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For a class of interacting particle systems in continuous space, we show
that finite-volume approximations of the bulk diffusion matrix converge at
an algebraic rate. The models we consider are reversible with respect to the
Poisson measures with constant density, and are of nongradient type. Our
approach is inspired by recent progress in the quantitative homogenization of
elliptic equations. Along the way, we develop suitable modifications of the
Caccioppoli and multiscale Poincaré inequalities, which are of independent
interest.
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1. Introduction. The goal of this paper is to make progress on the quantitative analysis
of interacting particle systems. We consider a class of models in which each particle follows
a random evolution on Rd which is influenced by the configuration of neighboring particles.
The models we consider are reversible with respect to the Poisson measures with constant
density, uniformly elliptic, and of nongradient type. For similar models in this class, the
hydrodynamic limit and the equilibrium fluctuations have been identified rigorously. In both
these results, the limit object is described in terms of the bulk diffusion matrix. The main result
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of this paper is a proof that finite-volume approximations of this diffusion matrix converge at
an algebraic rate.

Our strategy is inspired by recent developments in the quantitative analysis of elliptic equa-
tions with random coefficients, and in particular on the renormalization approach developed
in [7–11, 13, 14]; see also [58] for a gentle introduction, and [36–40, 56, 59] for another
approach based on concentration inequalities. This renormalization approach has shown its
versatility in a number of other settings, covering now the homogenization of parabolic equa-
tions [5], finite-difference equations on percolation clusters [6, 24, 26], differential forms
[25], the “∇φ” interface model [12, 23], and the Villain model [27].

Here as in the other settings mentioned above, we start from a representation of the finite-
volume approximation of the bulk diffusion matrix as a family of variational problems, de-
noted by ν(U,p), where U ⊆ Rd and p ∈ Rd encodes a slope parameter. This quantity is
subadditive as a function of the domain U . We then identify another subadditive quantity,
denoted by ν∗(U, q), with U ⊆ Rd and q ∈ Rd , such that ν∗(U, ·) is approximately convex
dual to ν(U, ·). These quantities ν and ν∗ provide with finite-volume lower and upper approx-
imations of the limit diffusion matrix. Roughly speaking, the algebraic rate of convergence is
obtained by showing that the defect in the convex duality between ν and ν∗ can be controlled
by the variation of ν and ν∗ between two scales; we refer to [58], Section 3, for some intuition
as to why a control of this sort is plausible.

Besides the identification of the most appropriate subadditive quantities ν and ν∗, one of
the main difficulties we encounter relates to the development of certain functional inequali-
ties. As is to be expected, we will make use of Poincaré inequalities, which allow to control
the L2 oscillation of a function by the L2 norm of its gradient. However, we will need to be
more precise than this. Indeed, we want to be able to assert that if the gradient of a function
is small in some weaker norm, then we can control the L2 oscillation of the function more
tightly. In other words, we need some analogue of the inequality ‖u‖L2 ≤ C‖∇u‖H−1 . Recall
that in the current paper, the functions of interest are defined over the space of all possible
particle configurations. The precise statement of our “multiscale Poincaré inequality” is in
Proposition 3.5.

Another crucial ingredient we need is a version of the Caccioppoli inequality. In the stan-
dard setting of elliptic equations, this inequality states that the L2 norm of the gradient of a
harmonic function can be controlled by the L2 norm of its oscillation on a larger domain; one
can think of this inequality as a “reverse Poincaré inequality” for harmonic functions. If u

denotes the harmonic function, then a standard proof of this inequality consists in testing the
equation for u with uφ, where φ is a smooth cutoff function which is equal to 1 in the inner
domain, and is equal to 0 outside of the larger domain.

In our context, we need to “turn off” the influence of any particle that would come too
close to the boundary of the larger domain. In this case, a naive modification of the standard
elliptic argument is inapplicable. This comes from the fact that, as the domains become large,
there will essentially always be many particles that come dangerously close to the boundary
of the larger domain; so the cutoff function φ would essentially always have to vanish, except
on an event of very small probability. We therefore need to identify a different approach. In
fact, we settle for a modified form of the Caccioppoli inequality, in which we control the L2

norm of the gradient of a solution by the L2 norm of the solution on a larger domain, plus
a fraction of the L2 norm of its gradient on the larger domain; see Proposition 3.6 for the
precise statement.

At present, we think that the results presented here should allow to derive a quantitative
version of the hydrodynamic limit, as well as to derive “near-equilibrium” fluctuation re-
sults. To be more precise, for a domain of side length R and an initial density profile varying
macroscopically, it should be possible to control the convergence to the hydrodynamic limit
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at a precision of R−α , for some α > 0. Conversely, starting from a density profile that has
variations of size bounded by R− d

2 +α , it should be possible to identify the asymptotic fluctu-
ations of the density field. These would represent first steps towards bridging the gap between
these two results.

By analogy with the results obtained for elliptic equations and other contexts (see, in par-
ticular [58], Section 3, and [11], Chapter 2 and following), we hope that the results obtained
here will provide the seed for more refined, and hopefully sharp, quantitative results. This
will hopefully allow to improve the exponent α > 0 appearing in the previous paragraph to
some explicit exponent (ideally α = d

2 ), and thereby to bring us closer to a full understanding
of nonequilibrium fluctuations.

We now turn to a brief overview of related works on interacting particle systems. The
result in the literature that is possibly closest to ours is that of [49]. In this work, the authors
consider the diffusion matrix associated with the long-time behavior of a tagged particle in the
symmetric simple exclusion process, which is called the self-diffusion matrix. The main result
of [49] is a proof that finite-volume approximations of the self-diffusion matrix converge to
the correct limit. However, no rate of convergence could be obtained there. The qualitative
result of [49] was extended to the mean-zero simple exclusion process, and to the asymmetric
simple exclusion process in dimension d ≥ 3, in [44].

An easy consequence of the results of the present paper is that the bulk diffusion matrix
is Hölder continuous as a function of the density of particles. However, for related models, it
was shown in [15, 48, 50, 60–62, 68, 70] that the diffusion matrix depends smoothly on the
density of particles. The situation seems comparable to that encountered when considering
Bernoulli perturbations of the law of the coefficient field for elliptic equations, see [31, 57].
Possibly more difficult situations for obtaining regularity results on the homogenized param-
eters, with less independence built into the nature of the perturbation, include the ∇φ model
[12], and nonlinear elliptic equations [7, 8].

Two classical approaches to the identification of the hydrodynamic limit have been devel-
oped. The first, called the entropy method, was introduced in [42], and extended to certain
nongradient models in [64, 69]. The second, called the relative entropy method, was intro-
duced in [71], and was extended to a nongradient model in [34].

The asymptotic description of the fluctuations of interacting particle systems at equilibrium
has been obtained in [18, 21, 22, 29, 66]. The extension of this result to nongradient models
was obtained in [20, 33, 55].

We are not aware of any results concerning the nonequilibrium fluctuations of a nongradi-
ent model. For gradient models (or small perturbations thereof), we refer in particular to [22,
28, 32, 45, 63]. We also refer to the books [46, 47, 67] for much more thorough expositions
on these topics, and reviews of the literature.

In relation to the purposes of the present paper, several works considered the problem of
obtaining a rate of convergence to equilibrium for a system of interacting particles [16, 19,
30, 41, 43, 51, 54]. Heat kernel bounds for the tagged particle in a simple exclusion process
were obtained in [35].

In all likelihood, the results presented here can be extended to other reversible models
of nongradient type, provided that the invariant measures satisfy some mixing condition (an
algebraic decay of correlations would suffice; see [13]). More challenging directions include
dynamics that are not uniformly elliptic, such as hard spheres. Extensions to situations in
which the noise only acts on the velocity variable are likely to also be very challenging. Even
further away are purely deterministic dynamics of hard spheres, as considered, for instance,
in [17]. For any of these models, it would of course also be desirable to make progress on the
quantitative analysis of the large-scale behavior of a tagged particle.
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The rest of the paper is organized as follows. In Section 2, we introduce some notation and
state the main result precisely; see Theorem 2.1. We then prove several functional inequali-
ties in Section 3, including the multiscale Poincaré inequality and the modified Caccioppoli
inequality. In Section 4, we define the subadditive quantities, and establish their elementary
properties. Finally, in Section 5 we prove Theorem 2.1.

2. Notation and main result. In this section, we introduce some notation and state our
main result.

Let Mδ(R
d) be the set of σ -finite measures that are sums of Dirac masses on Rd , which

we think of as the space of configurations of particles. We denote by Pρ the law on Mδ(R
d)

of the Poisson point process of density ρ ∈ (0,∞), with Eρ the associated expectation. We
denote by FU the σ -algebra generated by the mappings μ 
→ μ(V ), for all Borel sets V ⊆ U ,
completed with all the Pρ -null sets, and we set F := FRd . We give ourselves a function
a◦ : Mδ(R

d) →Rd×d
sym , where Rd×d

sym is the set of d-by-d symmetric matrices. We assume that
this mapping satisfies the following properties:

• uniform ellipticity: there exists � < ∞ such that for every μ ∈ Mδ(R
d),

(1) ∀ξ ∈ Rd, |ξ |2 ≤ ξ · a◦(μ)ξ ≤ �|ξ |2;
• finite range of dependence: denoting by B1 the Euclidean ball of radius 1 centered at the

origin, we assume that a◦ is FB1 -measurable.

We denote by τ−xμ the translation of the measure μ by the vector −x ∈ Rd ; explicitly, for
every Borel set U , we have (τ−xμ)(U) = μ(x + U). We extend a◦ by stationarity by setting,
for every μ ∈ Mδ(R

d) and x ∈ Rd ,

a(μ, x) := a◦(τ−xμ).

While it would be possible to provide with a direct definition of the asymptotic bulk diffusion
matrix (see, for instance, [46], Chapter 7), our purposes require that we identify suitable
finite-volume versions of this quantity. Accordingly, for every bounded open set U ⊆ Rd , we
define the matrix ā(U) ∈ Rd×d

sym to be such that, for every p ∈Rd ,

(2)

1

2
p · ā(U)p

= inf
φ∈H 1

0 (U)
Eρ

[
1

ρ|U |
ˆ

U

1

2

(
p + ∇φ(μ,x)

) · a(μ, x)
(
p + ∇φ(μ,x)

)
dμ(x)

]
.

In this expression, the gradient ∇φ(μ,x) is such that, for any sufficiently smooth function φ,
x ∈ suppμ, and k ∈ {1, . . . , d},

(3) ek · ∇φ(μ,x) = lim
h→0

φ(μ − δx + δx+hek ) − φ(μ)

h
,

with (e1, . . . , ed) being the canonical basis of Rd . As will be explained in more details below,
the space H 1

0 (U) is a completion of a space of functions that are FK -measurable for some
compact set K ⊆ U . The expectation Eρ is taken with respect to the variable μ, a notation
we will always use to denote the canonical random variable on (Mδ(R

d),F,Pρ) (an explicit
writing of

´
U

· · · dμ(x) would actually involve a summation over every point in the intersec-
tion of U and the support of μ). For every m ∈ N, we let �m = Q3m denote the cube of side
length 3m. We define the bulk diffusion matrix ā as

(4) ā := lim
m→∞ ā(�m).
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Although we keep this implicit in the notation, we point out that the matrices ā(U) and ā
depend on the density ρ of particles, which we keep fixed throughout the paper. The fact that
this definition of ā coincides with the more classical definition, which is directly stated in
infinite volume, is explained in Appendix B below. Our main result is to obtain an algebraic
rate for the convergence in (4).

THEOREM 2.1. The limit in (4) is well defined. Moreover, there exist an exponent
α(d,�,ρ) > 0 and a constant C(d,�,ρ) < ∞ such that for every m ∈ N,

(5)
∣∣ā(�m) − ā

∣∣≤ C3−αm.

In the remainder of this section, we clarify some of the definitions appearing earlier, and
introduce some more useful notation.

2.1. Continuum configuration space. For the purposes of the present paper, we will not
need to construct the stochastic process of interacting particles whose large-scale behavior
is captured by the bulk diffusion matrix ā, so we contend ourselves with brief remarks here.
Intuitively, the dynamics is a cloud of particles, which we can denote by

μ(t) =
∞∑
i=1

δXi(t) ∈ Mδ

(
Rd), t ≥ 0,

and each coordinate (Xi(t))t≥0 performs a diffusion with local diffusivity matrix given by
a(μ(t),Xi(t)). General properties of diffusions on the space Mδ(R

d) have been studied
using Dirichlet forms in [1–4]; see also the survey [65]. In our current setup, for a finite N

number of particles, the diffusion process can be defined in the standard way (say, using De
Giorgi–Nash regularity results on the heat kernel, and Kolmogorov’s theorems) as a diffusion
on (Rd)N . For Pρ -almost every μ ∈ Mδ(R

d), one can then define the dynamics of the entire
cloud of particles using finite-volume approximations.

Although we have defined a(μ, x) for every x ∈ Rd , we will in fact only need to appeal
to this quantity in the case when x is in the support of μ. One possible example of local
diffusivity function is a◦(μ) := (1 + 1{μ(B1)=1})Id. For this example, a particle at position
x ∈ Rd follows a Brownian motion with variance 2 whenever there are no other particles in
the unit ball centered at x, while it follows a Brownian motion with unit variance whenever
there is at least one additional particle in this ball (there are also reflection effects at the
transition between these two situations).

For every Borel set U ⊆ Rd , we denote by BU the set of Borel subsets of U . For every
μ ∈ Mδ(R

d), we denote by suppμ the support of μ, and by μ U ∈ Mδ(R
d) the measure

such that, for every Borel set V ⊆Rd ,

(μ U)(V ) = μ(U ∩ V ).

We will often use the following “disintegration” lemma for functions defined on Mδ(R
d).

For definiteness, we state it for functions taking values in R, but this plays no particular
role. Its proof is deferred to Appendix A. Whenever U ⊆ Rd , we write Uc to denote the
complement of U in Rd .

LEMMA 2.1 (Canonical projection). Let f : Mδ(R
d) → R be a function, and for every

Borel set U , measure μ ∈ Mδ(R
d), and n ∈ N, let fn(·,μ Uc) denote the (permutation-

invariant) function

fn

(·,μ Uc) :

⎧⎪⎪⎨⎪⎪⎩
Un →R

(x1, . . . , xn) 
→ f

(
n∑

i=1

δxi
+ μ Uc

)
.
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The following statements are equivalent:

(1) The function f is F -measurable.
(2) For every n ∈ N, the function fn is B⊗n

U ⊗FUc -measurable.

2.2. Lebesgue and Sobolev function spaces. We define L 2 to be the space of F -
measurable functions f such that Eρ[f 2] is finite.

Recall that for sufficiently smooth f : Mδ(R
d) → R, μ ∈ Mδ(R

d) and x ∈ suppμ, we
define ∇f (μ,x) according to the formula in (3). We write ∇f = (∂1f, . . . , ∂df ).

For every open set U ⊆ Rd , we define the sets of smooth functions C ∞(U) and C ∞
c (U)

in the following way. We have that f ∈ C ∞(U) if and only if f is an F -measurable function,
and for every bounded open set V ⊆ U , μ ∈ Mδ(R

d) and n ∈ N, the function fn(·,μ V c)

appearing in Lemma 2.1 is infinitely differentiable on V n. The space C ∞
c (U) is the subspace

of C ∞(U) of functions that are FK -measurable for some compact set K ⊆ U .
We now define H 1(U), an infinite dimensional analogue of the classical Sobolev space

H 1. For every f ∈ C ∞(U), we set

‖f ‖H 1(U) =
(
Eρ

[
f 2(μ)

]+Eρ

[ˆ
U

∣∣∇f (μ,x)
∣∣2 dμ(x)

]) 1
2
.

The space H 1(U) is the completion, with respect to this norm, of the space of functions
f ∈ C ∞(U) such that ‖f ‖H 1(U) is finite (elements in this function space that coincide Pρ -
almost surely are identified). As in classical Sobolev spaces, for every f ∈ H 1(U), we can
interpret ∇f (μ,x), with x ∈ U , in some weak sense. We stress that functions in H 1(U) need
not be FU -measurable. Indeed, the function f can depend on μ Uc in a relatively arbitrary
(measurable) way, as long as f ∈ L 2. If V ⊆ U is another open set, then H 1(U) ⊆ H 1(V ).

We also define the space H 1
0 (U) as the closure in H 1(U) of the space of functions

f ∈ C ∞
c (U) such that ‖f ‖H 1(U) is finite. Notice in particular that, in stark contrast with

functions in H 1(U), a function in H 1
0 (U) does not depend on μ Uc. In the notation

of Lemma 2.1, when f ∈ H 1
0 (U), certain compatibility conditions between the functions

(fn)n∈N also have to be satisfied. If V ⊆ U is another open set, we have that H 1
0 (V ) ⊆

H 1
0 (U) (notice that the inclusion is in the opposite direction to that for H 1 spaces). We also

have the following result.

LEMMA 2.2. For every bounded open set U ⊆ Rd with Lipschitz boundary and
f ∈ H 1

0 (U), we have

(6) Eρ

[ˆ
U

∇f (μ,x)dμ(x)

]
= 0.

PROOF. By density, we can assume that f ∈ C ∞
c (U). We use the functions (fn)n∈N

appearing in Lemma 2.1; moreover, since f (μ) does not depend on μ Uc, we simply write
fn(x1, . . . , xn) in place of fn(x1, . . . , xn,μ Uc). For every k ∈ {1, . . . , d}, we have

Eρ

[ˆ
U

∂kf (μ,x)dμ(x)

]
=

∞∑
n=1

Pρ

[
μ(U) = n

] n∑
i=1

 
Un

ek · ∇xi
fn(x1, . . . , xn)dx1 · · · dxn.

We use Green’s formula for the integral ek · ∇xi
f (x1, . . . , xn) with respect to xiˆ

U

ek · ∇xi
fn(x1, . . . , xn)dxi =

ˆ
∂U

fn(x1, . . . , xn)ek · n(xi)dxi,
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where n(xi) is the unit outer normal. Since f ∈ C ∞
c (U), the quantity fn(x1, . . . , xn) remains

constant when xi moves along the boundary ∂U . Denoting this constant (which depends on
(xj )j �=i) by c, we apply once again Green’s formula to getˆ

U

ek · ∇xi
fn(x1, . . . , xn)dxi =

ˆ
∂U

cek · n(xi)dxi =
ˆ

U

ek · ∇xi
c dxi = 0.

This proves the desired result. �

2.3. Localization operators. We now introduce families of operators that allow to local-
ize a function defined on Mδ(R

d). We state some properties of these operators without proof,
and refer to [41], Section 4.1, for more details.

Recall that for every s > 0, we write by Qs := (− s
2 , s

2)d . We denote the closure of the
cube Qs by Qs , and define Asf := Eρ[f | FQs

]. For any f ∈ L 2, the process (Asf )s≥0 is a

càdlàg L 2-martingale with respect to (Mδ(R
d), (FQs

)s≥0,Pρ). We denote the jump at time
s by

�s(Af ) := Asf − As−f = Asf − lim
t<s,t→s

At f.

We can have �s(Af ) �= 0 only on the event where the support of the measure μ intersects
the boundary ∂Qs . The bracket process ([Af ]s)s≥0 is defined by

(7) [Af ]s := ∑
0≤τ≤s

�τ (Af ).

We have that ((Asf )2 − [Af ]s)s≥0 is a martingale with respect to (FQs
)s≥0.

Notice that the operator As can be interpreted as an averaging of the variable μ Q
c

s ,
keeping μ Qs fixed. As a consequence, for every open set Qs ⊆ U , if f ∈ H 1(U) and
x ∈ Qs ∩supp(μ), there is no ambiguity in considering the quantity As(∇f )(μ,x). Moreover,

(8) ∇Asf (μ,x) = As(∇f )(μ,x),

and Asf belongs to H 1(Qs), by Jensen’s inequality; see Proposition A.1 for details. How-
ever, in general, this function does not belong to H 1

0 (Rd), or any other H 1
0 space. This

comes from the fact that the function Asf may be discontinuous as a particle enters or leave
Qs . To solve this problem, we regularize this conditional expectation in the following way.
For any s, ε > 0, we define

(9) As,εf := 1

ε

ˆ ε

0
As+t f dt.

As above, for every open set U containing Qs+ε , f ∈ H 1(U), and x ∈ Qs+ε ∩ supp(μ),
the quantity As,ε(∇f )(μ,x) is well defined. Irrespectively of the position of the point
x ∈ supp(μ), the gradient of As,εf can be calculated explicitly. Indeed, writing

τ(x) := inf{r ∈ R : x ∈ Qr},
and −→n (x) for the outer unit normal to Qτ(x) at the point x, we have

(10)

∇As,εf (μ,x)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
As,ε(∇f )(μ,x) if x ∈ Qs;
1

ε

ˆ ε

τ(x)−s

As+t

(∇f (μ,x)
)

dt −
−→n (x)

ε
�τ(x)(Af ) if x ∈ (Qs+ε\Qs);

0 if x ∈ Qc
s+ε.
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Recalling that Qs+ε ⊆ U , one can check that As,εf ∈ H 1
0 (U). Similarly, one can define

another regularized localization operator Ãs,ε

(11) Ãs,εf := 2

ε2

ˆ ε

0
(ε − t)As+t f dt,

which can be obtained by applying As,ε twice: Ãs,ε = As,ε ◦ As,ε . We have the identity

(12) Eρ

[
(As,εf )2]= Eρ

[
f (Ãs,εf )

]= Eρ

[
2

ε2

ˆ ε

0
(ε − t)(As+t f )2 dt

]
.

