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Abstract. Significant past work has characterized properties of canard solutions, which spend unexpectedly
long times near dynamically unstable manifolds in the phase space of an underlying dynamical
system. We have recently introduced techniques to identify and analyze rivers, which are a class of
trajectories that can serve as transient attractors in phase space. In this work, after generalizing
the concept of rivers to arbitrary dimensions and introducing a classification of rivers, we show that
maximal canards in systems with one fast and two slow variables are rivers of infinite order, or river
canards. We use this relationship to provide new insights about how nearby trajectories behave
and about how river canards organize the flow near the fold of a critical manifold. This analysis
includes the calculation of the way-in way-out function, which provides an estimate for the extent
of the delay in escape that trajectories experience when passing near the fold of a critical manifold
with canard dynamics, without the need for complexification of time. We also illustrate our results
for the well-known autocatalator system.
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1. Intro-duck-tion. Transient phenomena have increasingly been recognized as critical to
efforts to study systems across ecology [14], neuroscience [27], immunology [6], fluid dynamics
[13], and other fields. Although classical dynamical systems techniques focus on long-term,
asymptotic dynamics and localized transient responses to small perturbations from attract-
ing states, the above works demonstrate that some progress on the development of methods
to analyze more general forms of transient dynamics has occurred. Multiple timescale sys-
tems, which describe the interactions of variables that evolve at significantly different rates,
afford a natural setting for transient dynamics to arise. Indeed, stable oscillations in fast-slow
systems, sometimes called relaxation oscillations, can be thought of as compositions of tran-
sients, since they feature slow, prolonged but ultimately transient excursions in the vicinity
of invariant manifolds alternating with rapid, brief, transient jumps between neighborhoods
of these manifolds [16]. Special solutions called canards provide another source of interesting
transient dynamics in some fast-slow systems. A canard also involves passage along invariant
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manifolds and is distinguished as a trajectory that passes in the vicinity of a special point
called a folded singularity and subsequently spends a surprisingly long time near a manifold
that is dynamically unstable [17]. Canards can arise as one-time transients (e.g., [28]) or as
transient segments that arise in each cycle within periodic mixed-mode oscillations [7].

Recently, we developed methods to precisely define and analyze rivers, which are central
to another form of transient dynamics, in planar systems [20]. Loosely speaking, a river has
been understood in the literature to be a trajectory that attracts nearby trajectories over
some finite time window but is not related in a clear way to asymptotic attractors within
the flow [10, 9, 2, 31]. Our work demonstrates that these trajectories can be identified and
explained using the curvature of a flow; specifically, a river in the plane is a trajectory that
has vanishing curvature and derivative of curvature at a special point, which we call the
confluence. To derive properties of rivers in the plane, we used a coordinate transformation
known as local orthogonal rectification, or LOR. The LOR method generalizes to systems of
arbitrary dimension, and although neither rivers nor LOR require any timescale separation,
we have applied LOR to the two-timescale, three-dimensional normal form for a system with
a certain type of folded singularity, namely, a folded saddle-node singularity, known to give
rise to canard solutions [21]. Interestingly, our analysis identified a special trajectory within
the flow of this system that organizes the canard dynamics and has everywhere vanishing
curvature within the coordinate frame obtained from the LOR transformation. This result
suggests the possibility of a strong connection between canards and rivers, and the goal of
this paper is to characterize this relationship.

To achieve this aim, we start by reminding readers of fundamental ideas associated with
invariant manifolds and canards in fast-slow systems as well as the LOR transformation, in
section 2. Next, in section 3, we generalize the definition of rivers to arbitrary dimensions,
which also involves establishing a classification of rivers based on the order to which curvature
vanishes along them. In section 4, we prove that there is a strong relationship between rivers
and canards. We use this relation to analyze and explain some of the organizational properties
of the associated dynamics for a normal form, with one fast and two slow variables, associated
with flow near a canard point at a fold of a critical manifold and to compute the way-in
way-out function that quantifies delayed escape from the manifold. To show that these results
extend beyond this specific system, in section 5, we study how near identity transformations
affect the curvature of flow and associated quantities. Together, these results show that all
canards in this setting lie in a small neighborhood of a class of rivers. We illustrate our results
in an example system, the autocatalator, in section 6, and we conclude with a brief discussion
in section 7.

2. Background theory.

2.1. Invariant manifolds and canards in fast-slow systems. Following past work [11, 35],
we express the fast-slow systems of interest as

(2.1) Z2=H(z,e)=F(z2)+eG(z,¢),

where z € R", functions F,G are O(1) in ¢, and 0 < € < 1 sets the slow timescale of the
system. For system (2.1), the layer problem or fast subsystem is obtained in the € | 0 limit as

(2.2) 2= F(z).
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Moreover, a critical manifold can be defined from the equilibrium points of the layer system,
given by M = {z|F(z) = 0}. Suppose that a k-dimensional critical manifold exists, with
rank(F)= n — k at all z € M. A dynamical system, called the reduced problem or slow
subsystem associated with (2.1), can be defined on M by applying an appropriate projection
to G:

(2.3) 5 =1MG(z,0),

where IT™ can be defined pointwise on z € M by subtracting the projection onto the orthog-
onal complement of the tanget space, (T.M)L, from the n x n identity matrix (see [35] for
details).

To analyze a fast-slow system, we typically employ geometric singular perturbation theory
(GSPT), which is sometimes called Fenichel theory [11]. GSPT allows us to piece together
the dynamics of (2.1) for 0 < £ < 1 using (2.2) and (2.3) as long as some general assumptions
hold. To discuss Fenichel’s fundamental results, we recall that if M is a k-dimensional,
locally invariant manifold for (2.2) or (2.1), then M is normally hyperbolic if there are n — k
eigenvalues of the linearized vector field along M with nonzero real part. If the linearization
at any point of M has n — k eigenvalues with negative real parts, then initial conditions near
M will approach M and we say that M is stable; if one or more eigenvalues have positive real
parts, then M is unstable [37]. We now state results due to Fenichel, following the statement
from [16].

Theorem 2.1 (Fenichel’s first manifold theorem and stable manifold theorem). Suppose that
M = {z|F(z) = 0} is a normally hyperbolic manifold for (2.2). For ¢ > 0 sufficiently small,
there exists a manifold M. that is diffeomorphic to M, is O(e) close to M, and is locally
invariant under (2.1). Furthermore, M. will have the same stability type as M, and the
dynamics of the flow restricted to M. will be an O(g) perturbation of the slow subsystem
(2.3).

The condition that M is normally hyperbolic is fairly mild and is generically true; however,
Fenichel’s theorem will fail to hold if M is not normally hyperbolic. Indeed, some of the
most interesting examples in GSPT arise when parts of M are not normally hyperbolic. For
example, at a point z € M, where M is normally hyperbolic, D,F(z) is invertible for a
suitably chosen coordinate set € R®*, and hence M can be expressed as the graph of a
function, say = = h(y) for some h acting on coordinates y € R*. The critical manifold can
lose normal hyperbolicity at a fold, which is a set of points where the graph x = h(y) would
have an infinite derivative. Often, the stability of the critical manifold changes across folds
because at least one of the eigenvalues of D, F(z) crosses through the imaginary axis.

One of the most interesting and counterintuitive features of dynamics sometimes found
near folded critical manifolds are canard solutions. A canard solution is a trajectory with an
initial condition near a stable branch, call it Mg, of the critical manifold, which evolves along
Mg, reaches a neighborhood of the fold of the critical manifold, and spends a “long time”
near the unstable branch of the critical manifold, My . That is, we would expect, given that
My is linearly unstable, that trajectories near My should leave Mj; in logarithmic time,
as some variables will grow exponentially. A canard solution, however, will linger near the
unstable critical manifold for an algebraic period of time [17]. In section 4.2, we will provide
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a novel perspective on this characteristic delay using techniques related to curvature paired
with blowup coordinates applied after the LOR transformation, which is defined in the next
subsection.

