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For a class of interacting particle systems in continuous space, we show
that finite-volume approximations of the bulk diffusion matrix converge at
an algebraic rate. The models we consider are reversible with respect to the
Poisson measures with constant density, and are of nongradient type. Our
approach is inspired by recent progress in the quantitative homogenization of
elliptic equations. Along the way, we develop suitable modifications of the
Caccioppoli and multiscale Poincaré inequalities, which are of independent

interest.
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1. Introduction. The goal of this paper is to make progress on the quantitative analysis
of interacting particle systems. We consider a class of models in which each particle follows
a random evolution on R which is influenced by the configuration of neighboring particles.
The models we consider are reversible with respect to the Poisson measures with constant
density, uniformly elliptic, and of nongradient type. For similar models in this class, the
hydrodynamic limit and the equilibrium fluctuations have been identified rigorously. In both
these results, the limit object is described in terms of the bulk diffusion matrix. The main result
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of this paper is a proof that finite-volume approximations of this diffusion matrix converge at
an algebraic rate.

Our strategy is inspired by recent developments in the quantitative analysis of elliptic equa-
tions with random coefficients, and in particular on the renormalization approach developed
in [7-11, 13, 14]; see also [58] for a gentle introduction, and [36-40, 56, 59] for another
approach based on concentration inequalities. This renormalization approach has shown its
versatility in a number of other settings, covering now the homogenization of parabolic equa-
tions [5], finite-difference equations on percolation clusters [6, 24, 26], differential forms
[25], the “V¢” interface model [12, 23], and the Villain model [27].

Here as in the other settings mentioned above, we start from a representation of the finite-
volume approximation of the bulk diffusion matrix as a family of variational problems, de-
noted by v(U, p), where U € R¢ and p € R? encodes a slope parameter. This quantity is
subadditive as a function of the domain U. We then identify another subadditive quantity,
denoted by v*(U, q), with U € R? and ¢ € R?, such that v*(U, -) is approximately convex
dual to v(U, -). These quantities v and v* provide with finite-volume lower and upper approx-
imations of the limit diffusion matrix. Roughly speaking, the algebraic rate of convergence is
obtained by showing that the defect in the convex duality between v and v* can be controlled
by the variation of v and v* between two scales; we refer to [58], Section 3, for some intuition
as to why a control of this sort is plausible.

Besides the identification of the most appropriate subadditive quantities v and v*, one of
the main difficulties we encounter relates to the development of certain functional inequali-
ties. As is to be expected, we will make use of Poincaré inequalities, which allow to control
the L? oscillation of a function by the L? norm of its gradient. However, we will need to be
more precise than this. Indeed, we want to be able to assert that if the gradient of a function
is small in some weaker norm, then we can control the L? oscillation of the function more
tightly. In other words, we need some analogue of the inequality ||u|/;2 < C||Vu| g-1. Recall
that in the current paper, the functions of interest are defined over the space of all possible
particle configurations. The precise statement of our “multiscale Poincaré inequality” is in
Proposition 3.5.

Another crucial ingredient we need is a version of the Caccioppoli inequality. In the stan-
dard setting of elliptic equations, this inequality states that the L? norm of the gradient of a
harmonic function can be controlled by the L? norm of its oscillation on a larger domain; one
can think of this inequality as a “reverse Poincaré inequality” for harmonic functions. If u
denotes the harmonic function, then a standard proof of this inequality consists in testing the
equation for u with u¢, where ¢ is a smooth cutoff function which is equal to 1 in the inner
domain, and is equal to O outside of the larger domain.

In our context, we need to “turn off” the influence of any particle that would come too
close to the boundary of the larger domain. In this case, a naive modification of the standard
elliptic argument is inapplicable. This comes from the fact that, as the domains become large,
there will essentially always be many particles that come dangerously close to the boundary
of the larger domain; so the cutoff function ¢ would essentially always have to vanish, except
on an event of very small probability. We therefore need to identify a different approach. In
fact, we settle for a modified form of the Caccioppoli inequality, in which we control the L2
norm of the gradient of a solution by the L? norm of the solution on a larger domain, plus
a fraction of the L? norm of its gradient on the larger domain; see Proposition 3.6 for the
precise statement.

At present, we think that the results presented here should allow to derive a quantitative
version of the hydrodynamic limit, as well as to derive “near-equilibrium” fluctuation re-
sults. To be more precise, for a domain of side length R and an initial density profile varying
macroscopically, it should be possible to control the convergence to the hydrodynamic limit
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at a precision of R™%, for some o > 0. Conversely, starting from a density profile that has
variations of size bounded by R_%“L“, it should be possible to identify the asymptotic fluctu-
ations of the density field. These would represent first steps towards bridging the gap between
these two results.

By analogy with the results obtained for elliptic equations and other contexts (see, in par-
ticular [58], Section 3, and [11], Chapter 2 and following), we hope that the results obtained
here will provide the seed for more refined, and hopefully sharp, quantitative results. This
will hopefully allow to improve the exponent o > 0 appearing in the previous paragraph to
some explicit exponent (ideally o = %l), and thereby to bring us closer to a full understanding
of nonequilibrium fluctuations.

We now turn to a brief overview of related works on interacting particle systems. The
result in the literature that is possibly closest to ours is that of [49]. In this work, the authors
consider the diffusion matrix associated with the long-time behavior of a tagged particle in the
symmetric simple exclusion process, which is called the self-diffusion matrix. The main result
of [49] is a proof that finite-volume approximations of the self-diffusion matrix converge to
the correct limit. However, no rate of convergence could be obtained there. The qualitative
result of [49] was extended to the mean-zero simple exclusion process, and to the asymmetric
simple exclusion process in dimension d > 3, in [44].

An easy consequence of the results of the present paper is that the bulk diffusion matrix
is Holder continuous as a function of the density of particles. However, for related models, it
was shown in [15, 48, 50, 60-62, 68, 70] that the diffusion matrix depends smoothly on the
density of particles. The situation seems comparable to that encountered when considering
Bernoulli perturbations of the law of the coefficient field for elliptic equations, see [31, 57].
Possibly more difficult situations for obtaining regularity results on the homogenized param-
eters, with less independence built into the nature of the perturbation, include the V¢ model
[12], and nonlinear elliptic equations [7, 8].

Two classical approaches to the identification of the hydrodynamic limit have been devel-
oped. The first, called the entropy method, was introduced in [42], and extended to certain
nongradient models in [64, 69]. The second, called the relative entropy method, was intro-
duced in [71], and was extended to a nongradient model in [34].

The asymptotic description of the fluctuations of interacting particle systems at equilibrium
has been obtained in [18, 21, 22, 29, 66]. The extension of this result to nongradient models
was obtained in [20, 33, 55].

We are not aware of any results concerning the nonequilibrium fluctuations of a nongradi-
ent model. For gradient models (or small perturbations thereof), we refer in particular to [22,
28, 32, 45, 63]. We also refer to the books [46, 47, 67] for much more thorough expositions
on these topics, and reviews of the literature.

In relation to the purposes of the present paper, several works considered the problem of
obtaining a rate of convergence to equilibrium for a system of interacting particles [16, 19,
30, 41, 43, 51, 54]. Heat kernel bounds for the tagged particle in a simple exclusion process
were obtained in [35].

In all likelihood, the results presented here can be extended to other reversible models
of nongradient type, provided that the invariant measures satisfy some mixing condition (an
algebraic decay of correlations would suffice; see [13]). More challenging directions include
dynamics that are not uniformly elliptic, such as hard spheres. Extensions to situations in
which the noise only acts on the velocity variable are likely to also be very challenging. Even
further away are purely deterministic dynamics of hard spheres, as considered, for instance,
in [17]. For any of these models, it would of course also be desirable to make progress on the
quantitative analysis of the large-scale behavior of a tagged particle.
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The rest of the paper is organized as follows. In Section 2, we introduce some notation and
state the main result precisely; see Theorem 2.1. We then prove several functional inequali-
ties in Section 3, including the multiscale Poincaré inequality and the modified Caccioppoli
inequality. In Section 4, we define the subadditive quantities, and establish their elementary
properties. Finally, in Section 5 we prove Theorem 2.1.

2. Notation and main result. In this section, we introduce some notation and state our
main result.

Let M;(R9) be the set of o-finite measures that are sums of Dirac masses on R¢, which
we think of as the space of configurations of particles. We denote by P, the law on M (RY)
of the Poisson point process of density p € (0, c0), with £, the associated expectation. We
denote by Fy the o-algebra generated by the mappings u — w(V), for all Borel sets V C U,
completed with all the P,-null sets, and we set F := Frs. We give ourselves a function
a, : Ms(R9) — Rdxd where Rdx‘l is the set of d-by-d symmetric matrices. We assume that

sym °
this mapping satlsﬁes the followmg properties:

e uniform ellipticity: there exists A < oo such that for every u € My(R?),

(1) VEeRY, |E]* <&-a,(wE < AlE%;

e finite range of dependence: denoting by B the Euclidean ball of radius 1 centered at the
origin, we assume that a, is Fp,-measurable.

We denote by 7_, the translation of the measure 1 by the vector —x € R?; explicitly, for
every Borel set U, we have (t_, ) (U) = u(x + U). We extend a, by stationarity by setting,
for every u € Ms(R?) and x € R?,

a(u, x) :=ao(tT—x ).

While it would be possible to provide with a direct definition of the asymptotic bulk diffusion
matrix (see, for instance, [46], Chapter 7), our purposes require that we identify suitable
finite-volume versions of this quantity. Accordingly, for every bounded open set U € R?, we
define the matrix a(U) € R9%4 to be such that, for every p € R4,

sym

1
Ep-a(U)p
(2

= inf [E ! ! \V4 \VJ d
— i p[m/ﬂ(w 6 (1. 2)) - a4, 1) (p + Vo (i, 1)) u(x)]

pety (U)

In this expression, the gradient V¢ (i, x) is such that, for any sufficiently smooth function ¢,
x esuppu,and k €{l1,...,d},

O —6x + 8x+hek) — ()

3) € Ve (u, x) = lim I

with (eq, ..., eq) being the canonical basis of R¢. As will be explained in more details below,
the space %‘61 (U) is a completion of a space of functions that are Fg-measurable for some
compact set K C U. The expectation IE, is taken with respect to the variable w, a notation
we will always use to denote the canonical random variable on (M (RY, F, P,) (an explicit
writing of [, y * - du(x) would actually involve a summation over every point in the intersec-
tion of U and the support of w). For every m € N, we let [, = Q3~ denote the cube of side
length 3. We define the bulk diffusion matrix a as

4) a.= mli_)moo a(d,).
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Although we keep this implicit in the notation, we point out that the matrices a(U) and a
depend on the density p of particles, which we keep fixed throughout the paper. The fact that
this definition of a coincides with the more classical definition, which is directly stated in
infinite volume, is explained in Appendix B below. Our main result is to obtain an algebraic
rate for the convergence in (4).

THEOREM 2.1. The limit in (4) is well defined. Moreover, there exist an exponent
a(d, A, p) > 0and a constant C(d, A, p) < 0o such that for every m € N,

) la(0,) —a| <37,

In the remainder of this section, we clarify some of the definitions appearing earlier, and
introduce some more useful notation.

2.1. Continuum configuration space. For the purposes of the present paper, we will not
need to construct the stochastic process of interacting particles whose large-scale behavior
is captured by the bulk diffusion matrix a, so we contend ourselves with brief remarks here.
Intuitively, the dynamics is a cloud of particles, which we can denote by

o
u(®) =3 8x,1) € Ms(R?), 10,

i=1
and each coordinate (X;(¢));>0 performs a diffusion with local diffusivity matrix given by
a(u(t), X;(t)). General properties of diffusions on the space Ms(R?) have been studied
using Dirichlet forms in [1-4]; see also the survey [65]. In our current setup, for a finite N
number of particles, the diffusion process can be defined in the standard way (say, using De
Giorgi—Nash regularity results on the heat kernel, and Kolmogorov’s theorems) as a diffusion
on (RN For IP,-almost every u € M (R?), one can then define the dynamics of the entire
cloud of particles using finite-volume approximations.

Although we have defined a(u, x) for every x € R?, we will in fact only need to appeal
to this quantity in the case when x is in the support of u. One possible example of local
diffusivity function is a,(u) := (1 + 1y, (B,)=1))!d. For this example, a particle at position
x € R? follows a Brownian motion with variance 2 whenever there are no other particles in
the unit ball centered at x, while it follows a Brownian motion with unit variance whenever
there is at least one additional particle in this ball (there are also reflection effects at the
transition between these two situations).

For every Borel set U € R?, we denote by By the set of Borel subsets of U. For every
w € Ms(R?), we denote by supp i the support of 1, and by uL U € Ms(R?) the measure
such that, for every Borel set V C RY,

(nLU)V)=pnUNYV).

We will often use the following “disintegration” lemma for functions defined on M(R?).
For definiteness, we state it for functions taking values in R, but this plays no particular
role. Its proof is deferred to Appendix A. Whenever U C R?, we write U° to denote the
complement of U in RY.

LEMMA 2.1 (Canonical projection). Let f : Ms(R%) — R be a function, and for every
Borel set U, measure | € Ma(Rd), and n € N, let f,(-, u L U°) denote the (permutation-
invariant) function

U"—R
(LU : " )
fulomtUS) (xl,...,xn)r—>f<28x,+MLU‘).

i=1
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The following statements are equivalent:

(1) The function f is F-measurable.
(2) For every n € N, the function f, is B%n ® Fyc-measurable.

2.2. Lebesgue and Sobolev function spaces. We define % to be the space of F-
measurable functions f such that E,[ f 2] is finite.

Recall that for sufficiently smooth f : Ms@RY) - R, pu € Ms(R?) and x € supp i, we
define V f(u, x) according to the formula in (3). We write V f = (01 f, ..., 92 f).

For every open set U C R?, we define the sets of smooth functions €°°(U) and ¢ (U)
in the following way. We have that f € ¥°°(U) if and only if f is an F-measurable function,
and for every bounded openset V C U, u € Ms(R?) and n € N, the function faG, LV
appearing in Lemma 2.1 is infinitely differentiable on V". The space 4,>°(U) is the subspace
of €°°(U) of functions that are Fg-measurable for some compact set K C U.

We now define 77! (U), an infinite dimensional analogue of the classical Sobolev space
H'. Forevery f € €°(U), we set

1

1 = (Bl 2001+ By | [ 1960 Pauw )

The space 7' (U) is the completion, with respect to this norm, of the space of functions
f € € (U) such that || f] 1y is finite (elements in this function space that coincide Pp-
almost surely are identified). As in classical Sobolev spaces, for every f € .7 1(U), we can
interpret V f (u, x), with x € U, in some weak sense. We stress that functions in 7€ Y(U) need
not be Fy-measurable. Indeed, the function f can depend on wL U€ in a relatively arbitrary
(measurable) way, as long as f € .Z 2 If V C U is another open set, then 7 Yy col(v).

We also define the space ,%%I(U ) as the closure in ' (U) of the space of functions
f €€°(U) such that || f|| 41y is finite. Notice in particular that, in stark contrast with
functions in ' (U), a function in %’61(U ) does not depend on p L U€. In the notation
of Lemma 2.1, when f € %%1 (U), certain compatibility conditions between the functions
(fu)nen also have to be satisfied. If V C U is another open set, we have that ji’f)' (V) C

,%%1 (U) (notice that the inclusion is in the opposite direction to that for # 1 spaces). We also
have the following result.

LEMMA 2.2. For every bounded open set U € RY with Lipschitz boundary and
fe %’f)l(U), we have

©) E,| /U V() ) | =0

PROOF. By density, we can assume that f € ¢>°(U). We use the functions (f;)neN
appearing in Lemma 2.1; moreover, since f(u) does not depend on L U€¢, we simply write
fn(x1, ..., xy) in place of f,(x1,...,x,, uLU). Forevery k € {1, ..., d}, we have

o0 n
Ep[/ akf(u,xmu(x)] = S P @) =n] > e Ve falrrs . xn)dry -- dy
U n=1 i=1/U"
We use Green’s formula for the integral e; - V,, f(x1, ..., x,) with respect to x;

/ek-infn(X1,..-,xn)dXi=/ Sa(xt, oo, xp)er - n(x;) dx;,
U 10
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where n(x;) is the unit outer normal. Since f € €>°(U), the quantity f,(x1, ..., x,) remains
constant when x; moves along the boundary dU. Denoting this constant (which depends on
(xj)j=i) by ¢, we apply once again Green’s formula to get

/ e - Vi, fu(x1, ..., xp) dx; =/ ceg - n(x;) dx; =/ e - Vycdx; =0.
U U U
This proves the desired result. [

2.3. Localization operators. We now introduce families of operators that allow to local-
ize a function defined on M (R?). We state some properties of these operators without proof,
and refer to [41], Section 4.1, for more details.

Recall that for every s > 0, we write by Q; := (—%, %)d. We denote the closure of the
cube Q; by Oy, and define A, f := Eolf | .7:@5]. For any f € %2, the process (Asf)s=0 is a

cadlag .#%-martingale with respect to (Mg (R?), (]'-@)szo, IP,). We denote the jump at time
s by ‘

As(Af) =Asf —As—f=Asf — lim A f.

