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Local Versions of Sum-of-Norms Clustering∗

Alexander Dunlap† and Jean-Christophe Mourrat‡

Abstract. Sum-of-norms clustering is a convex optimization problem whose solution can be used for the clus-
tering of multivariate data. We propose and study a localized version of this method, and show in
particular that it can separate arbitrarily close balls in the stochastic ball model. More precisely, we
prove a quantitative bound on the error incurred in the clustering of disjoint connected sets. Our
bound is expressed in terms of the number of datapoints and the localization length of the functional.
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1. Introduction.

1.1. Context and informal description of main result. Let x1, . . . , xN ∈ Rd (d ∈ N) be
a collection of points, which we think of as a dataset. We consider the clustering problem,
which is to find a partition of {x1, . . . , xN} that collects close-together points into the same
element of the partition. The problem of K-means clustering is to identify a global minimizer
of the functional

(y1, . . . , yN ) 7→ 1

N

N∑
n=1

|yn − xn|2(1.1)

over all (y1, . . . , yN ) ∈ (Rd)N such that the cardinality of the set {y1, . . . , yN} is at most
K. This minimization problem is known to be NP-hard in general, even when restricted to
K = 2 [2] or d = 2 [21]. Practitioners typically resort to iterative search algorithms such
as Lloyd’s algorithm and its refinements [20, 28], which at least identify local minimizers of
(1.1). However, these methods are known to perform poorly in some cases, as will be discussed
further below.

In this paper, we focus our attention on the “sum-of-norms clustering” method (also known
as “convex clustering shrinkage” or “Clusterpath”) introduced in [25, 16, 19]. This method
can be thought of as a convex relaxation of the K-means problem. It considers the minimizer
of the convex functional
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LOCAL VERSIONS OF SUM-OF-NORMS CLUSTERING 1251

(y1, . . . , yN ) 7→ 1

N

N∑
n=1

|yn − xn|2 +
λ

N2

N∑
m,n=1

w(|xm − xn|)|ym − yn|(1.2)

over (y1, . . . , yN ) ∈ (Rd)N for some nonincreasing “weight function” w. (Typical choices
include constant and exponential weights.) Here | · | denotes the Euclidean norm on Rd. The
point yn is thought of as a “representative point” of the cluster to which xn belongs, and thus
xn and xm are declared to be members of the same cluster if yn = ym. The first term of (1.2)
is designed to keep the representative point of a cluster close to the points in that cluster
(and so encouraging having many clusters), while the second term (called the “fusion term”)
is designed to encourage points to merge into fewer clusters, at least if they are close together
according to the weight function. The parameter λ controls the relative strength of these two
effects.

The present work investigates an asymptotic regime of sum-of-norms clustering as the
number of datapoints becomes very large and the weight w is simultaneously scaled in a
careful way. In order to do so, it is useful to specify a more explicit model for the dataset.
We assume that the datapoints x1, . . . , xN are independent and identically distributed. Their
common law µ, a probability measure on Rd, is supported on the union of disjoint closed sets
U1, . . . , UL. These sets are not known to the practitioner. We would like xi and xj to be in
the same cluster if and only if they lie in the same set U ` for some ` ∈ {1, . . . , L}, and so we
seek a clustering algorithm that can guarantee this in the limit as N →∞.

The weight function we choose is w(r) := γd+1e−γr, where γ > 0 is a parameter that can
be tuned with the number of datapoints N . Roughly speaking, our main result states that,
under modest assumptions, if we choose λ above a critical threshold not depending on N , and
also choose γ ' N3/(4d), then in some mean-square sense, each point xn ∈ U ` will be associated
with a representative point yn that is at distance of about N−1/(8d) from the centroid of the
set U ` as N →∞. In particular, the clustering of the dataset is successful in the mean-square
sense. The technical assumptions we need are that each set U ` is “effectively” star-shaped
(see Definition 1.1 below), that the measure µ has a density with respect to the Lebesgue
measure, and that this density is Lipschitz and bounded away from zero on its support. As
an illustration, we can take µ to be the uniform measure on the union of the sets depicted
in Figure 1 below. The condition that the clusters be effectively star-shaped is a nontrivial
geometric restriction, although it does not seem to be fundamental. See Remark 4.2 below
for a weaker but more complicated sufficient condition, and further discussion.

Our result applies in particular to the case in which µ is the uniform measure on the union
of disjoint balls. One of the strengths of our result is that these balls or, more generally the
sets U1, . . . , UL, can be chosen arbitrarily close to one another, as long as they do not touch.
(However, we expect that the required number of datapoints N will grow as the balls are
brought closer to each other.) Another important feature is that we allow for sets U1, . . . , UL
that may be nonconvex, as long as they are effectively star-shaped. Moreover, our result
covers situations in which the convex hulls of the clusters intersect.

The unweighted version of the sum-of-norms clustering method, i.e., the case w ≡ 1, does
not share any of these features. Indeed, the unweighted method fails to recover the clusters of
datapoints sampled independently from two disjoint balls if the balls are too close together,
as we showed in [13]. Moreover, the unweighted algorithm must output clusters that are
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1252 ALEXANDER DUNLAP AND JEAN-CHRISTOPHE MOURRAT

Figure 1. A set of three open sets U1, U2, U3 satisfying the hypotheses of Theorem 1.2.

contained in disjoint balls (see [23, Theorem 3] or [13, Proposition 1.8]) and, in particular, it
cannot separate two clusters unless their convex hulls are disjoint.

Popular alternative clustering methods such as Lloyd’s algorithm and its refinements [20,
28] are also known to have important limitations. In [4, Appendix E], the authors exhibit
explicit examples of configurations of disjoint balls U1, . . . , UL of equal radius such that if
the measure µ is the uniform probability measure on the union of these balls, then the prob-
ability that Lloyd’s algorithm successfully clusters the dataset is at most (1 − 2

9)L/3. They
also construct similar examples for which a refined method called “kmeans++” also fails to
successfully cluster the dataset with a probability that can be made arbitrarily close to 1.

Other convex relaxations of the K-means problem have been explored, but we are not
aware of theoretical guarantees that would cover the case in which two clusters can be taken
arbitrarily close to one another. Possibly the simplest way to ask the question is to consider
the “stochastic ball model” [22]: we assume that the datapoints are sampled independently
according to the uniform measure on the union of two disjoint balls of unit radius. In this
setting, the method explored in [4] is guaranteed to recover the clusters provided that the
distance between the two ball centers is above 2

√
2(1 + d−1/2). (See also [12] for the related

problem of K-medians clustering.) Another convex relaxation of K-means clustering is ex-
plored in [11]: for the stochastic ball model, that method successfully clusters the dataset
provided that the distance between the centers of the balls is above 1 +

√
3.