A special case of (2.1) that is often considered features an explicit separation of the
variables x and y as follows:

T = F(.le, y):
(2.4) y=¢eG(z,y),

where z € R" % y € R¥ for 0 < k < n [1]. Here, the 2 variables are called the fast variables
while the y variables are called the slow variables.

2.2. LOR in arbitrary dimensions. Following [21], consider an ODE and initial condition
(2.5) T = f(x), z(0) = x0 € Q,

where f € €7(Q,R") for n,r > 1 and  is an open subset of R", which induces a flow
®: QxR — Q. For simplicity, we introduce the notation 9; = 9/9n;. Suppose that M
is a codimension-k €*-regular manifold embedded in 2. Specifically, suppose there exist an

indexing set A and an atlas of charts {(Un,0n)taca, Where M = Uyca04(Uy), such that for
all o, B € A,

1. each U, C R" ¥ is open with corresponding o, € €*(Us, ) a homeomorphism on its
image;

2. if 0o (Uy) Nog(Up) # 0, then the map ko p: Us Noyt oog(Us) — Us N arg,l 0 00(Ua)
defined by ko5 = agl 0 04 is a diffeomorphism;

3. for all n € U,,

dimspan {0104, ...,0h—k0a} =n —k;

4. M can be equipped with a local normal frame; that is, there are mappings N;o, €
€ (U, R™),j =1,...,k, such that

<Nj10a(77)av> = O’ <Nj10a(77)aNj20a(77)> = 5j1,j2 \V/’I’] € uOé \V//U € TCTQ('II)M’

where (-, -) denotes the standard Euclidean inner product, ji,j2 € {1,...,k}, and §;

is the Kronecker delta.
We call these four conditions the LOR assumptions. These assumptions are quite natural
for a wide range of dynamical systems. For systems of the forms (2.1) and (2.4), M could
naturally be taken to be a critical manifold but other Riemannian manifolds could also be
used. The LOR assumptions guarantee that the tangent space to M at any point p € M,
denoted by TpM, is an n-k dimensional space. The set {Njaa(n)};?:l forms an orthonormal
basis of (T}, (n)/\/l)L on U,. The existence of such a basis is straightforward to establish locally,
and by refining our domains U, we can guarantee that such mappings exist. For fast-slow
systems with critical manifold M, we also note that there is a natural isomorphism between
trajectories of the fast subsystem (2.2) and the normal directions over normally hyperbolic
parts of M.

1,J2
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Figure 1. An illustration of the general setup for LOR. The initial point xo, such that ¢(0) = xo, is
decomposed as in (2.6), although here we drop the « subscripts. This decomposition is continued along ¢(t)
with (n,§) satisfying (2.7). This figure is adapted from [21].

Although the next steps are also done for arbitrary k elsewhere [21], in the next section
we will focus on codimension-1 manifolds, so for the moment we restrict to & = 1 and write
Noy(n) in place of Nyoy(n). Now, suppose that we are interested in studying the dynamics
near a point zg € €2 that lies close to our embedded manifold. Furthermore, suppose that xg
can be written in the form

(2.6) zo = 0a(m) + {oNoa(m), M € Uay & €R.

To write (2.6), we have assumed that 2 can be decomposed into a point on M, namely, o4 (1),
and a vector in the orthogonal complement of 75 (,,)M, namely, {oNoa(mo); see Figure 1.
Past work [21] established that such a decomposition is generic, sufficiently close to M. We
define ¥, : Uy x R — R™ by ¥ (n,&) = 0a(n) +{Noa(n) so that (2.6) can be more succinctly
expressed as xo = Wy (10, &0)-

Now, denote by ¢(t) the trajectory of (2.5) such that ¢(0) = z¢. We want to continue
tracking ¢(t) in our decomposition. To do so, we seek smooth 7 : (—=0,0) — Uy, & : (—9,) = R,
which we call the LOR coordinates for the base manifold M, such that ¢(t) = ¥(n(t),&(t))
for t € (—0,0). Under the LOR assumptions, this continuation can be achieved and a system
of ODEs that govern the evolution of 7(t),£(t), the LOR equations [21], can be derived. The
LOR equations for k£ = 1 take the form

0= [So(n, &) T f(n,€),
(2.7) £=(foU(n,&),No(n) = g(n.&),
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where

<f © \P(nag)aala(n»
Tf(n,§) = :
(f 0¥ (n,€),0n-10(n))

The matrix S,(n,§) € RM=Dx(n—1) takes tangent vectors in T, (y)Ua and exchanges them for
other tangent vectors in 75, ()M and has as its i, j entry

(So(n:€))i,j = (Gio(n), 0o (n)) + (Gio(n), O;No(n))E.

dn/dt
dg/dt
curves on the tangent manifold, a simplification occurs.

We will also write system (2.7) as ( ) = Lf(n,€). Finally, we note that for invariant

Lemma 2.2. If T'(n) is an invariant curve on T, M, then N f(n,0) = 0, where

<f o \I/(na €>7 N1F(77)>
(2.8) NF(,€) = s
(fo¥(n,&), Nel'(n))

for general k and, in the notation above, N f(n,&) = (f o W(n,&), NI'(n)) for k = 1.

3. Generalized river theory: Rivers in arbitrary dimensions. In this section, we generalize
the definition of a river from planar systems, where it was recently established [20], to arbitrary
dimensions. In the planar case, we have shown that rivers can help organize transient dynamics
that trajectories exhibit as they approach an attractor, such as an asymptoticallly stable
periodic orbit. Mathematically, a river in the plane is a trajectory emanating from a point
where the flow has vanishing curvature and torsion. We will now use this idea along with
natural equivalent conditions to generalize our definitions and to develop a new classification
of rivers, which will be useful for linking rivers with canards.

Given a curve v € €"2(I,R") for I C R, the Frenet curvature of v is given by

V() A Ay ()
a(y'(n),...,7™(n))’
where - = d-/dn and « is a certain smooth, nonzero function [19]. Therefore, for an autono-

mous system of ODEs i = dx/dt = f(z), f € €™ on a phase space 2 C R”, an analogous
curvature of the vector field f can be defined by

Ky (n) =

R el COLSY MG
Ca(fO(@),..., f0())]

where f()(z) = [D,f" D (z)]f(z) for n > 2 and f)(z) = f(z). We can apply this definition
directly to compute k4 at any point along any trajectory ¢, with parameterization supplied
by the independent variable ¢t € R.
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We will again be most interested in the set of zero curvature, {x(z) = 0}, which we call the
zero-curvature locus (ZCL). Specifically, we are interested in analyzing how the ZCL organizes
the phase space €). For convienence and later use, we define

(3.1) NGy inin @) = F (@) A fE @) A A fO) ()

-----

for dy,d2,...,i, € {1,--- ,n+2}. Clearly x(z) = 0 if and only if A5 ) f(z) =0.

Generically, the ZCL will be a codimension-one manifold embedded in €2, which we denote
by Z. To study how the flow ® behaves near the ZCL, we will parameterize a patch of Z
using a chart o : i/ € R"™! — Q and we will use LOR to analyze the local dynamics. Note
that, because o provides a parameterization of a level set of the curvature function, we can
choose

~ Vkooa(n)
No) = G s o

as a normal vector to our chart.

Note that in the (1,£) LOR frame with base manifold Z, o corresponds to {{ = 0}.
Correspondingly, referring to system (2.7), the manifold Z is locally invariant on a subpatch
oU") C o(U) if and only if g(n,0) =0 for all n € int U’, or

(3.2) (foo(n),No(n)=0 Vneintl

Thus, the manifold Z is best aligned with the flow for those n values for which g(n,0) = 0,
which motivates the following definition.

Definition 3.1. A confluence is a point n such that g(n,0) = 0 and the confluence set
corresponding to (U, o) is the set Cy = {n]g(n,0) = 0}.
Note that C, defines a collection of points (7,0) from Z that need not form an invariant

set, except in the special case that it includes all of Z.