1<s,t—s

We can have Ag(Af) # 0 only on the event where the support of the measure u intersects
the boundary 0 Q. The bracket process ([A f1s)s>0 is defined by

) [Afly:= > A(Af).
0<t<s
We have that ((Ag f)2 — [Af]s)s>0 1s a martingale with respect to (]:Q)szO-

Notice that the operator Ay can be interpreted as an averaging of the variable u L @f,
keeping u L O, fixed. As a consequence, for every open set Oy C U, if f € s (U) and
x € QsNsupp(w), there is no ambiguity in considering the quantity As(V f) (i, x). Moreover,

®) VA f(,x) = As(V ) (i, x),

and A, f belongs to 77! (Qy), by Jensen’s inequality; see Proposition A.1 for details. How-
ever, in general, this function does not belong to %’61 (R9), or any other %’61 space. This
comes from the fact that the function A, f may be discontinuous as a particle enters or leave
Q,. To solve this problem, we regularize this conditional expectation in the following way.
For any s, ¢ > 0, we define

1 &€
9) As,gfzz—/ Ay f dt.
€ Jo

As above, for every open set U containing Qgte, f € #(U), and x € Qg4 Nsupp(u),
the quantity A; .(Vf)(u,x) is well defined. Irrespectively of the position of the point
x € supp(u), the gradient of A, ¢ f can be calculated explicitly. Indeed, writing

T(x):=inf{reR:x € Q,},

and 1 (x) for the outer unit normal to Q) at the point x, we have

VAS,&‘f(lu’vx)
As,é‘(vf)(:u’x) ifxe Qs’
(10 L E10) |
=13 /T(x)s As+(V f (e, x))de — TAT(X)(Af) if x € (Qs+4:\05);

0 ifxeQf,,.
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Recalling that Q54+, € U, one can checli that A . f € %’f)l(U ). Similarly, one can define
another regularized localization operator A ¢

~ 2 [¢
(11) As’ef:: 8—2/ (S—t)AS+[fdt,
0
which can be obtained by applying A; . twice: KS, ¢ = A 0 Ag .. We have the identity
2 x 2 [° 2
(12) (e 2] =Eolf Bes D] =B 5 [ (6= DAsif Pt
0

The operator 75\5, ¢ satisfies properties similar to those of A ¢, and we have

VA f (i, x)

Z\zs,g(vg(u,x)) x € Oy
(13) 5(/ DAL )
_ (S +e— f(x))Ar(x)(Af)Tl)(x)) X € (Qs+6\05);
0 X e Qg—i—s'

3. Functional inequalities. The goal of this section is to derive functional inequalities
that will be fundamental to the proof of our main result. The first crucial estimate is a mul-
tiscale Poincaré inequality; see Proposition 3.5. This inequality is an improvement over the
standard Poincaré inequality that substitutes the L? norm of the gradient of the function of
interest by a weighted sum of spatial averages of this gradient. It has a structure comparable
to that of [[ul|;2 < [|Vul| y-1, where we moreover decompose the H —1 norm into a series a
scales, in analogy with the standard definition of Besov spaces, or the equivalent definition
of H~! norm in terms of spatial averages; see, for instance, [11], Appendix D. The proof of
this estimate is based on an H? estimate for solutions of “—Au = f.” with “A” being the
relevant Laplacian adapted to our setting; see Proposition 3.4.

The second crucial functional inequality derived here is a Caccioppoli inequality; see
Proposition 3.6. In the standard elliptic setting, the Caccioppoli inequality allows to con-
trol the L? norm of the gradient of a solution by the L? norm of the function itself, on a
larger domain; it can thus be thought of as a reverse Poincaré inequality for solutions. In our
context, we are not able to prove such a strong estimate, but prove instead a weaker version
of this inequality that allows to control the .#’> norm of the gradient of a solution by the .2
norm of the function itself, plus a fraction of the .#> norm of the gradient on a larger domain.

For every k <n € N, we define Z,; := 3kz4 N 0O,. Up to a set of null measure, the
family (z + Ug);ez, , forms a partition of [J,,. For any y € R4, we write [J,,(y) to denote the
unique cube containing y that can be written in the form z + [J,, for some z € 3"Z?. This
is well defined except for some y’s in a set of null measure; we can decide on an arbitrary
convention for these remaining cases. We also write 2, x(y) := k74 N0, ).

The following “multiscale spatial filtration” will be useful in the rest of the paper: for every
n,k e N with k <n,and y € R?, we define the o-algebra g,ka by

(14) Gox =0 (@ +00).cz, ¢y b RND ().

We use the shorthand G, = g}j’k and G, := G, ,. One can verify that, for every
n,n' k,k eNandy,y eR?,

(15) n<nk<k and O,0)<SOs(0) = Gh,.SG
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We also define the analogue of G, for a general Borel set U C R as
(16) Gy =0 (n(U), uL (RN\U)).

The condition E,[ f | Gy ] = 0 will appear many times in this paper, usually in the context of
centering a function in 5% L. Using the functions ( f;) defined defined in Lemma 2.1,
we can rewrite the condition E,[f | Gy] = 0 as: for every n € N and P,-almost every
e Ms@®?),

(17) fa(xX1, .o, xp, uLUC)dxg -+ dx, =0.
Un

3.1. Poincaré inequality. We present two types of Poincaré inequalities: one for the space
%I(U ), and one for the space 7 L(U). We first state an elementary version for product
spaces and functions in the standard Sobolev H! space. The proof is classical and can be
found, for instance, in [53], Theorem 13.36 and Proposition 13.34. For any bounded Borel
set U C RY, we write diam(U) to denote the diameter of U, and for every f € LY U), we
denote the Lebesgue integral of f, normalized by the Lebesgue measure of U, by

]f]f:wrl/Uf.

PROPOSITION 3.1 (Poincaré inequality in classical Sobolev spaces). There exists a
constant C(d) < oo such that for every bounded convex open set U C R%, n € N, and
f e H' (U™, we have

(18) fn(f— (ﬁ f))zgcmamw)zg1 VP

A direct application of Proposition 3.1 gives the following proposition.

PROPOSITION 3.2 (Poincaré inequality in .77 Y(U)). There exists a constant C(d) < oo
such that for every bounded convex open set and f € 7' (U), we have

(19) E,[(f —E,Lf | Gu])*] < C diam(U)’E, [ /U |Vf|2du].

PROOF. Without loss of generality, we may assume that E,[f | Gy] = 0; subtracting
Eolf | Gyl from f does not change the right-hand side of (19). We use the functions ( f;,)
from Lemma 2.1, and recall that since E,[ f | Gy ] =0, we have that every function f, is cen-
tered; see (17). We can apply Proposition 3.1 to every f,: for a constant C < oo independent
of n, we have

c\ (12
][ |f(x1,...,xn,pLLU)| dx dx;,
ur

n
< Cdiam(U)* Y [Ve fulx1, s X, p LU Py - dy.
i=17/U"

We then sum over n and take the expectation to obtain the result. [J
Functions in the space %' (U) enjoy certain continuity properties as particles enter and

leave the domain U. For this reason, it suffices to center the function by its mean value to
have a Poincaré inequality.
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PROPOSITION 3.3 (Poincaré inequality in %’6‘ (U)). There exists a constant C(d) < oo
such that for every bounded open set U CR?, and every f € %’61 ),

(20) E,[(f —E,[f1)*] < Cdiam(U)’E, [/U |Vf|2du].

PROOF. Without loss of generality, we assume that E,[ f] = 0. By density, we may re-
strict to f € €°(U). Applying [52], Theorem 18.7, to f, we have that

B L2120 [ Bl u+ 80— £0))ds

By the Fubini—Tonelli theorem, and since f is Fy-measurable, this reduces to

Eo[£?] < pE, [/U(f(u +68x) — f(u))de]-

To establish Proposition 3.3, it thus only remains to show that

@1 Ep[/U(mex)—f(m)zdx} <@E [/ VP d.

We recall that

E,[(f(-+8¢) — £())*] dx

= ZP(M(U) =n)f (/ ‘fi’H—l(-xla ---»xn’x) - fn(xl, ""xn)|2dx) d-xl dxn’
un U

neN

(22)

where we used the notation (similar to but simpler than in Lemma 2.1)

n
(23) fn(xl,...,x,,):zf(ZSXk), X1,..., X, €U.
k=1
Let n € N be fixed. Since f € €°(U), for every x € dU we have that
Su(xt, oo X)) = fur1 (X, o0, X, X).
That is, for every x, ..., x, € U", the (smooth) function

G'U_>R7G() = fn+1(-xlv"'vxn7')_fn(xlv"'vxn)v

belongs to the (standard) Sobolev space HOl (U). We may thus apply the standard Poincaré
inequality for functions in HO1 (U) to infer that

/|fn+1(x1,...,xn,x)—fn(xl,...,xn)|2dx
U

§C(d)diam(U)2/|fon+1(x1,...,xn,x)\2dx.
U

Inserting this into (22), using that P(uw(U) =n) = e—PIUI W and relabelling n + 1 as n,
yields that

/U Eo[(f(-+8:) — £()*]dx
- C(d)

diam(U)2 3" P(u(U) = n)n][ Ve Fu et )y - - oty
Un

neN
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To establish (21) from this, it only remains to observe that, by definition (23) each function
fn 1s invariant under permutations, we have

][ |Vxlfn|2:][ |V, ful> foralli=1,...,n.
un un

This concludes the proof of (21) and establishes Proposition 3.3. [

3.2. H? estimate for the homogeneous equation. When the diffusion matrix a is a con-
stant, the solutions to the corresponding equation have a better regularity than otherwise,
and in particular, the following .7 estimate holds. One can define the function with higher
derivative iteratively: for x, y € supp(u), x £y

Ok f (e — ‘Sy + 8y+hej»x) — O f (1, x)
h 9

di0 ,x,y):=1i
Ok f (e, x, y) Jim

and for the case x = y, it makes sense as

O f (b — 8x + Oxthe;» x +hej) — O f (1, x)
- :

We also denote by sz(,u, x, y) the matrix {00k f (i, X, ¥)}1<j k<d» and its norm is defined
as

; =1
00k f (1, x, %) = lim

V2, x, )= Y (858 f (s, x,
1<j,k=d

PROPOSITION 3.4 (2 estimate). Let f € £2, and letu € 71 (Q,) solve “—Au = f”
in the sense that for any v € 1 (Q,),

24) Ep|:/ Vu(u,x) - Vv(u,x)d,u] =Ey[fvl.
We have the 7%(Q,) estimate

(25) Ep[ /( . )zlvzuw, X, y)lzdu(x)du(y)} <E,[f%].

REMARK 1. By testing (24) with v = 1{,,(0,)=nuL0c(V)=m}, We see that f has to satisfy
Eolf 1Go,]1=0as acondition of compatibility.

PROOF OF PROPOSITION 3.4. Although this is not really part of the statement, we start
by showing that for every f € .#? satisfying the compatibility condition Eolf 1Go,1=0,
there exists a solution u to (24), and we will show its link with the classical elliptic equation.
At first, we notice that the problem can be studied on the space of functions

W={ge " (Q,):E,lg|Gg,1=0}.

Because for a general function v € H(0,), Eo[v | Gp,] can be seen as a constant in (24):
its derivative is O so the left-hand side of (24) is 0. For the right-hand side, we have

Eo[fEolv|Go 1] =Eu[Eplf | Go,IEslv | Go,1] =0.

Thus when applying the operation v = v —E,[v | G, ], we do not change (24) and we can re-
strict the Laplace equation on W. Moreover, with the notation in Lemma 2.1, E,[v | Gg,] =0
implies every vy is centered; see (17).

Secondly, we test (24) with v1,(0,)=n) 1L gc)(v)=m)> Which is conditioning the number
of particles 1 (Q,), and also (L Qf)(V) for some bounded Borel set V as an environment
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outside Q,. Then for arbitrary choices of n, m, V, in fact we have a classical elliptic equation
using the canonical projection Lemma 2.1

n

vak”n(xl, e X, Qg) : kavn(xlv ces X, er)dxl - dxy

(26) )" k=1

= / Fa(xty oo xn kL Q) v (x1,y ooy X, L Q) dixy -+ - dxye
Q)"

Thus the solution # can be described as follows: we sample the environment outside Q, and

fix the number of particle u(Q,) = n at first, then solve the classical elliptic equation in

H!'(R"¥) with mean zero. Finally, we combine all the u, and this gives the solution of (24).

In other words, the statement of (24) can be reinforced as

YoeWw, Ep[/ Vu(,u,x)'Vv(,u,x)d,u‘gQr]:Ep[fvngr].
0,

We now turn to study the .77 estimate. We apply the classical H>(R") estimate for (26)
(see, for instance, [11], Lemma B.19, and its proof)

/ Z |inijun|2(x1,...,xn,MLQi)dxl---dxn
(Qr)” ]Si’an
(27)
5/ et L QE) ity - .
Q"

Taking the expectation of (27) then gives the result. [J

3.3. Multiscale Poincaré inequality. For cubes of size 3", the Poincaré inequalities de-
rived in the previous subsection (say with k = n in Proposition 3.2) have a right-hand side
that scales like 32", In this subsection, we derive a multiscale version of the Poincaré inequal-
ity, that aims to improve upon this scaling, provided that some local average of the gradient
of the function is not too large. We recall that the multiscale spatial filtration Q,{ « 18 defined
in (14). Forevery k <neN, x,y € R4 such that x € U, (y), open set U containing [ (x),
and f € 7! (U), the following quantity is well defined:

(8) S0 =B [ Vran|g)
© (x

where we use the notation, for every Borel set V such that u(V) € (0, co) and function g
defined on supp(n) NV,

1
29 dpu = —— du,
(29) ][Vgu M(V)/Vgu

and for definiteness, we also set fv gdu =0 if u(V) = 0. We use the shorthand notation

Snk = Sg ¢ and S, := S, ;. This operator has a convenient spatial martingale structure, as
displayed in the following lemma; see also Figure 1 for an illustration.

LEMMA 3.1 (Martingale structure for S,, ;). For every n,n’,k,k' €N, y,y’ € R satis-

fying

n<n', k<k, O <Os0).
every x € Oy (y'), and f € 1 (0, (y")), we have
(30) Sz/vk/Vf(/L,x) :EP[][D ( )(SZ’ka) du ‘ g,f/yk/].
K X
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FIG. 1. The largest cube on this figure is O,/ (y"). The operator S k! computes the spatial average in every

subcube of size 3 , for example the cube in red in the image. We can apply at first the operator Sy e which works
on the finer scales 3k and 3", represented by the cubes with orange and blue boundaries, respecttvely

PROOF. The key observation is (15), stating that Qz, « 18 a finer o -algebra than g,{,' ' SO
that

Sy oV (1, x)
1 ,
_F [— Vrdu| g }
PLn@e () Jo, ) ‘ n'k

Z w(z+ Dk)E |: 1
2€ 2, 1 NOy (x) p@p () "L +00 Joe

=]Ep[ Vfdu ( g,f,k} |G,f,/,k,].

By the definition of SZ’ «V f(u, z), we obtain

Z w(z 4+ 0k)

2€Z, 1Ny (x) ,u(Dk/(x))( n,k f (/’L Z) ‘ g ,k’:|

)V £t x) =B, |

1 /
=E [— S Vfdu|G) ,].
PL@e (x)) O ) n.k ‘ n' k

This is (30). O

To prepare further for the multiscale Poincaré inequality, we also give the following ex-
plicit expression for SZ’ «V f. We use the notation

]fzi‘f'ljk)lgisN ]fi-l-l:\k ]£N+|:|k

LEMMA 3.2. Using the notation of Lemma 2.1 with pL0U,(y) = Zl 1 Ox;» for any
x €0,(y) and any f € 71 (0,(y)), we have

(S,yl’ka)(u,x) 1_[ 1{u(z+Dk)=Nz}
€2 k(y)
(3D 1

= Y Ve fn(pl O 1 =M. )
M(Dk(x)) f(\ZI+Dk)1<L<N g ( n) l_[ {400 }

Jixjel(x) 2€2Z, k(y)
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with N =3 cz. () Nz and {zi}1<i<n any fixed sequence such that
(32) VzeZuk(). |fiell,... Nliz=z}[=N;

Moreover, for every j, j’ such that xj, x j € Oy (x), we have

(33) f Vi, fulnl O = Vo, Sl n L),
(Zi+00)1<i<n

(Zi+00)1<i<N

PROOF. Without loss of generality, we set y = 0. Thenlet N =} .- N, and we use
the canonical projection

SniVHWx) [] Yperoo=n)

ZEZn,k(y)
1
:7Ep|: Z Vi, fn (s L0 l_[ L@ +00=n:) g”’ki|‘
(O (x)) xj el (x) ! €2,k ‘

The key point is to write ]_[Zeznkl{M(ZJrgk):Nz} with respect to {x;}1<j<ny such that
pld, = ZlN:l dy;- Let {zi}1<x;<n be any fixed sequence so that every z in Z, ; appears
exactly N, times, as displayed in (32). We have

N

l_[ I{M(Z+Dk)=Nz}: Z nl{xg(i)ezi-i-ljk}a

€2,k oeSyi=1

where Sy is the symmetric group. Moreover, under G, x every permutation has equal proba-
bility, and then each x; is uniformly distributed in the associated cube z,(;y + L. Thus, we
have

SuaVHW.0) [ Lueroo=n

ZGZ,,,](
1 1 ][
= Z Z \%7T fN( M'—DC nl{x,ez(,(l)—kljk}
/’L(Dk(x)) |SN| oEeSy (ZO(1)+Dk)l<l<Nx i (x) / i=1

Notice that for every 1 <i < N, x; € z5(;) + U means x,-1(;y € z; + U, and the quantity
ijemk(x) Vi, fn (-, wL L) is permutation invariant. So we have

2

Z ijfN(Xl,...,)CN,,bLLDL 1_[ {xi €256y +0k}

xj €l (x) i=1

N
= Z Vx/fN xl,---,XNHU«'—DZ)l_[l{x“,l(i)ez,'-i—Dk}
i=1

xjel(x)

N
= Z Vi _1(])fN( o 1(1)’“"xa_l(N)’u’LDfl)nl{xa—l(i)EZH‘Dk}
i=1

X{77| (j)EDk(x)

N
= Y Vv xn, w L0 [ ] Ymeaton-
i=1

xjelk(x)

Therefore, the term for each permutation has the same contribution, and we thus obtain (31).
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Then we prove (33). To avoid possible confusion in the notation, we let y;, y;s be the jth
and j'th coordinates, then we exchange them and use the invariance under permutation of

NS
ek-ijfN(...,yj,...yj/,...)
fN(...,yj+hek,...yjr,...)—fN(...,yj,...yj/,...)

