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Abstract. Efficient manipulation of binary or multi-valued decision dia-
grams (BDDs or MDDs) is critical in symbolic verification tools. Despite
the applicability of MDDs to real-world tasks such as discovering the
reachable states of a model, their large demands on hardware resources,
especially memory, limit algorithmic scalability. In this paper, we focus
on memory-constrained algorithms that employ a novel O(m logn)-time
under-approximation technique for MDDs, where m and n are the num-
ber of MDD edges and nodes, respectively. The effectiveness of our app-
roach is demonstrated experimentally by a reduction in peak memory
usage for the symbolic reachability computation of a set of Petri nets.

Keywords: decision diagrams · under-approximation · memory
constraints

1 Introduction

Multi-valued decision diagrams (MDDs) are a compact symbolic representation
of discrete functions over finite domains, such as those used by verification algo-
rithms to validate a system’s intended properties, where we need to manipulate
large propositional formulae. To this end, reachability analysis is often the first
step in the study of a discrete-state system. The most basic MDD-based method
to discover the reachable state space is symbolic breadth-first search (BFS),
which finds new reachable states by applying the next-state function to the set
of currently-known reachable states, until it finds a fixpoint (until it cannot find
any new state). Such approach is highly effective, but it cannot complete reach-
ability analysis for many finite but large systems [8,9]. In other words, “exact”
formal methods approaches always provide a proof or counterexample for a sys-
tem property by exhaustively searching through all potential behaviors given
enough resources, but “under-approximation” approaches may deliver the same
result within given resource limitations.

Ravi et al. proposed three approximations, based on the density of each
node p (number of minterms for node p divided by number of nodes reachable
from p, see Sect. 2) in a fully-reduced binary decision diagram (BDD). The first
approach [8] computes each node’s density, finds a replacement node (top-down,
one of its children, grandchildren, or terminal 0, in that order), and applies this
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replacement based on its impact (number of minterms that would be removed
and a lower bound on number of nodes that would be eliminated). Its runtime is
quadratic in the BDD size. The second approach [9] (heavy branch subsetting)
considers the number of minterms in the node’s children, and deletes the child
with the fewest minterms until the BDD size drops below a given threshold. Its
runtime is linear in the BDD size, but it might create a string of nodes at the top
of the BDD, each with one child set to 0. The third approach [9] (shortest-path)
favors short paths, since they encode more minterms, by assigning a path-length
to each node v (sum of the length of the shortest paths from root to v and from v
to terminal 1), and deleting nodes with largest path-length. This performs best
when the BDD has many paths of various lengths. Up to now, this has been the
state of the art on BDD under-approximation.

An important application where this under-approximation can be effectively
used to answer questions about the original set is partial model checking. For
example, suppose we are generating the state space of a system to find out
whether it can experience a deadlock. If, at some point, we have generated a
(partial) set of reachable states X encoded in an MDD, but we are running out of
memory, we can eliminate some states in X , resulting in a set X ′ ⊂ X , hopefully
with much smaller memory requirements (many fewer MDD nodes). Then, we
can restart the state space exploration from X ′ and, if at any point we find a
deadlock state s, we know that the system would be able to reach this deadlock.
Furthermore, if each under-approximation X ′ ⊂ X is chosen with care (e.g.,
ensuring that the initial state of the system is retained), then the entire reachable
state space can still be reached from X ′, given enough iterations. If instead we
do not find a deadlock, we cannot conclude that the original system is deadlock
free, unless we are sure that, upon termination, the set X of encoded states is
not a strict under-approximation, i.e., it is actually the entire state space. This
may happen because different reachability algorithms may build the same final
set going through different sequences of MDDs, some much more compact than
others. This is the reason for the success of the saturation algorithm [4].

The rest of this paper is organized as follows. Section 2 gives background on
MDD under-approximation and decomposition. Section 3 introduces our MDD
under-approximation approach, Sect. 4 shows how to improve its speed, and
Sect. 5 uses it for state-space generation. Section 6 reports experimental results
on a set of Petri net benchmarks. Finally, Sect. 7 concludes and discusses future
work.

2 Preliminaries

An L-level quasi-reduced multi-valued decision diagram (MDD) is a directed
acyclic edge-labeled multi-graph where:

– Level 0 can only contain the two terminal nodes 0 and 1.
– Each nonterminal node p belongs to a level p.lvl = k ∈ {1, ..., L} and has nk

outgoing edges labeled by distinct elements of Sk = {0, ..., nk − 1}, pointing
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to nodes at level k − 1 or to 0, but not all its outgoing edges can point to 0.
If the edge labeled by ik points to a node q, we write p[ik] = q.

– There are no duplicates: if p.lvl =q.lvl =k and p[ik]=q[ik] for all ik ∈Sk, then
p = q.

(we recall that an alternative canonical version of MDDs, fully-reduced MDDs,
forbids both duplicate and redundant nodes, i.e., any nonterminal node p such
that all its outgoing edges point to the same node, p[0] = p[1] = · · · = p[nk −1]).

MDDs encode functions of the form SL:1 = SL × · · · × S1 → B. Specifically,
node p at level k encodes fp : Sk:1 = Sk × ... × S1 → B, defined recursively by

fp(ik, ..., i1) =

{
p if p.lvl = 0
fp[ik](ik−1, ..., i1) if p.lvl > 0.