Definition 3.2. Given an atlas (i.e., collection of charts) {(Us,03)}sen of Z, we define the
confluence set for Z by

Cz =] Co,.
BEB

Definition 3.3. A river is a trajectory ¢ such that ¢(0) € Cz.

Note that computing an atlas for Z may be a nontrivial task, so we next present a chart-
free equivalent condition to membership in the confluence set defined in Definition 3.2, which
is computationally efficient and also explicitly connects rivers to curvature.

Theorem 3.4. The following are equivalent:

(C1) z € Q is a confluence.

(C2> A(1,...,n—1,n)f(x) - A(1,...,n—1,n-§-1)f(x) =0.
(C3) The trajectory ¢ such that ¢(0) = x satisfies

ko(0) = 8 (0) = 0.
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Proof. Suppose that € Cz. Thus, k(x) = 0 and (f(x), Vk(x)) = 0. Now, let ¢ be the
trajectory such that ¢(0) = z. We have k4(0) = k0 ¢(0) = 0 and

. o d o Cllw)
0={fo0(t). Vroolt))| = gmodlt) =0,

where we have used the chain rule and the definition of x(z), respectively. Thus we have
shown that (C1) implies (C3), and as the relations used are equalities, we have also shown
that (C3) imples (C1).

From the definition of x4, differentiation yields

drg 4 St) A -+ A (1)
dt *7dt \ (1), ..., (1)
1
(33) a0, ()
D ne ngmy . SON NSO d
(dtgb(tm M) = T gy @@ 6T O) ).

Note that at t = 0, ¢(0) A --- A ¢™(0) = 0 and therefore the dor/dt term in (3.3) will vanish.
Hence, we need only compute the derivative of the wedge product. Based on the multilinearity
of the wedge product and the A notation from (3.1), we can write this expression as

d . .
(3.4) £¢ ARERIA ¢(n) = Z A(1,...,n)—}-ejf © ¢(t)a
j=1

where e; is the jth canonical basis vector. For 1 < j < n — 1, the indices in all but the last
term in the above sum have a repeated index, e.g., (2,2,3,...,n),(1,3,3,...,n), and so on;
the corresponding wedge products are zero, as repeated vectors in a determinant are obviously
collinear. Hence (3.4) reduces to

d . - - .
£¢/\.../\¢(”):¢A¢/\.../\¢(n 1)/\¢( +1)

and thus kg(0) = dry/dt(0) = 0 is equivalent to Ao p—1nf(T) = A12,.. n—1ns1f(x) = 0.
Therefore we have shown that conditions (C2) and (C3) are equivalent, and hence (C1) and
(C2) are equivalent as well. [ ]

Theorem 3.4 provides an obvious corollary that can be used to compute Cz.

Corollary 3.5.

Cz={An,..n-1)f(@) =0} N{An, n-1ns1)f(z) =0}

Corollary 3.5 provides a way to compute C'z that is chart-independent and hence is much
more efficient than using the condition derived directly from invariance of Z.

A confluence is a point where the ZCL is well aligned with the flow (Definition 3.1), and
the order of this alignment indicates how this alignment will persist, and hence the extent to
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which trajectories will stay near the ZCL, as the flow evolves beyond the confluence; thus, we
use the order of alignment as a measure of the strength of a river. Note that for a river ¢, we
can write

d2 Kid,

=3 (0)t2 + O(t?)

Ko(t) =
for small . Thus, this measure of the strength of ¢ should be inversely proportional to
|d?ky/dt?(0)|. This observation leads us to a classification of rivers.

Definition 3.6. A trajectory ¢ is a class k river if

dk H¢
dtk

d2 Iﬁ?d,
dt?

dre

5 (0=

0)=- =

(0) = 0.

Clearly, every river is at least class 1. We can translate the condition from Definition 3.6
into one involving the A notation from (3.1) after we establish some combinatorial notation.

Definition 3.7. Let % = {(1,...,n)}. Using power set notation, define G : 2N+ — 2% B :
N — N as follows, where S is any collection of subsets of N'{:

G = |J s+e
sesS
je{l,...,n}

(3.5) B(81,52,...,5n) = (51,82,...,5n) Si#Sj 'for a i<i<n
0 otherwise,

and let B(S) = UsesB(s). Finally, define £, = BoG(Z;—1) for k > 0. For convenience, we
denote L = Up>0-2%.
Intuitively, G adds every canonical basis vector to each element of a set of positive integer

vectors of length n and B deletes any of the resulting vectors that features a repeated entry.
For example,

G(%) = {(2,2,3,...,n),(1,3,3,...,n),...,(1,2,3,....,n— 2,n,n),
(1,2,3,....n— 1,n+ 1)},
XA = BoG(%) ={(1,2,3,....,n—1,n+1)},
G(A) = {(2,2.3,....n—1,n+1),(1,3,3,....n—Ln+1),...,
(1,2,3,...,n—2,n,n+1),(1,2,3,...,n—2,n— 1,n+2)}, and
% = BoG(&)={(1,2,3,...,n—2,n,n+1),(1,2,3,...,n—2,n—1,n+2)}.

With this notation established, we provide an efficient way to identify class k rivers.

Theorem 3.8. A trajectory ¢ is a class k river if and only if x = ¢(0) satisfies

> Auf(z)=0  Vie{o,... k}.

e,

Before proving this theorem, we prove a helpful computational lemma.
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Lemma 3.9. Suppressing time dependence,

7(;5/\ (n): ZAng¢

dtt
e,

Proof. Note that %4 = {(1,...,n — 1,n+ 1)}, hence we have already shown the i = 1
case within the proof of Theorem 3.4. If the desired equality holds at the ith level, then
differentiation yields

dz—‘rl .

n d
dt2+1¢/\ ():aZAnggZﬁ

e,

Expanding, we obtain

a Z Agf ¢} QS = & Z ¢(€1) A A qﬁ(én) — Z ¢(£1+51,J) A A ¢(€n+5ny_,)7

te; e, e,
36{17 777‘}

where ¢; ; denotes the Kronecker delta function. Collecting terms and using our definition of
G gives

Z ¢ (01461 5) . ¢(Z nt+01 ]) Z Af-ﬁ-ejf o (b = Z Agf e} d)
ee‘f EEZ ZEG(Z)
PR et m)

To conclude, we note that Ay f o ¢ = 0 whenever £ features repeated entries. Hence,
Y Aifop= > Afop= Y Aifog,
LeG(Z) LeBoG(.%;) et
and we have shown the result. |

Proof of Theorem 3.8. Note that we have already proven the k = 1 case, which we will
again use as a base case for induction. Suppose that ¢ is a river of class k + 1.
For simplicity, introduce the notation p(t) = a(¢(t), ..., ¢ (t))~! so that, by definition,

rp(t) = p(E)(@(t) A -~ A (1)),

Suppose that our assertion is true at the kth level and differentiate to progress to the (k + 1)
term. Suppressing time dependence,

dk+1 k+1 k41 dk+l—ip 4t . .
dtm%IZ( ; )Cﬁmu(dtiw'“w( ))-
=0

Application of Lemma 3.9 implies that

k+1 k+1—i i k+1 k+1—i
k+1\d p ([ d . " k+1\d D
E:( ; )dthrli <dti¢A"’/\¢( )>:§:< i >dtk+1i E:Affod”
i=0

1=0 le;
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which, using our induction hypothesis, simplifies to

dk—i—l

e L1

Hence, ¢ is a river of class k 4 1 if and only if

ZAefmﬁ(O):O Vie{0,... k+1},

Ee.ﬁfi

as desired. m
With this equivalent condition we can define a confluence of class k.

