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Abstract. We consider vector spin glasses whose energy function is a Gaussian random field with covariance given in terms of the
matrix of scalar products. For essentially any model in this class, we give an upper bound for the limit free energy, which is expected
to be sharp. The bound is expressed in terms of an infinite-dimensional Hamilton–Jacobi equation.

Résumé. Nous considérons des verres de spins vectoriels dont la fonction d’énergie est un champ aléatoire gaussien avec une cova-
riance s’exprimant en termes de la matrice des produits scalaires. Pour essentiellement tous les modèles de cette classe, nous donnons
une limite supérieure pour l’énergie libre limite, qui devrait être exacte. La limite est exprimée en termes d’une équation de Hamilton–
Jacobi de dimension infinie.
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1. Introduction

1.1. Statement of the main result

The goal of this paper is to prove an upper bound on the free energy of essentially arbitrary mean-field fully connected
vector spin glasses. The class of models studied here covers multi-type and vector spins, allows for the inclusion of
variables coming from Poisson–Dirichlet cascades, and makes minimal assumptions on the reference probability measure
for the spins. Let D ≥ 1 be an integer that will be kept fixed throughout the paper, ξ be a locally Lipschitz function defined
on the set RD×D of D-by-D matrices, (HN)N∈N be a sequence of finite-dimensional Hilbert spaces, and suppose that,
for each N ∈ N, there exists a centered Gaussian random field (HN(σ))σ∈HD

N
with covariance structure given, for every

σ, τ ∈ HD
N , by

(1.1) E
[
HN(σ)HN(τ)

]= Nξ

(
στ ∗

N

)
,

where the notation στ ∗ denotes the matrix of scalar products

(1.2) στ ∗ = (σd · τd ′)1≤d,d ′≤D.

We also give ourselves, for each N ∈N, a “reference” probability measure PN on HD
N , and we assume that

(1.3) the support of PN is contained in the ball of HD
N of radius

√
N.

We understand the notion of ball (centered at the origin) with respect to the norm derived from the scalar product on HD
N

given, for each σ = (σ1, . . . , σD) and τ = (τ1, . . . , τD) ∈HD
N , by

(1.4) σ · τ :=
D∑

d=1

σd · τd .
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The focus of the paper concerns the large-N behavior of the free energy

(1.5)
1

N
E log

∫
exp

(
HN(σ)

)
dPN(σ).

Identifying the limit of this quantity is a fundamental step towards developing a better understanding of the corresponding
Gibbs measure.

Naturally, the identification of the large-N limit of the quantity in (1.5) is only possible if we assume some notion
of asymptotic convergence for the reference measure PN . The relevant notion of convergence will be explained in de-
tails below; in a nutshell, we are asking that a class of free energies associated with “one-body” (or “non-interacting”)
Hamiltonians converge as N tends to infinity. A loose analogy would be to compare this with a requirement on the conver-
gence of some Laplace transform of the measure; we refer to the actual requirement as concerning the convergence of the
“cascade transform” of the measure PN . In concrete examples, the measure PN is usually constructed as a product of low-
dimensional measures, or as a product of uniform measures on high-dimensional spheres. In such cases, one can verify
that the cascade transform of the measure PN converges as N tends to infinity; see for instance [18, Proposition 3.1].

In order to state the main result, we need to introduce some more notation. We denote by SD the space of symmetric
matrices, and by SD+ and SD++ the susbsets of positive semidefinite and positive definite matrices respectively. For every

a, b ∈ RD×D , we denote the natural scalar product between a and b by a · b := tr(a∗b), and |a| := (a · a)
1
2 , where a∗ is

the transpose of a. For every metric space E, we denote by P(E) the space of Borel probability measures on E, and, for
every p ∈ [1,∞], by Pp(E) the subspace of P(E) of probability measures with finite p-th moment. We write δx for the
Dirac probability measure at x ∈ E. We say that a measure μ ∈ P(SD+ ) is monotonically coupled, or simply monotone, if,
letting X and X′ be two independent random variables with law μ, we have for every a, b ∈ SD+ that

(1.6) P
[
a · X < a · X′ and b · X > b · X′]= 0.