As defined, an MDD can have multiple roots at level L, each encoding a
“function of interest” (except for the constant function 0, which is encoded
by 0), but we focus on MDDs encoding a single function, with one root node
r� at level L, with the understanding that the MDD has no other roots unless
stated otherwise, i.e., “MDD r�” means “the MDD rooted at r�”.

Given node p at level k > 0, we recursively define the node reached from p
through sequence α = (ik, ik−1, ..., ih+1) ∈ Sk:h+1, for L ≥ k ≥ h ≥ 0, as:

p[α] =

⎧⎪⎨
⎪⎩

p if α is the empty sequence
0 if α = (ik, β) and p[ik] = 0
q[β] if α = (ik, β) and p[ik] = q �= 0.

We can use an MDD r� to encode a set of states. Let the substates reaching
node p, or “above” p, and those encoded by p, or “below” p, be respectively
A(p) = {α ∈ SL:k+1 : r�[α] = p} and B(p) = {β ∈ Sk:1 : p[β] = 1}. Thus, A(p) is
the set of paths from r� to node p and B(p) the set of paths from p to terminal 1.
Then, the set of states “traversing” p is S(p) = A(p) × B(p). As a special case,
the set of states encoded by the MDD r� is S(r�) = B(r�) = A(1) = S(1).

Finally, let N (p) be the set of nonterminal nodes reachable from p at level k,
N (p) = {q : k ≥ q.lvl > 0 ∧ ∃α ∈ Sk:q.lvl+1, p[α] = q}. As a special case, N (r�)
is the entire set of nonterminal nodes in the MDD.

Letting M(k) be the set of MDD nodes at level k ∈ {1, ..., L}, we can parti-
tion the states encoded by MDD r� according to which level-k node they traverse:
for any k ∈ {1, ..., L}, we have S(r�) =

⋃
p∈M(k) S(p) =

⋃
p∈M(k) A(p) × B(p).

We assume that the nonterminal nodes of the MDD, N (r�) =
⋃L

k=1 M(k),
are stored in a unique table organized by level. This allows us to access the nodes
at specific level efficiently and avoid node duplication.

an MDD rooted at node r∗ can encode a large, even enormous, set of states,
but its memory efficiency, measured as the number of states it encodes divided by
the number of nodes it uses to encode them, |S(r∗)|/|N (r∗)|, is highly dependent
on the specific set being encoded. For example, the full set SL:1 requires only a
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chain of L nonterminal nodes: the node at level k has all its nk outgoing edges
pointing to the node at level k − 1, or terminal 1 if k = 1; this is the same
number of nodes required to encode a single state (iL, ..., i1): in this MDD, all
the outgoing edges of the node at level k point to terminal 0, except for the edge
labeled with ik, which points to the node at level k − 1, or terminal 1 if k = 1.
Furthermore, it is well-known that the size of the MDD encoding a given set can
be highly dependent on the chosen variable order [2], that finding the optimal
variable order is NP-hard [1], and that some particularly “difficult” subsets of
SL:1 require an exponential number of nodes for any variable order [2].

One approach explored by researchers to reduce memory consumption (mea-
sured in number of nodes) is to under-approximate a set by encoding most of its
elements (states), but with substantially fewer nodes. More precisely, we formu-
late a threshold version of the under-approximation problem as:

Given MDD r� and threshold T ∈ N, find MDD s� such that |S(s�)| is
maximum among all MDDs t� satisfying |N (t�)| ≤ T and S(t�) ⊆ S(r�).

3 Our under-approximation Algorithm

For any nonterminal node p, let its unique-below-set be the set of nonterminal
nodes that can be reached from the root r� only by first traversing p:

Ub(p) = {q ∈ N (p) : ∀α, r�[α] = q ⇒ ∃α′, α′′, α = α′ ·α′′ ∧ r�[α′] = p} ⊆ N (p).

Ub(p) always includes p and has the property that, if we remove p from the
MDD (by redirecting to 0 any edge pointing to p), the remaining nodes in Ub(p)
become unreachable from r�, thus they, too, must be removed from the MDD.

Analogously, let the unique-above-set of p be the set of nonterminal nodes,
at levels strictly above p, that can reach 1 only by traversing p:

Ua(p) = {q∈N (r�) : ∀α, q[α]=1 ⇒ ∃α′, α′′, α=α′ ·α′′ ∧ α′ �= ε ∧ q[α′]=p}.

Again, if we remove p from the MDD, all nodes in Ua(p) must be removed from
the MDD as well, as they encode the empty set.

Intuitively, the key idea in our under-approximation is to select a node p� and
remove the nodes in U(p�) = Ub(p�)∪ Ua(p�) from the MDD (by redirecting to 0
any edge pointing to them). Then, the resulting MDD s� satisfies S(s�) ⊂ S(r�)
and |N (s�)| < |N (r�)|, since |N (r�)| ≥ |N (s�)| + |U(p�)|. After this step, we
test whether |N (s�)| ≤ T , and continue removing nodes in this manner if this
is not yet the case. It is then essential to devise a good and efficient strategy to
pick node p� at each iteration. We do so by defining the density of node p as

Density(p) = |S(p)|/|U(p)|,

and letting p� be a node with the smallest density (it may not be unique).
The approach must ensure that, by eliminating the selected node p�, the

resulting MDD encodes a nonzero function, which would be an obvious but unde-
sirable answer to any under-approximation problem. By checking that p� is not
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Fig. 1. An MDD where the root is the node with the lowest density.