Several earlier works have explored the theoretical properties of sum-of-norms clustering.
The unweighted method (w ≡ 1) was shown to separate cube-shaped clusters provided that
they are sufficiently far away in [29]; for the case of two cubes of side-length 2 and an equal
number of datapoints falling in each cube, the criterion requires that the minimal distance
between two points in each cube be at least 6

√
d. More general conditions are derived in

[24] (see in particular part 2 of Theorem 1) that imply the successful recovery of the clusters
for the stochastic ball model if the distance between the ball centers is larger than 4. These
results were refined and extended to the case of arbitrary weights in [26]. The problem of
separating mixtures of Gaussian random variables has been considered in [27, 24, 18], and
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LOCAL VERSIONS OF SUM-OF-NORMS CLUSTERING 1253

algorithmic aspects were explored in [25, 16, 9, 10, 17]. Several works have stressed the
apparent advantages of using nonconstant weights in sum-of-norms clustering [16, 9, 10, 23].

1.2. Precise statement and proof strategy. Following our previous work [13], for the
purposes of mathematical analysis we consider the somewhat more general problem of clus-
tering of measures. For a Borel measure µ on Rd of compact support, we abbreviate L2(µ) :=
L2(Rd, µ;R) and (L2(µ))d ' L2(Rd, µ;Rd) to denote the Lebesgue spaces of µ-square-
integrable functions from Rd to R and Rd to Rd, respectively. (We recall that these spa-
ces identify functions that only disagree on a set of µ-measure zero.) We define the functional
Jµ,λ,γ : (L2(µ))d → R by

Jµ,λ,γ(u) :=

∫
|u(x)− x|2 dµ(x) + λγd+1

∫∫
e−γ|x−y||u(x)− u(y)| dµ(x) dµ(y).(1.3)

We note that (1.2) with w(r) = γd+1e−γr is obtained from (1.3) by setting µ = 1
N

∑N
n=1 δxn .

The map x 7→ u(x) is then the analogue of the map xn 7→ yn from points to cluster represen-
tative points. We denote by uµ,λ,γ the minimizer of Jµ,λ,γ , which exists and is unique because
Jµ,λ,γ is coercive, uniformly convex, and continuous on (L2(µ))d. (See (2.2) below.) For every
Borel set U such that µ(U) > 0, we let

centµ(U) :=
1

µ(U)

∫
U
x dµ(x)

be the µ-centroid of U . We also write a ∨ b := max(a, b), and define

d′ :=


∞ if d = 1,
4
3 if d = 2,

d if d > 3.

(1.4)

Our main result considers a measure µ with support comprising a finite union of connected
components, each with sufficiently regular boundary and satisfying a quantitative version of
a “star-shaped” property. We also assume that µ is bounded below on its support, and is
sufficiently regular on its support. We draw N datapoints independently from µ and run
our clustering algorithm on these datapoints. If γ is chosen appropriately large depending
on N , and λ is fixed sufficiently large independent of N , then our clustering algorithm will
recover the connected components of supp µ. Before stating our main result, we introduce the
technical condition we need on the components of supp µ.

Definition 1.1. For U a subset of Rd and ε > 0, let Uε be the ε-enlargement of U , namely,

Uε := {x ∈ Rd | dist(x, U) 6 ε}.

We say that a domain U is effectively star-shaped if there exists x∗ ∈ U and a constant
C∗ < ∞ such that for every ε > 0 sufficiently small, the image of Uε under the mapping
x 7→ x∗ + (1− C∗ε)(x− x∗) is contained in U .

For example, any convex open set is effectively star-shaped (in which case x∗ can be chosen
arbitrarily in the interior). Any effectively star-shaped set is star-shaped. An example of a
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1254 ALEXANDER DUNLAP AND JEAN-CHRISTOPHE MOURRAT

Figure 2. A set that is star-shaped but not effectively star-shaped.

set that is star-shaped but not effectively star-shaped is illustrated in Figure 2. Now we can
state our main theorem.

Theorem 1.2. Let µ be a probability measure on Rd such that suppµ =
⋃L
`=1 U`, where

U1, . . . , UL are bounded, effectively star-shaped open sets with Lipschitz boundaries, such that
their closures U1, . . . , UL are pairwise disjoint. Assume that µ admits a density with respect
to the Lebesgue measure, and that this density is Lipschitz and bounded away from zero on
suppµ. Then there exist λc, C < ∞ such that for every λ > λc, the following holds. Let
(Xn)n∈N be a sequence of independent random variables with law µ, N > 1 be an integer,
µN := 1

N

∑N
n=1 δXn be the empirical measure of the datapoints, and

A
(`)
N := {n ∈ {1, . . . , N} | Xn ∈ U`}, ` ∈ {1, . . . , L}

be the set of indices of datapoints in U`. For every γ > 1, the mean-square error between the
clustering algorithm and the centroids of the clusters is bounded as follows:

E

 1

N

L∑
`=1

∑
n∈A(`)

N

|uµN ,λ,γ(Xn)− centµ(U`)|2


6 C
(
γN−1/(d∨2)(logN)1/d

′
+ (1 + λ)γ−1/3

)
.

(1.5)

For d > 2, optimizing the right-hand side of (1.5) suggests the optimal choice γ ' N3/(4d),
in which case the mean-square error is at most of the order of N−1/(4d), up to logarithmic
corrections. We do not know if the estimate in (1.5) is sharp. If technical issues that arise
near the boundary of the domains could be avoided, then we believe that we could replace
the term γ−1/3 in (1.5) by γ−1/2; this in turn would suggest choosing γ ' N2/(3d), up to a
logarithmic correction.

A similar result to Theorem 1.2 can be obtained if the weight r 7→ e−γr is replaced by a
truncated version r 7→ e−γr1r6ω for an appropriate choice of ω; see Proposition 6.1 below.
This result essentially says that we can choose ω ' γ−1, up to a logarithmic correction, without
modifying the optimizer substantially. In the discrete setting, this reduces the number of pairs
of points that need to be included in the sum that is the double integral in (1.3), and thus may
lead to improvements in computational efficiency. (See [9] regarding efficient computational
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LOCAL VERSIONS OF SUM-OF-NORMS CLUSTERING 1255

algorithms for sum-of-norms clustering, and in particular regarding the effect of the sparsity
of the weights on the computational complexity.) For instance, under the assumptions of
Theorem 1.2 and with the choice of ω ' γ−1 ' N−3/(4d), a typical point only interacts with
about N1/4 points in its vicinity. Depending on the relative costs of computation versus
the procurement of new datapoints, efficiency considerations may lead to a different choice
of γ than what would be suggested by the optimal accuracy considerations discussed in the
previous paragraph. We do not further pursue the question of computational efficiency in the
present paper.

While we did not keep track of this explicitly, one can check from the proof that the
critical value λc < ∞ identified in Theorem 1.2 does not change as the sets U1, . . . , UL are
individually translated or rotated, provided that they remain pairwise disjoint. In particular,
this constant does not depend on the minimal distance between the different data clusters.
As a careful examination of the arguments below shows, one can also choose the constant
C <∞ in Theorem 1.2 to be invariant under individual translations and rotations of the sets
U1, . . . , UL that do not make them intersect each other, provided that we also require γ to be
sufficiently large. Roughly speaking, we would then require γ−1 to be larger than the minimal
distance separating any pair of clusters, that is,

γ−1 & ∆ := min
16`6=`′6L

dist(U`, U`′).

