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Abstract

In this work, we describe mostly analytical work related to a novel approach to param-
eter identification for a two-variable Lotka—Volterra (LV) system. Specifically, this
approach is qualitative, in that we aim not to determine precise values of model param-
eters but rather to establish relationships among these parameter values and properties
of the trajectories that they generate, based on a small number of available data points.
In this vein, we prove a variety of results about the existence, uniqueness, and signs
of model parameters for which the trajectory of the system passes exactly through a
set of three given data points, representing the smallest possible data set needed for
identification of model parameter values. We find that in most situations such a data set
determines these values uniquely; we also thoroughly investigate the alternative cases,
which result in nonuniqueness or even nonexistence of model parameter values that fit
the data. In addition to results about identifiability, our analysis provides information
about the long-term dynamics of solutions of the LV system directly from the data
without the necessity of estimating specific parameter values.
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1 Introduction

Lotka—Volterra models are ubiquitous in mathematical ecology, chemistry, and many
other fields. Already by the 1970s, there was a vast literature on the dynamics of the
Lotka—Volterra equations and their utility and limitations for modeling population data
(May 1976; Wangersky 1978). This intensity of research effort reflects the centrality of
the LV model and related constructs for ecological theory. Since then, related work has
continued and expanded, including topics such as analysis of the behavior of LV sys-
tems, inclusion of stochasticity, delays, or spatial dependence, model generalizations,
and various applications of the model.

Given a collection of measurements of the sizes or densities of co-existing popu-
lations at a discrete collection of time points, the LV system can, in theory, be used to
predict the nature of the interactions between these populations, such as whether they
are competitive or cooperative. To our knowledge, however, relatively little attention
in the analysis of LV systems has been paid to the estimation of model parameters from
data and to broader questions of parameter existence and identifiability for such sys-
tems (Wu and Wang 2011; Kloppers and Greeff 2013; Fort 2018; Khan and Chaudhary
2020; Lazzus et al. 2020).

These types of results are more challenging to obtain than one might initially think.
When parameter estimation is performed in the process of modeling a biological
system with an ordinary differential equation model, the starting point is the acquisition
of a data set consisting of measurements taken at various times. The goal is to find
a set of model parameter values and initial conditions for which the resulting model
trajectory passes through the data points at the appropriate times. Typically that is
accomplished using numerical optimization algorithms that minimize the discrepancy
between model trajectories and observed data within a deterministic (Dalgaard and
Larsen 1990; Kunze et al. 2004; Ramsay et al. 2007; Cao et al. 2011; Aster et al.
2018) or probabilistic setting (Tarantola, 2005; Calvetti and Somersalo, 2007; Evensen,
2009; Stuart, 2010; Smith, 2013; Calvetti and Somersalo, 2018). Approximation of
derivatives from data and delayed embedding approaches has been also used (Packard
et al. 1980; Takens 1981; Broomhead and King 1986). All such algorithms generally
(i) require a large amount of data, (ii) provide parameter estimates whether the model
is suitable for the biological system or not, and (iii) do not reveal possible alternative
parameter fits. A naive counting argument suggests that for a model with p parameters
and v variables such that v divides p, the parameters and initial conditions comprise
a set of p 4+ v unknowns, and hence, we need m + 1 measurements of the model
variables form = p/v touniquely specify these unknowns. The problem of identifying
parameters from data is nonlinear, however, even for model systems that are linear
with respect to their state variables; hence, uniqueness and even existence of suitable
parameter values can fail.

Because of the challenges associated with this nonlinear inverse problem, we have
recently pursued a distinct alternative approach. Here, our aim is not to find the precise
model parameter values (or ranges of such values) for which model trajectories come
closest (or sufficiently close) to the data. Rather, we pursue qualitative information
about the system that can be inferred from the available data. For example, such
information can include conclusions about the existence or uniqueness of parameter

@ Springer



Rigorous Mapping of Data to Qualitative Properties of Parameter... Page 3 of 35 64

values compatible with the data but can also relate to broader properties of parameters
or trajectories. Such properties can include constraints on the signs or relative sizes
of parameter values appearing in different terms in the model or information about
whether model trajectories through the given data points must be periodic or bounded.
Moreover, although such information is qualitative (e.g., the existence of parameter
values rather than the values themselves), the analysis involved can be rigorous. Indeed,
rigorous results detailing the properties of this formulation of the inverse problem have
recently been obtained for linear systems by Stanhope et al. (2017) and affine systems
by Duan et al. (2020). These studies provided information about the qualitative type
of model interactions compatible with given data as well as analysis of how robust
these results are to measurement error and small perturbations in model structure due,
for example, to weak stochastic effects.

Most recently, numerical analysis of such questions for Lotka—Volterra systems
has yielded some surprising results. For example, while it is well known that peri-
odic cycling can emerge from predator—prey interactions, it has been demonstrated
that methods associated with the qualitative inverse problem approach can determine
whether a set of data points comes from a predator—prey system and whether this sys-
tem is in an oscillatory regime, even when the data is too limited to capture multiple
cycles (Duan et al. 2023). Here we present an analytical study of the inverse problem
for that same Lotka—Volterra system in which we assume that three data points are
given and ask whether one or more model parameter sets exist for which the trajec-
tory passes through these data points, in a prescribed order, with the same fixed time
of passage between each pair. Our analysis establishes a mapping between data and
the system parameters for two instances of data: (i) three selected trajectory points
equidistant in time or (ii) two trajectory points and the positive equilibrium. We show
that in the second case, mapping from data to parameters is one-to-one, while in the
first case, folds give rise to nonuniqueness. In both cases, there are data sets for which
no parameter set exists that will reproduce them. Our approach yields a prediction
about the nature of the species’ interactions, such as whether they are engaged in a
cooperative, competitive, or predator—prey type relationship, given the smallest neces-
sary set of trajectory data. This is particularly useful for application to other biological
systems for which the nature of interactions between components is variable in time.

The main purpose of this work is twofold. First, we seek to prove as many of the
numerical findings obtained for the qualitative LV system inverse problem as possible.
This step will place these findings on a firm mathematical footing, will clarify the
system features from which they result, and hence will advance our understanding of
the dynamics of the LV system and its utility for modeling. The ultimate goal in this
direction, although not yet fully achieved, is to present a foundation for analysis of the
LV system similar to that which we presented for linear (Stanhope et al. 2014, 2017)
and affine (Duan et al. 2020) systems, whereby the model behaviors (such as periodicity
or species persistence) are related directly to data via schematic diagrams without the
need for precise parameter estimation. Second, the formulation of the LV system that
we consider is both linear-in-parameters (LIP) and conservative, two properties that
we define precisely in the next section and that we exploit heavily in our analysis. The
presentation in this work should serve as a stepping stone to a more general theoretical
understanding of issues related to parameter identifiability and inference of qualitative
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properties of parameters and solution trajectories for LIP systems, and possibly other
nonlinear systems, especially the large class of other conservative model systems used
across a broad range of fields (see, for example, MacKay and Meiss (2020)).

The remainder of this paper is organized as follows: In Sect. 2, we set up the inverse
problem for a model LV system and review the numerical results obtained by Duan
et al. (2023). In Sect. 3, we use the existence of conserved quantity to derive various
results about geometrical properties of the trajectories of the system. In Sect.4, we
introduce and solve an alternative formulation of the qualitative inverse problem where
the fixed point of the system replaces one of the data points. In Sect.5, we show
how various properties of the inverse problem solution, including nonexistence and
nonuniqueness, can be deduced from results in Sects. 3 and 4. We close the paper with
concluding remarks in Sect. 6.

2 Preliminaries on the Lotka-Volterra System and the Inverse
Problem

Following Duan et al. (2023), we here focus on two-dimensional Lotka—Volterra sys-
tem with no squared terms:

X = x(ar + B1y),

¥y = y(fax + az), o
x(0) = xo,
y(0) = yo,

where the initial conditions x and yg are assumed to be positive. The model generalizes
the classical predator—prey model in that the rate constants o1, f1, B2, oy are allowed
to have arbitrary signs, to be later determined from given data. Regardless of the signs
of the parameters, the first quadrant is invariant under the flow of (1); hence, we will
focus on positive solutions.

The system (1) can be written in the formalism of linear-in-parameter (LIP) systems
(Stanhope et al. 2014) as the vector ODE

¢ =Af(9),

¢(0) = b, @

where the vector variable ¢, coefficient matrix A, vector function f(x, y) and vector
of initial conditions b are defined as

X

| x |1 B1 O _ R E
¢_|:y:|’A_|:0 ﬂzaz]f(x’y)_ xyy ,andb_|:y0:|. )

Henceforth, we will also use the matrix A to represent the parameters (a1, 81, B2, ®2)
of the system (1), making the implicit assumption that a;3 = ap; = 0 in any such
matrix A. We will use o4 to denote the signature of the system, i.e.,

oa = [sgn(ay) sgn(Bi) sgn(Bz) sgn(az)], 4
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such that o4 specifies the types of interactions encoded by the model. In particular,
positive values of both 81 and 8, indicate that the species engage in a cooperative
interaction, negative values represent a competitive interaction, and distinct signs of
B1 and B correspond to predator—prey interactions. As usual, for each species in
isolation, 1 and «p describe the intrinsic growth rate.

We are interested in parameter identification for system (2) from discrete data. In
this context the term forward problem refers to finding a trajectory ¢ = ¢(¢; A, b) :
R x R?*3 x R? — R2? to the IVP (2) for a given (A, b), from which we can in turn
pick a set of times {7, 71, . .., -} and read off the data setd = (Po, P1,..., P,) € D,
the data space, with P; = ¢(t;; A, D) € R2 for each J.

We here analyze the inverse problem for a given data set d, which refers to finding
(A, D) such that the trajectory ¢ of (2) passes exactly through the points in a given data
set, at the given times. This is not the same as the data fitting problem, which seeks an
approximate trajectory of the system by optimizing the error between trajectory and
data (Swigon et al. 2019). The inverse problem differs from data fitting problem in that
while inclusion of too few data points in parameter inference leads to nonuniqueness
of solutions, inclusion of too many data points leads to nonexistence of a solution.

