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Abstract

In this work, we describe mostly analytical work related to a novel approach to param-

eter identification for a two-variable Lotka–Volterra (LV) system. Specifically, this

approach is qualitative, in that we aim not to determine precise values of model param-

eters but rather to establish relationships among these parameter values and properties

of the trajectories that they generate, based on a small number of available data points.

In this vein, we prove a variety of results about the existence, uniqueness, and signs

of model parameters for which the trajectory of the system passes exactly through a

set of three given data points, representing the smallest possible data set needed for

identification of model parameter values. We find that in most situations such a data set

determines these values uniquely; we also thoroughly investigate the alternative cases,

which result in nonuniqueness or even nonexistence of model parameter values that fit

the data. In addition to results about identifiability, our analysis provides information

about the long-term dynamics of solutions of the LV system directly from the data

without the necessity of estimating specific parameter values.

Keywords Inverse problem · Parameter identification · Data fitting ·
Linear-in-parameters · Predator–prey

B David Swigon

swigon@pitt.edu

Xiaoyu Duan

xiaoyu.duan@nih.gov

Jonathan E. Rubin

jonrubin@pitt.edu

1 Department of Mathematics, University of Pittsburgh, 301 Thackeray Avenue, Pittsburgh, PA

15260, USA

2 Lab of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, 12

South Dr., Bethesda, MD 20892, USA

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11538-023-01165-0&domain=pdf


   64 Page 2 of 35 X. Duan et al.

1 Introduction

Lotka–Volterra models are ubiquitous in mathematical ecology, chemistry, and many

other fields. Already by the 1970s, there was a vast literature on the dynamics of the

Lotka–Volterra equations and their utility and limitations for modeling population data

(May 1976; Wangersky 1978). This intensity of research effort reflects the centrality of

the LV model and related constructs for ecological theory. Since then, related work has

continued and expanded, including topics such as analysis of the behavior of LV sys-

tems, inclusion of stochasticity, delays, or spatial dependence, model generalizations,

and various applications of the model.

Given a collection of measurements of the sizes or densities of co-existing popu-

lations at a discrete collection of time points, the LV system can, in theory, be used to

predict the nature of the interactions between these populations, such as whether they

are competitive or cooperative. To our knowledge, however, relatively little attention

in the analysis of LV systems has been paid to the estimation of model parameters from

data and to broader questions of parameter existence and identifiability for such sys-

tems (Wu and Wang 2011; Kloppers and Greeff 2013; Fort 2018; Khan and Chaudhary

2020; Lazzus et al. 2020).

These types of results are more challenging to obtain than one might initially think.

When parameter estimation is performed in the process of modeling a biological

system with an ordinary differential equation model, the starting point is the acquisition

of a data set consisting of measurements taken at various times. The goal is to find

a set of model parameter values and initial conditions for which the resulting model

trajectory passes through the data points at the appropriate times. Typically that is

accomplished using numerical optimization algorithms that minimize the discrepancy

between model trajectories and observed data within a deterministic (Dalgaard and

Larsen 1990; Kunze et al. 2004; Ramsay et al. 2007; Cao et al. 2011; Aster et al.

2018) or probabilistic setting (Tarantola, 2005; Calvetti and Somersalo, 2007; Evensen,

2009; Stuart, 2010; Smith, 2013; Calvetti and Somersalo, 2018). Approximation of

derivatives from data and delayed embedding approaches has been also used (Packard

et al. 1980; Takens 1981; Broomhead and King 1986). All such algorithms generally

(i) require a large amount of data, (ii) provide parameter estimates whether the model

is suitable for the biological system or not, and (iii) do not reveal possible alternative

parameter fits. A naive counting argument suggests that for a model with p parameters

and v variables such that v divides p, the parameters and initial conditions comprise

a set of p + v unknowns, and hence, we need m + 1 measurements of the model

variables for m = p/v to uniquely specify these unknowns. The problem of identifying

parameters from data is nonlinear, however, even for model systems that are linear

with respect to their state variables; hence, uniqueness and even existence of suitable

parameter values can fail.

Because of the challenges associated with this nonlinear inverse problem, we have

recently pursued a distinct alternative approach. Here, our aim is not to find the precise

model parameter values (or ranges of such values) for which model trajectories come

closest (or sufficiently close) to the data. Rather, we pursue qualitative information

about the system that can be inferred from the available data. For example, such

information can include conclusions about the existence or uniqueness of parameter
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values compatible with the data but can also relate to broader properties of parameters

or trajectories. Such properties can include constraints on the signs or relative sizes

of parameter values appearing in different terms in the model or information about

whether model trajectories through the given data points must be periodic or bounded.

Moreover, although such information is qualitative (e.g., the existence of parameter

values rather than the values themselves), the analysis involved can be rigorous. Indeed,

rigorous results detailing the properties of this formulation of the inverse problem have

recently been obtained for linear systems by Stanhope et al. (2017) and affine systems

by Duan et al. (2020). These studies provided information about the qualitative type

of model interactions compatible with given data as well as analysis of how robust

these results are to measurement error and small perturbations in model structure due,

for example, to weak stochastic effects.

Most recently, numerical analysis of such questions for Lotka–Volterra systems

has yielded some surprising results. For example, while it is well known that peri-

odic cycling can emerge from predator–prey interactions, it has been demonstrated

that methods associated with the qualitative inverse problem approach can determine

whether a set of data points comes from a predator–prey system and whether this sys-

tem is in an oscillatory regime, even when the data is too limited to capture multiple

cycles (Duan et al. 2023). Here we present an analytical study of the inverse problem

for that same Lotka–Volterra system in which we assume that three data points are

given and ask whether one or more model parameter sets exist for which the trajec-

tory passes through these data points, in a prescribed order, with the same fixed time

of passage between each pair. Our analysis establishes a mapping between data and

the system parameters for two instances of data: (i) three selected trajectory points

equidistant in time or (ii) two trajectory points and the positive equilibrium. We show

that in the second case, mapping from data to parameters is one-to-one, while in the

first case, folds give rise to nonuniqueness. In both cases, there are data sets for which

no parameter set exists that will reproduce them. Our approach yields a prediction

about the nature of the species’ interactions, such as whether they are engaged in a

cooperative, competitive, or predator–prey type relationship, given the smallest neces-

sary set of trajectory data. This is particularly useful for application to other biological

systems for which the nature of interactions between components is variable in time.

The main purpose of this work is twofold. First, we seek to prove as many of the

numerical findings obtained for the qualitative LV system inverse problem as possible.

This step will place these findings on a firm mathematical footing, will clarify the

system features from which they result, and hence will advance our understanding of

the dynamics of the LV system and its utility for modeling. The ultimate goal in this

direction, although not yet fully achieved, is to present a foundation for analysis of the

LV system similar to that which we presented for linear (Stanhope et al. 2014, 2017)

and affine (Duan et al. 2020) systems, whereby the model behaviors (such as periodicity

or species persistence) are related directly to data via schematic diagrams without the

need for precise parameter estimation. Second, the formulation of the LV system that

we consider is both linear-in-parameters (LIP) and conservative, two properties that

we define precisely in the next section and that we exploit heavily in our analysis. The

presentation in this work should serve as a stepping stone to a more general theoretical

understanding of issues related to parameter identifiability and inference of qualitative
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properties of parameters and solution trajectories for LIP systems, and possibly other

nonlinear systems, especially the large class of other conservative model systems used

across a broad range of fields (see, for example, MacKay and Meiss (2020)).

The remainder of this paper is organized as follows: In Sect. 2, we set up the inverse

problem for a model LV system and review the numerical results obtained by Duan

et al. (2023). In Sect. 3, we use the existence of conserved quantity to derive various

results about geometrical properties of the trajectories of the system. In Sect. 4, we

introduce and solve an alternative formulation of the qualitative inverse problem where

the fixed point of the system replaces one of the data points. In Sect. 5, we show

how various properties of the inverse problem solution, including nonexistence and

nonuniqueness, can be deduced from results in Sects. 3 and 4. We close the paper with

concluding remarks in Sect. 6.

2 Preliminaries on the Lotka–Volterra System and the Inverse
Problem

Following Duan et al. (2023), we here focus on two-dimensional Lotka–Volterra sys-

tem with no squared terms:

ẋ = x(α1 + β1 y),

ẏ = y(β2x + α2),

x(0) = x0,

y(0) = y0,

(1)

where the initial conditions x0 and y0 are assumed to be positive. The model generalizes

the classical predator–prey model in that the rate constants α1, β1, β2, α2 are allowed

to have arbitrary signs, to be later determined from given data. Regardless of the signs

of the parameters, the first quadrant is invariant under the flow of (1); hence, we will

focus on positive solutions.

The system (1) can be written in the formalism of linear-in-parameter (LIP) systems

(Stanhope et al. 2014) as the vector ODE

ϕ̇ = A f (ϕ),

ϕ(0) = b,
(2)

where the vector variable ϕ, coefficient matrix A, vector function f (x, y) and vector

of initial conditions b are defined as

ϕ =
[

x

y

]

, A =
[

α1 β1 0

0 β2 α2

]

, f (x, y) =

⎡

⎣

x

xy

y

⎤

⎦ , and b =
[

x0

y0

]

. (3)

Henceforth, we will also use the matrix A to represent the parameters (α1, β1, β2, α2)

of the system (1), making the implicit assumption that a13 = a21 = 0 in any such

matrix A. We will use σA to denote the signature of the system, i.e.,

σA = [sgn(α1) sgn(β1) sgn(β2) sgn(α2)], (4)
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such that σA specifies the types of interactions encoded by the model. In particular,

positive values of both β1 and β2 indicate that the species engage in a cooperative

interaction, negative values represent a competitive interaction, and distinct signs of

β1 and β2 correspond to predator–prey interactions. As usual, for each species in

isolation, α1 and α2 describe the intrinsic growth rate.

We are interested in parameter identification for system (2) from discrete data. In

this context the term forward problem refers to finding a trajectory ϕ = ϕ(t; A, b) :
R × R

2×3 × R
2 → R

2 to the IVP (2) for a given (A, b), from which we can in turn

pick a set of times {t0, t1, . . . , tr } and read off the data set d = (P0, P1, . . . , Pr ) ∈ D,

the data space, with Pj = ϕ(t j ; A, b) ∈ R
2 for each j .

We here analyze the inverse problem for a given data set d, which refers to finding

(A, b) such that the trajectory ϕ of (2) passes exactly through the points in a given data

set, at the given times. This is not the same as the data fitting problem, which seeks an

approximate trajectory of the system by optimizing the error between trajectory and

data (Swigon et al. 2019). The inverse problem differs from data fitting problem in that

while inclusion of too few data points in parameter inference leads to nonuniqueness

of solutions, inclusion of too many data points leads to nonexistence of a solution.