The precise condition is displayed in (7.1) below. In particular, for d > 2, our approach would
yield nontrivial information provided that the number of datapoints N is much larger than
∆−d.

An important step in the proof of Theorem 1.2, which is also of independent interest,
concerns the behavior of the functional Ju,λ,γ as γ is taken to infinity. The factor γd+1 in (1.3)
was chosen so that Ju,λ,γ would converge to a limiting functional as γ →∞ under appropriate
conditions on µ. Let U be a bounded open subset of Rd and suppose that suppµ = U .
Suppose furthermore that µ is absolutely continuous with respect to the Lebesgue measure
on U , with density ρ ∈ C(U) bounded away from zero on U . We denote by BV(U) the space
of functions of bounded variation on U . (Some elementary properties of the space BV(U) are
recalled in section 2 below; see also [3].) If u ∈ (L2(U) ∩ BV(U))d, then we can define

Jµ,λ,∞(u) :=

∫
|u(x)− x|2 dµ(x) + cλ

∫
ρ(x)2 d|Du|(x),(1.6)

where

c :=

∫
Rd

e−|y||y · e1| dy.(1.7)

We will see in Proposition 2.1 below that Jµ,λ,∞ admits a unique minimizer uµ,λ,∞ ∈ (L2(U)∩
BV(U))d. In Theorem 4.1, we will then show in a quantitative sense that, if U is sufficiently
regular and the density ρ is Lipschitz, then uµ,λ,γ converges to uµ,λ,∞ as γ tends to infinity. The
essential strategy here is to compare the functionals Jµ,λ,∞ and Jµ,λ,γ and use their uniform
convexity. An important technical complication is that Jµ,λ,∞(u) is only defined for functions
u of bounded variation on U while the minimizer of Jµ,λ,γ may not (a priori) be of bounded
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1256 ALEXANDER DUNLAP AND JEAN-CHRISTOPHE MOURRAT

variation. Therefore, to compare the functionals, we must first smooth their argument u in
a way that respects derivatives. Convolution by a smooth function works, but we first must
dilate u slightly since it is only defined on U , not all of Rd. Moreover, this modification of
the optimizer for Jµ,λ,γ needs to be performed in such a way that the functional does not
increase too much. It is this constraint that leads us to the requirement that the domains be
effectively star-shaped (or that the more general condition in Remark 4.2 holds).

The utility of the gradient functional (1.6) in the proof of Theorem 1.2 is apparent in
Proposition 5.1 below. This proposition states that when λ is large enough, the minimizer of
the gradient functional recovers the centroids of the connected components of the support of
the measure µ. The critical λ is identified in terms of the L∞ norm of the solution to a PDE
arising from the first-order conditions for the minimizer. We expect that further information
about the behavior of the limiting functional could be obtained by further studying this PDE.

As mentioned, the gradient clustering functional (1.6) only makes sense for smooth mea-
sures. In order to show the convergence of the minimizers of the weighted clustering functionals
(1.3) on empirical distributions, we need to relate the minimizers of the finite-γ problem for
empirical distributions to the minimizers of the finite-γ problem for smooth distributions. We
do this by proving a stability result with respect to the ∞-Wasserstein metric W∞, which is
Proposition 3.1 below. This works in combination with a quantitative Glivenko–Cantelli-type
result for the ∞-Wasserstein metric proved in [15], and recalled in Proposition 7.1 below.
However, since the latter result only holds for connected domains, we also need to truncate
the exponential weight in (1.3), which is done in section 6.

1.3. Outline of the paper. In section 2 we establish some basic properties of Jµ,λ,γ and
Jµ,λ,∞. In section 3 we prove a stability result for uµ̃,λ,γ as µ̃ → µ in the ∞-Wasserstein
distance. In section 4 we prove the convergence result for uµ,λ,γ as γ → ∞. In section 5 we
show that the limiting functional uµ,λ,∞ recovers the centroids of the connected components
of suppµ as long as λ is large enough. In section 6 we prove a stability result when the
exponential weight is truncated. In section 7 we put everything together to prove Theorem
1.2.

2. Basic properties of the functionals. As mentioned above, for a bounded open set
U ⊆ Rd, we denote by BV(U ) the space of functions of bounded variation on U . This is the
set of all functions u ∈ L1(U) whose derivatives are Radon measures. For u ∈ BV(U), we
denote by Du the gradient of u, which is thus a vector-valued Radon measure, and we denote
by |Du| its total variation. In particular, for every open set V ⊆ U , we have by [3, Proposition
1.47] that

|Du|(V ) = sup
φ

∫
V
φ · dDu = sup

φ

d∑
i=1

∫
V
φi dDiu,(2.1)

where the supremum is over all φ ∈ (Cc(V ))d (the space of Rd-valued continuous functions
supported on compact subsets of V ) such that ‖φ‖L∞(V ) 6 1 with the understanding that

‖φ‖L∞(V ) = ‖ |φ| ‖L∞(V ) = ess sup
x∈V

(
d∑
i=1

φ2i (x)

) 1

2

.
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LOCAL VERSIONS OF SUM-OF-NORMS CLUSTERING 1257

When u ∈ (BV(U))d, the gradient Du is a Radon measure taking values in the space of
d × d matrices. Identifying such a matrix with an element of Rd2 , we can still define the
total variation measure |Du| as above. (Thus, if Du is in fact an Rd×d-valued function, then
|Du|(x) is the Frobenius norm of the matrix Du(x).) We refer to [3] for a thorough exposition
of the properties of BV functions.

In the remainder of this section, we collect some basic properties of the functionals Jµ,λ,γ .
It is straightforward to see that, for any γ ∈ (0,∞), the functional Jµ,λ,γ is uniformly convex
on (L2(µ))d. Indeed, for every u, v ∈ (L2(µ))d, we have

1

2
(Jµ,λ,γ(u+ v) + Jµ,λ,γ(u− v))− Jµ,λ,γ(u) >

∫
v2 dµ.(2.2)

Since the functional is also coercive, the existence and uniqueness of the minimizer uµ,λ,γ
follow. The next proposition covers the case when γ =∞.

Proposition 2.1. Let U be a bounded open subset of Rd and suppose that suppµ = U .
Suppose furthermore that µ is absolutely continuous with respect to the Lebesgue measure on
U with a density ρ ∈ C(U) that is bounded away from zero on U . Then for any λ > 0, the
functional Jµ,λ,∞ admits a unique minimizer uµ,λ,∞ ∈ (L2(U) ∩ BV(U))d.