As in Duan et al. (2023), we here address the solution of the inverse problem for
system (1) for a specific choice of data for which the times are uniformly spaced (with
t; =1i)and d = (Py, P1, P»), where the initial two points are fixed at Py = (xo, yo)
and P; = (x1, yp) satistfying the following condition:

©)  x1>x90>0andy; >y >0,

while the final data point P» = (x2, y2) can lie anywhere in the first quadrant of
the (x, y) plane. Note that condition (C) is not necessary for our analysis and can be
replaced by other conditions such as 0 < x; < xg and y; > yp > O; that is, we assume
that it holds for concreteness, but we can perform analogous analysis if given other
such relationships. In Figure 10 of (Duan et al. 2023), we present numerical results
for alternative choices of relative positions of Py and P; and provide a comparison
between the specific results obtained numerically for these conditions.
We ask the following questions:

e Existence What is the set of values of P, for which there exists some A such that
the system defined by (1) (or equivalently by (2)-(3)) has a trajectory ¢(z; A) with
Pi=¢(j,A),j€{0,1,2)?

e Uniqueness What is the set of values of P> for which the parameter matrix A that
solves the inverse problem is unique?

e Parameter properties When a solution of the inverse problem exists, what are the
signs of the entries in A; that is, what is 04 ?

In the previous work, we investigated these questions numerically and obtained
results that we can summarize in a single plot, which we call the P>-diagram (Duan
et al. 2023). In this diagram, shown here in Fig. 1, we consider the first quadrant of
the (x, y)-plane as the set of possible locations of P, = (x7, ¥2) under condition (C);
hence, we label the axes as x7, y». This plane is partitioned into disjoint, open regions,
which we denote as Rgq for various 2 and which we label with these choices of €2
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(a) C

Y2

Yi/y0

Fig. 1 The P,-diagram, which depicts the regions R of P, points for which the inverse problem has a
specified signature o 4 (only the subscripts of the appropriate regions are shown), and shows the labels of
the curves to be discussed in Sect.5. Panels (b) and (c) are enlargements of the red and blue rectangles
indicated by black arrows in panels (a) and (b), respectively. The data points Py and P; are fixed at the
labeled positions. See text and Table 1 for more detailed descriptions of the regions (Color figure online)

in the diagram, in which the solution of the inverse problem appears to have distinct
properties. Regions that share the same €2 and its corresponding color-coding repre-
sent choices of P, for which the inverse problem solution has the same properties.
Specifically, Table 1 lists the o4 values associated with all regions for which numerical
analysis suggests that the inverse problem solution exists, along with the biological
interpretations of these o 4. The regions in the P>-diagram on which the inverse prob-
lem solution does not exist are labeled by 2 = NE; for i € {1, 2, 3, 4}, while other
regions with double subscripts represent P, values where the solution exists but is not
unique.

The major goal of this paper is to use mathematical analysis to establish rigorous
proofs of various properties suggested from the numerical results shown in the P»-
diagram obtained by Duan et al. (2023) and thereby to provide better understanding
and more complete characterization of the dynamics of system (1) and its dependence
on observed data. We accomplish this aim by introducing a variant of the inverse
problem in which the P, data point is replaced by Py, the nontrivial equilibrium point.
We show that in that case the inverse problem is uniquely determined by the data,
and the dynamical behavior (i.e., the signature o4) is determined by simple explicit
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Table 1 Properties of systems with P, € R of Fig. 1

Q # of solutions oA Dynamic type

R >1 [+——+] Competitive

G >1 [+ —+]or [+ —+—] Predator—prey

M >1 [+ + —+] Parasitic

C >1 [+ —++] Parasitic

B >1 [+ 4+ ++] Cooperative

By >1 [—+++] Cooperative dependency
B3 >1 [+++-1 Cooperative dependency
By >1 [—++-1] Codependency

RR >2 [+——+] Competitive

GG >2 [—+—+]or [+ —+—] Predator—prey

MM >2 [+ + —+] Parasitic

CC >2 [+ — ++] Parasitic

RG >2 [+——+]or [—+ —+]or [+ —+—] Competitive or predator—prey
GM >2 [+ —+]or [+ —+—]or [+ + —+] Predator—prey or parasitic
RM >2 [+———+]or [++ —+] Competitive or parasitic
GC >2 [—+—+]or [+ —+—]or [+ — ++] Predator—prey or parasitic
RC >2 [+——+]or [+ — ++] Competitive or parasitic
NE 0

criteria on Py, as can be depicted in a P,-diagram. We then relate the P,-diagram to
the P,-diagram and show how nonuniqueness regions appear as folds.

Remark 1 As mentioned by Duan et al. (2023), in regions Rg of the P,-diagram, in
which choices of P, correspond to periodic trajectories, time rescaling gives rise to
countable families of matrices A that all solve the inverse problem. Thus, when we
refer to the solution of the inverse problem in a case where the trajectory is periodic,
we choose the matrix A for which the periodic trajectory reaches the point P, before
returning to Py, i.e., before completing a full orbit. We showed that this choice uniquely
determines the signature of the inverse problem solutiontobe 04 = [—+—-] (and the
trajectory travels clockwise) if P; is below the straight line Py Py, and og = [+ —+—]
(and the trajectory travels counterclockwise) if P, is above that line (Duan et al. 2023).
In addition, with these assumptions, in the P,-diagram described below, Rg, with
Xy > X1 corresponds to o4 = [— + —+], while Rg, with x, < x¢ corresponds to
oa=[+—+-]

3 Hamiltonian and Specifics of the Inverse Problem

We start with some observations about useful properties of the LV system (1).

@ Springer



64  Page 8of 35 X.Duan etal.

First, we note that when B1 8> # 0, system (1) has two equilibrium points, (0, 0)
and

P*=(x*,y*)= <_(;_j»_;_1>' 5)

With (5), we can rewrite system (1) as

X = B1x(y — ¥+,

)" = By (x — xy),
x(0) = xo, ©)
y(0) = yo.

Second, it is well-known and easy to check that system (1) is conservative, with the
Hamiltonian function

H(x,y,A) =arIlnx + fox —ajlny — B1y = B2(x — x4 Inx) — B1(y — y« Iny).
@)

Since the level sets of the Hamiltonian represent orbits of system (1), one can use (7)
to derive various relations between the constants in the model from known points on
the trajectory. In particular for a trajectory passing through Py = (xo, yo), any other
point (x, y) on that trajectory obeys the following relation:

B <x—x0—x* In (1)) =8 (y—yo—y*ln <1>> )
X0 Yo

3.1 Known P,

Consider a situation when in addition to Py, P; the equilibrium point P, of the
system is given instead of the third data point P,. For a trajectory passing through
(Py, Pp) (regardless of the timing or order of the passage), we have H (xq, yp, A) =
H(x1, y1, A), which, in view of (8), implies the following relation between the coordi-
nates of Py, P, the equilibrium P,, and the ratio r of the constants 8, and 8; (provided

B # 0):

— yg — hil
BN y*ln(y0>
P xi—xp—x:In (ﬂ)

X0

©))

Consequently, the inverse problem solution has nice properties, as indicated by the
following result:

Theorem 1 If the system (1) has a known equilibrium point P, and a trajectory ¢(t)
passing through points Py and P) (not necessarily at t = 0, 1), then its parameter
matrix A is fixed to within a constant multiple and its orbit is specified uniquely. If, in
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addition, the timing of the passage of the trajectory between Py and P is fixed, then
A is specified uniquely and it depends continuously on Py, Py, P;.

Proof In view of (9) and the definitions of x, and y, given in (5), knowledge of
Py, Py, P, implies knowledge of the ratios of parameters ﬂ—?, “—i “—} and hence A is
known to within a constant multiple. Furthermore, from (7), the orbit associated with
the trajectory ¢(#) is determined uniquely by Py, P;, Py and one can evaluate the line
integrals along the orbit,

(x1,y1) dx (x1,y1) dx
I =/ _ Iy =/ _ (10)
(x0,Y0) )C(y - }’*) (x0,¥0) y(x - )C*)
Knowledge of #; — #o such that P; = ¢(t;),i = 0, 1 can then be used to find 1 =
I, /(t1 — to) or B = I,,/(t1 — to), which determines A uniquely. The continuity of A

follows from the continuous dependence of solutions of system (1) on parameters and
on initial conditions. O

Theorem 1 can be used to derive a numerical method for estimating parameters of
system (6) from a knowledge of two points Py, P; on a trajectory and the equilibrium
point P, of the system. Although this problem is not a true “inverse problem" in the
sense defined in Sect.2, because it relies on information that is not contained in a
trajectory of the system, it is still of practical utility. The solution (parameter matrix
A) of such a problem is obtained by an algorithm that we denote as

A=Vp . A(Py; Po, P1), (11)

which we describe as follows:

Algorithm 1 (Wp,_, 4)

Input: Py, Py, Ps.

1. Find r using (9).

2. Let (@1, B1, Ba. @) = (—ys, 1, r, —rxy) and let A be the corresponding parameter matrix.

3. Ifthe points Py and Py lie on the same branch of the Hamiltonian level set H (x, y, A) = H(xq, yo. A),
then continue to the next step. If not, then there is no A for which (11) holds.

4. 1If the trajectory of (1) with matrix A starting at Py passes through Pj as time increases, then continue
to the next step. If not, then change A to —A and continue.

5. Let T be the smallest time at which the trajectory of (1) with A starting at P passes through P;. Let
A = T A be the output of the algorithm.

Output: Parameter matrix A such that the system (1) has Py as its equilibrium point and its trajectory ¢(z, A)
obeys Pj = ¢(j, A) for j =0, 1.

For each P, = (x4, ys), Algorithm 1 gives a parameter matrix A = Wp, 4
(Py; Py, P1). In theory, one can use it to try to solve the inverse problem by find-
ing the point P, for which (i) Py, Pi, P, lie on the same branch of the level set
H(x,y, A) = H(xo, yo, A), (ii) the points Py, P1, P, lie in the proper order on the
branch so that P; lies between Py and P», and (iii) the time of travel from Py to P;
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is the same as the time of travel from P; to P». It is important to note, however, that
there are sets of (Py, P, P») in the first quadrant for which no solution A exists and
there are instances in which more than one solution exists.