As in Duan et al. (2023), we here address the solution of the inverse problem for

system (1) for a specific choice of data for which the times are uniformly spaced (with

ti = i) and d = (P0, P1, P2), where the initial two points are fixed at P0 = (x0, y0)

and P1 = (x1, y1) satisfying the following condition:

(C) x1 > x0 > 0 and y1 > y0 > 0,

while the final data point P2 = (x2, y2) can lie anywhere in the first quadrant of

the (x, y) plane. Note that condition (C) is not necessary for our analysis and can be

replaced by other conditions such as 0 < x1 < x0 and y1 > y0 > 0; that is, we assume

that it holds for concreteness, but we can perform analogous analysis if given other

such relationships. In Figure 10 of (Duan et al. 2023), we present numerical results

for alternative choices of relative positions of P0 and P1 and provide a comparison

between the specific results obtained numerically for these conditions.

We ask the following questions:

• Existence What is the set of values of P2 for which there exists some A such that

the system defined by (1) (or equivalently by (2)-(3)) has a trajectory ϕ(t; A) with

Pj = ϕ( j, A), j ∈ {0, 1, 2}?
• Uniqueness What is the set of values of P2 for which the parameter matrix A that

solves the inverse problem is unique?

• Parameter properties When a solution of the inverse problem exists, what are the

signs of the entries in A; that is, what is σA?

In the previous work, we investigated these questions numerically and obtained

results that we can summarize in a single plot, which we call the P2-diagram (Duan

et al. 2023). In this diagram, shown here in Fig. 1, we consider the first quadrant of

the (x, y)-plane as the set of possible locations of P2 = (x2, y2) under condition (C);

hence, we label the axes as x2, y2. This plane is partitioned into disjoint, open regions,

which we denote as R� for various � and which we label with these choices of �
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Fig. 1 The P2-diagram, which depicts the regions R� of P2 points for which the inverse problem has a

specified signature σA (only the subscripts of the appropriate regions are shown), and shows the labels of

the curves to be discussed in Sect. 5. Panels (b) and (c) are enlargements of the red and blue rectangles

indicated by black arrows in panels (a) and (b), respectively. The data points P0 and P1 are fixed at the

labeled positions. See text and Table 1 for more detailed descriptions of the regions (Color figure online)

in the diagram, in which the solution of the inverse problem appears to have distinct

properties. Regions that share the same � and its corresponding color-coding repre-

sent choices of P2 for which the inverse problem solution has the same properties.

Specifically, Table 1 lists the σA values associated with all regions for which numerical

analysis suggests that the inverse problem solution exists, along with the biological

interpretations of these σA. The regions in the P2-diagram on which the inverse prob-

lem solution does not exist are labeled by � = NEi for i ∈ {1, 2, 3, 4}, while other

regions with double subscripts represent P2 values where the solution exists but is not

unique.

The major goal of this paper is to use mathematical analysis to establish rigorous

proofs of various properties suggested from the numerical results shown in the P2-

diagram obtained by Duan et al. (2023) and thereby to provide better understanding

and more complete characterization of the dynamics of system (1) and its dependence

on observed data. We accomplish this aim by introducing a variant of the inverse

problem in which the P2 data point is replaced by P∗, the nontrivial equilibrium point.

We show that in that case the inverse problem is uniquely determined by the data,

and the dynamical behavior (i.e., the signature σA) is determined by simple explicit
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Table 1 Properties of systems with P2 ∈ R� of Fig. 1

� # of solutions σA Dynamic type

R ≥1 [+−−+] Competitive

G ≥1 [− + −+] or [+ − +−] Predator–prey

M ≥1 [+ + −+] Parasitic

C ≥1 [+ − ++] Parasitic

B1 ≥1 [+ + ++] Cooperative

B2 ≥1 [− + ++] Cooperative dependency

B3 ≥1 [+ + +−] Cooperative dependency

B4 ≥1 [− + +−] Codependency

RR ≥2 [+−−+] Competitive

GG ≥2 [− + −+] or [+ − +−] Predator–prey

MM ≥2 [+ + −+] Parasitic

CC ≥2 [+ − ++] Parasitic

RG ≥2 [+−−+] or [− + −+] or [+ − +−] Competitive or predator–prey

GM ≥2 [− + −+] or [+ − +−] or [+ + −+] Predator–prey or parasitic

RM ≥2 [+−−+] or [+ + −+] Competitive or parasitic

GC ≥2 [− + −+] or [+ − +−] or [+ − ++] Predator–prey or parasitic

RC ≥2 [+−−+] or [+ − ++] Competitive or parasitic

NE 0

criteria on P∗, as can be depicted in a P∗-diagram. We then relate the P2-diagram to

the P∗-diagram and show how nonuniqueness regions appear as folds.

Remark 1 As mentioned by Duan et al. (2023), in regions RG of the P2-diagram, in

which choices of P2 correspond to periodic trajectories, time rescaling gives rise to

countable families of matrices A that all solve the inverse problem. Thus, when we

refer to the solution of the inverse problem in a case where the trajectory is periodic,

we choose the matrix A for which the periodic trajectory reaches the point P2 before

returning to P0, i.e., before completing a full orbit. We showed that this choice uniquely

determines the signature of the inverse problem solution to be σA = [−+−+] (and the

trajectory travels clockwise) if P2 is below the straight line P0 P1, and σA = [+−+−]
(and the trajectory travels counterclockwise) if P2 is above that line (Duan et al. 2023).

In addition, with these assumptions, in the P∗-diagram described below, RG∗ with

x∗ > x01 corresponds to σA = [− + −+], while RG∗ with x∗ < x01 corresponds to

σA = [+ − +−].

3 Hamiltonian and Specifics of the Inverse Problem

We start with some observations about useful properties of the LV system (1).
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First, we note that when β1β2 �= 0, system (1) has two equilibrium points, (0, 0)

and

P∗ = (x∗, y∗) =
(

−α2

β2
,−α1

β1

)

. (5)

With (5), we can rewrite system (1) as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẋ = β1x(y − y∗),
ẏ = β2 y(x − x∗),
x(0) = x0,

y(0) = y0.

(6)

Second, it is well-known and easy to check that system (1) is conservative, with the

Hamiltonian function

H(x, y, A) = α2 ln x + β2x − α1 ln y − β1 y = β2(x − x∗ ln x) − β1(y − y∗ ln y).

(7)

Since the level sets of the Hamiltonian represent orbits of system (1), one can use (7)

to derive various relations between the constants in the model from known points on

the trajectory. In particular for a trajectory passing through P0 = (x0, y0), any other

point (x, y) on that trajectory obeys the following relation:

β2

(

x − x0 − x∗ ln

(

x

x0

))

= β1

(

y − y0 − y∗ ln

(

y

y0

))

. (8)

3.1 Known P∗

Consider a situation when in addition to P0, P1 the equilibrium point P∗ of the

system is given instead of the third data point P2. For a trajectory passing through

(P0, P1) (regardless of the timing or order of the passage), we have H(x0, y0, A) =
H(x1, y1, A), which, in view of (8), implies the following relation between the coordi-

nates of P0, P1, the equilibrium P∗, and the ratio r of the constants β2 and β1 (provided

β1 �= 0):

r = β2

β1
=

y1 − y0 − y∗ ln
(

y1

y0

)

x1 − x0 − x∗ ln
(

x1
x0

) . (9)

Consequently, the inverse problem solution has nice properties, as indicated by the

following result:

Theorem 1 If the system (1) has a known equilibrium point P∗ and a trajectory ϕ(t)

passing through points P0 and P1 (not necessarily at t = 0, 1), then its parameter

matrix A is fixed to within a constant multiple and its orbit is specified uniquely. If, in
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addition, the timing of the passage of the trajectory between P0 and P1 is fixed, then

A is specified uniquely and it depends continuously on P∗, P0, P1.

Proof In view of (9) and the definitions of x∗ and y∗ given in (5), knowledge of

P0, P1, P∗ implies knowledge of the ratios of parameters
β2

β1
, α2

β2
, α1

β1
and hence A is

known to within a constant multiple. Furthermore, from (7), the orbit associated with

the trajectory ϕ(t) is determined uniquely by P0, P1, P∗ and one can evaluate the line

integrals along the orbit,

Ix =
∫ (x1,y1)

(x0,y0)

dx

x(y − y∗)
, Iy =

∫ (x1,y1)

(x0,y0)

dx

y(x − x∗)
. (10)

Knowledge of t1 − t0 such that Pi = ϕ(ti ), i = 0, 1 can then be used to find β1 =
Ix/(t1 − t0) or β2 = Iy/(t1 − t0), which determines A uniquely. The continuity of A

follows from the continuous dependence of solutions of system (1) on parameters and

on initial conditions. ��

Theorem 1 can be used to derive a numerical method for estimating parameters of

system (6) from a knowledge of two points P0, P1 on a trajectory and the equilibrium

point P∗ of the system. Although this problem is not a true “inverse problem" in the

sense defined in Sect. 2, because it relies on information that is not contained in a

trajectory of the system, it is still of practical utility. The solution (parameter matrix

A) of such a problem is obtained by an algorithm that we denote as

A = �P∗→A(P∗; P0, P1), (11)

which we describe as follows:

Algorithm 1 (�P∗→A)

Input: P0, P1, P∗.

1. Find r using (9).

2. Let (ᾱ1, β̄1, β̄2, ᾱ2) = (−y∗, 1, r , −r x∗) and let Ā be the corresponding parameter matrix.

3. If the points P0 and P1 lie on the same branch of the Hamiltonian level set H(x, y, Ā) = H(x0, y0, Ā),

then continue to the next step. If not, then there is no A for which (11) holds.

4. If the trajectory of (1) with matrix Ā starting at P0 passes through P1 as time increases, then continue

to the next step. If not, then change Ā to − Ā and continue.

5. Let T be the smallest time at which the trajectory of (1) with Ā starting at P0 passes through P1. Let

A = T Ā be the output of the algorithm.

Output: Parameter matrix A such that the system (1) has P∗ as its equilibrium point and its trajectory ϕ(t, A)

obeys P j = ϕ( j, A) for j = 0, 1.

For each P∗ = (x∗, y∗), Algorithm 1 gives a parameter matrix A = �P∗→A

(P∗; P0, P1). In theory, one can use it to try to solve the inverse problem by find-

ing the point P∗ for which (i) P0, P1, P2 lie on the same branch of the level set

H(x, y, A) = H(x0, y0, A), (ii) the points P0, P1, P2 lie in the proper order on the

branch so that P1 lies between P0 and P2, and (iii) the time of travel from P0 to P1
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is the same as the time of travel from P1 to P2. It is important to note, however, that

there are sets of (P0, P1, P2) in the first quadrant for which no solution A exists and

there are instances in which more than one solution exists.

3.2 Known P2

Let us now return to the case when P0, P1, P2 are given but P∗ is not known. Note

that (8) implies that H(x0, y0, A) = H(x1, y1, A) = H(x2, y2, A) which yields the

following result:

Theorem 2 If the system (1) has a trajectory ϕ(t) passing through points P0, P1, and

P2 (not necessarily at t = 0, 1, 2), then its parameter matrix A is an element of a 2D

linear subspace defined by the constraint

[

ln( x1
x0

) x1 − x0 y0 − y1 ln(
y0

y1
)

ln( x2
x1

) x2 − x1 y1 − y2 ln(
y1

y2
)

]

⎡

⎢

⎢

⎣

α2

β2

β1

α1

⎤

⎥

⎥

⎦

= 0

If, in addition, the timing of the passage of the trajectory between any two points

among P0, P1, P2 is fixed, then the trajectories passing through P0, P1, P2 and their

corresponding matrices A form a one-parameter family.