Fig. 2. A portion of an MDD where eliminating p� produces a duplicate node.

the only node at its level, the algorithm ensures that the resulting MDD encodes
a nonzero function. This is an issue because in some cases, the lowest density
nodes in an MDD could those that are the only ones on their level (including
r�), with density |S(r�)|/|N (r�). Figure 1 shows such an MDD, together with
the density of each node. The root node p1 in this MDD is the (only) node with
the lowest density. Our algorithm then avoids removing a node if it is the only
one at its level (since doing so would remove all nodes and all states).

We wrote |N (r�)| ≥ |N (s�)| + |U(p�)|, not |N (r�)| = |N (s�)| + |U(p�)|,
because, after removing U(p�), some nodes with edges pointing to p�, once mod-
ified to point to 0 instead, might duplicate existing nodes, in which case they
are merged with them (this in turn may make nodes pointing to them become
duplicates as well, and so on). The MDD of Fig. 2 illustrates this situation.

Ideally, we would compute the number of nodes that become duplicates and
are eliminated when removing each candidate node p, so that we could know
beforehand the exact size of the resulting MDD if we removed U(p), but this is
too computationally expensive (essentially, it amounts to performing the removal
of p and observing its effect on the higher levels). Thus, we instead call a recursive
algorithm to eliminate these duplicate nodes after the fact, so that |U(p�)| is just
a lower bound on the number of nodes actually eliminated by removing p�, and
our under-approximation algorithm is not guaranteed to be optimal.
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The algorithm in Fig. 3 detects and removes the duplicate nodes created
by the removal of p�, to ensure that the resulting MDD is canonical. It must
be called as RmDuplicate(p�), and it removes p�, U(p�), and any resulting
duplicate node. Nodes in Ub(p�) are deleted by disconnecting p�, while nodes
in Ua(p�) and the resulting duplicate nodes are eliminated by RmDuplicate.
Algorithm RmDuplicate uses Map, a mapping of the identifiers of the nodes
at level k� = p�.lvl , initialized to Map(q.id) = q.id except for Map(p�.id) = 0:

∀q ∈ N (r�), q.lvl = p�.lvl , Map(q.id) =

{
0 if q = p�

q.id otherwise.

RmDuplicate moves through the MDD levels, from k�+1 to L because, if
node p is mapped to 0, all of its ancestors should be updated. At level l, it checks
each node q at that level and updates it if any of its children is mapped to 0 or
any other node (line 12). If the children of node q change, the algorithm checks
to see if the modified node q duplicates a node already in the unique table. If the
unique table already contains a node q′ equal to the modified node q, any node
at level l + 1 pointing to q should point to q′ instead (line 19); otherwise, a new
node qnew should be created, and any node pointing to q should now point to
node qnew (line 22). Either way, the required change is recorded by updating the
entry for q in the Map for level l + 1. After RmDuplicate completes, Map for
level k� contains p�.id , but the unique table does not include p�. Map(p.id) is
p.id for each nonterminal node p.id if and only if all of its nonterminal children
are in the unique table level k − 1; otherwise, node p is removed or modified
because at least one of its children is removed or modified. Therefore,

Map(p.id) =

{
p.id if ∀i ∈ Sk : p[i] ∈ M(k − 1)
0 or {q.id : q ∈ M(k)} otherwise.

Eliminating duplicate nodes induced by removing p� requires O(N (r�)) time.
RmDuplicate is a specialization of Bryant’s reduction algorithm [2]: we achieve
the same effect, but require a smaller cache (Map) because we proceed by level.
The rest of this section describes how to compute node densities. See Table 1 for a
summary of the acronyms used in our under-approximation, and their meaning.

3.1 Incoming-edge-count

Algorithm Iec in Fig. 4 counts the number of incoming edges to each nonterminal
node. It is called as Iec(r�) after setting the “incoming edge” counter p.iec to 0,
for each nonterminal node p. Theorem 1 addresses the correctness of algorithm
Iec.

Theorem 1. The call Iec(r�) sets p.iec, for any nonterminal node p, to the
number of incoming edges to p. Its runtime is O(N (r�)).
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Table 1. Acronyms used in our under-approximation and their meaning.

Ub(p) Unique Below node set of node p

Ua(p) Unique Above node set of node p

U(p) Unique node set of node p

IEC(p) Incoming Edge Count of node p

ASC(p) Above State Count of node p

BSC(p) Below State Count of node p

H(p) Highest-unique-below-set of node p

L(p) Lowest-unique-above-set of node p

Proof. For a node p at level k, the for-loop at lines 2- 5 is executed |Sk| times;
thus, each outgoing edge from p, if it is an incoming edge for a corresponding
nonterminal child of p, is traversed and counted only once. Iec(p) calls itself
only on its unvisited children (identified by having their incoming-edge-count
equal to 0). Considering the sizes |Sk| as constants, the runtime is linear in the
number of MDD nodes, O(N (r�)). �

3.2 Above-state-count

Algorithm Asc in Fig. 5 computes the above-state-counts, i.e., the number
p.asc = |A(p)| of substates from r� to each nonterminal node p ∈ N (r�). It
is called as Asc(r�) after initializing r�.asc = 1, and p.asc to 0 for all other
nonterminal nodes p, and after having computed the incoming-edge-counts with
the call Iec(r�). To keep track of when all edges to a node p have been traversed
(implying that counter p.asc has the correct final value and the recursion can
proceed downward), algorithm Asc decrements the incoming-edge-count p.iec
of node p every time p is reached, so that p.iec will have value 0 after the call
Asc(r�) completes. Theorem 2 addresses the correctness of algorithm Asc.