Proof. We start by observing that the convexity property (2.2) is still valid for γ =∞ for
every u, v ∈ (L2(U) ∩ BV(U))d. Let (uk)k be a sequence of functions in (L2(U) ∩ BV(U))d

such that

lim
k→∞

Jµ,λ,∞(uk) = inf
u∈(L2(U)∩BV(U))d

Jµ,λ,∞(u).(2.3)

Since ρ is bounded away from zero, the functional Jµ,λ,∞ is coercive on (L2(U)∩BV(U))d. By
the Banach–Alaoglu theorem and [3, Theorem 3.23] (the latter saying that sets S of functions
in BV(U) for which supu∈S

∫
U |u| dx+ |Du|(U) <∞ are weakly-∗ precompact), by passing to

a subsequence we can assume that there is a u ∈ (L2(U)∩BV(U))d such that uk → u weakly
in (L2(U))d and weakly-∗ in (BV(U))d. From the weak convergence in (L2(U))d we see that∫

|u(x)− x|2 dµ(x) 6 lim inf
k→∞

∫
|uk(x)− x|2 dµ(x).

From the weak-∗ convergence in (BV(U ))d we see that∫
U
ρ(x)2 d|Du|(x) = sup

φ

∫
U
ρ(x)2φ(x) · dDu(x)

6 lim inf
k→∞

sup
φ

∫
U
ρ(x)2φ(x) · dDuk(x)

= lim inf
k→∞

∫
U
ρ(x)2 d|Duk|(x),

where the supremum is over all φ ∈ (Cc(U))d
2

such that ‖φ‖L∞(U) 6 1. The last two displays
and (2.3) imply that Jµ,λ,∞(u) = inf Jµ,λ,∞, so we can take uµ,λ,∞ = u. The uniqueness of
uµ,λ,∞ follows from the uniform convexity (2.2).
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1258 ALEXANDER DUNLAP AND JEAN-CHRISTOPHE MOURRAT

A direct consequence of the convexity property (2.2) is that, for every γ ∈ (0,∞) and
u ∈ (L2(µ))d, we have∫

|u− uµ,λ,γ |2 dµ 6 2 (Jµ,λ,γ(u) + Jµ,λ,γ(uµ,λ,γ))− 4Jµ,λ,γ

(
uµ,λ,γ + u

2

)
6 2 (Jµ,λ,γ(u)− inf Jµ,λ,γ) .(2.4)

Under the assumptions of Proposition 2.1, the inequalities in (2.4) remain valid with γ =∞,
provided that we also impose that u ∈ (L2(U) ∩ BV(U))d. Another important fact will be
that, for every γ ∈ (0,∞],

0 6 inf Jµ,λ,γ 6 Jµ,λ,γ(centµ(Rd)) =

∫
|x− centµ(Rd)|2 dµ(x),(2.5)

where we note that the right-hand side is the variance of a random variable distributed ac-
cording to µ, and in particular is independent of λ and γ.

3. Stability with respect to ∞-Wasserstein perturbations of the measure. Throughout
the paper, for any two measures µ and ν on Rd, we letW∞(µ, ν) be the∞-Wasserstein distance
between µ and ν, namely,

W∞(µ, ν) = inf
π

ess sup
(x,y)∼π

|x− y|,

where the infimum is taken over all couplings π of µ and ν. It is classical to verify that this
infimum is achieved (see, e.g., [8, Proposition 2.1]). We call any π achieving this infimum an
∞-optimal transport plan from µ to ν. In this section we prove that, for finite γ, the minimizer
uµ,λ,γ is stable under ∞-Wasserstein perturbations of µ.

Proposition 3.1. There is a universal constant C such that the following holds. Let
γ, λ,M ∈ (0,∞) and let µ, µ̃ be two probability measures on Rd with supports contained
in a common Euclidean ball B of diameter M . There exists an ∞-optimal transport plan π
from µ to µ̃ such that∫

|uµ,λ,γ(x)− uµ̃,λ,γ(x̃)|2 dπ(x, x̃) 6 C(M + 1)2(γ + 1)W∞(µ, µ̃).(3.1)

Proof. Throughout the proof, λ and γ will remain fixed, so we write Jµ = Jµ,λ,γ and
uµ = uµ,λ,γ . (Nonetheless, we emphasize that the constant C in the statement of the theorem
does not depend on λ or γ.) Let π be an ∞-optimal transport plan from µ to µ̃. We write
the disintegration

dπ(x, x̃) = dν(x̃ | x) dµ(x)

and define

u(x) :=

∫
uµ̃(x̃) dν(x̃ | x).
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LOCAL VERSIONS OF SUM-OF-NORMS CLUSTERING 1259

We have

inf Jµ̃ =

∫
|uµ̃(x̃)− x̃|2 dµ̃(x̃) + λγd+1

∫∫
e−γ|x̃−ỹ||uµ̃(x̃)− uµ̃(ỹ)| dµ̃(x̃) dµ̃(ỹ)

=

∫∫
|uµ̃(x̃)− x̃|2 dν(x̃ | x) dµ(x)

+ λγd+1

∫∫∫∫
e−γ|x̃−ỹ||uµ̃(x̃)− uµ̃(ỹ)| dν(x̃ | x) dµ(x) dν(ỹ | y) dµ(y).(3.2)

For the first term on the right side of (3.2), we write

|uµ̃(x̃)− x̃|2 = |uµ̃(x̃)− x|2 − |x− x̃|2 + 2(uµ̃(x̃)− x̃) · (x− x̃)

> |uµ̃(x̃)− x|2 − 3M |x− x̃|.(3.3)

For the second term on the right side of (3.2), we note that, for µ-a.e. x, y, on the support of
ν(x̃ | x)⊗ ν(ỹ | y) we have, writing W :=W∞(µ, µ̃),

|ỹ − x̃| 6 2W + |y − x|,

so

e−γ|x̃−ỹ| > e−2γW e−γ|y−x|.

Thus we can write∫∫∫∫
e−γ|x̃−ỹ||uµ̃(x̃)− uµ̃(ỹ)| dν(x̃ | x) dµ(x) dν(ỹ | y) dµ(y)

> e−2γW
∫∫

e−γ|x−y|
(∫∫

|uµ̃(x̃)− uµ̃(ỹ)| dν(x̃ | x) dν(ỹ | y)

)
dµ(x) dµ(y)

> e−2γW
∫∫

e−γ|x−y||u(x)− u(y)| dµ(x) dµ(y),(3.4)

where we used Jensen’s inequality in the last step. Substituting (3.3) and (3.4) into (3.2), we
obtain

inf Jµ̃ >
∫∫
|uµ̃(x̃)− x|2 dν(x̃ | x) dµ(x)− 3M

∫∫
|x− x̃| dπ(x, x̃)

+ λγd+1e−2γW
∫∫

e−γ|x−y||u(x)− u(y)| dµ(x) dµ(y)

>
∫
|u(x)− x|2 dµ(x) + λγd+1e−2γW

∫∫
e−γ|x−y||u(x)− u(y)| dµ(x) dµ(y)− 3MW

> e−2γWJµ(u)− 3MW,

where in the second step we again used Jensen’s inequality. Therefore, we have

inf Jµ 6 Jµ(u) 6 e2γW
(
inf Jµ̃ + 3MW

)
6 inf Jµ̃ + 3Me2γWW +

(
e2γW − 1

)
M2(3.5)
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1260 ALEXANDER DUNLAP AND JEAN-CHRISTOPHE MOURRAT

with the last inequality by (2.5). By symmetry, this implies that∣∣inf Jµ̃ − inf Jµ
∣∣ 6 3Me2γWW + (e2γW − 1)M2.(3.6)

Now we have, using the second and third inequalities of (3.5), as well as (2.4) and (3.6), that∫
|u− uµ|2 dµ 6 2 (Jµ(u)− inf Jµ) 6 2

(
inf Jµ̃ − inf Jµ

)
+ 6Me2γWW + 2

(
e2γW − 1

)
M2

6 12Me2γWW + 4(e2γW − 1)M2 6 (M + 1)2Q((γ + 1)W∞(µ, µ̃)),(3.7)

where we have defined Q(t) := 12e2tt+ 4(e2t − 1).
The rest of the proof is very similar to the second half of the proof of [13, Proposition 5.3].