The operator Ãs,ε satisfies properties similar to those of As,ε , and we have

(13)

∇Ãs,εf (μ,x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ãs,ε

(∇f (μ,x)
)

x ∈ Qs;
2

ε2

(ˆ ε

τ(x)−s

(ε − t)As+t

(∇f (μ,x)
)
dt

− (
s + ε − τ(x)

)
�τ(x)(Af )

−→n (x)

)
x ∈ (Qs+ε\Qs);

0 x ∈ Qc
s+ε.

3. Functional inequalities. The goal of this section is to derive functional inequalities
that will be fundamental to the proof of our main result. The first crucial estimate is a mul-
tiscale Poincaré inequality; see Proposition 3.5. This inequality is an improvement over the
standard Poincaré inequality that substitutes the L2 norm of the gradient of the function of
interest by a weighted sum of spatial averages of this gradient. It has a structure comparable
to that of ‖u‖L2 � ‖∇u‖H−1 , where we moreover decompose the H−1 norm into a series a
scales, in analogy with the standard definition of Besov spaces, or the equivalent definition
of H−1 norm in terms of spatial averages; see, for instance, [11], Appendix D. The proof of
this estimate is based on an H 2 estimate for solutions of “−�u = f ,” with “�” being the
relevant Laplacian adapted to our setting; see Proposition 3.4.

The second crucial functional inequality derived here is a Caccioppoli inequality; see
Proposition 3.6. In the standard elliptic setting, the Caccioppoli inequality allows to con-
trol the L2 norm of the gradient of a solution by the L2 norm of the function itself, on a
larger domain; it can thus be thought of as a reverse Poincaré inequality for solutions. In our
context, we are not able to prove such a strong estimate, but prove instead a weaker version
of this inequality that allows to control the L 2 norm of the gradient of a solution by the L 2

norm of the function itself, plus a fraction of the L 2 norm of the gradient on a larger domain.
For every k ≤ n ∈ N, we define Zn,k := 3kZd ∩ �n. Up to a set of null measure, the

family (z +�k)z∈Zn,k
forms a partition of �n. For any y ∈ Rd , we write �n(y) to denote the

unique cube containing y that can be written in the form z + �n for some z ∈ 3nZd . This
is well defined except for some y’s in a set of null measure; we can decide on an arbitrary
convention for these remaining cases. We also write Zn,k(y) := 3kZd ∩�n(y).

The following “multiscale spatial filtration” will be useful in the rest of the paper: for every
n, k ∈N with k ≤ n, and y ∈ Rd , we define the σ -algebra Gy

n,k by

(14) Gy
n,k := σ

({
μ(z +�k)

}
z∈Zn,k(y),μ

(
Rd\�n(y)

))
.

We use the shorthand Gn,k := G0
n,k and Gn := Gn,n. One can verify that, for every

n,n′, k, k′ ∈N and y, y′ ∈ Rd ,

(15) n ≤ n′, k ≤ k′ and �n(y) ⊆ �n′
(
y′) =⇒ Gy′

n′,k′ ⊆ Gy
n,k.
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We also define the analogue of Gn for a general Borel set U ⊆ Rd as

(16) GU := σ
(
μ(U),μ

(
Rd\U ))

.

The condition Eρ[f | GU ] = 0 will appear many times in this paper, usually in the context of
centering a function in H 1(U). Using the functions (fn) defined defined in Lemma 2.1,
we can rewrite the condition Eρ[f | GU ] = 0 as: for every n ∈ N and Pρ -almost every
μ ∈ Mδ(R

d),

(17)
ˆ

Un

fn

(
x1, . . . , xn,μ Uc)dx1 · · · dxn = 0.

3.1. Poincaré inequality. We present two types of Poincaré inequalities: one for the space
H 1

0 (U), and one for the space H 1(U). We first state an elementary version for product
spaces and functions in the standard Sobolev H 1 space. The proof is classical and can be
found, for instance, in [53], Theorem 13.36 and Proposition 13.34. For any bounded Borel
set U ⊆ Rd , we write diam(U) to denote the diameter of U , and for every f ∈ L1(U), we
denote the Lebesgue integral of f , normalized by the Lebesgue measure of U , by 

U

f := |U |−1
ˆ

U

f.

PROPOSITION 3.1 (Poincaré inequality in classical Sobolev spaces). There exists a
constant C(d) < ∞ such that for every bounded convex open set U ⊆ Rd , n ∈ N, and
f ∈ H 1(Un), we have

(18)
 

Un

(
f −

( 
Un

f

))2
≤ C diam(U)2

n∑
i=1

 
Un

|∇xi
f |2.

A direct application of Proposition 3.1 gives the following proposition.

PROPOSITION 3.2 (Poincaré inequality in H 1(U)). There exists a constant C(d) < ∞
such that for every bounded convex open set and f ∈ H 1(U), we have

(19) Eρ

[(
f −Eρ[f | GU ])2]≤ C diam(U)2Eρ

[ˆ
U

|∇f |2 dμ

]
.

PROOF. Without loss of generality, we may assume that Eρ[f | GU ] = 0; subtracting
Eρ[f | GU ] from f does not change the right-hand side of (19). We use the functions (fn)

from Lemma 2.1, and recall that since Eρ[f | GU ] = 0, we have that every function fn is cen-
tered; see (17). We can apply Proposition 3.1 to every fn: for a constant C < ∞ independent
of n, we have 

Un

∣∣fn

(
x1, . . . , xn,μ Uc)∣∣2 dx1 · · · dxn

≤ C diam(U)2
n∑

i=1

 
Un

∣∣∇xi
fn

(
x1, . . . , xn,μ Uc)∣∣2 dx1 · · · dxn.

We then sum over n and take the expectation to obtain the result. �

Functions in the space H 1
0 (U) enjoy certain continuity properties as particles enter and

leave the domain U . For this reason, it suffices to center the function by its mean value to
have a Poincaré inequality.
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PROPOSITION 3.3 (Poincaré inequality in H 1
0 (U)). There exists a constant C(d) < ∞

such that for every bounded open set U ⊆ Rd , and every f ∈ H 1
0 (U),

(20) Eρ

[(
f −Eρ[f ])2]≤ C diam(U)2Eρ

[ˆ
U

|∇f |2 dμ

]
.

PROOF. Without loss of generality, we assume that Eρ[f ] = 0. By density, we may re-
strict to f ∈ C ∞

c (U). Applying [52], Theorem 18.7, to f , we have that

Eρ

[
f 2]≤ ρ

ˆ
Rd

Eρ

[(
f (μ + δx) − f (μ)

)2]dx.

By the Fubini–Tonelli theorem, and since f is FU -measurable, this reduces to

Eρ

[
f 2]≤ ρEρ

[ˆ
U

(
f (μ + δx) − f (μ)

)2 dx

]
.

To establish Proposition 3.3, it thus only remains to show that

(21) Eρ

[ˆ
U

(
f (μ + δx) − f (μ)

)2 dx

]
≤ C(d)

ρ
Eρ

[ˆ
U

|∇f |2 dμ

]
.

We recall that

(22)

ˆ
U

Eρ

[(
f (· + δx) − f (·))2]dx

= ∑
n∈N

P
(
μ(U) = n

) 
Un

(ˆ
U

∣∣fn+1(x1, . . . , xn, x) − fn(x1, . . . , xn)
∣∣2 dx

)
dx1 · · · dxn,

where we used the notation (similar to but simpler than in Lemma 2.1)

(23) fn(x1, . . . , xn) := f

(
n∑

k=1

δxk

)
, x1, . . . , xn ∈ U.

Let n ∈ N be fixed. Since f ∈ C ∞
c (U), for every x̄ ∈ ∂U we have that

fn(x1, . . . , xn) = fn+1(x1, . . . , xn, x̄).

That is, for every x1, . . . , xn ∈ Un, the (smooth) function

G : U →R,G(·) := fn+1(x1, . . . , xn, ·) − fn(x1, . . . , xn),

belongs to the (standard) Sobolev space H 1
0 (U). We may thus apply the standard Poincaré

inequality for functions in H 1
0 (U) to infer thatˆ

U

∣∣fn+1(x1, . . . , xn, x) − fn(x1, . . . , xn)
∣∣2 dx

≤ C(d)diam(U)2
ˆ

U

∣∣∇xfn+1(x1, . . . , xn, x)
∣∣2 dx.

Inserting this into (22), using that P(μ(U) = n) = e−ρ|U | (ρ|U |)n
n! and relabelling n + 1 as n,

yields thatˆ
U

Eρ

[(
f (· + δx) − f (·))2]dx

≤ C(d)

ρ
diam(U)2

∑
n∈N

P
(
μ(U) = n

)
n

 
Un

∣∣∇xnfn(x1, . . . , xn)
∣∣2 dx1 · · · dxn.
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To establish (21) from this, it only remains to observe that, by definition (23) each function
fn is invariant under permutations, we have 

Un

|∇x1fn|2 =
 

Un

|∇xi
fn|2 for all i = 1, . . . , n.

This concludes the proof of (21) and establishes Proposition 3.3. �

3.2. H 2 estimate for the homogeneous equation. When the diffusion matrix a is a con-
stant, the solutions to the corresponding equation have a better regularity than otherwise,
and in particular, the following H 2 estimate holds. One can define the function with higher
derivative iteratively: for x, y ∈ supp(μ), x �= y

∂j∂kf (μ,x, y) := lim
h→0

∂kf (μ − δy + δy+hej , x) − ∂kf (μ,x)

h
,

and for the case x = y, it makes sense as

∂j ∂kf (μ,x, x) := lim
h→0

∂kf (μ − δx + δx+hej , x + hej ) − ∂kf (μ,x)

h
.

We also denote by ∇2f (μ,x, y) the matrix {∂j ∂kf (μ,x, y)}1≤j,k≤d , and its norm is defined
as ∣∣∇2f (μ,x, y)

∣∣2 := ∑
1≤j,k≤d

∣∣∂j ∂kf (μ,x, y)
∣∣2.

PROPOSITION 3.4 (H 2 estimate). Let f ∈ L 2, and let u ∈ H 1(Qr) solve “−�u = f ”
in the sense that for any v ∈ H 1(Qr),

(24) Eρ

[ˆ
Qr

∇u(μ,x) · ∇v(μ,x)dμ

]
= Eρ[f v].

We have the H 2(Qr) estimate

(25) Eρ

[ˆ
(Qr)2

∣∣∇2u(μ,x, y)
∣∣2 dμ(x)dμ(y)

]
≤ Eρ

[
f 2].

REMARK 1. By testing (24) with v = 1{μ(Qr)=n,μ Qc
r (V )=m}, we see that f has to satisfy

Eρ[f | GQr ] = 0 as a condition of compatibility.

PROOF OF PROPOSITION 3.4. Although this is not really part of the statement, we start
by showing that for every f ∈ L 2 satisfying the compatibility condition Eρ[f | GQr ] = 0,
there exists a solution u to (24), and we will show its link with the classical elliptic equation.
At first, we notice that the problem can be studied on the space of functions

W = {
g ∈ H 1(Qr) : Eρ[g | GQr ] = 0

}
.

Because for a general function v ∈ H 1(Qr), Eρ[v | GQr ] can be seen as a constant in (24):
its derivative is 0 so the left-hand side of (24) is 0. For the right-hand side, we have

Eρ

[
fEρ[v | GQr ]

]= Eρ

[
Eρ[f | GQr ]Eρ[v | GQr ]

]= 0.

Thus when applying the operation v 
→ v−Eρ[v | GQr ], we do not change (24) and we can re-
strict the Laplace equation on W . Moreover, with the notation in Lemma 2.1, Eρ[v | GQr ] = 0
implies every vn is centered; see (17).

Secondly, we test (24) with v1{μ(Qr)=n}1{(μ Qc
r )(V )=m}, which is conditioning the number

of particles μ(Qr), and also (μ Qc
r)(V ) for some bounded Borel set V as an environment
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outside Qr . Then for arbitrary choices of n, m, V , in fact we have a classical elliptic equation
using the canonical projection Lemma 2.1

(26)

ˆ
(Qr)n

n∑
k=1

∇xk
un

(
x1, . . . , xn,μ Qc

r

) · ∇xk
vn

(
x1, . . . , xn,μ Qc

r

)
dx1 · · · dxn

=
ˆ

(Qr)n
fn

(
x1, . . . , xn,μ Qc

r

)
vn

(
x1, . . . , xn,μ Qc

r

)
dx1 · · · dxn.

Thus the solution u can be described as follows: we sample the environment outside Qr and
fix the number of particle μ(Qr) = n at first, then solve the classical elliptic equation in
H 1(Rnd) with mean zero. Finally, we combine all the un and this gives the solution of (24).
In other words, the statement of (24) can be reinforced as

∀v ∈ W, Eρ

[ˆ
Qr

∇u(μ,x) · ∇v(μ,x)dμ
∣∣∣ GQr

]
= Eρ[f v | GQr ].

We now turn to study the H 2 estimate. We apply the classical H 2(Rnd) estimate for (26)
(see, for instance, [11], Lemma B.19, and its proof)

(27)

ˆ
(Qr)n

∑
1≤i,j≤n

|∇xi
∇xj

un|2(x1, . . . , xn,μ Qc
r

)
dx1 · · · dxn

≤
ˆ

(Qr)n
|fn|2(x1, . . . , xn,μ Qc

r

)
dx1 · · · dxn.

Taking the expectation of (27) then gives the result. �

3.3. Multiscale Poincaré inequality. For cubes of size 3n, the Poincaré inequalities de-
rived in the previous subsection (say with k = n in Proposition 3.2) have a right-hand side
that scales like 32n. In this subsection, we derive a multiscale version of the Poincaré inequal-
ity, that aims to improve upon this scaling, provided that some local average of the gradient
of the function is not too large. We recall that the multiscale spatial filtration Gy

n,k is defined
in (14). For every k ≤ n ∈ N, x, y ∈ Rd such that x ∈ �n(y), open set U containing �k(x),
and f ∈ H 1(U), the following quantity is well defined:

(28)
(
S

y
n,k∇f

)
(μ, x) := Eρ

[ 
�k(x)

∇f dμ
∣∣∣ Gy

n,k

]
,

where we use the notation, for every Borel set V such that μ(V ) ∈ (0,∞) and function g

defined on supp(μ) ∩ V ,

(29)
 

V

g dμ := 1

μ(V )

ˆ
V

g dμ,

and for definiteness, we also set
ffl
V

g dμ = 0 if μ(V ) = 0. We use the shorthand notation
Sn,k := S0

n,k and Sn := Sn,n. This operator has a convenient spatial martingale structure, as
displayed in the following lemma; see also Figure 1 for an illustration.

LEMMA 3.1 (Martingale structure for Sn,k). For every n,n′, k, k′ ∈N, y, y′ ∈ Rd satis-
fying

n ≤ n′, k ≤ k′, �n(y) ⊆ �n′
(
y′),

every x ∈ �k′(y′), and f ∈ H 1(�n′(y′)), we have

(30) S
y′
n′,k′∇f (μ,x) = Eρ

[ 
�k′ (x)

(
S

y
n,k∇f

)
dμ

∣∣∣ Gy′
n′,k′

]
.
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FIG. 1. The largest cube on this figure is �n′ (y′). The operator S
y′
n′,k′ computes the spatial average in every

subcube of size 3k′
, for example the cube in red in the image. We can apply at first the operator S

y
n,k , which works

on the finer scales 3k and 3n, represented by the cubes with orange and blue boundaries, respectively.

PROOF. The key observation is (15), stating that Gy
n,k is a finer σ -algebra than Gy′

n′,k′ , so
that

S
y′
n′,k′∇f (μ,x)

= Eρ

[
1

μ(�k′(x))

ˆ
�k′ (x)

∇f dμ
∣∣∣ Gy′

n′,k′

]

= Eρ

[ ∑
z∈Zn,k∩�k′ (x)

μ(z +�k)

μ(�k′(x))
Eρ

[
1

μ(z +�k)

ˆ
�k(z)

∇f dμ
∣∣∣ Gy

n,k

] ∣∣∣ Gy′
n′,k′

]
.

By the definition of Sy
n,k∇f (μ, z), we obtain

S
y′
n′,k′∇f (μ,x) = Eρ

[ ∑
z∈Zn,k∩�k′ (x)

μ(z +�k)

μ(�k′(x))

(
S

y
n,k∇f

)
(μ, z)

∣∣∣ Gy′
n′,k′

]

= Eρ

[
1

μ(�k′(x))

ˆ
�k′ (x)

S
y
n,k∇f dμ

∣∣∣ Gy′
n′,k′

]
.

This is (30). �

To prepare further for the multiscale Poincaré inequality, we also give the following ex-
plicit expression for Sy

n,k∇f . We use the notation
 

(zi+�k)1≤i≤N

:=
 

zi+�k

· · ·
 

zN+�k

.

LEMMA 3.2. Using the notation of Lemma 2.1 with μ �n(y) =∑N
i=1 δxi

, for any
x ∈ �n(y) and any f ∈ H 1(�n(y)), we have

(31)

(
S

y
n,k∇f

)
(μ, x)

∏
z∈Zn,k(y)

1{μ(z+�k)=Nz}

= 1

μ(�k(x))

∑
j :xj∈�k(x)

 
(zi+�k)1≤i≤N

∇xj
fN

(·,μ �c
n

) ∏
z∈Zn,k(y)

1{μ(z+�k)=Nz},
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with N =∑
z∈Zn,k(y) Nz and {zi}1≤i≤N any fixed sequence such that

(32) ∀z ∈ Zn,k(y),
∣∣{i ∈ {1, . . . ,N} : zi = z

}∣∣= Nz.

Moreover, for every j , j ′ such that xj , xj ′ ∈�k(x), we have

(33)
 

(zi+�k)1≤i≤N

∇xj
fN

(·,μ �c
n

)=
 

(zi+�k)1≤i≤N

∇xj ′ fN

(·,μ �c
n

)
.

PROOF. Without loss of generality, we set y = 0. Then let N = ∑
z∈Zn,k

Nz and we use
the canonical projection

(Sn,k∇f )(μ,x)
∏

z∈Zn,k(y)

1{μ(z+�k)=Nz}

= 1

μ(�k(x))
Eρ

[ ∑
xj∈�k(x)

∇xj
fN

(·,μ �c
n

) ∏
z∈Zn,k

1{μ(z+�k)=Nz}
∣∣∣ Gn,k

]
.

The key point is to write
∏

z∈Zn,k
1{μ(z+�k)=Nz} with respect to {xi}1≤i≤N such that

μ �n =∑N
i=1 δxi

. Let {zi}1≤xi≤N be any fixed sequence so that every z in Zn,k appears
exactly Nz times, as displayed in (32). We have

∏
z∈Zn,k

1{μ(z+�k)=Nz} = ∑
σ∈SN

N∏
i=1

1{xσ(i)∈zi+�k},

where SN is the symmetric group. Moreover, under Gn,k every permutation has equal proba-
bility, and then each xi is uniformly distributed in the associated cube zσ(i) + �k . Thus, we
have

(Sn,k∇f )(μ,x)
∏

z∈Zn,k

1{μ(z+�k)=Nz}

= 1

μ(�k(x))

1

|SN |
∑

σ∈SN

 
(zσ(i)+�k)1≤i≤N

∑
xj∈�k(x)

∇xj
fN

(·,μ �c
n

) N∏
i=1

1{xi∈zσ(i)+�k}.

Notice that for every 1 ≤ i ≤ N , xi ∈ zσ(i) + �k means xσ−1(i) ∈ zi + �k , and the quantity∑
xj∈�k(x) ∇xj

fN(·,μ �c
n) is permutation invariant. So we have

∑
xj∈�k(x)

∇xj
fN

(
x1, . . . , xN,μ �c

n

) N∏
i=1

1{xi∈zσ(i)+�k}

= ∑
xj∈�k(x)

∇xj
fN

(
x1, . . . , xN,μ �c

n

) N∏
i=1

1{x
σ−1(i)

∈zi+�k}

= ∑
x
σ−1(j)

∈�k(x)

∇x
σ−1(j)

fN

(
xσ−1(1), . . . , xσ−1(N),μ �c

n

) N∏
i=1

1{x
σ−1(i)

∈zi+�k}

= ∑
xj∈�k(x)

∇xj
fN

(
x1, . . . , xN,μ �c

n

) N∏
i=1

1{xi∈zi+�k}.

Therefore, the term for each permutation has the same contribution, and we thus obtain (31).
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Then we prove (33). To avoid possible confusion in the notation, we let yj , yj ′ be the j th
and j ′th coordinates, then we exchange them and use the invariance under permutation of
fN ,

(34)

ek · ∇xj
fN(. . . , yj , . . . yj ′, . . .)

= lim
h→0

fN(. . . , yj + hek, . . . yj ′, . . .) − fN(. . . , yj , . . . yj ′, . . .)

h

= lim
h→0

fN(. . . , yj ′, . . . yj + hek, . . .) − fN(. . . , yj ′, . . . yj , . . .)

h

= ek · ∇xj ′ fN(. . . , yj ′, . . . yj , . . .).

Moreover, the condition xj , xj ′ ∈�k(x) implies that zj = zj ′ and

(35) 1{yj∈zj+�k}1{yj ′∈zj ′+�k} = 1{yj ′∈zj+�k}1{yj∈zj ′+�k}.
We combine (34) and (35) to conclude (33). �

We now use the operators S
y
n,k as our locally averaged gradient to obtain the following

multiscale Poincaré inequality. Notice in particular the factor of 3k inside the sum on the
right-hand side of (36), which we aim to leverage upon later by combining this with informa-
tion on the smallness of Sn,k∇u for k close to n.

