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Despite considerable study of population cycles, the striking variability of cycle periods
in many cyclic populations has received relatively little attention. Mathematical mod-
els of cyclic population dynamics have historically exhibited much greater regularity
in cycle periods than many real populations, even when accounting for environmental
stochasticity. We contend, however, that the recent focus on understanding the impact
of long, transient but recurrent epochs within population oscillations points the way
to a previously unrecognized means by which environmental stochasticity can create
cycle period variation. Specifically, consumer—resource cycles that bring the popula-
tions near a saddle point (a combination of population sizes toward which the popu-
lations tend, before eventually transitioning to substantially different levels) may be
subject to a slow passage effect that has been dubbed a ‘saddle crawlby’. In this study,
we illustrate how stochasticity that generates variability in how close predator and prey
populations come to saddles can result in substantial variability in the durations of
crawlbys and, as a result, in the periods of population cycles. Our work suggests a new
mechanistic hypothesis to explain an important factor in the irregular timing of popu-
lation cycles and provides a basis for understanding when environmental stochasticity
is, and is not, expected to generate cyclic dynamics with variability across periods.

Keywords: periodic orbits, predator—prey dynamics, Rosenzweig—MacArthur, saddle
points

Introduction

Recurrent population cycles — eruptive increases and crashes in population size —
are widespread (Kendall et al. 1999, Barraquand et al. 2017). Consumer—resource
and host—enemy interactions are famously known to promote cycles (Turchin and
Hanski 2001, Myers 2018), but models of these interactions predict a far more regu-
lar cycle period than is observed in many real cyclic populations (Dwyer et al. 2004).
Ecological data are famously noisy, so the observation that cycle periods appear irreg-
ular may seem unsurprising and perhaps even incidental. However, our inability to
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explain the irregularity could reflect a fundamental gap in
our understanding of the mechanisms driving cycles. This
possibility is troubling because we rely on our understand-
ing of population cycles in pest management, conservation
and other important contexts (Barraquand et al. 2017).
Proposed mechanisms acting on a population may be
accepted or rejected based on whether they predict realistic
cycle period variability (Dwyer et al. 2004). More broadly,
the variability in a quantity can be as informative as its
mean, and repeated calls have been made for improving our
ability to extract understanding from patterns in variance
(Benedetti-Cecchi 2003, Violle et al. 2012, Holyoak and
Wetzel 2020, Shoemaker et al. 2020). The development of
general theory for the origins of cycle period variation thus
would deepen our understanding of the factors influencing
fluctuating populations and improve our ability to manage
and protect them.

While it is tempting to implicate environmental stochas-
ticity as a source of cycle period irregularity, the intrinsic
period of ecological cycles appears to be surprisingly robust
to noise. Past theoretical studies have shown that although
white noise readily generates variance in cycle amplitudes, it
may have little effect on the regularity of the cycle period.
Specifically, Fig. 1a in Dwyer et al. (2004) shows the very reg-
ular outbreaks predicted by a stochastic difference equation
model for gypsy moth dynamics, and Fig. 9 in Greenman
and Pasour (2011) similarly shows virtually no effect of noise
on the interepidemic period in a noisy two-strain susceptible-
infected model of dengue. As such, other mechanisms, such
as chaos, stochastic transitions between alternative attractors,
eco-evolutionary feedbacks and resonance between intrinsic
cycles and seasonal forcing, have been invoked to explain
the irregular timing of some population cycles (Dwyer et al.
2004, Nguyen and Rohani 2007, Ives et al. 2008, Greenman
and Pasour 2011, Beninca et al. 2015, Bengfort et al. 2017).
These alternative ideas are convincing and no doubt play an
important role in some ecological systems. Still, the ubiquity
of environmental stochasticity makes it appealing as a par-
simonious and perhaps more general explanation for other,
unexplained instances of cycle period variability. Though we
know from counter-examples (i.e. the aforementioned cases
shown in Dwyer et al. 2004, Greenman and Pasour 2011)
that environmental stochasticity does not necessarily cause
significant variance in cycle period, we do not know that it
cannot cause such variance, so we contend that it deserves a
closer look.

In this paper, we reconsider the possibility that the
irregular timing of population cycles can originate from the
interaction between density-dependent consumer—resource
interactions and certain forms of parametric noise. In addi-
tion to being prone to limit cycles, consumer—resource
models generally share another feature: the presence of
saddle points at the origin and at other states, such as at
the resource carrying capacity in the absence of consum-
ers (Murdoch et al. 2003). The term ‘saddle point in this
context refers to a population equilibrium that exists but
is unstable in a specific way: from certain starting values,
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population levels will tend to approach the saddle point,
but eventually they will deviate away from these equilibrium
values. If the consumer—resource cycle brings the popula-
tion trajectory close enough to these saddle points, then a
long but ultimately transient epoch within each cycle during
which the populations remain near the saddle will result (for
an introduction to this role of saddle points, Abbott 2020);
this effect has been termed a saddle crawlby (Hastings et al.
2018). The duration of the crawlby scales with the inverse of
the distance from the saddle (Cushing et al. 1998, Jiger et al.
2008, Morozov et al. 2020). Therefore, we conjecture that
stochasticity that results in more variability from cycle to
cycle in how close the populations get to these saddles will
produce higher variability in cycle timing. To explore this
possibility, we will partition variance in the total duration
of a cycle into variances in the durations of its constituent
parts, with particular interest in the times spent passing by
and moving between the saddles.

Our contributions come from acknowledging two impor-
tant features of ecological dynamics. The first is the potential
role of saddle crawlbys in cycle period variation. Second, a
frustrating problem in population ecology is that there are
many different aspects of an underlying ecological process
that may be influenced by stochasticity, but different sto-
chastic models can lead to very different dynamics (Allen
and Allen 2003, Nisbet and Gurney 2003, Coulson et al.
2004, Vadillo 2019). In this work, we use a comparison of
two parameters to highlight the fact that environmental sto-
chasticity in different demographic parameters causes differ-
ent levels of cycle period variability, and we discuss how these
parameters’ effects on certain features of the cycling dynamics
leads to their impacts on variability.

This paper presents our analysis of the roles of saddle
crawlbys and different sources of environmental noise in gen-
erating variably timed population cycles, based on a series
of complementary approaches. We begin with a brief char-
acterization of cycle period variation in a large collection
of ecological time series and assess the plausibility of saddle
crawlbys as a source of variability in some of these instances.
We then present the general theory that links saddle crawlbys
to variation in cycle duration in the presence of environmen-
tal stochasticity. Specifically, the mechanism involved is that
stochastic parameter variation causes variation across succes-
sive population cycles in the population densities that arise
at stages where saddle crawlbys occur, which in turn induces
variation in crawlby durations and overall cycle lengths. The
bulk of our paper is devoted to a detailed numerical study of
the stochastic Rosenzweig—MacArthur predator—prey model
(Rosenzweig and MacArthur 1963), through which we can
understand how these theoretical effects manifest in a eco-
logical setting. We close by zooming back out to consider
what our numerical study reveals more generally. Our study
of the effect of saddle crawlbys on cycle period leads both to
a new proposed explanation for some of the irregularly timed
cycles observed in nature and to new insights about why past
work has seen little effect of environmental stochasticity on
cycle period variability.
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Data and analysis

Data show evidence of cycle period variability and
putative saddle crawlbys

While a complete meta-analysis of cycle period variation is
well beyond the scope of this study, we do need a reasonable
expectation for what levels of variation are realistic. Following
Dwyer etal. (2004), we measure cycle period variability by its
coefhicient of variation (CV), or standard deviation divided
by mean. Dwyer et al. (2004) report cycle period CVs rang-
ing from 0.16 to 0.67 for various outbreaking forest insects.
We supplement these data with our own analysis of ecological
time series from the Global Population Dynamics Database
(GPDD; Prendergast et al. 2010). We defined the duration
of a cycle as the time from one local maximum of the popula-
tion time series to the next, and we used wavelet analysis to
assess the periodicity of these cycles. Wavelet analysis decom-
poses a time series into a set of periodic oscillations of differ-
ent frequencies in order to, among other things, identify the
dominant frequencies in the data (see Cazelles et al. 2008, for
further information). Beginning with the 664 GPDD time
series analyzed by Sibly et al. (2007), we found that 459 had
at least 2 cycles and showed some evidence of periodicity (the
peak in the true wavelet power spectrum — indicating the
strength of the dominant frequency — exceeded the average
observed in 100 bootstrap trials). Of these 459, 47 (10.2%)
showed perfectly regular cycle periods (CV =0). The remain-
ing cycle period CVs ranged from 0.10 to 0.98. Overall, the
cyclic GPDD data had a mean cycle period CV of 0.30. This
analysis confirms that the cycle period CVs reported for for-
est insects in Dwyer et al. (2004) are representative of other
taxa as well.