3.2 Known P,

Let us now return to the case when Py, Py, P, are given but P, is not known. Note
that (8) implies that H (xo, yo, A) = H(x1, y1, A) = H(x2, y2, A) which yields the
following result:

Theorem 2 [fthe system (1) has a trajectory ¢(t) passing through points Py, Py, and

P> (not necessarily att = 0, 1, 2), then its parameter matrix A is an element of a 2D
linear subspace defined by the constraint

a;
[lnq—g) X1 = X0 Yo = Vi 1n<;—?>] B

() x2 —xi yi—y2In(5H | | B
ol

If, in addition, the timing of the passage of the trajectory between any two points
among Py, P1, Py is fixed, then the trajectories passing through Py, Py, P> and their
corresponding matrices A form a one-parameter family.

Proof The constraint follows immediately from (8) applied to the points Py, Py, Ps.
Furthermore, the constraint can be turned into a relation that limits the extent of the
location of the equilibrium point P, of the system, i.e.,

yz—yo—y*ln(i—é) B )’I_YO_Y*IH<§;—:)>

xz—xo—x*ln(fc_;> _xl—xo—x*lnG_(l))' (12)

In particular, this relation shows that when trajectory passes through given Py, Pi, P>,
one coordinate of P, is a rational function of the other. In view of Theorem 1, for
any choice of the coordinate x (or y), once the timing of the passage through the
points Py and P; is fixed, both the trajectory ¢(¢) and the corresponding matrix A are
uniquely specified. O

Comparison of Theorem 1 with Theorem 2 reveals that supplementing knowledge
of Py and P; with information about an additional point P, on the trajectory does not
constrain the set of possible trajectories as much as providing information about the
equilibrium point P, of the system. To understand why the orbit of system (1) (or,
equivalently, (6)) can be uniquely determined with a specification of Py, P and P,
but not when only Py, P} and P are given, note that in the former case, the matrix A
is an element of a 1D linear subspace defined by

In(£}) 21 —x0 o~y In(EH ] | 2
1 X 0 0 =0,

Bi
0 0 Vi 1 o
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Fig.2 Examples of orbits for families of trajectories passing through given data points Py, Py, P>. Panels
(a) and (b) correspond to two different choices of P>. In each case, the families of equilibrium points given
by (12) are shown as the dashed curves, the green segments of the trajectories correspond to ¢ € [0, 2) while
the red segments correspond to # > 2. The blue markers correspond to r = 2 on the trajectories; for each
of these, there is a black marker of the same shape showing the position of the corresponding equilibrium
point (Color figure online)

versus the 2D subspace defined in the statement of Theorem 2.

Relation (12) describes the one-parameter family from Theorem 2 as a family of
equilibrium points P, parametrized by x., and the corresponding orbits that pass
through Py, P, P». Fixing the time of the passage from Py to P, however, does not
imply that it will take the same time for the trajectory to pass from P; to P,. In other
words, the point ¢ (2) will generally not be identical with the data point P, except for
specific value(s) of x.. It is possible that more than one x, may lead to P, = ¢(2),
which can result in nonuniqueness of the solution of the inverse problem.

In Fig.2, we show examples of orbits for families of trajectories passing through
points Py, P1, P>. In both panels, we fix the same Py and P;. The P, in panel (a) is
chosen in the region Rg with x; < x3 < x%/xo and 0 < y» < yp, and the P> in
panel (b) is chosen in the region RNg; (see Fig. 1). In each panel, we choose several
P, along the curve given by (12) (the dashed curve in the figure), and for each we
use Algorithm 3.1 to obtain the corresponding parameter matrix A. With each A, we
solve the system (1), sketch the trajectory, and mark the point ¢(2) on the trajectory
(the blue markers in both panels). In panel (a) we note that the blue markers appear to
make up a curve passing through P»; when the blue marker is at P,, the corresponding
trajectory passes through P, at exactly + = 2, and hence we have a solution of the
inverse problem. In panel (b), we note that the curve consisting of the blue markers
does not pass through P», which seems to indicate that when P; is located in RNg;,
there exists no trajectory that passes through P; at¢t = i for all three valuesi = 0, 1, 2.
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4 Orbit Geometry and the P.-diagram
4.1 Preliminaries

The primary goal of this paper is to establish the results depicted in the P>-diagram
in Fig. 1. We have seen in Sect. 3, however, that the location of the data (P, P;, P>),
the location of the equilibrium point Py, and the structure of the level sets of the
Hamiltonian H are all strongly related.

In this section, we will take advantage of Theorem 1 and explore the existence,
uniqueness, and properties of the solutions of a modified inverse problem where instead
of the trajectory data (P, P, P>) we are given (Py, P1, Py). It turns out that by fixing
Py and P; with 0 < xg < x1 and 0 < yp < y; and studying how the properties of
the level sets vary with P,, we can extract a relation between the location of P, and
the sign structure o4 of the system. We will present this idea here and then go on to
classify the geometric structure of the level sets and to point out why some choices of
P, give no solution to the inverse problem. Subsequently, in Sect.5 we translate the
information gathered in this section to results in the setting of the P,-diagram.

We begin by deriving some preliminary results. The level set (8) uses two functions
in the form of

g(z) =¢g(z;a,b):=z—b—aln(z/b) with b >0, (13)

the properties of which are characterized by the following two lemmas that can be
proved by analyzing the derivative of g.

Lemma1 Given any a > 0 and b > 0, the continuous function g strictly decreases
from infinity on (0, a), strictly increases to infinity on (a, 00), and has a unique global
minimum at 7 = a. The minimum value is negative when a # b and zero when a = b.
The graph of g(z) has exactly two intersection points with any horizontal line above

gla).

Lemma2 Givenanya < 0 and b > 0, the continuous function g(z) strictly increases
from negative infinity to positive infinity on (0, 0c0) and intersects the z-axis at z = b.

Let C1(yx) = r01(yx — yo1) and Ca(x4) = xo1 — X4 with

In(y1/yo) Y1 — Yo X1 — X0
0=— Yl=—" X0|=—". (14)
In(x1/x0) In(y1/y0) In(x;/x0)
The ratio r given by (9) can then be written as follows
C _
_ GGy Y« = o (15)

= ro1 ,
Ca(xy) Xy — X01

In view of (13) and (15), we can rewrite equation (8) for a level set passing through
Py and Pj as

Fi(x,y;x,y2) =0, i=0,1 (16)
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Table2 Subregions of the

. . . Location of x and o
Py-diagram and associated sign x A

signatures Location of yx  (—00, 0) (0, x01) (x01, 00)
(yo1, 00) Sii[+—++1 Syu+—+-1 S5 [+——+]
(0, yo1) Sg;[=+++]1 Ssil—++-1 Ser[—+—+]
(—00,0) Sy [++++1 Sgi[+++-1 So; [+ + —+]
where

Fi(x, y; x5, y5) = C1(yx)8(x; X4, X)) + Co(x)g(y; yx» yi), 1 =0,1. (17)

We will often neglect to mention the dependence of F;, C1 and C; on (x4, y,) explicitly,
but including this dependence explicitly will be useful in some of our analysis. Note
that although the values of the function F; at some (x, y) depend on the choice of i,
the level set defined in (16) is independent of i. Since we will only need the level set
and not the full function F;, we shall drop the subscript on F'.

4.2 General Observations

Let us now look at how the shape of the level set defined by (16), i.e., the shape of the
curve on which there lies the orbit of a trajectory passing through points Py and Py,
depends on the location of the equilibrium point at P,. In this section, we address the
generic situation for which o1, B1, a2, B2 are all nonzero. Special cases with 81 = 0
or B = 0 (corresponding to points P at infinity) have explicit solutions and are
discussed in Duan et al. (2023), while those with &y = 0 or @ = 0 (corresponding
to points Py on the axes) can be analyzed numerically using continuation methods.
Based on the notation above and the definition of g in (13), equation (16) implies that
if x4 = x01, then the level set consists of two vertical lines x = xp and x = x1, while
if y» = yo1, then the level set consists of two horizontal lines y = yp and y = yj.
In both cases, Py and P; lie on two distinct branches of the level set and hence there
exists no solution to the inverse problem. Henceforth, we assume that x, # xo; and
Y« 7 Yol.

The sign of r in (15) depends on the location of P, relative to the vertical line
{x = xo1} and the horizontal line {y = yo;}. The signs of x, and y, affect the shape of
the corresponding functions g in (17). Thus, the four lines, x, = 0, x, = xg1, yx« = 0,
Y« = Yo1, partition the (x,, y«)—plane into nine open rectangular regions, denoted for
brevity as S;, i € {1, ..., 9}, as defined in Table 2.

By the intermediate value theorem, we have xo < xo; < x1 and yp < yo1 < y1.
Therefore, Py and Pj are always located in S5 and Sz, respectively. Within each region
S; the signature o4 of the system can take at most two values, as described by the
following result:

Theorem 3 Consider a system (6) with nonzero parameters a1, 1, a2, By and with a
trajectory that passes through points Py and Py that obey condition (C). The equilib-
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rium point P, and the signature o 5 are related by the following conditions (to within
the ambiguity described in Remark 1):

o ] <0 % ye€(0,y01)
o B1 <0% y«> yor
e B <0 <% x> x01
o ar <04 x, € (0,x01)

Proof By Theorem 1, there is a unique orbit for any trajectory passing through Py
and P; with given P,. As we have mentioned above, there are no trajectories passing
through both Py and P; when x, = xg; or y, = yo1. By definition of P,, when
X Y% = 0, ay or «y is 0. Therefore, the regions Sy, Sz, ..., Sg, shown in Table 2, cover
all possible locations of Py in the x — y plane for a system (6) with nonzero parameters.

We first find o4 for cases when P, is not in the first quadrant by analysis of the
vector field of system (6). Notice that the trajectory only lies in the first quadrant.
When y, < 0, x has the same sign as 8 for all ¢, therefore x; > x¢ leadsto 1 > 0. A
similar argument gives 2 > 0 for x, < 0. Using (15), we obtain the sign of 8, = B;/r
for Sg and Sy, and likewise the sign of 81 for S or Ss. Finally, the signs of oy and op
in Sy, 84, S7, Sg, Sg can be determined by the definitions of x, and y, in (5).

