one complements the variable (i.e.,
exchanges the node’s children), the second determines a node’s
variable based on summing edge attributes along the path in
the BDD (e.g., allowing functions zsx3 and xzgxg to share the
same node). The third direction is to combine two or more
approaches (from the first or the second directions, or both)
into a single forest simultaneously. The challenge in all of
these, in particular the third direction, is to develop rules that
maintain canonicity. Different BDD features, even those that
admit canonicity by themselves, can interact in interesting and
subtle ways that pose challenges to canonicity. As an example,
combining FBDDs and ZBDDs together allows two different
ways to represent the constant function f = 0: a long “FBDD”
edge to terminal O, or a long “ZBDD” edge to terminal 0.
Thus, in ESRBDDs one of these edges must be disallowed, and
it suffices to choose one arbitrarily (but consistently) [6]. As



another example, ZBDDs (which eliminate high-zero nodes)
and complement flags cannot be combined efficiently except
in BDD variants that are able to eliminate both high-zero and
high-one nodes, because the complement of a high-zero node
is a high-one node and vice versa [5].

Finally, we note that developing new variants of BDDs
usually also requires developing new BDD algorithms to
exploit the new BDD features. There are a number of large
technological gaps here, the most notable one being static
variable ordering heuristics: all current such heuristics are
designed for FBDDs (we do not know of any heuristic that
specifically targets characteristics of other BDD variants).
Another important gap is the development of BDD libraries:
while several FBDD libraries, and some ZBDD libraries, are
widely available in the public domain, the more advanced
BDD variants require complex algorithms, thus their im-
plementations tend to lag behind the most recent research
advancements; yet, industrial acceptance of advanced BDD
technologies requires extensive support of high-quality well-
documented libraries.
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