PROPOSITION 3.5 (Multiscale Poincaré inequality). There exists a constant C(d) < ∞
such that for every function u ∈ H 1(�n) satisfying Eρ[u | Gn] = 0, we have

(36) ‖u‖L 2 ≤ C

(
Eρ

[ˆ
�n

|∇u|2 dμ

]) 1
2 + C

n∑
k=0

3k

(
Eρ

[ˆ
�n

|Sn,k∇u|2 dμ

]) 1
2
.

PROOF. Let w ∈ H 1(�n) be such that Eρ[w | Gn] = 0 and that solves “−�w = u,” in
the sense that

(37) ∀v ∈ H 1(�n), Eρ

[ˆ
�n

∇w · ∇v dμ

]
= Eρ[uv],

and this relation also holds conditionally on Gn:

(38) ∀v ∈ H 1(�n), Eρ

[ˆ
�n

∇w · ∇v dμ
∣∣∣ Gn

]
= Eρ[uv | Gn].

Thanks to the condition Eρ[u | Gn] = 0, these equations are well defined; see the proof of
Proposition 3.4 for a detailed discussion. This proposition asserts that

(39) Eρ

[ˆ
(�n)2

∣∣∇2w(μ,x, y)
∣∣2 dμ(x)dμ(y)

]
≤ Eρ

[
u2].

We test (37) with u and write a telescopic sum with (Sn,k∇w)0≤k≤n to get

(40)

Eρ

[
u2]= Eρ

[ˆ
�n

∇w · ∇udμ

]
= (40)-a + (40)-b + (40)-c,

(40)-a = Eρ

[ˆ
�n

(∇w − Sn,0∇w) · ∇udμ

]
,

(40)-b =
n−1∑
k=0

Eρ

[ˆ
�n

(Sn,k∇w − Sn,k+1∇w) · ∇udμ

]
,

(40)-c = Eρ

[ˆ
�n

(Sn,n∇w) · ∇udμ

]
.
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We treat each of these three terms in turn. For (40)-a, we use the Cauchy–Schwarz inequality
to write

(40)-a ≤
(
Eρ

[ˆ
�n

|∇w − Sn,0∇w|2 dμ

]) 1
2
(
Eρ

[ˆ
�n

|∇u|2 dμ

]) 1
2
.

The first term on the right-hand side above can be rewritten as

(41) Eρ

[ˆ
�n

|∇w − Sn,0∇w|2 dμ

]
= Eρ

[ ∑
z∈Zn,0

Eρ

[ˆ
z+�0

|∇w − Sn,0∇w|2 dμ
∣∣∣ Gn,0

]]
.

We use the canonical projection Lemma 2.1 for w with μ �n = ∑N
i=1 δxi

, and the do the
decomposition conditioned on Gn,0 that

w(μ) =
∞∑

N=0

∑
∑

z∈Zn,0
Nz=N

wN

(
x1, . . . , xN,μ �c

n

) ∏
z∈Zn,0

1{μ(z+�0)=Nz}.

It suffices to study one term wN(x1, . . . , xN,μ �c
n)
∏

z∈Zn,0
1{μ(z+�0)=Nz}. We can apply

(31): let {zi}1≤i≤N be a fixed sequence such that (32) holds (with y = 0 there). For any
x ∈ �n we have

(42)

Sn,0∇w(μ,x)
∏

z∈Zn,0

1{μ(z+�0)=Nz}

= 1

μ(�0(x))

∑
xj∈�0(x)

 
(zi+�0)1≤i≤N

∇xj
wN

(·,μ �c
n

) ∏
z∈Zn,0

1{μ(z+�0)=Nz}.

We apply (42) in (41) and just study the sum over one z′ in Zn,0:

Eρ

[ˆ
z′+�0

|∇w − Sn,0∇w|2 dμ
∏

z∈Zn,0

1{μ(z+�0)=Nz}
∣∣∣ Gn,0

]

= ∑
xj∈z′+�0

 
(zi+�0)1≤i≤N

( ∏
z∈Zn,0

1{μ(z+�0)=Nz}

×
∣∣∣∣∇xj

wN

(·,μ �c
n

)− 1

μ(z′ +�0)

∑
xj ′∈z′+�0

 
(zi+�0)1≤i≤N

∇xj ′ wN

(·,μ �c
n

)∣∣∣∣2).

Then we use the symmetry proved in (33), that in fact every ∇xj
wN has the same contribution

for all xj ∈ z′ +�0,

Eρ

[ˆ
z′+�0

|∇w − Sn,0∇w|2 dμ
∏

z∈Zn,0

1{μ(z+�0)=Nz}
∣∣∣ Gn,0

]

= ∑
xj∈z′+�0

 
(zi+�0)1≤i≤N

( ∏
z∈Zn,0

1{μ(z+�0)=Nz}

× ∣∣∇xj
wN

(·,μ �c
n

)−
 

(zi+�0)1≤i≤N

∇xj
wN

(·,μ �c
n

)∣∣2).

For the equation above, we can use the Poincaré inequality Proposition 3.1 because it is
centered and every xi lives uniformly in its associated small cube zi + �0. We remark that
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the constant C here is independent of N :

Eρ

[ˆ
z′+�0

|∇w − Sn,0∇w|2 dμ
∏

z∈Zn,0

1{μ(z+�0)=Nz}
∣∣∣ Gn,0

]

≤ C
∑

1≤i≤N

∑
xj∈z′+�0

 
(zi+�0)1≤i≤N

∣∣∇xi
∇xj

wN

(·,μ �c
n

)∣∣2 ∏
z∈Zn,0

1{μ(z+�0)=Nz}.

We put this estimate back to (41), do the sum over all z′ ∈Zn,0:∑
z′∈Zn,0

Eρ

[ˆ
z′+�0

|∇w − Sn,0∇w|2 dμ
∏

z∈Zn,0

1{μ(z+�0)=Nz}
∣∣∣ Gn,0

]

≤ C
∑

1≤i,j≤N

 
(zi+�0)1≤i≤N

∣∣∇xi
∇xj

wN

(·,μ �c
n

)∣∣2 ∏
z∈Zn,0

1{μ(z+�0)=Nz}

= CEρ

[ˆ
(�n)2

∣∣∇2w(μ,x, y)
∣∣2 dμ(x)dμ(y)

∏
z∈Zn,0

1{μ(z+�0)=Nz}
∣∣∣ Gn,0

]
.

Finally, we do the expectation and the sum over all
∏

z∈Zn,0
1{μ(z+�0)=Nz}, and use the H 2-

estimate (39) to obtain that

(43)

Eρ

[ˆ
�n

|∇w − Sn,0∇w|2 dμ

]

≤ CEρ

[ˆ
(�n)2

∣∣∇2w(μ,x, y)
∣∣2 dμ(x)dμ(y)

]
≤ CEρ

[
u2],

and this concludes that

(44) (40)-a ≤ C
(
Eρ

[
u2]) 1

2

(
Eρ

[ˆ
�n

|∇u|2 dμ

]) 1
2
.

The term (40)-b can be treated similarly. For every k, we apply at first the conditional
expectation with respect to Gn,k :

Eρ

[ˆ
�n

(Sn,k∇w − Sn,k+1∇w) · ∇udμ

]

= ∑
z∈Zn,k

Eρ

[
Eρ

[ˆ
z+�k

(Sn,k∇w − Sn,k+1∇w) · ∇udμ
∣∣∣ Gn,k

]]

= Eρ

[ ∑
z∈Zn,k

ˆ
z+�k

(Sn,k∇w − Sn,k+1∇w) · (Sn,k∇u)dμ

]
.

Then we use the Cauchy–Schwarz inequality to obtain that

Eρ

[ˆ
�n

(Sn,k∇w − Sn,k+1∇w) · ∇udμ

]

≤
(
Eρ

[ ∑
z∈Zn,k

ˆ
z+�k

|Sn,k∇w − Sn,k+1∇w|2 dμ

]) 1
2
(
Eρ

[ ∑
z∈Zn,k

ˆ
z+�k

|Sn,k∇u|2 dμ

]) 1
2
.
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We use the definition in (28) and Jensen’s inequality for |Sn,k∇w − Sn,k+1∇w|2. For every
z ∈ Zn,k , since (Sn,k+1∇w)(μ, z) is Gn,k-measurable,

(45)

|Sn,k∇w − Sn,k+1∇w|2(μ, z) =
(
Eρ

[ 
z+�k

(∇w − Sn,k+1∇w)dμ
∣∣∣ Gn,k

])2

≤ Eρ

[ 
z+�k

|∇w − Sn,k+1∇w|2 dμ
∣∣∣ Gn,k

]
.

Then we sum over all z ∈ Zn,k , and we can treat it like (40)-a and (43) with the Poincaré
inequality in the scale 3k and the H 2-estimate (39), yielding

Eρ

[ ∑
z∈Zn,k

ˆ
z+�k

|Sn,k∇w − Sn,k+1∇w|2 dμ

]
≤ Eρ

[ˆ
�n

|∇w − Sn,k+1∇w|2 dμ

]

≤ C32kEρ

[
u2].

We have thus shown that

(46) (40)-b ≤ C
(
Eρ

[
u2]) 1

2

(
n−1∑
k=0

3k

(
Eρ

[ˆ
�n

|Sn,k∇u|2 dμ

]) 1
2
)
.

For (40)-c, we use (28) and the Cauchy–Schwarz inequality to get that

(40)-c = Eρ

[ˆ
�n

(Sn,n∇w) · (Sn,n∇u)dμ

]

≤
(
Eρ

[ˆ
�n

|Sn,n∇w|2 dμ

]) 1
2
(
Eρ

[ˆ
�n

|Sn,n∇u|2 dμ

]) 1
2
.

To treat the term Eρ[´�n
|Sn,n∇w|2 dμ], we define the random affine function

(47) p := (Sn,n∇w)(μ,0)

|(Sn,n∇w)(μ,0)| , �p,�n :=
ˆ
�n

p · x dμ(x).

Notice that here p is random, but when the particles in �n move within �n, it does mot
change the value; more precisely, the slope p is Gn,n-measureable. We test �p,�n with (38),

Eρ[u�p,�n | Gn,n] = Eρ

[ˆ
�n

∇w · pdμ
∣∣∣ Gn,n

]

= Eρ

[ˆ
�n

∇w dμ
∣∣∣ Gn,n

]
· p

=
ˆ
�n

(Sn,n∇w) · pdμ.

Recalling the definition in (47), we obtain thatˆ
�n

|Sn,n∇w|dμ = Eρ[u�p,�n | Gn,n]

≤ (
Eρ

[
u2 | Gn,n

]) 1
2
(
Eρ

[
�2
p,�n

| Gn,n

]) 1
2

≤ C
√

μ(�n)3
n(Eρ

[
u2 | Gn,n

]) 1
2 ,
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where in the last step, we use a direct calculation of (Eρ[�2
p,�n

| Gn,n]) 1
2 , and where the

constant C may depend on d . Since Sn,n∇w is constant for every point in �n, we have
shown that √

μ(�n)|Sn,n∇w|(μ,0) ≤ C3n(Eρ

[
u2 | Gn,n

]) 1
2 .

We thus obtain that

Eρ

[ˆ
�n

|Sn,n∇w|2 dμ

]
= Eρ

[
μ(�n)|Sn,n∇w|2(μ,0)

]
≤ C32nEρ

[
Eρ

[
u2 | Gn,n

]]
= C32nEρ

[
u2],

and therefore

(48) (40)-c ≤ C3n(Eρ

[
u2]) 1

2

(
Eρ

[ˆ
�n

|Sn,n∇u|2 dμ

]) 1
2
.

We now combine (40), (44), (46), and (48), to obtain (36). �

3.4. Caccioppoli inequality. For every bounded open set U ⊆ Rd , we define the space of
a-harmonic functions on Mδ(R

d) by

(49) A(U) :=
{
u ∈ H 1(U) : ∀ϕ ∈ H 1

0 (U),Eρ

[ˆ
U

∇u · a∇ϕ dμ

]
= 0

}
.

Recalling that, for any two bounded open sets V ⊆ U , we have H 1(U) ⊆ H 1(V ) and
H 1

0 (V ) ⊆ H 1
0 (U), so we see that A(U) ⊆ A(V ). For the classical Caccioppoli inequality,

a standard proof is as follows: we multiply the harmonic function by a cutoff function, and
then use this as a test function against the harmonic function itself. Adapting this argument
to our space of particle configurations is not immediate. A naive approach would be to intro-
duce a cutoff that brings the value of the function to zero whenever a particle approaches the
boundary of the domain. But proceeding in this way is a very bad idea, since as we increase
the size of the domain, there will essentially always be some particles near the boundary. We
will instead rely on a suitable averaging procedure for particles that fall outside of a given
region, using the localization operators defined in Section 2.3. Notice that our goal thus is
not to bring the function to zero as a particle approaches the boundary of the box. Rather, it
is only to produce a function that stops depending on the position of a particle that progres-
sively approaches the boundary of the domain, in agreement with our definition of the space
H 1

0 (U) (and departing from the traditional definition of the Sobolev H 1
0 spaces).

PROPOSITION 3.6 (Modified Caccioppoli inequality). There exist θ(d,�) ∈ (0,1),
C(d,�) < ∞, and R0(d,�) < ∞ such that for every r ≥ R0 and u ∈A(Q3r ), we have

(50)

Eρ

[
1

ρ|Qr |
ˆ

Qr

∇(Ar+2u) · a∇(Ar+2u)dμ

]

≤ C

r2ρ|Q3r |Eρ

[
u2]+ θEρ

[
1

ρ|Q3r |
ˆ

Q3r

∇u · a∇udμ

]
.

REMARK 2. Inequality (50) controls the norm of the gradient of a harmonic function
in the small cube Qr by a sum of terms involving the norm of the gradient in the larger
cube Q3r . This does not seem to be useful at first glance. However, the key point is that the
multiplicative factor θ is smaller than one.
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The proof of Proposition 3.6 will be divided into two steps. In the first step, provided by
the lemma below, we prove a weaker Caccioppoli inequality, without the normalization of
the volume. In the second step, we use an iterative argument to improve the result and obtain
Proposition 3.6.

Recall that As,ε is the regularized localization operator defined in (9).

LEMMA 3.3 (Weak Caccioppoli inequality). Fix θ ′(�) := 2�
2�+1 ∈ (0,1). For every

r > 0, s ≥ r + 2, ε > 0 and u ∈ A(Qs+ε), we have

(51)

θ ′

2ε2Eρ

[
(Asu)2]+Eρ

[ˆ
Qr

∇(As,εu) · a∇(As,εu)dμ

]

≤ θ ′
(

1

2ε2Eρ

[
(As+εu)2]+Eρ

[ˆ
Qs+ε

∇u · a∇udμ

])
.

PROOF. The proof of this lemma borrows some elements from [41], Lemma 4.8; in both
settings, the main point is to construct and analyze an appropriate “cutoff” version of the
function u. We use the function Ãs,εu ∈ H 1

0 (Qs+ε) defined in (11) as a cutoff of the function
u and test it against u ∈ A(Qs+ε) to get

(52) Eρ

[ˆ
Qs+ε

∇(Ãs,εu) · a∇udμ

]
= 0.

Combining this with the decomposition

(53)

Eρ

[ˆ
Qs+ε

∇(Ãs,εu) · a∇udμ

]
= Eρ

[ˆ
Qs−2

∇(Ãs,εu) · a∇udμ

]
︸ ︷︷ ︸

(53)-a

+Eρ

[ˆ
Qs\Qs−2

∇(Ãs,εu) · a∇udμ

]
︸ ︷︷ ︸

(53)-b

+Eρ

[ˆ
Qs+ε\Qs

∇(Ãs,εu) · a∇udμ

]
︸ ︷︷ ︸

(53)-c

,

we obtain that

(54) (53)-a ≤ ∣∣(53)-b
∣∣+ ∣∣(53)-c

∣∣.
We now study each of these three terms. For the first term (53)-a, since x ∈ Qs−2, the coeffi-
cient a is FQs -measurable. We can thus use (8), (11), (13) and (12) to get

(53)-a = 2

ε2Eρ

[ˆ
Qs−2

ˆ ε

0
(ε − t)As+t (∇u) · a∇udt dμ

]

= 2

ε2Eρ

[ˆ
Qs−2

ˆ ε

0
(ε − t)Eρ

[
As+t (∇u) · aAs+t (∇u) | FQs+t

]
dt dμ

]

= Eρ

[ˆ
Qs−2

∇(As,εu) · a∇(As,εu)dμ

]
.
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We then apply (13) for the second term (53)-b. We notice that in Qs\Qs−2, a is no longer
FQs -measurable, so we use Young’s inequality and the bound a ≤ �Id:∣∣(53)-b

∣∣= 2

ε2Eρ

[ˆ
Qs\Qs−2

ˆ ε

0
(ε − t)As+t (∇u) · a∇udt dμ

]

≤ �

ε2Eρ

[ˆ
Qs\Qs−2

ˆ ε

0
(ε − t)

(∣∣As+t (∇u)
∣∣2 + |∇u|2)dt dμ

]
.

For the part with conditional expectation, we use Jensen’s inequality and the uniform bound
Id ≤ a≤ �Id:

�

ε2Eρ

[ˆ
Qs\Qs−2

ˆ ε

0
(ε − t)

∣∣As+t (∇u)
∣∣2 dt dμ

]
≤ �

2
Eρ

[ˆ
Qs\Qs−2

|∇u|2 dμ

]

≤ �

2
Eρ

[ˆ
Qs\Qs−2

∇u · a∇udμ

]
.

This concludes that |(53)-b| ≤ �Eρ[´
Qs\Qs−2

∇u · a∇udμ].
For the third term (53)-c, we use (13) and obtain∣∣(53)-c

∣∣≤ (53)-c1 + (53)-c2,

(53)-c1 = 2

ε2

∣∣∣∣Eρ

[ˆ
Qs+ε\Qs

ˆ ε

τ(x)−s

(ε − t)As+t (∇u) · a∇udt dμ

]∣∣∣∣,
(53)-c2 = 2

ε2

∣∣∣∣Eρ

[ˆ
Qs+ε\Qs

(
s + ε − τ(x)

)
�τ(x)(Au)

−→n (x) · a∇udμ

]∣∣∣∣.
The part of (53)-c1 can be treated as that of (53)-b, so that

(53)-c1 ≤ �Eρ

[ˆ
Qs+ε\Qs

∇u · a∇udμ

]
.

We study the part (53)-c2 using Young’s inequality with a parameter β > 0 to be fixed later:

(55)

2

ε2

∣∣∣∣Eρ

[ˆ
Qs+ε\Qs

(
s + ε − τ(x)

)
�τ(x)(Au)

−→n (x) · a∇udμ

]∣∣∣∣
≤ �

βε2Eρ

[ˆ
Qs+ε\Qs

(
s + ε − τ(x)

)∣∣�τ(x)(Au)
∣∣2 dμ

]

+ β�

ε2 Eρ

[ˆ
Qs+ε\Qs

(
s + ε − τ(x)

)|∇u|2 dμ

]

≤ �

βε2Eρ

[ˆ
Qs+ε\Qs

(
s + ε − τ(x)

)∣∣�τ(x)(Au)
∣∣2 dμ

]

+ β�

ε
Eρ

[ˆ
Qs+ε\Qs

∇u · a∇udμ

]
.

The first term above will be responsible for producing the L 2 term on the right-hand side of
(51). We start by writing

�

βε2Eρ

[ˆ
Qs+ε\Qs

(
s + ε − τ(x)

)∣∣�τ(x)(Au)
∣∣2 dμ

]

= �

βε2Eρ

[ ∑
s≤τ≤s+ε

(s + ε − τ)
∣∣�τ(Au)

∣∣2],
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where on the right-hand side, the sum is over all τ ’s that are jump discontinuites for (Asu)s≥0.
Recalling the definition of the bracket process ([Au]s)s≥0 defined in (7), we use Fubini’s
lemma and the L 2 isometry Eρ[[Au]s] = Eρ[(Asu)2]:

�

βε2Eρ

[ ∑
s≤τ≤s+ε

(s + ε − τ)
∣∣�τ(Au)

∣∣2]= �

βε2Eρ

[ ∑
s≤τ≤s+ε

ˆ s+ε

s

1{τ≤t≤s+ε} dt
∣∣�τ(Au)

∣∣2]

= �

βε2Eρ

[ˆ s+ε

s

∑
s≤τ≤t

∣∣�τ(Au)
∣∣2 dt

]

= �

βε2Eρ

[ˆ s+ε

s

([Au]t − [Au]s)dt

]

= �

βε2

ˆ s+ε

s

(
Eρ

[
(Atu)2]−Eρ

[
(Asu)2])dt

≤ �

βε

(
Eρ

[
(As+εu)2]−Eρ

[
(Asu)2]).

Putting this estimate back into (55), we conclude the estimating of the term (53)-c2, obtaining

(53)-c2 ≤ �

βε

(
Eρ

[
(As+εu)2]−Eρ

[
(Asu)2])+ β�

ε
Eρ

[ˆ
Qs+ε\Qs

∇u · a∇udμ

]
.

By choosing β = ε, recalling (54), and that r ≤ s − 2, we can combine this estimate with
those of (53)-a, (53)-b, and (53)-c1 to get

�

ε2Eρ

[
(Asu)2]+Eρ

[ˆ
Qr

∇(As,εu) · a∇(As,εu)dμ

]

≤ �

ε2Eρ

[
(As+εu)2]+ 2�Eρ

[ˆ
Qs+ε\Qr

∇u · a∇udμ

]
.

