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Abstract. Sum-of-norms clustering is a convex optimization problem whose solution can be used for the clus-
tering of multivariate data. We propose and study a localized version of this method, and show in
particular that it can separate arbitrarily close balls in the stochastic ball model. More precisely, we
prove a quantitative bound on the error incurred in the clustering of disjoint connected sets. Our
bound is expressed in terms of the number of datapoints and the localization length of the functional.
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1. Introduction.

1.1. Context and informal description of main result. Let z1,...,zy € R? (d € N) be
a collection of points, which we think of as a dataset. We consider the clustering problem,
which is to find a partition of {z1,...,zx} that collects close-together points into the same
element of the partition. The problem of K-means clustering is to identify a global minimizer
of the functional

N
1
n=1

over all (y1,...,yn) € (RYYN such that the cardinality of the set {y1,...,yn} is at most
K. This minimization problem is known to be NP-hard in general, even when restricted to
K = 2 [2] or d = 2 [21]. Practitioners typically resort to iterative search algorithms such
as Lloyd’s algorithm and its refinements [20, 28], which at least identify local minimizers of
(1.1). However, these methods are known to perform poorly in some cases, as will be discussed
further below.

In this paper, we focus our attention on the “sum-of-norms clustering” method (also known
as “convex clustering shrinkage” or “Clusterpath”) introduced in [25, 16, 19]. This method
can be thought of as a convex relaxation of the K-means problem. It considers the minimizer
of the convex functional
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1 & .
(12 ) o = wl g S wllm — 2l — vl
n=1 m,n=1
over (y1,...,yn) € (RHYN for some nonincreasing “weight function” w. (Typical choices

include constant and exponential weights.) Here | - | denotes the Euclidean norm on R¢. The
point ¥, is thought of as a “representative point” of the cluster to which x,, belongs, and thus
x, and x,, are declared to be members of the same cluster if y,, = yy,. The first term of (1.2)
is designed to keep the representative point of a cluster close to the points in that cluster
(and so encouraging having many clusters), while the second term (called the “fusion term”)
is designed to encourage points to merge into fewer clusters, at least if they are close together
according to the weight function. The parameter A controls the relative strength of these two
effects.

The present work investigates an asymptotic regime of sum-of-norms clustering as the
number of datapoints becomes very large and the weight w is simultaneously scaled in a
careful way. In order to do so, it is useful to specify a more explicit model for the dataset.
We assume that the datapoints x1, ...,z are independent and identically distributed. Their
common law p, a probability measure on R?, is supported on the union of disjoint closed sets
Ui,...,Ur. These sets are not known to the practitioner. We would like z; and x; to be in
the same cluster if and only if they lie in the same set U, for some £ € {1,..., L}, and so we
seek a clustering algorithm that can guarantee this in the limit as N — oc.

The weight function we choose is w(r) := y¢*1e™", where v > 0 is a parameter that can
be tuned with the number of datapoints N. Roughly speaking, our main result states that,
under modest assumptions, if we choose A above a critical threshold not depending on IV, and
also choose v ~ N 3/(4d) then in some mean-square sense, each point z,, € Uy will be associated
with a representative point y, that is at distance of about N~/ (4 from the centroid of the
set Uy as N — oo. In particular, the clustering of the dataset is successful in the mean-square
sense. The technical assumptions we need are that each set U, is “effectively” star-shaped
(see Definition 1.1 below), that the measure p has a density with respect to the Lebesgue
measure, and that this density is Lipschitz and bounded away from zero on its support. As
an illustration, we can take p to be the uniform measure on the union of the sets depicted
in Figure 1 below. The condition that the clusters be effectively star-shaped is a nontrivial
geometric restriction, although it does not seem to be fundamental. See Remark 4.2 below
for a weaker but more complicated sufficient condition, and further discussion.

Our result applies in particular to the case in which g is the uniform measure on the union
of disjoint balls. One of the strengths of our result is that these balls or, more generally the
sets U1, ...,Uy, can be chosen arbitrarily close to one another, as long as they do not touch.
(However, we expect that the required number of datapoints N will grow as the balls are
brought closer to each other.) Another important feature is that we allow for sets Uy, ..., Uy
that may be nonconvex, as long as they are effectively star-shaped. Moreover, our result
covers situations in which the convex hulls of the clusters intersect.

The unweighted version of the sum-of-norms clustering method, i.e., the case w = 1, does
not share any of these features. Indeed, the unweighted method fails to recover the clusters of
datapoints sampled independently from two disjoint balls if the balls are too close together,
as we showed in [13]. Moreover, the unweighted algorithm must output clusters that are
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Figure 1. A set of three open sets Uy, Uz, Us satisfying the hypotheses of Theorem 1.2.

contained in disjoint balls (see [23, Theorem 3] or [13, Proposition 1.8]) and, in particular, it
cannot separate two clusters unless their convex hulls are disjoint.

Popular alternative clustering methods such as Lloyd’s algorithm and its refinements [20,
28] are also known to have important limitations. In [4, Appendix E|, the authors exhibit
explicit examples of configurations of disjoint balls Uy,..., U, of equal radius such that if
the measure p is the uniform probability measure on the union of these balls, then the prob-
ability that Lloyd’s algorithm successfully clusters the dataset is at most (1 — %)L/ 3. They
also construct similar examples for which a refined method called “kmeans++" also fails to
successfully cluster the dataset with a probability that can be made arbitrarily close to 1.