Definition 3.10. The set of class k confluences, denoted C’g, is given by

k

CE=()] D Auf@)=0
i=0 | e
and a point © € Q) is a confluence of class k if x € C'g
An immediate application of this definition gives the following relationship.
Corollary 3.11. A trajectory ¢ is a class k river if and only if ¢(0) is a class k confluence.

In the generic case, the set of class k confluences will be an n— k — 1 dimensional manifold.
Therefore, the strongest river we can expect (generically) in R™ is of class n — 1.

4. Normal form results.

4.1. Rivers and canards. Here we consider the truncated normal form for the flow near
a canard point [30],

T 5(b:1:2 + ng)
(4.1) Ty | = €a =: f(z;¢),
T3 1+ x%

where 0 < ¢ < 1 is a timescale parameter, a,b,c € R, and (0,0,0) is the canard point.
In system (4.1), we refer to z1,z2 as slow variables and x3 as a fast variable. As a two-
timescale system, (4.1) has a critical manifold, given by the set M = {z; = —a3}, where
23 = 0, which can be decomposed into stable and unstable branches and the fold set given
by Mg = {z1 = —23|vs < 0}, My = {1 = —23|z3 > 0}, and Mp = {21 = 23 = 0},
respectively. Trajectories of interest to us begin near Mg, approach Mg, and linger near
My for some amount of time.

To begin our analysis, we will identify the confluences of system (4.1), which we describe
in the following proposition.

Proposition 4.1. If ¢ —8ab > 0 and b # 0, then there are two branches of infinite-class
confluences of system (4.1), given by
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Cz .= {:m:—x%—%(ciw),xg:—g—z(c$w)’x3GR},

where w := /c2 — 8ab. These branches are invariant in the truncated normal form.

Proof. Let

(42) Pe(n) = (—n? = Sle£w), 5 (cFw),n)

denote parameterizations of C’%f 1, respectively. First we will demonstrate that the C’%‘? L are
invariant under (4.1). If we reparameterize I'x by I'y o 7(¢) for some unknown function 7,
then

d CFw
—TI t)=|—-2n,——.,1 |7
L on() ( T >n

and

If we choose

(4.3) E—————

then

S04 on(t) = F(Ts on(t),<)

and hence the CZ’, are invariant under (4.1). To conclude, we note that I'y itself has identi-
cally zero curvature, i.e.,

det(ri/(n)7 Pi”(”)? Pﬂ:m(n)) =0,

which will be preserved under reparameterization. Thus, the trajectories ¢4 (t) := 'y o n(t)
have identically zero curvature for all time, which implies that

d dk
and hence the 'y parameterize sets of infinite-class confluences. |

Corollary 4.2. If ¢® —8ab > 0 and b # 0, then

t
(4.5) o+(t) = <—ait2 — % + ew, —% + atwt, ait>

are trajectories of (4.1), where w = V¢? — 8ab, 4ayx = —e(c  w).
Proof. Solving (4.3) with initial condition 7(0) = 0 yields the result. [ ]
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Corollary 4.3. The trajectories defined by (4.5) are the mazximal canards for € > 0.

Proof. Note that ¢+ 1(t) + d)?t,i%(t) = O(e); hence, for all t € [0,00), ¢+(t) is O(e) near
the repelling branch of the critical manifold and for all ¢ € (—o0, 0], ¢4 (¢) is O(e) close to the
attracting branch of the critical manifold. [ |

Theorem 4.4. The maximal canards of (4.1) are rivers of infinite order.

Proof. The conditions ¢ — 8ab > 0,b # 0, are the same conditions presented in [30] for
the existence of canards. Specifically, these conditions guarantee that the folded singularity
of system (4.1) is not a folded focus or a folded saddle node. The previous proposition with
its corollaries demonstrates the result under these conditions. If ¢> — 8ab < 0,b # 0, then the
system (4.1) has no maximal canards, and thus the result is vacuously true.

If b = 0, then the folded singularity in (4.1) is a folded saddle-node, in which case the base
normal form without nonlinear terms becomes [32]

T € (%.’1:2 - (,U, + 1)%3)
(4.6) T2 = 9 s
5'63 T+ .’L‘%

which, following the proof techniques of the previous results, has two invariant branches of
infinite-class confluences, given by

1+j(p—1) 2x3
C¥, = =—a24e—2 L gg=—""" 23R
2 { T 2 2T it -n|T
for j € {0,1}. Replacing C%‘f L with C’%ij in the previous proofs generates the result. |

4.2. Dynamics near the river canard. We will refer to the C'%°, as the river canard
set. We can use LOR in its simplest form, based on a one-dimensional base curve [20], to
understand how trajectories behave near our infinite-class rivers and, in so doing, provide a
novel analysis tool for canards.

Specifically, we will perform the LOR transformation based at each of the curves I'L
identified in (4.2) in the previous section. Note that, as we demonstrated in the proof of
Proposition 4.1, the curves I'y are invariant under the flow of our normal form (4.1) and
satisfy (4.4). Therefore we can simplify the LOR equations greatly and the right-hand side of
(2.7) becomes [20, 21, 22, 3, 19]:

Tf(n.£)
4.7 Lr,.f(n,§) = T (Il (1—&s(m) |,
(4.7) ry f(n,€) < N6 >

where n € R, & = (£1,&) € R?, and (n) is just the usual curvature formula for a curve in
three-dimensional space evaluated at 'y, which takes the form

[ITL" () x T ()l _ lle<" ()]l

e T O WO
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for ex(n) = T1'(n)/|IT+'(n)||. The term N f(n,§) is the two-dimensional generalization of
g(n, &) from (2.7), corresponding to (2.8) with k = 2, and takes the form

o (fo¥(n, &), Nil'+(n))
Nfn.©) = ( (fo¥(n, &), NaT'x(n)) ) ’

where {N;I'+(n) : i = 1,2} forms an orthonormal basis for the normal subspace to 'y pa-
rameterized by 7 with (see also [21]) N1T'£(n) the unit normal vector in the direction of
TL(n) — (D" (), T ()T () /[T () 1.

We will use system (4.7) to understand how trajectories near our river canards are fun-
nelled towards the canard point, linger near the fold, and are pushed away from the repelling
manifold My ; specifically, we will demonstrate that trajectories approach the fold Mg along
one invariant angular manifold, experience a short period of unconstrained rotation, and exit
the neighborhood of My along another invariant angular manifold. For convenience, we will
henceforth drop the + subscripts.

To expose the angular dynamics hidden in system (4.7), we will represent the £ dynamics
in polar coordinates. That is, we let £ = (7 cosf,rsinf) and compute the ODEs induced on
r, 6, which are given by

_ Tf(n,rcosf,rsinf)
[T (m[I(L = 7 cos Or(n))’
(4.8) i = ((cos 0, sin ), ),

0 = (cosf,sinf) AE.

This change of coordinates is functionally equivalent to blowing up the entirety of the river
canard trajectory, but we can avoid using the unpleasant chart conventions often associated
with this process, as we do not need to increase the dimension of our system.

At first glance, the third equation in (4.8) seems problematic, as we are interested in the
region where r < 1. Note, however, that since I'y are invariant and {£ = 0} maps to the set
{T'£(n)|n € R} under ¥, we have N f(n,0) = 0 by Lemma 2.2. Using this observation, we can
compute that for any z(6) € R?,

i 2O ANFOLr0) _ | (0) A DeNS(n,r2(6)):(6)

r—0 r r—0 1

= 2(0) A DeN f(n,0)2(6)

from L’Hopital’s rule. Therefore, the dynamics for small r is given by

. Tf(n,0) .
=y O
(1.9) i = (DeN £(n,0)2(0). 2(0))r + O(),

6 = —DeN f(1,0)2(8) A 2(6) + O(r),
where z(0) = (cos6,sin ). In effect, we have performed a geometric desingularization along all

of T, as the set {r = 0} is invariant under (4.9). In the process, we have uncovered nontrivial
angular dynamics on the set {r = 0}, given by
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. Tf(n0)
(410 (RO

6 = —DeN £(1,0)2(0) A 2(0),

which will be dominant in the region where r < 1, in particular near the river canards. Once
we understand the dynamics of (4.10), we can piece together a full picture of the dynamics by
considering the 7 equation to leading order, to learn how trajectories are drawn to, or pushed
away from, the river canards.