Identifying a saddle crawlby in data with reasonable
certainty requires a carefully validated dynamical model
(Hastings et al. 2018) and while this is infeasible in bulk,
we can survey the GPDD time series for dynamics that are
consistent with our hypothesized crawlby effect. Because
the saddle points in common ecological models often occur
where at least one species is extinct, we focus on dynamics
at low abundances. Populations that become small and stay
small for an extended period of time may be crawling by a
saddle that lies at zero abundance. Defining ‘low abundance’
as < 5% of the maximum observed abundance (though note
that the patterns we show are not sensitive to the exact per-
centage used; see the Supporting information), we recorded
the longest continuous stretch of time that each GPDD time
series dropped to low abundance and found this to be posi-
tively related to cycle period CV (Fig. 1A, B). Time series
with only short (or no) time at low density showed examples
of both high and low CVs (blue histogram in Fig. 1B; exam-
ples in C and D), suggesting that cycle period variability in
these cases is due to a range of mechanisms not necessarily
related to saddle crawlbys. (The fact that the relationship in
Fig. 1A, though significant, explains only a small amount
of the variance in cycle period CV likewise suggests that
other mechanisms are represented in these data.) However,

for cases in which durations at low abundance exceeded a
threshold (three time series time steps), CVs were relatively
large (Fig. 1B), consistent with what we would predict if
these populations were influenced by saddle crawlbys at their
troughs. Some of these putative crawlbys are almost certainly
long transients caused by other phenomena (e.g. human
impacts on the fisher (Aubry and Lewis 2003), Fig. 1E),
while others are conceivably due to the type of tightly-
coupled consumer—resource interactions we study here (e.g.
larch budmoth cycles (Turchin et al. 2003), Fig. 1F). In sum,
this coarse analysis of 459 ecological time series supports the
plausibility of the crawlby mechanism as one among several
reasons that real cycle periods vary, and provides a bench-
mark against which to compare our theoretical results.

Saddle crawlbys convert variable population levels
at specific cycle phases into variable cycle periods

Mathematically, a saddle point is an unstable equilib-
rium state (e.g. combination of population densities) that,
though ultimately repelling, is approached from some states.
Ecologically, the influence of a saddle can be seen in the
approach toward joint extinction before eventual resource
recovery during consumer—resource cycles. Such behav-
ior also appears in the approach from jointly low densities
toward the carrying capacity of a resource or fast-growing
competitor species, before the successful recovery or reinva-
sion of a predator or second competitor. A saddle crawlby
is dominated by a phase of ‘lingering’ near the saddle point
during relatively slow passage toward and then away from it
(Hastings et al. 2018), within each population cycle.

In a dynamical system without added noise, the amount
of time the system spends near a saddle — that is, the duration
of the saddle crawlby — is well understood (Morozov et al.
2020). Using a predator—prey system as an example, we can
characterize the crawlby associated with the joint extinction
state by considering how the populations enter and exit the
proximity of the extinction saddle point at (0, 0). Using x to
denote the prey population density and y the predator popu-
lation density, we can consider the crawlby to start once pred-
ator density drops below some threshold, y, ;., as illustrated in
Fig. 2A. Use x,,, to denote the prey density when the y=y, ..
threshold is crossed. In Fig. 2A, we show the crawlby trajec-
tories for two different choices of x,; , one in blue and one in
red. We will say that the (0, 0) crawlby is complete once prey
density grows from x,; to a prey threshold value, x, ., also
shown in Fig. 2A.

During the crawlby, the populations are sufficiently close
to (0, 0) that typical consumer—resource dynamics will be
well approximated by a linear system of equations, such as

dy

j =7

d"‘ (1)
a _

dt "
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Figure 1. Summary of Global Population Dynamics Database (GPDD) time series. (A) Relationship between the longest consecutive times-
pan spent at low (< 5% maximum) abundance and the coefficient of variation (CV) in cycle period, with regression line. Each dot is one
of the 459 examples analyzed; colored and labeled dots denote examples shown in panels (C)—(F). (B) Histograms of cycle period CV for
time series with short (0-3 time step) visits to low abundance (blue bars, summarized by blue boxplot above) versus those with longer
intervals at low abundance (red). (C—F) Examples of time series from the GPDD spanning the range shown in (A). The extended time at
low abundance in (E)—(F) is consistent with a crawlby of a saddle point at zero abundance.

with 7, m > 0. System (1) has solutions x(#)=x(0)e",
y(#) =y(0)e . Taking the initial conditions as the entry point
to the crawlby, (x(0), (0)) = (xy;,» %y:.)> and defining a stop-
ping time ¢ by the condition (x(tpm), y(tpass)) = (X000 Yo.0u0)s

1t
. _ pass
we obtain x; .. = X).€

. This expression yields t=1/7)

In(x, /%00 = (1/7)[In(x, ) — In(xy;)], which is positive
because x, ,, > x,,,. That is, the crawlby duration ,, depends
linearly on In(x, ). Similarly, if we substitute this result into
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M pass

the equation y, .. = Yo.n€ , then we find that the loga-

rithm of the predator density at the end of the crawlby also
depends linearly on In(x, ).

Although we use the (0, 0) crawlby as an illustrative
example in making these arguments, the same mathematical
features arise for a crawlby past any other saddle point with
exponential growth and decay rates in any two-dimensional
system. That is, in any such two-dimensional crawlby, there

d ‘0 *90L00091

sdny woxy

ASUAOIT SuOWWO)) AANeaI) d[qeotdde oy Aq PAUIAAOS a1e SA[ONIR YO {AsN JO SI[NI 10] ATRIQIT dUIUQ AJ[IAN UO (SUONIPUOI-PUR-SULID)/ WO A[IM " KIRIqI[aUI[UO//:5dNY) SUONIPUOD PUR SWLIDT, 3Y) 33 [2Z0T/01/ST] U0 A1eiqr duluQ A[ip ‘WwdsAs Areiqry Aisioatun y3mgsnid JO Ansioatun £q 06260™10/1111°01/10p/wod" K1m"



(A)

(B)

Mbution
Y0iin
> .
3 =
g 2
[} [0}
© il
S S
© ©
S S
g o
o [}
Vo faster o
V0,0ut >
Y0.0ut slower. > c
0
Qom %o prey density, x " 0 prey density, x K

Figure 2. (A) Illustration of a crawlby past a saddle at (0, 0). We define the vicinity of the saddle (gray region) by an entry condition, y=y, .,
and an exit condition, x=x, . The crawlby begins when predator density y crosses the y,, threshold. Prey density at this point (x,;,) is
expected to be variable, according to some distribution (black overlain curve). When prey density upon entry is lower (red trajectory, com-
pared to teal), the saddle crawlby will be slower, with a longer duration, because the trajectory passes closer to the saddle. (B) Components
of a typical predator—prey cycle, A: passage by the origin when both species are rare, B: recovery of the prey population, C: passage by the
prey’s carrying capacity, K, D: predator recovery and prey decline, E: initiation of predator decline and finally F: sharp predator decline back
toward the origin. Segments A and C involve saddle crawlbys. Panel (A) is general, but can be thought of as a zoom-in of region A (where

the crawlby near the origin occurs) in panel (B).

is contraction in the deviation of one variable, say y, from its
value at the saddle point while there is growth in the devia-
tion of the other variable, say x; moreover, both the crawlby
duration and the deviation of the logarithm of y at the end
of the crawlby depend logarithmically on the deviation of x.
A similar scaling of passage time and population sizes results
from any crawlby near a saddle point in a system with more
than two variables as well.