Other convex relaxations of the K-means problem have been explored, but we are not
aware of theoretical guarantees that would cover the case in which two clusters can be taken
arbitrarily close to one another. Possibly the simplest way to ask the question is to consider
the “stochastic ball model” [22]: we assume that the datapoints are sampled independently
according to the uniform measure on the union of two disjoint balls of unit radius. In this
setting, the method explored in [4] is guaranteed to recover the clusters provided that the
distance between the two ball centers is above 2v/2(1 + d~'/2). (See also [12] for the related
problem of K-medians clustering.) Another convex relaxation of K-means clustering is ex-
plored in [11]: for the stochastic ball model, that method successfully clusters the dataset
provided that the distance between the centers of the balls is above 1 + V3.

Several earlier works have explored the theoretical properties of sum-of-norms clustering.
The unweighted method (w = 1) was shown to separate cube-shaped clusters provided that
they are sufficiently far away in [29]; for the case of two cubes of side-length 2 and an equal
number of datapoints falling in each cube, the criterion requires that the minimal distance
between two points in each cube be at least 6v/d. More general conditions are derived in
[24] (see in particular part 2 of Theorem 1) that imply the successful recovery of the clusters
for the stochastic ball model if the distance between the ball centers is larger than 4. These
results were refined and extended to the case of arbitrary weights in [26]. The problem of
separating mixtures of Gaussian random variables has been considered in [27, 24, 18], and
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algorithmic aspects were explored in [25, 16, 9, 10, 17]. Several works have stressed the
apparent advantages of using nonconstant weights in sum-of-norms clustering [16, 9, 10, 23].

1.2. Precise statement and proof strategy. Following our previous work [13], for the
purposes of mathematical analysis we consider the somewhat more general problem of clus-
tering of measures. For a Borel measure p on R of compact support, we abbreviate L3 (p) ==
L> (R, 1i;R) and (L%(p))? ~ L*(R% u;R?) to denote the Lebesgue spaces of u-square-
integrable functions from R? to R and RY to R?, respectively. (We recall that these spa-
ces identify functions that only disagree on a set of y-measure zero.) We define the functional
Jurn t (L3(0)? = R by

(13) s () i= [ Jue) = aP dute) + 20 [ ute) — )| dpte) o).

We note that (1.2) with w(r) = y¥*1e™7" is obtained from (1.3) by setting 1 = + Zﬁ;l Oz, -
The map = +— u(z) is then the analogue of the map x,, — y, from points to cluster represen-
tative points. We denote by u, » , the minimizer of .J,, ) -, which exists and is unique because

Jyu~ 18 coercive, uniformly convex, and continuous on (L2(u))9. (See (2.2) below.) For every
Borel set U such that p(U) > 0, we let

cent,(U) := Iu(lU)/deu(x)

be the p-centroid of U. We also write a V b := max(a, b), and define

oo ifd=1,
(1.4) d:=4% ifd=2,
d ifd>3.

Our main result considers a measure p with support comprising a finite union of connected
components, each with sufficiently regular boundary and satisfying a quantitative version of
a “star-shaped” property. We also assume that p is bounded below on its support, and is
sufficiently regular on its support. We draw N datapoints independently from g and run
our clustering algorithm on these datapoints. If v is chosen appropriately large depending
on N, and A is fixed sufficiently large independent of N, then our clustering algorithm will
recover the connected components of supp u. Before stating our main result, we introduce the
technical condition we need on the components of supp pu.

Definition 1.1. For U a subset of R® and ¢ > 0, let U, be the e-enlargement of U, namely,

U. :={z e R | dist(z,U) < }.

We say that a domain U is effectively star-shaped if there exists x, € U and a constant
C, < oo such that for every € > 0 sufficiently small, the image of U. under the mapping
x> Ty + (1 — Cie)(x — x4) is contained in U.

For example, any convex open set is effectively star-shaped (in which case x, can be chosen
arbitrarily in the interior). Any effectively star-shaped set is star-shaped. An example of a
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Figure 2. A set that is star-shaped but not effectively star-shaped.

set that is star-shaped but not effectively star-shaped is illustrated in Figure 2. Now we can
state our main theorem.

Theorem 1.2. Let u be a probability measure on R% such that supp u = U4L:1 Uy, where
Ui,...,Ur are bounded, effectively star-shaped open sets with Lipschitz boundaries, such that
their closures Uy, ..., Ur, are pairwise disjoint. Assume that pu admits a density with respect
to the Lebesgue measure, and that this density is Lipschitz and bounded away from zero on
supp u. Then there exist Ac,C < 0o such that for every A = Ac, the following holds. Let
(Xn)nen be a sequence of independent random variables with law p, N > 1 be an integer,
BN = % Eﬁle 0x, be the empirical measure of the datapoints, and

AV ={ne{l,....N}| X, €U}, (Le{l,...,L}

be the set of indices of datapoints in Uy. For every v = 1, the mean-square error between the
clustering algorithm and the centroids of the clusters is bounded as follows:

L
1
E NZ Z Wi Ay (Xn) _CentM(U£)|2
(15) (=1 'nGA%)

o g 1+ 1 375)

For d > 2, optimizing the right-hand side of (1.5) suggests the optimal choice v ~ N 3/(4d)
in which case the mean-square error is at most of the order of N~/ yp to logarithmic
corrections. We do not know if the estimate in (1.5) is sharp. If technical issues that arise
near the boundary of the domains could be avoided, then we believe that we could replace
the term v~ /3 in (1.5) by ~~Y2. this in turn would suggest choosing v ~ N2 up to a
logarithmic correction.