For each ε > 0, let µε be a measure on the ball B, absolutely continuous with respect to the
Lebesgue measure, and such that

W∞(µ, µε) 6 ε.(3.8)

Since µε is absolutely continuous with respect to the Lebesgue measure, by [8, Theorems 5.5
and 3.2] there are maps Tε and T̃ε from suppµε to suppµ and supp µ̃, respectively, such that
(id× Tε)∗(µε) is an ∞-optimal transport plan between µε and µ and similarly (id× T̃ε)∗(µε)
is an ∞-optimal transport plan between µε and µ̃. We have∫

|uµ(Tε(x))− uµ̃(T̃ε(x))|2 dµε(x)

6 2

∫
|uµ(Tε(x))− uµε(x)|2 dµε(x) + 2

∫
|uµε(x)− uµ̃(T̃ε(x))|2 dµε(x).

(3.9)

For the first term on the right side, we use (3.7) above with µ ← µε and µ̃ ← µ (so that
u← uµ ◦ Tε): ∫

|uµ(Tε(x))− uµε(x)|2 dµε(x) 6 (M + 1)2Q((γ + 1)ε).

For the second term on the right side, we use (3.7) above with µ ← µε and µ̃ ← µ̃ (so that
u← uµ̃ ◦ T̃ε): ∫

|uµε(x)− uµ̃(T̃ε(x))|2 dµε(x) 6 (M + 1)2Q((γ + 1)W∞(µε, µ̃)).

Using the last two displays in (3.9), we get∫
|uµ(Tε(x))− uµ̃(T̃ε(x))|2 dµε(x)

6 2(M + 1)2Q((γ + 1)ε) + 2(M + 1)2Q((γ + 1)W∞(µε, µ̃)).(3.10)

We can find a sequence εk ↓ 0 and a coupling π of µ and µ̃ such that (Tεk , T̃εk)∗µεk → π as
k →∞. Taking ε = εk in (3.10), and then taking the limit as k →∞, we get∫

|uµ,λ,γ(x)− uµ̃,λ,γ(x̃)|2 dπ(x, x̃) 6 2(M + 1)2Q((γ + 1)W∞(µ, µ̃)).(3.11)
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LOCAL VERSIONS OF SUM-OF-NORMS CLUSTERING 1261

Hence, since, Q is smooth, Q(0) = 0, and the left side of (3.11) is also evidently bounded
above by M2, we obtain the desired inequality (3.1).

It remains to show that π is an ∞-optimal transport plan. This follows by using (3.8) to
note that

ess sup
x∼µε

|Tε(x)− T̃ε(x)| 6 ess sup
x∼µε

|Tε(x)− x|+ ess sup
x∼µε

|x− T̃ε(x)| 6 ε+W∞(µε, µ̃),

and then taking limits along the subsequence εk ↓ 0.

4. Convergence as γ →∞. In this section we show that, under suitable assumptions on
U and µ, the optimizer uµ,λ,γ converges to uµ,λ,∞ as γ → ∞. In essence, we will obtain this
by showing a quantitative version of the fact that the functional Jµ,λ,γ Γ-converges to Jµ,λ,∞
as γ tends to infinity.

Theorem 4.1. Assume that U = suppµ is effectively star-shaped and has a Lipschitz
boundary, and that the measure µ has a density with respect to the Lebesgue measure that is
Lipschitz on U and is bounded away from zero. Then there exists a constant C < ∞ such
that, for every λ ∈ (0,∞), we have

| inf Jµ,λ,∞ − inf Jµ,λ,γ |+
∫
|uµ,λ,∞ − uµ,λ,γ |2 dµ 6 Cγ−1/3.(4.1)

Proof. Without loss of generality, assume that the point x∗ in Definition 1.1 is the origin,
and that the constant C∗ appearing there is 1. We denote by ρ the density of µ with respect
to the Lebesgue measure. By [14, Theorem 5.4.1], we can and do extend ρ to a Lipschitz
function on Rd, which we can also prescribe to vanish outside of a bounded set. Throughout
the proof, we will leave µ, λ fixed, and write uγ = uµ,λ,γ and Jγ = Jµ,λ,γ . The constant C
may depend on µ but not on γ or λ, and may change over the course of the argument. We
let Uε be the ε-enlargement of U as in Definition 1.1.

For every ε ∈ (0, 1), γ ∈ (0,∞], and x ∈ Uε, we define

ũγ,ε(x) := uγ((1− ε)x),

and for every x ∈ U , we define

uγ,ε(x) := (ũγ,ε ∗ χε)(x),

where ∗ denotes the convolution operator, χ ∈ C∞c (Rd;R+) is a nonnegative smooth function
with compact support in the unit ball satisfying∫

Rd

χ(x) dx = 1 and

∫
Rd

xχ(x) dx = 0,(4.2)

and where we have set χε := ε−dχ(ε−1·).
Step 1. We show that, for every γ ∈ (0,∞),∫

Uε

|ũγ,ε(x)− x|2ρ(x) dx+ λγd+1

∫∫
U2
ε

e−γ|x−y||ũγ,ε(x)− ũγ,ε(y)|ρ(x)ρ(y) dx dy

6 Jγ(uγ) + Cε.

(4.3)
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1262 ALEXANDER DUNLAP AND JEAN-CHRISTOPHE MOURRAT

To prove this, we bound the first term on the left side of (4.3) by∫
Uε

|ũγ,ε(x)− x|2ρ(x) dx 6 (1− ε)−d
∫
U

∣∣∣∣uγ(x)− x

1− ε

∣∣∣∣2 ρ( x

1− ε

)
dx

6
∫
U
|uγ(x)− x|2ρ(x) dx+ Cε,

where in the second inequality we used the fact that ρ is Lipschitz. For the second term on
the left side of (4.3), we proceed similarly, noting that

γd+1

∫∫
U2
ε

e−γ|x−y||ũγ,ε(x)− ũγ,ε(y)| dµ(x) dµ(y)

6
γd+1

(1− ε)2d

∫∫
U2

e−γ|x−y|/(1−ε)|uγ(x)− uγ(y)|ρ
(

x

1− ε

)
ρ

(
y

1− ε

)
dx dy

6
γd+1

(1− ε)2d

∫∫
U2

e−γ|x−y||uγ(x)− uγ(y)|ρ
(

x

1− ε

)
ρ

(
y

1− ε

)
dx dy

6
γd+1

(1− ε)2d

∫∫
U2

e−γ|x−y||uγ(x)− uγ(y)|ρ(x)ρ(y) dx dy + Cε.