All of this is true regardless of whether the saddle crawlby
is part of a larger, repeating cycle, but if the populations are
cycling (Fig. 2B), then we can carry these arguments fur-
ther. The linear dependence of the crawlby duration #,, on
In(x,;,) implies that if there is variability in the x,,, values
from cycle to cycle (as illustrated in the black x,;, distribu-
tion curve in Fig. 2A, for example), then there will also be
variability in crawlby durations. Intuitively, the most inten-
sive variability in durations will result from an x; distribu-
tion that features close approaches to the saddle (low x,;,)
and correspondingly long passage times, along with enough
variance to yield some more distant approaches and short
passage times. As an example, if the values of x; are log-
normally distributed with parameters p and 6%, then the
crawlby times from y=y,, to x=x, are normally distrib-
uted. Explicitly, if we choose the same fixed value, call it
¢, as both y,, and x, for convenience, so that the grey
shaded crawlby region in Fig. 2A is a square, then by apply-
ing the formula for 7, to the whole distribution of x,;,
values, we find that 7, is distributed normally; specifically,
boss™ N(n(c)/r — plr, (6/7)?) (we use N(p, 62) to denote the
normal distribution with mean p and variance 6?), with
larger values in the x,;, distribution leading on average to
smaller passage times z . Similarly, the distribution of
predator densities at the end of the crawlby is log-normal,
In(y, o)~ N1 = m/P)n(c) + mplr, (mc/r)?), with smaller

%,:, leading on average to smaller y, .. (Note that because ¢
is constant, the way that it shows up in these distributions
is not important for understanding how population size
variance at the start of the crawlby generates variance in
crawlby duration.) After completing a saddle crawlby (i.e.
crossing the x=1x, , boundary), the populations continue
around the cycle, during which various features, including
other crawlbys (Fig. 2B, region C), may occur en route to
the next entry through the y=y,, boundary. Importantly,
parameters that do not explicitly affect the saddle crawlby
itself can still impact the variability in passage times by
impacting the trajectory around the cycle and hence the
distribution of entry positions (here, x,,, values) into the
saddle crawlby.

In summary, with log-normally distributed prey densities
upon entry, the passage times past the saddle at the origin will
be normally distributed, the exit predator density will be log-
normally distributed, and the variance of both of these dis-
tributions will grow with that of the prey distribution upon
entry to the neighborhood of the origin. Other types of prey
density entry distributions will also translate into predator
density exit distributions of the same type. Understanding
the stochastic processes that shape the distribution of prey
densities at the start of each crawlby is therefore an important
goal of our detailed numerical study below.

Numerical case study: saddle crawlbys generate
variable cycle periods in a consumer-resource
model

Formulation and behavior of the underlying deterministic
model

To explore the implications of this theory in an ecological
context, we analyze the cycles in a stochastic version of the
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Rosenzweig—MacArthur predator—prey model. The underly-
ing deterministic model is

@=rx 1—i -
dt K x+h
ﬂ: abxy o

dt  x+h

where x is prey population density and y is predator popula-
tion density. The prey population grows at maximum rate »
and would equilibrate to carrying capacity K in the absence
of predation. Predation occurs according to a type 2 func-
tional response (Holling 1965) with maximum attack rate «
and half-saturation constant 4. Predator population growth
occurs at a rate proportional (described by 4) to its prey con-
sumption rate, and predator death is density independent
with rate .

Our baseline parameter values are listed in Table 1. These
values were selected to provide certain dynamical features and
do not represent a specific biological scenario. Similar results
hold for a wide range of other parameter choices that give rise
to similar dynamical features, as discussed below. The implied
time unit is most easily interpreted via the mean predacor life-
time, which is 1/m=1.67 time units. These values result in
a limit cycle featuring close, but not too close, passage to the
x=0 and y=0 axes and thus to the saddle points of system
(2) at (x, ) = (0, 0) and (X 0). Close passage sets the stage for
saddle crawlbys, but passage too close to the axes results in
unrealistic dynamics, since models such as (2) allow recovery
from infinitesimally small population densities at which real
populations would almost certainly go extinct. We used 10~
times the prey carrying capacity as the extinction threshold,
and chose our bascline parameter set so that this threshold
was not crossed by the deterministic model with reasonable
initial conditions, and crossed only rarely in stochastic simu-
lations unless the noise amplitude was quite high. We omit
from our analyses any simulated cycles in which prey and/or
predator dropped below the extinction threshold. Imposing
this threshold ensures that crawlby effects that we observe in
the model are not merely artifacts of letting the system drop
to unrealistically low population sizes.

For stochastic » or A, the values listed refer to 7 or 4,
respectively in the Cox-Ingersoll-Ross (CIR) process (3).

To study saddle crawlbys, we should first characterize
when system (2) generates oscillations and how parameters
impact the paths of oscillations, when present, past saddle
points. Depending on the parameter values, the determin-
istic Rosenzweig—MacArthur model can exhibit a stable
equilibrium corresponding to co-existence of the two species
or a stable limit cycle. The system undergoes a supercritical
Andronov—Hopf (AH) bifurcation at /= K(ab — m)/(ab+m),
and cycles arise for / below the bifurcation value; note that
we only consider parameter values such that 26 > m. As long
as we restrict to parameter values with 4 below the bifur-
cation value and 46 > m, whether we choose our baseline
parameter set or some other values, system (2) will exhibit
periodic orbits, and varying any parameter value individually
will affect the amplitudes of these orbits and their proximity
to the x- and y-axes, as shown for the parameter 4 in Fig. 3A
and B.

The interaction of oscillations with saddle points can
be studied by focusing on the parameters 7 and 4. Because
the bifurcation condition does not involve the parameter 7,
changing 7 cannot induce or eliminate cycles in system (2).
Nevertheless, when cycles exist, lowering r lengthens the
oscillation period by slowing the recovery of the prey popula-
tion; the periods arising for a range of 7 values are displayed
as the solid black curve in Fig. 3C. This effect prolongs the
crawlbys past both the extinction point (0, 0) and the car-
rying capacity (K, 0) (Supporting information provides the
boundary conditions used to define the regions, while the
actual crawlby durations appear as the red dashed and blue
dotted lines, respectively, in Fig. 3C). However, as r decreases,
the slowing of the crawlbys is matched by comparable slow-
ing of other parts of the cycle, so the fraction of time the
system spends in crawlbys does not increase significantly
(Fig. 3E, solid black line).

As a contrasting example, we see that reducing / can
induce an AH bifurcation and subsequently drive the sys-
tem deeper into the cyclic regime. Decreasing the value of 4
pushes trajectories closer to both axes (Fig. 3A, B). This pro-
longs the two saddle crawlbys (Fig. 3D, red and blue lines)
by placing the populations closer to the saddles. The saddle

Table 1. Baseline parameters of the model defined by Eq. 2 and 3. For stochastic r or h, the values listed for r and h are used as the values

for7 and 4 , respectively, in the Cox-Ingersoll-Ross (CIR) process (3).