We now proceed with a hole-filling argument: adding 2�Eρ[´
Qr

∇As,εu · a∇As,εudμ] to
both sides of the equation above, and using Jensen’s inequality, we obtain

�

ε2Eρ

[
(Asu)2]+ (2� + 1)Eρ

[ˆ
Qr

∇(As,εu) · a∇(As,εu)dμ

]

≤ �

ε2Eρ

[
(As+εu)2]+ 2�Eρ

[ˆ
Qs+ε

∇u · a∇udμ

]
.

Dividing both sides by (2� + 1), and setting θ ′ := 2�
2�+1 , we obtain the desired inequality

(51). �

We remark that (51) does not imply directly (50). For example, let r > 2 and we choose
s = 2r and ε = r in (51), then with a normalization of volume we get

θ ′

2r2ρ|Qr |Eρ

[
(A2ru)2]+Eρ

[
1

ρ|Qr |
ˆ

Qr

∇(A2r,ru) · a∇(A2r,ru)dμ

]

≤ 3dθ ′
(

1

2r2ρ|Q3r |Eρ

[
(A3ru)2]+Eρ

[
1

ρ|Q3r |
ˆ

Q3r

∇u · a∇udμ

])
.

Then another factor 3d will be added, and we typically do not have 3dθ ′ ∈ (0,1), since we
recall that θ ′ = 2�

2�+1 .
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FIG. 2. An illustration of the iterative argument for the proof of Proposition 3.6. Since Lemma 3.3 can imply
Proposition 3.6 only for a comparison from scale r to (1 + 2δ)r with δ very small, we add many intermediate
scales rn = (1 + 2δ)nr between r and 3r .

PROOF OF PROPOSITION 3.6. We apply Lemma 3.3 iteratively, with very small incre-
ments of the volume. Let δ > 0 to be fixed later, and choose s = (1 + δ)r , ε = δr . For conve-
nience, we assume that r is sufficiently large that

(56) s = (1 + δ)r ≥ r + 2 that is r ≥ 2δ−1.

Equation (51) and Jensen’s inequality give us that, provided (1 + 2δ)r ≤ 3r ,

(57)

Eρ

[
1

ρ|Qr |
ˆ

Qr

∇(A(1+δ)r,δru) · a∇(A(1+δ)r,δru)dμ

]

≤ θ̃

(
1

2(δr)2ρ|Q(1+2δ)r |Eρ

[
u2]+Eρ

[
1

ρ|Q(1+2δ)r |
ˆ

Q(1+2δ)r

∇u · a∇udμ

])
,

with θ̃ = (1 + 2δ)dθ ′. We choose the constant δ > 0 sufficiently small that θ̃ < 1. In order to
obtain (50), we will now apply (57) iteratively, from the cube Qr to the larger cube Q3r .

We give the details for this argument; see also Figure 2 for an illustration. We plan to use
(57) (N + 1) times, and and let δ ∈ (0,1), N ∈ N satisfy

(58) θ̃ = (1 + 2δ)dθ ′ < 1, (1 + 2δ)N+1 = 3.

Then we set the scale and the a-harmonic functions in every scale

(59)

⎧⎪⎪⎨⎪⎪⎩
rn = (1 + 2δ)nr, 0 ≤ n ≤ N + 1,

uN+1 = u,

un = A(1+δ)rn,δrnun+1, 0 ≤ n ≤ N.

We can prove by induction that un ∈ A(Qrn) under the condition (56). Then, for every
0 ≤ n ≤ N , we apply (57) from un on Qrn to un+1 on Qrn+1

(60)

Eρ

[
1

ρ|Qrn |
ˆ

Qrn

∇un · a∇un dμ

]

≤ θ̃

(
1

2(δrn)2ρ|Q(1+2δ)rn |
Eρ

[
(un+1)

2]+Eρ

[
1

ρ|Qrn+1 |
ˆ

Qrn+1

∇un+1 · a∇un+1 dμ

])
.
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Iterating on (60) until uN+1 = u on Q3r , we get

Eρ

[
1

ρ|Qr |
ˆ

Qr

∇u0 · a∇u0 dμ

]

≤
(

3d

2

N∑
n=0

(1 + 2δ)−2n

)
1

(δr)2ρ|Q3r |Eρ

[
u2]+ (θ̃)N+1Eρ

[
1

ρ|Q3r |
ˆ

Q3r

∇u · a∇udμ

]
.

We notice that u0 can be seen as as a weighted sum of As′u, for scales s ′ satisfying
s′ ≥ (1 + δ)r ≥ r + 2, by (56). So we apply once Jensen’s inequality for u0 and obtain (50)
by setting

C(d,�) := 3d

2δ2

N∑
n=0

(1 + 2δ)−2n, θ := (θ̃)N+1.

Although we will not use this later, we now give more explicit estimates for the choice of
the parameters in the proof above, resulting from the conditions listed in (56) and (58). It

suffices to pick an integer N larger than � d log 3
log(1+ 1

2�
)
�, and then in (58) use δ := 1

2(3
1

N+1 − 1)

to fix δ, and in (56) we require r ≥ 2δ−1, which gives the condition for the minimal scale R0.
A possible choice is the following:

N := 2
⌊

d log 3

log(1 + 1
2�

)

⌋
+ 1, δ := 1

2

(
3

1
N+1 − 1

)� 1

8d�
, R0 := 2δ−1 � 16d�,

θ̃ := θ ′(1 + 2δ)d �
(

1 + 1

2�

)− 1
2
, θ := (θ̃)N+1 � 3−d,

C := 3d

2δ2

N∑
n=0

(1 + 2δ)−2n � 283dd3�3.
�

4. Subadditive quantities. We aim to adapt the strategy in [11], Chapter 2, for our
model in continuum configuration space. In this section, we define several subadditive quan-
tities, denoted by ν, ν∗, J , and develop their elementary properties. We then we use them and
a renormalization argument to obtain a quantitative rate of convergence for ā in Section 5.

4.1. Subadditive quantities ν and ν∗. For every bounded domain U ⊆Rd and p,q ∈ Rd ,
we define the affine function in U with slope p by

(61) �p,U (μ) :=
ˆ

U

p · x dμ(x),

and introduce the subadditive quantities

(62)

ν(U,p) := inf
v∈�p,U+H 1

0 (U)
Eρ

[
1

ρ|U |
ˆ

U

1

2
∇v · a∇v dμ

]
,

ν∗(U, q) := sup
u∈H 1(U)

Eρ

[
1

ρ|U |
ˆ

U

(
−1

2
∇u · a∇u + q · ∇u

)
dμ

]
.

The quantity ν can be thought of as the average energy per unit volume of the solution which
matches with the behavior of the affine function �p,U when a particle leaves the domain U .
The quantity ν∗ is analogous to a Neumann problem with prescribed average flux of q . As will
be seen below, the quantities ν and ν∗ are approximately dual to one another; the quality of
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this approximation as the domain U grows to Rd will be central to the proof of Theorem 2.1.
If the matrix a were constant, then by (6) the minimizer for ν(U,p) would be �p,U , and we
would have ν(U,p) = 1

2p · ap; and similarly, were a constant, we would have ν∗(U, q) =
1
2q · a−1q .

We start by recording elementary properties satisfied by ν and ν∗. We recall that
GU = σ(μ(U),μ (Rd\U)). For every r > 0, we denote by Br(U) the r-enlargement of
U , that is, Br(U) := {x ∈ Rd : dist(x,U) < r}.

PROPOSITION 4.1 (Elementary properties of ν and ν∗). The following properties hold
for every bounded domain U ⊆ Rd with Lipschitz boundary and p,q,p′, q ′ ∈ Rd :

(1) There exists a unique solution for the optimization problem in the definition of ν(U,p)

that satisfies Eρ[v − �p,U ] = 0; we denote it by v(·,U,p). For the optimization problem in the
definition of ν∗(U, q), there exists a maximizer u(·,U, q) that is FB1(U)-measurable and such
that Eρ[u | GU ] = 0. They are a-harmonic functions on U , that is, v(·,U,p),u(·,U, q) ∈
A(U).

(2) There exist two d × d symmetric matrices ā(U) and ā∗(U) such that

(63) ν(U,p) = 1

2
p · ā(U)p, ν∗(U, q) = 1

2
q · ā−1∗ (U)q,

and these matrices satisfy Id ≤ ā(U) ≤ �Id and Id ≤ ā∗(U) ≤ �Id. Moreover,

p′ · ā(U)p = Eρ

[
1

ρ|U |
ˆ

U

p′ · a(μ, x)∇v(μ,x,U,p)dμ(x)

]
,(64)

q ′ · ā−1∗ (U)q = Eρ

[
1

ρ|U |
ˆ

U

q ′ · ∇u(μ,x,U,q)dμ(x)

]
.(65)

(3) Slope: v(μ,U,p) satisfies

(66) Eρ

[ 
U

∇v(μ,x,U,p)dμ(x)
∣∣∣ GU

]
= Eρ

[
1

ρ|U |
ˆ

U

∇v(μ,x,U,p)dμ(x)

]
= p.

For the function u(·,U, q), there exists a d × d symmetric matrix Id ≤ a∗(U ;GU) ≤ �Id such
that

(67) Eρ

[ 
U

∇u(μ,x,U,q)dμ(x)
∣∣∣ GU

]
= a−1∗ (U ;GU)q,

and ā−1∗ (U) = 1
ρ|U |Eρ[a−1∗ (U ;GU)μ(U)], so that

(68) Eρ

[
1

ρ|U |
ˆ

U

∇u(μ,x,U,q)dμ(x)

]
= ā−1∗ (U)q.

(4) Quadratic response: for every v′ ∈ �p,U + H 1
0 (U), we have

(69)

Eρ

[
1

ρ|U |
ˆ

U

1

2
∇(

v′ − v(μ,U,p)
) · a∇(

v′ − v(μ,U,p)
)

dμ

]

= Eρ

[
1

ρ|U |
ˆ

U

1

2
∇v′ · a∇v′ dμ

]
− ν(U,p).

Similarly, for every u′ ∈ H 1(U), we have

(70)

Eρ

[
1

ρ|U |
ˆ

U

1

2
∇(

u′ − u(μ,U,q)
) · a∇(

u′ − u(μ,U,q)
)
dμ

]

= ν∗(U, q) −Eρ

[
1

ρ|U |
ˆ

U

(
−1

2
∇u′ · a∇u′ + q · ∇u′

)
dμ

]
.
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(5) The quantities ν and ν∗ are subadditive: for every n ∈ N,

(71) ν(�n+1,p) ≤ ν(�n,p), ν∗(�n+1, q) ≤ ν∗(�n, q).

PROOF. We prove each of these points in turn.
(1) We study at first the maximizer for the problem ν∗(U, q). A first observation is that the

maximizer can be found in FB1(U)-measurable functions. Because for any u ∈ H 1(U), its
conditional expectation Eρ[u | FB1(U)] reaches a larger value for the functional in ν∗(U, q).
We use Jensen’s inequality that

Eρ

[ˆ
U

(
−1

2
∇Eρ[u | FB1(U)] · a∇Eρ[u | FB1(U)] + q · ∇Eρ[u | FB1(U)]

)
dμ

]

= Eρ

[
Eρ

[ˆ
U

(
−1

2
Eρ[∇u | FB1(U)] · aEρ[∇u | FB1(U)] + q ·Eρ[∇u | FB1(U)]

)
dμ

∣∣∣
FB1(U)

]]
≥ Eρ

[ˆ
U

(
−1

2
∇u · a∇u + q · ∇u

)
dμ

]
.

By a variational calculus, we know the characterization of a maximizer with elliptic equation
that for any φ ∈ H 1(U)

(72) Eρ

[ˆ
U

∇u · a∇φ dμ

]
= Eρ

[ˆ
U

q · ∇φ dμ

]
.

Similar to the discussion in the proof of Proposition 3.4, we know that a solution for this
problem also satisfies the more precise equation

(73) Eρ

[ˆ
U

∇u · a∇φ dμ
∣∣∣ GU

]
= Eρ

[ˆ
U

q · ∇φ dμ
∣∣∣ GU

]
,

and we can define its solution in the space

W = {
f ∈ H 1(U) : Eρ[f | GU ] = 0

}
.

In this space, we have

Eρ

[
f 2 | GU

]≤ C diam(U)2Eρ

[ˆ
U

|∇f |2 dμ
∣∣∣ GU

]
,

by the Poincaré inequality Proposition 3.2. Then the coercivity on left-hand side in (73) is
ensured and we can apply the Lax–Milgram theorem. We call this maximizer u(μ,U,q).
Testing (72) with φ ∈ H 1

0 (U), (6) implies that its right-hand side is 0, so we have
u(μ,U,q) ∈ A(U).

Then we turn to ν(U,p). By a first-order variation calculus, we know that a minimizer v

for ν(U,p) is characterized by an elliptic equation that for any φ ∈ H 1
0 (U)

(74) Eρ

[ˆ
U

∇(v − �p,U ) · a∇φ dμ

]
= Eρ

[ˆ
U

−p · a∇φ dμ

]
.

We remark that one cannot treat this equation as (72), because Eρ[v | GU ] is not an element
in H 1

0 (U) and we cannot subtract it. On the other hand, we can apply the Lax–Milgram
theorem on the space

V = {
f ∈ H 1

0 (U) : Eρ[f ] = 0
}
,
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to define the unique solution v − �p,U ∈ V . We notice that the right-hand side of (74) is
clearly a bounded linear functional, and the coercivity of the left-hand side of (74) is ensured
by the Poincaré inequality Proposition 3.3 on V . We denote this minimizer by v(μ,U,p),
and (74) implies that v(μ,U,p) ∈ A(U).

(2) We test at first (74) with v(μ,U,p′) − �p′,U ∈ H 1
0 (U) and obtain that

(75)

Eρ

[ˆ
U

∇v(μ,x,U,p) · a(μ, x)∇v
(
μ,x,U,p′)dμ(x)

]

= Eρ

[ˆ
U

∇v(μ,x,U,p) · a(μ, x)p′ dμ(x)

]
,

and this implies (p,p′) 
→ Eρ[ 1
ρ|U |

´
U

∇v(μ,x,U,p) · a(μ, x)∇v(μ,x,U,p′)dμ(x)] is a
bilinear map p · ā(U)p′. This definition with (75) proves (64). We let p = p′ and obtain that
ν(U,p) = 1

2p · ā(U)p. To obtain the bound of ā(U), we use the bound of a and the definition
of (62):

inf
v∈�p,U+H 1

0 (U)
Eρ

[
1

ρ|U |
ˆ

U

1

2
|∇v|2 dμ

]
≤ ν(U,p) = 1

2
p · ā(U)p

≤ inf
v∈�p,U+H 1

0 (U)
Eρ

[
1

ρ|U |
ˆ

U

�

2
|∇v|2 dμ

]
.

We can check that �p,U is the minimizer for infv∈�p,U+H 1
0 (U)Eρ[´

Rd
�
2 |∇v|2 dμ], then it

concludes the proof of the bound Id ≤ ā(U) ≤ �Id.
The same argument works for ν∗(U, q). We test (72) with u(μ,U,q ′) and obtain that

(76)

Eρ

[ˆ
U

∇u(μ,x,U,q) · a(μ, x)∇u
(
μ,x,U,q ′)dμ(x)

]

= Eρ

[ˆ
U

q · ∇u
(
μ,x,U,q ′)dμ(x)

]
.

This proves that (q, q ′) 
→ Eρ[ 1
ρ|U |

´
U

∇u(μ,x,U,q) · a(μ, x)∇u(μ,x,U,q ′)] is also bilin-

ear and we denote it by q · ā−1∗ (U)q ′, and this also concludes (65). Then we put q ′ = q and
(76) in the definition of (62) that

ν∗(U, q)

= Eρ

[
1

ρ|U |
ˆ

U

(
−1

2
∇u(μ,x,U,q) · a(μ, x)∇u(μ,x,U,q) + q · ∇u(μ,x,U,q)

)
dμ(x)

]

= Eρ

[
1

ρ|U |
ˆ

U

1

2
∇u(μ,x,U,q) · a(μ, x)∇u(μ,x,U,q)dμ(x)

]

= 1

2
q · ā−1∗ (U)q.

This proves the bilinear map expression for ν∗(U, q). Concerning the bound for the matrix
ā−1∗ (U), we use the bound for a and the equations above to obtain that

(77)

sup
u∈H 1(U)

Eρ

[
1

ρ|U |
ˆ

U

(
−�

2
|∇u|2 + q · ∇u

)
dμ

]

≤ ν∗(U, q) ≤ sup
u∈H 1(U)

Eρ

[
1

ρ|U |
ˆ

U

(
−1

2
|∇u|2 + q · ∇u

)
dμ

]
.
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One can check for the lower bound, � q
�

,U attains the maximum and for the upper bound it
is �q,U that attains the maximum. Then we put the expression ν∗(U, q) = 1

2q · ā−1∗ (U)q and
obtain that

�−1

2
|q|2 ≤ ν∗(U, q) = 1

2
q · ā−1∗ (U)q ≤ 1

2
|q|2,

which implies the bound for ā∗(U).
(3) The slope identity (66) for v(μ,U,p) is directly the result from (6) that

Eρ

[ 
U

∇v(μ,x,U,p)dμ(x)
∣∣∣ μ(U)

]
= Eρ

[ 
U

p dμ
∣∣∣ μ(U)

]
= p.

For the function u(μ,U,q), the identity (68) comes directly from (65), but conditioned GU ,
the averaged slope is not ā−1∗ (U)q . In fact, we recall that u(μ,U,q) is also the conditioned
maximizer for (73), so we can define the matrix a−1∗ (U ;GU), the quenched slope (67). The
estimate for this matrix is then obtained by repeating the argument in (63) for (73).

(4) We test (74) with (v′ − �p,U ) and put it in the left-hand side of (69):

(78)

Eρ

[
1

ρ|U |
ˆ

U

1

2
∇(v′ − v(·,U,p)

) · a∇(
v′ − v(·,U,p)

)
dμ

]

= Eρ

[
1

ρ|U |
ˆ

U

1

2
∇v′ · a∇v′ dμ

]
+Eρ

[
1

ρ|U |
ˆ

U

1

2
∇v(·,U,p) · a∇v(·,U,p)dμ

]

−Eρ

[
1

ρ|U |
ˆ

U

∇v′ · a∇v(·,U,p)dμ

]

= Eρ

[
1

ρ|U |
ˆ

U

1

2
∇v′ · a∇v′ dμ

]
+Eρ

[
1

ρ|U |
ˆ

U

1

2
∇v(·,U,p) · a∇v(·,U,p)dμ

]

−Eρ

[
1

ρ|U |
ˆ

U

p · a∇v(·,U,p)dμ

]
.

The term Eρ[ 1
ρ|U |

´
U

p · a∇v(·,U,p)dμ] also appears on the right-hand side of (64) with
p = p′, thus we obtain that

Eρ

[
1

ρ|U |
ˆ

U

p · a∇v(·,U,p)dμ

]

= p · ā(U)p = Eρ

[
1

ρ|U |
ˆ

U

∇v(·,U,p) · a∇v(·,U,p)dμ

]
,

and we put it back to (78) to conclude for the validity of (69).
Similarly, we develop the left-hand side of (70) as (78), and use (72) with φ = u′ to treat

the inner product term of u′ and u(·,U, q):

Eρ

[
1

ρ|U |
ˆ

U

∇u′ · a∇u(·,U, q)dμ

]
= Eρ

[
1

ρ|U |
ˆ

U

∇u′ · q dμ

]
.

We put this term in the left-hand side of (70) and use the bilinear map expression of ν∗(U, q)

to obtain that

Eρ

[
1

ρ|U |
ˆ

U

1

2
∇(

u′ − u(·,U, q)
) · a∇(

u′ − u(·,U, q)
)

dμ

]

= Eρ

[
1

ρ|U |
ˆ

U

1

2
∇u′ · a∇u′ dμ

]
+Eρ

[
1

ρ|U |
ˆ

U

1

2
∇u(·,U, q) · a∇u(·,U, q)dμ

]
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−Eρ

[
1

ρ|U |
ˆ

U

∇u′ · a∇u(·,U, q)dμ

]

= Eρ

[
1

ρ|U |
ˆ

U

1

2
∇u′ · a∇u′ dμ

]
+ ν∗(U, q) −Eρ

[
1

ρ|U |
ˆ

U

∇u′ · q dμ

]
.

This concludes the proof of (70).
(5) For ν(�n+1,p), we test the associated variational problem with the candidate

v′ =∑
z∈Zn+1,n

v(·, z +�n,p), which is an element of �p,�n+1 + H 1
0 (�n+1), so that

ν(�n+1,p) ≤ Eρ

[
1

ρ|�n+1|
ˆ
�n+1

∇v′ · a∇v′ dμ

]

= 3−d
∑

z∈Zn+1,n

Eρ

[
1

ρ|�n|
ˆ

z+�n

∇v(·, z +�n,p) · a∇v(·, z +�n,p)dμ

]

= ν(�n,p).

In the last step, we also use the stationarity of the coefficient field a.
For ν∗(�n+1,p), we also use that, for every z ∈ Zn+1,n, we have the inclusion

H 1(�n+1) ⊆ H 1(z +�n), so its unit energy on every small cube z + �n is less than the
maximum ν∗(z +�n,p), thus

ν∗(�n+1, q) = 3−d
∑

z∈Zn+1,n

Eρ

[
1

ρ|�n|
ˆ

z+�n

−1

2
∇u(·,�n+1, q) · a∇u(·,�n+1, q)

+ q · ∇u(·,�n+1, q)dμ

]
≤ 3−d

∑
z∈Zn+1,n

ν∗(z +�n, q)

= ν∗(�n, q). �

4.2. Subadditive quantity J . We now study the quantity J defined by

(79)
J (U,p, q) := ν(U,p) + ν∗(U, q) − p · q

= 1

2
p · ā(U)p + 1

2
q · ā−1∗ (U)q − p · q.