We denote by P↑(SD+ ) the set of such measures, and set P↑
p (SD+ ) := P↑(SD+ ) ∩Pp(SD+ ).

For any function g : A → B over (possibly partially) ordered sets A and B , we say that g is increasing (over A) if

∀a, a′ ∈ A, a ≤ a′ =⇒ g(a) ≤ g
(
a′).

We say that a mapping ξ : SD+ → R is proper if ξ is increasing over SD+ , and for every b ∈ SD+ , the mapping a �→
ξ(a + b) − ξ(a) is increasing over SD+ . Here and throughout, we understand that the partial order on SD is that defined
by the convex cone SD+ ; that is, for every q, q ′ ∈ SD , we have q ≤ q ′ if and only if q ′ − q ∈ SD+ . We say that a mapping
ξ : SD+ →R is a regularization of the mapping ξ : RD×D → R appearing in (1.1) if (1) the mappings ξ and ξ coincide on
the subset of positive semidefinite matrices with entries in [−1,1]; (2) the mapping ξ is uniformly Lipschitz; and (3) the
mapping ξ is proper. Here is the main result of the paper.

Theorem 1.1. Let ξ be a regularization of ξ , and assume that the cascade transform of the measure PN converges to the
function ψ :P↑

2 (SD+ ) →R as N tends to infinity, in the sense of Definition 3.2 below. For every t ≥ 0, we have

(1.7) lim inf
N→∞ − 1

N
E log

∫
exp

(√
2tHN(σ ) − Ntξ

(
σσ ∗

N

))
dPN(σ) ≥ f (t, δ0),

where f = f (t,μ) : R+ ×P↑
2 (SD+ ) →R is the solution to

(1.8)

⎧⎨⎩∂tf −
∫

ξ(∂μf )dμ = 0 on R+ ×P↑
2

(
SD+
)
,

f (0, ·) = ψ on P↑
2

(
SD+
)
.

In all likelihood, the solution to (1.8) does not depend on the choice of the regularization ξ . This point is discussed
more precisely in Remark 3.5 below. At first sight, the requirement that ξ be proper seems to impose a constraint on
the function ξ itself. However, we will show in Proposition 6.6 and Remark 6.7 that if a function ξ satisfies (1.1) for
some random field (HN(σ))σ∈HN

, and admits a power series expansion, then it must be proper. I do not know if the
assumption that ξ admits a power series expansion is necessary. For any locally Lipschitz and proper function ξ , an
explicit construction of a regularization will be given in Section 6.6.

The additional term Ntξ(σσ ∗
N

) in (1.7) is natural, since it normalizes the exponential to have expectation equal to 1,
but it may be seen as a hindrance to gaining information about (1.5). When ξ is convex, this term can be removed a
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posteriori as explained in [20]. In the general case, one should be able to obtain a description of the limit of (1.5) by
adding a finite-dimensional variable into the equation (1.8) (so as to describe the infinite-volume limit of the quantity in
[20, (1.12)] with s = t there).

The quantity ∂μf appearing in (1.8) is a transport-type derivative. We will make sense of the equation (1.8) as the

limit of finite-dimensional approximations, based on replacing the set of measures P↑
2 (SD+ ) by the set of measures that

are made of at most K Dirac masses, and then letting K tend to infinity. The precise definition of ∂μf when μ is a
sums of Dirac masses is relatively straightforward and will be described more precisely in (3.24). Informally, for a given
measure μ ∈ P(SD+ ) of finite support and x ∈ suppμ, the quantity ∂μf (t,μ, x) measures the linear response of f (t,μ)

to a variation in the position of the Dirac mass at the position x. A more explicit writing of the integral in (1.8) is∫
ξ(∂μf )dμ =

∫
ξ
(
∂μf (t,μ, x)

)
dμ(x).

In the case when ξ is convex over SD+ , the solution to (1.8) can at least heuristically be rewritten using the Hopf–Lax
formula. Under this restrictive assumption on ξ , it is very likely that the arguments in [18,20] carry over and allow us
to show that the formula thus derived for the quantity f (t, δ0) appearing on the right side of (1.7) is indeed equal to the
variational formulas obtained in earlier works, which we review next.