Parameter Meaning Value Unit
r Prey intrinsic growth rate 1 time~' per capita
K Prey carrying capacity 1 Prey biomass
a Maximum prey consumption rate 2 time~" per predator
h Prey density at half maximum consumption rate 0.15 Prey
b Prey to predator conversion efficiency 0.5 —
m Predator death rate 0.6 time~" per capita
p Parameter subject to CIR process (r or h)
¥ Speed of adjustment to mean 1 time™!
A iati — nits of
c c 2 is standard deviation of the CIR process 0-0.3 |/ units of p
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Figure 3. Oscillations in system (2) without noise. (A) The system exhibits stable oscillations for # < 0.25 and baseline values of the other
parameters. For smaller values of 4, periodic orbits pass closer to the coordinate axes. Shapes denote points 1 time unit apart on each orbit
and thus show the rates of passage through different parts of the cycle. (B) As 4 is reduced from 0.4 toward its baseline value (0.15), system
(2) undergoes an Andronov—Hopf (AH, black circle) bifurcation at which the coexistence equilibrium switches from stable (solid black) to
unstable (dashed black) and a family of stable periodic orbits emerges. The black curve with the blue side branches shows the x value at the
equilibrium point for each 4, while the blue branches show the maximal and minimal values of x along the periodic orbits. The other black
curve and its red branches are analogous for y. (C) As 7 (baseline value 1.0) decreases, the oscillation period grows (solid black line), partially
due to prolonged crawlbys past the saddles at (0, 0) (blue dotted line) and (X, 0) (red dashed line). The purple dashed line shows the total
amount of time during each cycle that is spent in a saddle crawlby (red plus blue). (D) As 4 decreases, the oscillation period grows, but less
extremely than in (C). The longer cycle duration is even more strongly influenced by saddle crawlbys; for low 4, most of the time needed
to complete a cycle is spent crawling by the saddle points. The bifurcation diagram and periods displayed in this figure were computed using
XPPAUT (Ermentrout 2002). (E-F) The dotted (upper) and solid (lower) black lines show the time spent passing through parts of the cycle
other than crawlbys and the proportion of the cycle spent in crawlbys, respectively, as 7 (E) and 4 (F) are varied.

crawlbys are not only slower with lower 4, but they also take
up proportionately more of the time needed to complete a
cycle (compare the solid black curve showing overall cycle
periods to the dashed purple curves in Fig. 3D).

In sum, slowing the overall dynamics (by decreasing the
prey’s population growth rate, ) and pushing trajectories
closer to the two saddle points (by decreasing the predator’s
half-saturation constant, /) will each extend the cycle period,
but they do so through different mechanisms. Decreasing the
prey’s growth rate extends the duration of saddle crawlbys,
but only by slowing the dynamics as a whole and prolonging

the entire cycle period. Decreasing the half-saturation con-
stant enhances the degree to which predators can overexploit
their prey, leading to more pronounced population crashes.
These crashes exaggerate the crawlby effect by placing the
populations closer to the two saddle points at joint extinction
and at the prey carrying capacity. The result is longer cycles
that are made up of relatively more time spent for prey recov-
ery (passage near (0, 0)) and then predator recovery (passage
near (K, 0)). These deterministic results hint at how environ-
mental stochasticity that causes variability in specific model
parameters could modulate the influence of saddle crawlbys
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and hence, as discussed in the ‘Saddle crawlbys convert vari-
able population levels at specific cycle phases into variable
cycle periods” section, might impact cycle durations. With
this insight attained, we are now ready to explore model
behavior when stochastic effects are incorporated.

Including environmental stochasticity

To model different possible ways for environmental sto-
chasticity to affect the predator—prey interaction, we replace
individual parameters with a Cox—Ingersoll-Ross (CIR) sto-
chastic process (Cox et al. 1985). That is, we can make any
parameter p (where p is a stand-in for 7, 4, ...) stochastic by
modeling it as

dp = Y(p — p)ds + o[ pdW 3)

where W(#) is a Wiener process (i.e. a continuous stochas-
tic process for which successive time increments, W(z+Az)
— WA#), are independently normally distributed, with mean
0 and variance Az) and p is the mean (i.e. baseline) value
for the parameter. This formulation prevents parameters from
becoming negative and has been shown in past work to have
various mathematically desirable and biologically reasonable
properties: it is mean-reverting and has a positive temporal
autocorrelation that decays exponentially (Allen 2016).

All of our numerical results on the stochastic dynamics of
our model represent averages derived from simulations run
for 20 000 time units. For each run, we discard an initial
period extending from time 0 up until asymptotic cycling
behavior has been reached (defined as the time of the first
crossing of one of the boundaries given in the Supporting
information). Each sample on which averaging is performed
includes at least 400 cycles during which population sizes stay
above the extinction threshold. We have also used small-noise
approximations to derive analytical relationships between
certain model features and passage times along the axes and
near the saddle points. Although the details of these calcula-
tions are outside the scope of this article, we provide a sum-
mary of relevant results in the Supporting information.

We focus here on contrasting the effects of a noisy prey
growth rate, 7, versus a noisy predator half-saturation con-
stant, /. This pair of parameters spans many interesting con-
trasts (i.e. appearance in a linear versus only in a nonlinear
term, a multiplier versus a denominator, a rate in one species’
equation versus both), represents distinct modes of influenc-
ing cycle period in the deterministic model (‘Formulation
and behavior of the underlying deterministic model’ section),
and thus serves well to illustrate the impacts of different
sources of noise. We recognize that natural species interac-
tions are not characterized by a single stochastic parameter,
but modeling one parameter at a time as stochastic allows us
to isolate different putative effects of noise. Modeling noise
only in rapproximates the situation where the prey’s intrinsic
growth rate is more sensitive to environmental perturbations
(e.g. fluctuations in temperature) than are other aspects of
the system. Noise in / represents a situation where predator
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behavior or physiology is the system feature most sensitive
to perturbations. Simulations with noise in other param-
eters that, like 7, appear linearly in Eq. 2, such as 4, 6, m,
yield similar results to those with noise in 7, consistent with a
mathematical averaging argument (Supporting information).

Stochasticity can cause variance in cycle period, but not all
stochasticity has the same impact

Adding Cox—Ingersoll-Ross parameter noise (Eq. 3) to the
Rosenzweig—MacArthur model results in noisy cycles such as
the ones displayed in Fig. 4. Figure 4A and B shows an exam-
ple in which noise in 7 causes cycles to vary in amplitude but
maintain a nearly constant period. Figure 4C and D shows
that for the same noise amplitude (o value in Eq. 3), the cycle
period is much more variable with noise in 4.

Figure 4 shows just two examples, but they are repre-
sentative of the systematic differences we found when we
explored different intensities of environmental noise acting
on different model parameters. For the same absolute noise
magnitudes (6 values), the cycle period becomes much more
variable when noise affects the half-saturation constant of the
functional response, 4, than when it affects prey growth rate,
7 (Fig. 5A, B). Specifically, for noise in 7, the mean cycle dura-
tion changed little with increasing ¢ from the deterministic
value of 24.83 time units, and the standard deviation of these
durations depended only weakly on o (Fig. 5A). Conversely,
mean cycle durations and variability increased substantially
with 6 when noise entered through 4 (Fig. 5B), with the dis-
tribution developing a tail of long cycle durations. For com-
parison with the biological data, note that the results plotted
here yield CVs from 0.04 to 0.12 with noise in 7 and from
0.11 to 0.33 with noise in 4. Results for 6=0.2 (red bars in
Fig. 5) are also summarized in Table 2 (cases 2-3). Finally, if
noise enters into both /4 and 7 simultaneously (Table 2 case 4,
implemented via two copies of Eq. 3 that either share (cor-
related) or have independent (uncorrelated) instantiations of
the Wiener process W), the results are similar to the case with
noise in 4 alone (case 3).