Proof The constraint follows immediately from (8) applied to the points P0, P1, P2.

Furthermore, the constraint can be turned into a relation that limits the extent of the

location of the equilibrium point P∗ of the system, i.e.,

y2 − y0 − y∗ ln
(

y2

y0

)

x2 − x0 − x∗ ln
(

x2
x0

) =
y1 − y0 − y∗ ln

(

y1

y0

)

x1 − x0 − x∗ ln
(

x1
x0

) . (12)

In particular, this relation shows that when trajectory passes through given P0, P1, P2,

one coordinate of P∗ is a rational function of the other. In view of Theorem 1, for

any choice of the coordinate x∗ (or y∗), once the timing of the passage through the

points P0 and P1 is fixed, both the trajectory ϕ(t) and the corresponding matrix A are

uniquely specified. ��
Comparison of Theorem 1 with Theorem 2 reveals that supplementing knowledge

of P0 and P1 with information about an additional point P2 on the trajectory does not

constrain the set of possible trajectories as much as providing information about the

equilibrium point P∗ of the system. To understand why the orbit of system (1) (or,

equivalently, (6)) can be uniquely determined with a specification of P0, P1 and P∗,

but not when only P0, P1 and P2 are given, note that in the former case, the matrix A

is an element of a 1D linear subspace defined by

⎡

⎣

ln( x1
x0

) x1 − x0 y0 − y1 ln(
y0

y1
)

1 x∗ 0 0

0 0 y∗ 1

⎤

⎦

⎡

⎢

⎢

⎣

α2

β2

β1

α1

⎤

⎥

⎥

⎦

= 0,
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Fig. 2 Examples of orbits for families of trajectories passing through given data points P0, P1, P2. Panels

(a) and (b) correspond to two different choices of P2. In each case, the families of equilibrium points given

by (12) are shown as the dashed curves, the green segments of the trajectories correspond to t ∈ [0, 2) while

the red segments correspond to t > 2. The blue markers correspond to t = 2 on the trajectories; for each

of these, there is a black marker of the same shape showing the position of the corresponding equilibrium

point (Color figure online)

versus the 2D subspace defined in the statement of Theorem 2.

Relation (12) describes the one-parameter family from Theorem 2 as a family of

equilibrium points P∗, parametrized by x∗, and the corresponding orbits that pass

through P0, P1, P2. Fixing the time of the passage from P0 to P1, however, does not

imply that it will take the same time for the trajectory to pass from P1 to P2. In other

words, the point ϕ(2) will generally not be identical with the data point P2 except for

specific value(s) of x∗. It is possible that more than one x∗ may lead to P2 = ϕ(2),

which can result in nonuniqueness of the solution of the inverse problem.

In Fig. 2, we show examples of orbits for families of trajectories passing through

points P0, P1, P2. In both panels, we fix the same P0 and P1. The P2 in panel (a) is

chosen in the region RG with x1 < x2 < x2
1/x0 and 0 < y2 < y0, and the P2 in

panel (b) is chosen in the region RNE3 (see Fig. 1). In each panel, we choose several

P∗ along the curve given by (12) (the dashed curve in the figure), and for each we

use Algorithm 3.1 to obtain the corresponding parameter matrix A. With each A, we

solve the system (1), sketch the trajectory, and mark the point ϕ(2) on the trajectory

(the blue markers in both panels). In panel (a) we note that the blue markers appear to

make up a curve passing through P2; when the blue marker is at P2, the corresponding

trajectory passes through P2 at exactly t = 2, and hence we have a solution of the

inverse problem. In panel (b), we note that the curve consisting of the blue markers

does not pass through P2, which seems to indicate that when P2 is located in RNE3 ,

there exists no trajectory that passes through Pi at t = i for all three values i = 0, 1, 2.
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4 Orbit Geometry and the P∗-diagram

4.1 Preliminaries

The primary goal of this paper is to establish the results depicted in the P2-diagram

in Fig. 1. We have seen in Sect. 3, however, that the location of the data (P0, P1, P2),

the location of the equilibrium point P∗, and the structure of the level sets of the

Hamiltonian H are all strongly related.

In this section, we will take advantage of Theorem 1 and explore the existence,

uniqueness, and properties of the solutions of a modified inverse problem where instead

of the trajectory data (P0, P1, P2) we are given (P0, P1, P∗). It turns out that by fixing

P0 and P1 with 0 < x0 < x1 and 0 < y0 < y1 and studying how the properties of

the level sets vary with P∗, we can extract a relation between the location of P∗ and

the sign structure σA of the system. We will present this idea here and then go on to

classify the geometric structure of the level sets and to point out why some choices of

P∗ give no solution to the inverse problem. Subsequently, in Sect. 5 we translate the

information gathered in this section to results in the setting of the P2-diagram.

We begin by deriving some preliminary results. The level set (8) uses two functions

in the form of

g(z) = g(z; a, b):=z − b − a ln (z/b) with b > 0, (13)

the properties of which are characterized by the following two lemmas that can be

proved by analyzing the derivative of g.

Lemma 1 Given any a > 0 and b > 0, the continuous function g strictly decreases

from infinity on (0, a), strictly increases to infinity on (a,∞), and has a unique global

minimum at z = a. The minimum value is negative when a �= b and zero when a = b.

The graph of g(z) has exactly two intersection points with any horizontal line above

g(a).

Lemma 2 Given any a < 0 and b > 0, the continuous function g(z) strictly increases

from negative infinity to positive infinity on (0,∞) and intersects the z-axis at z = b.

Let C1(y∗) = r01(y∗ − y01) and C2(x∗) = x01 − x∗ with

r01 = ln(y1/y0)

ln(x1/x0)
, y01 = y1 − y0

ln(y1/y0)
, x01 = x1 − x0

ln(x1/x0)
. (14)

The ratio r given by (9) can then be written as follows

r = −C1(y∗)

C2(x∗)
= r01

y∗ − y01

x∗ − x01
, (15)

In view of (13) and (15), we can rewrite equation (8) for a level set passing through

P0 and P1 as

Fi (x, y; x∗, y∗) = 0, i = 0, 1 (16)
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Table 2 Subregions of the

P∗-diagram and associated sign

signatures

Location of x∗ and σA

Location of y∗ (−∞, 0) (0, x01) (x01,∞)

(y01, ∞) S1; [+ − ++] S2; [+ − +−] S3; [+−−+]
(0, y01) S4; [− + ++] S5; [− + +−] S6; [− + −+]
(−∞, 0) S7; [+ + ++] S8; [+ + +−] S9; [+ + −+]

where

Fi (x, y; x∗, y∗) = C1(y∗)g(x; x∗, xi ) + C2(x∗)g(y; y∗, yi ), i = 0, 1. (17)

We will often neglect to mention the dependence of Fi , C1 and C2 on (x∗, y∗) explicitly,

but including this dependence explicitly will be useful in some of our analysis. Note

that although the values of the function Fi at some (x, y) depend on the choice of i ,

the level set defined in (16) is independent of i . Since we will only need the level set

and not the full function Fi , we shall drop the subscript on F .

4.2 General Observations

Let us now look at how the shape of the level set defined by (16), i.e., the shape of the

curve on which there lies the orbit of a trajectory passing through points P0 and P1,

depends on the location of the equilibrium point at P∗. In this section, we address the

generic situation for which α1, β1, α2, β2 are all nonzero. Special cases with β1 = 0

or β2 = 0 (corresponding to points P∗ at infinity) have explicit solutions and are

discussed in Duan et al. (2023), while those with α1 = 0 or α2 = 0 (corresponding

to points P∗ on the axes) can be analyzed numerically using continuation methods.

Based on the notation above and the definition of g in (13), equation (16) implies that

if x∗ = x01, then the level set consists of two vertical lines x = x0 and x = x1, while

if y∗ = y01, then the level set consists of two horizontal lines y = y0 and y = y1.

In both cases, P0 and P1 lie on two distinct branches of the level set and hence there

exists no solution to the inverse problem. Henceforth, we assume that x∗ �= x01 and

y∗ �= y01.

The sign of r in (15) depends on the location of P∗ relative to the vertical line

{x = x01} and the horizontal line {y = y01}. The signs of x∗ and y∗ affect the shape of

the corresponding functions g in (17). Thus, the four lines, x∗ = 0, x∗ = x01, y∗ = 0,

y∗ = y01, partition the (x∗, y∗)−plane into nine open rectangular regions, denoted for

brevity as Si , i ∈ {1, . . . , 9}, as defined in Table 2.

By the intermediate value theorem, we have x0 < x01 < x1 and y0 < y01 < y1.

Therefore, P0 and P1 are always located in S5 and S3, respectively. Within each region

Si the signature σA of the system can take at most two values, as described by the

following result:

Theorem 3 Consider a system (6) with nonzero parameters α1, β1, α2, β2 and with a

trajectory that passes through points P0 and P1 that obey condition (C). The equilib-
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rium point P∗ and the signature σA are related by the following conditions (to within

the ambiguity described in Remark 1):

• α1 < 0 ⇔ y∗ ∈ (0, y01)

• β1 < 0 ⇔ y∗ > y01

• β2 < 0 ⇔ x∗ > x01

• α2 < 0 ⇔ x∗ ∈ (0, x01)

Proof By Theorem 1, there is a unique orbit for any trajectory passing through P0

and P1 with given P∗. As we have mentioned above, there are no trajectories passing

through both P0 and P1 when x∗ = x01 or y∗ = y01. By definition of P∗, when

x∗y∗ = 0, α1 or α2 is 0. Therefore, the regions S1,S2, ...,S9, shown in Table 2, cover

all possible locations of P∗ in the x − y plane for a system (6) with nonzero parameters.

We first find σA for cases when P∗ is not in the first quadrant by analysis of the

vector field of system (6). Notice that the trajectory only lies in the first quadrant.

When y∗ < 0, ẋ has the same sign as β1 for all t , therefore x1 > x0 leads to β1 > 0. A

similar argument gives β2 > 0 for x∗ < 0. Using (15), we obtain the sign of β2 = β1/r

for S8 and S9, and likewise the sign of β1 for S1 or S4. Finally, the signs of α1 and α2

in S1,S4,S7,S8,S9 can be determined by the definitions of x∗ and y∗ in (5).

When P∗ is in the first quadrant, using similar analysis with (5) and (15), we can

derive that

σA =
{

[+ − −+] or [− + +−], if P∗ ∈ S3 ∪ S5

[− + −+] or [+ − +−], if P∗ ∈ S2 ∪ S6.

When P∗ ∈ S3, we have x0 < x∗ and y0 < y∗ since P0 ∈ S5. Thus, if σA = [−++−],
then ẋ and ẏ are negative at P0 and in fact the trajectory is trapped in (0, x0)×(0, y0) for

all positive t ; hence, it cannot pass through P1 at t = 1. Therefore, only σA = [+−−+]
is possible. Similar analysis can be done to establish the unique sign signature for

P∗ ∈ S2,S5 or S6. ��

Remark 2 Note that the conditions listed in Theorem 3 do not allow for α1 < 0 and

β1 < 0 simultaneously (or α2 < 0 and β2 < 0 simultaneously). Thus, the signatures

σA = [−−−−], [+−−−], [−+−−], [++−−], [−−+−], [−−++], [−−−+]
are not compatible with our condition that the points P0 and P1 obey x0 < x1 and

y0 < y1. These cases all lead to extinction of at least one species.