First we will study the (,60) dynamics in the invariant subset {r = 0}. Let A(n;e) :=
D¢N f(n,0;¢). Using the reparameterization described in (4.3),

T i (==
(4.11) f,(7770) _ —e(c w))
I ()l 4
and therefore system (4.10) is a fast-slow system. Note that this system is invariant under

the transformation 6 — 6 + 7. Hence if (n(t), 8(t)) is a solution to (4.10), then (n(t),0(t) + )
will also be a solution. We have a m-shifted family of critical manifold components given by

Mang = {A(Tﬁ 0)2(9) A 2(0) = 0}’

the shape of which will depend on the folded singularity, as illustrated in the examples in
Figure 2.

Note that for z,y € R?, x Ay = 0 if and only if 2 = ¢y for some scalar ¢. Hence our critical
manifold can be reexpressed as

Mang = {(n,0) |3\ such that A(n;0)z(0) = Az(0)};

that is, (n,0) € Magng if and only if 2(6) is an eigenvector of A(n;0). Furthermore, as
lz(8)|| = 1, the eigenvalue associated with z(f) must be A = (A(n;0)z(0), z(0)). Note that
(A(n;0)2(0), 2(0)) appears as the leading order coeffecient of r in the r equation in (4.9);
thus, radial stability is closely related to the angular manifolds. Moreover, using Wolfram
Mathematica, we can compute that in the ¢ = 0 limit, det A(n;0) = 0 for all n and therefore
the eigenvalues of A(n;0) are 0,trA(n). The latter can be computed (also using Wolfram
Mathematica) to be 2n from (4.10). We label the corresponding two branches within each
component of the critical manifold as

Mang,() = {(771 0) c Mcmg‘A(n; O)Z(H)

0}
Mang,ir = {(1,0) € Mang|A(1;0)2() = 2

nz(0)}-

The stability and hyperbolicity of the critical manifold will be determined by the sign of
00/06, which can be computed using (4.10):

a0

(4.12) 5=

—A(n;0)2'(0) A 2(0) — A(n; 0)z(0) A 2/ (0).
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Figure 2. Four configurations of the angular dynamics. (Upper left) A phase plane plot for system (4.10)
derived from the river canard T'y for the folded node (a =b = 1,c = —3) case with ¢ = .01. The colored curves
are the slow manifolds of the system; the stable manifolds are shown in blue and purple, and the unstable
manifolds are shown in red. The gray region is where {A(n;0)z(0), 2(0)) < 0, which is the region of linear radial
stability. (Upper right) The same folded node parameter configuration shown for I'_. (Lower left) The angular
dynamics of the folded saddle (—a = b = 2,c = —3), again with € = .01, for I'y; note that 1 < 0, hence T'} is
a fauz canard. (Lower right) The same folded saddle parameter configuration for I'—, which is the true canard

for the folded saddle system.

We make use of the following equalities, which hold because z(6) is a unit eigenvector such

that z(0) A 2/(0) =1,

A(;0)2(0) A 2'(0) = (A(n;0)(0), 2(0)),
—A(;0)2'(0) A 2(6) + A(n; 0)2(0) A 2 (0) = trA(n),

to express (4.12) as

% = trA(n; 0) — 2(A(n;0)2(6), 2(6)).
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Given what we have deduced about (A(n;0)z(0),2(0)), namely, that it is either 0 or 25 on
Mng, and trA(n; 0) = 2n, we can conclude that

08
06

a0

bl — _9
a0 "

Mang,tr

=2,
Mang.o

and hence the branch of My, associated with the zero eigenvalue will be stable for n < 0,
lose hyperbolicity at n = 0, and become unstable for n > 0. The branch associated with the
other eigenvalue will have the opposite stability.

With this information, we can understand the organization of the (7, 6,0) plane: trajec-
tories having initial conditions with n < 0 will be attracted to the set {A(n;0)z(6) = 0}
and travel along a branch of this set until n(t) = O(e). Trajectories will rotate freely in the
neighborhood of 7 = 0 until they are drawn to the set {A(n)z(0) = 2nz(#)} and travel along a
corresponding branch of the critical manifold indefinitely. Examples of this behavior appear
in Figure 2: trajectories with 1 < 0 converge rapidly to an angularly stable purple or blue
branch of Mgng0 and drift along it until  nears 0. For such 7, trajectories may drift in
the direction of decreasing 6 to another set of branches of Mgy4. As n grows away from 0,
trajectories settle to a stable blue branch of Mgp,.

Now we want to add the radial dynamics into the mix. From (4.9), we have

7= (A(;0)2(0), 2(0))r + h(n, O)r® + O(e),

where h(n,0) is a smooth function that can be computed from (4.7) and turns out to satisfy
h(n,0+m) = —h(n,0). In the domain where r is nonzero but small, we can use our knowledge
of the (n,6) dynamics on {r = 0} to approximate the r dynamics.

Suppose that (n(t),r(t),0(t)) is a solution to the system (4.8) with initial condition
(no,70,00). If 79 is small, then (n(t),0(t)) will be well-approximated by (4.10). Denote by
(7i(t), 6(t)) the solution to (4.10) with initial conditions (7(0),0(0)) = (1o, 6p). To approxi-
mate the radial dynamics we will consider the ODE

(4.13) 7= (A(7;0)2(8), 2(0))7 + h(7,0)7>,

where f],é are known functions of ¢. Note from (4.13) that 7 satisfies a Bernoulli equation,
so if 7(0) = rg as well and ¢ is chosen to be small enough, then a Gronwall argument shows
that [r(¢t) — 7(¢)| will remain O(e) for O(1) values of ¢ (see [22, Theorem 4.1] for the full
details of this argument). Therefore, the condition (A(7;0)z(6), z2(0)) < 0 largely determines
for which (7, f) values trajectories will be attracted towards {r = 0}; this set is related to the
funnel in typical canard analysis based on geometric desingularization and is depicted in gray
in Figure 2. We have already seen that if 19 < 0, then the approximate angular solutions will
rapidly approach Mgyg 0. Our characterization of trajectory behavior is not quite complete,
however, because the bilinear form in (4.13) will vanish along Mgyg.0, since that manifold is
defined by A(7;0)z(f) = 0. Hence, near each branch of Mgy.0, the 7 dynamics will yield
an algebraic decay to or repulsion from {7 = 0}, depending on the quadratic term in (4.13).
A calculation shows that this term has opposite signs on each of the m-shifted branches of
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Moang,o. We will call these two branches Mpg,0,5 and Mgpg.0,0, respectively, because when
it is computed, h(n,#) turns out to satisfy

(4.14) h(n, ) <0 and h(n, ) > 0.
Ma'n._q,(),S Man_q.,O,U

This radial effect is not apparent in Figure 2 because the m-shifted branches of M40 appear
to have identical relationships with the funnel (for a region of which each forms an upper
boundary) and with the angular flow (for which they appear to be stable). Putting every-
thing together, however, we conclude that there is one branch of Mg,40 that will be radially
stable and angularly stable, while the other branch of Mg,40 will be angularly stable and
radially unstable. Therefore, the canard solution will only trap trajectories that approach
the fold from specific initial angles; this radial and angular analysis together provides the full
characterization of the canard funnel effect.