Theorem 2. The call Asc(r�) sets p.asc to |A(p)| for any nonterminal node p.
Its runtime is O(N (r�)).

Proof. To compute the above-state-count of node p, we need to have computed
the correct value q.iec for each node q with a path to p. The algorithm uses the
fact that, in each recursive call Asc(p), p.asc has the correct value of above-
state-count for node p, and p.iec = 0.

Obviously, since Iec sets the incoming-edge-count of the root to 0, r�.iec = 0.
Similarly, the recursive call Asc(p[i]) on line 6 occurs only if p[i].iec is 0,

which means that p[i].asc has been updated to take into account the (correct)
q.asc value of each parent q of p[i]. Then, in each recursive call Asc(p), p.asc
has the correct value of the above-state-count. Asc(r�) visits each node once,
therefore its runtime is O(N (r�)) �
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Fig. 3. Algorithm to remove duplicate nodes.

3.3 Below-state-count

One of the fundamental unary operations for MDDs is to compute the cardinality
of the set encoded by a node p, i.e., the number of paths from p to 1. We call
this the below-state-count of node p. Bsc(r�) should be called after setting p.bsc
to 0 for all nonterminal nodes p. This algorithm to compute the cardinality is
well known, so we include the pseudo-code in Fig. 6, but omit its proof.

3.4 Highest-unique-below-set

The highest-unique-below-set of node p is the subset of Ub(p) \ {p} containing all
the nodes that are in the unique-below-set of p but not in the unique-below-set
of a node q′ �= p that is in the unique-below-set of p:

H(p) = {q ∈ Ub(p) \ {p} : ∀q′ ∈ Ub(p) \ {p, q}, q /∈ Ub(q′)}.

We define H(p) because it turns out that every nonterminal node q �= r�

belongs to H(p) for exactly one p, but possibly to Ub(p) for many nodes p, thus
we can store all sets H(p) using memory linear in the number of MDD nodes, but,
in general, (explicitly) storing all sets Ub(p) would require an overall quadratic
memory in the number of MDD nodes. Furthermore, we could still obtain Ub(p)
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Fig. 4. Algorithm to compute the incoming-edge-count of each node.

Fig. 5. Algorithm to compute the above-state-count of each node.

as the transitive closure of H(p), this is explained and proved in Theorem 4, but
we do not need to, as we merely need to know its size |Ub(p)| to compute our
under-approximation, not its actual elements.

Theorem 3. The set {H(q) : q ∈ Ub(p),H(q) �= ∅} is a partition of Ub(p) \ {p}.

Proof. To prove the proposition we must verify that H(p) satisfies the following:

1.
⋃

q∈Ub(p)
H(q) = Ub(p)\{p}. First, it is easy to show that, if t ∈

⋃
q∈Ub(p)

H(q)
then t ∈ Ub(p) \ {p}. If t ∈ H(q) for some q ∈ Ub(p), then, all paths from r�

to q pass through p, and all paths from r� to t pass through q. Therefore, all
paths from r� to t pass through p, so t ∈ Ub(p) \ {p}. To prove containment
in the other direction, consider the lowest node q ∈ Ub(p) such that t ∈ Ub(q);
there must be such a node since, at the very least, we could have q = p. But
since q is the lowest node satisfying t ∈ Ub(q), then no other node q′ between
q and t can satisfy t ∈ Ub(q′), thus t ∈ H(q), by definition.

2. For any given pair of nodes q, q′ ∈ Ub(p), H(q) and H(q′) are disjoint, i.e.,
H(q)∩H(q′) = ∅. By contradiction, assume that ∃q, s, t ∈ Ub(p), s �= t and
q ∈ H(s) ∩ H(t), i.e., q ∈ H(s) and q ∈ H(t), therefore q ∈ (Ub(s) \ {s}) ∩
(Ub(t) \ {t}), thus q ∈ Ub(s) and q ∈ Ub(t). This means that any path from r�

to q must pass through both s and t and, since s �= t, nodes s and t must be
at different levels. Without loss of generality, assume that s is above t, then
q cannot be in H(s), thus we have a contradiction. �

Theorem 4. Let the reflexive and transitive closure of H(p) for a given node p
be defined as H∗(p) = H(p)∪H(H(p))∪· · · , where H({p1, ..., pc}) =

⋃c
d=1 H(pd).

If Ub(p) contains nodes beyond p, then {Hn(p) : n ∈ N,Hn(p) �= ∅} is a coarser
partition than {H(q) : q ∈ Ub(p),H(q) �= ∅}. Thus, H∗(p) = Ub(p) \ {p}.

Proof. We need to prove that, for any q ∈ Ub(p), there is a minimum n such
that H(q) ⊆ Hn(p). Consider t ∈ Ub(p) \ {p}. Since Theorem 3 states that
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Fig. 6. Algorithm to compute the below-state-count of each node.

Fig. 7. Algorithm to compute the unique-below-count.