In the subsections below, we describe how the geometric structure of the level set of

the Hamiltonian H that passes through points P0 and P1, as given by (16), depends on

the location of P∗, and we illustrate the possible scenarios in Figs. 3 and 4. Finally, we

will conclude this section with the P∗-diagram, shown in Fig. 5, which summarizes

all of the information from this section. Specifically, the P∗-diagram displays the

positions of the equilibrium point P∗ = (x∗, y∗) and the corresponding signature σA

for trajectories ϕ(t) that are potential solutions of the inverse problem, in the sense

that ϕ(i) = Pi , i = 0, 1 and that ϕ(2) exists and is located in the positive quadrant.
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Fig. 3 Level sets F(x, y; x∗, y∗) = 0 corresponding to various locations of P∗. Symbols x01 and y01 are

defined by (14). The four blue lines divide the plane into nine open regions Si defined as in Table 2. (a)

For P∗ in S2, the zero level set of F is a closed curve. (b),(c) For P∗ in S3 ∪ S5\T , with T defined by

(18) whose properties are shown in subsection 4.4, the level set consists of two disjoint curves. Note that

only the branch containing P0 and P1 is an orbit of a trajectory of system (1). (d),(e),(f) When x∗ < 0 or

y∗ < 0, the level set consists of one connected curve

4.3 Case P∗ ∈ S2 ∪ S6

Theorem 4 Let P0 and P1 obey condition (C). If P∗ ∈ S2 ∪ S6, then

1. the level set of the Hamiltonian is a closed curve bounded as xr1 ≤ x ≤ xr2,

yr1 ≤ y ≤ yr2, where xr1, xr2 are the solutions of F(x, y∗; x∗, y∗) = 0 and

yr1, yr2 are the solutions of F(x∗, y; x∗, y∗) = 0,

2. if P∗ ∈ S2 and y∗ ≤ y1 (y∗ ≥ y1), then the segment of the orbit with y ≥ y1

(y ≤ y1) is a single-valued function of x on [x0, x1],
3. if P∗ ∈ S6 and x∗ ≤ x1 (x∗ ≥ x1), then the segment of the orbit with x ≥ x1

(x ≤ x1) is a single-valued function of y on [y0, y1].

Proof We focus on the case P∗ ∈ S2 (see Fig. 3a) since for P∗ ∈ S6 the argument

is similar. In this case, x∗, y∗, C1 and C2 are all positive, so by Lemma 1, F attains

a negative global minimum value at P∗, and strictly increases to infinity along every

ray starting at P∗ within the first quadrant. In other words, z = F(x, y) is similar to

an elliptic paraboloid with its minimum at P∗, but only defined in the first quadrant.

Therefore, the zero level set of F is a closed curve within the first quadrant, convex

(by Lemma 2.1 in Supplementary material of Duan et al. (2023)), passing through

P0 and P1 and with P∗ in its interior, and with extrema occurring at x = x∗ or

y = y∗. At x = x∗, the y-coordinates of the orbit are the solutions yr2 and yr1 of
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Fig. 4 Level sets F(x, y; x∗, y∗) = 0 (red curves) for various specific choices of P∗. Symbols x01 and y01

are defined by (14). The blue curves comprise the set T . Here we use an example with x1 y0 > x0 y1 so T

converges to the y-axis at two points and to the x-axis only at one point. Note that the regions in all four

panels are identical, but we only show labels and signs of Q(x, y) in (a) to avoid clutter. (a) With P∗ in the

red region, P0, P1 lie on the same branch of the level set, while P∗ is not on the level set. (b) With P∗ in a

white + or a white − region, P0, P1 lie on different branches of the level set, while P∗ is not on the level

set. (c) In this case, P∗ ∈ TA and thus the level set consists of two curves intersecting at P∗ with P0, P1

on different branches of the level set. (d) In this case, P∗ ∈ TC ⊂ T , and thus, the level set consists of two

curves intersecting at P∗ with P0, P1 on the same branch of the level set

F(x∗, y; x∗, y∗) = 0 and the orbit is bounded between those two values of y. The

results about xr1 and xr2 can be derived similarly. Statements (2) and (3) follow from

the convexity of the level set. ��

An example of a level set with P∗ ∈ S2 is shown in Fig. 3a. As we shall see below, the

inverse problem has a solution for all P∗ ∈ S2 ∪S6, and therefore, we shade the entire

regions S2,S6 in the P∗-diagram in Fig. 5. In anticipation of further developments,

we label these regions RG∗ because when P∗ lies in one of these regions, it will turn

out that the corresponding P2 for the trajectory lies in one of the components of RG

in the P2-diagram in Fig. 1.

4.4 Case P∗ ∈ S3 ∪ S5

When P∗ ∈ S3 ∪ S5, C1 and C2 have opposite signs, so z = F(x, y) is similar to a

hyperbolic paraboloid with saddle at P∗ but only defined in the first quadrant. Thus,
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Fig. 5 The P∗-diagram depicting regions R�∗ (only �∗ labels are shown) for which system (6) has

specified signature σA and has a trajectory ϕ(t) that passes through P0 and P1 and stays finite at t = 2.

The color-coding and labeling of regions match those of Fig. 1 and Table 1; for example, when P∗ lies in

RC∗ , P2 lies in RC. See text and Table 3 for more detailed descriptions of the regions. B is indicated with

a dash-dotted curve, and xB is its x-intercept

the level sets of such a function either consist of two disjoint curves or are made up

of two curves that intersect transversally, which we address first. In order for the level

set of F(x, y; x∗, y∗) = 0 to consist of two intersecting curves, both of those curves

pass through the point of intersection (x∗, y∗). Let T be the set of all points P∗ for

which the level set of F is made up of two transversely intersecting curves,

T :={(x∗, y∗) | F(x∗, y∗; x∗, y∗) = 0}. (18)

The set T is depicted in each panel of Fig. 4 as a collection of blue curves. Since it

is central to our analysis, we characterize it in the following result, where, in view of

(13) and (17), we define

Q(x, y) = F(x, y; x, y) = r01(y − y01)h(x; x1) + (x01 − x)h(y; y1) (19)

with

h(z; a):=g(z; z, a) = z − a − z ln(z/a), z > 0, a > 0. (20)
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Lemma 3 The set T has the following properties:

1. T consists of three curves, TA and TB , each of which passes through one of the

points P0 or P1, respectively, and TC that passes through both of P0 and P1 as well

as through the point (x01, y01). Each of the curves is defined by a single-valued

function of either x or y.

2. Curve TA has asymptotes limx→∞ y = y01 from above and limy→∞ x = x01 from

the right. Curve TB converges to the coordinate axes as follows: limx→0 y = yr <

y01, limy→0 x = xr < x01. Curve TC is monotone increasing with no asymptote

and converges to a point on the x-axis if x1 y0 − x0 y1 ≤ 0, and to a point on the

y-axis if x1 y0 − x0 y1 ≥ 0.

3. T has two intersections with {x = b} when b ∈ (x0, xr)∪ (x01, x1)∪ (x1,∞) and

one intersection point when b ∈ {x0}∪ [xr, x01]∪ {x1}; the number of intersection

points with {x = b : b ∈ (0, x0)} depends on the sign of x1 y0 − x0 y1.

4. T is contained in S3 ∪ S5 ∪ (x01, y01) and separates each of the regions S3 and

S5 into four open regions, with the signs of Q(x∗, y∗) in each as shown in Fig.4a.

The proof is a straightforward application of properties of the functions Q(x, y)

and h(z; a) defined in (19), (20), respectively. We can now demonstrate the geometric

structure and some properties of the level sets F(x, y; x∗, y∗) = 0 for P∗ ∈ S3 ∪ S5.

Theorem 5 Let P0 and P1 obey condition (C). If P∗ ∈ S3 ∪ S5, then the level set of

the Hamiltonian has the following properties:

1. When Q(x∗, y∗) > 0, the level set of Hamiltonian is comprised of two disjoint

curves, the upper curve y = yU(x) bounded by yr2 ≤ y < ∞ and the lower

curve y = yL(x) bounded by 0 < y ≤ yr1, where yr1 < yr2 are the solutions of

F(x∗, y; x∗, y∗) = 0. The function yU(x) decreases from infinity to yr2 on (0, x∗]
and increases to infinity on [x∗,∞), while yL(x) increases from 0 to yr1 on (0, x∗]
and decreases to 0 on [x∗,∞).

2. When Q(x∗, y∗) < 0, the level set of the Hamiltonian is comprised of two disjoint

curves that can be parametrized by y and classified as left and right branches. All

other properties are analogous to case 1.

3. When Q(x∗, y∗) = 0, i.e., when P∗ ∈ T , the level set F(x, y; x∗, y∗) = 0 consists

of two curves crossing at P∗.

Proof Since x∗ > 0, y∗ > 0, Lemma 1 applies to both g(x; x∗, x0) and g(y; y∗, y0).

We focus on the case P∗ ∈ S3 since for P∗ ∈ S5 the argument is similar. For P∗ ∈ S3,

C1 > 0 > C2 in (17) and, as a result, we have the following two observations: For

fixed x̂ > 0 and ŷ > 0

F(x̂, y; x∗, y∗) = 0 has

⎧

⎨

⎩

two solutions 0 < yr1 < y∗ < yr2

a unique solution y∗
no solution y

⎫

⎬

⎭

iff g(x̂; x∗, x0)

⎧

⎨

⎩

>

=
<

⎫

⎬

⎭

− C2h(y∗; y0)

C1
; (21)
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F(x, ŷ; x∗, y∗) = 0 has

⎧

⎨

⎩

two solutions 0 < xr1 < x∗ < xr2

a unique solution x∗
no solution x

⎫

⎬

⎭

iff g(ŷ; y∗, y0)

⎧

⎨

⎩

>

=
<

⎫

⎬

⎭

− C1h(x∗; x0)

C2
. (22)

If Q(x∗, y∗) > 0, then

h(y∗; y0) < −C1h(x∗; x0)/C2. (23)

In view of observation (21), for any x̂ > 0, g(x̂; x∗, x0) ≥ h(x∗; x0) >

−C2h(y∗; y0)/C1, and hence, F(x̂, y; x∗, y∗) = 0 has two distinct solutions, i.e.,

the level set has two distinct intersection points with every vertical line in the first

quadrant. In particular, when x̂ = x∗,

g(yr1; y∗, y0) = g(yr2; y∗, y0) = −C1h(x∗; x0)/C2. (24)

Lemma 1 gives g(y; y∗, y0) < −C1h(x∗; x0)/C2 for y ∈ (yr1 , yr2) and by observation

(22), the level set of the Hamiltonian has no intersection with horizontal lines given

by y = ŷ with ŷ ∈ (yr1, yr2) and, in particular, with the line given by y = y∗. Finally,

when x̂ → ∞ or x̂ → 0+, g(x̂; x∗, x0) approaches positive infinity, and hence, the

solutions of F(x̂, y; x∗, y∗) = 0 obey either y → ∞ or y → 0+.