There are several possible explanations for the stronger
effect of noise in 4 than noise in 7 in generating variable cycle
periods. This is the pattern we expect if cycle period variabil-
ity is driven by variation in the time it takes to complete sad-
dle crawlbys, because changes in / exaggerate the influence of
crawlbys while changes in 7do not (Fig. 3C, D). Alternatively,
or perhaps in addition, noise of a particular magnitude may
have a larger impact when it enters through 4 simply because
our baseline value of 4 is lower. In other words, a noise ampli-
tude of, say, 6=0.2 acting on an 7 of 1.0 might reason-
ably have less effect than the same 6=0.2 actingonan 4 of
0.15. We tested this idea in two ways. First, we reduced 7
to 0.15 to eliminate the difference in magnitudes between 7
and 4. This results in unrealistically long cycles, but allows a
straightforward comparison of standard deviation and CV.
Again, the CV in cycle period is much higher when noise
enters through 4/ (Table 2, cases 6-7). Second, we returned to

the baseline parameter set and increased the noise amplitude
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0.3 and noise in 7 (A-B) or / (C-D). (A, C) show the dynamics over

2000 time units in the (x, y) phase plane, during which several population cycles, each progressing counterclockwise, occur. (B, D) show
time series of x (black) and y (red) for the first 500 of the 2000 time units shown in (A, C). Because noise is present, each cycle is defined
from the time of crossing through the entry boundary into region D (Fig. 2B) up to the next such crossing time, under the requirement
that all other regions are traversed between these crossings. This definition produces results that largely agree with the peak-to-peak (or
trough-to-trough) times but avoid the issue of stochastic fluctuations that produce multiple local peaks and troughs.

on 7 (by rescaling by \/Z ) to allow the prey population to
become quite small at times, approaching the x-axis and now
allowing the exaggerated crawlby effect to be seen via noise
in 7. The result is a cycle period CV that is now quite com-
parable to the baseline case with noise in 4 (Table 2, case 5
compared to case 3).

We thus found evidence of true differences (Table 2,
cases 2-3 and 6-7) in how noise in the prey growth rate and
noise in the predator’s half-saturation constant affect vari-
ability in the cycle period. We attribute these differences to
the way changes in 4 affect the proximity of cycles to saddle
points and hence the relative speed of saddle crawlbys, and
we investigate this hypothesis in more detail below (‘Cycle
variability is driven by variable passage times near extinction
and prey carrying capacity’ section). We also found evidence
that at some sufficiently high level, noise in either parameter
can lead to exaggerated crawlbys that cause cycle periods to
become more variable (Table 2, cases 3 and 5).

Finally, we note that the half-saturation constant, 4, is
not unique in its ability to drive the system through the AH
bifurcation and produce cycles of increasingly large magni-
tude, as shown in Fig. 3B; in fact, all parameters except 7
have that property in this model. Therefore, we consider one

more scenario before moving on: we increase 7 from its base-
line value of 0.6 to 0.65. In the absence of stochasticity, this
change moves the periodic orbit of the deterministic system
(2) from the outer cycle in Fig. 3A to a path with a less proxi-
mal passage past the axes. That is, while the system is still
cycling with m=0.65, the expected (mean) trajectory does
not pass as close to the saddle points. Unexpectedly, changing
m in this way increases the CV of cycle periods (Supporting
information; Table 2, cases 8-9 compared to 2-3), and the
trend continues for 7=0.7. Once again, this effect is particu-
larly strong for noise in the half-saturation constant (Table 2).
Although we might have expected more cycle period variabil-
ity deeper into the crawlby region (smaller 72), it appears that
being closer to the bifurcation increases the flexibility in the
paths that orbits can take. The long durations are still associ-
ated with close crawlbys, but crawlbys now occur within a
more variable mix of long and short cycles. Recall that CV is
given by standard deviation divided by mean. As 7 increases,
if we were to lose the long duration cycles, then the mean and
standard deviation could both decrease in such a way that
CV could drop. In reality, what we find is that increasing m
does introduce some short cycles but also maintains enough
long crawlby cycles that mean does not change much while
standard deviation grows, and hence CV does increase. These
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Figure 5. Distributions of relative cycle durations for various noise amplitudes 6. (A-B) Results from simulations with model (2) and (3).
(A) With noise in 7, the mean and median duration remain nearly constant, while the distribution widens and remains symmetric, as ¢
increases. (B) With noise in 4, the mean and median duration increase and the distribution widens and becomes skewed, with a tail of long
duration cycles, as 6 increases. Note that the two panels show different ranges of cycle durations. (C-D) Results from Gillespie simulations
of model (2) with carrying capacity K=8000 and environmental noise in 7 (C) or in 4 (D) are similar to those from the simulations with
only environmental noise shown in (A, B). These plots were derived from equal time simulations across noise conditions, which led to the
following numbers of cycles. For the Gillespie case: 5,=0.1, 978 cycles; 6,=0.2, 915 cycles; 6,=0.3, 839 cycles; 5,=0.1, 1018 cycles;
6,=0.2, 1018 cycles; 6,=0.3, 1003 cycles. For simulations of (2), (3): 6,=0.1, 775 cycles; 6,=0.2, 668 cycles; 6,=0.3, 410 cycles;

6,=0.1, 809 cycles; 6,=0.2, 808 cycles; 6,=0.3, 798 cycles.

trends persist if 7 is increased further, until we eventually run
into difficulty defining distinct cycles. The trends are reversed
if m is decreased, although as 72 becomes smaller, we start to
observe more cycles on which x and y drop below our mini-
mum size cutoff of 107.

Demographic noise does not overwhelm environmental noise
effects

We have included noise in model (2) as Cox—Ingersoll-Ross
parameter noise (Eq. 3), representing environmental vari-
ability. In reality, population dynamics necessarily include
demographic noise as well. In theory, this variability across
individuals could induce dynamic effects that dominate the
overall cycle paths, reducing the importance of the environ-
mental fluctuations that we have described. We tested this
possibility by performing simulations in which all aspects
of the population dynamics are treated as events with pre-
scribed expected rates, and events are implemented sequen-
tally at random, with event likelihoods and timings based
on these expected rates. The details of these simulations,
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which are based on the Gillespie algorithm, are provided in
the Supporting information. We found that these simula-
tions yielded very similar distributions of cycle durations to
our direct simulations of system (2)—(3), matching the differ-
ences between noise in 7 and noise in 4 as well as those across
noise amplitudes ¢ (Fig. 5; Supporting information). This is
important for confirming that none of our main findings are
expected to disappear in the presence of demographic noise,
and that they are not due simply to specific modeling or meth-
odological choices.

Cycle variability is driven by variable passage times near
extinction and prey carrying capacity

We have shown how parameter changes can affect the prox-
imity of cycles to the saddle points (Fig. 3) and how sto-
chastic parameter variation generates variable cycle periods
(Table 2, Fig. 5). One step that remains is to connect these
results and determine whether cycle period variation can
indeed be traced to variable passage by the saddle points. To
do this, we begin by partitioning the cycle into a sequence of
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Table 2. Mean, standard deviation and coefficient of variation of cycle periods under different scenarios.