A similar result to Theorem 1.2 can be obtained if the weight r — e™" is replaced by a
truncated version r — e~ 7"1,<, for an appropriate choice of w; see Proposition 6.1 below.
This result essentially says that we can choose w ~ v~!, up to a logarithmic correction, without
modifying the optimizer substantially. In the discrete setting, this reduces the number of pairs
of points that need to be included in the sum that is the double integral in (1.3), and thus may
lead to improvements in computational efficiency. (See [9] regarding efficient computational
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algorithms for sum-of-norms clustering, and in particular regarding the effect of the sparsity
of the weights on the computational complexity.) For instance, under the assumptions of
Theorem 1.2 and with the choice of w ~ v~1 ~ N=3/(4d) 4 typical point only interacts with
about N4 points in its vicinity. Depending on the relative costs of computation versus
the procurement of new datapoints, efficiency considerations may lead to a different choice
of ~v than what would be suggested by the optimal accuracy considerations discussed in the
previous paragraph. We do not further pursue the question of computational efficiency in the
present paper.

While we did not keep track of this explicitly, one can check from the proof that the
critical value A\, < oo identified in Theorem 1.2 does not change as the sets Uy,...,Uy, are
individually translated or rotated, provided that they remain pairwise disjoint. In particular,
this constant does not depend on the minimal distance between the different data clusters.
As a careful examination of the arguments below shows, one can also choose the constant
C < oo in Theorem 1.2 to be invariant under individual translations and rotations of the sets
Uy,...,Ur that do not make them intersect each other, provided that we also require v to be
sufficiently large. Roughly speaking, we would then require y~! to be larger than the minimal
distance separating any pair of clusters, that is,

-1 L . .
N Z2A = lgﬁlgrllnglSt(Ug, Up).
The precise condition is displayed in (7.1) below. In particular, for d > 2, our approach would
yield nontrivial information provided that the number of datapoints N is much larger than
A4,

An important step in the proof of Theorem 1.2, which is also of independent interest,
concerns the behavior of the functional J, ) 4 as v is taken to infinity. The factor 741 in (1.3)
was chosen so that J, ) 4 would converge to a limiting functional as v — oo under appropriate
conditions on u. Let U be a bounded open subset of R? and suppose that supppu = U.
Suppose furthermore that p is absolutely continuous with respect to the Lebesgue measure
on U, with density p € C(U) bounded away from zero on U. We denote by BV(U) the space
of functions of bounded variation on U. (Some elementary properties of the space BV (U) are
recalled in section 2 below; see also [3].) If u € (L?(U) NBV(U))4, then we can define

(1.6) Tuoelu) = [ u(w) = af du) + oA [ pla)? aiDul(o)
where
(1.7) c:= /Rd e Wy - er] dy.

We will see in Proposition 2.1 below that J, ) oo admits a unique minimizer u, x o € (L2(U)N
BV(U))? In Theorem 4.1, we will then show in a quantitative sense that, if U is sufficiently
regular and the density p is Lipschitz, then u, ) , converges to u, x » as 7y tends to infinity. The
essential strategy here is to compare the functionals J, ) o, and J, ., and use their uniform
convexity. An important technical complication is that J,, x o (u) is only defined for functions
u of bounded variation on U while the minimizer of J, ), may not (a priori) be of bounded
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variation. Therefore, to compare the functionals, we must first smooth their argument u in
a way that respects derivatives. Convolution by a smooth function works, but we first must
dilate u slightly since it is only defined on U, not all of R%. Moreover, this modification of
the optimizer for J,, ), needs to be performed in such a way that the functional does not
increase too much. It is this constraint that leads us to the requirement that the domains be
effectively star-shaped (or that the more general condition in Remark 4.2 holds).

The utility of the gradient functional (1.6) in the proof of Theorem 1.2 is apparent in
Proposition 5.1 below. This proposition states that when A is large enough, the minimizer of
the gradient functional recovers the centroids of the connected components of the support of
the measure p. The critical A is identified in terms of the L°° norm of the solution to a PDE
arising from the first-order conditions for the minimizer. We expect that further information
about the behavior of the limiting functional could be obtained by further studying this PDE.

As mentioned, the gradient clustering functional (1.6) only makes sense for smooth mea-
sures. In order to show the convergence of the minimizers of the weighted clustering functionals
(1.3) on empirical distributions, we need to relate the minimizers of the finite-y problem for
empirical distributions to the minimizers of the finite-y problem for smooth distributions. We
do this by proving a stability result with respect to the co-Wasserstein metric W, which is
Proposition 3.1 below. This works in combination with a quantitative Glivenko—Cantelli-type
result for the co-Wasserstein metric proved in [15], and recalled in Proposition 7.1 below.
However, since the latter result only holds for connected domains, we also need to truncate
the exponential weight in (1.3), which is done in section 6.

1.3. Outline of the paper. In section 2 we establish some basic properties of J, » , and
Juroo- In section 3 we prove a stability result for ug ., as g — p in the oco-Wasserstein
distance. In section 4 we prove the convergence result for u, ), as v — 0o. In section 5 we
show that the limiting functional u, o recovers the centroids of the connected components
of supp it as long as A is large enough. In section 6 we prove a stability result when the
exponential weight is truncated. In section 7 we put everything together to prove Theorem
1.2.