{H(q) : q ∈ Ub(p),H(q) �= ∅} is a partition of Ub(p) \ {p}, there exists a q such
that t ∈ H(q). If q = p, then t ∈ Hn(p) for n = 1. If q �= p, then we know that
Ub(p) contains p, q, and t, and that there exists a node q1 such that q ∈ H(q1).
If q1 = p, then q ∈ H(p), t ∈ H(q) which means that t ∈ H2(p); otherwise,
we can repeat the reasoning and eventually, since Ub(p) is a finite set, we must
eventually find a qn = p, implying that t ∈ Hn+1(p). �

Procedure Ubc(r�) computes the size |Ub(p)| of the unique-below-set for any
nonterminal node p ∈ N (r�), using the information in H(p).

3.5 Lowest-unique-above-set

The lowest-unique-above set of node p is the subset of Ua(p) containing all nodes
that are in the unique-above-set of p but not in the unique-above-set of a node
in the unique-above-set of p:

L(p) = {q ∈ Ua(p) : ∀q′ ∈ Ua(p) \ {q}, q /∈ Ua(q′)}.

As for H(p), we define L(p) because it turns out that every node belongs to L(p)
for exactly one p, but possibly to Ua(p) for many nodes p, thus we can store all
sets L(p) using memory linear in the number of MDD nodes, but, in general, we
cannot (explicitly) store all sets Ua(p) in linear memory. Furthermore, again, we
could obtain Ua(p) as the transitive closure of L(p), as stated in Theorem 6, but
we do not need to, we only need to compute its size |Ua(p)|.
Theorem 5. The set {L(q) : q ∈ Ua(p)} is a partition of Ua(p).

Proof. Similar to that of Theorem 3. �

Theorem 6. Let the reflexive and transitive closure of L(p) for a given node p
be defined as L∗(p) = L(p) ∪ L(L(p)) ∪ · · · , where L({p1, ..., pc}) =

⋃c
d=1 L(pd).

If Ua(p) contains nodes beyond p, then {Ln(p) : n ∈ N} is a coarser partition
than {L(q) : q ∈ Ua(p)}. Thus, L∗(p) = Ua(p).
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Fig. 8. Algorithm to compute the unique-above-count

Proof. Similar to that of Theorem 4. �

Procedure Uac(r�) computes the size of the unique-above-set |Ua(p)|, for
any nonterminal node p ∈ N (r�), by recursively using the information in L(p).

3.6 Dominator and Post-dominator

A simplistic iterative algorithm to calculate H(p) and L(p) for all nodes p has
quadratic complexity in the number of MDD nodes [5]; to reduce this complexity,
we use a dominator algorithm. Given a flow graph with a single source and sink
(in our case, r� and 1), a node v dominates another node w, if every path from
the r� to w must traverse v Every node w �= r� has at least one dominator. A
node v is the immediate dominator of w, denoted by idom(w) = v, if v dominates
w and every other dominator of w also dominates v. Every node w �= r� has a
unique idom(w). Importantly, q is in Ub(p) iff q is in dom(p), and is the immediate
dominator of p iff it is the only node in p’s highest-unique-below-set H(p).

The dominator algorithm builds a dominator tree whose nodes V are the
MDD nodes and whose edges {(idom(w), w) : w ∈ V \ {r�}} form a direct tree
rooted at r�. It performs a depth-first search and assigns the visit time to each
node, effectively defining a total order, where v > w means that the visit time
of node v is larger than that of node w. The dominator algorithm uses the visit
time of the node instead of the original node label in the following steps. Next,
for each node w �= r�, it defines the “semidominator” sdom(w) ∈ N as:

sdom(w) = min{v : ∃ path v = v0, v1, ..., vj = w s.t. vi > w for 1 ≤ i ≤ j − 1}.

The algorithm uses Theorem 7 to compute sdom(w) for any w �= r�:

Theorem 7. (from [6]) For any node w �= r�:

sdom(w) = min({v | (v, w) is an edge and v < w} ∪ {sdom(u) | u > w and

there is an edge (v, w) such that u is an ancestor of v, u
∗−→ v}).

Then the algorithm uses Corollary 1 to compute the immediate dominator
of all nodes using the semidominator information.
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Fig. 9. Algorithm to under-approximate MDD r� by selecting one node at a time.

Corollary 1. (from [6]) Let w �= r� and u be a node for which sdom(u) is
the minimum among nodes u satisfying sdom(w) +−→ u

+−→ w, i.e., sdom(w) is a
proper ancestor of u and u is a proper ancestor of w, then

idom(w) =

{
sdom(w) if sdom(w) = sdom(u)
idom(u) otherwise.

A node w post-dominates another node v, if every path from v to 1 traverse
w. A node v is the immediate post-dominator of w, if v post-dominates w and
every other post-dominator of w also post-dominates v. Again, node q is in Ua(p)
iff q is in postdom(p) and node q is the post-dominator for node p iff node q is
the only node in p’s lowest-unique-above-set.

q ∈ postdom(p) ⇐⇒ q ∈ Ua(p) ipostdom(p) = q ⇐⇒ L(p) = {q}

The post-dominator algorithm applies the dominator algorithm to the reverse
MDD (with source 1 and sink r�) to compute the lowest-unique-above-sets.