1.2. Previous works

An important part of the literature focuses on the Sherrington–Kirkpatrick model, which corresponds to the case when
D = 1, HN = RN , ξ(r) = r2, and PN is a product of Bernoulli ±1 random variables. In this context, fundamental
insights were obtained in the physics literature using sophisticated non-rigorous techniques [15]. This includes a proposed
variational formula for the limit free energy of the model, now known as the Parisi formula [27,28]. Rigorous justifications
of this formula were later obtained in [12,22,23,33–35], ultimately covering the more general class of p-spin models, for
which D = 1, HN =RN , and ξ(r) = rp for some integer p ≥ 2. This was then further generalized in different directions,
including by relaxing the requirement that the support of PN be a subset of a sphere [21,26], or covering certain cases in
which spins have multiple types [24], or are vector-valued [25,26].

As explained in Section 6, all these models can be represented in such a way that (1.1) holds. It is critical to the validity
of the variational formulas proved in these works that the function ξ be convex over SD+ . As argued in [19, Section 6],
naive extensions of these formulas to models for which ξ does not satisfy this property are false; and there is at present no
known variational formula that could serve as a plausible candidate for the limit free energy of such models. An example
of a model which fails to satisfy this convexity requirement on ξ is a bipartite model, in which the spins are organized in
two different layers, and the only direct interactions are between spins in different layers.

The present work is part of an ongoing effort to identify the limit free energy of spin glass models using a different
point of view that connects it to the solution of a certain Hamilton–Jacobi equation. Heuristic connections between limit
free energies and partial differential equations were first pointed out in [2,4,5,11], under a replica-symmetric or one-
step replica symmetry breaking assumption. In a different setting that relates to statistical inference, the possibility to
relate the limit free energy with Hamilton–Jacobi equations was demonstrated rigorously in [6,7,16,17]. That there exists
a connection between the Parisi formula and a Hamilton–Jacobi equation was discovered in [18]; see also [20]. The
connection between the Parisi formula and the solution of the partial differential equation makes use of the Hopf–Lax
representation of the solution. However, this Hopf–Lax representation is only valid under the convexity assumption on ξ .

The present work is a generalization of [19], in which a result analogous to Theorem 1.1 is proved for the bipartite
model. As will be explained in Section 3, see in particular Theorem 3.4 and (3.27), the proof of Theorem 1.1 rests
crucially on the possibility to argue for the synchronization of certain overlaps. Overlaps are scalar products between
different independent copies of the random variables of interest, sampled according the Gibbs measure for fixed disorder
couplings; denoting by σ , σ ′ two such copies, we will want to get a synchronization result for σσ ′∗. Compared with [19],
there are several new aspects that need to be taken care of. One is that we can only “synchronize” the symmetric part
of σσ ′∗, so we need to argue separately that the antisymmetric part becomes asymptotically negligible. The other is that
the description of “synchronized” random variables taking values in SD is more involved than in the setting of R2 that
was explored in [19]. The arguments for synchronization and symmetrization employed here rely heavily on the approach
developed in [24–26] to this effect. These considerations rely themselves on the fundamental property of ultrametricity
of the Gibbs measure, which was obtained in [22]. Other works which utilize this synchronization mechanism, and which
all pertain to the setting investigated here, include [1,8,9,13,14].

Compared with [19], the treatment of the boundary condition for (1.8) also poses new difficulties. This relates to
the fact that the geometry of the space P↑(SD+ ) is more intricate than that of the space P↑(R2+) (or P↑(RD+)) that was
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appearing in [19]. Roughly speaking, although we expect the solution to (1.8) to be such that the mapping x �→ ∂μf (μ,x)

is nonnegative and increasing over the support of μ, we will extend the nonlinearity ∂μf �→ ∫
ξ(∂μf )dμ outside of this

“natural” set; and the extension we choose is not what the notation
∫

ξ(∂μf )dμ would suggest.
It would of course be desirable to prove the bound converse to (1.7). Having a general upper bound for the limit free

energy, as obtained here, might be useful for this very purpose, in analogy with the original proof of the Parisi formula
developed in [33,35].