2. Basic properties of the functionals. As mentioned above, for a bounded open set
U C R% we denote by BV (U) the space of functions of bounded variation on U. This is the
set of all functions v € L'(U) whose derivatives are Radon measures. For v € BV(U), we
denote by Du the gradient of u, which is thus a vector-valued Radon measure, and we denote
by |Dul its total variation. In particular, for every open set V' C U, we have by [3, Proposition
1.47] that

d
(2.1) | Du|(V) :sup/ o - dDu:supZ/ ¢; dDj;u,
¢ JV ¢ i1’V

where the supremum is over all ¢ € (Cc(V))¢ (the space of R%valued continuous functions
supported on compact subsets of V') such that [|¢||z() < 1 with the understanding that

1
2

d
9l 2o vy = 9] [ vy = ess 5161‘13 (Z @2(%‘))
z i=1
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When u € (BV(U))Y, the gradient Du is a Radon measure taking values in the space of
d x d matrices. Identifying such a matrix with an element of R¥, we can still define the
total variation measure |Du| as above. (Thus, if Du is in fact an R?*%valued function, then
| Du|(x) is the Frobenius norm of the matrix Du(z).) We refer to [3] for a thorough exposition
of the properties of BV functions.

In the remainder of this section, we collect some basic properties of the functionals J, » .
It is straightforward to see that, for any v € (0, 00), the functional J, » 5 is uniformly convex
on (L?(u))?. Indeed, for every u,v € (L?(u))?, we have

1 2
(2:2) 5 G (04 0+ Ty (1= 0) = T ) > [ o7 dn
Since the functional is also coercive, the existence and uniqueness of the minimizer wu, x y
follow. The next proposition covers the case when v = oo.

Proposition 2.1. Let U be a bounded open subset of R? and suppose that supppu = U.
Suppose furthermore that u is absolutely continuous with respect to the Lebesgue measure on
U with a density p € C(U) that is bounded away from zero on U. Then for any X\ > 0, the
functional Jy o admits a unique minimizer u, o € (L*(U) NBV(U))%.

Proof. We start by observing that the convexity property (2.2) is still valid for v = oo for
every u,v € (L2(U) N BV(U))? Let (ug)r be a sequence of functions in (L?(U) N BV (U))?
such that

2.3 lim J, x 00 = inf Jyuroo(t).
(23) v B (1) ue(L2(Ul)r%1BV(U))d pxoo (1)

Since p is bounded away from zero, the functional J,, ) « is coercive on (L*(U)NBV(U))¢. By
the Banach—Alaoglu theorem and [3, Theorem 3.23] (the latter saying that sets S of functions
in BV(U) for which sup,¢cg [, |udz + [Du|(U) < co are weakly-* precompact), by passing to
a subsequence we can assume that there is a u € (L*(U) NBV(U))? such that uj, — u weakly
in (L2(U))? and weakly-* in (BV(U))9. From the weak convergence in (L?(U))? we see that

/ lu(z) — x> du(z) < lign inf/ lug (z) — x| dp(z).
—00
From the weak-* convergence in (BV(U))? we see that
| ot dipuie) = sup [ o) - aputa)

< liminf sup /U o(2)26(z) - dDug(x)

k—o0 é

k—o0

— liminf / p(2)2 d| Dug | (2),
U

where the supremum is over all ¢ € (C.(U))* such that ||¢|| () < 1. The last two displays
and (2.3) imply that Jj, x oc(u) = inf J,, ) o0, S0 We can take u, o0 = u. The uniqueness of
Uy, )00 follows from the uniform convexity (2.2). [ ]
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A direct consequence of the convexity property (2.2) is that, for every v € (0,00) and
u € (L%(1))?, we have

Upry T U
2

/ =t po |* e < 2 (Jupo (W) + Jurs (Ung)) = g (
(2.4) <2 (Juan(u) —inf Ty ) -

Under the assumptions of Proposition 2.1, the inequalities in (2.4) remain valid with v = oo,
provided that we also impose that u € (L2(U) N BV(U))? Another important fact will be
that, for every 7 € (0, o],

(2.5) 0 < inf Jyn~ < - (cent, (RY)) = / |z — cent,,(RY)|* dpu(z),

where we note that the right-hand side is the variance of a random variable distributed ac-
cording to u, and in particular is independent of A and ~.

3. Stability with respect to co-Wasserstein perturbations of the measure. Throughout
the paper, for any two measures x and v on R?, we let Wy (11, v) be the co-Wasserstein distance
between p and v, namely,

Weo(t,v) = infess sup |z — yl,
T @y

where the infimum is taken over all couplings 7 of © and v. It is classical to verify that this
infimum is achieved (see, e.g., [8, Proposition 2.1]). We call any 7 achieving this infimum an
oo-optimal transport plan from p to v. In this section we prove that, for finite v, the minimizer
Uy )~ is stable under oo-Wasserstein perturbations of f.

Proposition 3.1. There is a universal constant C such that the following holds. Let
¥, A\ M € (0,00) and let p,fi be two probability measures on RY with supports contained
i a common Euclidean ball B of diameter M. There exists an oo-optimal transport plan w
from p to p such that

(3.1) [ a0 = 00 @ (i, 3) < M + D+ )W )
Proof. Throughout the proof, A and v will remain fixed, so we write J, = J, . and
Uy = Uy - (Nonetheless, we emphasize that the constant C' in the statement of the theorem
does not depend on A or v.) Let m be an oco-optimal transport plan from u to g. We write
the disintegration
drn(z,z) = dv(Z | =) du(x)
and define

lz) = / (@) dv(F | 2).