Mean Standard

Case Noisy parameter(s) ~ Parameter set ~ Noise amplitude, ¢ period deviation CV Explanation

1 None Baseline 0 24.83 0 0 Deterministic

2 r Baseline 0.2 24.74 2.07 0.084  Base stochastic case to
compare

3 h Baseline 0.2 28.88 5.59 0.19 Base stochastic case to
compare

4 rand h Baseline 6,=0,=0.2 28.70 5.47 0.19 Shared Wiener process

4 randh Baseline 6,=0,=0.2 29.76 6.01 0.20 Independent Wiener
processes

5 r Baseline 0.2//h = 0.516 25.26 5.06 0.20 Scaled up amplitude

6 r F=h=015 0.2 68.04 4.30 0.063  Set 7 equal to baseline h

7 h reh =015 0.2 61.81 7.58 0.123  Setrequal to baseline h

8 r m=0.65 0.2 23.79 2.30 0.097  Increase m, which
decreases baseline orbit
amplitude

9 h m=0.65 0.2 28.95 7.80 0.27 Increase m, which

decreases baseline orbit
amplitude

Results are based on simulations of (2) with our baseline parameter set given in Table 1, except where noted. In all cases except for the
deterministic case (case 1), either r or h (or both in cases 4 and 4’) is made stochastic by applying Eq. 3; the Wiener processes in cases 4 and

4" appear in (3).

six segments (Fig. 2B), A: passage by (0, 0); B: prey growth
from near 0 to near K; C: passage by (X, 0); D: predator
growth and prey decline (that is, movement from near (X, 0)
toward the y-axis); E: the transition from predator growth to
predator decline (i.e. passage across the predator’s nullcline);
and finally, F: sharp predator decline to again approach (0,
0). Our hypothesis that saddle crawlbys drive cycle period
variability leads us to predict that significant variance should
be observed in the passage times near (0, 0) and (X 0). We
calculate times spent transitioning through each of the six
segments as the populations undergo a cycle, based on times
when trajectories cross partition entrance and exit bound-
aries at locations that we specify in the (x, y) plane. The
locations used for these boundaries for most of our simu-
lations are listed in the Supporting information; for a few
special cases with altered cycle paths (cases 6-9 in Table 2),
we used other boundaries. The boundary locations ensure
that fluctuations rarely cause spurious crossings, while even
those orbits with relatively large fluctuations do not miss
any boundaries. Passage times through partition segments
are computed sequentially, with the exit boundary from one
region also serving as the entrance boundary for the next
region. For example, once a trajectory exits a region through
its exit boundary, re-entry through the exit boundary due to
stochasticity does not count as another passage through the
original region; rather, it is ignored, and the calculation of the
time of passage through the next region continues until that
region’s exit boundary is crossed. This subdivision allows us to
decompose the variability in the full cycle period based on the
variability in the time needed to complete each step.

The distributions of times spent in these regions differ
significantly in their variability. By a clear margin, the most
variability arises in the passage times through regions A and

C, corresponding to crawlbys near the saddles (Supporting
information). Moreover, substantially more variability
occurred in these regions with noise in /4 than with noise in
7; note the differences in x-axis details between different his-
tograms in Supporting information as well as between the
histograms in Fig. 5A and those in Fig. 5B. The Gillespie
simulations shown in Fig. 5C and D yielded qualitatively,
and in many cases quantitatively, similar results. Supporting
information includes a thorough comparison of the dura-
tions and standard deviations of passage times through the
individual regions, for various noise amplitudes, across noise
in 7 and /4 and across the two simulation experiments.

While substantial variability in the durations of the crawl-
bys (that is, in passage times near (0, 0) and (X 0)) occurs, the
times spent within crawlbys remain long enough to dominate
the overall cycle period. For example, the positive correla-
tion between period and these passage times, but not between
period and passage time along the x-axis, is readily apparent
in Fig. 6. These relationships, especially for the passage time
near (0, 0), are even tighter with noise in 7 than with noise
in 4, although the passage times themselves are less widely
distributed when the noise is in 7.

Loss of prey strongly influences each cycle period, with little
history dependence between cycles

We have shown strong evidence that environmental noise has
different impacts on the distribution of cycle periods, depend-
ing on the origin of the noise, and that variability in cycle
periods is dominated by variability in the duration of the
two saddle crawlbys near (0, 0) and (X, 0). To conclude our
characterization of these effects, we ask what factors best pre-
dict these crawlby durations. Longer crawlbys near origin or
boundary saddle points elevate the risk of stochastic extinction

Page 11 of 17

d ‘0 *90L00091

sdny woxy

sdny) SUONIpUOD) pue SULIL A 938 “[ZZ0T/01/ST] U0 A1eIqrT SWIUQ A “WRISKS K1eaqrT ANSIOATUN YSINGSNI JO ANSIOATUN G 06T607MI0/T T 101/10p/wOY K[

10)/w0d" KA[IM A

ASUAIIT SUOUWIWO)) AN d[qeardde oYy £q pauraA0S a1e sI[ANIE Y oSN JO SA[NT 10J AIRIQIT AUIUQ AI[TA UO (SUONIPUOI-PUE-



(A) Noise in r
35

(93]
o

cycle period
nN
(]

20
b ~ pervs. (0,0) passage
per vs. x-axis passage
per vs. (K,0) passage
15 :
0 5 10 15
passage time
(C) Noise in A
50
g\ﬁ 5 AAA\,AA, /L;A i o, ):\7
40 e gpupter 5
o ;
i
@
[}
o 30
5 5
>
[9)
20 4 per vs. (0,0) passage
per vs. x-axis passage
€ per vs. (K,0) passage
0 10 20 30

passage time

(B) Noise in r

35
. .
30+
O
i)
2
° 25+
7]
>
)
20 o Ve
* ¢ ® per. vs. sum
* per. vs. difference
15
5 10 15 20 25
sum/difference in crawlby times
(D) Noise in 1
50 -
i
(X4
40
°
i)
@
o
o 30
©
>
o
20+
® per.vs.sum
* per. vs. difference

0 10 20 30 40
sum/difference in crawlby times

Figure 6. Correlations between the different durations for (A-B) noise in the prey growth rate () or (C-D) noise in the predator’s half-
saturation constant (/) for baseline parameter values and noise amplitude 6=0.2. (A, C) The full cycle period (per) is tightly correlated with
passage times near the (0, 0) and (X, 0) saddle points (blue triangles and red circles, respectively). In contrast, it is effectively independent
of the time it takes to transition between the saddles (‘x-axis passage’, cyan markers). (B, D) Cycle period is highly correlated with the total
time needed to complete both saddle crawlbys (‘sum’, black dots). It is uncorrelated with the time needed to complete all other parts of the
cycle (‘difference’, i.e. the total cycle period minus the sum of the two saddle crawlby durations; green dots).

by prolonging the time during which one or both popula-
tions are small. Longer crawlbys also delay the time until the
next population peak, with important consequences for some
cyclic species like outbreaking forest insects. We therefore ask,
what should we look for in a population’s history to help us
anticipate the durations of upcoming saddle crawlbys?

For deterministic dynamics, we saw that the time to com-
plete a crawlby of the extinction state is linearly related to
In(x,,,), the logarithm of the prey density when the popula-
tions first enter the vicinity of the extinction saddle (‘Saddle
crawlbys convert variable population levels at specific cycle
phases into variable cycle periods’ section). In the presence
of environmental stochasticity, we find that a similar relation
still holds, with a strong correlation between In(x,;,) and the
passage time by the (0, 0) saddle (Fig. 7A, B). There is also a
strong correlation between log prey density, In(x,; ), and log
predator density upon entry into the neighborhood of the (X,
0) saddle (Fig. 7C, D), and between the time of passage near
(K, 0) and this log predator density (Fig. 7E, F). Thus, even in
the presence of noise, the prey’s population density near the
end of the predator-decline portion of the cycle, which can be
considered the start of a saddle crawlby, strongly influences