It is in this calculation that the star-shaped property is crucial: in the second inequality, we
used that the map sending Uε to U (i.e., the map x 7→ x/(1− ε)) is contractive. We also used
(2.5) and again the fact that ρ is Lipschitz. Combining the last two displays, we obtain (4.3).

Step 2. We show that, for every γ ∈ (0,∞),

Jγ(uγ,ε) 6 Jγ(uγ) + Cε.(4.4)

Using (4.2), we can write∫
U
|uγ,ε(x)− x|2 dµ(x) =

∫
U

∣∣∣∣∫
Uε

(ũγ,ε(y)− y)χε(x− y) dy

∣∣∣∣2 ρ(x) dx

6
∫
Uε

|ũγ,ε(y)− y|2
∫
Rd

χε(x− y)ρ(x) dx dy.

Since ρ is Lipschitz, the inner integral is close to ρ(y), up to an error bounded by Cε, and we
thus get that ∫

U
|uγ,ε(x)− x|2 dµ(x) 6

∫
Uε

|ũγ,ε(x)− x|2ρ(x) dx+ Cε.(4.5)

We also have

γd+1

∫∫
U2

e−γ|x−y||uγ,ε(x)− uγ,ε(y)|ρ(x)ρ(y) dx dy

6 γd+1

∫∫
U2

e−γ|x−y|
∣∣∣∣∫

Rd

[ũγ,ε(x− z)− ũγ,ε(y − z)]χε(z) dz

∣∣∣∣ ρ(x)ρ(y) dx dy
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LOCAL VERSIONS OF SUM-OF-NORMS CLUSTERING 1263

6 γd+1

∫∫
U2

∫
Rd

e−γ|x−y| |ũγ,ε(x)− ũγ,ε(y)|χε(z)ρ(x+ z)ρ(y + z) dz dx dy

6 γd+1

∫∫
U2
ε

e−γ|x−y| |ũγ,ε(x)− ũγ,ε(y)|
(∫

Rd

χε(z)ρ(x+ z)ρ(y + z) dz

)
dx dy

6 γd+1

∫∫
U2
ε

e−γ|x−y| |ũγ,ε(x)− ũγ,ε(y)| ρ(x)ρ(y) dx dy + Cε,

where in the last step we used (4.3), (2.5), and the fact that ρ is Lipschitz. Combining the
last two displays with (4.3) yields (4.4).

Step 3. We show that, for every γ ∈ [1,∞) and ε ∈ (0, 1],

J∞(uγ,ε) 6 Jγ(uγ) + Cε+
C

γε2
.(4.6)

In view of (4.4), it suffices to show (4.6) with Jγ(uγ) replaced by Jγ(uγ,ε). We start by using
the fact that ‖D2uγ,ε‖L∞(µ) 6 Cε−2 to write

γd+1

∫∫
U2

e−γ|x−y||uγ,ε(x)− uγ,ε(y)|ρ(x)ρ(y) dx dy

> γd+1

∫∫
U2

e−γ|x−y||Duγ,ε(x) · (x− y)|ρ(x)ρ(y) dx dy

− Cγd+1

∫∫
U2

e−γ|x−y|
|x− y|2

ε2
ρ(x)ρ(y) dx dy.(4.7)

Since ρ is bounded and

γd+1

∫
Rd

e−γ|x−y||x− y|2 dy = γ−1
∫
Rd

e−|y||y|2 dy,(4.8)

we see that the second integral on the right-hand side of (4.7) is bounded by Cγ−1ε−2. Next,
we aim to compare the first integral on the right-hand side of (4.7) with the same quantity
with ρ(y) replaced by ρ(x). Since ρ is Lipschitz and ‖Duγ,ε‖L∞(µ) 6 Cε−1, the difference
between these two quantities is bounded by

Cε−1γd+1

∫∫
U2

e−γ|x−y||x− y|2ρ(x)ρ(y) dx dy 6 Cγ−1ε−1,

using again (4.8) and the boundedness of ρ. To complete this step, it remains to argue that

γd+1

∫∫
U2

e−γ|x−y||Duγ,ε(x) · (x− y)|ρ(x)2 dx dy > c

∫
ρ(x)2|Duγ,ε(x)| dx+ Cγ−1ε−1.(4.9)

Recalling (1.7), we see that the first term on the right-hand side above can be rewritten as

γd+1

∫
U

∫
Rd

e−γ|x−y||Duγ,ε(x) · (x− y)|ρ(x)2 dy dx.

For every δ > 0, we denote U δ := {x ∈ U : dist(x, ∂U) 6 δ}. Since ‖Duγ,ε‖L∞(µ) 6 Cε−1, the
inequality (4.9) will follow from the fact that

γd+1

∫
U

∫
Rd\U

e−γ|x−y||x− y| dy dx 6 Cγ−1.(4.10)
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1264 ALEXANDER DUNLAP AND JEAN-CHRISTOPHE MOURRAT

Since U has a Lipschitz boundary, there exists δ > 0 such that for every 0 < η < η′ < δ, the
Lebesgue measure of Uη

′ \ Uη is at most C(η′ − η). Therefore,

γd+1

∫
U

∫
Rd\U

e−γ|x−y||x− y| dy dx

6 Cγd+1e−δγ + γd+1

dδγe∑
k=0

∫
U (k+1)γ−1\Ukγ−1

∫
Rd\U

e−γ|x−y||x− y| dy dx

6 Cγd+1e−δγ + γd+1

dδγe∑
k=0

e−
γk

2

∫
U (k+1)γ−1\Ukγ−1

∫
Rd

e−
γ|x−y|

2 |x− y| dy dx

6 Cγd+1e−δγ + Cγ−1
dδγe∑
k=0

e−
γk

2

6 Cγ−1.

This is (4.10). Combining these estimates with (4.4) yields (4.6).
Step 4. We show that∫

Uε

|ũ∞,ε(x)− x|2 ρ(x) dx+ cλ

∫∫
U2
ε

ρ(x)2 d|Dũ∞,ε|(x) 6 J∞(u∞) + Cε.(4.11)

This follows from the fact that the left side of (4.11) can be rewritten as

(1− ε)−d
∫
U

∣∣∣∣u∞(x)− x

1− ε

∣∣∣∣2 ρ( x

1− ε

)
dx+

cλ

(1− ε)d+1

∫∫
U2

ρ

(
x

1− ε

)2

d|Du∞|(x),

and from the fact that ρ is Lipschitz.
Step 5. We show that

J∞(u∞,ε) 6 J∞(u∞) + Cε.(4.12)

Arguing in the same way as for (4.5), we see that∫
U
|u∞,ε(x)− x|2 dµ(x) 6

∫
Uε

|ũ∞,ε(x)− x|2ρ(x) dx+ Cε.(4.13)

For the second term, we notice that by [3, Proposition 3.2], we have

D(ũ∞,ε ∗ χε) = Dũ∞,ε ∗ χε,

and thus ∫
U
ρ(x)2|D(ũ∞,ε ∗ χε)|(x) dx 6

∫
U

∫
Uε

ρ(x)2χε(x− y) d|Dũ∞,ε|(y) dx

6
∫
Uε

ρ(y)2 d|Dũ∞,ε|(y) + Cε,
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LOCAL VERSIONS OF SUM-OF-NORMS CLUSTERING 1265

where we used (4.11), (2.5), and the fact that ρ is Lipschitz in the last step. Combining this
with (4.13) and using (4.11) once more, we obtain (4.12).