=1

(34) 0 h
— lim fN(...,yj/,...yj—I—hek,...)—fN(...,yj/,...yj,...)
~ h—0 h

=€ ij,fN(. s Yl Vs )
Moreover, the condition x;, x ;- € L (x) implies that z; = z;» and

(35) l{ijZj+Dk}1{yj/ezj/+Dk} = l{yj/ezj'—l-l:lk}l{yjsz/-l—EIk}-
We combine (34) and (35) to conclude (33). [

We now use the operators SZ « as our locally averaged gradient to obtain the following

multiscale Poincaré inequality. Notice in particular the factor of 3% inside the sum on the
right-hand side of (36), which we aim to leverage upon later by combining this with informa-
tion on the smallness of S, x Vu for k close to n.

PROPOSITION 3.5 (Multiscale Poincaré inequality). There exists a constant C(d) < oo
such that for every function u € 1 (0,) satisfying Eolu | Gul =0, we have

1 n 1

2 2

(36) ||u||gzgc<1@p[/ |Vu|2du]> +CZ3"(EP[/D |s,,,,<w|2du]>.
U k=0

n

PROOFE. Let w € #°1(0,) be such that E,[w | G,] = 0 and that solves “—Aw =u,” in
the sense that

(37) voes ' (O,), E, [/ Vw - deM} =E,[uv],
Un
and this relation also holds conditionally on Gj,:
(38) Yo e 2N (0,), Ep[/ Vw-VvdM‘gn]=Ep[uv|gn].
Dﬂ

Thanks to the condition E,[u | G,] = 0, these equations are well defined; see the proof of
Proposition 3.4 for a detailed discussion. This proposition asserts that

(39) Ep[ /D 2|V2w(u,x,y)|2dM(X)dM(y)] <E,[u?].
(G
We test (37) with u and write a telescopic sum with (S, ¢ Vw)o<k<y to get

E,[u}]=E, [ /D Vuw - Vu du} — (40)-a + (40)-b + (40)-c,

(40)-a=E, [/ (Vw =S, oVw) - Vu d,u],
(40)
(40)-b = ZE [/ (SuxVw — Sy 1 Vw) - Vu du]

(40)-c=E, [/ (Sn.nVw) - Vu d,u}.
O
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We treat each of these three terms in turn. For (40)-a, we use the Cauchy—Schwarz inequality

to write
3 3
(40)-a5<]Ep[/D |Vw—sn,OVw|2dMD <Ep[/m |Vu|2du:|> .

The first term on the right-hand side above can be rewritten as

41) E,,[/ |Vw—Sn,0Vw|2du]:Ep|: » Ep[/ |Vw—s,,,0Vw|2du\gn,oH.
Cn ZeZn,() z+Lo

n

We use the canonical projection Lemma 2.1 for w with L [, = ZINZI dy,;, and the do the
decomposition conditioned on G, ( that

oo
w) = Yoo wnlers a1 L0 [T Yuerop=n)-
N=0 ZZEZn,() N;=N €20

It suffices to study one term wy (x1, ..., xn, u L LG [;ez, o Lu+00)=n,}- We can apply
(31): let {zi}1<i<n be a fixed sequence such that (32) holds (with y = O there). For any
x € [, we have

SnoVw(, x) [ ue+on=n)

Z€Z,0
- Ly Il
- - Vx.wN(-, [ Dc) Lz +00)=N,}-
u(Uo(x)) xjely(x) 7 Gitloi=i=y ! ! €20

We apply (42) in (41) and just study the sum over one 7’ in Z, o:

Ep[ / IVw =S oVwlPde [ lueson=n, gn,o]
Z/+0y

ZGZn,O

= > ][ (1_[ (e 00)=N-)
(zi+00)1<i<n

xjez/+0o €250

1

X e —
w(z' + Op)

vij)N(',/_LLDZ)

2
f Vo (ot ) ).
(zi+0o)1<i<n

Then we use the symmetry proved in (33), that in fact every V,,wy has the same contribution
forall x; € 2’ + o,

X ez/+0y

Ep[/ |Vw—Sn,oVw|2d,u ]_[ 1 z400)=N.) gn,0i|
'+ Z€Z,0
= ). ][ (l_[ Lu(z+00)=N,}
xjez’+0o (zi+Ho)1<i<n €250
2
X Vs wn o nl 0 - f Vi un (a5,
(zi+0o)1<i<n

For the equation above, we can use the Poincaré inequality Proposition 3.1 because it is
centered and every x; lives uniformly in its associated small cube z; + [y. We remark that
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the constant C here is independent of N:

Ep[ / . IVw =S, oVwlPde [ lueson=n gn,o}
Z/+0g

Z€Z,0

<C Y > ][ IV Ve (o L) TT Nueroo=na)-
(zi+0o)1<i<n

1<i<N Xj ez’+y Z€2,0

We put this estimate back to (41), do the sum over all 7’ € Zn.0:

Z Ep[/ IVw — S, oVw|*du 1_[ Ly (z4+00)=N:} Qn,o}
/€250 Z'+0o 2€Z40
2
<C ) ][ Vi, Viywn (5 s LODIT [T Vo=
1<i,j<N Y @i+0o<i<n 2€200

:CEp[/D 2|V2w(u,x,y)|2du(x)du(y) I1 l{u(z+Do)=Nz}’gn,o]
On)

Z€2Z,0

Finally, we do the expectation and the sum over all [[,cz, ; 1{u(z+09)=n.}> and use the 7 2.
estimate (39) to obtain that '

E, [/ Vw — s,,,OVw|2dM}
E’n

(43) < CEP[ / V2w, x, y>}2du(x>du(y)]
(@,)?
< CE,[u?],

and this concludes that

(44) (40)-a < C(E,[u?])? (Ep [/ |Vu|2duD :

n

The term (40)-b can be treated similarly. For every k, we apply at first the conditional
expectation with respect to G, x:

E, |:/ SnxVw =8, k+1Vw) - Vu du}
Oy

= > E,,[Ep[/ (s,,,ka—s,,,kHVw).wdu‘gn,kﬂ
z+0k

€2,k

—E [ (SuxVw — Sy g1 Vo) - (S Vi) du]
2€Z, 5 Y etk

Then we use the Cauchy—Schwarz inequality to obtain that

E, |:/ SnxVw =8, k+1Vw) - Vu du}
On

1 1

2 2
[ suvw=Sucavulau]) (B ¥ [ iswvupa)’
z+0k

€25k 2+l

P

€2, k
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We use the definition in (28) and Jensen’s inequality for |S, (Vw — Sn,k+1Vw|2. For every
2 € Zyk, since (S k+1Vw) (i, 2) is G, k-measurable,

2
8040 = Spr VPt = (B[ (V=S Vurd| 6,4 ])

(45) z+0g
<E, [][ Vi = SVl die | G |
74+

Then we sum over all z € Z, , and we can treat it like (40)-a and (43) with the Poincaré
inequality in the scale 3¥ and the .7#2-estimate (39), yielding

Bl X [ Suvu-Suvula] <k / Vi = Sy Vul di
€20 k z+00 Un

< C3%E,[u?].

We have thus shown that

W[ sorad)
(46) (40)b < C(E,[u ])z( 3*(E / 1S £ Vit 2 die )
’ k=0 g U

For (40)-c, we use (28) and the Cauchy—Schwarz inequality to get that

40)yc = E, [ / (Snn V) - (SnVit) du]
Dn

2 % 2 %
= IE/o 0 1Sn,n Vw| du E,O - 1Sn,n Vul~du .

To treat the term E, [ fDn [Sn.nVw |2 du], we define the random affine function

e SunV0)11,0)
‘ |(sn,nvw)(ﬂ’ 0)|’

Notice that here p is random, but when the particles in [J,, move within [J,, it does mot
change the value; more precisely, the slope p is G, ,-measureable. We test £, i, with (38),

(@7) to0, = /D o xdu(x).

Ep[uzpamn | gl’l,ﬂ] - Ep [/lj vw : de ‘ gn,n]

:Ep[/ Vu)d:u’gn,n}’p
Un

- / (Sun V) - p.
On

Recalling the definition in (47), we obtain that

/ |Sn,nvw| du = IE,o[ugp,ljn | gn,n]

n

1

< Ep[u? | Gun])* Bp[ 5.0, | Gnn])?

< CV@)3" (Bp[u? | Gun)?.
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. . . 1
where in the last step, we use a direct calculation of (E, [Eg O, | Gn.n])2, and where the
constant C may depend on d. Since S, ,Vw is constant for every point in [J,, we have
shown that

1
V@)ISnaVw|(i,0) < C3"(E,[u? | Gun])?.
‘We thus obtain that

E, [ /D |sn,an|2du] B [1(0) (S0 Vo 21, 0)]

< C3°"E,[E,[u? | Gu.n]]

= C3°"E,[u?],
and therefore
1
1 1
(48) (40)-c < C3"(E,[u?])2 (Ep [/ |sn,nvu|2du]) ’
Dil

‘We now combine (40), (44), (46), and (48), to obtain (36). [l

3.4. Caccioppoli inequality. For every bounded open set U C R, we define the space of
a-harmonic functions on M;(R?) by

(49) AU) = {u e A\ (U) Vo e A3 (U),E, [/U Vu -andu} = o}.

Recalling that, for any two bounded open sets V C U, we have .77 YUy c #"(V) and
%‘61 (V) C %‘6‘ (U), so we see that A(U) C A(V). For the classical Caccioppoli inequality,
a standard proof is as follows: we multiply the harmonic function by a cutoff function, and
then use this as a test function against the harmonic function itself. Adapting this argument
to our space of particle configurations is not immediate. A naive approach would be to intro-
duce a cutoff that brings the value of the function to zero whenever a particle approaches the
boundary of the domain. But proceeding in this way is a very bad idea, since as we increase
the size of the domain, there will essentially always be some particles near the boundary. We
will instead rely on a suitable averaging procedure for particles that fall outside of a given
region, using the localization operators defined in Section 2.3. Notice that our goal thus is
not to bring the function to zero as a particle approaches the boundary of the box. Rather, it
is only to produce a function that stops depending on the position of a particle that progres-
sively approaches the boundary of the domain, in agreement with our definition of the space
%‘61 (U) (and departing from the traditional definition of the Sobolev HO1 spaces).

PROPOSITION 3.6 (Modified Caccioppoli inequality). There exist 0(d, A) € (0, 1),
C(d, A) < 00, and Ro(d, A) < oo such that for every r > Ry and u € A(Q3,), we have

E,| V(A1) aV (A1) du |
21011 Jo,

C
<——  E,[u?]+6E [
r2/0|Q3r| ,0[ ] P

(50)

Vu-aVu du].
Iol Q3r| Q3r

REMARK 2. Inequality (50) controls the norm of the gradient of a harmonic function
in the small cube Q, by a sum of terms involving the norm of the gradient in the larger
cube Q3. This does not seem to be useful at first glance. However, the key point is that the
multiplicative factor 6 is smaller than one.
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The proof of Proposition 3.6 will be divided into two steps. In the first step, provided by
the lemma below, we prove a weaker Caccioppoli inequality, without the normalization of
the volume. In the second step, we use an iterative argument to improve the result and obtain
Proposition 3.6.

Recall that A; ; is the regularized localization operator defined in (9).

LEMMA 3.3 (Weak Caccioppoli inequality). Fix 0'(A) := #‘:Ll € (0,1). For every
r>0,s>r+2,e>0and u € A(Qs+.), we have

/

0
EIE:,)[(ASM)Z] +E, [/Q V(A it) .aV(AS,gu)dM}
(51) '

1
< @(EE/)[(AHSM)Z] +E, [/

Vu-aVu d,u])
QS+S

PROOF. The proof of this lemma borrows some elements from [41], Lemma 4.8; in both
settings, the main point is to construct and analyze an appropriate “cutoff” version of the
function u. We use the function Ks’ U € %1 (Qs+¢) defined in (11) as a cutoff of the function
u and test it against u € A(Qy+¢) to get

(52) E, [ / V(As.cut) - aVu du} =0.
Qs+s

Combining this with the decomposition

E, [/ V(As.cu) -aVu du} =E, [/ V(As.cu) - aVu du]
QS+6‘ stZ

(53)-a

+E, / V(Ks,gu) -aVudu
(53) LS O\ Q52

(53)-b

+}Ep/ V(Ks,eu)-aVudu
- QS+£\Qs =

(53)-c

we obtain that
(54) (53)-a< |(53)—b} + \(53)—0\.

We now study each of these three terms. For the first term (53)-a, since x € Q;_7, the coeffi-
cient a is Fp -measurable. We can thus use (8), (11), (13) and (12) to get

(83)-a= %Ep [/ /8 (e —t)Ag+:(Vu) -aVudt du}
€ 052 0
2 &€
= 5B, [/ '2/0 (& = DE,[Acr (Vi) -aAs (Vi) | Fg_ Jdi du}

=Ep[/ V(Ag cut) -aV(As,gu)d/L]
Qs—2
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We then apply (13) for the second term (53)-b. We notice that in O\ Q;_>, a is no longer
Fo,-measurable, so we use Young’s inequality and the bound a < Ald:

2 &
|(53)-b| = SE, [ / / (e — A4 (Vi) - aVu dt du}
£ 0:\0:2 /0

A € 2 2
< E, (& — ) (|As (V) |” + |Vul|”) drdp |.
€ 0s\Qs—2 /0
For the part with conditional expectation, we use Jensen’s inequality and the uniform bound
Id <a < Ald:
A

e A
~E, (e — D|Ass: (Vi) [P dr dp | < =E, \Vu|*du
2 2
€ Q,Y\QS—Z 0 QX\QS—Z

A
< EEp[/ Vu - aVud/L]
Qs\Qs—2

This concludes that [(53)-b| < AEP[IQS\QPZ Vu-aVudul.
For the third term (53)-c, we use (13) and obtain

|(53)-c| < (53)-cl + (53)-c2,

2 &
(53)-cl = = |E, [ / / (e — )Ay4: (Vi) - aVudr du} ,
€ Os+e\Qs JT(x)—s
2 —
(53)c2= 5 |E, [/ (s+¢&—1(x)Ary(Au) 1 (x) -aVu d,u] ’
€ Qs+€\Qs

The part of (53)-c1 can be treated as that of (53)-b, so that

(53)-cl < AE, [/ Vu-aVu du]
Qs+s\Qs

We study the part (53)-c2 using Young’s inequality with a parameter 8 > 0 to be fixed later:

2
&2

E, [/ (s+e— r(x))AT(x)(Au)i)(x) -aVu d,u]’
Q.v+s\Qs

A
< @E,} [/QW\QS (s+&—100)| A (Au)|2du]

(55) + ﬁ—é\Ep [/ (s+e— r(x))|Vu|2du}
€ Qs+8\Qs

A 2
<—E, [/Q 0 (s +&—1x)|Ar)(Au)| d,u]

BA
+—E, Vu-aVudu|.
€ Qs+£\Qs

The first term above will be responsible for producing the %2 term on the right-hand side of
(51). We start by writing

A g [/ (s+&—10)|Arce)(An)[*d }
-5 s — T T(x) (AU n
ﬂ82 P Qs+s\Qs ()

A
= WEP[ Y (s+e-— r)|AT(Au)|2i|,

S<T<s+¢€
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where on the right-hand side, the sum is over all t’s that are jump discontinuites for (Asu)s>0.
Recalling the definition of the bracket process ([Au]s)s>0 defined in (7), we use Fubini’s
lemma and the .#2 isometry E,[[Au]s] = Ep[(Asu)Z]:

A AT s+e
R [ S ste-1)A, (Au)|} PR » 1{t§§s+6}dz|A,(Au)}Z]
S<T<s+¢ Ls<t<s+e”S
_ A AL (A
=gl [ L jamora]
A r ,s+e
= @Ep / ([Aul; — [Auls) dt:|
A s+¢e ) 5
g A R B AR T
A
=< E(}Ep[(Aﬁ_eu)z] —E,[(Aw)?]).