Within the canard funnel, the approximate angular dynamics computed with r = 0 pre-
dicts that trajectories will approach Mgyg.0,5 (purple branch in Figure 2). We now see that
during at least the final part of this approach, these trajectories will have quadratically de-
creasing radial components. Therefore, for these solutions, the accuracy of the approximation
will increase over time, as 7(t) approaches zero. Thus, we can use our approximation up to
an O(e) neighborhood of the fold {n = 0}, where the normal hyperbolicity of Mgsg.0,5 breaks
down. The angular manifolds that organize the phase space of system (4.9) for small r are
plotted in Figure 3. The figure also shows how these manifolds align in the original LOR
frame, with coordinates (n,&1,£2), with and without representation of the blowup of the river
into a cylinder. Our analysis shows that in (7, &1, &2) coordinates, trajectories with n < 0 are
pushed away from the red manifold towards the purple and blue manifold. Trajectories may
decay radially as they approach the purple and blue branches, but once they approach close
enough to the blue branch, they will be repelled from the river, whereas along the purple
branch, they will approach the river and the fold of the critical manifold at {n = 0}. In
brief, those trajectories that converge towards the fold of the critical manifold contract along
the purple branch of the angular invariant manifold as they do so. Finally, the alignment of
these structures relative to the original slow manifold after transformation back to the original
(21,9, x3) coordinates of system (4.1) is illustrated in Figure 4.

To conclude this section, we will study the dynamics of the exit from the vicinity of the
slow manifold. To do so, we will show that we can extract the way-in way-out (WIWO)
function for the system by using the LOR dynamics. Suppose that ¢(t) = (n(t),r(t),0(¢)) is a
trajectory with initial conditions ¢(0) = (g, ro, 6o), which is a point in the funnel (specifically,
no < 0, Oy is near Mypg0.5, and 19 < 1). ¢ will be drawn towards r = 0 until it becomes O(¢)-
close to the fold, n = 0. As we have previously noted, the radial stability along the angularly
stable slow manifold changes as ¢ crosses the fold; beyond the fold, ¢ will be repelled from
r = 0. However, ¢ will not immediately escape the neighborhood of r = 0; indeed, ¢ can
be delayed for as long as an O(1/¢) time. To explain this delay effect, we will construct the
WIWO function.

Define

T(ro,no) = inf{t > 0|r(t) = ro, given that n(0) =no},
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Figure 3. Angular manifolds that organize passage mear the fold. (Upper left) A sketch of the angular
manifolds for the (n,0,r) system; for small 1o, the (n,0) dynamics will quickly approach their slow limit and
be drawn to the angular manifolds that are stable under the angular dynamics. The stable angular manifolds
are plotted in blue and purple, and the unstable angular manifolds are shown in red; the purple manifold
corresponds to the branch of the stable manifold that is inside the funnel, which is attracting with respect to
the v dynamics. (Upper right) The angular manfiolds shown in a “blowup” cartoon, in which the manifolds
from the upper left panel are wrapped around the “cylinder” ||€|| = 0. (Bottom) The angular manifolds in the
original LOR coordinates.

the first positive time for which r(¢) returns to its initial value, ro. As r(¢) will decrease until
after n has increased through zero, the quantity 7'(rg,70) provides a measure of the time at
which r(t) is escaping from zero. The WIWO function is the mapping

W(ro,m0) =noT(ro,no);

that is, W measures the value of 1 at which r leaves a neighborhood of zero, given that it
entered this neighborhood at time ¢ = 0 with n = nqg.
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Figure 4. Organizing angular manifolds in (x1,x2,x3)-space. (Upper left) The angular manifolds mapped
back to (z1,x2,x3) space on the attracting (x3 < 0) side of the slow manifold, shown in yellow. Note how the
blue and purple stable angular manifolds align with the original slow manifold, while the red unstable angular
manifolds, which serve here as funnel separatrices, intersect the original slow manifold tranversely. (Upper
right) The ezit side of the slow manifold, xs > 0. Note that here, the unstable angular manifolds in red lie
along the original slow manifold, and the blue stable manifolds intersect transversely. (Bottom) The full view
of the angular manifolds, combining both the upper left panel and the upper right panel.

Note that we can numerically integrate the solutions to the full, unapproximated system
(4.8) and compute the WIWO function directly, as shown in Figure 5. This is a mechanisti-
cally uninformative approach, however, and we can better explain the cause of the delay by
approximating the radial dynamics implicitly.

We divide the equations in system (4.10) and apply (4.11) to obtain

do 1 - - -
di EA(% 0)z(0) A 2(0), (o) = 6o,
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Figure 5. The radial dynamics near the fold. (Left) Plots of (n(t),r(t)) for trajectories in the funnel for
various Mo values. All trajectories start at the upper bound of r with n negative. Trajectores plotted in redder
colors have more negative no values, while bluer ones have no values closer to zero and hence to the fold. (Right)
A zoom near the fold, which displays small radial oscillations in the exiting trajectories.

where we recall from Corollary 4.2 that ayx = —e(c £ w)/4 comes up in the infinite-class
confluences of system (4.1) and we introduce v+ = (c + w)/4 to keep the ¢ explicit. From
(4.13), an approximation to the r» dynamics comes from solving

i 1 (z(ﬁ)f - q(ﬁ)f2>» #(10) = ro,

dfﬁ EV4

where 1(77) = (A(7;0)z(8(77)), 2(0(7))), q(7)) = h(7,6(7)). This differential equation can be
solved explicitly, but we find it most useful to apply the usual transformation v = 1/7 for
Bernoulli ODEs, multiply the linear ODE in v by an integrating factor, and integrate to
transform it to

1[0 1 1 1[0 1/
exp —/ l(o)do | == = —i—/ exp —/ l(o)do ) q(s)ds.
EV:I: Mo T(n) 7'() El/j: 7o El/j: Mo

To approximate the 77 > 0 at which 7(7) = rg, we subsititute and rearrange to obtain

1= exp <€£1)> (1 n ;71 /nn exp (—ij) q(s)ds> ,

where L(7}) = f;z I(o)do. Hence

_iz) I (1 + 2 /nn exp <—’;£i)> q(s)ds) .
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Figure 6. An approzimate WIWO sliderule. In red, we plot the function F(n) defined by (4.17) against
its independent variable 1, the values of which appear on the bottom azis. In blue, we plot —Qo(no) against its
independent variable 1o, the values of which appear on the top azis. Given an input no, to visualize the n value
at which escape occurs, we find the n value where —Qo(n0) is equal to F(n). Note that —Qo(no) asymptotically

approaches —Qf ~ .23, and hence this approach estimates that solutions must jump before the final intersection

point of the curves, at mx ~ .323. This matches well with the radial dynamics we observe in Figure 5, where

solutions jump near n = .33. Note that the right portion of the red curve is not vertical; however, F'(n*) ~ 10**,
so F is growing extremely quickly. We use a =b=1,¢ = —3,e = 0.01 for these plots, placing system (4.1) in
the folded node regime.

Since trajectories approach the fold with 7 < 0 along Mgng,0 where I(n) = 0 and beyond the
fold are attracted to Mgng+r where I(n) = 27, it follows that to leading order in ¢,

0 n<0,
Lin)=<,
n® n=0.

Making use of In(1 + x) = x + O(2?) we find

(4.15) —i)> =g <Qo(no) + /Oﬁ exp <_82> Q(S)d3> +0(r5),

EV+4

where Qo(n0) = f% q(s)ds, which we call the quadratic residual. Equation (4.14) gives us
Qo(no) < 0 based on the approximate angular solution, and this inequality will carry over
to small nonzero r, which is relevant for 0 < € < 1, as long as 79 is not too close to 0.
Specifically, Figure 6 shows an example where ¢(n) has its expected negative (positive) sign
for n <0 (n > 0) away from 0, but oscillates in the transition between the two.

We rearrange equation (4.15) one more time to obtain the final form

n 82 ~2
(4.16) / " exp (—) a(e)ds + L = ~Qolm) + O().