3.7 Under-approximation (one Node at a Time)

Given MDD r�, the call UnderApproxOne(r�, Tmin, Tmax) computes an
under-approximation for r� if the size of the MDD r� is greater than Tmax. The
algorithm reduces the size of the MDD so that it does not exceed Tmin (Tmin

must be at least the number of MDD levels). Tmax and Tmin introduce hysteresis
to avoid calling the under-approximation too frequently. In practice, Tmax should
be as large as possible and Tmin a fraction of Tmax (in our experiments, it is
0.6 · Tmax). The algorithm computes the below-state-count, above-state-count,
unique-count, and density (lines 4 , 6, 7, and 8) for each node at each iteration
of the while-loop. Then, it selects a single node p� with lowest density (line 9)
and removes from the MDD the nodes in U(p�) and any resulting duplicate using
RmDuplicate, until the number of MDD nodes is at most Tmin.

As the algorithm recomputes the information after each deletion, the selected
node p� is the “quasi-optimal” choice: it is optimal based on density information,
but it ignores the effect of removing duplicate nodes.
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4 Speeding up the under-approximation

In large models, recomputing the above-state-count, below-state-count,
incoming-edge-count, and unique-count after deleting each set of nodes U(p�) can
be costly. UnderApproxMany selects instead a set of nodes P�, and deletes
all nodes in

⋃
p∈P� U(p) before recomputing all node densities.

While eliminating duplicate nodes caused by deleting just one set U(p�) is
slightly simpler, identifying and removing all duplicate nodes created by remov-
ing the set of nodes

⋃
p∈P� U(p) has the same time complexity, thus its cost can be

better amortized. The call RmDuplicateSet(P�) in Fig. 10 finds and removes
the duplicate nodes created by eliminating the nodes in

⋃
p∈P� U(p), to ensure

MDD canonicity. K = {p�.lvl : p� ∈ P�} stores the MDD levels of the selected
nodes (line 2), and Map maps the identifiers of nodes at level k� = min{K},
initialized as

∀q ∈ N (r�), q.lvl = p�.lvl , Map(q.id) =

{
q.id , if q /∈ P�

0, otherwise.

RmDuplicateSet traverses the MDD from level min(K) + 1 to L. Like
RmDuplicate, it starts at level k� + 1; if q’s child q[i] is mapped to another
node (line 15), node q must change (line 16), and the algorithm checks if the
new node is a duplicate of a node q′. Any edge pointing to q from higher-level
nodes must be changed.

UnderApproxOne selects node p� with lowest density, deletes U(p�), and
recomputes the density (U , B, and A), while UnderApproxMany selects a set
of nodes P�, one after another, but it does not update the density information
after selecting each node. This reduces execution time since calculating density is
a heavy duty operation, but uses increasingly stale, thus less precise, information.
This is because not only the number of nodes eliminated or merged after calling
RmDuplicateSet is not taken into account, but also because, by selecting a
sequence of nodes (p1, p2, ..., pk), the selection of any node except for p1 uses an
approximation of the correct values for U , A, and B.

When the MDD size N (r�) exceeds Tmax, a call to UnderApproxMany
reduces the size to Tmin or less. Selecting a set of nodes P� instead of just
node p� increases the chances of deleting more nodes than necessary. This is
because, ideally, every time the algorithm selects node pi ∈ P�, S(pi) should be
disjoint from S(pj), for any other pj ∈ P�, but this is not necessarily the case.
Before adding pi to P�, the algorithm checks that |S(pi)| +

∑
pj∈P� |S(pj)| <

|S(r�)|, to ensure that removing the set of nodes P� does not produce an empty
MDD. UnderApproxMany uses a (lower bound) on the percentage ψ of |S(r�)|
that must be kept as a constraint: if |S(pi)| +

∑
pj∈P� |S(pj)| > ψ · |S(r�)|, the

algorithm does not add pi to P�; instead, it removes just U(P�) and any duplicate
nodes created by removing U(P�) from the MDD, then it recomputes the new
densities of the nodes of the resulting MDD.

The exact call is UnderApproxMany(r�, Tmin, Tmax, ψ), where Tmin is
the selected Tmin, Tmax is the maximum (triggering) threshold, and ψ is the
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Fig. 10. Algorithm to remove a set of duplicate nodes.

maximum percentage of removed states (required to be strictly less than 100%).
The greater ψ is, the less frequently the algorithm needs to recompute node den-
sities. line 11 ensures that UnderApproxMany deletes at least one node at a
time, even when ψ is near zero (in which case UnderApproxMany behaves
like UnderApproxOne).

5 Application

The first step in the study of a discrete system is often reachability analysis, i.e.,
the computation of its reachable states. Given an initial state set Sinit ⊆ SL:1

and a next-state function of the form T : SL:1 → 2SL:1 , the reachability set
Srch is the smallest set X satisfying X = X ∪ T (X ) ∪ Sinit. The breadth-first
(BF) method is a common exploration approach for MDD-based reachability
analysis, as it naturally implements this definition of Srch as a fixpoint. It starts
by initializing Srch to Sinit, and repeatedly adds to it the states reachable from it
in one application of T , until no more new states are found. At the ith iteration,
Srch contains all states at distance up to i from Sinit. Thus, it builds Srch as
Sinit ∪ T (Sinit) ∪ T 2(Sinit) ∪ · · · .
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Fig. 11. Under-approximating MDD r� by selecting many nodes at a time.