Putting this estimate back into (55), we conclude the estimating of the term (53)-c2, obtaining
A A
(53)-c2 < —(E,[(Ase)*] — B [(Asu)?]) + ﬁ—Ep [ / Vu -aVu du}.
Be € 0546\ 0s

By choosing 8 = ¢, recalling (54), and that » < s — 2, we can combine this estimate with
those of (53)-a, (53)-b, and (53)-c1 to get

_Ep[(AsM)z] + E/o |:/ V(As,eu) - aV(Ag cu) dﬂ:|

0

<3 A Eo[ (Asteu) ]+2AEp[ / Vu -aWdM]

Qs+8\Qr

We now proceed with a hole-filling argument: adding 2AE,[ f 0, VA cu - aVAg cudp] to
both sides of the equation above, and using Jensen’s inequality, we obtain

SE[(Asu)?] + QA + DE, [/ V(As.cit) -aV(As,gu)dM}

r

A 2
< 8_2EP[(A5+8L‘) ]+ ZAEP[ Vu-aVu d,u].

Q9+e

Dividing both sides by (2A + 1), and setting 6" := 5 Aﬂ\rl, we obtain the desired inequality
GnH. O

We remark that (51) does not imply directly (50). For example, let r > 2 and we choose
s =2r and ¢ =r in (51), then with a normalization of volume we get
9/
2r2p| Q|

<3d9/(;E [(As3 u)z]-HE [ ! Vu‘aVudu:D.
- 2r2p| Q3| ° "Lol 031 J o5,

Then another factor 3¢ will be added, and we typically do not have 390" € (0, 1), since we

/ 2A
recall that 0" = AT

E,[(Ayu)2] +E, [ Vi) -aWAZr,ru)du}

1
1O/l
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Qr.. = Qr

Qr,, Th=(1420)"r
Qru\"+1 = Qiir

FI1G. 2. An illustration of the iterative argument for the proof of Proposition 3.6. Since Lemma 3.3 can imply
Proposition 3.6 only for a comparison from scale r to (1 + 28)r with & very small, we add many intermediate
scales rp, = (14 28)"r between r and 3r.

PROOF OF PROPOSITION 3.6. We apply Lemma 3.3 iteratively, with very small incre-
ments of the volume. Let § > O to be fixed later, and choose s = (1 + §)r, ¢ = ér. For conve-
nience, we assume that r is sufficiently large that

(56) s=(1+8r>r+2 thatis r>28"".
Equation (51) and Jensen’s inequality give us that, provided (1 4 28)r < 3r,

Ep[ V(Aa+s)yr,srit) - aV (A 4s)r,srit) dﬂ}
p10Or| Jo,

~ 1 1
59( E,[u’]+E [7 Vu-aVudM}),
2(8r)2p1 Q1425 | ]+ Ey P1Q 1125 | J 0125y

with 6 = (14 28)?6’. We choose the constant § > 0 sufficiently small that 6 < 1. In order to
obtain (50), we will now apply (57) iteratively, from the cube Q, to the larger cube Q3,.

We give the details for this argument; see also Figure 2 for an illustration. We plan to use
(57) (N + 1) times, and and let § € (0, 1), N € N satisfy

(58) G=1+289" <1, A+28Vt1 =3

(57

Then we set the scale and the a-harmonic functions in every scale

rn=00+28)"r, 0<n<N-+I1,
(59) UNt1 =U,
Up = A(+8)r,,srptn+1, 0=<n=<N.
We can prove by induction that u, € A(Q,,) under the condition (56). Then, for every
0<n =< N, we apply (57) from u, on Q;, to up+1 on Qy,,
(60)

1
E [ Vu, -aVu d,u]
"Lol0nl Jo, " T

B[] + Vi1 Vi1 du ).

i .
208r0)*p1 Q1120 P1Qrl Jo, .,
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Iterating on (60) until ux4+1 = u on Q3,, we get

1
E |:— Vuo-aVuod/L]
"Lol0:l g,
< ﬁﬁj(wza)—z" _1 g (W] + OV T'E [ ! Vu-aVudM]
“\2 45 6r)2p|Q3,| " "LplQsr1 /o,

We notice that ugp can be seen as as a weighted sum of Agu, for scales s’ satisfying
s> (14 8)r >r +2, by (56). So we apply once Jensen’s inequality for uy and obtain (50)
by setting

3d N - ~
C(d, N) :=2722(1+25) n, 0= @)Nt.
n=0

Although we will not use this later, we now give more explicit estimates for the choice of
the parameters in the proof above, resulting from the conditions listed in (56) and (58). It

_dlog3 . o
10g(1+ﬁ)J’ and then in (58) use § := ;(3¥+1 — 1)

to fix 8, and in (56) we require > 28!, which gives the condition for the minimal scale Ry.
A possible choice is the following:

dlog3 1 1
LIJ I, §:=-(3" —1)~——,  Rp:=25"'~16dA,
log(1+ 55) 2

suffices to pick an integer N larger than |

e

~ 1\ 2 ~

9::9/(1+25)d:<1+ﬂ) : 0= @)Vt ~379,
d N

Y (1 +28) 72 22830 d3 A5,

=0

C:=—
282
n

g

4. Subadditive quantities. We aim to adapt the strategy in [11], Chapter 2, for our
model in continuum configuration space. In this section, we define several subadditive quan-
tities, denoted by v, v*, J, and develop their elementary properties. We then we use them and
a renormalization argument to obtain a quantitative rate of convergence for a in Section 5.

4.1. Subadditive quantities v and v*. For every bounded domain U € R? and p, ¢ € R?,
we define the affine function in U with slope p by

(61) Cpu() 3=/UP'XdM(X),

and introduce the subadditive quantities

1 1
v(U, p):= inf E [—/ —Vv-aVu du},
vet,utad @y | LplU| Jy 2

1 1
v¥(U,q):= sup Ep[—/(——Vu-aVu—i-q-Vu)du]
ue 1 (U) plU| Ju 2

(62)

The quantity v can be thought of as the average energy per unit volume of the solution which
matches with the behavior of the affine function £, ; when a particle leaves the domain U'.
The quantity v* is analogous to a Neumann problem with prescribed average flux of ¢. As will
be seen below, the quantities v and v* are approximately dual to one another; the quality of
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this approximation as the domain U grows to R¢ will be central to the proof of Theorem 2.1.
If the matrix a were constant, then by (6) the minimizer for v(U, p) would be £, iy, and we

would have v(U, p) = % p - ap; and similarly, were a constant, we would have v*(U, q) =
39 -a”'q.

We start by recording elementary properties satisfied by v and v*. We recall that
Gy =o(u), ,uI_(Rd\U)). For every r > 0, we denote by B,(U) the r-enlargement of
U, thatis, B,(U) := {x e RY : dist(x, U) < r}.

PROPOSITION 4.1 (Elementary properties of v and v*). The following properties hold
for every bounded domain U € R? with Lipschitz boundary and p, q, p',q' € R%:

(1) There exists a unique solution for the optimization problem in the definition of v(U, p)
that satisfies E,[v — £, y] = 0; we denote it by v(-, U, p). For the optimization problem in the
definition of v* (U, q), there exists a maximizer u(-, U, q) that is Fp,(v)-measurable and such
that E,[u | Gyl = 0. They are a-harmonic functions on U, that is, v(-,U, p),u(-,U,q) €
A(U).

(2) There exist two d x d symmetric matrices a(U) and a,(U) such that

1 1 __
(63) vU.p)=5p-al)p. v U.q)=5q-8.' U,
and these matrices satisfy Id <a(U) < Ald and Id < a,(U) < Ald. Moreover,
_ 1
(64) p'-alU)p =]Ep[—/ p -alu, x)Vu(u, x, U, p)du(X)],
elU| Ju
. 1
(65) ¢ 5 W)g =B, | / ' Vulx U.q) o) |
plU| Ju

(3) Slope: v(u, U, p) satisfies

1
66 | f Votux U paneo) |G| =By | Vo U pyau| =
U plUl Ju

For the function u(-, U, q), there exists a d x d symmetric matrix |d < a,(U; Gy) < Ald such
that

(©7) B[ f Ve Uy auw [ 6 | = Wi Gorg
and a; ' (U) = 5Bl (U; Guy)u(U)), so that
(68) B[ [ Vutex U e | = @
plUl Ju
(4) Quadratic response: for every v’ € £ pUT %I(U ), we have

1 1
—E |:—/ —Vv/-aVv/du} —v(U, p).
PLolUl Ju 2

Similarly, for every u’ € A1 (U), we have

I R U ’ oy o
”[M/UE W —uw,U,q)-av (' —uu,U,q) u}

1 1
=v*(U,q) — Ep[m/ (—EVM’ -aVu' +q - Vu’) d;/{|.
U

(69)

(70)
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(5) The quantities v and v* are subadditive: for every n € N,

(71) v(Uy+1, p) =v(Uy, p), V*(Dn+la9)fv*(D11aQ)-

PROOF. We prove each of these points in turn.

(1) We study at first the maximizer for the problem v*(U, ¢). A first observation is that the
maximizer can be found in Fp,(7)-measurable functions. Because for any u € J7 L ), its
conditional expectation E,[u | Fp, ()] reaches a larger value for the functional in v*(U, q).
We use Jensen’s inequality that

1
E, [/U <—§VEp[u | Fpywyl-aVEy[u | Fpw)l+q - VE,[u | ]:Bl(U)]) d/i}

1
— B [By[ [ (—3BolVu | Favn) - 8BolVi | ) + g Byl9u] Py ) du|

fBl<U)H
1
ZEP[/ <——Vu-aVu+q-Vu)d,u].
v\ 2

By a variational calculus, we know the characterization of a maximizer with elliptic equation
that for any ¢ € 7' (U)

(72) Ep[/l]Vu-aV¢du:|:EP[/Uq-VquM]

Similar to the discussion in the proof of Proposition 3.4, we know that a solution for this
problem also satisfies the more precise equation

73 B, [ Vu-aVodn|Gu] =k, [ 4 oau|ou]
U U
and we can define its solution in the space
W={fex'U):E,lf |Gul=0}.

In this space, we have
Eo[f*|Gu] < C diam(U)’E, [/ IV f12d | gU},
U

by the Poincaré inequality Proposition 3.2. Then the coercivity on left-hand side in (73) is
ensured and we can apply the Lax—Milgram theorem. We call this maximizer u(w, U, q).
Testing (72) with ¢ € %I(U ), (6) implies that its right-hand side is 0, so we have
u(n,U,q) e AU).

Then we turn to v(U, p). By a first-order variation calculus, we know that a minimizer v
for v(U, p) is characterized by an elliptic equation that for any ¢ € %’61 )

(74) Ep[/UV(v—ﬁp,U)-quSdu}:Ep[/U—p-qu&dpL]

We remark that one cannot treat this equation as (72), because E,[v | Gy] is not an element
in %I(U ) and we cannot subtract it. On the other hand, we can apply the Lax—Milgram
theorem on the space

V={f e W) :ELf1=0},



QUANTITATIVE HOMOGENIZATION OF INTERACTING PARTICLE SYSTEMS 1911

to define the unique solution v — £, y € V. We notice that the right-hand side of (74) is
clearly a bounded linear functional, and the coercivity of the left-hand side of (74) is ensured
by the Poincaré inequality Proposition 3.3 on V. We denote this minimizer by v(u, U, p),
and (74) implies that v(u, U, p) € AU).

(2) We test at first (74) with v(w, U, p’) — Lyue %’61 (U) and obtain that

E, [/ Vo(u,x, U, p)-a(u, x)Vo(u, x,U, p') dpc(x)i|
(75) v

=E, [/U Vou(u, x, U, p) - a(u,x)P’du(X)],

and this implies (p, p’) — Ep[ﬁ Ju VoG, x, U, p)-a(u, x)Vo(u, x, U, p)du(x)] is a
bilinear map p - a(U) p’. This definition with (75) proves (64). We let p = p’ and obtain that
v(U, p) = % p-a(U)p. To obtain the bound of a(U ), we use the bound of a and the definition
of (62):

1 1 1
inf  E [—/ —|W|2du]svw,p):—p-ﬁw)p
elU| Ju 2 2

1 P
vely u+4 (U)
1 A
< inf Ep[—/ —|Vv|2d,u].
vet,u+3 Wy LelUL Ju 2

We can check that £, ¢ is the minimizer for infveep,wa&w) EP[fRd %le|2d,u], then it
concludes the proof of the bound Id <a(U) < Ald.
The same argument works for v*(U, g). We test (72) with u(u, U, ¢’) and obtain that

Ep[/ Vu(p,x,U,q)-a(u, x)Vu(u,x, U, q") du(x)}
(76) v

=Ep[/Uq-W(u,x,U,Q’)du(x)].

This proves that (g, ¢’) — Ep[ﬁ fU Vu(u,x,U,q)-a(u, x)Vu(u, x, U, g’)] is also bilin-

ear and we denote it by g - a Y(U)q’, and this also concludes (65). Then we put ¢’ = ¢ and
(76) in the definition of (62) that

v¥(U, q)

1 1
=Ep[—/(——w(u,x, U.q)-a(, »)Vu(u,x, U, q) +q - V(i x, U,q>) dM(X)}
plUlJu\ 2
:E”[ﬁ/y %wm,x, U, q)-a(u, x)Va(u, x, U,q>du(x)]

| —
=543 (U)g.

This proves the bilinear map expression for v*(U, ¢). Concerning the bound for the matrix
a, I (U), we use the bound for a and the equations above to obtain that

1 A
sup E,|——— (——qul —I—q-Vu)d,u
ue\(U) plUl Ju\ 2

1 1
<v*(U,q) < sup Ep[—/(——WuIz—Fq-Vu)dM]
ue 1 (U) elU| Ju 2

(77
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One can check for the lower bound, ¢ 7U attains the maximum and for the upper bound it
is €4,y that attains the maximum. Then we put the expression v*(U, q) = %q -a, '(U)q and
obtain that

A1 1 1
——q* <v*(U,q) = ~q -a; ' (U)qg < =lq*,
2 - 2 * -2

which implies the bound for a,.(U).
(3) The slope identity (66) for v(u, U, p) is directly the result from (6) that

E, []{] VoG x, U p)duto) [ w) | =E, []{] pe| w@)] =p.

For the function u(u, U, q), the identity (68) comes directly from (65), but conditioned Gy,
the averaged slope is not a;; 1 (U)q. In fact, we recall that u(u, U, g) is also the conditioned
maximizer for (73), so we can define the matrix a_ LU; Gy), the quenched slope (67). The
estimate for this matrix is then obtained by repeating the argument in (63) for (73).

(4) We test (74) with (v — ¢ p,u) and put it in the left-hand side of (69):

1 1, /
EP[M/UEV(U —v(, U, p))-avV(v' —v(, U, P))d”}

1 1 1 1
=E [—/ —Vv’-aVv'du}—i—E [—/ —Vv(-,U,p)-aVv(-,U,p)d,u}
"LplUl Ju 2 "Lolu) Jy 2

1 /
(78) —EP[M/UVU -avu(-, U, p)du]

1 1 1 1
=K |:—/ —Vv/-aVv/dMi|+E [—/ —Vv(-,U,p)-aVv(-,U,p)d,u}
PLolU] Ju 2 "LolUl Ju 2

1
—E [—/ p~aVv(-,U,p)d/x]
"Lolul Ju

The term Ep[ﬁ f y P -avVu(, U, p)du] also appears on the right-hand side of (64) with
p = p/, thus we obtain that

1
By| o [ peavoC.U. pu]
"LolUl Ju
_ 1
=p-a(U)p=Ep[—/ Vv(-,U,p)-aVv(-,U,p)du}
plU| Ju
and we put it back to (78) to conclude for the validity of (69).