If Q(x∗, y∗) < 0, then a similar argument can be made with the roles of x and

y reversed. In that case, the level set has two distinct intersection points with every

horizontal line in the first quadrant and no intersections with vertical lines given by

x = x̂ with x̂ ∈ (xr1, xr2), where g(xr1; x∗, x0) = g(xr2; x∗, x0) = −C2h(y∗; y0)/C1.

��

There is a further division of the regions S3 S5 by the set T depicted in Fig. 4.

When P∗ lies in the red or grey region, as in the panels (a) and (d) of Fig. 4, then

P0, P1 belong to the same branch of the level set. If not, as in the panel Fig. 4b, then

P0, P1 belong to different branches, in which case Algorithm 3.1 yields no output,

and there is no solution to the inverse problem with such P∗. One can show these

facts by using Theorem 5; for example, if P∗ lies in the white + region as in the

panel Fig. 4b, then by Theorem 5(a), the level set of the Hamiltonian is comprised of

two disjoint curves with y = y∗ lying between them, so P1 must belong to the upper

curve (since y1 > y∗) and similarly P0 must belong to the lower curve. Therefore, for

P∗ ∈ (S3 ∪ S5)\T , P0 and P1 lie on the same branch if and only if P∗ is located in

the region U , which is the union of the four colored open regions in Fig. 4, defined as:

U = {(x∗, y∗) ∈ S3 ∪ S5 | [(y∗ − y01)Q(x∗, y∗) > 0 ∧ y∗ /∈ (y0, y1)]

∨ [(y∗ − y01)Q(x∗, y∗) < 0 ∧ x∗ /∈ (x0, x1)]}.

Note that U is disjoint from T , the set where Q(x∗, y∗) = 0 (i.e., U does not include

the blue curves in Fig. 4).
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When P∗ ∈ T , the possibility of existence of a solution to the inverse problem

arises only when P∗ is located on either of the following components:

T1 = T ∩ ((x1,∞) × (y1,∞)) , T2 = T ∩ ((0, x1) × (0, y1)) , (25)

since only in these two cases P0 and P1 are on the same branch of an invariant manifold

asymptotic to P∗. Otherwise, the points P0 and P1 lie on distinct arms of the level set,

as in Fig. 4c.

In summary, when P∗ is in the region U , the level set of the Hamiltonian consists

of two disjoint curves and both P0 and P1 lie on the same component (see Fig. 3b, c),

while when P∗ ∈ (T1 ∪ T2), the level set consists of two curves crossing at P∗, and

both P0 and P1 lie on the same branch of an invariant manifold asymptotic to P∗ (see

Fig. 4d). We denote RR∗ = S3 ∩ (U ∪ T1).

4.5 Case P∗ ∈ S1,S4,S7,S8, orS9

Theorem 6 Let P0 and P1 obey the condition (C).

1. If P∗ ∈ S1 then the level set of the Hamiltonian is a curve x = x(y) defined

for y ∈ (0,∞) with a single local maximum x(y∗) and limits limy→0+ x(y) =
limy→∞ x(y) = 0.

2. If P∗ ∈ S4 then the level set of the Hamiltonian is a curve x = x(y) defined

for y ∈ (0,∞) with a single local minimum x(y∗) and limits limy→0+ x(y) =
limy→∞ x(y) = ∞.

3. If P∗ ∈ S7 then the level set of the Hamiltonian is a monotone increasing curve in

x and y.

4. If P∗ ∈ S8 then the level set of the Hamiltonian is a curve y = y(x) defined

for x ∈ (0,∞) with a single local minimum y(x∗) and limits limx→0+ x(y) =
limx→∞ x(y) = ∞.

5. if P∗ ∈ S9 then the level set of the Hamiltonian is a curve y = y(x) defined

for x ∈ (0,∞) with a single local maximum y(x∗) and limits limx→0+ x(y) =
limx→∞ x(y) = 0.

Proof The proof is similar to that of Theorem 5. When x∗ or y∗ is negative, Lemma 2

characterizes the corresponding g function in F . For example, if P∗ ∈ Sk , k = 7, 8, 9,

then y∗ < 0. By Lemma 2, for any x̂ ∈ (0,∞), F(x̂, y; x∗, y∗) = 0 has a unique

solution, so the level set is a simple, connected, continuous curve. ��

In each of the regions S1 and S9, every point P∗ produces a level set that passes

though both points P0 and P1. In Fig. 5, we label S1 and S9, respectively, as RC∗ and

RM∗ (although only C∗, M∗ labels are shown).

4.6 Consequences of the Order of Points on a Trajectory

When a third data point P2 on a trajectory is available, a question arises as to whether

the order of the points on the level set corresponds to the order of times at which the
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trajectory passes through those points. Many different possibilities could be explored

here; however, we only focus on the following result that will be used later.

Proposition 1 Let P0 and P1 obey the condition (C). Suppose that there exists a tra-

jectory ϕ(t) = (x(t), y(t)) passing through P0, P1, and P2 at times t0 < t1 < t2,

respectively.

1. If P2 ∈ (0, x1] × (0, y1], then P∗ ∈ S2 ∪ S6 and the orbit is closed.

2. If P2 ∈ (x1,∞) × (0, y1), then P∗ must lie in one of the following: S2, S6,

(x01,∞) × {0}, S9, or in the red + region in Fig.4 panel (a).

Proof For part (1), if P∗ is located in Si with i �= 2 and i �= 6, then by Theorem 5 and

Theorem 6, either x(t) or y(t) is monotone along the trajectory ϕ(t). If x∗ = 0, then

ẏ = β2xy remains the same sign in the first quadrant, which makes y(t) monotone.

Similarly, y∗ = 0 leads to monotonicity of x(t). Therefore, either x1 < x(2) or

y1 < y(2) and P2 cannot be located in (0, x1] × (0, y1]. The fact that the orbit is

closed follows from Theorem 4.

For part (2), suppose that P2 ∈ (x1,∞) × (0, y1), then P∗ cannot be located in

(−∞, x01) × (−∞, y01), since after ϕ(t) passes through P1, both x(t) and y(t) are

monotone increasing. Similarly, we can exclude the case when x∗ ≤ 0, since y(t)

is always monotone increasing by ẏ = β2 y(x − x∗) and condition (C). Finally, if

P∗ ∈ S3, then P∗ must be in the red region in Fig. 4 so that the trajectory passes

through both P0 and P1, and P∗ cannot be in the red − region since in that case y(t) is

monotone increasing. The remaining possibilities are exactly those given in the result

statement. ��

4.7 Consequences of Timing of Trajectories

Up to this point, we have analyzed the geometry of the level sets of the Hamiltonian

and eliminated regions in the P∗ plane for which the corresponding level set does

not include a curve that passes through both P0 and P1. However, if we additionally

require that the P∗ location corresponds to the existence of a solution to the inverse

problem, then the trajectory ϕ(t) of the system (6) with Pi = ϕ(i), i = 0, 1 must exist

for times up to t = 2.

When P∗ ∈ S2∪S6, the level set is a closed curve and the trajectory can be extended

for t → ∞. When P∗ ∈ T1, then both points P0 and P1 lie on a stable manifold of the

equilibrium P∗, and hence, the point ϕ(2) lies on T1 between P1 and P∗. Note that no

solution exists for P∗ ∈ T \(T1 ∪ T2) including P∗ = P0.

When P∗ ∈ T2, the situation is more complicated, since the solution might go

to infinity before time t = 2; therefore, the region of possible P∗ locations with

σA = [− + +−] is a subset of S5 ∩ (U ∪ T2). The basic argument is as follows:

The points P0, P1 are on the unstable manifold of P∗. We can transform the system

to straighten the unstable manifold and in the neighborhood of P∗ the rate of motion

away from P∗, based on the unstable eigenvalue, is λ:=√
β1β2x∗y∗. Thus, if we take an

initial condition that is O(ε) from the critical point, the time to travel an O(1) distance

scales as (1/λ) ln(1/ε). To make this time itself equal to 1 requires λ ∼ ln(1/ε). But
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Table 3 Definitions of the regions R�∗ in the P∗-diagram and signs of parameters in each

R�∗ σA

RR∗ = (U ∩ S3) ∪ T1 [+−−+]
RG∗ = S2 ∪ S6 ±[− + −+]
RM∗ = S9 [+ + −+]
RC∗ = S1 [+ − ++]
RB1∗ = {(x∗, y∗) ∈ S7 | the trajectory does not blow up before time 2} [+ + ++]
RB2∗ = {(x∗, y∗) ∈ S4 | the trajectory does not blow up before time 2} [− + ++]
RB3∗ = {(x∗, y∗) ∈ S8 | the trajectory does not blow up before time 2} [+ + +−]
RB4∗ = {(x∗, y∗) ∈ (U ∩ S5) ∪ T2 | the trajectory does not blow up before time 2} [− + +−]

a nonlinear system of the form ẋ = c ln(1/ε)x(y − y∗), ẏ = ln(1/ε)y(x − x∗) blows

up at time t = 1/(ln(1/ε)) < 1. By moving P∗ away from P0 along T2, we notice that

the blow-up time increases until it equals t = 2. We can think of the trajectory at this

point as a solution to a boundary value problem (BVP) for a compactified version of

(6) with a boundary condition at the image of infinity at time t = 2. By continuing this

BVP with respect to the parameter x∗, we obtain a curve y∗(x∗) that defines systems

for which a solution exists such that ϕ(i) = Pi , i = 0, 1 and blow-up occurs at t = 2.

This curve lies inside ∪i∈{4,5,7,8}Si . On one side of this curve, a solution to the inverse

problem exists while on the other side it does not. We denote this curve as

B = {(x∗, y∗) | inf{t̄ : lim
t→t̄

ϕ(t; P∗) = ∞} = 2}.

4.8 Summary

At this point, we can summarize the information that we have established about the

relation between the location of P∗ and the existence and sign signatures of solutions of

system (6) in the P∗-diagram displayed in Fig. 5. To complement the P∗-diagram, the

definitions of the labeled regions R�∗ and their corresponding σA are shown in Table

3, where we have used the fact that T2 ⊂ S5 and hence S5 ∩ (U ∪T2) = (U ∩S5)∪T2.