EV4

Equation (4.16) can be solved for 7 to find the approximate 7 value at which r grows back to
ro. This escape condition shows that in order to escape from the river canard, the trajectory
must overcome the quadratic residual term. The integral on the left-hand side of (4.16) will
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diverge rapidly from zero, since vy < 0 (consistent with 7 > 0). Note, however, that the
integral need not grow monotonically immediately beyond 77 = 0. Indeed, dropping the tilde
for convenience and defining

n 52 n2
(4.17) F(n) = /0 exp < 5V:i:> q(s)ds + -
we find that F'(n) first increases and then decreases before increasing again, consistent with
the behavior of ¢(n) and the positive contribution of n?/rq (Figure 6).

Note that the left-hand side of the escape condition (4.16) is approach-agnostic; changing
no will only affect Qo(np) on the right-hand side. One of the more curious features of the
delayed escape from a canard point is the buffer point effect: a buffer point is a value n* such
that all trajectories will leave the river canard before n = n*, regardless of 79. In some sense,
the buffer point is the longest a solution can be delayed. In our LOR system, the buffer point
phenomenon is easily understood; sending 1y — —oo, we find

lim QO("?O) = Qz;a

o —>—00

i.e., q(s) is integrable on (—o0,0], and hence our quadratic residual will always have finite
size. The rapidly diverging integral will always overcome (g, hence the buffer point solves
F(n*) = —Q§. Empirically, we see that based on the asymptotic behavior of —Qq(7p) and the
eventual rapid growth of F(n), (4.16) does an excellent job approximating the buffer point
1n* by which all orbits jump away; however, the terms that we have neglected can introduce
spurious solutions for smaller n (Figure 6).

The preceding analysis is summarized in the following proposition.

Proposition 4.5. The WIWO function, W (no,r0), satisfies

L W (10,70) L
_LoWlm,ro) _ In (1 + ro/ exp <— (S)) q(s)ds)
evy eV Sy, EV4

and can be approzimated for small ro,e by the solution to

FoW(no,r0) = —Qo(no) + O(ro),

where
n 2 e
F(n) = - d —
o= [ (-2 Jatsps+ I
and
0
Qo(??o)Z/ q(s)ds.
Mo
For

Qo= lim Qo(no),

Mo —>—0Q
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all trajectories in the funnel must exit a tube of radius ro around ' before n reaches the value
n* given up to O(rg) by

F(n*) = —Qyp.

The LOR frame has given us a new perspective on the dynamics near our river canard
solutions. Instead of tracking solutions through multiple blowup charts, we can desingularize
the dynamics along the entire river canard trajectory. By approximating the radial dynamics
explicitly, we can estimate passage time along the fold using a WIWO function conveniently
expressed in terms of a timelike variable . Moreover, although previous analysis had de-
rived a WIWO function, also given as an upper limit of an integral, which can be used to
compute a passage time and to prove the existence of the buffer point, that result did not
include the decomposition into geometric components that we provide and its derivation used
complexification of time to evaluate WIWO integrals along elliptical contours [18], which we
avoid here. Our approach also highlights the essential asymmetry in the way that nearby
trajectories approach and depart from the neighborhood of the fold; trajectories in the funnel
region, which itself is the product of quadratic stability, will be drawn to » = 0 algebraically
yet will escape exponentially. Overall, by viewing the normal form flow from the perspective
of the river canards, we expose nontrivial dynamics in a geometric way.

5. Transformations. In the previous section, we established that for the leading order
part of the normal form for the flow near a canard point, system (4.1), the maximal canards
are rivers of infinite order, and nearby trajectories approach and depart the fold along stable
invariant angular manifolds that we have identified, after spending a time period near the fold
that we can bound using a WIWO function. Here, we consider how these results generalize
beyond the truncated normal form in three-dimensional systems (n = 3).

5.1. Nearly curvature preserving maps. In this section we consider systems with 1 fast
and 2 slow variables, or 1-fast 2-slow systems, in R3. First we will establish two computational
lemmas. The crux of these results is understanding how certain transformations of a flow affect
the curvature of the flow. Recall that the function A; was defined in (3.1) and the set £ was
defined in Definition 3.7.

Definition 5.1. Suppose that @ = f(x) induces a flow for x € R3, and H : R — R3 is a
smooth diffeomorphism. For y = H(x), the flow

y = [D.H(x)|i = [D;H o H '(y)|f o H ' (y) = 9(y)

is induced on y. If Agf(z) =0, then we say that H is Ag-preserving if Ay(go H(z)) =0 for
all t € ZL.

If & = f(x) is a fast-slow system with timescale parameter 0 < ¢ < 1 and Ayf(z) = 0,
then we say that H is nearly Ag-preserving to order k if there exists a smooth, positive definite,
O(1) map C(z) such that

(5.1) C(x)Acf(x) = Arlg o H(z)) = O(e")

uniformly for all x in an O(g) neighborhood of the critical manifold.
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We can also define H as locally nearly Ay-preserving to order k if (5.1) holds on a compact
submanifold of the critical manifold; the local property will suffice for our purposes, but we
will drop the word “locally” in the text below. Note that, since curvature is a geometric
property, most nonlinear maps are not nearly Aj-preserving.

Lemma 5.2. Nondegenerate linear mappings are A;-preserving for all [.

Proof. In the case H(z) = Az, where A is invertible, it is simple to compute 39 = Az
so Ay(go H(x)) = det(A)Ayf(z). [ ]

Lemma 5.3. Given a 1-fast 2-slow system

591($1,$2,-’E3;5)
(5.2) i=| ega(w1,z2,2358) | =: f(x3¢)
F(x1,22,73;€)

with Ayf(x) = 0, all near-identity transformations H(xz;¢e) are nearly Ag-preserving to order
10| + 1.

Proof. Given a near-identity transformation H(z;¢), we can write H(z;e) = x + ch(x;¢)
and inductively compute that when z is in an O(e) neighborhood of the critical manifold,

y 9 = (I 4+ eDyh(z, ) z@ + O™,

where I is the identity matrix. Here we have used the fact that, when z is O(e) close to the
critical manifold, (¥ = O(e?). Computing the wedge products

Ay(go H(x)) = det(I +eDyh(z;e))Auf(x) + O (€|£|+1>

and taking C(z) = det(I + D h(x;e)) =1+ O(e) proves the result. [ ]

Note that in a fast-slow system, when z is O(g) close to the critical manifold, direct
computation shows that Af(z;e) = O(ell), such that it has the form

[ el

Acf(wse) = ggmAgf(QU; O)W +0 <5|e|+1)

from Taylor’s equation.

Definition 5.4. Let B(M,O(¢g)) denote a ball with O(e) radius around the manifold M.

The set of class k near-confluences, denoted by Cgs, s given by
i k ol
Ch. =)z eBMO() > wAgf(gc;O) =0
i=0 e

A class k weak river is a trajectory ¢ such that ¢(0) is a class k near-confluence.
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5.2. On the nonexistence of terrestrial canards. Combining Definition 5.4 with Lemmas
5.2, 5.3 and Theorem 4.4 yields the following result.

Theorem 5.5. Given a 1-fast 2-slow system of the form (5.2) that features a canard point,
the canard solutions to (5.2) lie O(e) close to the set C’%E.

Proof. Since (5.2) features a canard point, there are a sequence of linear and near-identity
transformations that convert (5.2) to the canard point normal form. We have already demon-
strated the existence of river canard solutions to the truncated normal form, system (4.1),
in Theorem 4.4. Applying the inverse linear and near-identity transformations (which are
themselves linear and near-identity transformations, respectively), we can track the set C%
using Lemmas 5.2 and 5.3; namely, it will be mapped to the set C%’E. Finally, we note that
under the inverse linear and near-identity transformations the canard solution of the normal
form (4.1) must remain O(g) close to the image of C%. [ ]

As the set C’% . can be computed with the aid of numerical or symbolic computational
tools, we can use?C'%,6 to find the canard solutions of any 1-fast, 2-slow system in which
they exist. More details on the exact nature of this computation are given for a specific
example system in the following section; however, the outline of the process is quite simple:
given the system (5.2) we identify C%,a by computing series expansions of Aj 23, Ay 24, and
A125+ A134 in €, and then we use C%E as a pool of initial conditions. The trajectories
through C% _ will be O(e) close to the canard solution we desire. Indeed, all canards must
stay O(e) close to weak rivers. In brief, all ducks live in rivers, at least in 1-fast, 2-slow
Systems.