©) 2022 Alexander Dunlap and Jean-Christophe Mourrat
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We have
inf J; = / lug(Z) — 72 () + Ayt / / e N0z (@) — uz(9)| df(T) di(y)
_ / lun(F) — 3 dv(F | @) dul)
(3.2) 0 [[[ [ Mu5(@) — 0@ vz | ) dus) (@] ) du).
For the first term on the right side of (3.2), we write

uz(@) = 77 = up(®) — 2 — o = 7 + 2(up(@) - 7) - (+ — 7)
|

(3.3) > |uz(7) — z|* — 3M |z — 7.

For the second term on the right side of (3.2), we note that, for p-a.e. z,y, on the support of
v(Z | z) @ v(y | y) we have, writing W := W (1, 1),

[y — 2| <2W + |y — =,
e NI 5 =W o ly—al,
Thus we can write
/ / / / Tz (@) — up(§)] dv(@ | 2) dpule) dv(F | y) dpu(y)
S oW / / " ( / uz(7) — uz(§)] (@ | z) du(7 | y)) dp(z) dp(y)
(3.4) > oW / / eV fa(z) — a(y)| du(e) duly),

where we used Jensen’s inequality in the last step. Substituting (3.3) and (3.4) into (3.2), we
obtain

inf J; > / iz (@) — 22 dv(F | ©) dulz) — 3M // @ — 3| dr(, 7)
g ttte W [ el iuta) ()| dutz) duty)

> [ (o)~ ol dua) + 29162 [ [ ate) — at)| du(e) duty) — 30w
> e W g, (@) — 3MW,

where in the second step we again used Jensen’s inequality. Therefore, we have

(3.5) infJ, < Ju(@) < eV (inf J; + 3MW) <inf J; + 3Me*™WW + (2 — 1) M?

©) 2022 Alexander Dunlap and Jean-Christophe Mourrat
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with the last inequality by (2.5). By symmetry, this implies that
(3.6) |inf J; — inf J,| < 3Me®VW + (W — 1) M2
Now we have, using the second and third inequalities of (3.5), as well as (2.4) and (3.6), that
/ @ — uy|? dp < 2 (Ju(@) — inf J,) < 2 (inf J; — inf J,) + 6Me®VW + 2 (" — 1) M?
S 12MWW 4+ 4(W — 1)M? < (M + 1)°Q((y + )Weo i, 1)),

where we have defined Q(t) := 12e%t + 4(e?* — 1).

The rest of the proof is very similar to the second half of the proof of [13, Proposition 5.3].
For each € > 0, let u. be a measure on the ball B, absolutely continuous with respect to the
Lebesgue measure, and such that

(3.8) Woo(ps pte) < €

Since p. is absolutely continuous with respect to the Lebesgue measure, by [8, Theorems 5.5
and 3.2] there are maps 7. and T, . from supp p. to supp p and supp i, respectively, such that
(id x T.)4(pe) is an oo-optimal transport plan between . and p and similarly (id x 7% ). (ue)
is an oo-optimal transport plan between p. and p. We have

J10T)) = uTe@) P ()

(3.9) -

<2 [ (L@ ~ 1. @ dueo) + 2 [ . (2) = wFela)) P ),

For the first term on the right side, we use (3.7) above with p < p. and g < p (so that
U< uy oTy):

/ u(T2(2)) — . (2) > dpre () < (M + 12Q((3 + 1)e).

For the second term on the right side, we use (3.7) above with j < p. and f <~ p (so that
U< ugo Te):

/ . (&) — (T ()2 dpae () < (M + 12Q(y + 1) W pie. 5).
Using the last two displays in (3.9), we get
/ (T () — (T () dpe(2)

(3.10) <2(M +1)*Q((v + 1e) + 2(M + 1)*Q((v + D)W ke, 11))-

We can find a sequence ¢ | 0 and a coupling 7 of 1 and g such that (Tgk,fgk)*ugk — T as
k — oo. Taking € = ¢ in (3.10), and then taking the limit as k¥ — oo, we get

B1) [ (o) s BF dae. ) < 204+ D2Q(( + DWac 1. 7).
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Hence, since, @ is smooth, Q(0) = 0, and the left side of (3.11) is also evidently bounded
above by M?2, we obtain the desired inequality (3.1).

It remains to show that 7 is an co-optimal transport plan. This follows by using (3.8) to
note that

ess sup |T.(r) — Te(m)’ <ess sup |T.(z) — x| + ess sup |z — Te($)’ <&+ Woo(ptes 1),

TopLe Trofhe Tofhe
and then taking limits along the subsequence ¢, | 0. |

4. Convergence as v — oo. In this section we show that, under suitable assumptions on
U and p, the optimizer u, ). converges to u, x o as v — oo. In essence, we will obtain this
by showing a quantitative version of the fact that the functional J,, 5 4 I'-converges to J, x o
as v tends to infinity.

Theorem 4.1. Assume that U = suppp is effectively star-shaped and has a Lipschitz
boundary, and that the measure p has a density with respect to the Lebesgue measure that is
Lipschitz on U and is bounded away from zero. Then there exists a constant C < oo such
that, for every A € (0,00), we have

(41) \mf JM)\,oo — inf J,u,)\,’y‘ + / ]uﬂ’%oo — uu,)\,’y‘Q dﬂ < 07—1/3.