If P∗ is located in any white region or on a dashed curve, then there exists no A

such that the system has a trajectory ϕ(t) that passes from P0 to P1 in one time unit

and remains finite at t = 2. Notice that the solid segments within the curve T that

passes through P0 and P1 are T1 and a portion of T2 as defined in (25) and correspond

to locations of P∗ for which P0 and P1 lie on the same branch of the level curve

and the timing condition can be satisfied, such that a solution to the inverse problem

exists (cf. Figure 4). Moreover, within the regions S7, S4, S8, and S5, we have defined

subregions RB1∗ , RB2∗ , RB3∗ , and RB4∗ , respectively, on which the solution does not

blow up before time 2, as shown in Table 3.
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5 The P2-diagram and the Solution of the Inverse Problem

Now we return our focus to the inverse problem introduced in Sect. 2 and the descrip-

tion of the P2-diagram in Fig. 1. Recall that Algorithm 3.1 gives a unique parameter

matrix A for any P∗ that lies in the appropriate region of the P∗-diagram once the

timing of the passage from P0 to P1 is specified. Since A is determined uniquely, the

trajectory ϕ(t) of the system (1) obeying Pi = ϕ(i) for i = 0, 1 with equilibrium at

P∗ is likewise unique, and the point P2 = ϕ(2) is therefore determined uniquely as

well by (P0, P1, P∗). In addition, note that the trivial nonuniqueness of A based on

time rescaling for periodic solutions, discussed previously, does not affect the location

of ϕ(2). We formalize these observations in terms of the continuous map

P2 = �P∗→P2(P∗; P0, P1) (26)

that takes a subset of R
2 into R

2
+ (a consequence of the dynamics being restricted

to the first quadrant). For any choice of fixed P0, P1, we can also visualize the map

�P∗→P2 as a 2-dimensional manifold M in the 4-dimensional space R
2 × R

2
+. The

projection of this manifold onto R
2 provides the P∗-diagram, while the projection

onto R
2
+ gives the P2-diagram.

The study of the P∗-diagram in Sect. 4 provides a starting point for analysis of the

manifold M. As we shall see below, the map �P∗→P2 is not one-to-one and hence the

manifold M has folds that show up in the P2-diagram. Each region R�∗ in the P∗-

diagram is mapped continuously onto the corresponding region R� in the P2-diagram.

Regions R�1 ,R�2 for some choices of �1,�2 may overlap, however, giving rise to

regions that we denote by R�1�2 in the P2-diagram.

Some conjectures about the solution of the inverse problem for the system (1)

under condition (C) have been presented in detail in Duan et al. (2023), are shown

schematically in Fig. 1, and can be summarized as follows:

1. The first quadrant can be partitioned into open regions R� in which there are

solutions to the inverse problem with a particular sign structure σA of A. Regions

labeled by the same subscript and shown in the same color share the same sign

structure for A, as indicated in Table 1.

2. If P2 ∈ RNE = ∪4
j=1RNE j

, then the inverse problem has no solution.

3. If P2 is located in any labeled region R� not included in RNE except for regions RG

or regions labeled with two letters, or P2 lies on any boundary between regions

represented by a solid curve in the P2-diagram, then the inverse problem has a

unique solution.

4. In regions RG the inverse problem has a countable family of solutions that corre-

spond to periodic orbits.

5. In regions R� labeled by two letters (but not by NE), two solutions arise due to a

fold in the manifold M.

6. The existence of region RB4 depends on the magnitude of x0, y0, x1, y1.

7. The regions are separated by the curves of vanishing parameters Cα1 , Cα2 , Cβ1 , Cβ2 ,

the separatrix Cs, the periodic orbit limits Cp1 , Cp2 and the fold curves Cf1 , Cf2 .

8. The curves Cs, Cp1 , and Cp2 correspond to limiting cases where one or several

parameters blow up.
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These results have been obtained numerically by continuation methods and it makes

sense to ask whether there are rigorous justifications for them. We now turn to pre-

senting such justifications for a subset of these conjectures.

We begin our theoretical analysis with some preliminary results that we found useful

for considering the nonexistence of a solution to the inverse problem and then we

derive results on (non)existence, uniqueness, and parameter-dependence of solutions.

As noted in the proof of Theorem 3.1, given P0, P1 and P∗ with β1β2 �= 0, integration

of system (1) rewritten in the form (6) yields two potential equations for passage times

along a trajectory from a point (xa, ya) to a point (xb, yb), as follows:

ta→b =
∫ xb

xa

dx

β1x(y − y∗)
=

∫ yb

ya

dy

β2 y(x − x∗)
. (27)

When an orbit can be locally parametrized by x or y, one can evaluate or estimate

the time ta→b in (27), using the first or the second equation, respectively. The terms

x − x∗ and y − y∗ in the path integrals suggest that we should investigate the distance

between the points on the level set of the Hamiltonian and the critical point P∗ along

either of the coordinate directions. Using this idea, we obtain the following results.

Lemma 4 Consider a level set (8) of the Hamiltonian determined by P0, P1, and P∗.

Whenever this set intersects a line y = ȳ at two distinct points (xr1, ȳ) and (xr2, ȳ)

with xr2 > xr1, it follows that xr2 > x∗ > xr1 and xr2 − x∗ > x∗ − xr1. A similar result

holds for intersections of the level set with a line x = x̄ .

Proof We only show the case with a horizontal line since the vertical case is similar. If

the level set intersects with the line y = ȳ > 0 at (xr1, ȳ) and (xr2, ȳ) with xr2 > xr1,

then xri , i = 1, 2 are roots of the equation

f (x):=r

(

x − x1 − x∗ ln

(

x

x1

))

= ȳ − y1 − y∗ ln

(

ȳ

y1

)

.

Since f (x) is a convex function and x∗ is a minimum of f (x), we have xr2 > x∗ >

xr1 > 0. Furthermore, f (xr2) − f (xr1) = xr2 − xr1 − x∗ ln
(

xr2
xr1

)

= 0. To complete

the proof, it suffices to show that xr2 + xr1 > 2x∗, which follows from the inequality
b+a

2
> b−a

ln b−ln a
. To show that this inequality holds for any two distinct positive numbers

a and b, fix a > 0 and let h(x) = x+a
2

(ln x − ln a) − (x − a) for x > a. Compute

h′′(x) = 1
2x

(1− a
x
), so h′ decreases when x < a and increases on x > a, with a global

minimum at x = a. Moreover, h′(x) = 1
2
(ln x − ln a) + a

2x
− 1

2
, so h′(a) = 0 and

h′(x) is always positive for x > a. Therefore h is monotone increasing, and hence

when x > a, h(x) > h(a) = 0, and choosing x = b gives b+a
2

> b−a
ln b−ln a

. ��

Lemma 4 implies the following.

Corollary 1 Given x∗ and one point, say (x0, y0), on the orbit of the system (1), there

exists another point (x̄0, y0) on that orbit as well, where x̄0 satisfies x0 − x̄0 −
x∗ ln(x0/x̄0) = 0, which is independent of y∗. Therefore, if we vary P∗ vertically
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and generate different orbits of the system that pass through (x0, y0), then they all

pass through (x̄0, y0) as well. A similar argument can be made for another point

(x0, ȳ0) when we move P∗ horizontally.

With Lemma 4, we can also derive the following theorem, which is applied in

proving a result about nonexistence of solutions to the inverse problem later in this

section.

Theorem 7 Let 
 be a trajectory of system (1) inside the first quadrant. Consider a

vertical strip {xa < x < xb : xa > 0} that is intersected by 
 in two distinct arcs.

Then

1. one of the arcs lies above y = y∗ and one below,

2. 
 travels in opposite x-directions along the upper and lower arcs, and

3. if TU and TL are the passage times for 
 along the upper and lower arcs, respec-

tively, then TU < TL .

Proof Part (1) follows from our observation that any trajectory 
 is a level set of the

Hamiltonian, and the fact that the points at which y = y∗ are the extrema of the level

set when viewed as a function of y. Part (2) follows directly from the flow equation

ẋ = β1x(y − y∗). To prove part (3), we will assume without loss of generality that

β1 > 0, so the flow goes from right to left along the lower arc of 
. By construction,

each of the two arcs can be parametrized in x , and we consider the upper and lower

arcs as the graphs of functions that we denote by yU (x) and yL(x), respectively. We

have

TU =
∫ xb

xa

dx

β1x(yU (x) − y∗)
and TL =

∫ xa

xb

dx

β1x(yL(x) − y∗)
.

By Lemma 4, for any x ∈ (xa, xb), yU (x) − y∗ ≥ y∗ − yL(x) > 0, so β1TU < β1TL .

Therefore TU < TL because β1 > 0. The proof is similar when β1 < 0. ��

Similarly, we have the following corollary for intersections with a horizontal strip.

Corollary 2 Let 
 be a trajectory of (1) inside the first quadrant. Consider a horizontal

strip {ya < y < yb : ya > 0} such that its intersection with 
 consists of two

disconnected arcs. Then one of those arcs lies to the left of x = x∗ and the other to the

right, the y-direction of 
 is opposite in the left and right arcs, and for the passage

times Tr and Tl of 
 along the right and left arcs, respectively, we have Tr < Tl .

5.1 Separatrix Cs

The Hamiltonian and associated results make it possible to find analytical results about

the separatrix Cs, which we identified numerically in Duan et al. (2023) and which,

we shall see, relates to the transition between nonexistence and existence of inverse

problem solutions.

Consider the limiting case of a system (1) with P∗ = P1, in which case the level

set of the Hamiltonian becomes F(x, y; x1, y1) = 0, where F is defined in equations
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(13)-(17). This level set, uniquely defined by the locations of P0 and P1, consists of two

curves that intersect at P1 transversely, one of which passes through P0 and extends to

infinity in the direction of increasing x and y. The other curve is the separatrix Cs. For

the system with P∗ = P1, both curves are invariant manifolds of the flow, asymptotic

to P1, and P0 lies on the stable one. It follows that the trajectory of a system (1) with

equilibrium point P∗ = P1 starting at P0 cannot reach P1 in finite time but instead

converges to P1 as time goes to infinity. As a result, the system can have no trajectory

passing through P0, P1 when P2 ∈ Cs. Thus, in the P2-diagram, parts of the separatrix

Cs lie on boundaries between the regions of existence and nonexistence of the solution

of the inverse problem. The graph of Cs is shown in panel (a) of Fig. 1 as the dashed

line going from the top left corner to the bottom right corner, forming the boundary

between the red regions RR and the white regions RNE4 ,RNE2 , and RNE3 .

To see what happens to the parameters α1, β1, β2, α2 in the limit as P∗ → P1, note

that for P∗ = P1, the manifold from P0 to P1 can be parametrized by x between x0

and x1 and by y between y0 and y1. Therefore, in (10), as P∗ → P1, Ix → −∞
and Iy → −∞, which implies that β1, β2 → −∞ with their ratio r approaching

r01
y1−y01

x1−x01
, while, in view of (5), α1, α2 → ∞. We conclude that the entire curve Cs is

the image of the single point P1 under the map �P∗→P2 and that several of the values

of α1, β1, β2, α2 approach infinity as P2 → Cs.

The separatrix Cs has an intersection with the vertical line x = x2
1/x0. In the

following lemma, we prove that condition (C) implies that this intersection point is

always below the horizontal line y = y0. Similarly, Cs intersects the line y = y2
1/y0

to the left of x = x0.

Lemma 5 Assume that condition (C) holds. Then, the intersection of Cs and {x =
x2

1/x0} occurs at a value ySβ1 that is smaller than y0.