6. The autocatalator system. In this section, we present a well-known example of a
system that displays canard solutions, the autocatalator system. Specifically, we will study

the dynamics given by
5
a—€<u <2+c> —abQ—a>,

b=ab®+a—0b,
¢=¢eb—c),

(6.1)

where 0 < ¢ < 1, > 0 are parameters. The system represents the dynamics of a chemical
reaction involving three reactants, the concentrations of which are proportional to a,b,c,
respectively. In this reaction schema, reactant B slowly bolsters the concentration of reactant
C, which in turn boosts production of reactant A. Meanwhile, A and B react to produce more
of B but also to inhibit the production of A. In brief, through C, B promotes the buildup of
A, with which it reacts to form more B, giving rise to the name of the system. Because of the
physical interpretations of the variables, we focus on the positively invariant positive orthant
of the system.

In the singular limit, we find M = {a = b/(1 + b?)} to be the critical manifold of the
system, with stable branch, unstable branch, and fold given by
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0.6

Figure 7. The attractor of the autocalator system (6.1). (Left) The red trajectory is the attractor for
€ = 0.013, u = 0.299. The stable branch of the critical manifold, Mg, is shown in light blue, and the unstable
branch of the critical manifold, My, is shown in light red. (Right) A zoom on the attractor near the canard
point (1/2,1,1). Note from the two panels together that the attractor exhibits multiscale oscillations.

respectively.

It is known that system (6.1) has a canard point at a = 1/2,b = 1,¢ = 1 [24]. Indeed, the
canard trajectories of the system contribute to the form of the attractor of the system, which
is a mixed-mode oscillation (Figure 7). Note that (6.1) exhibits a large-scale oscillation that
is modulated by smaller amplitude oscillations.

We will verify that the canard solutions of (6.1) lie near weak rivers. Recall that weak rivers
must lie O(e) close to the critical manifold. Thus, we numerically search for near-confluences
in a tube around the manfiold; that is, we minimize |Aq23f], [A124f], |A125f + A1 34f| on
the set B(M, ¢). Interestingly, we find an actual confluence point (i.e., Aj23f =0,A124f =
0,A125f + A134f = 0) at (a,b,c) = (0.499,1.066,1.066), which is not guaranteed by our
theory, but is a nice proof of concept.

Using a symbolic computation engine (Wolfram Mathematica) we find a set of class 2 near-
confluences (i.e., elements of C% .) near the fold (Figure 8). To find the weak river, we minimize
|A125f+ A1 34f| along the relevant branch of C’%, .; in fact, we find that the minimum occurs
at (a*,b*, c*) ~ (0.495,1.07,1.04), very close to the previously mentioned confluence point and
the canard point. We find that |A1 25f(a*,b*, ¢*) + Ay 34f(a*,b%, c*)| ~ €742, which places it
reasonably close to the desired £/, based on Lemma 5.3, since here €] = 8.
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0.510

0.505;

0.495;

0.490

2500 0 500 1000

Figure 8. The near-confluences C’;g leading to the canard point. (Left) The near-confluence set C’%,E
(black) lies near the critical manifold (gray) and passes near the fold (dashed black). The green curve is the
trajectory, or weak river, through the point on C%’E that has minimal |Aq1 25f + A1,3,4f|; the canard solutions
near the fold lie O(g) close to this curve. Note that the azes here are a,b,2a + 2¢c, which provide a clearer
visualization than a,b, c. (Right) Along the weak river, a long delay occurs near a = 1/2 and is followed by the
onset of gradually growing, small amplitude oscillations.

Denote by ¢(t) the trajectory through our minimum (a*, b*, ¢*), which is the desired weak
river. We claim that this trajectory has all of the hallmark characteristics of a canard solution.
The right portion of Figure 8 shows that ¢ lingers near the canard point for an O(1/¢) amount
of time, and upon its exit from the canard point it exhibits small scale oscillations that rapidly
grow.

To conclude this section, we demonstrate how we can use the near-confluence set C%’s
to approximate the perturbed slow manifold. It is well known that the perturbed slow man-
ifolds near a canard point will exhibit a complicated twisted shape due to the rotational
influence of the canard solution [30, 32]. To approximate these twisting manifolds, we flow
the points of C%’E forward in time; as canard solutions must lie O(e) close to C%’E - C’%E
by Theorem 5.5 and also must lie on Mg, the trajectories that flow from C’%,E will be
a good approximation of Mg.. Two views of this continuum of trajectories are shown in
Figure 9.

In the standard numerical approach, one starts by numerically approximating the per-
turbed slow manifolds Mg ., My ., usually using a boundary value problem formulation [32].
The canard solution is subsequently found by computing the intersection Mg, N My, as
the canard solution begins on Mg, and crosses into My . [30, 32]. In our formulation of this
computation, we reverse the order: we first identify the canard solution and use the results of
that computation to identify the perturbed slow manifold. There is no obvious way to identify
secondary canards using curvature methods, however.
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Figure 9. Approzimation of Mg, for system (6.1) viewed from two different angles. We overlay the tra-
jectories with initial conditions in C?Z,s near the fold (dashed black) of the critical manifold (gray). Trajectories
with initial conditions farther from the fold are colored in red, while trajectories with initial conditions nearer
to the fold are colored bluer. The set C’%ys s shown in solid black and the canard solution (only visible in the
right panel) in green. Note that we again plot 2a + 2c in place of c.

7. Conclusion. Past work has established the existence of a funnel, through which tra-
jectories are squeezed as they approach a canard point [12, 33, 8, 18]. We have recently
shown that contraction of trajectories can be associated with special solutions called rivers,
emanating from confluence points [20]. In this work, we connect these two concepts, gener-
alizing rivers to arbitrary dimensions and showing that, at least in 1-fast, 2-slow systems, all
canards must lie near a form of river. We have provided formulas that define these rivers and
can be used to locate them computationally. Moreover, our findings include additional new
results: the funnel can be represented as an invariant manifold of a transformed system, the
LOR equations, and computed numerically using a blowup along the river, while the dura-
tion of the prolonged time of passage near the fold that trajectories experience can be closely
approximated using the same blownup system, without a transformation to complex time
[18], which should significantly facilitate calculations for model systems in applications. The
WIWO functions used to compute passage times (e.g., [5, 32, 15]) are also applied to calculate
delays in escape after slow passage through a subcritical fast subsystem Hopf bifurcation on
a critical manifold in systems with m > 2 fast variables and k > 1 slow variables [25, 26,
18]. Although canards are not present in standard delayed Hopf bifurcations, when k& = 1,
the critical manifold itself is trivially a river. Hence, developing a WIWO calculation based
on the blowup ideas in section 4.2 of this paper would be an interesting direction for future
research.

This work represents an application of LOR. LOR is a powerful geometric technique
for transforming vector fields into coordinate systems highlighting tangential and orthogonal
dynamics (see also [36, 4, 23, 29, 38] for related ideas) relative to any curve or surface in
the phase space. In past work, we have used LOR to define, locate, and study the influence
of rivers in the plane [20] as well as to locate periodic orbits and analyze orbit stability and
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the dynamics of trajectories as they approach stable periodics [22]. LOR can be applied
in arbitrary dimensions [21], but the results relating canards and rivers in this paper are
restricted to 1-fast, 2-slow systems in R3. This is a central setting in which to work, since
1-fast and 2-slow variables have been shown to underlie robust canard dynamics, even when
they arise in higher-dimensional systems [34]. Nonetheless, it would be interesting to work out
the details of the precise relation of canards and rivers in higher dimensions, which currently
remains an open problem.
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