Page 12 of 17

the durations of both saddle crawlbys, which in turn strongly
influence the time it will take to complete the current cycle.
The effects of noise during the passage around the rest
of the cycle eliminates the effects of these entry positions,
so that the positions of entry into the neighborhoods of the
saddles in the next cycle are effectively independent of past
history (Supporting information). This independence means
that we expect no meaningful autocorrelation in the periods
of consecutive cycles. It also validates our decision (Methods)
to omit individual cycles with unrealistically low population
sizes from our analyses. The consistency of Gillespie simula-
tion results with those from simulating Eq. 2 and 3 provides
additional evidence that successive cycles are effectively inde-
pendent. The timescale of the CIR stochastic process, v, likely
plays a role in this effect and the others that we describe.
Specifically, if y were too large, then stochastic parameters
would be pinned close to their mean values, reducing vari-
ability, while if y were too small, then significant history-
dependence could emerge; for a wide range of y between
these extremes, the results that we report are preserved.
Finally, referring back to Fig. 7 and comparing the two
columns, we notice that the predator and prey densities upon
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Figure 7. Strong dependence of passage times through saddle neighborhoods on entry positions into those neighborhoods. In (A, C, E) the
prey growth rate, 7, is the stochastic parameter and in (B, D, F) the predator’s half-saturation constant, 4, is stochastic. In all cases, the
quantity on the horizontal axis is shown on a logarithmic scale; a logarithmic scale is also used on the vertical axis in (C, D). (A-B) show
the linear dependence of the (0, 0) saddle crawlby duration on the log of the prey’s density upon entry into that neighborhood, (In(x,; ).
(C-D) show linear dependence of log predator density upon entry into the neighborhood of (X 0), In(y,,,), on In(x, ). Finally, (E-F) show
the linear dependence of the duration of the (X, 0) saddle crawlby on In(y,., ). Results for noise amplitude 6=0.1, 0.2 and 0.3 are shown

in (A, B, E, F), while (C, D) show 6=0.2.

entry into the two saddle neighborhoods differ, depend-
ing on the source of noise. When noise enters through the
prey’s population growth rate, , the entry values seem to
be symmetrically distributed on the logarithmic scale, while
when noise enters through the half-saturation constant, they
become skewed toward smaller values even on the logarith-
mic scale, corresponding to the skew toward longer passage
times (Supporting information). A mathematical argument
for this disparity is provided in the Supporting information.

Generalization

We have demonstrated a range of phenomena related to
cycle duration variability associated with saddle crawlbys in
the Rosenzweig—MacArthur model (2) with environmental
stochasticity of the form (3). There are two natural ways to
think about generalization from this specific case study. First,
from a mathematical perspective, we have already identified
key elements that can give rise to cycle period variability: 1)
the presence of a saddle point; 2) an underlying, deterministic
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limit cycle that allows the system to repeatedly pass near the
saddle, creating the opportunity for crawlbys; and 3) a source
of environmental noise that combines with the determinis-
tic cycle to induce a distribution of entry positions into the
neighborhood of the saddle, to generate both close and more
distant passages. In any two-dimensional system, near any
saddle equilibrium point featuring exponential approaches
of population levels toward the equilibrium and growth of
population levels away from the equilibrium, the dynamics
is qualitatively similar to system (1), with natural general-
izations to higher dimensions. As an additional test of this
mechanism, we took the set of x; values observed in our
previous simulations of the Rosenzweig—MacArthur model
with 6=0.2 and used these in the initial conditions of the
more general, deterministic system (1). We simulated (1) and
recorded the time needed to reach x=0.1 from points (x,
)= (xy;,» 0.1), then calculated the CV in these passage times
across the different x, ;, values. When we obtained our x,;, val-
ues from Rosenzweig—MacArthur simulations with noise in 4,
the resulting CV in passage time was 0.62. In contrast, when
our x,;, values came from simulations with noise in 7, the CV
was only 0.19. This provides additional confirmation of the
central role of the population distribution upon approach to
a saddle crawlby in producing variability in cycle durations.
An interesting challenge for future work is to determine how
different noise processes (i.e. other than Eq. 3) affect the shape
of this pre-crawlby population distribution.

A second perspective on generalization from system (2)
is that this model represents certain biological features such
as logistic resource population growth in the absence of
consumption that are present in a wide range of consumer—
resource interactions, but also neglects some other features.
Thus, we can ask what happens if we incorporate alternative
or additional biological effects. We consider this question in
the Supporting information. In brief, we find that our results
on the link between saddle crawlbys and cycle duration vari-
ability do generalize, with other dynamical features making
secondary contributions to this variability.

Discussion

Although real cyclic populations can display considerable vari-
ability in cycle period, previous authors have observed that
stochastic models of cycling populations typically predict
much more regular periods (Dwyer et al. 2004). Inspired by
recent work emphasizing the contribution of saddle crawl-
bys to non-equilibrium ecological dynamics (Hastings et al.
2018), we hypothesized that stochasticity that causes varia-
tion in how close populations come to saddle points during
their cycles might promote variability in cycle periods. Our
numerical study of stochastic Rosenzweig—MacArthur preda-
tor—prey cycles confirms this idea. For the cycles that we
observe in model simulations, variability in period is domi-
nated by deviation in the passage times past the saddle points
(Supporting information); further evidence for the central
impact of saddle crawlbys arises in the relation of these passage
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times to the proximity of trajectories to the stable manifolds
of the two saddles (i.c. the x- and y-axes; Fig. 7). Our simula-
tion results reflect averages over many more cycles than will be
present in empirical time series. However, the independence
of crawlby durations from one cycle to the next suggests that
although there will be a drop in precision with smaller sam-
ples, there should not be any systematic bias that would pre-
vent the effects we illustrate here from appearing in empirical
data. Our results thus update our understanding of the condi-
tions under which environmental stochasticity can contribute
meaningfully to observed cycle period variation in nature.

Our work was motivated by the paradox posed by
Dwyer et al.’s (2004) observation that forest insect cycle dura-
tions are much more variable than predicted by standard mod-
els, and our specific focus on consumer—resource interactions
reflects the long history of understanding forest insect dynam-
ics through consumer—resource models (Anderson and May
1980). However, the theoretical basis for our result is general:
processes that generate variability in the conditions present
when a saddle crawlby begins will generate variability in the
duration of whatever dynamic pattern that crawlby is a part
of, whether cyclic or otherwise. For example, variable times
to invasion by a novel competitor could be due to variability
in the initial state of the community or in its state following
management activities, if the native community’s equilibrium
is a saddle (as in standard Lotka—Volterra competition; see
Francis et al. (2021)). In short, the situation we chose to study
here is just one example of how saddle crawlbys might mean-
ingfully impact the ecological patterns we observe.

The crawlby-induced mechanism that we present has
important features in common with some previously-pro-
posed explanations for variable cycle periods. In the gypsy
moth outbreaks studied by Dwyer et al. (2004) and the midge
outbreaks studied by Ives et al. (2008), for example, variable
timing of fluctuations arises from the effect of stochasticity
on multiple coexisting attractors, separated by saddle dynam-
ics, in the underlying deterministic ‘skeleton’, or model of
density-dependent interactions on top of which stochastic-
ity introduces randomness. In both these models and ours,
the saddles are a feature of the deterministic skeleton, and
stochasticity allows for movement past the saddles to require
variable passage times. However, the important distinction
is that in the attractor-switching mechanism, the transit
past the saddle itself is relatively fast (Boettiger and Hastings
2013) and not the source of variability, which instead arises
from variable residence times at one attractor or the other.
Nevertheless, these examples and ours jointly demonstrate
that a broader consideration of the role of saddles and other
non-equilibrium phenomena, and of how they interact with
stochasticity, is likely to continue deepening our ecological
understanding (Hastings et al. 2018, 2021, Abbott 2020).
For any particular system with variably timed cycles, fitting
models to data and using dynamical systems techniques to
study the resulting models for evidence of saddle crawl-
bys, multiple stable attractors, resonance or other dynamic
features would provide the clearest view of which putative
mechanism may be acting to induce variability; for example,
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models derived from data may have saddles at states where
the system tends to linger, suggesting a crawlby mechanism,
whereas those from other data may instead have attractors at
such states, supporting the attractor-switching mechanism.