Similarly, we develop the left-hand side of (70) as (78), and use (72) with ¢ = u’ to treat
the inner product term of ’ and u(-, U, q):

1 1
E [—/ Vu/-aVu(-,U,q)d;L]zE |:—/ Vu/-qdu}.
"Lolul Jy "Lolul Ju

We put this term in the left-hand side of (70) and use the bilinear map expression of v*(U, q)
to obtain that

1 1 , /
EP[M/UEV(M —u(,U,Q))av(” _u(’U’q))d'u“iI

1 1 1 1
=E [—/ —Vu/-aVu/dpL]+E [—/ —Vu(~,U,q)-aVu(-,U,q)d,u]
"LolUl Ju 2 "LplUl Ju 2
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1
—E |:—/ Vu/-aVu(-,U,q)d,u]
PLolUl Jy

1 1 1
=K [—/ —Vu/-aVu/du}—i-v*(U,q)—E [—/ Vu/-qdu]
PLolu) Jy 2 ’LolUl Ju

This concludes the proof of (70).
(5) For v(U,41, p), we test the associated variational problem with the candidate
vV = ZZGZ”H  V(-, 2+ 0y, p), which is an element of £, o, ., + %%1 (dy+1), so that

n+1

1
v(Upt1, p) < Ep[—/ Vv -aVv’d,u}
pl0n+1l Jo,,,

1
—3d Z Ep[— Vv(-,z—i—ljn,p)‘aVv(-,z+Dn,P)dM]
ZEZ)1+1,11 IOIDH| 240,
:V(Dl’l’p)

In the last step, we also use the stationarity of the coefficient field a.

For v*(O,+1, p), we also use that, for every z € Z,41,, we have the inclusion
A1 (O,41) € A1 (z+0,), so its unit energy on every small cube z + [J,, is less than the
maximum v*(z + O, p), thus

V¥ (Optr, q) =374 Z Ep[

ZeZnﬁ»l,n

1 1
__Vu(’ |:|}’l+la Q) . avu(a |:|l’l+17 C])
plUnl Joym, 2

+q-Vu(-,Dn+1,q)du}

<37 3 VGe+Ong

Zezn+l,n

=v*(0, q). O

4.2. Subadditive quantity J. We now study the quantity J defined by

JW,p,q)=vU,p)+v*U,q)—p-q
(79) 1 1
=§p-a(U)p+5q-a* WU)q—p-q.

By the properties of v and v*, the quantity J is also subadditive. We briefly explain why
this quantity will be convenient for our purposes. If the functions v(U, -) and v*(U, -) were
exactly convex dual of one another, then we would have that J > 0 and that for every p € R?,
the infimum of J (U, p, -) is zero. This would correspond to the situation in which a(U) and
a,(U) are equal, and for every p € R?, we would in fact have that J(U, p,a(U)p) =0.
Instead, we will show below that, for any symmetric matrix Id <a < Ald, we have

D=

[@—a)|+[a—a. ()| < sup C(J(U, p,ap))*.
PEB)
The right-hand side of the inequality above can be thought of as a measure of the defect in
the convex duality relationship between v and v*. For U = [J,, and using a = a,((J,,), we
obtain that

8.0 ~ @) < sup CI(U. p. 8. (Om)p))?.
PED]



1914 A. GIUNTI, C. GU AND J.-C. MOURRAT

Since we know that {a([1,,)},,>0 is a decreasing sequence while {a, (L)}, >0 1S a increasing
sequence from (63) and (71), each sequence has a limit. Therefore, once we prove a rate of
convergence to zero for J(U, p, a,([J,;) p), we get that the two limits coincide, and also a
rate for the convergence of {a(l;,)}n>o0-

The rest of this section will present this strategy in details. We establish at first a variational
description for the quantity J and the properties mentioned above.

LEMMA 4.1. (1) For every p, q € R%, we have the variational representation

1 1
(80) JW,p,q)= sup Ep[—/(——Vw-an—p-an—l—q-Vw)d,u].
weA(U) elUl Ju\ 2

(2) We have that J(U, p,q) >0 and a(U) > a,(U).
(3) There exists a constant C(d, A) < 0o such that and for every symmetric matrix a
satisfying |d <2 < Ald, we have

(81) ’5—5(U)‘+|5—5*(U)|§C sup (](U,p,ﬁp))%.
PEB)

PROOF. (1) We start by rewriting the expression of J(U, p, q) using the definition of
v*(U, ¢) and the quadratic expression of v(U, p). Noting also that the maximizer of v*(U, g)
belongs to A(U), we can write

1 1
J(U,P,Q)ZE |:—/ _VU(', U5p)avv(aU9p)dMi|
"LolUl Ju 2

1 1
+ sup E [—/(——Vu-aVLH—q-Vu)d,u}—p-q.
weAw) LplUIJu\ 2

We claim that for any u € A(U), with w :=u — v(-, U, p), we have

1 1 1
E |:—/(—Vv(-,U,p)-aVv(-,U,p)——Vu-aVu+q-Vu>du}—p-q
"LolU] Ju\2 2

1 1
—F [_/<__vw.an—p-an+q-Vw)du]
"Lolul Ju\ 2

To prove it, we can develop the right-hand side of (83):

1 1
E [—/(——Vw-an—p-an—i—q-Vw)du}
"LolUl Ju\ 2

1 1 1
(84) =Ep|:—/(—Vv(-,U,p)-aVv(-,U,p)——Vu-aVu—l—q-Vu)d,u}—p-q
plU| Ju\2 2

(82)

(83)

1
+Eﬂ|:—/ V(U(',U, p)_ﬁva)-(aVu—aVv(-,U, P)—C])dllvi|
plUIl Ju

Because (v(-,U, p) —{£pu) € %’6‘ (U), we apply u, v(-, U, p) € A(U) and (6), the last line
of (84) is 0 and we prove (83). Then we take the maximum as (82) and obtain the definition
(80).

(2) The properties that J (U, p, g) > 0 comes from the definition of v*(U, g): we test the
functional in the definition of v*(U, ¢) with the minimizer v(-, U, p) of v(U, p) and obtain
that

v (U, q)
1 1
zEp[m (—Eww,x,u,p)-a(u,x>vU<u,x,U,p)+q-va,x,u,p))du}
U

=p-q—vU,p),
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so that
JW,p,q)=v(U, p)+v*U,q)—p-q=0.

Then we test J (U, p, g) > 0 with that ¢ = a,(U) p and obtain that
_ 1 _ 1,_ __ _ _
05J(U,p,a*(U)p)=5p-a(U)p+5(a*(U)p)'a*l(U)(a*(U)p)—p-a*(U)p,

and therefore a(U) > a,(U).
(3) Using this property, we have

1 1
JW. p,g)=5p aU)p+ 54 A (U)g—p-q
1 1
> 5p-aU)p+ 34 a iUy —-pq
1
=S @W)p - q)a '(U) - (aW)p —q).

We put ¢ = ap and obtain |a(U) —a| < C sup e, (J(U, p, 5p))%. The proof of the statement
concerning |a,(U) — a| is similar. [

In view of the definition of J, this functional enjoys properties similar to those described
in Proposition 4.1 for v and v*.

PROPOSITION 4.2 (Elementary properties of J). For every bounded domain U C R¢
with Lipschitz boundary and p,q € R?, the quantity J (U, p, q) defined in (719) satisfies the
following properties:

(1) Characterization of optimizer: the optimization problem in (80) admits a unique solu-
tion v(-,U, p,q) € A" (U) such that Eolv(-, U, p,q) | Gul = 0. This solution is such that
for every w € A(U),

(85) Ep[/ Vu(, U,p,q)-and,u] :Ep[/ (—p-aVw+gq - Vw)d,u],
U U

and (p,q) — v(-, U, p, q) alinear map. The function v(-, U, p, q) can be expressed in terms
of the optimizers in (62) as

(86) U(//L, U’ D Q) = I/l(,LL, U7 Q) - U(//L, U’ P) - Ep[u(:u“s U7 Q) - U(//L, U’ P) | gU]

We have the quadratic expression
1 1
87) JW,p,q)= Ep|:_/ ~Vu(, U, p,q)-aVu(, U, p, q)du]-
plUIJu 2
(2) Slope: v(-, U, p, q) satisfies

Ep[][ Vu(-,U, p,q)du ’ QU] = HJI(U; Gu)q — p,
(88) N

1
E [—/ Vv(‘,U,p,q)dM]=5_1(U)q—p,
PLolul Jy ¥

where the matrix a, YU; Gy is defined in (67).
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(3) Quadratic response: for every w € A(U), we have

1 1

1 1
=JWU, p,q) —Ep[—/ (——Vw -aVw —p-aVw+gq - Vw)d,u].
plUl Ju\ 2
(4) Subadditivity: for every n € N, we have

(90) JUpy1, poq) < JUn, p,q).

PROOF. (1) The equation (85) comes directly from the first-order variation calculus. The
proof of the existence and uniqueness of the solution v(-, U, p, q) is similar as the one for
v*(U, q). Equation (85) also implies that the map (p, ¢) — v(-, U, p, ¢) is linear because for
any p1, p2,q1, g2 € R, and any w € A(U) we have

Ep[/ Vu(-, U, p1+p2,q91 +q2) - and,u}
U
=Ep[/ —(m+pz)-an+(q1+qz)-deu]
U

=E, [/ V(- U, p1.q) +v(-, U, p2,q2)) -aVw du]
U

Then (v(-, U, p1,q1) +v(-, U, p2, g2)) is also a solution for the problem (85) with parameter
(p1 + p2. q1 + q2). Notice that we have

E,O[(v('a U, P, C]l) + U(" U, P2, qZ)) | gU] = 07

itimplies v(w, U, p1 + p2,q1 +q2) =v(i, U, p1,q1) +v(w, U, p2, q2) and the linearity of
the map.

The exact expression of v(u,U, P,q) comes from the equivalent definition (80) of
J(U, p, q) and its proof. We put v(u, U, p, q) in the first-order variation (85):

1
Ep[—/(—p~aVv(-,U,p,q)+q-Vv(-,U,p,q))dM]
elUl Ju

1
=Ep[—/ Vv(-,U,p,q)-aVv(-,U,p,q)dM]-
elUl Ju

Then we put this equation into (80) to get (87).

(2) The slope identity (88) comes from (86), (66), (67), and (68).

(3) We use the expression in (86) with w :=u’ — v(-, U, p), then we use the quadratic
response for v*(U, g) (70) that

1 1
Ep[m/U(EV(U)—U(,U,p,q))av(w_v(aU’ pvq))) dM:|

=]Ep|:ﬁ/l]<%V(u/—u(-,U,q))-aV(u’—u(-,U,q)))d/L]

1 1
=v*(U,q) — Ep[m/ (—EVM’ -aVu' +q - Vu’) dp{|.
U
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Then we add back the term v(U, p) and it gives the desired result:

E [L/(lv(w—vc U, p.q))-aV(w—v(, U )))d ]
P IO|U| U 2 9 7p7q ) ’p’q I/L
1 1 / / /

1 1
=JW,p,q) —Ep[—/ (——Vw-an —p-aVw+gq - Vw) du].
plUlJu\ 2

(4) Equation (90) is a consequence of (71) and (79). O
We conclude this section with the following lemma.

LEMMA 4.2 (Comparison between two scales). For every n,k € N with k < n, and
p.,q € R4, writing v(U) as shorthand for v(-, U, p, q), we have

1 1 1 5
E [ —|Vo(@,) — Vu(z + ) du]
| Z0 2B !0k | zmkz' " |

€2, k

<J(k,p,q)— JUu, p,q).

(€29

PROOF. For any z € Z,, , since v([J,) € A(z + Ui), we use the quadratic response (89)
for J(z + Uk, p, q) that

1 1 ’ }
E,| — Vv, — Vv(z+UO d
"[mmu oy 2P0 = Ve Hofdu
1 1
<E, [— L (vo@) = Yoz +00) - a(Vo @) — Vol + 00) d,u]
/0||:|k| z+0g 2
=J(@z+ Uk, p,q)
— Ep[; (—EVU(DH) -aVv(d,) — p-aVv{ld,) +¢q - Vv(Dn)> d,u].
IO“:'k| z+00k 2

We sum this expression over all z € Z,,  to obtain that

1 1 1 ’
E [— —|Vv(d,) — Vv(z + k) du}
|zn,k|zeéik "LolCk| kaz' ! |
1
<= ¥ (Je+Dupo
| n,kl Zezn,k

1 1
B . (=5 70@0-aVe@) ~ p-aVo@) +q- Vo@,) ) du

=J Uk, poq) — J (U, P, q)-

In the last step, we use the stationarity of J and also (80) for v(1J,). U

5. Quantitative rate of convergence. We are now ready to prove Theorem 2.1. We de-
compose the argument into a series of four steps.
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5.1. Step 1: Setup. 'We use the shorthand a, := a,(LJ,), so that by (88), the average slope
of the function v(-,U,, p,q) is a, g — p, in the sense that

1
©92) E[ /w-,mn, , >du]=a—‘ _».
Lot Ju e nr

We let 7, denote a measure of the defect in the subadditivity of J, precisely,

T, = sup (J(On, p,q) — JOnt1, P, q))

(93) P,q€B)
= Sup (V(Dnv p) - U(Dl’l+19 P)) + Sup (V*(Dl’lv q) - V*(D}’l“rlv CI))
PEB) q€B|

A direct corollary from (93) is that for any integers n < m,

m—1
04 [a,' —a,'|=supq- (@, —a,")g=sup(*(Oq) = O q) <C Y .
gEB qE€B; k=n

We recall that {a(U,;)},n>0 is decreasing and {a.([J,,)},,>0 is increasing, with the comparison
a.(,) <a(d,,). From (81), we know that

=

|a@n) —a| <|a@y) —a(Ox)| < C Sug (J @y pramp))?.
PEDb]
From now on, we thus fix p € By, and focus on estimating J (L, p, a,, p). We also assume
without further notification that m is sufficiently large that 3™ > Ry, for the constant Ry
appearing in Proposition 3.6. We use Azm v (-, U1, p, amp) to compare with (87) and
apply the quadratic response (89). In the rest of Step 1, we write v(U) as a shorthand for
v(-, U, p,a,p), and decompose

D=

1 1 2
Um, P, an =(E,| —— —Vu(d,) -aVu(d,)d
5) (J @, pr i) ( ”[mmm/mmzw( )-aVo(@y) u])

< (95)-a+(95)-b,

with

1 1
(95)-a = (Ep[m /D 570 = T2 O)

1

a(Vu(@,) ~ VA0 i) du )

and
1

1 1 2
(95)-b= (Ep[m/ EVA3m+2U(Dm+1) 'aVA3m+2U(Dm+1)dM:|> .
ml J,

We treat the two terms separately. For (95)-a, since Asmv((0y+1) € A(;) (see Proposi-
tion A.1 for details), we use (89) to get

(95)-a]?

_ 1 1
=JOu, p,anp) —E, [— / <——VA3m+2v(Dm+1) . aVA3m+2v(Dm+1)) du]
o0l Jo, \ 2

1 _
- EP[ / (—p-aVAzn2v(pt1) +amp - VAsn2v(Opy1)) d,u].
/0|Dm| O
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Using Jensen’s inequality, we have

1
E, [/ <£VA3m+zv(Dm+1) -aVA3m+2v(Dm+1)) d“}
Dm

1
< Ep[ / (Ewmmm -aVv<Dm+1>) du],
U

and the conditional expectation also implies that

Ep [/ (=p-aVAsn v([Opy1) +anp - VAsn 20 ([Opy1)) du]

:Ep[/ (_p'avv(Dm+l) +aup- Vv(Dm—H)) dﬂ]-
Dﬂ’l
Thus we combine these terms with the quadratic response (89) to obtain

— 1 1
}(95)'3}2EJ(Dm’p’amp)_Ep[—p|Dm| /Dm <—5VU(Dm+1)'aVU(Dm+1)> dﬂ}
1 _
_Ep[m /Dm(—p-aVv(Dm+1) +app- VU(Derl))dM]

1 1
B[ [ (V0@ ~ @) a0~ v(C) ) e
pltml Jo, \2
and we use Lemma 4.2 between [J,,, and [, to get

(96) 195)-a]* < 3%(J (@, pr anp) — I Ot 1, pramp)) < C(d, AT,

where the quantity 1, is defined in (93).
For the term (95)-b, we can apply the modified Caccioppoli inequality (50): there exist two
finite positive constants C(d, A) and 6(d, A) € (0, 1) such that

1
Ep[—/ V(A3m+2v([]m+1)) . aV(A3m+2U(Dm+1)) d,bb]
oIl Jo,

(97) E,o[(v(@n11))’]

S e
32m | Ty g1 |
1
+0E, [7 / Vo(pm+1) -aVo (1) d,u].
,0le+1| Dm+1

Using (87), we see that the averaged gradient term on the right-hand side of (97) is
JOm+1, p,ayp), and (90) asserts that J (41, p, an p) < J(u, p, a, p). Therefore, we
get the bound for (95)-b:

C
(98) |95)-b]” < WEp[(v<Dm+1>)2] +0J T . Amp).

m—+1 |
We put (96) and (98) back to (95), obtaining

1

1 1 _ 2
(J @, P2 Emp))? < Ctt + ( [0 @))%z + 07 T p. amp>)

32mp“jm—i—ﬂ

=

C 1 _ 1
Ctp+———[v@ns1)| g2 + 02 (J (O, p, amp))?.

3" (pI0m+10)2

A
3
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Since 6 < 1, this gives

(99) J(Om, prayp) < C(fm Hv(u,DmH,p,ﬁmp)Hfgz).