By the properties of ν and ν∗, the quantity J is also subadditive. We briefly explain why
this quantity will be convenient for our purposes. If the functions ν(U, ·) and ν∗(U, ·) were
exactly convex dual of one another, then we would have that J ≥ 0 and that for every p ∈ Rd ,
the infimum of J (U,p, ·) is zero. This would correspond to the situation in which ā(U) and
ā∗(U) are equal, and for every p ∈ Rd , we would in fact have that J (U,p, ā(U)p) = 0.
Instead, we will show below that, for any symmetric matrix Id ≤ ã≤ �Id, we have∣∣̃a− ā(U)

∣∣+ ∣∣̃a− a∗(U)
∣∣≤ sup

p∈B1

C
(
J (U,p, ãp)

) 1
2 .

The right-hand side of the inequality above can be thought of as a measure of the defect in
the convex duality relationship between ν and ν∗. For U = �m and using ã = ā∗(�m), we
obtain that ∣∣ā∗(�m) − ā(�m)

∣∣≤ sup
p∈B1

C
(
J
(
U,p, ā∗(�m)p

)) 1
2 .
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Since we know that {ā(�m)}m≥0 is a decreasing sequence while {ā∗(�m)}m≥0 is a increasing
sequence from (63) and (71), each sequence has a limit. Therefore, once we prove a rate of
convergence to zero for J (U,p, ā∗(�m)p), we get that the two limits coincide, and also a
rate for the convergence of {ā(�m)}m≥0.

The rest of this section will present this strategy in details. We establish at first a variational
description for the quantity J and the properties mentioned above.

LEMMA 4.1. (1) For every p,q ∈ Rd , we have the variational representation

(80) J (U,p, q) = sup
w∈A(U)

Eρ

[
1

ρ|U |
ˆ

U

(
−1

2
∇w · a∇w − p · a∇w + q · ∇w

)
dμ

]
.

(2) We have that J (U,p, q) ≥ 0 and ā(U) ≥ ā∗(U).
(3) There exists a constant C(d,�) < ∞ such that and for every symmetric matrix ã

satisfying Id ≤ ã≤ �Id, we have

(81)
∣∣̃a− ā(U)

∣∣+ ∣∣̃a− ā∗(U)
∣∣≤ C sup

p∈B1

(
J (U,p, ãp)

) 1
2 .

PROOF. (1) We start by rewriting the expression of J (U,p, q) using the definition of
ν∗(U, q) and the quadratic expression of ν(U,p). Noting also that the maximizer of ν∗(U, q)

belongs to A(U), we can write

(82)

J (U,p, q) = Eρ

[
1

ρ|U |
ˆ

U

1

2
∇v(·,U,p) · a∇v(·,U,p)dμ

]

+ sup
u∈A(U)

Eρ

[
1

ρ|U |
ˆ

U

(
−1

2
∇u · a∇u + q · ∇u

)
dμ

]
− p · q.

We claim that for any u ∈ A(U), with w := u − v(·,U,p), we have

(83)

Eρ

[
1

ρ|U |
ˆ

U

(
1

2
∇v(·,U,p) · a∇v(·,U,p) − 1

2
∇u · a∇u + q · ∇u

)
dμ

]
− p · q

= Eρ

[
1

ρ|U |
ˆ

U

(
−1

2
∇w · a∇w − p · a∇w + q · ∇w

)
dμ

]
.

To prove it, we can develop the right-hand side of (83):

(84)

Eρ

[
1

ρ|U |
ˆ

U

(
−1

2
∇w · a∇w − p · a∇w + q · ∇w

)
dμ

]

= Eρ

[
1

ρ|U |
ˆ

U

(
1

2
∇v(·,U,p) · a∇v(·,U,p) − 1

2
∇u · a∇u + q · ∇u

)
dμ

]
− p · q

+Eρ

[
1

ρ|U |
ˆ

U

∇(
v(·,U,p) − �p,U

) · (a∇u − a∇v(·,U,p) − q
)

dμ

]
.

Because (v(·,U,p) − �p,U ) ∈ H 1
0 (U), we apply u, v(·,U,p) ∈ A(U) and (6), the last line

of (84) is 0 and we prove (83). Then we take the maximum as (82) and obtain the definition
(80).

(2) The properties that J (U,p, q) ≥ 0 comes from the definition of ν∗(U, q): we test the
functional in the definition of ν∗(U, q) with the minimizer v(·,U,p) of ν(U,p) and obtain
that

ν∗(U, q)

≥ Eρ

[
1

ρ|U |
ˆ

U

(
−1

2
∇v(μ,x,U,p) · a(μ, x)∇v(μ,x,U,p) + q · ∇v(μ,x,U,p)

)
dμ

]
= p · q − ν(U,p),
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so that

J (U,p, q) = ν(U,p) + ν∗(U, q) − p · q ≥ 0.

Then we test J (U,p, q) ≥ 0 with that q = ā∗(U)p and obtain that

0 ≤ J
(
U,p, ā∗(U)p

)= 1

2
p · ā(U)p + 1

2

(
ā∗(U)p

) · ā−1∗ (U)
(
ā∗(U)p

)− p · ā∗(U)p,

and therefore ā(U) ≥ ā∗(U).
(3) Using this property, we have

J (U,p, q) = 1

2
p · ā(U)p + 1

2
q · ā−1∗ (U)q − p · q

≥ 1

2
p · ā(U)p + 1

2
q · ā−1(U)q − p · q

= 1

2

(
ā(U)p − q

)
ā−1(U) · (ā(U)p − q

)
.

We put q = ãp and obtain |ā(U)− ã| ≤ C supp∈B1
(J (U,p, ãp))

1
2 . The proof of the statement

concerning |ā∗(U) − ã| is similar. �

In view of the definition of J , this functional enjoys properties similar to those described
in Proposition 4.1 for ν and ν∗.

PROPOSITION 4.2 (Elementary properties of J ). For every bounded domain U ⊆ Rd

with Lipschitz boundary and p,q ∈ Rd , the quantity J (U,p, q) defined in (79) satisfies the
following properties:

(1) Characterization of optimizer: the optimization problem in (80) admits a unique solu-
tion v(·,U,p, q) ∈ H 1(U) such that Eρ[v(·,U,p, q) | GU ] = 0. This solution is such that
for every w ∈ A(U),

(85) Eρ

[ˆ
U

∇v(·,U,p, q) · a∇w dμ

]
= Eρ

[ˆ
U

(−p · a∇w + q · ∇w)dμ

]
,

and (p, q) 
→ v(·,U,p, q) a linear map. The function v(·,U,p, q) can be expressed in terms
of the optimizers in (62) as

(86) v(μ,U,p, q) = u(μ,U,q) − v(μ,U,p) −Eρ

[
u(μ,U,q) − v(μ,U,p) | GU

]
.

We have the quadratic expression

(87) J (U,p, q) = Eρ

[
1

ρ|U |
ˆ

U

1

2
∇v(·,U,p, q) · a∇v(·,U,p, q)dμ

]
.

(2) Slope: v(·,U,p, q) satisfies

(88)

Eρ

[ 
U

∇v(·,U,p, q)dμ
∣∣∣ GU

]
= a−1∗ (U ;GU)q − p,

Eρ

[
1

ρ|U |
ˆ

U

∇v(·,U,p, q)dμ

]
= ā−1∗ (U)q − p,

where the matrix a−1∗ (U ;GU) is defined in (67).
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(3) Quadratic response: for every w ∈A(U), we have

(89)

Eρ

[
1

ρ|U |
ˆ

U

(
1

2
∇(

w − v(·,U,p, q)
) · a∇(

w − v(·,U,p, q)
))

dμ

]

= J (U,p, q) −Eρ

[
1

ρ|U |
ˆ

U

(
−1

2
∇w · a∇w − p · a∇w + q · ∇w

)
dμ

]
.

(4) Subadditivity: for every n ∈ N, we have

(90) J (�n+1,p, q) ≤ J (�n,p, q).

PROOF. (1) The equation (85) comes directly from the first-order variation calculus. The
proof of the existence and uniqueness of the solution v(·,U,p, q) is similar as the one for
ν∗(U, q). Equation (85) also implies that the map (p, q) 
→ v(·,U,p, q) is linear because for
any p1,p2, q1, q2 ∈ Rd , and any w ∈ A(U) we have

Eρ

[ˆ
U

∇v(·,U,p1 + p2, q1 + q2) · a∇w dμ

]

= Eρ

[ˆ
U

−(p1 + p2) · a∇w + (q1 + q2) · ∇w dμ

]

= Eρ

[ˆ
U

∇(
v(·,U,p1, q1) + v(·,U,p2, q2)

) · a∇w dμ

]
.

Then (v(·,U,p1, q1)+ v(·,U,p2, q2)) is also a solution for the problem (85) with parameter
(p1 + p2, q1 + q2). Notice that we have

Eρ

[(
v(·,U,p1, q1) + v(·,U,p2, q2)

) | GU

]= 0,

it implies v(μ,U,p1 + p2, q1 + q2) = v(μ,U,p1, q1) + v(μ,U,p2, q2) and the linearity of
the map.

The exact expression of v(μ,U,P, q) comes from the equivalent definition (80) of
J (U,p, q) and its proof. We put v(μ,U,p, q) in the first-order variation (85):

Eρ

[
1

ρ|U |
ˆ

U

(−p · a∇v(·,U,p, q) + q · ∇v(·,U,p, q)
)

dμ

]

= Eρ

[
1

ρ|U |
ˆ

U

∇v(·,U,p, q) · a∇v(·,U,p, q)dμ

]
.

Then we put this equation into (80) to get (87).
(2) The slope identity (88) comes from (86), (66), (67), and (68).
(3) We use the expression in (86) with w := u′ − v(·,U,p), then we use the quadratic

response for ν∗(U, q) (70) that

Eρ

[
1

ρ|U |
ˆ

U

(
1

2
∇(w − v(·,U,p, q)

) · a∇(
w − v(·,U,p, q)

))
dμ

]

= Eρ

[
1

ρ|U |
ˆ

U

(
1

2
∇(

u′ − u(·,U, q)
) · a∇(

u′ − u(·,U, q)
))

dμ

]

= ν∗(U, q) −Eρ

[
1

ρ|U |
ˆ

U

(
−1

2
∇u′ · a∇u′ + q · ∇u′

)
dμ

]
.
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Then we add back the term ν(U,p) and it gives the desired result:

Eρ

[
1

ρ|U |
ˆ

U

(
1

2
∇(

w − v(·,U,p, q)
) · a∇(

w − v(·,U,p, q)
))

dμ

]

= J (U,p, q) −
(
ν(U,p) +Eρ

[
1

ρ|U |
ˆ

U

(
−1

2
∇u′ · a∇u′ + q · ∇u′

)
dμ

]
− p · q

)

= J (U,p, q) −Eρ

[
1

ρ|U |
ˆ

U

(
−1

2
∇w · a∇w − p · a∇w + q · ∇w

)
dμ

]
.

(4) Equation (90) is a consequence of (71) and (79). �

We conclude this section with the following lemma.

LEMMA 4.2 (Comparison between two scales). For every n, k ∈ N with k ≤ n, and
p,q ∈ Rd , writing v(U) as shorthand for v(·,U,p, q), we have

(91)

1

|Zn,k|
∑

z∈Zn,k

Eρ

[
1

ρ|�k|
ˆ

z+�k

1

2

∣∣∇v(�n) − ∇v(z +�k)
∣∣2 dμ

]

≤ J (�k,p, q) − J (�n,p, q).

PROOF. For any z ∈Zn,k , since v(�n) ∈ A(z +�k), we use the quadratic response (89)
for J (z +�k,p, q) that

Eρ

[
1

ρ|�k|
ˆ

z+�k

1

2

∣∣∇v(�n) − ∇v(z +�k)
∣∣2 dμ

]

≤ Eρ

[
1

ρ|�k|
ˆ

z+�k

1

2

(∇v(�n) − ∇v(z +�k)
) · a(∇v(�n) − ∇v(z +�k)

)
dμ

]
= J (z +�k,p, q)

−Eρ

[
1

ρ|�k|
ˆ

z+�k

(
−1

2
∇v(�n) · a∇v(�n) − p · a∇v(�n) + q · ∇v(�n)

)
dμ

]
.

We sum this expression over all z ∈ Zn,k to obtain that

1

|Zn,k|
∑

z∈Zn,k

Eρ

[
1

ρ|�k|
ˆ

z+�k

1

2

∣∣∇v(�n) − ∇v(z +�k)
∣∣2 dμ

]

≤ 1

|Zn,k|
∑

z∈Zn,k

(
J (z +�k,p, q)

−Eρ

[
1

ρ|�k|
ˆ

z+�k

(
−1

2
∇v(�n) · a∇v(�n) − p · a∇v(�n) + q · ∇v(�n)

)
dμ

])
= J (�k,p, q) − J (�n,p, q).

In the last step, we use the stationarity of J and also (80) for v(�n). �

5. Quantitative rate of convergence. We are now ready to prove Theorem 2.1. We de-
compose the argument into a series of four steps.
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5.1. Step 1: Setup. We use the shorthand ān := ā∗(�n), so that by (88), the average slope
of the function v(·,�n,p, q) is ā−1

n q − p, in the sense that

(92) Eρ

[
1

ρ|�n|
ˆ

U

∇v(·,�n,p, q)dμ

]
= ā−1

n q − p.

We let τn denote a measure of the defect in the subadditivity of J , precisely,

(93)

τn := sup
p,q∈B1

(
J (�n,p, q) − J (�n+1,p, q)

)
= sup

p∈B1

(
ν(�n,p) − ν(�n+1,p)

)+ sup
q∈B1

(
ν∗(�n, q) − ν∗(�n+1, q)

)
.

A direct corollary from (93) is that for any integers n < m,

(94)
∣∣ā−1

n − ā−1
m

∣∣= sup
q∈B1

q · (ā−1
n − ā−1

m

)
q = sup

q∈B1

(
ν∗(�n, q) − ν∗(�m,q)

)≤ C

m−1∑
k=n

τk.

We recall that {ā(�m)}m≥0 is decreasing and {ā∗(�m)}m≥0 is increasing, with the comparison
ā∗(�m) ≤ ā(�m). From (81), we know that∣∣ā(�m) − ā

∣∣≤ ∣∣ā(�m) − ā∗(�m)
∣∣≤ C sup

p∈B1

(
J (�m,p, āmp)

) 1
2 .

From now on, we thus fix p ∈ B1, and focus on estimating J (�m,p, āmp). We also assume
without further notification that m is sufficiently large that 3m ≥ R0, for the constant R0
appearing in Proposition 3.6. We use A3m+2v(·,�m+1,p, āmp) to compare with (87) and
apply the quadratic response (89). In the rest of Step 1, we write v(U) as a shorthand for
v(·,U,p, āmp), and decompose

(95)

(
J (�m,p, āmp)

) 1
2 =

(
Eρ

[
1

ρ|�m|
ˆ
�m

1

2
∇v(�m) · a∇v(�m)dμ

]) 1
2

≤ (95)-a + (95)-b,

with

(95)-a =
(
Eρ

[
1

ρ|�m|
ˆ
�m

1

2

(∇v(�m) − ∇A3m+2v(�m+1)
)

· a(∇v(�m) − ∇A3m+2v(�m+1)
)

dμ

]) 1
2
,

and

(95)-b =
(
Eρ

[
1

ρ|�m|
ˆ
�m

1

2
∇A3m+2v(�m+1) · a∇A3m+2v(�m+1)dμ

]) 1
2
.

We treat the two terms separately. For (95)-a, since A3m+2v(�m+1) ∈ A(�m) (see Proposi-
tion A.1 for details), we use (89) to get∣∣(95)-a

∣∣2
= J (�m,p, āmp) −Eρ

[
1

ρ|�m|
ˆ
�m

(
−1

2
∇A3m+2v(�m+1) · a∇A3m+2v(�m+1)

)
dμ

]

−Eρ

[
1

ρ|�m|
ˆ
�m

(−p · a∇A3m+2v(�m+1) + āmp · ∇A3m+2v(�m+1)
)

dμ

]
.
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Using Jensen’s inequality, we have

Eρ

[ˆ
�m

(
1

2
∇A3m+2v(�m+1) · a∇A3m+2v(�m+1)

)
dμ

]

≤ Eρ

[ˆ
�m

(
1

2
∇v(�m+1) · a∇v(�m+1)

)
dμ

]
,

and the conditional expectation also implies that

Eρ

[ˆ
�m

(−p · a∇A3m+2v(�m+1) + āmp · ∇A3m+2v(�m+1)
)

dμ

]

= Eρ

[ˆ
�m

(−p · a∇v(�m+1) + āmp · ∇v(�m+1)
)

dμ

]
.

Thus we combine these terms with the quadratic response (89) to obtain∣∣(95)-a
∣∣2 ≤ J (�m,p, āmp) −Eρ

[
1

ρ|�m|
ˆ
�m

(
−1

2
∇v(�m+1) · a∇v(�m+1)

)
dμ

]

−Eρ

[
1

ρ|�m|
ˆ
�m

(−p · a∇v(�m+1) + āmp · ∇v(�m+1)
)

dμ

]

= Eρ

[
1

ρ|�m|
ˆ
�m

(
1

2
∇(

v(�m+1) − v(�m)
) · a∇(

v(�m+1) − v(�m)
))

dμ

]
,

and we use Lemma 4.2 between �m and �m+1 to get

(96)
∣∣(95)-a

∣∣2 ≤ 3d(J (�m,p, āmp) − J (�m+1,p, āmp)
)≤ C(d,�)τm,

where the quantity τm is defined in (93).
For the term (95)-b, we can apply the modified Caccioppoli inequality (50): there exist two

finite positive constants C(d,�) and θ(d,�) ∈ (0,1) such that

(97)

Eρ

[
1

ρ|�m|
ˆ
�m

∇(
A3m+2v(�m+1)

) · a∇(
A3m+2v(�m+1)

)
dμ

]

≤ C

32mρ|�m+1|Eρ

[(
v(�m+1)

)2]
+ θEρ

[
1

ρ|�m+1|
ˆ
�m+1

∇v(�m+1) · a∇v(�m+1)dμ

]
.

Using (87), we see that the averaged gradient term on the right-hand side of (97) is
J (�m+1,p, āmp), and (90) asserts that J (�m+1,p, āmp) ≤ J (�m,p, āmp). Therefore, we
get the bound for (95)-b:

(98)
∣∣(95)-b

∣∣2 ≤ C

32mρ|�m+1|Eρ

[(
v(�m+1)

)2]+ θJ (�m,p, āmp).

We put (96) and (98) back to (95), obtaining

(
J (�m,p, āmp)

) 1
2 ≤ Cτ

1
2
m +

(
C

32mρ|�m+1|
∥∥v(�m+1)

∥∥2
L 2 + θJ (�m,p, āmp)

) 1
2

≤ Cτ
1
2
m + C

3m(ρ|�m+1|) 1
2

∥∥v(�m+1)
∥∥
L 2 + θ

1
2
(
J (�m,p, āmp)

) 1
2 .
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Since θ < 1, this gives

(99) J (�m,p, āmp) ≤ C

(
τm + 1

32mρ|�m+1|
∥∥v(μ,�m+1,p, āmp)

∥∥2
L 2

)
.

5.2. Step 2: Flatness estimate. In this step, we estimate the L 2-flatness of optimizers
of J . Notice that, using the result of (101) with v(·,�m+1,p, āmp), the corresponding affine
function is 0 and we obtain from (99) that

(100) J (�m,p, āmp) ≤ C

(
3−βm +

m∑
n=0

3−β(m−n)τn

)
.

LEMMA 5.1 (L 2-flatness estimate). There exist β(d) > 0 and C(d,�,ρ) < ∞ such
that for every p,q ∈ B1 and m ∈ N,

(101)
1

ρ|�m+1|
∥∥v(·,�m+1,p, q) − �ā−1

m q−p,�m+1

∥∥2
L 2 ≤ C32m

(
3−βm +

m∑
n=0

3−β(m−n)τn

)
.

PROOF. In the rest of the proof, we write v(U) := v(·,U,p, q) as we will not change
p, q in the proof. Since Eρ[v(�m+1) − �ā−1

m q−p,�m+1
| Gm+1] = 0, we can use the multiscale

Poincaré inequality (36)

(102)

1

(ρ|�m+1|) 1
2

∥∥v(�m+1) − �ā−1
m q−p,�m+1

∥∥
L 2

≤ C

(
Eρ

[
1

ρ|�m+1|
ˆ
�m+1

∣∣∇v(�m+1) − (
ā−1
m q − p

)∣∣2 dμ

]) 1
2

+ C

m+1∑
n=0

3n

(
Eρ

[
1

ρ|�m+1|
ˆ
�m+1

∣∣Sm+1,n∇v(�m+1) − (
ā−1
m q − p

)∣∣2 dμ

]) 1
2
.