Proof. Without loss of generality, assume that the point x, in Definition 1.1 is the origin,
and that the constant C, appearing there is 1. We denote by p the density of p with respect
to the Lebesgue measure. By [14, Theorem 5.4.1], we can and do extend p to a Lipschitz
function on R%, which we can also prescribe to vanish outside of a bounded set. Throughout
the proof, we will leave pu, A fixed, and write uy = w, ), and Jy = J, »,. The constant C
may depend on g but not on v or A, and may change over the course of the argument. We
let U; be the e-enlargement of U as in Definition 1.1.

For every € € (0,1), v € (0,00], and = € U, we define

177,5(51;) = u‘/((l —¢e)x),

and for every x € U, we define

Uy e (@) := (Uy,e * Xe) (@),

where * denotes the convolution operator, y € C(?O(Rd; R.) is a nonnegative smooth function
with compact support in the unit ball satisfying

(4.2) /R @)dr=1 and /R (@) dz =0,

and where we have set . := e~ %x(e7!").
Step 1. We show that, for every v € (0, c0),

gy, e oot [ o) ot

< Jy(uy) + Ce.
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2 x
d
r(72) o

</ lus (x) — z|*p(z) dz + Ce,
U

To prove this, we bound the first term on the left side of (4.3) by

/U iy () — 22p(z) di < (1 — £) /U

€

T
1—¢

Uy (x) —

where in the second inequality we used the fact that p is Lipschitz. For the second term on
the left side of (4.3), we proceed similarly, noting that

1 / /U i (@) — ()] du(e) dia(y)

< o [0 - sty >\p(
1_d—;12d //U ey () = uy (y )|p<

A+
1—5 Qd//Uze e yl’u (z) — uy(y)lp(z)p(y) dz dy + Ce.

It is in this calculation that the star-shaped property is crucial: in the second inequality, we

used that the map sending U, to U (i.e., the map x — z/(1 —¢)) is contractive. We also used

(2.5) and again the fact that p is Lipschitz. Combining the last two displays, we obtain (4.3).
Step 2. We show that, for every v € (0, c0),

(4.4) Jy(tye) < Jy(uy) + Ce.

Using (4.2), we can write

/|U'ys _:L'|2d:u /‘/ u'ys Xe(l'_ )dy

< [t = /R Xela — )pla) dedy.

Since p is Lipschitz, the inner integral is close to p(y), up to an error bounded by Ce, and we
thus get that

(4.5) /|u75 ) — x| du(z) / |ty o () — 2*p(z) dz + Cé.

2
p(z)dx

We also have

1 / /U 2 e MY, (2) — w2 (y) | p(x) p(y) dz dy

<y [ /U e /R [he(w = 2) = e (y = xe(2) dz| p(a)p(y) da dy
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<ot [ ] e @) = )l et + oy + ) dz o dy
<t [ (o) ) ([ xeonte+ oo+ 2)2) avay

< [ e i @) = )] ple)oly) ddy + e,

where in the last step we used (4.3), (2.5), and the fact that p is Lipschitz. Combining the
last two displays with (4.3) yields (4.4).
Step 3. We show that, for every v € [1,00) and € € (0, 1],

C
(4.6) Tooltine) < () + Ce o+ 5.

In view of (4.4), it suffices to show (4.6) with J,(uy) replaced by J,(u-.). We start by using
the fact that [[D?uy || (,) < Ce™? to write

i+ / /U e (2) = e () (@) ply) dardy
S / /U M Duy (@) - (2 = y)lp(e)ply) da dy

2
e [T =
(4.7) -0yt [ ettt ey oy,

Since p is bounded and
(4.8) vd“/ ez —yPdy = 7‘1/ e Wyl dy,
R R

we see that the second integral on the right-hand side of (4.7) is bounded by Cy~!e~2. Next,
we aim to compare the first integral on the right-hand side of (4.7) with the same quantity
with p(y) replaced by p(x). Since p is Lipschitz and || Duy.c|p=(,) < Ce™!, the difference
between these two quantities is bounded by

Celnydt // e M=l — y2p(2)p(y) dedy < Cy~le,
U2

using again (4.8) and the boundedness of p. To complete this step, it remains to argue that

49) 7% [[ e D (@) - (@ = ot dady > ¢ [ p@) D @) do+ Oy

Recalling (1.7), we see that the first term on the right-hand side above can be rewritten as
ydHL /U /Rd e YN Du, () - (- y)|p(z)? dy da.

For every § > 0, we denote U°® := {z € U : dist(z,dU) < d}. Since [ D || oo () < Ce™1, the
inequality (4.9) will follow from the fact that

(4.10) 7d+1/ / e_'y'x_y”x —yldydz < Cy~ L
U JRNU
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Since U has a Lipschitz boundary, there exists ¢ > 0 such that for every 0 < n < n’ < 4, the
Lebesgue measure of U" \ U" is at most C(n’ —n). Therefore,

'yd“// e Ml — gl dy da
U JRNU

[67]
< C”yd—H —o7 + ,.Yd-&-l Z/ / e—'y|a:—y\’x _ 3/| dy dz
(k+1)y—1 \U* ™' JRIU

[67]
< Cte —57+7d+1ze g/ / 5y dy da
=0 U(k+l)’v’1\Uk’Y’1 Rd
[67] .
< Cyitle™ 4 0yt Z e” 2
k=0

<Cy

This is (4.10). Combining these estimates with (4.4) yields (4.6).
Step 4. We show that

(4.11) / |Unoc(z) — | p(a da:—i—c)\// )2d| Do £ | (2) < Joo(tino) + Ce.
This follows from the fact that the left side of (4.11) can be rewritten as

(1—5)d/U 2p<1f6> dx+(1_cj)d+1//wp<1:“_5)2 d| Dueo|(z),

and from the fact that p is Lipschitz.
Step 5. We show that

xT
1—c¢

Uoo(T) —

(4.12) Joo(Uooe) € Joo(tos) + Ce.