1
S
32m,0||:]m—|—1|

5.2. Step 2: Flatness estimate. In this step, we estimate the .#>-flatness of optimizers
of J. Notice that, using the result of (101) with v(-, U,,+1, p, a, p), the corresponding affine
function is 0 and we obtain from (99) that

m
(100) J O, P, np) < C<3"3’" +2 3"““‘"%”).
n=0

LEMMA 5.1 (Z2-flatness estimate). There exist B(d) >0 and C(d, A, p) < 00 such
that for every p,q € By and m € N,

1 2 2 _ L Bm—
(101) ——— v, Oy, pr @) — L1, <oyt (3pm 4 3 g-pn ).
p||:]m+1| H m+ ay q—p.0On+1 “jz nX:(:) n

PROOF. In the rest of the proof, we write v(U) := v(:, U, p, g) as we will not change
P, q in the proof. Since E,[v(L;;41) — ¢ . | Gm+1] =0, we can use the multiscale
Poincaré inequality (36)

=1
ay, q—p,Upny

m ||U(Dm+1) B ﬁﬁfﬁlq—l’ﬂmﬁ ”ffz
m

1

1 -—1 2 2
(102) < C(Ep[m/DWWU(DWO - (@, q-p)| dMD

m—+1 1

1 . 2
+C E 3" <Ep|:—/ 1Sm+1.0V(Opi1) — (amlq — p)|2du:|> )
n=0 p|Dm+1| Dm+1

The first term on the right-hand side above is of constant order, by (87). For the second term,
we use a two-scale comparison for every 0 <n <m + 1 that

1

1 J— 2 2
<E,0|:7 Sm+1,0Vo@ny1) — (8, ¢ — p)] duD
Pllm+1l Jo,.

1 2
< (Ep[— > / 1Sm+1.0 VU (Omt1) = S 1.2 Vo(z + 0| dMD
p||:|m+l| z+0,

1
2

(103)

2€Zmt10

1
1 __ 2
+ (Ep[i Z / 1Smt1.2VV(z 4+ 0,) — (a, lg - p)|2dl/b:|>
plljm—i-ll 2€Zmiln z+0,
a—l _ a—1
+ |am —a, |
For the third term |a,,! —a,!| we have

m—1
a,' —a, !> <cw@, Ma,' -3 <) w
k=n
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For the first term in (103), recalling (28), we use Jensen’s inequality and (91) to get

1
Ep[— Z / iSm—i-l,nvv(Dm-H) - Sm-i-l,nvv(Z + D”)izdu}
/0||:|m+1| ZGZm+l,n Z'H:‘n

1
sEp[ﬁ ) / VoChi1) = Vo(z + )l di
P m+1 ZGZm-H,n z+Un

m
< Z Tk-
k=n

For the second term (103), we use (30), Jensen’s inequality, and stationarity. Here we remark
that the operator S}, , is a conditional expectation with more information than Sy, 41 .

1 —_
Ep[? Z / |Sm+1,nvv(Z+Dn)_(anlq_p)yzd/’c]
pl m+1| ZGZm+1,n Z n

| _
SEp[im > / 1S5, Vo +0,) — (3, g —p)\zdu}
PIUm+1] 2€Zmi1n ) 2H0h

1
=E S, Vu(@y) — (a; 'qg — p)[*d }
Lt L1800 — it = ) an

The estimation of this term is postponed to the next step. We will prove in Lemma 5.2 below
that

1 n—1
Ep|: / 1S, Vu(,) — (E_I,:]q _ p)|2 d“i| <C37 P4 Z 3=Bn—kg
plUnl Jo, =

We put these estimates back to (102) and obtain that

m n—1 m )
0@ =10l =C Y3 (3—*3" + 33P0 3 rk) .
(P10m+11)2 n=0 k=0 k=n

We square the two sides and use the Cauchy—Schwarz inequality to obtain

1

2
T i PRI 2

m m n—1 m
< c(Z 3”) (Z 3" (3—f‘” + Y30y 3 m))
n=0 n=0 k=0 k=n

m
5 C32m (3—,3111 + Z 3—,3(1’"—”).[”)’
n=0

as announced. [

5.3. Step 3: Variance estimate. In this part, we prove the following variance estimate,
which was used in Step 2.

LEMMA 5.2 (Variance estimate). There exist f(d) > 0 and C(d, A, p) < oo such that
forevery p,q € By andn € N,

1 n—1
(104) Eﬂ[—/ S0 Vo, O pog) — (8, g — p)|2du] <C37P 4 3 370 hg,
/O“:'nl Oy =
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PROOF. In the rest of the proof, we write v(U) := v(-, U, p, g), as we will not change
P, q in the proof. From (92), we know that the average slope of v(L,) is (5;1q — p), and
notice that v(LJ,) is Fp,(,)-measurable. Thus, the idea is to use {v(z + [g)};ez, , to ap-
proximate (104) in scale 3¥ with some error, and then apply the independence for v(z + i)
and v(z' + Oy) for dist(z, z') large. However, different from the standard elliptic setting, here
we will see a renormalization with random weights.

We start by relaxing (104) to G, ,—2. We observe that in fact S, Vv([J,,) is constant in [,,,
SO
2

/EI (SnVU(Dn) - (érTIQ - p)) d/L .

S, Vu(@y) — (&, 'q — p)[Pdu =
/DJ VO =g ==

We denote by V), the left-hand side of (104). By triangle inequality, we have
(105) (Vn)% < (105)-a + (105)-b + (105)-c,
with

(105)-a=|a;' —a |,

(105)-b

1
2

2
/ (Sﬂ,nvv(Dn) - Sn,n—ZVU(Z + Dn—Z)) d,l,L‘ :|) ,
Z+Dn_2

1 1
(el
Pl n(Ln)

€2y n—2

(105)-c

1

)

1 1
_ E[— / S,_2Vv(z+D—2)—5,;1q—p du
( AP ERTEs ey ) = s = p)

2E€Zn n-2

The term (105)-a can be controlled by (94):

(106) (105)-a < C(Ty_2 + Ty_1)?.

For the term (105)-b, recalling (30) and (28), we use Jensen’s inequality and the two-scale
comparison (91) to get

1 2
(105)-b < (Ep[ ) S0 VO(Oh) = Sp_aVo(z + Dn_znzdu])
P Uy 2€Zp 02 40,2
107) 1 i
( = <Ep[— > / [Vu(@h) —Vv(z+Dn—2)|2dMD
p|Un| 2€Zpp_n? 02

1
< (tp—2 +18-1)2.

The term (105)-c is the key for our result. To simplify a little more the notation, we write

[Xz =S n—2Vu(z + 0h2) (i, 2) — (8, 1,q — p),

(108)
my = pu(z +Up-2).

Notice that X, m, are 7,0, ,-measurable. With this notation in place, we have

/ (Sn,n—Zvv(Z + Dn—Z) - (ﬁ;lzq - P)) dM = mZXZs
z+0,2
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and by (92),
Eylm X.]1=0.
The term (105)-c we want to estimate can be rewritten as

1 (ZZEZn,nfz mZXZ)2i|)%
|y Zzez,,y,,,z mz '

(105)-c = (Ep[

If the coefficients m, were deterministic, then we would be able to leverage on the finite
range of dependence of X in this variance term. However, since the number of particles m
is random, we introduce the event

Cn, 0,8
(109) p(z +0p—2)

:O|Dn—2|

pntn)
jJ|mPy

= {ll € Ma(Rd) :Vz € Zp 2,

1‘<8,and’ 1‘58},
thus we can divide (105)-c into two terms

(105)-c < (105)-c1 4 (105)-c2,

L, 5 (Zzezn,nzmzxz)zb%

(105)-cl = (E |:
g |y Zzez,,,,,,z mg

1 ( m X )* T\
(105)‘02 = (E/O|: {Cn,p,(i} ZZEZn,n—2 Iz :|) 2 '
P | Dn I ZZEZn,an my

For the term (105)-c1, we know that (C,,,,s)¢ is not typical in large scales, and we have the
Chernoff bound

_p|Dn_z|82>

IP>,o[:l’L ¢ Cn,p,s] =< 32d+1 exp( 4

Moreover, by the Cauchy—Schwarz inequality,

> m X;)?
€2y 2 T2 < Z mZ|XZ|2-

Zzez,,iy,,,z mg €202

We need a bound for the term | X, |2: recalling the definition in (28) and (88),

Sy VU@ + 02, 2) =, [][

VU(Z + Dn—Z) d/-'L ‘ gli—Z,n—21|
40,2

=a(z+ Dn—z; gz—l—l:’n_z)_lq —p-
Using the martingale structure of (30), we have

X:=Spn2Vuz+0,22) (. 2) — (3, '5g — p)
=5 f S+ D |G| - @~ p)
z+0,2

=Epla +0s-2:Ge4, ) ' — 8,15 | Gun2la.
Then we use Jensen’s inequality and the bound of Id < a(z + 0,-2; G40, ,) < Ald:
== 2
X = [Snn—2 Vo + Th2) — (8,159 — p)|

(110) 12 2
= Ep”a(Z +Up—2; gz-{—[l,,,g) - an_2| | gn,n—Z] <A“.
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This concludes that

1 ¢
Lol y@)| s ca.a)
PIUn|

<CW, A, p)3~".

Finally, we treat (105)-c2. We calculate (105)-c2 at first with the conditional expecta-
tion with respect to G, ,—>. Clearly, Cy ;s is Gn,n—2-measurable, and under this condition
u(@p) = (1 —8)p|Uy], so we have

a1 Lic, p5) 2
105752 = Jo B[R (3 meks) [0

ZEZn,nf2

1 1 2
=< pan|Ep|:(1 — 5),0|Dn|]Ep [l{cn,p,6]< Z szz> ) gn’n_zﬂ.

ZGZn,n—Z

< ,0|Dn—2|52>
exp| ————

2
(105)cl < A Ep[ .

(111) plUn—2|

(112)

We would like to develop the term |} ..z — m X -|? and also drop out the indicator term.
The argument here is deterministic:

2

Z m;X;| = Z mmyX, X+ Z mmy X, Xy
2€Zu 02 2,7/ €2Zpn-2 2,7 €2y -2
lz—2loo<3""" l2—2|0o>3""1

1
2 2 2 2
=5 2 (PIX P+ )X+ YL mamaXe - X,
Z,Z,GZ,,J,,Z Zyz,GZn,n72
lz—2Joo<3""! lz—2'loo>3"""

where |7 — 7|00 ;= max | <j<q |2; — zg |. We now add back the indicator 1¢c, , ;1 and develop it

(113)
2

Z mz X

€2y -2
(1+6)p|Un—2|
= 1{Cn,p,5} <+ Z (mz|Xz|2 + mz/|Xz/|2) + Z mzmzy Xz - Xz/)

2,7 €202 2,7 €2y n2
|Z_Z/|<3n—l |Z_Z/|23n—1

l{cn,p.é}

(1+90)p|Un—2|
= fn Z (mz|Xz|2 + mz/|Xz/|2) + Z memy Xz - Xy

2,7/ €Zy 02 2,2 €Zp n

lz—z']<3"~! lz—z/|>3"~!
From the first line to the second line above, we use that m; < (1 4+ §) p|LJ,—2| under the event
Cn,p,s. We then keep in mind that the quantity in (- -) on the second line of (113) is always
larger than |} . Zyao Mz X .|?, so it is nonnegative. Therefore, from the second line to the
third line, we can drop the indicator function in front. Inserting this estimate into (112), we
obtain that

1 (148)|0x—2l
Pl (1 —8)|U,|

) 1
|(105)-c2|” < > Ep[i(mz|Xz|2+mz’|Xz/|2):|
ZsZ/EZn,n—Z
lz—2'Joo<3""1
1 1
+ )
PIT A =0)0 5
|Z—Z/|ooZ3’171

Eolmmy X, - X 1.
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The sum in the second line is 0, because for |z — z/|oo > 3"~!, m_ X, and m_ X are indepen-
dent,

E,O[mzmz’XZ Xy = ]Ep[mzxz] : Ep[mz’Xz’] =0.

For the sum in the first line, E,[m|X -|?] is nothing but
=—1 2
Ep [/ |Sn,n—2vv(Z +0Up—2) — (an_zq - P)’ dﬂi|
z+0,2

We use Jensen’s inequality to shrink the operator to sz—2, 2o that
~—1 2
]Ep |:/ ‘Sn,n—ZVU(Z +Up—2) — (an_zq - P)| d:u:|
z+0, 2
- 2
<E, [/ 185202 V(@ +0p2) — @,',q —p)l du,}
40,2

B, [ [82Vuaa) — (g — ) d ]
n—2

There are at most 9¢ x 5¢ pairs z, 7 € Z, ,— such that |z — Z'| 0 < 371 see Figure 3 for an
illustration. Therefore, we obtain

=) ()= Lea i, 20 = o) o
a0zl = (3 ) (13 ) B 8O — @ g — p) P

5\ /1435
=(5) (755)%
o) \1=5s

Z3

<2

<1

FIG. 3. In the cube Uy and all its sub-cubes {z + Uy _2} ¢z, for a chosen sub-cube zo + U,,_o (the cube

n=2"
in dark red), the support of v(zo + U, —3) is in zo + U,,—1 (the cube in light red), so it has at most 59 cubes of
scale 3"~2 whose associated function has a support intersecting with z1 + U, _1 (the cube in blue). For example,
v(z2 + U,,—2) has correlation with v(zg + U,,—2), while v(z1 + U,,—2), v(z3 + U,;—2) do not. This gives us the

contraction factor (g)d.
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where we recall that V,, is the left-hand side of (104). We put this estimate together with
(106), (107), (111) back to (105) to obtain the recurrence relation

9 1-94
By choosing §(d) > 0 sufficiently small, we obtain the desired result (104). [

(Vn)5§<§> <1+3> (Vo 2)2+C(r,, 2+ T 1)2+C3 —dn

5.4. Step 4: Iterations. Once we obtain the estimate (100), it remains to do some numer-
ical iterations, similar to [11], pages 59-60. For the reader’s convenience, we recall the main
steps here. Let {e;}1<;<4 denote the canonical basis in R4, and define

d
Fm = Z J(Dmv €, ﬁmei)-
i=1
In order to obtain an exponential decay for (F},),>0, we first introduce a weighted version
of this quantity:

2B
— Z 3—7(m—n)Fn‘
n=0

Here the exponent g is the same as in (100). It is clear that F;,, < F,, so it suffices to prove
an exponential decay for (Fm)m>0 We will do so by proving a recurrence equation of type
Fm+1 <C(F,— Fm+1) for some constant C(d, A) < 0o. Thus, in the following we calculate
some bounds for (F — Fm+1) and Fm+1

Starting with (Fyp — Fm+ 1), we write

n
~ ~ B pm
Fin — Fpp1 =2 Y 37 2""(F, — Fupy) — C37 7.
n=0

Noticing that a,, 4 p is the minimizer for the mapping g — J (U, +1, p, q) in (79), we have

d d

(114) Fusr=) J(Ong1. €. a011€) < D J(Oar1. €, a5€).
i=1 i=1

Using also (79), that Id <a, < Ald, and that p — v(d,, p) — v(Uu+1, p) and g +—
v¥*(O,, ¢) — v*(du+1, q) are positive semidefinite quadratic forms, we get

d
Fn - Fn-H > Z(‘](Dl’la €, énei) - J(Dn+ls €, 2_1nei))
i=1

QU

'M&

(V(Dn’ e;) — vy, el Z (Dnv a,e;) V*(Dn-i—la ﬁnei))

i=1 i=1

> ¢! (sup (W@, p) = vTpy1, P)) + sup (v* (T, ) = v* D1, 9)) )

PEB] q€B;
Z C_lTna
and thus
- ~ o pm
(115) Fp—Fpp=C7 1Yy 37200 Mg, — 3777,

n=0
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For the upper bound of ﬁm+], we use (114) to see that F,, < F,, 41, SO

m
~ B B
Fpyr =37 80D Ry 1 Y 3-bomp,

n=0

pm B
<C377 4+ ) 371",
=0

Then we apply (100) into the result above to get

m

n
Fu<c3 4 > 3~ m=n) <3—ﬂn +3 3—ﬁ<n—k>Tk>
n=0 k=0

m m
(116) <c3F paimy g Yy gheen
k=0 n=k

m
Bm B
<C37 7 +C Y 372 Py,
k=0

‘We combine (115) and (116), to obtain C(fm — fm+1 + 53"37"1) > Fm+1, which implies

Bm

for some 6(d, A) € (0, ll. We thus conclude for the exponential decay of (ﬁm)mzo’ and thus
also of F,, since Fy, < F,,. By (81), this completes the proof of Theorem 2.1.

APPENDIX A: SOME ELEMENTARY PROPERTIES OF THE FUNCTION SPACES

LEMMA A.1 (Canonical projection). Let f : Ms(R?) — R be a function, and for every
Borel set U, measure | € /\/lg(]Rd), and n € N, let f,(-, u L U°) denote the (permutation-
invariant) function

U >R

n( LU : n
s b T7) (xl,...,xn)l—>f<25x,.+MLUC).

i=1

The following statements are equivalent:

(1) The function f is F-measurable.
(2) For every n € N, the function f, is B?” ® Fyc-measurable.