The first term on the right-hand side above is of constant order, by (87). For the second term,
we use a two-scale comparison for every 0 ≤ n ≤ m + 1 that

(103)

(
Eρ

[
1

ρ|�m+1|
ˆ
�m+1

∣∣Sm+1,n∇v(�m+1) − (
ā−1
m q − p

)∣∣2 dμ

]) 1
2

≤
(
Eρ

[
1

ρ|�m+1|
∑

z∈Zm+1,n

ˆ
z+�n

∣∣Sm+1,n∇v(�m+1) − Sm+1,n∇v(z +�n)
∣∣2 dμ

]) 1
2

+
(
Eρ

[
1

ρ|�m+1|
∑

z∈Zm+1,n

ˆ
z+�n

∣∣Sm+1,n∇v(z +�n) − (
ā−1
n q − p

)∣∣2 dμ

]) 1
2

+ ∣∣ā−1
m − ā−1

n

∣∣.
For the third term |ā−1

m − ā−1
n | we have

∣∣ā−1
m − ā−1

n

∣∣2 ≤ C(d,�)
∣∣ā−1

m − ā−1
n

∣∣≤ m−1∑
k=n

τk.
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For the first term in (103), recalling (28), we use Jensen’s inequality and (91) to get

Eρ

[
1

ρ|�m+1|
∑

z∈Zm+1,n

ˆ
z+�n

∣∣Sm+1,n∇v(�m+1) − Sm+1,n∇v(z +�n)
∣∣2 dμ

]

≤ Eρ

[
1

ρ|�m+1|
∑

z∈Zm+1,n

ˆ
z+�n

∣∣∇v(�m+1) − ∇v(z +�n)
∣∣2 dμ

]

≤
m∑

k=n

τk.

For the second term (103), we use (30), Jensen’s inequality, and stationarity. Here we remark
that the operator Sz

n,n is a conditional expectation with more information than Sm+1,n.

Eρ

[
1

ρ|�m+1|
∑

z∈Zm+1,n

ˆ
z+�n

∣∣Sm+1,n∇v(z +�n) − (
ā−1
n q − p

)∣∣2 dμ

]

≤ Eρ

[
1

ρ|�m+1|
∑

z∈Zm+1,n

ˆ
z+�n

∣∣Sz
n,n∇v(z +�n) − (

ā−1
n q − p

)∣∣2 dμ

]

= Eρ

[
1

ρ|�n|
ˆ
�n

∣∣Sn∇v(�n) − (
ā−1
n q − p

)∣∣2 dμ

]
.

The estimation of this term is postponed to the next step. We will prove in Lemma 5.2 below
that

Eρ

[
1

ρ|�n|
ˆ
�n

∣∣Sn∇v(�n) − (
ā−1
n q − p

)∣∣2 dμ

]
≤ C3−βn +

n−1∑
k=0

3−β(n−k)τk.

We put these estimates back to (102) and obtain that

1

(ρ|�m+1|) 1
2

∥∥v(�m+1) − �ā−1
m q−p,�m+1

∥∥
L 2 ≤ C

m∑
n=0

3n

(
3−βn +

n−1∑
k=0

3−β(n−k)τk +
m∑

k=n

τk

) 1
2

.

We square the two sides and use the Cauchy–Schwarz inequality to obtain

1

ρ|�m+1|
∥∥v(�m+1) − �ā−1

m q−p,�m+1

∥∥2
L 2

≤ C

(
m∑

n=0

3n

)(
m∑

n=0

3n

(
3−βn +

n−1∑
k=0

3−β(n−k)τk +
m∑

k=n

τk

))

≤ C32m

(
3−βm +

m∑
n=0

3−β(m−n)τn

)
,

as announced. �

5.3. Step 3: Variance estimate. In this part, we prove the following variance estimate,
which was used in Step 2.

LEMMA 5.2 (Variance estimate). There exist β(d) > 0 and C(d,�,ρ) < ∞ such that
for every p,q ∈ B1 and n ∈ N,

(104) Eρ

[
1

ρ|�n|
ˆ
�n

∣∣Sn∇v(μ,�n,p, q) − (
ā−1
n q − p

)∣∣2 dμ

]
≤ C3−βn +

n−1∑
k=0

3−β(n−k)τk.



1922 A. GIUNTI, C. GU AND J.-C. MOURRAT

PROOF. In the rest of the proof, we write v(U) := v(·,U,p, q), as we will not change
p, q in the proof. From (92), we know that the average slope of v(�n) is (ā−1

n q − p), and
notice that v(�n) is FB1(�n)-measurable. Thus, the idea is to use {v(z + �k)}z∈Zn,k

to ap-
proximate (104) in scale 3k with some error, and then apply the independence for v(z +�k)

and v(z′ +�k) for dist(z, z′) large. However, different from the standard elliptic setting, here
we will see a renormalization with random weights.

We start by relaxing (104) to Gn,n−2. We observe that in fact Sn∇v(�n) is constant in �n,
so ˆ

�n

∣∣Sn∇v(�n) − (
ā−1
n q − p

)∣∣2 dμ = 1

μ(�n)

∣∣∣∣ˆ
�n

(
Sn∇v(�n) − (

ā−1
n q − p

))
dμ

∣∣∣∣2.
We denote by Vn the left-hand side of (104). By triangle inequality, we have

(105) (Vn)
1
2 ≤ (105)-a + (105)-b + (105)-c,

with

(105)-a = ∣∣ā−1
n − ā−1

n−2

∣∣,
(105)-b

=
(
Eρ

[
1

ρ|�n|
1

μ(�n)

∣∣∣∣ ∑
z∈Zn,n−2

ˆ
z+�n−2

(
Sn,n∇v(�n) − Sn,n−2∇v(z +�n−2)

)
dμ

∣∣∣∣2]) 1
2
,

(105)-c

=
(
Eρ

[
1

ρ|�n|
1

μ(�n)

∣∣∣∣ ∑
z∈Zn,n−2

ˆ
z+�n−2

(
Sn,n−2∇v(z +�n−2) − (

ā−1
n−2q − p

))
dμ

∣∣∣∣2]) 1
2
.

The term (105)-a can be controlled by (94):

(106) (105)-a ≤ C(τn−2 + τn−1)
1
2 .

For the term (105)-b, recalling (30) and (28), we use Jensen’s inequality and the two-scale
comparison (91) to get

(107)

(105)-b ≤
(
Eρ

[
1

ρ|�n|
∑

z∈Zn,n−2

ˆ
z+�n−2

∣∣Sn,n∇v(�n) − Sn,n−2∇v(z +�n−2)
∣∣2 dμ

]) 1
2

≤
(
Eρ

[
1

ρ|�n|
∑

z∈Zn,n−2

ˆ
z+�n−2

∣∣∇v(�n) − ∇v(z +�n−2)
∣∣2 dμ

]) 1
2

≤ (τn−2 + τn−1)
1
2 .

The term (105)-c is the key for our result. To simplify a little more the notation, we write

(108)

{
Xz := Sn,n−2∇v(z +�n−2)(μ, z) − (

ā−1
n−2q − p

)
,

mz := μ(z +�n−2).

Notice that Xz, mz are Fz+�n−1 -measurable. With this notation in place, we have
ˆ

z+�n−2

(
Sn,n−2∇v(z +�n−2) − (

ā−1
n−2q − p

))
dμ = mzXz,
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and by (92),

Eρ[mzXz] = 0.

The term (105)-c we want to estimate can be rewritten as

(105)-c =
(
Eρ

[
1

ρ|�n|
(
∑

z∈Zn,n−2
mzXz)

2∑
z∈Zn,n−2

mz

]) 1
2
.

If the coefficients mz were deterministic, then we would be able to leverage on the finite
range of dependence of Xz in this variance term. However, since the number of particles mz

is random, we introduce the event

(109)

Cn,ρ,δ

:=
{
μ ∈ Mδ

(
Rd) : ∀z ∈ Zn,n−2,

∣∣∣∣μ(z +�n−2)

ρ|�n−2| − 1
∣∣∣∣≤ δ, and

∣∣∣∣μ(�n)

ρ|�n| − 1
∣∣∣∣≤ δ

}
,

thus we can divide (105)-c into two terms

(105)-c ≤ (105)-c1 + (105)-c2,

(105)-c1 =
(
Eρ

[1{(Cn,ρ,δ)c}
ρ|�n|

(
∑

z∈Zn,n−2
mzXz)

2∑
z∈Zn,n−2

mz

]) 1
2
,

(105)-c2 =
(
Eρ

[1{Cn,ρ,δ}
ρ|�n|

(
∑

z∈Zn,n−2
mzXz)

2∑
z∈Zn,n−2

mz

]) 1
2
.

For the term (105)-c1, we know that (Cn,ρ,δ)
c is not typical in large scales, and we have the

Chernoff bound

Pρ[μ /∈ Cn,ρ,δ] ≤ 32d+1 exp
(
−ρ|�n−2|δ2

4

)
.

Moreover, by the Cauchy–Schwarz inequality,

(
∑

z∈Zn,n−2
mzXz)

2∑
z∈Zn,n−2

mz

≤ ∑
z∈Zn,n−2

mz|Xz|2.

We need a bound for the term |Xz|2: recalling the definition in (28) and (88),

Sz
n−2,n−2∇v(z +�n−2)(μ, z) = Eρ

[ 
z+�n−2

∇v(z +�n−2)dμ
∣∣∣ Gz

n−2,n−2

]
= a(z +�n−2;Gz+�n−2)

−1q − p.

Using the martingale structure of (30), we have

Xz = Sn,n−2∇v(z +�n−2)(μ, z) − (
ā−1
n−2q − p

)
= Eρ

[ 
z+�n−2

Sz
n−2,n−2∇v(z +�n−2)dμ

∣∣∣ Gn,n−2

]
− (

ā−1
n−2q − p

)
= Eρ

[
a(z +�n−2;Gz+�n−2)

−1 − ā−1
n−2 | Gn,n−2

]
q.

Then we use Jensen’s inequality and the bound of Id ≤ a(z +�n−2;Gz+�n−2) ≤ �Id:

(110)
|Xz|2 = ∣∣Sn,n−2∇v(z +�n−2) − (

ā−1
n−2q − p

)∣∣2
= Eρ

[∣∣a(z +�n−2;Gz+�n−2) − ā−1
n−2

∣∣2 | Gn,n−2
]≤ �2.
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This concludes that

(111)
(105)-c1 ≤ �2Eρ

[1{(Cn,ρ,δ)c}
ρ|�n| μ(�n)

]
≤ C(d,�)

1

ρ|�n−2| exp
(
−ρ|�n−2|δ2

4

)
≤ C(d,�,ρ)3−dn.

Finally, we treat (105)-c2. We calculate (105)-c2 at first with the conditional expecta-
tion with respect to Gn,n−2. Clearly, Cn,ρ,δ is Gn,n−2-measurable, and under this condition
μ(�n) ≥ (1 − δ)ρ|�n|, so we have

(112)

|(105)-c2|2 = 1

ρ|�n|Eρ

[1{Cn,ρ,δ}
μ(�n)

Eρ

[( ∑
z∈Zn,n−2

mzXz

)2 ∣∣∣ Gn,n−2

]]

≤ 1

ρ|�n|Eρ

[
1

(1 − δ)ρ|�n|Eρ

[
1{Cn,ρ,δ}

( ∑
z∈Zn,n−2

mzXz

)2 ∣∣∣ Gn,n−2

]]
.

We would like to develop the term |∑z∈Zn,n−2
mzXz|2 and also drop out the indicator term.

The argument here is deterministic:∣∣∣∣ ∑
z∈Zn,n−2

mzXz

∣∣∣∣2 = ∑
z,z′∈Zn,n−2

|z−z′|∞<3n−1

mzmz′Xz · Xz′ + ∑
z,z′∈Zn,n−2

|z−z′|∞≥3n−1

mzmz′Xz · Xz′

≤ 1

2

∑
z,z′∈Zn,n−2

|z−z′|∞<3n−1

(
(mz)

2|Xz|2 + (mz′)2|Xz′ |2)+ ∑
z,z′∈Zn,n−2

|z−z′|∞≥3n−1

mzmz′Xz · Xz′,

where |z − z′|∞ := max1≤i≤d |zi − z′
i |. We now add back the indicator 1{Cn,ρ,δ} and develop it

(113)

1{Cn,ρ,δ}
∣∣∣∣ ∑
z∈Zn,n−2

mzXz

∣∣∣∣2

≤ 1{Cn,ρ,δ}
(

(1 + δ)ρ|�n−2|
2

∑
z,z′∈Zn,n−2

|z−z′|<3n−1

(
mz|Xz|2 + mz′ |Xz′ |2)+ ∑

z,z′∈Zn,n−2

|z−z′|≥3n−1

mzmz′Xz · Xz′
)

≤ (1 + δ)ρ|�n−2|
2

∑
z,z′∈Zn,n−2

|z−z′|<3n−1

(
mz|Xz|2 + mz′ |Xz′ |2)+ ∑

z,z′∈Zn,n−2

|z−z′|≥3n−1

mzmz′Xz · Xz′ .

From the first line to the second line above, we use that mz ≤ (1 + δ)ρ|�n−2| under the event
Cn,ρ,δ . We then keep in mind that the quantity in (· · · ) on the second line of (113) is always
larger than |∑z∈Zn,n−2

mzXz|2, so it is nonnegative. Therefore, from the second line to the
third line, we can drop the indicator function in front. Inserting this estimate into (112), we
obtain that∣∣(105)-c2

∣∣2 ≤ 1

ρ|�n|
(1 + δ)|�n−2|
(1 − δ)|�n|

∑
z,z′∈Zn,n−2

|z−z′|∞<3n−1

Eρ

[
1

2

(
mz|Xz|2 + mz′ |Xz′ |2)]

+ 1

ρ|�n|
1

(1 − δ)|�n|
∑

z,z′∈Zn,n−2

|z−z′|∞≥3n−1

Eρ[mzmz′Xz · Xz′ ].
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The sum in the second line is 0, because for |z− z′|∞ ≥ 3n−1, mzXz and mz′Xz′ are indepen-
dent,

Eρ[mzmz′Xz · Xz′ ] = Eρ[mzXz] ·Eρ[mz′Xz′ ] = 0.

For the sum in the first line, Eρ[mz|Xz|2] is nothing but

Eρ

[ˆ
z+�n−2

∣∣Sn,n−2∇v(z +�n−2) − (
ā−1
n−2q − p

)∣∣2 dμ

]
.

We use Jensen’s inequality to shrink the operator to Sz
n−2,n−2 that

Eρ

[ˆ
z+�n−2

∣∣Sn,n−2∇v(z +�n−2) − (
ā−1
n−2q − p

)∣∣2 dμ

]

≤ Eρ

[ˆ
z+�n−2

∣∣Sz
n−2,n−2∇v(z +�n−2) − (

ā−1
n−2q − p

)∣∣2 dμ

]

= Eρ

[ˆ
�n−2

∣∣Sn−2∇v(�n−2) − (
ā−1
n−2q − p

)∣∣2 dμ

]
.

There are at most 9d × 5d pairs z, z′ ∈ Zn,n−2 such that |z − z′|∞ < 3n−1; see Figure 3 for an
illustration. Therefore, we obtain

∣∣(105)-c2
∣∣2 ≤

(
5

9

)d(1 + δ

1 − δ

)
Eρ

[
1

ρ|�n−2|
ˆ
�n−2

∣∣Sn−2∇v(�n−2) − (
ā−1
n−2q − p

)∣∣2 dμ

]

=
(

5

9

)d(1 + δ

1 − δ

)
Vn−2,

FIG. 3. In the cube �n and all its sub-cubes {z +�n−2}z∈Zn,n−2
, for a chosen sub-cube z0 +�n−2 (the cube

in dark red), the support of v(z0 +�n−2) is in z0 + �n−1 (the cube in light red), so it has at most 5d cubes of
scale 3n−2 whose associated function has a support intersecting with z1 +�n−1 (the cube in blue). For example,
v(z2 +�n−2) has correlation with v(z0 +�n−2), while v(z1 +�n−2), v(z3 +�n−2) do not. This gives us the
contraction factor ( 5

9 )d .
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where we recall that Vn is the left-hand side of (104). We put this estimate together with
(106), (107), (111) back to (105) to obtain the recurrence relation

(Vn)
1
2 ≤

(
5

9

) d
2
(

1 + δ

1 − δ

) 1
2
(Vn−2)

1
2 + C(τn−2 + τn−1)

1
2 + C3−dn.

By choosing δ(d) > 0 sufficiently small, we obtain the desired result (104). �

5.4. Step 4: Iterations. Once we obtain the estimate (100), it remains to do some numer-
ical iterations, similar to [11], pages 59–60. For the reader’s convenience, we recall the main
steps here. Let {ei}1≤i≤d denote the canonical basis in Rd , and define

Fm :=
d∑

i=1

J (�m, ei , āmei ).

In order to obtain an exponential decay for (Fm)m≥0, we first introduce a weighted version
of this quantity:

F̃m :=
m∑

n=0

3− β
2 (m−n)Fn.

Here the exponent β is the same as in (100). It is clear that Fm ≤ F̃m, so it suffices to prove
an exponential decay for (F̃m)m≥0. We will do so by proving a recurrence equation of type
F̃m+1 ≤ C(F̃m − F̃m+1) for some constant C(d,�) < ∞. Thus, in the following we calculate
some bounds for (F̃m − F̃m+1) and F̃m+1.

Starting with (F̃m − F̃m+1), we write

F̃m − F̃m+1 ≥
n∑

n=0

3− β
2 (m−n)(Fn − Fn+1) − C3− βm

2 .

Noticing that ān+1p is the minimizer for the mapping q 
→ J (�n+1,p, q) in (79), we have

(114) Fn+1 =
d∑

i=1

J (�n+1, ei , ān+1ei ) ≤
d∑

i=1

J (�n+1, ei , ānei ).

Using also (79), that Id ≤ ān ≤ �Id, and that p 
→ ν(�n,p) − ν(�n+1,p) and q 
→
ν∗(�n, q) − ν∗(�n+1, q) are positive semidefinite quadratic forms, we get

Fn − Fn+1 ≥
d∑

i=1

(
J (�n, ei , ānei ) − J (�n+1, ei , ānei )

)

=
d∑

i=1

(
ν(�n, ei) − ν(�n+1, ei )

)+
d∑

i=1

(
ν∗(�n, ānei ) − ν∗(�n+1, ānei )

)
≥ C−1

(
sup
p∈B1

(
ν(�n,p) − ν(�n+1,p)

)+ sup
q∈B1

(
ν∗(�n, q) − ν∗(�n+1, q)

))
≥ C−1τn,

and thus

(115) F̃m − F̃m+1 ≥ C−1
m∑

n=0

3− β
2 (m−n)τn − C3− βm

2 .
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For the upper bound of F̃m+1, we use (114) to see that Fn ≤ Fn+1, so

F̃m+1 = 3− β
2 (m+1)F0 +

m∑
n=0

3− β
2 (m−n)Fn+1

≤ C3− βm
2 +

m∑
n=0

3− β
2 (m−n)Fn.

Then we apply (100) into the result above to get

(116)

F̃m+1 ≤ C3− βm
2 +

m∑
n=0

3− β
2 (m−n)

(
3−βn +

n∑
k=0

3−β(n−k)τk

)

≤ C3− βm
2 + 3− β

2 m
m∑

k=0

τk

m∑
n=k

3
β
2 (2k−n)

≤ C3− βm
2 + C

m∑
k=0

3− β
2 (m−k)τk.

We combine (115) and (116), to obtain C(F̃m − F̃m+1 + C̃3− βm
2 ) ≥ F̃m+1, which implies

F̃m+1 ≤ θF̃m + C3− βm
2 ,

for some θ(d,�) ∈ (0,1). We thus conclude for the exponential decay of (F̃m)m≥0, and thus
also of Fm, since Fm ≤ F̃m. By (81), this completes the proof of Theorem 2.1.

APPENDIX A: SOME ELEMENTARY PROPERTIES OF THE FUNCTION SPACES

LEMMA A.1 (Canonical projection). Let f : Mδ(R
d) → R be a function, and for every

Borel set U , measure μ ∈ Mδ(R
d), and n ∈ N, let fn(·,μ Uc) denote the (permutation-

invariant) function

fn

(·,μ Uc) :

⎧⎪⎪⎨⎪⎪⎩
Un →R

(x1, . . . , xn) 
→ f

(
n∑

i=1

δxi
+ μ Uc

)
.

The following statements are equivalent:

(1) The function f is F -measurable.
(2) For every n ∈ N, the function fn is B⊗n

U ⊗FUc -measurable.

PROOF. We start from (1) ⇒ (2). Because F = FU ⊗FUc , it suffices to study the prod-
uct function

f = 1{μ(V1)=n1}1{μ(V2)=n2}1{μ(U)=n},

for some Borel sets V1 ⊆ U , V2 ⊆ Uc. In this case, we have

{fn = 1} = {
μ(V1) = n1

}∩ {
μ(V2) = n2

}∩ {
μ(U) = n

}
= ⋃

σ∈Sn

(
n1⋂
i=1

{xσ(i) ∈ V1}
n⋂

j=n1+1

{
xσ(j) ∈ (U\V1)

}∩ {
μ(V2) = n2

})
,

where Sn is the symmetric group. This proves that fn is B⊗n
U ⊗FUc -measurable.
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We turn to (2) ⇒ (1). Let us pick a suitable fn and μ U =∑n
i=1 δxi

, then the main point is
to establish the F -measurable property. Since fn is B⊗n

U ⊗FUc -measurable and permutation
invariant, it suffices to study the function of type

(117) fn = ∑
σ∈Sn

(
n∏

i=1

1{xσ(i)∈Vi}
)
1{μ Uc(V0)=n0}1{μ(U)=n},

for {Vi}0≤i≤n Borel sets. This is still a complicated function, but we can add one more con-
dition

(118) ∀1 ≤ i, j ≤ n, Vi = Vj or Vi ∩ Vj = ∅.