Arguing in the same way as for (4.5), we see that

(4.13) / oo e () — 2| du(z) / U e () — 2> p(z) dz + Ce.
For the second term, we notice that by [3, Proposition 3.2], we have

D(aoo,s * Xs) = Daoo,a * Xes

[ s 1D @) < [ / Y (@ — ) d| Dl o[ () da

</ p(y)? d| Dl < |(y) + Ce,

€

and thus
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where we used (4.11), (2.5), and the fact that p is Lipschitz in the last step. Combining this
with (4.13) and using (4.11) once more, we obtain (4.12).
Step 6. We show that

C

We decompose the fusion term of J,(too ) into
P[] @) = o) ol)
<[] e DU (@) - (o = lpla)py) dody
UZ

2
el [T — Y
(4.15) + Oy / /U e y"gg‘p(x)p(y) da dy,

and estimate each of these integrals in turn. The second integral on the right side is the same
as the second integral in (4.7), and thus is bounded by Cy~'e72. We next aim to compare
the first integral on the right-hand side of (4.15) with the one where p(y) is replaced by p(z).
Since p is Lipschitz, the difference between these two quantities is bounded by

C"de //U2 ef'y‘xfyllDuoqa(a:)Haz - y[z dedy < Cvfl /U | Do o (z)| do < C’yfl,

where we used (4.12) and the fact that p is bounded above and below in the last step. Then
it remains to estimate

v / / e 1" Dug c(2) - (z — y)|p(x)? dz dy
< [ e lly-erldy [ |Duscte)lp@Pds = [ Duse(o)lplo) de,
R? U U

where we recalled (1.7) in the last step. Thus we have

J’y(uoo,s) < Joo(uoo,e) + 07_15_27

and inequality (4.14) then follows using (4.12).
Step 7. We can now conclude the proof. We take ¢ := 4~ /3, and using (4.6) and (4.14),
we see that

Joo(Uoo) < Joo(Uy y-175) < Jy(uy) + Ccy B < oy (Uog y-175) + Cy 3 < Joo(ee) + Cy V3,
From this, we deduce that
(4.16) | Joo (tUoo) — J’Y(uw)‘ < 0’7_1/37
and moreover that

(4.17) 0 < Joo(ty y-178) — oo (use) < Cy 73,
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By (2.4) and (4.17), we obtain
(4.18) / Uy 175 — Uso|? dp < Cy Y3,

Using (2.4) and (4.4), we also infer that

(4.19) /\u%,yl/g — uy|?dp < Cy13,

Combining (4.16), (4.18), and (4.19) yields (4.1). [ ]

Remark 4.2. In the proof of Theorem 4.1, the assumption that U is effectively star-shaped
could be replaced by the following weaker assumption: that there exist L < oo and, for every
g > 0 sufficiently small, a 1-Lipschitz injective map P. : U — U with L-Lipschitz inverse.
In Theorem 1.2, we could then assume that the same property holds for each of the sets
Ui, ..., U in place of the assumption that these sets are effectively star-shaped.

5. Properties of the limiting functional. In this section we show that if A is large enough,
then the minimizer u, ) o of Jj, x o recovers the connected components of supp f.

Proposition 5.1. Let u be a probability measure on R? that satisfies the conditions of
Theorem 1.2, so its support is the disjoint union of Uy U --- U Up. There is a A\e < 00 such
that if X > Ac, then uy x oo(x) = cent, (Up) for all x € Uy, £ € {1,...,L}.

Proof. Let u(x) = cent,(Uy) for all x € Uy, ¢ € {1,...,L}. Since the gradient of u is zero
on each Uy, we have

L
Jp oo () = u(z) — z|* dp(z).
LA Z;/l;e M

Let U = UZL:1 Uy, p > d, and let WHP(U) denote the usual Sobolev space with regularity 1 and
integrability p. Note that W1P?(U) embeds continuously into C(U) by Morrey’s inequality; see
[1, Theorem 4.12]. Let ¢ € (W'P(U))4*¢ be a weak solution to the PDE

d

(5.1) 20(x)(u(x); — 2;) — > Di(p®je)(x) =0, =z eUj=1,...,4d
k=1

We note that the problem (5.1)—(5.2) separates into dL problems, one for each j and ¢. Each
problem can be solved by [7, Theorem 2.4] (which follows the approach introduced in [5, 6]).
We have, for every v € (L?(U) N BV(U))?,
Jynoot+0) :/ () + v(z) — 2 dpu() + c)\/ p()? | Do (x)
U U

= Jyuxo00(t) —i—/ (2(u(x) —x)-v(z)+ |v(w)\2) dp(x) + c)\/ p(x)%d|Dv|(z).