PROOF. We start from (1) = (2). Because F = Fy ® Fye, it suffices to study the prod-
uct function

I =uwp=npylpuvy=n)ljuw)=n),
for some Borel sets V| C U, V, C U€. In this case, we have
{fo=1={nVD)=nm}n{n(V2) =n2} N {uwWU)=n}
ny n
= (ﬂ{xa(i) eViy [ {xog) € \VD}N{u(Va) =n2}>,
oeS, \i=1 j=n+1

where S, is the symmetric group. This proves that f, is Bg’” ® Fyec-measurable.
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We turn to (2) = (1). Let us pick a suitable f, and uLU = }_7_, 8, , then the main point is
to establish the F-measurable property. Since f;, is B%’" ® Fyec-measurable and permutation
invariant, it suffices to study the function of type

n
(117) fa= (l_[ l{x[,(i)evi})I{MLUC(vo)zno}l{u(Uhn}’

oeS, \i=1
for {V;}o<i<n Borel sets. This is still a complicated function, but we can add one more con-
dition
(118) Vi<i,j<n, Vi=V; or ViNV;=a.
For example, let {Vj}of j<m be all the different elements in {V;}o<;<n, and \7j appears n;

times. For the functions of type (117) satisfying the condition (118), the F-measurable prop-
erty is easy to treat since we have

n
> ( 1{xa<,-)evi}>1{uLU‘*<vo>=no}1m<U>=n1
1

o€eS,

m
= (l_[ 1{M(vj>:nj}> L ve (voy=no) L iuw)=ny»
j=1

i=

which is an F-measurable function.

Finally, let us conclude that for a general f, in (117), they can be decomposed into the
sum of the functions with the propriety (118). Let us see the case n = 2, where we have the
following decomposition:

Livevitlinevs) = Qe + Lxeminvn) Qoema vy + Lnemini)y)
= L evnmpmem\vit + e linevinm))
+ 1 evinvplmevav) + L evinilmeinvy)-

For a general n, one can use induction and this concludes the proof. [J

PROPOSITION A.1. Forevery s >0 and f € #'(Q;), we have A, f € 71 (Qy), and
for every x € supp(u) N Qg
(119) V(A f) (i, x) = As(V (i, x).
Moreover, if s > 2 and f € A(Qy), then A; f € A(Qs—2).

PROOF. At first, we should remark the well-definedness of the right-hand side of (119).

Notice that the Poisson measure can be decomposed as a sum of the independent parts
u=puLQ;+punlL Q?,wehave

Asf = f(rl Qs+ 1/ L 0y) dP, ().
MR
Thus the right-hand side of (119) is defined as
(120) ACH@ = [ TFLD,+ W LT ) B (),
Ms(RY)

We prove (119) and A, f € 521(Qy) for the functions in €"*°(Qy) N H1(Qy) as they are
dense, and we can focus on the case u(Q;) = n fixed. We use Lemma A.1 to write

f(Zax,. +uL§§i> = fulx1, .o X0, L OY).

i=1
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Following the property of product measure, for every (x1, x2, ..., x,) € (Q,)", the mapping
is f@f -measurable. Thus for every (x1, x3, ..., x;) € (Qs)", the mapping

MLEEH Vkal’l(xla ~'-sxn9l’l/|—§§)7

is also .Féc-measurable because it is the limit of .F@c-measurable functions. Then we observe
s s

that
1

—c\ |2
IV full L os)n) = sup <Z|kafn X1, ..o, X, L Q?)} )
()" \k=1

1

2
= Sup <Z|kafn xla,mel—Q:”z) 4

(QNQy)"

as a supremum of a countable number of ]:EC -measurable functions, is finite and F& o8
N
measurable. Thus we can define a cutoff version of f that

M _
P2 = I u@o=m MV Al opm =)
and we can establish (119) at first for "™ For every x € Qg N supp(1), we have
Ok (A £ M) (1, x)

b FU = 85+ 814ne) L Qs + 1L OY) = f(uL O, + 'L Q)
h—0 J A (R h

X 119 il oo gy <M} APp (M/)I{M(Qc):n}’

for h small enough such that x + heg € Q;. Since f € ¥°°(Q;), we use Lemma A.1 and the
mean value theorem

[l —8x + 8x+hek) — f(w)
h

for some 0 € (0, 1). With the indicator 1{||an||L°O((Qs)n)SM}’
can use the dominated convergence theorem that

0k (A /™M) (1. x)
:/ o LU= 8 +8uine) L Oy + 'L O)) — f(RL O, + 1L O))
M

s(Rd) h=0 h

= 0 f (b — 8x + Oxthe,, X +0€p),

this term is bounded by M, so we

X L9 full oo ooy <M1 AP0 (W)@ )=y

- —C
= / U f (1l Qs + 1L Qg X)A(9 £y oo g,y =My AP () Ly )=y
Ms(Re)

which establishes the (119) in the sense (120). By Jensen’s inequality and Fubini’s lemma,
we observe that

E,| /Q V(AL )1 6) o)

(],

2

/ VM (L O, + i/ L 05 x) AP, (1) dW)]
Ms(R9)
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<E, [ / / IV M (L O, + 1/ L O x) 2P, (1) du(x)]
Qs J M5 (R4)
=Ep[ /Q IVf”’M|2(u,x)du(X)}

which implies that A; f™ € ' (Q;). Then we use once again Jensen’s inequality for "M
and ™M with M < M’

E,| V() - VA £ ) de |
<5, /Q VA P du)|

=E, [/ IV £12(1e, x) dp ()1, g )=mlim<v ||L00((QS);1)§M/}]'

Qs

So { M}y gives a Cauchy sequence in J# 1(Qy), and the only candidate is f1 (1(0,)=n)
because it is the limit in .£2. By this and a linear combination, we establish (119) for f in

€ (Q5) N A1 (Qy), and we can then extend to a general function in 7! (Qy) by the density
argument.

For the part of a-harmonic function, we suppose f € A(Q;) and test ¢ € %’61 (Qs—2) with
(119),

E, [ /Q (VA ) (%) - a(i, x)%(w)du(x)]
5s—2
_E, [ /Q A (Y ) (1 x) - a(u«,X)Vqﬁ(u,x)du(x)}
s—2

5[ ([ VILT WD) B ) ) a0V x) )|
Q-2 N\ M;(RY)

Restricted on x € Q;_», we have a(u, x), Vo (i, x) are Fp, ® Bp, -measurable, so we have

Vx € supp(u) N Qs—2,  a(u,x)Ve(u,x) =a(ul Oy, x)Ve(uL Oy, x).

We can enter the part in the integration, and then use Fubini’s lemma:

E, [ /Q (VA F) (i, ) -2l )V (. - du(-)]

=Ep[/ (/ Vf(uL Qs+ 1L O,
Qs5-2 \J M;(R9)
a(uL 0y, )V (uL 0y, ) dB, (u’)) du(-)}
_E, [ /Q V(. ) - alu, V(. -)du(-)}
s—2
=0.

In the last step, we use f € A(Qj;) and this finishes the proof. [J
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APPENDIX B: EQUIVALENT DEFINITIONS OF THE EFFECTIVE DIFFUSION
MATRIX

Recall that we defined a(U) and a,(U) according to (61)—(63). The proof of Theorem 2.1
ensures the existence of a constant C < oo and an exponent o > 0 such that for every m € N,

(121) @) — | + [,.(0a) —a| < 37"
Throughout this appendix, we will only rely on the qualitative statement that
(122) a= lim a(d,)= lim a,(d,).
m—00 m—o0
The first main goal of this appendix is to demonstrate that the definition we chose for the
bulk diffusion matrix indeed coincides with the “stationary” definition appearing in works

such as [34, 69]. Adapted to our context, this alternative definition takes the following form.
For

(123) = {;u—)/drxg(u)dx,ge%coo(]l%d)O%I(Rd)},
R

we let a be the d-by-d matrix such that for every p € R,
(124) p-ap:= L}Iellf_: E,[(p+ Vu(u +80,0)) -a(i + 80, 0)(p + Vu(e + 80, 0))],

where in (123), we used the notation 7,g(un) := g(t_,u). Notice that for any function
gE€ ‘KCOO(Rd) N jﬁ)l (R and u : p f]Rd 7,g(n)dx € I', the mapping p — u(p) is typi-
cally not well defined unless w is of finite support. However, the quantity Vu(u, -) makes
sense whenever the measure u is o -finite, since in the sum Vu(u, y) = fRd V(teg) (e, y)dx,
the function g is local, and thus the integrand V (7, g) (i, y) is nonzero only for x in a bounded
set. With this interpretation of Vu, the right-hand side of (124) is well defined.

THEOREM B.1. We have a=a.

The second main goal of this appendix is to demonstrate that the infimum in (124) is
achieved in a suitable completion of the space I'. We also show that the optimizer, which
we call the (stationary) corrector, can be obtained as a limit of approximations based on the
finite-volume optimizers for v or v*. Denoting

Mo (R?) = { (11, x) € Ms(RY) x R? : x € supp u,

we introduce the space

L2 = {f : Mo(RY) = R: f is measurable and E,, [/ |f(u,x)|2du(x)} < oo},
R4
and its local version

3.2,10c = {f : Mo(R?) — R: f is measurable and

(125)
for every compact K C R, E, [/ | f (e, x)|2d,u(x)] < oo}
K

In these definitions, we say that f : M,(R?) — R is measurable provided that the mapping
M;s(RY) x RY - R
(i, x) = f(u, x)l{xesuppu},
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is F ® B-measurable. The space ffl oc 1s naturally endowed with the family of seminorms

L2 . >R

,loc

fE, [/Klf(u, 0 du)|

1
2
)

indexed by all the compact sets K € R?. This family of seminorms turns .Z.zloc into a com-
plete space. 7

For every p € R? and m € N, we let ¢ (-, 0,,, p) be such that the minimizer in the defi-
nition of v(L,,, p) is £, 0, + ¢ (-, Uy, p), where we recall that £, o, was defined in (61).
Similarly, we let ¢*(-, O, p) be such that £, o, +¢* (-, Oy, p) is the maximizer in the defi-
nition of v*(J,,;, a,(,;) p). More precisely, using the notation introduced in Proposition 4.1,

we have

U(', Dm, p) = EP,U +¢(’ Dm’ P)’

and

Finally, we define Vo p,m according to the formula

1

- 1
(126) ¢,m:;m—/ £ (11, O, p) i = ——
P O i P =N

/quﬁ(,u,x + U, p)dx.

Notice that, while ¢7p,m(,u) is generally ill-defined when u is a Poisson point process, the
quantity Ve, (u, -) is still well defined, for the same reason as in the discussion following
(124). Our second main result is as follows.

THEOREM B.2. The following statements hold for every p € R¢:

(1) The sequence (Vap,m)meN is a Cauchy sequence in (,,2”310C)d. Its limit, which we
denote by V¢, satisfies

(127) Vve%l(Rd), Ep|:/ Vv~a(p+V¢p)d;L}:O.
R4
(2) We have
. 1 2
128 lim E,| —— \% , U, p)—V , )| 7du | =0,
128 fim p[plmm|/um| Bt O p) = Vbya. ) |
as well as
. 1 2
129 lim E,| —— Vo*(u, -0y, p)—V ,)| du | =0.
1299 fim p[p|Dm|/Dm| 8"t O p) = V0. )|
(3) The effective diffusion matrix a satisfies
(130) p-ap =Ep[(p+ Ve, +380.0)) -a( + 80, 0)(p + Ve (1 + 8, 0))],
as well as
(131) ap =Ey[a(u + 50, 0)(p + Vb (1t + 80, 0))].

As a preparation towards the proof of these results, we state in the following proposition a
number of elementary properties about the function space I'.
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PROPOSITION B.1. Let g € €° (RHN %’6‘ (R be an Fno,-measurable function, and
letu := f]Rd .2 dx € I'. The following properties hold.

L. y+= Vu(u + 8y, y) is a stationary field, that is, Vu(u + 8y, y) = Vu(t_yuu + 8o, 0).
2. Vu has mean zero, that is,

(132) E,[Vu(u + 80,0)] =0.
3. Vu satisfies the estimate

Eo[Vu( + 80, 0) - a(i + 80, 0) V(e + 80, 0)]
(133)

1
< 3%, Vg, y) - alu, )V, y)du(y) |.
elUnl Jo,

PROOF. (1) We use the definition to write

|
o+ 8y, = Jim ([ gt 8y0m) = v+ 8,) )

|
= tim ([ restut 8yane) — st x)
h=0h\Jy+0,

1
= lim — (/ Ty 8Ty + Spey) — Tx—y8(T—y 1t + 80) dx).
v+,
From the first line to the second line, we used the fact that g is /3 -measurable, so if the

transport vector x does not belong to y 4 [,;, then the integrand vanishes (up to a boundary
layer that vanishes in the limit 4 — 0). We then do the change of variables z = x — y to get

h
= gu(t—yp + 30, 0),

1
Oku(p + 8y, y) = lim — </ 7:8(T—y it + Spe,) — T:8(T—y 1t + o) dZ)
h—00 0,

which means that y = Vu(u + 8y, y) is a stationary gradient field.
(2) We use the equations developed in the last question. Since g € €° (RY), we can ex-
change the integration and derivative and get
(134) Vu(u,—}—c?y,y):/dVng(r_y,u—}—So,O)dz.
R

We evaluate this gradientat y =0

E,[Vu(u+380,0)]=E, /d Vrzg(u—l-So,O)dz]
L/R

= EP / Veg(t_;u+3d6-_7,—2) dzi|
LJ R4

=Ep/ Vg(M-I—(SZ,z)dZ]
L/ Rd

From the second line to the third line, we used the stationarity of the Poisson point process.
Because g € €°° (R%), then fRd Vg(u + 8;,z)dz = 0 and the integration in the third line
vanishes.
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(3) We pick a cube Q; = —%, %)d with L > 0, make use of the stationarity of

v+ Vu(u + 8y, y) and Mecke’s identity (see [52], Theorem 4.1)
Eo[Vue(ut + 8o, 0) - a(ie + 8o, 0) Ve + 80, 0)]

1
=Ep[— VUi + 8y, y) - a(i + 8y, V) Vut(u + 8y, v) dy}
021 Jo,

1
=E,| —— Vu(w,y)-a(uw, y)Vu(u, y)d )
p[pIQLI 0 u(p, y)-a(u, y)Vu(u, y) u(y)]

We put the definition u = fRd 7,g dx into the equation. For the gradient at y, as g is Jrj,-
measurable, thus only the term V(7 g)(u, y) for x € y 4+ U, contributes. This gives

E,[Vu(u + 80, 0) - a(u + 8o, 0) V(e + 8o, 0) ]

1
=1Ep[— ( / V(ng) (1, y)dx) au, y)( / V() (. y)dx) du(y)].
elOLl Jo, \Jy+0, v+,

We next apply Jensen’s inequality to obtain that

(135)
E,[Vu(u + 80,0) - a( + 8o, 0)Vu (e + 8o, 0)]
r 10, 2
—g,| ! (][ vuxg)(u,y)dx)-aw,y)(f V(rxgm,y)dx)du(y)}
_p| QL | ()3 y+Dn y+Dn
g=RE
<E, (][ vmg)(u,y)-a(u,y)vuxg)(u,y)dx)du(y)}
LolOLl Jo, \Jy+0,
o
<g, [ ( / wrxg)(u,y)-a(u,y)vmg)(u,y)du(y))dx].
-IO|QL| QL+3" X-‘,—Dn

In the last line, we use Fubini’s lemma and exchange [(---)dx with [(---)du(y). In this
procedure, we have to enlarge the domain from Qj to Qy3», because for the gradient at
ye 0r, V(trg) (1, y) contributes for the transport x € Q43 (see Figure 4 as an illustra-
tion). Using the stationarity of the Poisson point process, we have

E, [ / V() (e ) - 0, )V (1) (1. ) du(y)}
x+0,

=E, [/ Vg(u,y)-a(u, y)Vg(u, y)du(y)},

n

which helps us conclude that

E,[(§ + Vu(u + 80,0)) -a(i + 8o, 0)(§ + Vu(u + 80,0))]

| QL+3n]

93

We take L — oo and obtain the desired result. [

< 32dn

1
Ep[ / Vg(u,y)-a(u, y)Vg(u,y) du(y)]-
Py | On

REMARK 3. The inequality (133) is essentially sharp when Vg itself is close to a sta-
tionary field. Indeed, if g is close to a stationary field, then

Vg, y) =Vg(t_xpm,y —x) = Vg(u,y),



QUANTITATIVE HOMOGENIZATION OF INTERACTING PARTICLE SYSTEMS 1935

Qr+s»

FIG. 4. The red cube represents the cube Q| and the blue cubes represent the transport of small cubes x + .
It is clear that for x € Q1 3n, the blue cubes and the red cube intersect.

which implies that the application of Jensen’s inequality in (135) is essentially sharp. The
error introduced by a boundary layer in a subsequent step of the proof disappears as we take
L — oo at the end.