For example, let {Ṽj }0≤j≤m be all the different elements in {Vi}0≤i≤n, and Ṽj appears nj

times. For the functions of type (117) satisfying the condition (118), the F -measurable prop-
erty is easy to treat since we have∑

σ∈Sn

(
n∏

i=1

1{xσ(i)∈Vi}
)
1{μ Uc(V0)=n0}1{μ(U)=n}

=
(

m∏
j=1

1{μ(Ṽj )=nj }

)
1{μ Uc(V0)=n0}1{μ(U)=n},

which is an F -measurable function.
Finally, let us conclude that for a general fn in (117), they can be decomposed into the

sum of the functions with the propriety (118). Let us see the case n = 2, where we have the
following decomposition:

1{x1∈V1}1{x2∈V2} = (1{x1∈(V1\V2)} + 1{x1∈(V1∩V2)})(1{x2∈(V2\V1)} + 1{x2∈(V1∩V2)})
= 1{x1∈(V1\V2)}1{x2∈(V2\V1)} + 1{x1∈(V1\V2)}1{x2∈(V1∩V2)}

+ 1{x1∈(V1∩V2)}1{x2∈(V2\V1)} + 1{x1∈(V1∩V2)}1{x2∈(V1∩V2)}.
For a general n, one can use induction and this concludes the proof. �

PROPOSITION A.1. For every s > 0 and f ∈ H 1(Qs), we have Asf ∈ H 1(Qs), and
for every x ∈ supp(μ) ∩ Qs

(119) ∇(Asf )(μ, x) = As(∇f )(μ,x).

Moreover, if s > 2 and f ∈A(Qs), then Asf ∈ A(Qs−2).

PROOF. At first, we should remark the well-definedness of the right-hand side of (119).
Notice that the Poisson measure can be decomposed as a sum of the independent parts
μ = μ Qs + μ Q

c

s , we have

Asf =
ˆ
Mδ(Rd )

f
(
μ Qs + μ′ Q

c

s

)
dPρ

(
μ′).

Thus the right-hand side of (119) is defined as

(120) As(∇f )(μ,x) :=
ˆ
Mδ(Rd )

∇f
(
μ Qs + μ′ Q

c

s, x
)

dPρ

(
μ′).

We prove (119) and Asf ∈ H 1(Qs) for the functions in C ∞(Qs) ∩ H 1(Qs) as they are
dense, and we can focus on the case μ(Qs) = n fixed. We use Lemma A.1 to write

f

(
n∑

i=1

δxi
+ μ Q

c

s

)
= fn

(
x1, . . . , xn,μ Q

c

s

)
.
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Following the property of product measure, for every (x1, x2, . . . , xn) ∈ (Qs)
n, the mapping

μ Q
c

s 
→ fn

(
x1, . . . , xn,μ Q

c

s

)
,

is F
Q

c
s
-measurable. Thus for every (x1, x2, . . . , xn) ∈ (Qs)

n, the mapping

μ Q
c

s 
→ ∇xk
fn

(
x1, . . . , xn,μ Q

c

s

)
,

is also F
Q

c
s
-measurable because it is the limit of F

Q
c
s
-measurable functions. Then we observe

that

‖∇fn‖L∞((Qs)n) = sup
(Qs)n

(
n∑

k=1

∣∣∇xk
fn

(
x1, . . . , xn,μ Q

c

s

)∣∣2) 1
2

= sup
(Q∩Qs)n

(
n∑

k=1

∣∣∇xk
fn

(
x1, . . . , xn,μ Q

c

s

)∣∣2) 1
2

,

as a supremum of a countable number of F
Q

c
s
-measurable functions, is finite and F

Q
c
s
-

measurable. Thus we can define a cutoff version of f that

f n,M = f 1{μ(Qs)=n}1{‖∇fn‖L∞((Qs )n)≤M},

and we can establish (119) at first for f n,M . For every x ∈ Qs ∩ supp(μ), we have

∂k

(
Asf

n,M)
(μ, x)

= lim
h→0

ˆ
Mδ(Rd )

f ((μ − δx + δx+hek ) Qs + μ′ Q
c

s) − f (μ Qs + μ′ Q
c

s)

h

× 1{‖∇fn‖L∞((Qs )n)≤M} dPρ

(
μ′)1{μ(Qs)=n},

for h small enough such that x + hek ∈ Qs . Since f ∈ C ∞(Qs), we use Lemma A.1 and the
mean value theorem

f (μ − δx + δx+hek ) − f (μ)

h
= ∂kf (μ − δx + δx+θek , x + θek),

for some θ ∈ (0,1). With the indicator 1{‖∇fn‖L∞((Qs )n)≤M}, this term is bounded by M , so we
can use the dominated convergence theorem that

∂k

(
Asf

n,M)
(μ, x)

=
ˆ
Mδ(Rd )

lim
h→0

f ((μ − δx + δx+hek ) Qs + μ′ Q
c

s) − f (μ Qs + μ′ Q
c

s)

h

× 1{‖∇fn‖L∞((Qs )n)≤M} dPρ

(
μ′)1{μ(Qs)=n}

=
ˆ
Mδ(Rd )

∂kf
(
μ Qs + μ′ Q

c

s, x
)
1{‖∇fn‖L∞((Qs )n)≤M} dPρ

(
μ′)1{μ(Qs)=n},

which establishes the (119) in the sense (120). By Jensen’s inequality and Fubini’s lemma,
we observe that

Eρ

[ˆ
Qs

∣∣∇(
Asf

n,M)∣∣2(μ, x)dμ(x)

]

= Eρ

[ˆ
Qs

∣∣∣∣ˆ
Mδ(Rd )

∇f n,M(
μ Qs + μ′ Q

c

s, x
)
dPρ

(
μ′)∣∣∣∣2 dμ(x)

]
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≤ Eρ

[ˆ
Qs

ˆ
Mδ(Rd )

∣∣∇f n,M(
μ Qs + μ′ Q

c

s, x
)∣∣2 dPρ

(
μ′)dμ(x)

]

= Eρ

[ˆ
Qs

∣∣∇f n,M
∣∣2(μ, x)dμ(x)

]
,

which implies that Asf
n,M ∈ H 1(Qs). Then we use once again Jensen’s inequality for f n,M

and f n,M ′
with M < M ′:

Eρ

[ˆ
Qs

∣∣∇(
Asf

n,M)− ∇(
Asf

n,M ′)∣∣2(μ, x)dμ(x)

]

≤ Eρ

[ˆ
Qs

∣∣∇f n,M − ∇f n,M ′ ∣∣2(μ, x)dμ(x)

]

= Eρ

[ˆ
Qs

|∇f |2(μ, x)dμ(x)1{μ(Qs)=n}1{M<‖∇fn‖L∞((Qs )n)≤M ′}
]
.

So {f n,M}M≥0 gives a Cauchy sequence in H 1(Qs), and the only candidate is f 1{μ(Qs)=n}
because it is the limit in L 2. By this and a linear combination, we establish (119) for f in
C ∞(Qs) ∩ H 1(Qs), and we can then extend to a general function in H 1(Qs) by the density
argument.

For the part of a-harmonic function, we suppose f ∈ A(Qs) and test φ ∈ H 1
0 (Qs−2) with

(119),

Eρ

[ˆ
Qs−2

(∇Asf )(μ, x) · a(μ, x)∇φ(μ,x)dμ(x)

]

= Eρ

[ˆ
Qs−2

As(∇f )(μ,x) · a(μ, x)∇φ(μ,x)dμ(x)

]

= Eρ

[ˆ
Qs−2

(ˆ
Mδ(Rd )

∇f
(
μ Qs + μ′ Q

c

s, x
)

dPρ

(
μ′)) · a(μ, x)∇φ(μ,x)dμ(x)

]
.

Restricted on x ∈ Qs−2, we have a(μ, x), ∇φ(μ,x) are FQs ⊗BQs -measurable, so we have

∀x ∈ supp(μ) ∩ Qs−2, a(μ, x)∇φ(μ,x) = a(μ Qs, x)∇φ(μ Qs, x).

We can enter the part in the integration, and then use Fubini’s lemma:

Eρ

[ˆ
Qs−2

(∇Asf )(μ, ·) · a(μ, ·)∇φ(μ, ·)dμ(·)
]

= Eρ

[ˆ
Qs−2

(ˆ
Mδ(Rd )

∇f
(
μ Qs + μ′ Q

c

s, ·
)

· a(μ Qs, ·)∇φ(μ Qs, ·)dPρ

(
μ′))dμ(·)

]
= Eρ

[ˆ
Qs−2

∇f (μ, ·) · a(μ, ·)∇φ(μ, ·)dμ(·)
]

= 0.

In the last step, we use f ∈A(Qs) and this finishes the proof. �
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APPENDIX B: EQUIVALENT DEFINITIONS OF THE EFFECTIVE DIFFUSION
MATRIX

Recall that we defined ā(U) and ā∗(U) according to (61)–(63). The proof of Theorem 2.1
ensures the existence of a constant C < ∞ and an exponent α > 0 such that for every m ∈ N,

(121)
∣∣ā(�m) − ā

∣∣+ ∣∣ā∗(�m) − ā
∣∣≤ C3−αm.

Throughout this appendix, we will only rely on the qualitative statement that

(122) ā= lim
m→∞ ā(�m) = lim

m→∞ ā∗(�m).

The first main goal of this appendix is to demonstrate that the definition we chose for the
bulk diffusion matrix indeed coincides with the “stationary” definition appearing in works
such as [34, 69]. Adapted to our context, this alternative definition takes the following form.
For

(123) � :=
{
μ 
→

ˆ
Rd

τxg(μ)dx,g ∈ C ∞
c

(
Rd)∩ H 1

0
(
Rd)},

we let ˜̄a be the d-by-d matrix such that for every p ∈ Rd ,

(124) p · ˜̄ap := inf
u∈�

Eρ

[(
p + ∇u(μ + δ0,0)

) · a(μ + δ0,0)
(
p + ∇u(μ + δ0,0)

)]
,

where in (123), we used the notation τxg(μ) := g(τ−xμ). Notice that for any function
g ∈ C ∞

c (Rd) ∩ H 1
0 (Rd) and u : μ 
→ ´

Rd τxg(μ)dx ∈ �, the mapping μ 
→ u(μ) is typi-
cally not well defined unless μ is of finite support. However, the quantity ∇u(μ, ·) makes
sense whenever the measure μ is σ -finite, since in the sum ∇u(μ,y) = ´

Rd ∇(τxg)(μ, y)dx,
the function g is local, and thus the integrand ∇(τxg)(μ, y) is nonzero only for x in a bounded
set. With this interpretation of ∇u, the right-hand side of (124) is well defined.

THEOREM B.1. We have ā= ˜̄a.

The second main goal of this appendix is to demonstrate that the infimum in (124) is
achieved in a suitable completion of the space �. We also show that the optimizer, which
we call the (stationary) corrector, can be obtained as a limit of approximations based on the
finite-volume optimizers for ν or ν∗. Denoting

M•
(
Rd) := {

(μ, x) ∈ Mδ

(
Rd)×Rd : x ∈ suppμ

}
,

we introduce the space

L 2• :=
{
f : M•

(
Rd)→R : f is measurable and Eρ

[ˆ
Rd

∣∣f (μ,x)
∣∣2 dμ(x)

]
< ∞

}
,

and its local version

(125)

L 2•,loc :=
{
f : M•

(
Rd)→R : f is measurable and

for every compact K ⊆ Rd,Eρ

[ˆ
K

∣∣f (μ,x)
∣∣2 dμ(x)

]
< ∞

}
.

In these definitions, we say that f :M•(Rd) →R is measurable provided that the mapping{
Mδ

(
Rd)×Rd →R

(μ, x) 
→ f (μ,x)1{x∈suppμ},



1932 A. GIUNTI, C. GU AND J.-C. MOURRAT

is F ⊗B-measurable. The space L 2•,loc is naturally endowed with the family of seminorms⎧⎪⎨⎪⎩
L 2•,loc →R

f 
→ Eρ

[ˆ
K

∣∣f (μ,x)
∣∣2 dμ(x)

] 1
2
,

indexed by all the compact sets K ⊆ Rd . This family of seminorms turns L 2•,loc into a com-
plete space.

For every p ∈ Rd and m ∈ N, we let φ(·,�m,p) be such that the minimizer in the defi-
nition of ν(�m,p) is �p,�m + φ(·,�m,p), where we recall that �p,�m was defined in (61).
Similarly, we let φ∗(·,�m,p) be such that �p,�m +φ∗(·,�m,p) is the maximizer in the defi-
nition of ν∗(�m, ā∗(�m)p). More precisely, using the notation introduced in Proposition 4.1,
we have

v(·,�m,p) = �p,U + φ(·,�m,p),

and

u
(·,�m, ā∗(�m)p

)= �p,�m + φ∗(·,�m,p).

Finally, we define ∇φ̃p,m according to the formula

(126) φ̃p,m : μ 
→ 1

|�m|
ˆ
Rd

τxφ(μ,�m,p)dx = 1

|�m|
ˆ
Rd

φ(μ,x +�m,p)dx.

Notice that, while φ̃p,m(μ) is generally ill-defined when μ is a Poisson point process, the
quantity ∇φ̃p,m(μ, ·) is still well defined, for the same reason as in the discussion following
(124). Our second main result is as follows.

THEOREM B.2. The following statements hold for every p ∈ Rd :

(1) The sequence (∇φ̃p,m)m∈N is a Cauchy sequence in (L 2•,loc)
d . Its limit, which we

denote by ∇φp , satisfies

(127) ∀v ∈ H 1
0
(
Rd), Eρ

[ˆ
Rd

∇v · a(p + ∇φp)dμ

]
= 0.

(2) We have

(128) lim
m→∞Eρ

[
1

ρ|�m|
ˆ
�m

∣∣∇φ(μ, ·,�m,p) − ∇φp(μ, ·)∣∣2 dμ

]
= 0,

as well as

(129) lim
m→∞Eρ

[
1

ρ|�m|
ˆ
�m

∣∣∇φ∗(μ, ·,�m,p) − ∇φp(μ, ·)∣∣2 dμ

]
= 0.

(3) The effective diffusion matrix ā satisfies

(130) p · āp = Eρ

[(
p + ∇φp(μ + δ0,0)

) · a(μ + δ0,0)
(
p + ∇φp(μ + δ0,0)

)]
,

as well as

(131) āp = Eρ

[
a(μ + δ0,0)

(
p + ∇φp(μ + δ0,0)

)]
.

As a preparation towards the proof of these results, we state in the following proposition a
number of elementary properties about the function space �.
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PROPOSITION B.1. Let g ∈ C ∞
c (Rd) ∩ H 1

0 (Rd) be an F�n-measurable function, and
let u := ´

Rd τxg dx ∈ �. The following properties hold:

1. y 
→ ∇u(μ + δy, y) is a stationary field, that is, ∇u(μ + δy, y) = ∇u(τ−yμ + δ0,0).
2. ∇u has mean zero, that is,

Eρ

[∇u(μ + δ0,0)
]= 0.(132)

3. ∇u satisfies the estimate

(133)

Eρ

[∇u(μ + δ0,0) · a(μ + δ0,0)∇u(μ + δ0,0)
]

≤ 32dnEρ

[
1

ρ|�n|
ˆ
�n

∇g(μ,y) · a(μ, y)∇g(μ,y)dμ(y)

]
.

PROOF. (1) We use the definition to write

∂ku(μ + δy, y) = lim
h→0

1

h

(ˆ
Rd

τxg(μ + δy+hek ) − τxg(μ + δy)dx

)

= lim
h→0

1

h

(ˆ
y+�n

τxg(μ + δy+hek ) − τxg(μ + δy)dx

)

= lim
h→0

1

h

(ˆ
y+�n

τx−yg(τ−yμ + δhek ) − τx−yg(τ−yμ + δ0)dx

)
.

From the first line to the second line, we used the fact that g is F�n -measurable, so if the
transport vector x does not belong to y +�n, then the integrand vanishes (up to a boundary
layer that vanishes in the limit h → 0). We then do the change of variables z = x − y to get

∂ku(μ + δy, y) = lim
h→∞

1

h

(ˆ
�n

τzg(τ−yμ + δhek ) − τzg(τ−yμ + δ0)dz

)
= ∂ku(τ−yμ + δ0,0),

which means that y 
→ ∇u(μ + δy, y) is a stationary gradient field.
(2) We use the equations developed in the last question. Since g ∈ C ∞

c (Rd), we can ex-
change the integration and derivative and get

(134) ∇u(μ + δy, y) =
ˆ
Rd

∇τzg(τ−yμ + δ0,0)dz.

We evaluate this gradient at y = 0

Eρ

[∇u(μ + δ0,0)
]= Eρ

[ˆ
Rd

∇τzg(μ + δ0,0)dz

]

= Eρ

[ˆ
Rd

∇g(τ−zμ + δ−z,−z)dz

]

= Eρ

[ˆ
Rd

∇g(μ + δz, z)dz

]
= 0.

From the second line to the third line, we used the stationarity of the Poisson point process.
Because g ∈ C ∞

c (Rd), then
´
Rd ∇g(μ + δz, z)dz = 0 and the integration in the third line

vanishes.
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(3) We pick a cube QL = (−L
2 , L

2 )d with L > 0, make use of the stationarity of
y 
→ ∇u(μ + δy, y) and Mecke’s identity (see [52], Theorem 4.1)

Eρ

[∇u(μ + δ0,0) · a(μ + δ0,0)∇u(μ + δ0,0)
]

= Eρ

[
1

|QL|
ˆ

QL

∇u(μ + δy, y) · a(μ + δy, y)∇u(μ + δy, y)dy

]

= Eρ

[
1

ρ|QL|
ˆ

QL

∇u(μ,y) · a(μ, y)∇u(μ,y)dμ(y)

]
.

We put the definition u = ´
Rd τxg dx into the equation. For the gradient at y, as g is F�n-

measurable, thus only the term ∇(τxg)(μ, y) for x ∈ y +�n contributes. This gives

Eρ

[∇u(μ + δ0,0) · a(μ + δ0,0)∇u(μ + δ0,0)
]

= Eρ

[
1

ρ|QL|
ˆ

QL

(ˆ
y+�n

∇(τxg)(μ, y)dx

)
· a(μ, y)

(ˆ
y+�n

∇(τxg)(μ, y)dx

)
dμ(y)

]
.

We next apply Jensen’s inequality to obtain that

(135)
Eρ

[∇u(μ + δ0,0) · a(μ + δ0,0)∇u(μ + δ0,0)
]

= Eρ

[ |�n|2
ρ|QL|

ˆ
QL

( 
y+�n

∇(τxg)(μ, y)dx

)
· a(μ, y)

( 
y+�n

∇(τxg)(μ, y)dx

)
dμ(y)

]

≤ Eρ

[ |�n|2
ρ|QL|

ˆ
QL

( 
y+�n

∇(τxg)(μ, y) · a(μ, y)∇(τxg)(μ, y)dx

)
dμ(y)

]

≤ Eρ

[ |�n|
ρ|QL|

ˆ
QL+3n

(ˆ
x+�n

∇(τxg)(μ, y) · a(μ, y)∇(τxg)(μ, y)dμ(y)

)
dx

]
.

In the last line, we use Fubini’s lemma and exchange
´

(· · · )dx with
´

(· · · )dμ(y). In this
procedure, we have to enlarge the domain from QL to QL+3n , because for the gradient at
y ∈ QL, ∇(τxg)(μ, y) contributes for the transport x ∈ QL+3n (see Figure 4 as an illustra-
tion). Using the stationarity of the Poisson point process, we have

Eρ

[ˆ
x+�n

∇(τxg)(μ, y) · a(μ, y)∇(τxg)(μ, y)dμ(y)

]

= Eρ

[ˆ
�n

∇g(μ,y) · a(μ, y)∇g(μ,y)dμ(y)

]
,

which helps us conclude that

Eρ

[(
ξ + ∇u(μ + δ0,0)

) · a(μ + δ0,0)
(
ξ + ∇u(μ + δ0,0)

)]
≤ 32dn |QL+3n |

|QL| Eρ

[
1

ρ|�n|
ˆ
�n

∇g(μ,y) · a(μ, y)∇g(μ,y)dμ(y)

]
.

We take L → ∞ and obtain the desired result. �

REMARK 3. The inequality (133) is essentially sharp when ∇g itself is close to a sta-
tionary field. Indeed, if g is close to a stationary field, then

∇τxg(μ,y) = ∇g(τ−xμ, y − x) � ∇g(μ,y),
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FIG. 4. The red cube represents the cube QL and the blue cubes represent the transport of small cubes x +�n.
It is clear that for x ∈ QL+3n , the blue cubes and the red cube intersect.

which implies that the application of Jensen’s inequality in (135) is essentially sharp. The
error introduced by a boundary layer in a subsequent step of the proof disappears as we take
L → ∞ at the end.

As a corollary of Proposition B.1, we can also propose the following equivalent definition
of ˜̄a.

COROLLARY 1. For any open set U ⊆Rd , we have

(136) ξ · ˜̄aξ = inf
u∈�

Eρ

[
1

ρ|U |
ˆ

U

(ξ + ∇u) · a(ξ + ∇u)dμ

]
.

PROOF. It is a direct result of Mecke’s identity (see [52], Theorem 4.1) and the station-
arity of y 
→ ∇u(μ + δy, y). �

With the help of Proposition B.1, we can now prove the first main theorem of this ap-
pendix.