In brief, the first ingredient in the crawlby-induced vari-
ability mechanism that we describe is that consumer—resource
dynamics sets up a log-normal distribution of population sizes
at return times to the same neighborhood of a saddle across
successive cycles (Supporting information). This distribution
of population sizes results in a broad distribution of passage
times through the saddle crawlby, and hence of overall cycle
durations. Within this qualitatively general phenomenon,
quantitative differences arise depending on the source and
amplitude of the stochasticity in the dynamics of population
interactions, which determines the shape of this log-normal
distribution, as well as the extent to which fluctuations are
impactful during the saddle crawlby itself (note the differences
in passage time variability for fixed entry values in Fig. 7A, B,
E, F). We suspect that this general framework is important in
a variety of contexts and warrants further study. In our work,
we find that CIR noise (Eq. 3) in the half-saturation constant,
which causes variation in the efficiency with which predators
exploit their prey and hence in the extent of the population
crashes experienced on each passage around the cycle, induces
more variability in cycle period than does noise in the prey’s
population growth rate (Fig. 4, 5, Supporting information;
Table 2, cases 2—3). Rescaling our noise sources to equalize the
CV of the fluctuations from these sources, rather than their
amplitude, seems to mitigate this difference (Table 2, case 3
versus case 5). Yet, when we vary parameters to induce closer
passage near the axes and saddles, corresponding to more
extreme population losses during cycle troughs, and also to
equalize the noise source CVs, the difference between these
noise sources re-emerges (Table 2, case 6 versus case 7). A
heuristic idea of the cause of this distinction comes from the
observation that for fixed predator level y, noise in 7 enters the
dynamic equation for x in Eq. 2 in a linear manner, with small
deviations in r multiplying the small term x(1 — x/K) that
behaves like x itself near x=0. On the other hand, noise in 4
enters the equations like 1/4, such that even small deviations
in 4 can have an amplifying effect (see the first two sections of
the Supporting information for more details).

While we propose that saddle-crawlbys may occur in
a range of contexts, it is important to note that the simple
presence of a saddle point is not sufficient for our proposed
mechanism to play out. A population, cyclic or otherwise,
whose trajectory does not pass near the saddle will not experi-
ence the dynamical slowing that creates a crawlby. That said,
an interesting, and perhaps initially surprising, quantitative
observation emerging from our study is that crawlby-induced
variability is strongest when the mean cycle trajectory is not
too close to the saddle points (Fig. 3A, Supporting informa-
tion), such that individual cycles represent a mix of crawlbys
and non-crawlbys. Indeed, even though crawlbys are respon-
sible for the overall cycle duration variability, the most hetero-
geneous mixture of long and short passage times past saddles
results when crawlbys are only influential on a subset of cycles.

This result also highlights the point that even though several
consecutive cycles may occur in which cyclic populations do
not come close to extinction, their population dynamics may
nonetheless hold the ingredients to produce significant crashes
under environmental fluctuations that are within the range of
expected occurrence. An interesting direction for future math-
ematical analysis is to explain the observation from our simu-
lations that as a parameter moves closer to an AH bifurcation
point and the deterministic limit cycle correspondingly moves
away from the saddle crawlby, the distribution of cycle dura-
tions appears to expand in both directions to include both
shorter cycles and, counterintuitively, longer cycles (e.g. Table
2, case 2 versus case 8 and case 3 versus case 9).

As with any modeling study, the effects we consider in this
work do not provide a complete representation of reality. Real
predators may disperse, change behaviors or evolve in ways
that change how closely their prey, and thus they, approach
extinction (van Baalen and Sabelis 1995). Alternatively, in
biological systems, local populations with high-amplitude
cycles may routinely go extinct and then undergo recolo-
nization. Our results were conditioned on the populations
not going extinct, and we do not model dispersal in or out
of the local community nor do we model complex behav-
iors, alternative prey and other such factors that are likely
to influence the dynamics of real populations. Nevertheless,
the elements of our model, like population cycles and saddle
crawlbys, and their connections to real dynamics are well
studied (Murdoch et al. 2003). Our contribution, therefore,
is not to replicate or explain the dynamics of any specific
single population, but to extend our understanding of cycles
and crawlbys as mechanisms through which environmental
stochasticity can influence predator—prey dynamics. In doing
so, we reconcile a long-recognized mismatch between models
and data in their representation of how variable the periods
of cyclic populations may be.

In cases in which populations become small during the
trough of each cycle, one might reasonably expect demo-
graphic stochasticity to be an important factor in cycle dura-
tion variability. However, our Gillespie simulations reveal
that the effects of environmental stochasticity on cycle period
variation are robust to the inclusion of demographic noise.
It is nevertheless possible that other dynamic mechanisms
not considered in this study may also contribute to tempo-
ral variability in cycle durations, and of course even more
extreme variability can arise from larger perturbations such as
environmental collapse or human interventions. Our intent
is not to argue that saddle crawlbys are the only or even the
predominant source of cycle period variability, but rather to
highlight their putative role.

The observations in this paper represent interesting topics
for future mathematical analysis, particularly for models such
as Eq. 2 and 3 to which the stochastic averaging methods
of Skorokhod et al. (2002) cannot be applied. Previous ana-
lytical and numerical work, some done in other biological
contexts, has discussed some of the differences in dynamics
that arise from the details of how stochasticity appears in a
dynamical system (Lande 1993, Goldwyn and Shea-Brown
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2011, Allen 2016, Vadillo 2019). In contrast to the individ-
ual-level impact of demographic noise, environmental noise
is shared across entire populations, which is conducive to
larger variability and can increase the likelihood of extreme
events such as extinction (Lande 1993). In theory, we could
have implemented another stochastic process, such as mean-
reverting Ornstein—Uhlenbeck (OU) dynamics, as an alter-
native to Eq. 3. The specific representation of stochasticity
that we have implemented in Eq. 3 features biologically desir-
able properties: it causes the stochastic parameter to remain
positive, to be mean-reverting, and to have some history-
dependence, with a temporal autocorrelation that is nonzero
and decays exponentially (cf. Allen 2016); in our simulations,
it also yields more close passes near the saddle than does
mean-reverting OU dynamics. Our findings reveal that cycle
duration variability can strongly relate to what distribution of
prey densities arises across repeated approaches into a saddle
crawlby, and similar distributions will yield similar variability,
irrespective of which stochastic processes generate them.

To our knowledge, analytical work to date has not addressed
how such stochasticity impacts cycle durations and other
properties in systems with saddle crawlbys. A related direction
that has been pursued analytically (Ashwin and Postlethwaite
2016) is how stochasticity affects the passage of trajectories
along a heteroclinic cycle (i.e. a union of orbits that each
form a connection from one saddle point to another, which
together form a closed loop). These systems may require noise
to oscillate, unlike model (2), but nonetheless the resulting
oscillations do feature passage near saddle points. Ashwin and
Postlethwaite (2016) analyzed residence times near equilibria
and switches between neighborhoods of attractors (including
heteroclinic cycles), while Giner-Baldé et al. (2017) derived
analytical approaches to compute the power spectra of observ-
ables in a planar system with a heteroclinic cycle. Both of these
analyses were done on systems with stochasticity in the form
of additive Gaussian white noise, however, whereas the CIR
noise that we consider poses a new challenge for future work.

Odur results update our understanding of how environmen-
tal stochasticity can contribute meaningfully to observed cycle
period variation in nature. While our results for stochastic
prey growth rate, 7, largely confirm past results that stochastic-
ity has little effect on cycle period, we have shown that some
noise sources — specifically those that induce significant vari-
ability in the distance from saddle points as part of the normal
cycle — can lead to substantial cycle period variation. We find
that this effect is strongest when the mean cycle trajectory is
not too close to the saddle points, such that individual cycles
represent a mix of crawlbys and non-crawlbys. In these cases,
the coeflicient of variation in cycle period approaches 0.3,
the mean value estimated from time series data. We therefore
conclude that variance in the duration of saddle crawlbys pro-
vides a viable explanation for some, though not all, observed
instances of variability in cycle periods.
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