Proof The value ySβ1 is the smaller solution of the equation

y − y1 − y1 ln

(

y

y1

)

= r01
y1 − y01

x1 − x01

(

x2
1

x0
− x1 − x1 ln

(

x1

x0

)

)

. (28)

By the properties of the function g(y; y1, y1) stated in Lemma 4.1, it suffices to show

that g(ySβ1; y1, y1) > g(y0; y1, y1), which is equivalent to

(

x2
1

x0
− x1 − x1 ln

(

x1

x0

)

)

>

(

x0 − x1 − x1 ln

(

x0

x1

))

(29)

since r01
y1−y01

x1−x01
> 0. Notice that the function u − 1

u
−2 ln u is monotone increasing on

(0,+∞) and is 0 only at u = 1. Therefore when u = x1
x0

> 1, we have u− 1
u
−2 ln u >

0, which is equivalent to (29). ��

123



Rigorous Mapping of Data to Qualitative Properties of Parameter... Page 27 of 35    64 

5.2 Conditions for Nonexistence of Solutions

In this section we establish necessary and sufficient conditions on data that one can

use to quickly identify whether the data are compatible with the system in the sense

that the inverse problem has a solution. Specifically, we apply the preliminary results

established at the start of this section to establish the nonexistence of solutions to the

inverse problem when P2 lies in RNE1 or RNE2 .

Theorem 8 (Nonexistence-1) If P2 ∈ RNE1 = ((0, x0] × (0, y0]) \P0, then no solu-

tion of the inverse problem exists.

Proof Consider the Hamiltonian level set defined by P0, P1 and let P2 ∈ ((0, x0] × (0,

y0]) \P0. By Proposition 1(1), the level set is a closed orbit with σA = ±[− + −+]
and with 0 < x∗ < x0 or 0 < y∗ < y0. Without loss of generality, suppose that

σA = [− + −+] (so the trajectory is traversed clockwise) and hence 0 < y∗ < y0.

The closed orbit intersects the vertical strip x0 < x < x1 in two arcs, where the upper

one represents a complete orbit between P0 and P1 while the lower one represents a

subsegment of the orbit between P1 and P2. In view of Theorem 7, the time of travel

along the upper arc TU is smaller than the time of travel along the lower arc TL . This

property is incompatible with the existence of a trajectory φ(t) that passes through

P0, P1, P2 at times t = 0, 1, 2, respectively, since such a trajectory would require

TU = 1 > TL . ��

The region RNE2 is bounded by the separatrix Cs and the lines {y = y0} and

{x = x0}. It includes its three boundary curve segments but does not include the point

P0. We will now prove the nonexistence of solutions to the inverse problem when P2

lies in RNE2 . Using the lines {y = y1} and {x = x1}, we separate RNE2 into three

regions, the rectangular region R
(1)
NE2

:= ([x0, x1] × [y0, y1]) \P0 and two triangle-like

regions, denoted as R
(2)
NE2

(bounded above by Cs, at the bottom by {y = y0}, and on

the left by {x = x1}) and R
(3)
NE2

(bounded above by Cs, at the bottom by {y = y1}, and

on the left by {x = x0}). We only prove nonexistence for P2 ∈ R
(1)
NE2

and P2 ∈ R
(2)
NE2

,

since the symmetry of x and y in system (1) and in the inverse problem imply that the

proof for R
(3)
NE2

is similar to the latter.

Theorem 9 (Nonexistence-2) If P2 ∈ R
(1)
NE2

, then no solution of the inverse problem

exists.

Proof By Proposition 1(1), if there exists a trajectory for such P2 with parameter

matrix A, then the orbit is closed. We decompose the rectangular region R
(1)
NE2

into

two triangles based at the diagonal P0 P1 and assume that P2 is in the upper triangle

(including the top and left boundaries, but not the diagonal since that is ruled out by

the convexity of the orbit, as established in previous work (Duan et al. 2023)). As

stated in Remark 1, we choose the A with the greatest possible transit time along the

orbit and for this orbit, the flow proceeds counterclockwise with σA = [+ − +−].
Moreover, the flow is monotone decreasing in x from P1 to P2. Now we consider the

vertical strip [x2, x1] × (0,∞) whose intersection with the orbit consists of an upper

123



   64 Page 28 of 35 X. Duan et al.

arc connecting P1 and P2 and a lower arc that is contained in the trajectory from P0

to P1 and hence has a passage time of less than 1. By Theorem 7, the passage time for

the flow along the upper arc is less than that along the lower arc and hence is less than

1, which leads to a contradiction. A similar contradiction occurs if P2 is in the lower

triangle relative to P0 P1. ��

Theorem 10 (Nonexistence-3) If P2 ∈ R
(2)
NE2

, then no solution of the inverse problem

exists.

Proof To establish a contradiction, suppose that P2 ∈ R
(2)
NE2

and there exists a solution

A. By Proposition 1(2), the corresponding equilibrium point P∗ must lie in RG∗ , on

(x01,∞) × {0}, in RM∗ , or in the subset of RR∗ given by the red + region in Fig. 4a.

These are displayed as the colored regions in Fig. 6a. Since R
(2)
NE2

is below the straight

line P0 P1, following Remark 1, if P∗ ∈ RG∗ , then we choose A that yields clockwise

passage from P0 to P1 to P2. Therefore all possible positions of P∗ have x∗ > x01 and

then by Theorem 3, β2 < 0. (Hence in Fig. 6b–d we only color the regions to the right

of x01.)

We first establish that x∗ > x1. Suppose the contrary, then the trajectory starting at

P0 increases in y until x = x∗, then decreases in the y direction, passes through P2,

and intersects with {y = y0} again. Consider the horizontal strip (0,∞) × [y0, y1]
as shown in Fig. 6b, in which P2 therefore lies. The trajectory intersects this strip in

two arcs, and we denote the passage time for the flow along the left and right arcs as

Tl and Tr , respectively. By Corollary 2, Tr < Tl ≤ 1, which contradicts the fact that

the passage time from P1 to P2, which must be less than or equal to Tr , is equal to 1.

Thus, we have x∗ > x1.

Now we prove that when x∗ > x1 and P∗ ∈ ∪�∈{R,G,M}R�∗ , the trajectory does

not have any intersection with R
(2)
NE2

. It suffices to show that within the horizontal strip

[x1,∞) × [y0, y1], the trajectory lies to the right of Cs (as sketched in Fig. 6c, where

the horizontal dashed line is {y = ŷ}, and the diagonal dashed curve is Cs). Given

x∗ > x1, for any ŷ ∈ [y0, y1], the trajectory intersects the line {y = ŷ} in two points

with x ≥ x0. We are interested in the intersection point on the right and denote it as

(x̂, ŷ), so x̂ > x∗ > x1. We will show that both the partial derivatives ∂ x̂
∂x∗

and ∂ x̂
∂ y∗

are positive when P∗ is located in any of those possible regions we mentioned at the

beginning of the proof.

From the equation (8) with r given by (15), we have that

x̂ − x∗
x̂

∂ x̂

∂x∗
= ln

(

x̂

x1

)

− 1

r01

g(ŷ; y∗, y1)

y01 − y∗

and

x̂ − x∗
x̂

∂ x̂

∂ y∗
= x01 − x∗

r01

g(ŷ; y01, y1)

(y∗ − y01)2

where g is given by equation (13) and r01 as defined previously is positive. We first

focus on ∂ x̂/∂ y∗. By Lemma 1, g(ŷ; y01, y1) is negative when ŷ ∈ (y0, y1) and zero
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Fig. 6 Four plots for the proof of Theorem 10. They are identical (except that in (c) we zoom in to see

the details of trajectories), but we only show necessary symbols in each panel to avoid clutter. Note that

asterisks denote locations of the equilibrium point P∗ for the trajectories shown in (b), (c); see text for

additional details

when ŷ = y0 or ŷ = y1. Therefore in the setting of this proof, ∂ x̂/∂ y∗ is positive

when ŷ ∈ (y0, y1) and is zero when ŷ = y0 or ŷ = y1. (The case when ŷ = y0 is

consistent with Remark 1.)

Next we study ∂ x̂/∂x∗. The term ln
(

x̂/x1

)

is always positive so it suffices to

show that g(ŷ; y∗, y1)/(y01 − y∗) is never positive. This is obvious if y∗ = 0, so we

discuss the other three cases of possible values of y∗ corresponding to the competi-

tive, predator–prey, and parasitic cases (with red, green and magenta colors in Fig. 5,

respectively):

1. If y∗ > y01, then y∗ > y1. By Lemma 1, g(ŷ; y∗, y1) is positive when ŷ ∈ (0, y1).

2. If 0 < y∗ < y01 < y1, then ln(ŷ/y1) < 0 and hence g(ŷ; y∗, y1) <

g(ŷ; y01, y1) ≤ 0.

3. If y∗ < 0, then by Lemma 2, g(ŷ; y∗, y1) < 0.

Thus, in all cases, ∂ x̂/∂x∗ is indeed positive.

Before we can use these derivative results, we add one more observation: if we fix

x∗ = x1 and any ŷ ∈ [y0, y1] and vary y∗ ∈ (−∞, y01) ∪ (y1,∞), the orbit will

change accordingly and will have different intersection points with the horizontal line

y = ŷ, so the corresponding x̂ will change. But in both of the limits y∗ → ∞ and

y∗ → −∞, the defining equation for the orbit tends to

r01

x∗ − x01

(

x − x1 − x∗ ln

(

x

x1

))

= − ln

(

y

y1

)

,
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which is the solid black curve in Fig. 6c. Hence, with y = ŷ fixed, the same x̂ value,

given by the solution of this equation, results.

Putting together this observation and the derivative results, we can finish the proof.

Recall that Cs can be treated as the limiting case of the trajectory when P∗ = P1,

so if the equilibrium point is actually at some P̃∗:=(x̃∗, ỹ∗) in the red + region as

in Fig. 4a (and with x̃∗ > x1), then the corresponding trajectory can be obtained

from Cs by first fixing x∗ = x1 and increasing y∗ from y1 to ỹ∗, and then fixing

y∗ = ỹ∗ and increasing x∗ from x1 to x̃∗. By the analysis of the signs of ∂ x̂/∂x∗
and ∂ x̂/∂ y∗, for each ŷ ∈ [y0, y1], the corresponding x̂ is nondecreasing through the

vertical shifting process and strictly increasing through the horizontal one. Thus, the

trajectory corresponding to equilibrium point P̃∗ is on the right of Cs while it crosses

through the horizontal strip [x1,∞)×[y0, y1]. If P̃∗ is in RG∗ or RM∗ , then we replace

the process by first fixing x∗ = x1 and increasing y∗ from y1 to ∞ (throughout which

process x̂ does not decrease), and then fixing x∗ = x1 and increasing y∗ from −∞ to

ỹ∗, using our observation that the x̂ for y∗ → −∞ is also the x̂ for y∗ → ∞, and finally

fixing y∗ = ỹ∗ and increasing x∗ from x1 to x̃∗ (throughout which process x̂ strictly

increases). This process is shown in Fig. 6d. So we again conclude that the trajectory

corresponding to the equilibrium point P̃∗ is on the right of Cs in the horizontal strip

[x1,∞) × [y0, y1], as desired. ��

At this time, we do not have analytical results about the nonexistence of solutions

for P2 in the regions RNE3 and RNE4 , primarily because we do not have a good handle

on the boundaries of those regions. Although one of the boundaries is the separatrix,

Cs, the other boundaries are the fold curves Cf1 , Cf2 , which were computed using a

numerical approach (see Duan et al. (2023) for detail) and remain to be analytically

characterized in future work.