When P is in the first quadrant, using similar analysis with (5) and (15), we can
derive that

oo = | F——Flor[=++=] if P eSUSs
AT -+ —Hlor [+ —+-], if P, € SUSs.

When P, € 83, wehavexg < x4 and yg < yy since Py € Ss. Thus, ifoq = [—++—],
then X and y are negative at Py and in fact the trajectory is trapped in (0, x¢) x (0, yg) for
all positive ¢; hence, it cannot pass through Py att = 1. Therefore,onlyos = [+——+]
is possible. Similar analysis can be done to establish the unique sign signature for
P, € 82, 85 or Sﬁ. [m}

Remark 2 Note that the conditions listed in Theorem 3 do not allow for «; < 0 and
B1 < 0 simultaneously (or &y < 0 and > < 0 simultaneously). Thus, the signatures
oa=-——L+——)[-+—L[++—][-—+-L [-—++] [- ——+]
are not compatible with our condition that the points Py and P; obey xo < x; and
yo < y1. These cases all lead to extinction of at least one species.

In the subsections below, we describe how the geometric structure of the level set of
the Hamiltonian H that passes through points Py and Pj, as given by (16), depends on
the location of Py, and we illustrate the possible scenarios in Figs. 3 and 4. Finally, we
will conclude this section with the P,-diagram, shown in Fig.5, which summarizes
all of the information from this section. Specifically, the P,-diagram displays the
positions of the equilibrium point P, = (xx, yx) and the corresponding signature o4
for trajectories ¢ () that are potential solutions of the inverse problem, in the sense
that (i) = P;,i = 0, | and that ¢(2) exists and is located in the positive quadrant.
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Fig.3 Level sets F(x, y; xx, y«) = 0 corresponding to various locations of P,. Symbols xg; and yg; are
defined by (14). The four blue lines divide the plane into nine open regions S; defined as in Table 2. (a)
For Py in Sy, the zero level set of F is a closed curve. (b),(c) For Py in S3 U S5\7, with 7 defined by
(18) whose properties are shown in subsection 4.4, the level set consists of two disjoint curves. Note that
only the branch containing Py and Pj is an orbit of a trajectory of system (1). (d),(e),(f) When xy < O or
vy« < 0, the level set consists of one connected curve

4.3 CaseP, € S, U S¢

Theorem 4 Let Py and Py obey condition (C). If P, € S, U Sg, then

1. the level set of the Hamiltonian is a closed curve bounded as x;1 < x < X,
i1 < ¥ < ypo, where x1, x;p are the solutions of F(x, y; X4, ¥«) = 0 and
Yr1, Yr2 are the solutions of F (x4, y; X4, y5) = 0,

2. if P, € S and y. < y1 (y« > Y1), then the segment of the orbit with y > yj
(y < y1) is a single-valued function of x on [xg, x1],

3. if P, € S¢ and x, < x| (x4 > x1), then the segment of the orbit with x
(x < x1) is a single-valued function of y on [yo, y1].

v

X1

Proof We focus on the case P, € S (see Fig.3a) since for P, € Sg the argument
is similar. In this case, x,, yx, C1 and C, are all positive, so by Lemma 1, F attains
a negative global minimum value at P, and strictly increases to infinity along every
ray starting at P, within the first quadrant. In other words, z = F(x, y) is similar to
an elliptic paraboloid with its minimum at P,, but only defined in the first quadrant.
Therefore, the zero level set of F is a closed curve within the first quadrant, convex
(by Lemma 2.1 in Supplementary material of Duan et al. (2023)), passing through
Pp and P; and with P, in its interior, and with extrema occurring at x = Xx, or
y = y.. At x = x*, the y-coordinates of the orbit are the solutions y;» and y; of
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(a)

0 Zo1
xr xr

Fig.4 Level sets F(x, y; x4, yx) = 0 (red curves) for various specific choices of Py. Symbols x| and ygp
are defined by (14). The blue curves comprise the set 7. Here we use an example with xjyg > xgy; so 7
converges to the y-axis at two points and to the x-axis only at one point. Note that the regions in all four
panels are identical, but we only show labels and signs of Q(x, y) in (a) to avoid clutter. (a) With P in the
red region, Py, P lie on the same branch of the level set, while Py is not on the level set. (b) With Py in a
white + or a white — region, Py, P lie on different branches of the level set, while Py is not on the level
set. (¢) In this case, P« € 74 and thus the level set consists of two curves intersecting at Py with Py, P;
on different branches of the level set. (d) In this case, P« € 7¢ C 7, and thus, the level set consists of two
curves intersecting at Py with Py, P1 on the same branch of the level set

F (x4, ¥; X4, ¥«) = 0 and the orbit is bounded between those two values of y. The
results about x;; and x; can be derived similarly. Statements (2) and (3) follow from
the convexity of the level set. O

Anexample of alevel set with P, € Sy is shownin Fig. 3a. As we shall see below, the
inverse problem has a solution for all P, € S> U Sg, and therefore, we shade the entire
regions Sz, Sp in the Py-diagram in Fig.5. In anticipation of further developments,
we label these regions Rg, because when P, lies in one of these regions, it will turn
out that the corresponding P, for the trajectory lies in one of the components of Rg
in the P>-diagram in Fig. 1.

4.4 CaseP, € S3U S5

When P, € S3 U S5, C; and C, have opposite signs, so z = F(x, y) is similar to a
hyperbolic paraboloid with saddle at P, but only defined in the first quadrant. Thus,
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Fig. 5 The Py-diagram depicting regions Rg, (only 2, labels are shown) for which system (6) has
specified signature o4 and has a trajectory ¢(¢) that passes through Py and P; and stays finite at t = 2.
The color-coding and labeling of regions match those of Fig. 1 and Table 1; for example, when Py lies in
Rc,. P lies in Rc. See text and Table 3 for more detailed descriptions of the regions. B is indicated with
a dash-dotted curve, and x g is its x-intercept

the level sets of such a function either consist of two disjoint curves or are made up
of two curves that intersect transversally, which we address first. In order for the level
set of F'(x, y; xx, y«) = O to consist of two intersecting curves, both of those curves
pass through the point of intersection (x, y«). Let 7 be the set of all points P, for
which the level set of F is made up of two transversely intersecting curves,

T:={(xs, y) | F(Xs, Y3 X, y5) = 0} (18)

The set 7 is depicted in each panel of Fig.4 as a collection of blue curves. Since it
is central to our analysis, we characterize it in the following result, where, in view of
(13) and (17), we define

Ox,y) = F(x,y:x,y) =ro1(y — yonh(x; x1) + (xo1 — x)h(y; y1)  (19)
with
h(z;a):=g(z;z,a) =z —a —zIn(z/a), z > 0,a > 0. (20)
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Lemma 3 The set T has the following properties:

1. T consists of three curves, Ty and Tp, each of which passes through one of the
points Py or Py, respectively, and T¢ that passes through both of Py and Py as well
as through the point (xo1, yo1). Each of the curves is defined by a single-valued
function of either x or y.

2. Curve Ty has asymptotes lim, o ¥y = Yo1 from above and limy_, oo x = Xq1 from
the right. Curve Tg converges to the coordinate axes as follows: limy_oy = y; <
yor, limy_.o x = x; < xo1. Curve Ic is monotone increasing with no asymptote
and converges to a point on the x-axis if x1yo — xoy1 < 0, and to a point on the
y-axis if x1yo — xoy1 = 0.

3. T has two intersections with {x = b} when b € (xq, x;) U (xo1, x1) U (x1, 00) and
one intersection point when b € {xo} U [x;, xo1]1U {x1}; the number of intersection
points with {x = b : b € (0, x0)} depends on the sign of x1y0 — XoY1.

4. T is contained in S3 U S5 U (x01, yo1) and separates each of the regions Sz and
Ss into four open regions, with the signs of Q(xx, y«) in each as shown in Fig.4a.

The proof is a straightforward application of properties of the functions Q(x, y)
and & (z; a) defined in (19), (20), respectively. We can now demonstrate the geometric
structure and some properties of the level sets F(x, y; x4, y,) = 0 for P, € S3 U Ss.

Theorem 5 Let Py and Py obey condition (C). If P, € S3 U Ss, then the level set of
the Hamiltonian has the following properties:

1. When Q (x4, y«) > 0, the level set of Hamiltonian is comprised of two disjoint
curves, the upper curve y = yy(x) bounded by yrp» < y < oo and the lower
curve y = yp(x) bounded by 0 < y < y;1, where yr1 < Yo are the solutions of
F(xy, y; Xi, y«) = 0. The function yy(x) decreases from infinity to yry on (0, x]
and increases to infinity on [x,, 00), while yi (x) increases from 0 to yr1 on (0, x,]
and decreases to 0 on [x,, 00).

2. When Q (x4, y«) < 0, the level set of the Hamiltonian is comprised of two disjoint
curves that can be parametrized by y and classified as left and right branches. All
other properties are analogous to case 1.