As a corollary of Proposition B.1, we can also propose the following equivalent definition
of a.

COROLLARY 1. For any open set U € RY, we have

~ . 1
(136) £.af = L}IellﬁEp[m /U(E + Vu)-a(§ + Vu) d,u]

PROOF. It is a direct result of Mecke’s identity (see [52], Theorem 4.1) and the station-
arity of y = Vu(u +38y,y). 0O

With the help of Proposition B.1, we can now prove the first main theorem of this ap-
pendix.

PROOF OF THEOREM B.1. We decompose the proof into two steps.
Step 1: Bound from below a > a. We fix m € N and a sequence of approximate minimizers

{¢g) }i>1 for the variational problem in (124), which we write in the form
0w = [ matnd
Rd

for some g; € € >° (RN %’61 (R?). Now we propose a modified version in .2! (0,,) defined
by

PP () = / Tagi()dx,

Ki

with K; € R? a large compact set so that (ZS) e ' (,) and

Vy €Om, VEY (1, ) = Ve (1, y).
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Then we test p + V%g) in the optimization problem for v*((J,,, ¢) to get that

1
| O

I —— Z 5
SRRV EP[ (‘5(1’ FVED)-alp+ VE) +a- (p+ V) d“]

1 1 . . .
_e (2L, vedy. Vot a-(p+V (z))d }
p|:p|Dm|/Dm< S(p+V¢))-alp +V¢,)) +a- (p+Ve,)) ) du
We use the stationarity of y — Vd)},”(,u + 38y, y), (132) and let i — o0 to obtain

Eq'a*l(Dm)qZ—Ep-aerp-q.

Taking ¢ = a, (L) p leads to
p-ap=p-a.Cn)p.

Finally, we let m — oo and conclude that a>a.

Step 2: Bound from above a<a We hope to prove a<a by testing the variational for-
mula (124) with a suitable candidate, namely the function ap,m introduced in (126). Since
oG, 0n, p) € %I(Dm), and using (133), we can approximate Vap,m in (f.%loc)d arbitrar-
ily closely with elements of I'. It thus follows that we can use ap,m as a candidate in the
variational problem in (124), and use the comparison inequality (133) to get that

p-ap <E,[(p+ Vdpm(u+380,0))-a(u+38,0)(p + Vdpm(u+80,0)]
1
(137) < Ep[m /D (p + V(. y. O p)) - a(p + V(1. y. O ) du(y)]

=p-a(y)p.

Finally, we let m — oo and conclude that a<a O

In the proof above, we used {$p7m}mz 1 as a sequence of approximate minimizers for the
variational problem in (124). This already gives us a good hint for the validity of at least
some of the statements in Theorem B.2. We now turn to the proof of the first part of this
result.

PROOF OF PART (1) OF THEOREM B.2. We decompose the proof into four steps.
Step 1: {V¢p m}m=1 is a Cauchy sequence in (3.%loc)d. We fix n < m and, recalling the

notation Z,, , := 3774 N0, we observe that

1
||

1
:ﬁ/Rd > Ve, y,x+z+0,, p)dx
m

Zezm,n

V(1. y) = /]R Vo (i, v, x + Oy, p)dx

1
=— Vt ,y)dx,
00| /Rd xd)p,m,n(l" y)dx
where the function ¢, ., is defined as

(138) ¢p,m,n(ﬂ) = Z o (., z+ 0y, p).

2€Zmn
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For any compact set K, we use Mecke’s identity (see [52], Theorem 4.1) and the stationarity
of Vo, :

E, [ /K VB pm — Vo pal2(u, y)du(y)}

= ,OE,O[/K |V$p,m - V‘;p,n|2(l/v +5y, )’)dY]

= 0IKIE,[IVpm — Vdpal* (1t + 80, 0)].

Then we use the comparison inequality (133) and obtain that

E, [ /K Yy — V&l y)du(y)]

1
slelEp[m/D |V¢(u,y,Dm,p)—V¢p,m,n(u,y)|2du(y)}

<plK|(v(@n, p) — v O, p)).

By (122), this shows that {V&;p,m}mzl is a Cauchy sequence in (;Z.Z,loc)d.

Step 2: Harmonic property—setting up. Denote the limit by V¢, we set things up to prove
the harmonic property (127) by approximation. We fix s > 0 and v € €>° RY N %’61 (RY)
which is Fp -measurable, and observe that

Ep[/RdVv-a(p+V¢p)dM:|

= lim Ep[/ W-a(p+w§,,,m)du]
0

N

= lim E, [/ Vu(u, y) -a(u, y)<][ p+Vo(u,y, x+0Uu, p) dx) du(y)].
Oy y+Um

We then use Fubini’s lemma to exchange the order of integration,
EP[/d Vv-a(p+ V(/ﬁp)d,u]
R

1
m

></Q (/ 0 W(“’y)'a(“’y)(l’*w(ﬂ’y’x+Dm,p))1{yeQ5}dM(y))dx]
3 g X+Ln

For m sufficiently large, we can decompose the domain of integration in x in the expression
above into Q3m_g and Qam g\ Q3m_g. We analyse the contribution of each of these quantities
in each of the following two steps.

Step 3: Integration in Q3m_g. Notice that for x € Q3nm_g, we have Qs C x + [,, (see
Figure 5 for an illustration), thus we can drop the indicator 1{y¢p,} in the inner integral and
use the a-harmonic property of p + V¢ (x 4+ 0J,,, p) to get that

1

—Ep|:/ </ Vo(u,y) -a(u,y)(p+V¢(u,y,x+Dm,p))du(y)) dx]
|Dm| Q3m_s x+Dm

1

a |‘:’m| Q3m
=0.

Bl [ 00030200, 3)(p+ V9,33 + D ) dis() |
x+Uy
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s

Qs

z3 + Q3m| x 0

i
S

FIG. 5. The red cube represents Qs, and the blue and green cubes represent respectively Q3m g and Q3zm _g.
For x € Q3m_g, we have Qg C x 4+ Opy; for x ¢ Q3m g, (x +0) N Qs = @5 for x € Qamy s\ Qam_g, x + Oy
and Qg have nonempty intersection but Qg is not totally contained in x + Uy,,. These three cases are represented

by z1, 22, 23.

Step 4: Boundary layer Qam s\ Q3n_g. We use Young’s inequality to bound the term with
the integral over x € Q3m 4\ Q3m_g by

A
L g, [/ (/ VoG )2+ |p+ Vo (i, v, x + Do, p)!zdmy)) dx]
||:|m | Q3m+s\Q3m—s (X+Dm)sz

< A|Q3"7+S\Q3m—s|]Ep|:/ |VU(,IL,y)|2dM()’)]
=W 0,
(A)

A
+—Ep[/ (/ IP+V¢(M,y,x+Dm,p)|2du(y)>dX].
(7 Q3 1\ Qg N e+ 0N 0,

B)

For the term (A), we have, for a constant C that may depend on s,
_ 2
(A) <CA3™E, [/Q-WU(M, )l du(y)} ——0.
For the term (B), we use the stationarity to observe that
2
Ep[/ P+ VoG, y,x + 0, p)l du(y)]
(x+0m)N Q0

:Ep[/ |p+V¢(u,y,Dm,p)|2du(y)]
Dmm(*x‘i’Qs)
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We apply once again Fubini’s lemma to (B) and get that

A
®) = F, [ / ( / 1P+ V(s y. O )P L ipecrsony du(y)> dx}
D O3m\Q3m_y \J Oy,
A 2
| m| (P Q3m \Q3m_g
MGl v 0 g d
=01 | |p+ Vo (u, y, O, p)| Ldist(y, o0 <s) dn(y) |-

That this term converges to zero is a consequence of the stronger estimate given by
Lemma B.1 below. This concludes the proof for v € €>° (RN %’61 (R?), and then we can
use density argument to extend to general v € %1 RY. O

In the proof above, we appealed to the following boundary layer estimate, which we state
as a separate lemma for future reference (and which is stronger than what was needed for the
purpose of the proof above, since the boundary layer size is allowed to increase with m).

LEMMA B.1 (Boundary layer estimate). For every sequence (Sy)meN such that s, < 3™
and limy, _, oo 37"s,, = 0, we have

) 1 2
(139) mh%mOOEp[pIDmI/D |p+ Vo (i, y, O, p) l{dist(y,amm)gsm}dﬂ(y)] =0.

PROOF. The idea is to make use of the renormalization argument. We define a meso-

scopic scale n associated to m such that s, <3", n — oo and m —n — co. Then we imme-
diately have

1
Ep[—/ lp+Vo(u,y, On, p)‘zl{dist(y,aﬂm)gsm}dﬂ(y):|
| O

1
SEp[ 5 / p+Vo(u,y, On, p)|21{dist(y,BDm)§3”}dM(Y)]-
Pl0m| O

We propose to compare ¢ (-, Uy, p) with ¢ 0 € %l (O,,) defined as in (138):

d)p,m,n(ﬂ): Z o (u, z+ 0y, p).

Zezm,n

Then we have

1
]Ep[ / P+ Vo, y, Oy, p)lzl{dist(y,amm)gy} dM(y)]
el0nl Jo,

1
SzEp[p“:’ | {p+v¢p,m,n(ﬂv y)|2dﬂ(y)]
m Q m\Q;m_ x3n
(140) 3m\Q3m_253
(140)-a
+ 2B, = Vit 3) = Vit 3, O ) dia() .
PIUn | Q3m\Q3m _oy3n

(140)-b
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For the first term (140)-a, we do partition of sum into cubes of size 3", then we have

1
Ep[ 0 \p+V¢p,m,n(u,y)\2du(y)}
10| ml Q3m \Q3m_2><3n
= 5l > E [# p+Vo(u,y,z+0 p)qu(y)]
[ "Lpl0ul Joio, T i

2€Z nN(Q3m\Q3m _o53n)

_ Q3 \Q3n_2x3]
| Q3|
<37"ApP

U(Dl% p)

For the second term (140)-b, we have

1
Ep[T/ ’V(p[?,m,n(ﬂ»y)_V(f)(/i»y’Dm’P)‘sz()’)}
PIUm| O3m\Q3m_oy3n

< Ep[ IV (10 ¥) — V(s v, O, p)!zdw)}

- V(Dﬂ’ p) - U(Dl’l’h p)

Therefore, when we take m, n — oo, both (140)-a and (140)-b go to 0, so the boundary layer
in a mecroscopic scale can be neglected. [

Now that the gradient of the whole-space corrector V¢, is well defined, we can proceed
to complete the proof of Theorem B.2.

PROOF OF PARTS (2) AND (3) OF THEOREM B.2.  We start by discussing the validity of
the identities (130) and (131). We use the stationary approximate corrector ¢, ,, defined in
(126), and observe from (137) and Theorem B.1 that

p-ap= lim Ey[(p+V&pm(i+38.0)a(u+80.0(p + V&p.mu+50.0))]

= limE[ (p+Vé,m) -a(p+ Vo, )du]
m=ee L pITo] Ji, - P

The identity (130) then follows from the convergence of V(Z pm 10 V), in (Z.%loc)d . For the
second identity, we can use the fact that

1
lim E [—/ a(p+ Vo (i, O, p) du]=ép,
m=o00"""| p|0,| Jo, ( )

the estimate (128), and the stationarity of V¢,. The identity (129) can also be deduced from
(128) because

1 N ) i|
E \% 7'7|:|m7 -V ) * d
p[mmml/mm! (. O, p) — V(. )2 dps

1
21U

szEp[ /D V(. - O, p) — Vb (s, ->|2du]

1
+2Ep[—/ qu*(u,-,mm,p)—ww,-,mm,pﬂzdu]
o0l Jo

By (86) and (87), the second term can be bounded by J(U,,, p, a.(L,;) p); and by (79) and
(122), this quantity converges to 0 as m — oco. From now on, we thus focus on the proof of
(128).
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The idea of the proof of (128) is very close to that for (127) and (139). We fix a mescro-
scopic scale n = | 77|, and then use the decomposition

1 ) ]
E \% 5 " -V ,‘,Dm, d
Lt [ 190008 = 99, O )P

1 -
szEp[p|Dm| /Dm|V¢p<u,->—V¢p,n<u,->\2du}

(141)
(141)-a

1 ~
+ ZEP[m /Dm|v¢p,n(/’l“v ) - V¢(M7 ) Dm’ P)‘zdﬂ] .

(141)-b

For the first term (141)-a, we use the stationarity to transform to the integration on unit cube
Co, and then use the fact that V), , converges to V¢, in (£2 )9 to get that

. . 1 ~ )
Jlim (141a= lim B[~ [ 980019 = V0.0 du| =0,
Thus it suffices to finish the second term (141)-b. We use the definition in (126) and Jensen’s
inequality to get that

(141)-b

1
2
"Lpl0nl Jo,

1
§2Ep[ / ][ |V¢(M,y,X+Dn,P)—V¢(M,y,Dm,p)!2dde(y)}
p|Dm| O, Jy+0,

<2 x37dn

2

du(y)]

(][ ) ww,y,xmn,p)dx)—wm,y,mm,p)
)’+ n

1
Ep[ / / IV (. v, x + O, p) — Vo (12, v, O, P)|2d,u(y)dx}
p||:]m| Q3m+3n X+Dn

<2 x ((141)-bl + (141)-b2 + (141)-b3),

where in the last line we decompose once again the integration into three terms with respect
to the domain

(141)-b1
r 3—dn 5
:=]E)O / ’v¢(M’y’x+Dn5p)_V(p(//“ayvljm’p)’ d/-’L(y)dxi|v
-p|Dm| Q3m,10><3n X+Dn
(141)-b2
r 3—dn 5
=Ky~ 5 / P+ Vo, y,x + 0y, p)l du(y)dX],
_p| m| Q3m+3n\Q3m71()X3n x+0,
(141)-b3
r 3—dn 5
=Ky —5 / / [P+ Vo, y,On, ) du(y)dX]-
_p| m| Q3m+3n\Q3m_10X3n x+0,
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The terms (141)-b2 and (141)-b3 are easy to treat as they are boundary layer terms. For
(141)-b2 we can use the energy bound

(141)-b2 < €37y, p) —— 0.
m— 00

For (141)-b3, since the function |p + Vo (u, y, U, p) |2 does not involve x, we use Fubini’s
lemma that

(141)-b3

1
(o )
10| Q3m3n \J Q3m 30\ Q3m_10x3n

X |p+ Ve, y, On, p)lzdu(y)]

1
< ,{T }pww,y,mm,p)}zdu(y)}
P18 O3zm_ 30\ Q3m _r0x3n
1
=Ep[T 1P+ Vit y. O, p)!zdm)}
lol ml Q3m\ Q3m _opx3n
1
Ep[ 5 Iplzd/x(y)}
p| m| Qsm3n\Qzm
—> 0.
m—0oQ

Here from the second line to the third line, we use the fact that the gradient contributes
only on Q3m 31\ Q3m_70x32. Then we do a decomposition: the integration on Q3m 31\ Q3m
can be calculated directly, since ¢ (w, [, p) is Fr,,-measurable and the gradient vanishes;
the integration on Q3zm3n\ Q3m_s0x3 can be bounded by the boundary layer estimate in
Lemma B.1.

Finally, we focus on (141)-bl. We rewrite the integration |, Oy _joxzn 3

(141)-b1 < Ep[ : ( >

p“:]m | Dn ZGZm.n
dist(z,00,,)>5x3"

/ Vo (u,y, x+z+0, p) = Vo (i, y, O, p)|2du(y)) dx]
x+z+0,

For each fixed x € [,, we can propose a sub-minimizer £, -, + w, for v(L,, p) defined by
(see Figure 6 for an illustration)

wy =@ (¢, Opn\Uy, p) + > ¢C.x+2+0,. p).
2€Zmn
dist(z,00,,;,)>5x3"

where

Uy = U (x+z+0,).
2€Zm
dist(z,00,,)>5x3"
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FIG. 6. The function £ pO, TWxisa sub-minimizer for the problem v(Uy,, p), which combines the minimizer
in cubes of scale 3" biased by a vector x (the cubes in blue), and a minimizer in Uy (the domain in red).

The gradients of w, and ¢ (-, x + z + ,, p) coincide on every cube x + z + [J,,, so we can
write

1
B
"Lo|0nl

x ( )3 V6 (i, v, x + 2+ Oy, p) — V¢<u,y,mm,p)|2du<y))]
Zezm,n x+Z+Dn

dist(z,00,,)>5x3"

1 ) ]
E V X ’ —V ) 7|:|m7 d
< p[mmml /Dm! Wy, y) — Vo (i, y p)|"du(y)
O, 0,,\Uy
f( > |'D '|v<Dn,p>+—' |D\| 'v(Dm\Ux,p))—v(Dm,p)

€20
dist(z,000,,,)>5x3"

2m
< V@, p) = vy, p) +5%x 3773 Alpl,

where we used the quadratic response (69) from the second line to the third line. This implies
that lim,_, o, (141)-bl = 0, and thus completes the proof of (128). [J
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