5.3 Determination of Dynamical Behavior from Data

In this section, we prove a necessary and sufficient condition on data that one can use

to identify the signature of the system and hence the types of interactions governing

the observed species. Specifically, the sign of β2 for P2 ∈ [x1,∞) × [y1,∞) is given

by the following theorem:

Theorem 11 If a solution to the inverse problem exists for a value P2 ∈ [x1,∞) ×
[y1,∞), then the sign of β1 is equal to that of x2 − x2

1/x0 and the sign of β2 is equal

to that of y2 − y2
1/y0.

Proof We only show that x2 ≥ x2
1/x0 if and only if β1 ≥ 0, since the proof of the

other statement is similar.

In Subsection 4.2.1 of Duan et al. (2023), we observed that x2 = x2
1/x0 when

β1 = 0. If β1 > 0, then by the P∗-diagram and Table 3, P∗ does not lie in either RR∗
or RC∗ . If P∗ lies in RG∗ with y∗ > y01, then following the convention from Remark 1,

we have A with σA = [+−+−], which contradicts that β1 > 0. Therefore, y∗ < y01.

Since β1 > 0, whenever the trajectory ϕ(t) = [x(t), y(t)]T of (1) is above y∗, ẋ

is positive, and ϕ(t) can thus be parametrized by x . Since P2 lies in the rectangular

region [x1,∞) × [y1,∞), the trajectory passes through P1 transversely with x and y
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both increasing. Therefore, if y∗ ≤ y0, then the trajectory is contained in the interior

of the rectangle R
(1)
NE2

when t ∈ (0, 1) and in (x1,∞) × (y1,∞) when t ∈ (1, 2).

Thus, we have

ln
(

x1
x0

)

β1(y1 − y∗)
<

∫ x1

x0

dx

β1x(y − y∗)
= 1 =

∫ x2

x1

dx

β1x(y − y∗)
<

ln
(

x2
x1

)

β1(y1 − y∗)
, (30)

and hence x2 > x2
1/x0. Alternatively, if y0 < y∗ < y01, then within t ∈ [0, 1], the

trajectory progresses from P0 in the direction of decreasing x and increasing y until

y(t) = y∗; then continues in the direction of increasing x and y, reaching x(t) = x0

again at some time t̃ ∈ (0, 1); and then continues in this direction until arriving at P1

at time 1. Therefore, based on integration over the path traversed with t ∈ (t̃, 1),

ln
(

x1
x0

)

β1(y1 − y∗)
<

∫ x1

x0

dx

β1x(y − y∗)
=1−t̃ < 1 =

∫ x2

x1

dx

β1x(y − y∗)
<

ln
(

x2
x1

)

β1(y1 − y∗)
,

(31)

and we see that x2 > x2
1/x0 still holds.

Finally, suppose that β1 < 0, such that by the P∗-diagram, Table 3, and Remark

1, y∗ > y01. The fact that P2 lies above and to the right of P1 implies that

ẋ |P1 = β1x1(y1 − y∗) is positive, and hence y∗ > y1. Therefore in the x-direction, the

trajectory increases when t ∈ (0, 1) and continues doing so after t = 1 until y(t) = y∗.

Regardless of the t value when y(t) = y∗, we always have

ln
(

x2
x1

)

−β1(y∗ − y1)
<

∫ x2

x1

dx

−β1x(y∗ − y)
≤ 1 =

∫ x1

x0

dx

−β1x(y∗ − y)
<

ln
(

x1
x0

)

−β1(y∗ − y1)
,

so x2 < x2
1/x0. ��

Theorem 11 shows that the two curves Cβ j =0, j = 1, 2 separate [x1,∞)×[y1,∞)

into four quadrants. The signs of β1, β2 for solutions to the inverse problem differ

across these quadrants, as in the P2-diagram (Fig. 1) and corresponding Table 1.

Corollary 3 (Uniqueness on Cβ j =0) The inverse problem has a unique solution if either

x2 = x2
1/x0 and y2 ≥ y1 both hold, or x2 ≥ x1 and y2 = y2

1/y0 both hold.

Proof If x2 = x2
1/x0 and y2 ≥ y1, then β1 = 0, which yields x(t) = eα1t x0. Substitu-

tion of x(2) = x2 = x2
1/x0 gives a unique formula for α1. Moreover, in this case we

can represent the solution curve as a graph over x of the function Duan et al. (2023)

y(x) = y0 exp

(

α2

α1
ln

(

x

x0

)

+ β2

α1
(x − x0)

)

.
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Using this expression, it follows that the full parameter matrix A is given uniquely in

terms of P0, P1 and y2 as

A =

⎡

⎢

⎣

ln
(

x1
x0

)

0 0

0 x0

(x1−x0)
2 ln

(

x1
x0

)

ln

(

y0 y2

y2
1

)

x0
x0−x1

ln
(

y2

y1

)

− x1
x0−x1

ln
(

y1

y0

)

⎤

⎥

⎦
.

We can derive a similar result when y2 = y2
1/y0 and x2 ≥ x1. ��

For the inverse problem for system (1), we have now proved the existence and

uniqueness of solutions along some curves in the diagram and we have established σA

for some regions. The remaining questions that we set out to answer were addressed

numerically in earlier work (Duan et al. 2023), and their analytical treatment remains

for future investigation.

6 Discussion

Overall, our analysis yields qualitative information about parameters and trajectories of

the LV system (1) derived either from three data points on a single system trajectory,

equidistant in time, or from two trajectory samples and the location of a positive

equilibrium point. Our findings reveal that in the former scenario, nonuniqueness of

compatible parameter sets can arise, related to folds in a manifold of inverse problem

solutions, which could be an important property that generalizes to other nonlinear

systems. In the latter, on the other hand, the mapping from the data to parameter

values is one-to-one, although nonexistence of compatible parameter sets can still arise.

Importantly, our analysis allows us to infer from the given data set whether the modeled

species interact in a cooperative, competitive, or predator–prey type relationship and

to characterize the sets of data positions that imply that the trajectories from which

they were sampled engage in specific qualitative behaviors, such as periodic cycling.

Our approach does not rely on approximating the vector field explicitly or on the

existence or properties of an attractor for the system under study, and we assume

that the time step between data points is fixed, rather than being a factor that we can

select to serve our aims. In our analysis of system (1), the quantity of data that we

require is set by the number of parameters in the model, rather than by the attractor

dimension; unlike the latter, the number of model parameters is known from the outset,

which eliminates the need for additional experiments to estimate how much data will

suffice. Although we assumed equal passage times between each pair of data points

in our analysis, and the details of our findings depend on this assumption, our general

approach does not require this equal spacing condition, and we expect that qualitative

features of our results will persist for other measurement intervals.

A fundamental aspect of our inverse problem results is continuity: If we fix two of

the data points, then there are regions in the (x, y) plane such that for all choices of

the third data point within each region, the inverse problem solution is qualitatively

the same; that is, existence and uniqueness properties persist throughout the region, as

do the signs of the parameters that comprise such solutions. In a recent paper (Duan
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et al. 2023), we introduced a numerically generated illustration of our results in terms

of these regions in data space, in what we call the P2-diagram. Here, we establish

a correspondence between these regions and the possible locations of the nontrivial

equilibrium point of system (1), the knowledge of which, as an alternative to the third

data point, also enables us to determine the properties of the inverse problem solution,

as we display in what we call the P∗-diagram. Although rigorous results are derived

here only for data satisfying condition (C), i.e., x0 < x1 and y0 < y1, P2-diagrams

corresponding to alternative choices of the relative positions of data points P0 and

P1 can be found in Figure 10 of (Duan et al. 2023), and the methods presented here,

including the reference to P∗-diagram can be easily extended to those cases.

Our results highlight that certain data points, with the specified timing, are incom-

patible with trajectories of system (1), and such nonexistence results can occur due to

issues of timing or due to issues of trajectory curvature. In contrast to linear and affine

systems (Stanhope et al. 2017; Duan et al. 2020), the region of nonexistence for the

nonlinear system (1) is composed of several disconnected components. Our findings

also show that some data points are compatible with distinct parameter sets giving

rise to orbits that can be of the same type or of qualitatively different types, such as

periodic versus unbounded orbits, with correspondingly similar or distinct biological

interpretations of the associated parameter values, respectively. Although this situation

occurred already in the case of linear and affine systems, here it is more remarkable as

the present system has a first integral (a Hamiltonian). In these situations, additional

data points or observations would be needed to indicate that the underlying biological

system exhibits a specific type of inter-species interaction.

A natural question that can be asked about our qualitative findings is how robust

they are to small changes in the locations of data points or to cases where we do

not know that trajectories pass exactly through the given data but only that they pass

within some neighborhoods of these points. The issue of robustness was addressed for

linear and affine systems by exploration of the maximal permissible uncertainty of the

data that would not change the implications for the qualitative behavior of solutions

(Stanhope et al. 2017; Duan et al. 2020). Given the continuity of the P2 diagram

and its straightforward dependence on the location of the data points P0, P1, one can

conjecture that the maximal permissible uncertainty for the LV system increases with

the distance of the point P2 from the boundary of the region in which it lies, but a

more precise characterization will require further investigation.

Another possible research direction that we did not consider is to seek to identify

what, if any, small changes to the dynamics of model (1) could result in a trajectory

that passes through given data, when no such trajectory exists for (1) itself. This

direction has been considered, for example, in past work on linear compartment models

(Meshkat et al. 2015). Numerical results show that, as one would expect from the theory

of structural stability and dependence of dynamical systems solutions on changes in

parameter values (Perko 2013), variations of system (1) that can be represented in

terms of parameter changes in a smoothly parameter-dependent vector field result in

continuation of solution branches and continuous deformations of regions in the P2-

diagram (Duan et al. 2023); for example, such nice behavior occurs if we replace each

xy interaction term with a parameter-dependent saturation of the form xy/(εx + 1).

Naturally, however, solution branches can fold, and bifurcations of regions in the P2
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diagram, such as the emergence of folds, can also occur; for the time being, we do

not have a way to predict when these events will occur as a vector field parameter,

such as ε in the above example, is varied. We also have not considered the case when

measurements of only a proper subset of model variables are available, nor have we

discussed the potentially interesting tradeoff between having less data about more

variables versus more data about fewer variables.

Overall, our study stands as a unique and novel example of a thorough charac-

terization of the set of inverse problem solutions for a specific canonical model in

the study of population dynamics, which may prove helpful for researchers who use

the LV model to study specific biological systems and can also serve as a starting

point for further development of data-based analysis of dynamical systems. In such

an approach, the dynamical behavior of the system and the continuation of a system

trajectory are analyzed based on given data about the system variables at a small num-

ber of times, rather than being assessed based on specific parameter values for the

system and the forward integration of the model with these values. Within the space of

data, one identifies regions that correspond to various types of model behavior, with

borders between those regions serving the same purpose as bifurcation curves would

in traditional analysis from a parameter space perspective. In future explorations of

this subject, we expect that a more comprehensive theory of data-based model analysis

can be developed, with methods and techniques that will be applicable to additional

classes of nonlinear dynamical systems.
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