Step 6. We show that

Jγ(u∞,ε) 6 J∞(u∞) + Cε+
C

γε2
.(4.14)

We decompose the fusion term of Jγ(u∞,ε) into

γd+1

∫∫
U2

e−γ|x−y||u∞,ε(x)− u∞,ε(y)|ρ(x)ρ(y) dx dy

6 γd+1

∫∫
U2

e−γ|x−y||Du∞,ε(x) · (x− y)|ρ(x)ρ(y) dx dy

+ Cγd+1

∫∫
U2

e−γ|x−y|
|x− y|2

ε2
ρ(x)ρ(y) dx dy,(4.15)

and estimate each of these integrals in turn. The second integral on the right side is the same
as the second integral in (4.7), and thus is bounded by Cγ−1ε−2. We next aim to compare
the first integral on the right-hand side of (4.15) with the one where ρ(y) is replaced by ρ(x).
Since ρ is Lipschitz, the difference between these two quantities is bounded by

Cγd+1

∫∫
U2

e−γ|x−y||Du∞,ε(x)||x− y|2 dx dy 6 Cγ−1
∫
U
|Du∞,ε(x)| dx 6 Cγ−1,

where we used (4.12) and the fact that ρ is bounded above and below in the last step. Then
it remains to estimate

γd+1

∫∫
U2

e−γ|x−y||Du∞,ε(x) · (x− y)|ρ(x)2 dx dy

6
∫
R2

e−|y||y · e1| dy
∫
U
|Du∞,ε(x)|ρ(x)2 dx = c

∫
U
|Du∞,ε(x)|ρ(x)2 dx,

where we recalled (1.7) in the last step. Thus we have

Jγ(u∞,ε) 6 J∞(u∞,ε) + Cγ−1ε−2,

and inequality (4.14) then follows using (4.12).
Step 7. We can now conclude the proof. We take ε := γ−1/3, and using (4.6) and (4.14),

we see that

J∞(u∞) 6 J∞(uγ,γ−1/3) 6 Jγ(uγ) + Cγ−1/3 6 Jγ(u∞,γ−1/3) + Cγ−1/3 6 J∞(u∞) + Cγ−1/3.

From this, we deduce that

|J∞(u∞)− Jγ(uγ)| 6 Cγ−1/3,(4.16)

and moreover that

0 6 J∞(uγ,γ−1/3)− J∞(u∞) 6 Cγ−1/3.(4.17)
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1266 ALEXANDER DUNLAP AND JEAN-CHRISTOPHE MOURRAT

By (2.4) and (4.17), we obtain∫
|uγ,γ−1/3 − u∞|2 dµ 6 Cγ−1/3.(4.18)

Using (2.4) and (4.4), we also infer that∫
|uγ,γ−1/3 − uγ |2 dµ 6 Cγ−1/3.(4.19)

Combining (4.16), (4.18), and (4.19) yields (4.1).

Remark 4.2. In the proof of Theorem 4.1, the assumption that U is effectively star-shaped
could be replaced by the following weaker assumption: that there exist L <∞ and, for every
ε > 0 sufficiently small, a 1-Lipschitz injective map Pε : Uε → U with L-Lipschitz inverse.
In Theorem 1.2, we could then assume that the same property holds for each of the sets
U1, . . . , UL in place of the assumption that these sets are effectively star-shaped.

5. Properties of the limiting functional. In this section we show that if λ is large enough,
then the minimizer uµ,λ,∞ of Jµ,λ,∞ recovers the connected components of supp µ.

Proposition 5.1. Let µ be a probability measure on Rd that satisfies the conditions of
Theorem 1.2, so its support is the disjoint union of U1 t · · · t UL. There is a λc < ∞ such
that if λ > λc, then uµ,λ,∞(x) = centµ(U`) for all x ∈ U`, ` ∈ {1, . . . , L}.

Proof. Let u(x) = centµ(U`) for all x ∈ U`, ` ∈ {1, . . . , L}. Since the gradient of u is zero
on each U`, we have

Jµ,λ,∞(u) =

L∑
`=1

∫
U`

|u(x)− x|2 dµ(x).

Let U =
⋃L
`=1 U`, p > d, and let W 1,p(U) denote the usual Sobolev space with regularity 1 and

integrability p. Note that W 1,p(U) embeds continuously into C(U) by Morrey’s inequality; see
[1, Theorem 4.12]. Let ψ ∈ (W 1,p(U))d×d be a weak solution to the PDE

2ρ(x)(u(x)j − xj)− c
d∑

k=1

Dk(ρ
2ψjk)(x) = 0, x ∈ U, j = 1, . . . , d,(5.1)

ψ|∂U ≡ 0.(5.2)

We note that the problem (5.1)–(5.2) separates into dL problems, one for each j and `. Each
problem can be solved by [7, Theorem 2.4] (which follows the approach introduced in [5, 6]).
We have, for every v ∈ (L2(U) ∩ BV(U))d,

Jµ,λ,∞(u+ v) =

∫
U
|u(x) + v(x)− x|2 dµ(x) + cλ

∫
U
ρ(x)2 d|Dv|(x)

= Jµ,λ,∞(u) +

∫
U

(
2(u(x)− x) · v(x) + |v(x)|2

)
dµ(x) + cλ

∫
U
ρ(x)2 d|Dv|(x).
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LOCAL VERSIONS OF SUM-OF-NORMS CLUSTERING 1267

A minor variant of (2.1) takes the form∫
U
ρ(x)2 d|Dv|(x) = sup

{∫
U
ρ(x)2φ(x) · dDv(x), φ ∈ (C(U))d×d s.t. ‖φ‖L∞(U) 6 1

}
.

Selecting φ = ψ/‖ψ‖L∞(U), and using the assumption that λ > ‖ψ‖L∞(U), we obtain

Jµ,λ,∞(u+ v) > Jµ,λ,∞(u) +

∫ (
2(u(x)− x) · v(x) + |v(x)|2

)
dµ(x)

+ c

d∑
j,k=1

∫
ρ(x)2ψjk(x)Dkvj(x) dx

= Jµ,λ,∞(u) +

∫ (
2(u(x)− x) · v(x) + |v(x)|2

)
dµ(x)

−
d∑
j=1

∫
2ρ(x)(u(x)j − xj)(x)vj(x) dx

= Jµ,λ,∞(u) +

∫
|v(x)|2 dµ(x)

> Jµ,λ,∞(u),

where we used (5.1) for the first equality. This implies that uµ,λ,∞ = u, and hence the
statement of the proposition with λc = ‖ψ‖L∞(U).