PROOF OF THEOREM B.1. We decompose the proof into two steps.
Step 1: Bound from below ˜̄a≥ ā. We fix m ∈N and a sequence of approximate minimizers

{φ(i)
p }i≥1 for the variational problem in (124), which we write in the form

φ(i)
p (μ) =

ˆ
Rd

τxgi(μ)dx

for some gi ∈ C ∞
c (Rd)∩H 1

0 (Rd). Now we propose a modified version in H 1(�m) defined
by

φ̃(i)
p (μ) :=

ˆ
Ki

τxgi(μ)dx,

with Ki ⊆ Rd a large compact set so that φ̃
(i)
p ∈ H 1(�m) and

∀y ∈ �m, ∇φ̃(i)
p (μ, y) = ∇φ(i)

p (μ, y).
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Then we test p + ∇φ̃
(i)
p in the optimization problem for ν∗(�m,q) to get that

1

2
q · ā−1∗ (�m)q ≥ Eρ

[
1

ρ|�m|
ˆ
�m

(
−1

2

(
p + ∇φ̃(i)

p

) · a(p + ∇φ̃(i)
p

)+ q · (p + ∇φ̃(i)
p

))
dμ

]

= Eρ

[
1

ρ|�m|
ˆ
�m

(
−1

2

(
p + ∇φ(i)

p

) · a(p + ∇φ(i)
p

)+ q · (p + ∇φ(i)
p

))
dμ

]
.

We use the stationarity of y 
→ ∇φ
(i)
p (μ + δy, y), (132) and let i → ∞ to obtain

1

2
q · ā−1∗ (�m)q ≥ −1

2
p · ˜̄ap + p · q.

Taking q = ā∗(�m)p leads to

p · ˜̄ap ≥ p · ā∗(�m)p.

Finally, we let m → ∞ and conclude that ˜̄a≥ ā.
Step 2: Bound from above ˜̄a ≤ ā. We hope to prove ˜̄a ≤ ā by testing the variational for-

mula (124) with a suitable candidate, namely the function φ̃p,m introduced in (126). Since
φ(·,�m,p) ∈ H 1

0 (�m), and using (133), we can approximate ∇φ̃p,m in (L 2•,loc)
d arbitrar-

ily closely with elements of �. It thus follows that we can use φ̃p,m as a candidate in the
variational problem in (124), and use the comparison inequality (133) to get that

(137)

p · ˜̄ap ≤ Eρ

[(
p + ∇φ̃p,m(μ + δ0,0)

) · a(μ + δ0,0)
(
p + ∇φ̃p,m(μ + δ0,0)

)]
≤ Eρ

[
1

ρ|�m|
ˆ
�m

(
p + ∇φ(μ,y,�m,p)

) · a(p + ∇φ(μ,y,�m,p)
)

dμ(y)

]
= p · ā(�m)p.

Finally, we let m → ∞ and conclude that ˜̄a≤ ā. �

In the proof above, we used {φ̃p,m}m≥1 as a sequence of approximate minimizers for the
variational problem in (124). This already gives us a good hint for the validity of at least
some of the statements in Theorem B.2. We now turn to the proof of the first part of this
result.

PROOF OF PART (1) OF THEOREM B.2. We decompose the proof into four steps.
Step 1: {∇φ̃p,m}m≥1 is a Cauchy sequence in (L 2•,loc)

d . We fix n < m and, recalling the
notation Zm,n := 3nZd ∩�m, we observe that

∇φ̃p,n(μ, y) = 1

|�n|
ˆ
Rd

∇φ(μ,y, x +�n,p)dx

= 1

|�m|
ˆ
Rd

∑
z∈Zm,n

∇φ(μ,y, x + z +�n,p)dx

= 1

|�m|
ˆ
Rd

∇τxφp,m,n(μ, y)dx,

where the function φp,m,n is defined as

(138) φp,m,n(μ) := ∑
z∈Zm,n

φ(μ, z +�n,p).
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For any compact set K , we use Mecke’s identity (see [52], Theorem 4.1) and the stationarity
of ∇φ̃p,m:

Eρ

[ˆ
K

|∇φ̃p,m − ∇φ̃p,n|2(μ, y)dμ(y)

]

= ρEρ

[ˆ
K

|∇φ̃p,m − ∇φ̃p,n|2(μ + δy, y)dy

]
= ρ|K|Eρ

[|∇φ̃p,m − ∇φ̃p,n|2(μ + δ0,0)
]
.

Then we use the comparison inequality (133) and obtain that

Eρ

[ˆ
K

|∇φ̃p,m − ∇φ̃p,n|2(μ, y)dμ(y)

]

≤ ρ|K|Eρ

[
1

ρ|�m|
ˆ
�m

∣∣∇φ(μ,y,�m,p) − ∇φp,m,n(μ, y)
∣∣2 dμ(y)

]
≤ ρ|K|(ν(�n,p) − ν(�m,p)

)
.

By (122), this shows that {∇φ̃p,m}m≥1 is a Cauchy sequence in (L 2•,loc)
d .

Step 2: Harmonic property—setting up. Denote the limit by ∇φp , we set things up to prove
the harmonic property (127) by approximation. We fix s > 0 and v ∈ C ∞

c (Rd) ∩ H 1
0 (Rd)

which is FQs -measurable, and observe that

Eρ

[ˆ
Rd

∇v · a(p + ∇φp)dμ

]

= lim
m→∞Eρ

[ˆ
Qs

∇v · a(p + ∇φ̃p,m)dμ

]

= lim
m→∞Eρ

[ˆ
Qs

∇v(μ,y) · a(μ, y)

( 
y+�m

p + ∇φ(μ,y, x +�m,p)dx

)
dμ(y)

]
.

We then use Fubini’s lemma to exchange the order of integration,

Eρ

[ˆ
Rd

∇v · a(p + ∇φp)dμ

]

= lim
m→∞Eρ

[
1

|�m|
×
ˆ

Q3m+s

(ˆ
x+�m

∇v(μ,y) · a(μ, y)
(
p + ∇φ(μ,y, x +�m,p)

)
1{y∈Qs} dμ(y)

)
dx

]
.

For m sufficiently large, we can decompose the domain of integration in x in the expression
above into Q3m−s and Q3m+s\Q3m−s . We analyse the contribution of each of these quantities
in each of the following two steps.

Step 3: Integration in Q3m−s . Notice that for x ∈ Q3m−s , we have Qs ⊆ x + �m (see
Figure 5 for an illustration), thus we can drop the indicator 1{y∈Qs} in the inner integral and
use the a-harmonic property of p + ∇φ(x +�m,p) to get that

1

|�m|Eρ

[ˆ
Q3m−s

(ˆ
x+�m

∇v(μ,y) · a(μ, y)
(
p + ∇φ(μ,y, x +�m,p)

)
dμ(y)

)
dx

]

= 1

|�m|
ˆ

Q3m−s

Eρ

[ˆ
x+�m

∇v(μ,y) · a(μ, y)
(
p + ∇φ(μ,y, x +�m,p)

)
dμ(y)

]
dx

= 0.
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FIG. 5. The red cube represents Qs , and the blue and green cubes represent respectively Q3m+s and Q3m−s .
For x ∈ Q3m−s , we have Qs ⊆ x +�m; for x /∈ Q3m+s , (x +�m) ∩ Qs =∅; for x ∈ Q3m+s\Q3m−s , x +�m

and Qs have nonempty intersection but Qs is not totally contained in x +�m. These three cases are represented
by z1, z2, z3.

Step 4: Boundary layer Q3m+s\Q3m−s . We use Young’s inequality to bound the term with
the integral over x ∈ Q3m+s\Q3m−s by

�

|�m|Eρ

[ˆ
Q3m+s\Q3m−s

(ˆ
(x+�m)∩Qs

∣∣∇v(μ,y)
∣∣2 + ∣∣p + ∇φ(μ,y, x +�m,p)

∣∣2 dμ(y)

)
dx

]

≤ �|Q3m+s\Q3m−s |
|�m| Eρ

[ˆ
Qs

∣∣∇v(μ,y)
∣∣2 dμ(y)

]
︸ ︷︷ ︸

(A)

+ �

|�m|Eρ

[ˆ
Q3m+s\Q3m−s

(ˆ
(x+�m)∩Qs

∣∣p + ∇φ(μ,y, x +�m,p)
∣∣2 dμ(y)

)
dx

]
︸ ︷︷ ︸

(B)

.

For the term (A), we have, for a constant C that may depend on s,

(A) ≤ C�3−mEρ

[ˆ
Qs

∣∣∇v(μ,y)
∣∣2 dμ(y)

]
−−−−→
m→∞ 0.

For the term (B), we use the stationarity to observe that

Eρ

[ˆ
(x+�m)∩Qs

∣∣p + ∇φ(μ,y, x +�m,p)
∣∣2 dμ(y)

]

= Eρ

[ˆ
�m∩(−x+Qs)

∣∣p + ∇φ(μ,y,�m,p)
∣∣2 dμ(y)

]
.
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We apply once again Fubini’s lemma to (B) and get that

(B) = �

|�m|Eρ

[ˆ
Q3m+s\Q3m−s

(ˆ
�m

∣∣p + ∇φ(μ,y,�m,p)
∣∣21{y∈(−x+Qs)} dμ(y)

)
dx

]

= �

|�m|Eρ

[ˆ
�m

∣∣p + ∇φ(μ,y,�m,p)
∣∣2(ˆ

Q3m+s\Q3m−s

1{y∈(−x+Qs)} dx

)
dμ(y)

]

≤ �|Qs |
|�m| Eρ

[ˆ
�m

∣∣p + ∇φ(μ,y,�m,p)
∣∣21{dist(y,∂�m)≤s} dμ(y)

]
.

That this term converges to zero is a consequence of the stronger estimate given by
Lemma B.1 below. This concludes the proof for v ∈ C ∞

c (Rd) ∩ H 1
0 (Rd), and then we can

use density argument to extend to general v ∈ H 1
0 (Rd). �

In the proof above, we appealed to the following boundary layer estimate, which we state
as a separate lemma for future reference (and which is stronger than what was needed for the
purpose of the proof above, since the boundary layer size is allowed to increase with m).

LEMMA B.1 (Boundary layer estimate). For every sequence (sm)m∈N such that sm ≤ 3m

and limm→∞ 3−msm = 0, we have

(139) lim
m→∞Eρ

[
1

ρ|�m|
ˆ
�m

∣∣p + ∇φ(μ,y,�m,p)
∣∣21{dist(y,∂�m)≤sm} dμ(y)

]
= 0.

PROOF. The idea is to make use of the renormalization argument. We define a meso-
scopic scale n associated to m such that sm ≤ 3n, n → ∞ and m − n → ∞. Then we imme-
diately have

Eρ

[
1

ρ|�m|
ˆ
�m

∣∣p + ∇φ(μ,y,�m,p)
∣∣21{dist(y,∂�m)≤sm} dμ(y)

]

≤ Eρ

[
1

ρ|�m|
ˆ
�m

∣∣p + ∇φ(μ,y,�m,p)
∣∣21{dist(y,∂�m)≤3n} dμ(y)

]
.

We propose to compare φ(·,�m,p) with φp,m,n ∈ H 1
0 (�m) defined as in (138):

φp,m,n(μ) = ∑
z∈Zm,n

φ(μ, z +�n,p).

Then we have

(140)

Eρ

[
1

ρ|�m|
ˆ
�m

∣∣p + ∇φ(μ,y,�m,p)
∣∣21{dist(y,∂�m)≤3n} dμ(y)

]

≤ 2Eρ

[
1

ρ|�m|
ˆ

Q3m\Q3m−2×3n

∣∣p + ∇φp,m,n(μ, y)
∣∣2 dμ(y)

]
︸ ︷︷ ︸

(140)-a

+ 2Eρ

[
1

ρ|�m|
ˆ

Q3m\Q3m−2×3n

∣∣∇φp,m,n(μ, y) − ∇φ(μ,y,�m,p)
∣∣2 dμ(y)

]
︸ ︷︷ ︸

(140)-b

.
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For the first term (140)-a, we do partition of sum into cubes of size 3n, then we have

Eρ

[
1

ρ|�m|
ˆ

Q3m\Q3m−2×3n

∣∣p + ∇φp,m,n(μ, y)
∣∣2 dμ(y)

]

= |�n|
|�m|

∑
z∈Zm,n∩(Q3m\Q3m−2×3n)

Eρ

[
1

ρ|�n|
ˆ

z+�n

∣∣p + ∇φ(μ,y, z +�n,p)
∣∣2 dμ(y)

]

= |Q3m\Q3m−2×3n |
|Q3m | ν(�n,p)

≤ 3−(m−n)�|p|2.
For the second term (140)-b, we have

Eρ

[
1

ρ|�m|
ˆ

Q3m\Q3m−2×3n

∣∣∇φp,m,n(μ, y) − ∇φ(μ,y,�m,p)
∣∣2 dμ(y)

]

≤ Eρ

[
1

ρ|�m|
ˆ

Q3m

∣∣∇φp,m,n(μ, y) − ∇φ(μ,y,�m,p)
∣∣2 dμ(y)

]
= ν(�n,p) − ν(�m,p).

Therefore, when we take m,n → ∞, both (140)-a and (140)-b go to 0, so the boundary layer
in a mecroscopic scale can be neglected. �

Now that the gradient of the whole-space corrector ∇φp is well defined, we can proceed
to complete the proof of Theorem B.2.

PROOF OF PARTS (2) AND (3) OF THEOREM B.2. We start by discussing the validity of
the identities (130) and (131). We use the stationary approximate corrector φ̃p,n defined in
(126), and observe from (137) and Theorem B.1 that

p · āp = lim
m→∞Eρ

[(
p + ∇φ̃p,m(μ + δ0,0)

) · a(μ + δ0,0)
(
p + ∇φ̃p,m(μ + δ0,0)

)]
= lim

m→∞Eρ

[
1

ρ|�0|
ˆ
�0

(p + ∇φ̃p,m) · a(p + ∇φ̃p,m)dμ

]
.

The identity (130) then follows from the convergence of ∇φ̃p,m to ∇φp in (L 2•,loc)
d . For the

second identity, we can use the fact that

lim
m→∞Eρ

[
1

ρ|�m|
ˆ
�m

a
(
p + ∇φ(μ, ·,�m,p)

)
dμ

]
= āp,

the estimate (128), and the stationarity of ∇φp . The identity (129) can also be deduced from
(128) because

Eρ

[
1

ρ|�m|
ˆ
�m

∣∣∇φ∗(μ, ·,�m,p) − ∇φp(μ, ·)∣∣2 dμ

]

≤ 2Eρ

[
1

ρ|�m|
ˆ
�m

∣∣∇φ(μ, ·,�m,p) − ∇φp(μ, ·)∣∣2 dμ

]

+ 2Eρ

[
1

ρ|�m|
ˆ
�m

∣∣∇φ∗(μ, ·,�m,p) − ∇φ(μ, ·,�m,p)
∣∣2 dμ

]
.

By (86) and (87), the second term can be bounded by J (�m,p, ā∗(�m)p); and by (79) and
(122), this quantity converges to 0 as m → ∞. From now on, we thus focus on the proof of
(128).
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The idea of the proof of (128) is very close to that for (127) and (139). We fix a mescro-
scopic scale n = �m

3 �, and then use the decomposition

(141)

Eρ

[
1

ρ|�m|
ˆ
�m

∣∣∇φp(μ, ·) − ∇φ(μ, ·,�m,p)
∣∣2 dμ

]

≤ 2Eρ

[
1

ρ|�m|
ˆ
�m

∣∣∇φp(μ, ·) − ∇φ̃p,n(μ, ·)∣∣2 dμ

]
︸ ︷︷ ︸

(141)-a

+ 2Eρ

[
1

ρ|�m|
ˆ
�m

∣∣∇φ̃p,n(μ, ·) − ∇φ(μ, ·,�m,p)
∣∣2 dμ

]
︸ ︷︷ ︸

(141)-b

.

For the first term (141)-a, we use the stationarity to transform to the integration on unit cube
�0, and then use the fact that ∇φ̃p,n converges to ∇φp in (L 2•,loc)

d to get that

lim
m→∞ (141)-a = lim

n→∞Eρ

[
1

ρ|�0|
ˆ
�0

∣∣∇φ̃p,n(μ, ·) − ∇φp(μ, ·)∣∣2 dμ

]
= 0.

Thus it suffices to finish the second term (141)-b. We use the definition in (126) and Jensen’s
inequality to get that

(141)-b

= 2Eρ

[
1

ρ|�m|
ˆ
�m

∣∣∣∣( 
y+�n

∇φ(μ,y, x +�n,p)dx

)
− ∇φ(μ,y,�m,p)

∣∣∣∣2 dμ(y)

]

≤ 2Eρ

[
1

ρ|�m|
ˆ
�m

 
y+�n

∣∣∇φ(μ,y, x +�n,p) − ∇φ(μ,y,�m,p)
∣∣2 dx dμ(y)

]
≤ 2 × 3−dn

×Eρ

[
1

ρ|�m|
ˆ

Q3m+3n

ˆ
x+�n

∣∣∇φ(μ,y, x +�n,p) − ∇φ(μ,y,�m,p)
∣∣2 dμ(y)dx

]
≤ 2 × (

(141)-b1 + (141)-b2 + (141)-b3
)
,

where in the last line we decompose once again the integration into three terms with respect
to the domain

(141)-b1

:= Eρ

[
3−dn

ρ|�m|
ˆ

Q3m−10×3n

ˆ
x+�n

∣∣∇φ(μ,y, x +�n,p) − ∇φ(μ,y,�m,p)
∣∣2 dμ(y)dx

]
,

(141)-b2

:= Eρ

[
3−dn

ρ|�m|
ˆ

Q3m+3n\Q3m−10×3n

ˆ
x+�n

∣∣p + ∇φ(μ,y, x +�n,p)
∣∣2 dμ(y)dx

]
,

(141)-b3

:= Eρ

[
3−dn

ρ|�m|
ˆ

Q3m+3n\Q3m−10×3n

ˆ
x+�n

∣∣p + ∇φ(μ,y,�m,p)
∣∣2 dμ(y)dx

]
.
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The terms (141)-b2 and (141)-b3 are easy to treat as they are boundary layer terms. For
(141)-b2 we can use the energy bound

(141)-b2 ≤ C3−(m−n)ν(�n,p) −−−−→
m→∞ 0.

For (141)-b3, since the function |p + ∇φ(μ,y,�m,p)|2 does not involve x, we use Fubini’s
lemma that

(141)-b3

= 3−dnEρ

[
1

ρ|�m|
ˆ

Q3m+3n

(ˆ
Q3m+3n\Q3m−10×3n

1{x∈y+�} dx

)

× ∣∣p + ∇φ(μ,y,�m,p)
∣∣2 dμ(y)

]
≤ Eρ

[
1

ρ|�m|
ˆ

Q3m+3n\Q3m−20×3n

∣∣p + ∇φ(μ,y,�m,p)
∣∣2 dμ(y)

]

= Eρ

[
1

ρ|�m|
ˆ

Q3m\Q3m−20×3n

∣∣p + ∇φ(μ,y,�m,p)
∣∣2 dμ(y)

]

+Eρ

[
1

ρ|�m|
ˆ

Q3m+3n\Q3m

|p|2 dμ(y)

]
−−−−→
m→∞ 0.

Here from the second line to the third line, we use the fact that the gradient contributes
only on Q3m+3n\Q3m−20×3n . Then we do a decomposition: the integration on Q3m+3n\Q3m

can be calculated directly, since φ(μ,�m,p) is F�m-measurable and the gradient vanishes;
the integration on Q3m+3n\Q3m−20×3n can be bounded by the boundary layer estimate in
Lemma B.1.

Finally, we focus on (141)-b1. We rewrite the integration
´
Q3m−10×3n

as

(141)-b1 ≤ Eρ

[
1

ρ|�m|
 
�n

( ∑
z∈Zm,n

dist(z,∂�m)≥5×3n

ˆ
x+z+�n

∣∣∇φ(μ,y, x + z +�n,p) − ∇φ(μ,y,�m,p)
∣∣2 dμ(y)

)
dx

]
.

For each fixed x ∈ �n, we can propose a sub-minimizer �p,�m +wx for ν(�m,p) defined by
(see Figure 6 for an illustration)

wx := φ(·,�m\Ux,p) + ∑
z∈Zm,n

dist(z,∂�m)≥5×3n

φ(·, x + z +�n,p),

where

Ux := ⋃
z∈Zm,n

dist(z,∂�m)≥5×3n

(x + z +�n).
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FIG. 6. The function �p,�m
+ wx is a sub-minimizer for the problem ν(�m,p), which combines the minimizer

in cubes of scale 3n biased by a vector x (the cubes in blue), and a minimizer in Ux (the domain in red).

The gradients of wx and φ(·, x + z +�n,p) coincide on every cube x + z +�n, so we can
write

Eρ

[
1

ρ|�m|
×
( ∑

z∈Zm,n

dist(z,∂�m)≥5×3n

ˆ
x+z+�n

∣∣∇φ(μ,y, x + z +�n,p) − ∇φ(μ,y,�m,p)
∣∣2 dμ(y)

)]

≤ Eρ

[
1

ρ|�m|
ˆ
�m

∣∣∇wx(μ,y) − ∇φ(μ,y,�m,p)
∣∣2 dμ(y)

]

≤
( ∑

z∈Zm,n

dist(z,∂�m)≥5×3n

|�n|
|�m|ν(�n,p) + |�m\Ux |

|�m| ν(�m\Ux,p)

)
− ν(�m,p)

≤ ν(�n,p) − ν(�m,p) + 5 × 3− 2m
3 �|p|2,

where we used the quadratic response (69) from the second line to the third line. This implies
that limm→∞ (141)-b1 = 0, and thus completes the proof of (128). �
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