3. When Q(x«, y«) = 0, i.e., when P, € T, the level set F(x, y; X4, y5«) = 0 consists
of two curves crossing at Py.

Proof Since x, > 0, y, > 0, Lemma 1 applies to both g(x; x4, x9) and g(y; y«, yo)-
We focus on the case P, € S3 since for P, € S5 the argument is similar. For P, € S3,
C1 > 0 > (> in (17) and, as a result, we have the following two observations: For
fixedx >0and y > 0

two solutions 0 < yr1 < Y« < V2
F(x, y; x4, y«) = 0 has a unique solution y,
no solution y

>
iff g(X; x4, x0) 1 =
<

_ GCoh(yss yo)

c, 2n
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two solutions 0 < x;] < Xy < X2
F(x,3; X, yx) = 0 has a unique solution x,
no solution x

>
: R C1h(xy; x0)
iff §(3; yu yo) § = § — ———. (22)
C
<
If Q(x4, y«) > 0, then
h(ys«: y0) < —C1h(xy; x0)/Ca. (23)

—C2h(y«; ¥0)/C1, and hence, F(X, y; x«, y+) = 0 has two distinct solutions, i.e.,
the level set has two distinct intersection points with every vertical line in the first
quadrant. In particular, when X = x,,

In view of observation (21), for any * > 0, g(X; x4, x0) > h(xs; xg) >

8(ris Y Y0) = (Vs Y Y0) = —Crh(x4; x0)/Ca. 24)

Lemma 1 gives g(y; y«. yo) < —C1h(x4; x0)/Cafory € (y,,, yr,) and by observation
(22), the level set of the Hamiltonian has no intersection with horizontal lines given
by y = y with y € (y1, ¥r2) and, in particular, with the line given by y = y... Finally,
when X — oo or X — 0%, g(X; x4, xo) approaches positive infinity, and hence, the
solutions of F (%, y; X, y«) = 0 obey either y — oo or y — 0T,
If Q(xy, y«) < 0O, then a similar argument can be made with the roles of x and
y reversed. In that case, the level set has two distinct intersection points with every
horizontal line in the first quadrant and no intersections with vertical lines given by
x =X with® € (x;1, xp2), Where g (X, ; Xy, X0) = g(Xry; Xx, X0) = —C2h(ys; y0)/C1.
O

There is a further division of the regions S3 Ss by the set 7 depicted in Fig.4.
When P, lies in the red or grey region, as in the panels (a) and (d) of Fig.4, then
Py, Py belong to the same branch of the level set. If not, as in the panel Fig. 4b, then
Py, P belong to different branches, in which case Algorithm 3.1 yields no output,
and there is no solution to the inverse problem with such P,. One can show these
facts by using Theorem 5; for example, if P, lies in the white + region as in the
panel Fig.4b, then by Theorem 5(a), the level set of the Hamiltonian is comprised of
two disjoint curves with y = y, lying between them, so P; must belong to the upper
curve (since y; > y,) and similarly Py must belong to the lower curve. Therefore, for
P, € (53 US5)\7, Py and P lie on the same branch if and only if P, is located in
the region U/, which is the union of the four colored open regions in Fig. 4, defined as:

U = {(x4, y4) € S3US5 [ [(yx — y01) O (X4, y5) > O A yi & (yo, y1)]
V(s = ¥01) O (X4, y5) < 0 A x4 & (x0, xD)]}

Note that I/ is disjoint from 7, the set where Q (x4, y+) = 0 (i.e., U does not include
the blue curves in Fig.4).
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When P, € T, the possibility of existence of a solution to the inverse problem
arises only when P, is located on either of the following components:

Ty =T N ((x1,00) X (y1,00)), Tp =T N(0,x1) x (0, y1)), (25)

since only in these two cases Py and P; are on the same branch of an invariant manifold
asymptotic to P,. Otherwise, the points Py and P lie on distinct arms of the level set,
as in Fig. 4c.

In summary, when P, is in the region U, the level set of the Hamiltonian consists
of two disjoint curves and both Py and P; lie on the same component (see Fig. 3b, c),
while when P, € (77 U 75), the level set consists of two curves crossing at Py, and
both Py and P; lie on the same branch of an invariant manifold asymptotic to P, (see
Fig.4d). We denote Rr, = S3 N (U U Ty).

4.5 Case P, € 81,84, S7,Sg, or Sy

Theorem 6 Let Py and P obey the condition (C).

1. If P, € S) then the level set of the Hamiltonian is a curve x = x(y) defined
fory € (0, 00) with a single local maximum x(ys) and limits lim,_, o+ x(y) =
limy 00 x(y) = 0.

2. If P, € Sy then the level set of the Hamiltonian is a curve x = x(y) defined
for y € (0, 00) with a single local minimum x(y,) and limits lim,_, o+ x(y) =
limy_, o0 x(y) = oo.

3. If P, € S7 then the level set of the Hamiltonian is a monotone increasing curve in
x and y.

4. If P, € Sg then the level set of the Hamiltonian is a curve y = y(x) defined
for x € (0, 00) with a single local minimum y(xy) and limits lim,_ o+ x(y) =
lim, o0 x(y) = o0.

5. if Py € So then the level set of the Hamiltonian is a curve y = y(x) defined
for x € (0, 00) with a single local maximum y(x,) and limits lim,_, o+ x(y) =
lim, 00 x(y) = 0.

Proof The proof is similar to that of Theorem 5. When x, or y, is negative, Lemma 2
characterizes the corresponding g function in F. For example, if P, € S,k =7,8,9,
then y, < 0. By Lemma 2, for any x € (0, 00), F(X, y; X«, y+) = 0 has a unique
solution, so the level set is a simple, connected, continuous curve. |

In each of the regions Sy and So, every point P, produces a level set that passes

though both points Py and P;. In Fig.5, we label S and Sy, respectively, as R, and
‘Rwm, (although only C,, M, labels are shown).

4.6 Consequences of the Order of Points on a Trajectory

When a third data point P> on a trajectory is available, a question arises as to whether
the order of the points on the level set corresponds to the order of times at which the
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trajectory passes through those points. Many different possibilities could be explored
here; however, we only focus on the following result that will be used later.

Proposition 1 Let Py and Py obey the condition (C). Suppose that there exists a tra-
Jjectory (t) = (x(t), y(t)) passing through Py, P1, and Py at times ty < t; < ta,
respectively.

1. If Py € (0, x1] x (0, y11, then P, € Sy U Sg and the orbit is closed.
2. If P, € (x1,00) x (0, y1), then P, must lie in one of the following: S, S,
(x01, 00) x {0}, So, or in the red + region in Fig. 4 panel (a).

Proof For part (1), if P, is located in S; with i # 2 and i # 6, then by Theorem 5 and
Theorem 6, either x(¢) or y(¢) is monotone along the trajectory ¢(¢). If x,, = 0, then
y = Boxy remains the same sign in the first quadrant, which makes y(#) monotone.
Similarly, y, = 0 leads to monotonicity of x(¢). Therefore, either x; < x(2) or
y1 < y(2) and P, cannot be located in (0, x;] x (0, y;]. The fact that the orbit is
closed follows from Theorem 4.

For part (2), suppose that P, € (x1,00) x (0, y1), then P, cannot be located in
(=00, x01) X (—00, yo1), since after ¢(¢) passes through P;, both x(¢) and y(¢) are
monotone increasing. Similarly, we can exclude the case when x, < 0, since y(¢)
is always monotone increasing by y = Bry(x — x,) and condition (C). Finally, if
P, € 53, then P, must be in the red region in Fig.4 so that the trajectory passes
through both Py and P;, and P, cannot be in the red — region since in that case y(f) is
monotone increasing. The remaining possibilities are exactly those given in the result
statement. O

4.7 Consequences of Timing of Trajectories

Up to this point, we have analyzed the geometry of the level sets of the Hamiltonian
and eliminated regions in the P, plane for which the corresponding level set does
not include a curve that passes through both Py and P;. However, if we additionally
require that the P, location corresponds to the existence of a solution to the inverse
problem, then the trajectory ¢(¢) of the system (6) with P; = ¢(i), i = 0, 1 must exist
for timesup to ¢ = 2.

When P, € S;USg, the level set is a closed curve and the trajectory can be extended
fort — co. When P, € 71, then both points Py and P; lie on a stable manifold of the
equilibrium Py, and hence, the point ¢(2) lies on 7 between Pj and P,. Note that no
solution exists for P, € 7\(7; U 7») including P, = Py.

When P, € 7, the situation is more complicated, since the solution might go
to infinity before time ¢+ = 2; therefore, the region of possible P, locations with
op = [— + +—] is a subset of S5 N (U U 73). The basic argument is as follows:
The points Py, P; are on the unstable manifold of P,. We can transform the system
to straighten the unstable manifold and in the neighborhood of P, the rate of motion
away from P, based on the unstable eigenvalue, is A:=+/B1 B2xx V«. Thus, if we take an
initial condition that is O (¢) from the critical point, the time to travel an O (1) distance
scales as (1/A) In(1/¢€). To make this time itself equal to 1 requires A ~ In(1/¢€). But
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Table 3 Definitions of the regions R, in the Py-diagram and signs of parameters in each

Ra, TA

Rr, =UNSHUT [+——+]
R, =S USe -+ —+]
Rm. = So [+ +—+]
Re, =31 [+ — ++]
RB,, = {(xx, yx) € S7| the trajectory does not blow up before time 2} [+ + ++1
RB,, = {(xx, yx) € Sy | the trajectory does not blow up before time 2} [—+++]
RBs, = {(xx, yx) € Sg | the trajectory does not blow up before time 2} [+ + +—]
RB,, = {(xx, yx) € UNS5) UT, | the trajectory does not blow up before time 2} [—++-]

a nonlinear system of the form x = cIn(1/€)x(y — y«), y = In(1/€)y(x — x4) blows
up attime r = 1/(In(1/€)) < 1. By moving P, away from P along 7;, we notice that
the blow-up time increases until it equals # = 2. We can think of the trajectory at this
point as a solution to a boundary value problem (BVP) for a compactified version of
(6) with a boundary condition at the image of infinity at time t = 2. By continuing this
BVP with respect to the parameter x,, we obtain a curve y,(x,) that defines systems
for which a solution exists such that ¢ (i) = P;, i = 0, 1 and blow-up occurs at t = 2.
This curve lies inside U;¢(4,5,7,8}S; . On one side of this curve, a solution to the inverse
problem exists while on the other side it does not. We denote this curve as

B = {(x«, y+) | inf{z : lim ¢(t; Py) = oo} = 2}.
t—t

4.8 Summary

At this point, we can summarize the information that we have established about the
relation between the location of P, and the existence and sign signatures of solutions of
system (6) in the P,-diagram displayed in Fig.5. To complement the P,-diagram, the
definitions of the labeled regions Rg, and their corresponding o4 are shown in Table
3, where we have used the fact that 7o C Ss and hence SsN (U UT,) = UNSs)UTs.