Fig. 12. Algorithm to compute the reachable state space using breadth-first.

The chained BF (ChBF) approach [7] observes that, if T is partitioned as
T =

⋃
α∈E Tα, where E is a set of (asynchronous) events, runtime and memory

requirements may be reduced by using a different iteration: if E = {α, β, γ}, the
generic ith ChBF iteration updates Srch using three sequential steps:
(1) Srch ←Srch ∪Tα(Srch); (2) Srch ←Srch ∪Tβ(Srch); (3) Srch ←Srch ∪Tγ(Srch).
This has the effect of potentially accelerating convergence to the fixpoint, as the
ith iteration discovers states reachable not just through one of the three single
events, but also through one of the sequences of events αβ, αγ, βγ, or αβγ.

ChBF was proposed in conjunction to Petri net models [7], the formalism
we use for our experiments. In this case the events are the Petri net transitions,
which are by definition asynchronous, and Tα(i) = ∅ if Petri net transition α is
not enabled in marking i, while Tα(i) = {j} if transition α is enabled in marking
i and its firing in i leads (deterministically) to marking j.
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Fig. 13. Chained breadth-first algorithm with under-approximation.

Figure 13 shows our ChBF approach invoking “UnderApprox”, i.e., either
UnderApproxOne or UnderApproxMany, whenever the MDD size exceeds
Tmax (line 9). Either under-approximation may delete the initial state(s),
which would then make it impossible to generate the entire state space. Thus,
ChBFUA adds back the initial state(s) after each under-approximation (line 10).
ChBF is exactly the same as ChBFUA, except it does not have lines 9, and 10.

As shown, algorithm ChBFUA might not halt because, after calling under-
approximation, the set of states could be exactly the same as after the previous
under-approximation: the algorithm is in a cycle where it adds and removes the
same set of states. To recognize this situation, we should keep the old set of
states, but this would require storing two MDDs; we use instead the old number
of states and nodes as a proxy to (conservatively) detect this problem and let
ChBFUA output a partial state space Spart instead of the full state space Srch.

Assume that, before calling under-approximation, the number of MDD nodes
is nold > Tmax and the number of states is rsold, and that, after calling under-
approximation once and firing one or more events, the numbers are nnew >Tmax

and rsnew. If nnew =nold and rsnew =rsold, the algorithm applies one more event
resulting in n′

new MDD nodes and rs′
new states. Then, three cases may arise:

1. If n′
new > nnew and rs′

new2 > rsnew, the MDD with nnew nodes is not
a fixpoint; the algorithm conservatively decides that the MDD with nnew

nodes is the same as that with nold nodes, it refrains from calling under-
approximation, and returns the partial state space Spart encoded by the MDD
with n′

new nodes.
2. If n′

new ≤nnew and rs′
new >rsnew, ChBFUA continues its normal execution.

3. If n′
new = nnew and rs′

new = rsnew, the algorithm applies a new event and
repeats the check for cases 1, 2, and 3, until either case 1 or 2 happens, or all
events have been applied once without discovering new states (in which case
it reached a fixpoint and returns Srch, encoded by nold =nnew nodes).
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6 Results

We designed a set of experiments and ran them on a Linux workstation with
16GB of RAM. We implemented ChBFUA, chained breadth-first reachability
with under approximation, within the model checker SmArT [3]. Our benchmark
is a subset of the bounded models from the Model Checking Contest (MCC)
2021 (https://mcc.lip6.fr/2021/). Models are described as Petri nets, and most
of them have one or more scaling parameters that affect their state space size.
799 models in the MCC benchmark are bounded, 499 of which generate the
next-state function within 60 seconds, and 259 of which generate the entire
state space using ChBF within one hour. Of these, we eliminated 72 models
because they have the same peak and final number of nodes using ChBF (the
under-approximation algorithm does not make sense for such models; admittedly
this cannot be determined a priori). Thus, we considered the remaining 187
models. For our experiments, we selected Tmin = 10,000 and Tmax = 15,000,
the percentage ψ of the minimum number of states to be kept was set to 0.5,
and the maximum execution time for each run was set to 24 hours. The peak
number of nodes for 123 of the 187 models is less than 15,000, therefore the
under-approximation is not triggered on those models (thus ChBFUA behaves
exactly like ChBF on them). Using UnderAproxMany, 19 of the remaining
64 models generate the complete state space using under-approximation in less
than 24 hours; in these models, whenever the number of node exceeds Tmax, the
algorithm selects a set of nodes P� and deletes

⋃
p∈P� U(p), until the number of

nodes is less than Tmin. The algorithm adds Sinit back and finally generates the
complete state space Srch. 15 models out of remaining 64 generate only a partial
state space Spart.

For the other 30 models out of the remaining 64 models, our algorithm is
unable to generate either Spart or Srch in 24 h. Given enough time, it would
always terminate and generate the complete state space or a partial state space.
For example, if we increase the running time from 24 to 48 hours, 4 of these 30
models can generate a partial state space. If the model is run indefinitely and
the final number of nodes is greater than Tmax, our approach would in princi-
ple eventually generate a partial state space because the number of increasing
possible state space sequences is bounded.

6.1 Experimental Results

We compare ChBFUA with ChBF in terms of both memory and time.
The more frequently the under-approximation calculates node densities, the
slower our algorithm will be. Thus, UnderApproxOne is slower than
UnderApproxMany, and we report only the results for the latter.