6. Truncation. In this section we prove a stability result for when we truncate the expo-
nential weight. For γ, ω ∈ (0,∞), we define the truncated functional

Jµ,λ,γ,ω(u)

(6.1)

:=

∫
|u(x)− x|2 dµ(x) + λγd+1

∫∫
e−γ|x−y|1{|x− y| 6 ω}|u(x)− u(y)| dµ(x) dµ(y).

The functional Jµ,λ,γ,ω is uniformly convex and satisfies (2.2) and (2.4) in the same way as
Jµ,λ,γ . Let uµ,λ,γ,ω be the (unique) minimizer of Jµ,λ,γ,ω.

Proposition 6.1. Let γ, λ, ω > 0 and let µ be a probability measure on Rd with compact
support. Let M := diam suppµ. Then we have∫

|uµ,λ,γ,ω(x)− uµ,λ,γ(x)|2 dµ(x) 6 2Mλγd+1e−γω.(6.2)

In light of this statement, we define

uµ,λ,γ := uµ,λ,γ,(d+4/3)γ−1 log γ .(6.3)

Then (6.2) implies that ∫
|uµ,λ,γ(x)− uµ,λ,γ(x)|2 dµ(x) 6 2Mλγ−1/3.(6.4)
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1268 ALEXANDER DUNLAP AND JEAN-CHRISTOPHE MOURRAT

Proof of Proposition 6.1. Subtracting (1.3) from (6.1), we obtain

Jµ,λ,γ,ω(u)− Jµ,λ,γ(u) = λγd+1

∫∫
e−γ|x−y|1{|x− y| > ω}|u(x)− u(y)| dµ(x) dµ(y).

Taking u = uµ,λ,γ , we get

Jµ,λ,γ,ω(uµ,λ,γ)− inf Jµ,λ,γ

= λγd+1

∫∫
e−γ|x−y|1{|x− y| > ω}|uµ,λ,γ(x)− uµ,λ,γ(y)| dµ(x) dµ(y)

6Mλγd+1e−γω,

and similarly,

Jµ,λ,γ(uµ,λ,γ,ω)− inf Jµ,λ,γ,ω

= −λγd+1

∫∫
e−γ|x−y|1{|x− y| > ω}|uµ,λ,γ,ω(x)− uµ,λ,γ,ω(y)| dµ(x) dµ(y) 6 0.

Therefore, using (2.4) and the last two displays we have∫
|uµ,λ,γ,ω(x)− uµ,λ,γ(x)|2 dµ(x)

6 2 (Jµ,λ,γ(uµ,λ,γ,ω)− inf Jµ,λ,γ)

6 2
[
Jµ,λ,γ(uµ,λ,γ,ω)− inf Jµ,λ,γ,ω

]
+ 2

[
Jµ,λ,γ,ω(uµ,λ,γ)− inf Jµ,λ,γ

]
6 2Mλγd+1e−γω,

as claimed.

7. Proof of Theorem 1.2. In this section we prove Theorem 1.2. We first need a result
from [15]. Recall the notation d′ introduced in (1.4).

Proposition 7.1. Let U ⊆ Rd be a bounded, connected domain with Lipschitz boundary. Let
µ be a probability measure on U , absolutely continuous with respect to Lebesgue measure, with
density bounded above and away from zero on U . For every α > 1, there is a constant C <∞,
depending only on U , α, and µ, such that the following holds. If (Xn)n∈N are independent
random variables with law µ, then for every integer N > 1,

P

(
W∞

(
µ,

1

N

N∑
n=1

δXn

)
> CN−1/(d∨2)(logN)1/d

′

)
6 CN−α.

Proof. For d > 2, this is a restatement of [15, Theorem 1.1]. For d = 1, the result can be
obtained from the classical Kolmogorov–Smirnov quantitative version of the Glivenko–Cantelli
theorem.

Now we can prove Theorem 1.2. For a measure µ on Rd and a Borel set U , we denote by
µLU the restriction of µ to the set U .

Proof of Theorem 1.2. Recalling (6.3), it is clear that if γ is so large that

(d+ 4/3)γ−1 log γ 6 min
16`6=`′6L

dist(U`, U`′),(7.1)
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LOCAL VERSIONS OF SUM-OF-NORMS CLUSTERING 1269

then

uµNLU`,λ,γ(x) = uµN ,λ,γ(x) for all x ∈ U`,(7.2)

and similarly

uµLU`,λ,γ(x) = uµ,λ,γ(x) for all x ∈ U`.(7.3)

Also, we have by the definitions and Proposition 5.1 that there exists λc such that for every
λ > λc,

uµLU`,λ,∞(x) = uµ,λ,∞(x) = centµ(U`) for all x ∈ U`.(7.4)

By (7.4) and Theorem 4.1, we have∫
U`

|centµ(U`)− uµLU`,λ,γ |2 dµ =

∫
U`

|uµLU`,λ,∞ − uµLU`,λ,γ |2 dµ 6 Cγ−1/3.

By (7.3) and (6.4), we have, as long as (7.1) holds,∫
U`

|uµ,λ,γ − uµLU`,λ,γ |
2 dµ =

∫
U`

|uµLU`,λ,γ − uµLU`,λ,γ |
2 dµ 6 2Mλγ−1/3.

Combining the last two displays, we see that∫
U`

|uµ,λ,γ − centµ(U`)|2 dµ 6 C(1 + λ)γ−1/3.

Using (6.4) again, this implies that∫
U`

|uµ,λ,γ − centµ(U`)|2 dµ 6 C(1 + λ)γ−1/3.(7.5)

On the other hand, by Proposition 7.1, we have for each ` that

P

(
W∞

(
µLU`
µ(U`)

,
µNLU`
µN (U`)

)
> CN−1/(d∨2)(logN)1/d

′
)

6 CN−100.(7.6)

By Proposition 3.1, for each ` there is an ∞-optimal transport plan π`,N between µLU`
µ(U`)

and
µNLUL
µN (U`)

such that, using also (7.2) and (7.3), we have∫∫
U2
`

|uµ,λ,γ(x)− uµN ,λ,γ(x̃)|2 dπ`,N (x, x̃) 6 C(γ + 1)W∞
(
µLU`
µ(U`)

,
µNLU`
µN (U`)

)
.

Combining this with (7.5), we see that

1

µN (U`)

∫
U`

|uµN ,λ,γ − centµ(U`)|2 dµN

=

∫∫
U2
`

|uµN ,λ,γ(x̃)− centµ(U`)|2 dπ(x, x̃)

6 C

(
(γ + 1)W∞

(
µLU`
µ(U`)

,
µNLU`
µN (U`)

)
+ (1 + λ)γ−1/3

)
.
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1270 ALEXANDER DUNLAP AND JEAN-CHRISTOPHE MOURRAT

Now summing over ` and using (7.6) and the fact that the term inside the expectation on the
left-hand side of (1.5) is bounded almost surely, we obtain (1.5).
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