If Py is located in any white region or on a dashed curve, then there exists no A
such that the system has a trajectory ¢(¢) that passes from Py to P; in one time unit
and remains finite at 1 = 2. Notice that the solid segments within the curve 7 that
passes through Py and Pj are 77 and a portion of 75 as defined in (25) and correspond
to locations of P, for which Py and P; lie on the same branch of the level curve
and the timing condition can be satisfied, such that a solution to the inverse problem
exists (cf. Figure4). Moreover, within the regions S7, S4, Sg, and Ss, we have defined
subregions Rp,,, RB,,, RB;,, and Rp,,, respectively, on which the solution does not
blow up before time 2, as shown in Table 3.
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5 The P,-diagram and the Solution of the Inverse Problem

Now we return our focus to the inverse problem introduced in Sect. 2 and the descrip-
tion of the P>-diagram in Fig. 1. Recall that Algorithm 3.1 gives a unique parameter
matrix A for any P, that lies in the appropriate region of the P,-diagram once the
timing of the passage from Py to P; is specified. Since A is determined uniquely, the
trajectory ¢(t) of the system (1) obeying P; = ¢(i) fori = 0, 1 with equilibrium at
P, is likewise unique, and the point P, = ¢(2) is therefore determined uniquely as
well by (Po, P1, Py). In addition, note that the trivial nonuniqueness of A based on
time rescaling for periodic solutions, discussed previously, does not affect the location
of ¢(2). We formalize these observations in terms of the continuous map

PZZLDP*%PZ(P*;PO, Py) (26)

that takes a subset of R? into R%_ (a consequence of the dynamics being restricted
to the first quadrant). For any choice of fixed Py, Pj, we can also visualize the map
Wp, _, p, as a 2-dimensional manifold M in the 4-dimensional space R? x ]Ri. The
projection of this manifold onto R? provides the P,-diagram, while the projection
onto Ri gives the P>-diagram.

The study of the P,-diagram in Sect.4 provides a starting point for analysis of the
manifold M. As we shall see below, the map Wp, _, p, is not one-to-one and hence the
manifold M has folds that show up in the P»-diagram. Each region Rg, in the P,-
diagram is mapped continuously onto the corresponding region R, in the P>-diagram.
Regions Rgq,, R, for some choices of 21, £2, may overlap, however, giving rise to
regions that we denote by Rq, @, in the P>-diagram.

Some conjectures about the solution of the inverse problem for the system (1)
under condition (C) have been presented in detail in Duan et al. (2023), are shown
schematically in Fig. 1, and can be summarized as follows:

1. The first quadrant can be partitioned into open regions Rg in which there are
solutions to the inverse problem with a particular sign structure o4 of A. Regions
labeled by the same subscript and shown in the same color share the same sign
structure for A, as indicated in Table 1.

2. If P, € Rng = U‘/‘.ZlRNE Iy then the inverse problem has no solution.

3. If Py islocated in any labeled region R notincluded in Rng except for regions Rg
or regions labeled with two letters, or P, lies on any boundary between regions
represented by a solid curve in the P,-diagram, then the inverse problem has a
unique solution.

4. Inregions Rg the inverse problem has a countable family of solutions that corre-
spond to periodic orbits.

5. Inregions Rq labeled by two letters (but not by NE), two solutions arise due to a
fold in the manifold M.

6. The existence of region Rp, depends on the magnitude of xo, yo, X1, y1.

7. The regions are separated by the curves of vanishing parameters Cy,, Coy, Cg,, Cg,
the separatrix Cs, the periodic orbit limits Cp,, Cp, and the fold curves Cy,, Cy, .

8. The curves Cs, Cp,, and Cp, correspond to limiting cases where one or several
parameters blow up.
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These results have been obtained numerically by continuation methods and it makes
sense to ask whether there are rigorous justifications for them. We now turn to pre-
senting such justifications for a subset of these conjectures.

We begin our theoretical analysis with some preliminary results that we found useful
for considering the nonexistence of a solution to the inverse problem and then we
derive results on (non)existence, uniqueness, and parameter-dependence of solutions.
As noted in the proof of Theorem 3.1, given Py, P; and P, with B8, # 0, integration
of system (1) rewritten in the form (6) yields two potential equations for passage times
along a trajectory from a point (x4, y,) to a point (xp, yp), as follows:

xp dx b dy
tysp = [ — = I (27)
“ W Pix(y—ve) Sy, Bay(x —x)

When an orbit can be locally parametrized by x or y, one can evaluate or estimate
the time 7,_,; in (27), using the first or the second equation, respectively. The terms
Xx — X, and y — y, in the path integrals suggest that we should investigate the distance
between the points on the level set of the Hamiltonian and the critical point P, along
either of the coordinate directions. Using this idea, we obtain the following results.

Lemma 4 Consider a level set (8) of the Hamiltonian determined by Py, Py, and Py.
Whenever this set intersects a line y = y at two distinct points (x;1, y) and (X2, y)
with X9 > Xy1, it follows that x;0 > x4 > Xp] and Xy — X4 > X4 — Xr1. A similar result
holds for intersections of the level set with a line x = x.

Proof We only show the case with a horizontal line since the vertical case is similar. If
the level set intersects with the line y = y > 0 at (x1, y) and (x;2, ¥) with x;2 > x;q,
then x,;, i = 1, 2 are roots of the equation

f(x)::r <X — X1 _X*ln (i)> = y -y — y*ln (i) .
X Vi

Since f(x) is a convex function and x, is a minimum of f(x), we have x;» > x, >
xr1 > 0. Furthermore, f(x;2) — f(xr1) = X2 — X1 — Xs In <%> = 0. To complete
T

the proof, it suffices to show that x;2 + x;1 > 2x,, which follows from the inequality
l% > m,ﬁ%. To show that this inequality holds for any two distinct positive numbers
aand b, fixa > 0 and let h(x) = %(lnx —1Ina) — (x —a) for x > a. Compute
h'(x) = %(1 —9),50 1’ decreases when x < a and increases on x > a, with a global
minimum at x = a. Moreover, h'(x) = %(lnx —1Ina) + 57 — %, so h'(a) = 0 and
I’ (x) is always positive for x > a. Therefore & is monotone increasing, and hence

when x > a, h(x) > h(a) = 0, and choosing x = b gives I’Jz“—“ > lnlb’%. O

Lemma 4 implies the following.

Corollary 1 Given x, and one point, say (xg, yo), on the orbit of the system (1), there
exists another point (Xg, yo) on that orbit as well, where xo satisfies xo — Xo —
X« In(xg/x0) = 0, which is independent of y.. Therefore, if we vary P, vertically
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and generate different orbits of the system that pass through (xg, yo), then they all
pass through (Xo, yo) as well. A similar argument can be made for another point
(x0, yo) when we move Py horizontally.

With Lemma 4, we can also derive the following theorem, which is applied in
proving a result about nonexistence of solutions to the inverse problem later in this
section.

Theorem 7 Let T be a trajectory of system (1) inside the first quadrant. Consider a
vertical strip {x, < x < xp : x4 > 0} that is intersected by I in two distinct arcs.
Then

1. one of the arcs lies above y = y, and one below,

2. T travels in opposite x-directions along the upper and lower arcs, and

3. if Ty and Ty, are the passage times for I along the upper and lower arcs, respec-
tively, then Ty < Ty.

Proof Part (1) follows from our observation that any trajectory I is a level set of the
Hamiltonian, and the fact that the points at which y = y, are the extrema of the level
set when viewed as a function of y. Part (2) follows directly from the flow equation
X = Bix(y — ys). To prove part (3), we will assume without loss of generality that
B1 > 0, so the flow goes from right to left along the lower arc of I'. By construction,
each of the two arcs can be parametrized in x, and we consider the upper and lower
arcs as the graphs of functions that we denote by yy (x) and yy (x), respectively. We
have

*b dx Xa dx
TU:/ B nd TL:[ A
x, B1x(yu(x) — ys) x, B1x(yL(x) — ys)

By Lemma 4, for any x € (x4, xp), yu (x) — Y« = ys« — yr(x) > 0,80 1Ty < BiTL.
Therefore Ty < Ty, because B1 > 0. The proof is similar when 81 < 0. O

Similarly, we have the following corollary for intersections with a horizontal strip.

Corollary 2 Let T be a trajectory of (1) inside the first quadrant. Consider a horizontal
strip {va <y < yp : Ya > 0} such that its intersection with T consists of two
disconnected arcs. Then one of those arcs lies to the left of x = x, and the other to the
right, the y-direction of T is opposite in the left and right arcs, and for the passage
times T, and T; of T along the right and left arcs, respectively, we have T, < T.

5.1 Separatrix C;

The Hamiltonian and associated results make it possible to find analytical results about
the separatrix Cg, which we identified numerically in Duan et al. (2023) and which,
we shall see, relates to the transition between nonexistence and existence of inverse
problem solutions.

Consider the limiting case of a system (1) with P, = Py, in which case the level
set of the Hamiltonian becomes F (x, y; x1, y1) = 0, where F is defined in equations
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(13)-(17). This level set, uniquely defined by the locations of Py and Py, consists of two
curves that intersect at P; transversely, one of which passes through Py and extends to
infinity in the direction of increasing x and y. The other curve is the separatrix Cs. For
the system with P, = Pj, both curves are invariant manifolds of the flow, asymptotic
to P1, and P lies on the stable one. It follows that the trajectory of a system (1) with
equilibrium point P, = P starting at Py cannot reach P in finite time but instead
converges to P; as time goes to infinity. As a result, the system can have no trajectory
passing through Py, P; when P, € Cs. Thus, in the P>-diagram, parts of the separatrix
Cs lie on boundaries between the regions of existence and nonexistence of the solution
of the inverse problem. The graph of Cs is shown in panel (a) of Fig.1 as the dashed
line going from the top left corner to the bottom right corner, forming the boundary
between the red regions Rr and the white regions RNg,, RNE,, and RNEg;.

To see what happens to the parameters o1, 81, B2, @2 in the limit as P, — Pp, note
that for P, = P, the manifold from Py to P; can be parametrized by x between xg
and x; and by y between yp and y;. Therefore, in (10), as P, — P1, [, - —o0
and /, — —oo, which implies that 81, 8o — —oo with their ratio » approaching
o1 %, while, in view of (5), a1, oo — 00. We conclude that the entire curve Cs is
the image of the single point P; under the map Wp,_, p, and that several of the values
of w1, B1, B2, an approach infinity as Py — Cs.

The separatrix Cs has an intersection with the vertical line x = x12 /xo. In the
following lemma, we prove that condition (C) implies that this intersection point is
always below the horizontal line y = yg. Similarly, Cs intersects the line y = yl2 /Y0
to the left of x = xg.

Lemma5 Assume that condition (C) holds. Then, the intersection of Cs and {x =
xlz/xo} occurs at a value ysg, that is smaller than yy.