U U

©) 2022 Alexander Dunlap and Jean-Christophe Mourrat



Downloaded 09/26/23 to 128.122.149.92 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

LOCAL VERSIONS OF SUM-OF-NORMS CLUSTERING 1267
A minor variant of (2.1) takes the form

| plaP Do) = sup { | plaPote)-dDv(a). 6 € @ON st 9l < 1} .
U U

Selecting ¢ = 9 /||¥|| (1), and using the assumption that A > [|1)|| (), we obtain

Tnro(u+0) 2 Juroo() + [ (2uta) =) o(0) + o)) dua)

d
+e Y [ o) Devi(o) ds
§k=1
= Juroo(u) + / (2(u(z) — z) - v(z) + [v(z)|?) du(z)
d
=3 [ @ ula); - o)) (w)es(e) da
j=1
—Juaeelw) + [ o) du(o)
2 J,u,,)\,oo(u)v

where we used (5.1) for the first equality. This implies that wu, ). = u, and hence the
statement of the proposition with Ae = [|9)|| g (1)- [ ]

6. Truncation. In this section we prove a stability result for when we truncate the expo-
nential weight. For v, w € (0,00), we define the truncated functional

(6.1)
jmkmw (u)

- / () — 2 du(z) + Ayt / / 1 {2 — y| < whlule) — u(y)| du(z) duy).

The functional J,, ) - is uniformly convex and satisfies (2.2) and (2.4) in the same way as

Jurq- Let Ty x4 be the (unique) minimizer of J, 5 .-

Proposition 6.1. Let v,\,w > 0 and let p be a probability measure on R with compact
support. Let M := diamsupp pu. Then we have

o2 [ al) = s @ duta) < 220017,
In light of this statement, we define

(6.3) Up Ay 7= Up Ay, (d+4/3)y 1 log -

Then (6.2) implies that

(6.4 [ e (®) = tpg @ dutz) < 20000715,
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Proof of Proposition 6.1. Subtracting (1.3) from (6.1), we obtain

Ty io () — Ty () = Ay / / e V1 {|z — | > whu(z) — uly)| dpu(z) du(y).

Taking u = w,, ) 5, we get

J e (Upny) —inf Jy
=3[ = ] > s () = e ()] dilz) duy)
< Mayttle e,
and similarly,
Jury @ a o) = 10F T3 0

_ / / eIz — y| > W} Burmew(@) — Turmew ®) di(e) duly) < 0.

Therefore, using (2.4) and the last two displays we have

< 2(Jpany (W) — Inf Ty 5)
<2 [JM7>\7’Y(HH»>\77:W) — inf Ju,/\mw] +2 Uu,/\mw(“u,)\,v) — inf Ju,)w]
< 2M/\,7d+le—7w’
as claimed. [ |

7. Proof of Theorem 1.2. In this section we prove Theorem 1.2. We first need a result
from [15]. Recall the notation d’ introduced in (1.4).

Proposition 7.1. Let U C R? be a bounded, connected domain with Lipschitz boundary. Let
u be a probability measure on U, absolutely continuous with respect to Lebesque measure, with
density bounded above and away from zero on U. For every a > 1, there is a constant C' < oo,
depending only on U, a, and p, such that the following holds. If (X,)nen are independent
random variables with law u, then for every integer N > 1,

N
1 7
P <Woo (u, ~ > 5Xn> > CN~Y@V2)(10g N)l/d) < CN—°,
n=1

Proof. For d > 2, this is a restatement of [15, Theorem 1.1]. For d = 1, the result can be
obtained from the classical Kolmogorov—Smirnov quantitative version of the Glivenko—Cantelli
theorem. |

Now we can prove Theorem 1.2. For a measure p on R% and a Borel set U, we denote by
LU the restriction of p to the set U.

Proof of Theorem 1.2. Recalling (6.3), it is clear that if v is so large that
-1 . .
. g ) ")
(7.1) (d+4/3)y " logy L min dist(Uy, Up)
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then

(7.2) Uy LU, A~ (T) = Ty Ay () for all x € Uy,
and similarly

(7.3) UL, 2y (T) =Ty x () for all z € Uy.

Also, we have by the definitions and Proposition 5.1 that there exists A. such that for every
AZ A,

(7.4) UpLU, Moo (T) = Uy x 00 (2) = cent,, (Up) for all x € Uy.

By (7.4) and Theorem 4.1, we have

jeent, (Up) = wurvpa?di = | v, aoo = wptvaq > din < Cy 12
U, U,

By (7.3) and (6.4), we have, as long as (7.1) holds,

2 du < 2MAIy U5,

— 2 —
; [Ty nmy — UpLv, aql” dp = g UL Ay — UplUp Ay
£ £

Combining the last two displays, we see that

Using (6.4) again, this implies that

(7.5) / [y — cent, (U)[? du < C(1L+ Ay,

4

On the other hand, by Proposition 7.1, we have for each ¢ that

plUs  pnLU, > —1/(dv2) 1/d’> ~100
7.6 P (W , > CN log N <CN .
(76) < <M(Ue) 1N (Ur) ( )
By Proposition 3.1, for each ¢ there is an oo-optimal transport plan 7, ny between 52‘[% ‘3) and

% such that, using also (7.2) and (7.3), we have

pLUe  punLUp )

—u ) > dm (2, T
] 0 =t .)€+ 1y (A, 2L

Combining this with (7.5), we see that
i | (U0 d
—_— Uy 2y — centy, (Ug
un(Ue) Jy, M g N
= [ i ) = cont, ) (. )
4

<C <(7+ DWao (S(LI% ZVV(L[Z‘J)) +(1 +/\)7—1/3> .
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Now summing over ¢ and using (7.6) and the fact that the term inside the expectation on the
left-hand side of (1.5) is bounded almost surely, we obtain (1.5). [ ]
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