Figure 14 compares the peak node and time ratios for ChBF and ChBFUA
(PeakChBFUA/PeakChBF and TimeChBFUA/T imeChBF respectively) for models
where ChBFUA generates Srch. For these models, the final number of nodes is
less than Tmax, otherwise the ChBFUA would not be able to generate the entire
state space (whenever the number of nodes is greater than Tmax, ChBFUA

https://mcc.lip6.fr/2021/
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Fig. 14. Time and peak node ratios for the 19 models where ChBFUA generates the
entire state space (sorted by increasing peak node ratio).

calls under-approximation to reduce the number of nodes to no more than Tmin,
thus this would eventually result in finding only a partial state space). This
experiment shows that:

– The smaller the peak node ratio, the more the under-approximation algo-
rithm is applicable to the model. The peak number of nodes generated by
ChBFUA in most cases (except model 19) is less than the peak number of
nodes generated by ChBF.

– The peak number of nodes for model 19 in ChBFUA is slightly higher than
ChBF, i.e., the peak node ratio is greater than one. This can happen because,
after deleting a set of nodes, even just applying the transition relation Tα for
one transition α may result in an MDD with more nodes than the peak
number of nodes needed by the ChBF algorithm.

– The runtime ratio in all cases is greater than one, because once the number
of nodes reaches Tmax and ChBFUA invokes UnderApproxMany, it cal-
culates node’s density to select and delete nodes until the number of nodes is
less than or equal to Tmin. Calculating the density information and adding
back removed states causes ChBFUA to have a higher runtime than ChBF.

Table 2 shows detailed experimental results for models where ChBFUA gen-
erates Srch. The more ChBFUA invokes the under-approximation (row “#UA
calls”), the larger its runtime is than that of ChBF. Also, in most cases, the
fewer times the under-approximation algorithm is invoked, the closer the peak
of ChBFUA and peak of ChBF are; this is because it is more likely that Tmax

is close to the peak number of nodes in ChBF.
Figure 15 reports instead the final node and state space ratios for ChBFUA

and ChBF (FinalNodeChBFUA/F inalNodeChBF and |SChBFUA|/|SChBF|, where
FinalNodeChBFUA is the final number of nodes generated by ChBFUA and
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Table 2. Results for models where ChBFUA generates the complete state space.

Model# 1 2 3 4 5 6 7 8 9 10

#UA calls 533 137 71 101 27 217 59 423 43 15

Peak nodes ChBF 845,847 348,203 222,344 293,111 130,602 105,738 46,549 70,858 30,065 26,251

Peak nodes ChBFUA) 43,970 29,683 25,162 36,320 21,887 19,379 16,247 28,642 16,330 16,587

runtime ChBF (sec) 1,692 275 443 308 250 1,268 237 392 196 206

runtime ChBFUA (sec) 100,345 2,952 1,649 1,126 434 10,243 978 32,482 567 411

Model# 11 12 13 14 15 16 17 18 19

#UA calls 7 11 5 9 4 6 4 6 28

Peak nodes ChBF 26,917 24,983 20,213 20,078 18,873 23,875 21,813 17,235 18,773

Peak nodesChBFUA 18,282 18,674 15,559 16,106 15,251 21,748 20,491 16,245 18,899

runtime ChBF (sec) 233 31 32 240 61 12 22 41 133

runtime ChBFUA (sec) 433 76 99 379 165 33 37 115 557

Fig. 15. Runtime, peak node, state space, and final node ratios for models where
ChBFUA generates a partial state space (sorted by increasing peak node ratio).

|SChBFUA| is the size of the state space generated by ChBFUA), for models
where ChBFUA generates Spart. The final number of nodes for most of these
models (except model 13 and 15) is greater than Tmax. The state space ratio is
always less than one, since the ChBFUA does generate the complete state space.
The final number of nodes generated by ChBFUA in most models is less than
the final number of nodes for ChBF, however ChBFUA encodes only a portion
of the entire state space. In some models, e.g., 15, the algorithm detects a partial
state space faster (time ratio less than one), but the final node ratio is greater
than one, indicating that the algorithm is unable to merge nodes to obtain a
denser MDD. In these cases, a self-adjusting heuristic could be beneficial.
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7 Conclusions and Future Work

We presented a new algorithm for MDDs under-approximation that uses a more
precise density than in previously-proposed techniques for BDDs. We demon-
strated the soundness of our approach by applying it to the symbolic Petri net
state-space generation, where it can compute the entire state space, or possibly
a subset of it, with lower memory requirements, at the price of longer runtimes.

Further work is needed towards reducing the number of user-provided param-
eters. Specifically, we envision a self-adjusting heuristic that automatically
chooses and updates (upward or downward) the percentage ψ parameter and
the minimum threshold for under-approximation, by self-monitoring the algo-
rithm’s own performance (in practical applications, the maximum threshold
would instead be likely set to a large value dictated by the amount of avail-
able RAM).

Finally, it is worth investigating whether our approach can be adapted to
compute an over-approximation. Simply substituting a highest-density node with
terminal 1 would result in an over-approximation but, for the monotonically-
increasing fixpoint algorithm we use for state-space generation, an unreachable
state added by an over-approximation call would never be removed; this is in
contrast to a reachable state removed by an under-approximation call, which
can always in principle be added back.
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