Proof The value ygg, is the smaller solution of the equation

2
- X
y=y1—yiln <l> = r01—yl ALY i R x1 —x11n <x_1) . (28)
V1 X1 — Xo1 \ X0 X0

By the properties of the function g(y; y1, y1) stated in Lemma 4.1, it suffices to show
that g(ysg,: y1. y1) > g(yo; y1, y1), which is equivalent to

2
(x—l —x1 —x1ln (ﬂ>> > (X() —x1—xiln <E>) (29)
X0 X0 X1

since ro; 2% > (. Notice that the function u — % —21Inu is monotone increasing on

X1—X01
(0, 400) andis O only atu = 1. Therefore when u = j‘c—é > 1,wehave u — % —2Inu >
0, which is equivalent to (29). m]
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5.2 Conditions for Nonexistence of Solutions

In this section we establish necessary and sufficient conditions on data that one can
use to quickly identify whether the data are compatible with the system in the sense
that the inverse problem has a solution. Specifically, we apply the preliminary results
established at the start of this section to establish the nonexistence of solutions to the
inverse problem when P; lies in RNg,; or RNE,.

Theorem 8 (Nonexistence-1) If P> € Rng, = ((0, xo] x (0, yol) \ Po, then no solu-
tion of the inverse problem exists.

Proof Consider the Hamiltonian level set defined by Py, Py andlet P, € ((0, xg] x (0,

vol) \ Po. By Proposition 1(1), the level set is a closed orbit with o4 = £[— + —+]
and with 0 < x4, < xp or 0 < y, < yo. Without loss of generality, suppose that
o4 = [— + —+] (so the trajectory is traversed clockwise) and hence 0 < y, < yp.
The closed orbit intersects the vertical strip xo < x < x1 in two arcs, where the upper
one represents a complete orbit between Py and P; while the lower one represents a
subsegment of the orbit between P; and P,. In view of Theorem 7, the time of travel
along the upper arc Ty is smaller than the time of travel along the lower arc T . This
property is incompatible with the existence of a trajectory ¢ (¢) that passes through
Po, P1, P, at times ¢t = 0, 1, 2, respectively, since such a trajectory would require
Ty =1>T;. O

The region Rng, is bounded by the separatrix Cs and the lines {y = yo} and
{x = x¢}. It includes its three boundary curve segments but does not include the point
Py. We will now prove the nonexistence of solutions to the inverse problem when P,
lies in RNEg,. Using the lines {y = y} and {x = x1}, we separate Rng, into three
regions, the rectangular region Rﬁéz = ([x0, x1] X [v0, ¥1]) \ Po and two triangle-like
regions, denoted as RI%E:Z (bounded above by Cs, at the bottom by {y = yp}, and on

the left by {x = x1}) and RI(\?%z (bounded above by Cs, at the bottom by {y = y;}, and

on the left by {x = xo}). We only prove nonexistence for P, € Rf\}%z and P, € Rl(\,zéz,

since the symmetry of x and y in system (1) and in the inverse problem imply that the
proof for Rﬁéz is similar to the latter.

Theorem 9 (Nonexistence-2) If P € Rﬁéz then no solution of the inverse problem
exists.

Proof By Proposition 1(1), if there exists a trajectory for such P, with parameter
matrix A, then the orbit is closed. We decompose the rectangular region RI(\}})EZ into
two triangles based at the diagonal PyP; and assume that P, is in the upper triangle
(including the top and left boundaries, but not the diagonal since that is ruled out by
the convexity of the orbit, as established in previous work (Duan et al. 2023)). As
stated in Remark 1, we choose the A with the greatest possible transit time along the
orbit and for this orbit, the flow proceeds counterclockwise with o4 = [+ — +—1].
Moreover, the flow is monotone decreasing in x from P to P». Now we consider the

vertical strip [x2, x1] x (0, oo) whose intersection with the orbit consists of an upper
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arc connecting P; and P> and a lower arc that is contained in the trajectory from Py
to P; and hence has a passage time of less than 1. By Theorem 7, the passage time for
the flow along the upper arc is less than that along the lower arc and hence is less than
1, which leads to a contradiction. A similar contradiction occurs if P is in the lower
triangle relative to Py P;. O

Theorem 10 (Nonexistence-3) If Py € Rl(\%éz, then no solution of the inverse problem
exists.

Proof To establish a contradiction, suppose that P, € Rl(\%éz and there exists a solution
A. By Proposition 1(2), the corresponding equilibrium point P, must lie in Rg,, on
(x01, 00) x {0}, in Rm,, or in the subset of KRR, given by the red 4 region in Fig. 4a.
These are displayed as the colored regions in Fig. 6a. Since Rl(\%éz is below the straight
line Py Py, following Remark 1, if P, € Rg,, then we choose A that yields clockwise
passage from Py to P; to P>. Therefore all possible positions of Py have x, > xo; and
then by Theorem 3, 8> < 0. (Hence in Fig. 6b—d we only color the regions to the right
of X01 )

We first establish that x,. > x;. Suppose the contrary, then the trajectory starting at
Py increases in y until x = x,, then decreases in the y direction, passes through P,,
and intersects with {y = yp} again. Consider the horizontal strip (0, 0c0) x [yo, y1]
as shown in Fig. 6b, in which P, therefore lies. The trajectory intersects this strip in
two arcs, and we denote the passage time for the flow along the left and right arcs as
T; and T, respectively. By Corollary 2, 7, < T; < 1, which contradicts the fact that
the passage time from P; to P, which must be less than or equal to 7}, is equal to 1.
Thus, we have x, > xj.

Now we prove that when x,, > x1 and Py € Uge(r,g,M)Rq,. the trajectory does
not have any intersection with Rl%zzz. It suffices to show that within the horizontal strip
[x1,00) X [yo, y1], the trajectory lies to the right of Cy (as sketched in Fig. 6¢, where
the horizontal dashed line is {y = 3}, and the diagonal dashed curve is C). Given
Xy > X1, forany y € [y, y1], the trajectory intersects the line {y = y} in two points
with x > xo. We are interested in the intersection point on the right and denote it as

(X, ), s0X > x4 > x1. We will show that both the partial derivatives % and 5”—’?
are positive when Py is located in any of those possible regions we mentioned at tﬁe

beginning of the proof.
From the equation (8) with r given by (15), we have that

£ —x, 0% n(f)_ig(ﬁ;y*,yn

X Oy X1 ro1 Yol — Vs

and

X—x 0% xo1 — X (93 yor, y1)
X 0y roi  (yx — yo1)?

where g is given by equation (13) and rg; as defined previously is positive. We first
focus on dx/dy,. By Lemma 1, g(3; yo1, y1) is negative when y € (yg, y1) and zero
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(a) (b)
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Fig. 6 Four plots for the proof of Theorem 10. They are identical (except that in (c) we zoom in to see
the details of trajectories), but we only show necessary symbols in each panel to avoid clutter. Note that
asterisks denote locations of the equilibrium point Py for the trajectories shown in (b), (c); see text for
additional details

when y = yg or y = y;. Therefore in the setting of this proof, 9X/dy, is positive
when 3 € (yo, y1) and is zero when y = yg or y = yi. (The case when § = yq is
consistent with Remark 1.)

Next we study 9£/0x,. The term In (£/x) is always positive so it suffices to
show that g(3; v«, y1)/(Yo1 — ys) is never positive. This is obvious if y, = 0, so we
discuss the other three cases of possible values of y, corresponding to the competi-
tive, predator—prey, and parasitic cases (with red, green and magenta colors in Fig. 5,
respectively):

1. If y, > yo1,then y, > y;. By Lemma 1, g(3; y«, y1) is positive when y € (0, y;).
2.If 0 < y. < yo1 < Y1, then In(3/y;) < O and hence g(3; ys, y1) <

g(¥; yor, y1) 0.
3. If y, < 0, then by Lemma 2, g(3; yx, y1) < 0.

Thus, in all cases, 9X/0x, is indeed positive.

Before we can use these derivative results, we add one more observation: if we fix
xy = x1 and any y € [yg, y1] and vary y, € (—00, yo1) U (y1, 00), the orbit will
change accordingly and will have different intersection points with the horizontal line
y = J, so the corresponding X will change. But in both of the limits y, — oo and
y« — —00, the defining equation for the orbit tends to

o1 X y
_— <x — X1 — XxIn (—)) = —ln<—> ,
Xx — X01 X1 V1
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which is the solid black curve in Fig. 6¢c. Hence, with y = y fixed, the same % value,
given by the solution of this equation, results.

Putting together this observation and the derivative results, we can finish the proof.
Recall that Cg can be treated as the limiting case of the trajectory when P, = P,
so if the equilibrium point is actually at some Py:=(X,, %) in the red + region as
in Fig.4a (and with X, > xp), then the corresponding trajectory can be obtained
from Cg by first fixing x, = x; and increasing y, from y; to y,, and then fixing
v+ = Y5 and increasing x, from x; to X,. By the analysis of the signs of 9x/0dx,
and 3X/dyy, for each § € [yo, y1], the corresponding * is nondecreasing through the
vertical shifting process and strictly increasing through the horizontal one. Thus, the
trajectory corresponding to equilibrium point P, is on the right of Cs while it crosses
through the horizontal strip [x1, 00) X [y, y1]. If P, isin Ra, or R, , then we replace
the process by first fixing x, = x| and increasing y, from y; to co (throughout which
process x does not decrease), and then fixing x, = x; and increasing y, from —oo to
¥, using our observation that the x for y, — —oois also the x for y, — o0, and finally
fixing v, = Jx and increasing x, from x; to X, (throughout which process x strictly
increases). This process is shown in Fig. 6d. So we again conclude that the trajectory
corresponding to the equilibrium point P; is on the right of Cs in the horizontal strip
[x1, 00) X [y0, y1], as desired. O

At this time, we do not have analytical results about the nonexistence of solutions
for P, in the regions RNEg, and RNg,, primarily because we do not have a good handle
on the boundaries of those regions. Although one of the boundaries is the separatrix,
Cs, the other boundaries are the fold curves Cr,, Cr,, which were computed using a
numerical approach (see Duan et al. (2023) for detail) and remain to be analytically
characterized in future work.

5.3 Determination of Dynamical Behavior from Data

In this section, we prove a necessary and sufficient condition on data that one can use
to identify the signature of the system and hence the types of interactions governing
the observed species. Specifically, the sign of B, for P> € [x1, 00) X [y1, 00) is given
by the following theorem:

Theorem 11 If a solution to the inverse problem exists for a value P, € [x, 00) X
[y1, 00), then the sign of B is equal to that of xo — xlz/xo and the sign of B2 is equal
to that of y» — ylz/yo.

Proof We only show that x, > x12 /x¢ if and only if B; > 0, since the proof of the
other statement is similar.

In Subsection 4.2.1 of Duan et al. (2023), we observed that x, = xl2 /xo when
B1 =0.1If By > 0, then by the P,-diagram and Table 3, P, does not lie in either Rg,
or Rc,.If P, liesin Rg, with y, > yo1, then following the convention from Remark 1,
we have A with o4 = [+ — +—], which contradicts that 8; > 0. Therefore, y. < yo1.
Since B; > 0, whenever the trajectory ¢(t) = [x(¢), y(O1T of (1) is above ys, &
is positive, and ¢(¢) can thus be parametrized by x. Since P, lies in the rectangular
region [x1, 00) X [y1, 00), the trajectory passes through Pj transversely with x and y
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both increasing. Therefore, if y, < yg, then the trajectory is contained in the interior
of the rectangle RI(\}%Z when ¢t € (0, 1) and in (x1, 00) X (y1,00) when t € (1,2).

Thus, we have
In (X—Z)
X1
30)

1n( )

Bi(yi — y«) / ﬁ1X(y—y*) / ﬁlx(y v BiOL— )

and hence x; > x% /xo0. Alternatively, if yo < y« < yo1, then within ¢ € [0, 1], the
trajectory progresses from Py in the direction of decreasing x and increasing y until
y(t) = y4; then continues in the direction of increasing x and y, reaching x(t) = xg
again at some time 7 € (0, 1); and then continues in this direction until arriving at P;
at time 1. Therefore, based on integration over the path traversed with 7 € (1),

In (2 )

R S/ / —_l—t <1 _f s
B1(y1 — yx) B1x(y — y«) ﬁlx(y V%) ﬁl 1 — ys)
(€1))

and we see that xp > x% /xo still holds.

Finally, suppose that 8; < 0, such that by the P,-diagram, Table 3, and Remark
I, y« > yo1. The fact that P, lies above and to the right of P; implies that
X|p, = B1x1(y1 — y«) is positive, and hence y, > yi. Therefore in the x-direction, the
trajectory increases whent € (0, 1) and continues doing so after = 1 until y () = y.
Regardless of the ¢ value when y(¢) = y,, we always have

In (;—?) /xz dx /xl dx In <j§—(l)>
< <1= <
1) x X

—B1 (s — o B —y) T o BIxXG—y) =B — 1)’
SO X2 < Xj /xo O

Theorem 11 shows that the two curves Cﬂ -0, j = 1, 2 separate [x], 00) X [y, 00)
into four quadrants. The signs of 81, 5> for solutions to the inverse problem differ

across these quadrants, as in the P,-diagram (Fig. 1) and corresponding Table 1.

Corollary 3 (Uniqueness on Cg;~o) The inverse problem has a unique solution if either
Xy = x12/x0 and y2 > y1 both hold, or xo > x1 and y, = ylz/yo both hold.

Proof If x, = xlz/xo and y; > yi, then 81 = 0, which yields x (1) = e¥!" xy. Substitu-

tion of x(2) = x» = x12 /xo gives a unique formula for «1. Moreover, in this case we
can represent the solution curve as a graph over x of the function Duan et al. (2023)

y(x) = yoexp (— In ( ) @(x - XO)>
X0 o]
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Using this expression, it follows that the full parameter matrix A is given uniquely in
terms of Py, P and y; as

In (%) 0 0

—20 _In(L)n(22) L In(2)- L _In(L
(x1—x0) X0 i X0—X] V1 X0—X] Yo

We can derive a similar result when y, = Y12 /yo and x2 > x7. O

A=

For the inverse problem for system (1), we have now proved the existence and
uniqueness of solutions along some curves in the diagram and we have established o4
for some regions. The remaining questions that we set out to answer were addressed
numerically in earlier work (Duan et al. 2023), and their analytical treatment remains
for future investigation.

6 Discussion

Overall, our analysis yields qualitative information about parameters and trajectories of
the LV system (1) derived either from three data points on a single system trajectory,
equidistant in time, or from two trajectory samples and the location of a positive
equilibrium point. Our findings reveal that in the former scenario, nonuniqueness of
compatible parameter sets can arise, related to folds in a manifold of inverse problem
solutions, which could be an important property that generalizes to other nonlinear
systems. In the latter, on the other hand, the mapping from the data to parameter
values is one-to-one, although nonexistence of compatible parameter sets can still arise.
Importantly, our analysis allows us to infer from the given data set whether the modeled
species interact in a cooperative, competitive, or predator—prey type relationship and
to characterize the sets of data positions that imply that the trajectories from which
they were sampled engage in specific qualitative behaviors, such as periodic cycling.

Our approach does not rely on approximating the vector field explicitly or on the
existence or properties of an attractor for the system under study, and we assume
that the time step between data points is fixed, rather than being a factor that we can
select to serve our aims. In our analysis of system (1), the quantity of data that we
require is set by the number of parameters in the model, rather than by the attractor
dimension; unlike the latter, the number of model parameters is known from the outset,
which eliminates the need for additional experiments to estimate how much data will
suffice. Although we assumed equal passage times between each pair of data points
in our analysis, and the details of our findings depend on this assumption, our general
approach does not require this equal spacing condition, and we expect that qualitative
features of our results will persist for other measurement intervals.

A fundamental aspect of our inverse problem results is continuity: If we fix two of
the data points, then there are regions in the (x, y) plane such that for all choices of
the third data point within each region, the inverse problem solution is qualitatively
the same; that is, existence and uniqueness properties persist throughout the region, as
do the signs of the parameters that comprise such solutions. In a recent paper (Duan
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et al. 2023), we introduced a numerically generated illustration of our results in terms
of these regions in data space, in what we call the P,-diagram. Here, we establish
a correspondence between these regions and the possible locations of the nontrivial
equilibrium point of system (1), the knowledge of which, as an alternative to the third
data point, also enables us to determine the properties of the inverse problem solution,
as we display in what we call the P,-diagram. Although rigorous results are derived
here only for data satisfying condition (C), i.e., xo < x1 and yg < y1, P>-diagrams
corresponding to alternative choices of the relative positions of data points Py and
P1 can be found in Figure 10 of (Duan et al. 2023), and the methods presented here,
including the reference to P,-diagram can be easily extended to those cases.

Our results highlight that certain data points, with the specified timing, are incom-
patible with trajectories of system (1), and such nonexistence results can occur due to
issues of timing or due to issues of trajectory curvature. In contrast to linear and affine
systems (Stanhope et al. 2017; Duan et al. 2020), the region of nonexistence for the
nonlinear system (1) is composed of several disconnected components. Our findings
also show that some data points are compatible with distinct parameter sets giving
rise to orbits that can be of the same type or of qualitatively different types, such as
periodic versus unbounded orbits, with correspondingly similar or distinct biological
interpretations of the associated parameter values, respectively. Although this situation
occurred already in the case of linear and affine systems, here it is more remarkable as
the present system has a first integral (a Hamiltonian). In these situations, additional
data points or observations would be needed to indicate that the underlying biological
system exhibits a specific type of inter-species interaction.

A natural question that can be asked about our qualitative findings is how robust
they are to small changes in the locations of data points or to cases where we do
not know that trajectories pass exactly through the given data but only that they pass
within some neighborhoods of these points. The issue of robustness was addressed for
linear and affine systems by exploration of the maximal permissible uncertainty of the
data that would not change the implications for the qualitative behavior of solutions
(Stanhope et al. 2017; Duan et al. 2020). Given the continuity of the P, diagram
and its straightforward dependence on the location of the data points Py, P;, one can
conjecture that the maximal permissible uncertainty for the LV system increases with
the distance of the point P, from the boundary of the region in which it lies, but a
more precise characterization will require further investigation.

Another possible research direction that we did not consider is to seek to identify
what, if any, small changes to the dynamics of model (1) could result in a trajectory
that passes through given data, when no such trajectory exists for (1) itself. This
direction has been considered, for example, in past work on linear compartment models
(Meshkatetal. 2015). Numerical results show that, as one would expect from the theory
of structural stability and dependence of dynamical systems solutions on changes in
parameter values (Perko 2013), variations of system (1) that can be represented in
terms of parameter changes in a smoothly parameter-dependent vector field result in
continuation of solution branches and continuous deformations of regions in the P»-
diagram (Duan et al. 2023); for example, such nice behavior occurs if we replace each
xy interaction term with a parameter-dependent saturation of the form xy/(ex + 1).
Naturally, however, solution branches can fold, and bifurcations of regions in the P>
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diagram, such as the emergence of folds, can also occur; for the time being, we do
not have a way to predict when these events will occur as a vector field parameter,
such as € in the above example, is varied. We also have not considered the case when
measurements of only a proper subset of model variables are available, nor have we
discussed the potentially interesting tradeoff between having less data about more
variables versus more data about fewer variables.

Overall, our study stands as a unique and novel example of a thorough charac-
terization of the set of inverse problem solutions for a specific canonical model in
the study of population dynamics, which may prove helpful for researchers who use
the LV model to study specific biological systems and can also serve as a starting
point for further development of data-based analysis of dynamical systems. In such
an approach, the dynamical behavior of the system and the continuation of a system
trajectory are analyzed based on given data about the system variables at a small num-
ber of times, rather than being assessed based on specific parameter values for the
system and the forward integration of the model with these values. Within the space of
data, one identifies regions that correspond to various types of model behavior, with
borders between those regions serving the same purpose as bifurcation curves would
in traditional analysis from a parameter space perspective. In future explorations of
this subject, we expect that a more comprehensive theory of data-based model analysis
can be developed, with methods and techniques that will be applicable to additional
classes of nonlinear dynamical systems.
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