To conclude this subsection, we also point out that in the very recent works [30–32], a generalized TAP approach is
developed that yields the identification of the limit free energy of any pure multi-species spherical p-spin model, under a
modest assumption of convergence of the free energy.

1.3. Organization of the paper

In Section 2, which can be read independently of the rest of the paper, we explore the notion of a monotone coupling for
a random variable taking values in SD+ . Returning to the problem at hand, in Section 3 we introduce an enriched version

of the free energy that also depends on a measure μ ∈ P↑
1 (SD+ ). A heuristic calculation concluded in (3.27) suggests that

this enriched free energy is an approximate solution to (1.8). Theorem 3.4, generalizing Theorem 1.1, states an inequality
between the limit of the enriched free energy and the solution to (1.8). In Section 4, we clarify the meaning of (1.8) using
finite-dimensional approximations, and in particular, we explain rigorously how the nonlinearity ∂μf �→ ∫

ξ(∂μf )dμ is
extended outside of its “natural” domain. We then move on to the proof of Theorem 3.4 in Section 5. Finally, Section 6
describes a variety of models that can be represented in the form of (1.1), and verifies that for all these models, and in fact
for essentially every conceivable model, the corresponding function ξ is proper, and admits a regularization.

2. Monotone couplings

In this section, we study the notion of monotone measures over SD+ , which was introduced around (1.6). We explore
various characterizations of this property, including that every such random variable can be realized as the image of
the uniform measure over [0,1] by an increasing mapping, see Proposition 2.4 below. This is related to considerations
appearing in [25,26]; the main point here is to clarify what part of the arguments are in fact internal to the concept of a
monotone coupling, and unrelated to spin-glass considerations.

We start by recalling the notion in the simpler setting of measures over R2. Let (X,Y ) be a pair of real random variables
(with respect to the probability P, with expectation E). We say that the pair (X,Y ) is monotonically coupled, or simply
monotone, if, with (X′, Y ′) denoting an independent copy of (X,Y ), we have

(2.1) P
[
X < X′ and Y ′ < Y

]= 0.

We also say that a measure μ ∈ P(R2) is monotonically coupled, or more simply monotone, whenever a random pair
(X,Y ) with law μ satisfies this property.

For any real random variable X and x ∈R, we write

(2.2) FX(x) := P[X ≤ x],
and, for every u ∈ [0,1],
(2.3) F−1

X (u) := inf
{
x ∈R : P[X ≤ x] ≥ u

} ∈R∪ {±∞}.
The next proposition provides with equivalent characterisations of monotone couplings, for real-valued random variables.

Proposition 2.1 (Monotone coupling in R2). Let (X,Y ) be a pair of real random variables, and U be a uniform random
variable over [0,1]. The following three statements are equivalent.

(1) The pair (X,Y ) is monotonically coupled.
(2) For every (x, y) in the support of the law of (X,Y ), we have

(2.4) P[X < x and Y > y] = 0.

(3) For every x, y ∈ R, we have

(2.5) P[X ≤ x and Y ≤ y] = min
(
P[X ≤ x],P[Y ≤ y]).
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(4) The law of the pair (X,Y ) is that of (F−1
X (U),F−1

Y (U)).
(5) The following relations hold almost surely

X = F−1
X

(
FX+Y (X + Y)

)
and Y = F−1

Y

(
FX+Y (X + Y)

)
.

Proof. The equivalence between the statements (1), (3) and (4) was shown in [19, Proposition 5.2].
The fact that (2) implies (1) is clear. We now show the converse implication. We thus assume that Statement (1) holds,

and let (x, y) be in the support of the law of (X,Y ). For each ε > 0, we have

P[X ≥ x − ε and Y ≤ y + ε] > 0.

By the definition of a monotone coupling, see (2.1), we infer that

P[X < x − ε and Y > y + ε] = 0.

Letting ε go to zero, we obtain (2.4).
One can check that (5) implies (1) using the monotonicity of FX and F−1

X . Conversely, suppose that (1) holds. We
notice that for every u ∈ (0,1), the infimum in the definition of F−1

X is achieved, and therefore FX(F−1
X (u)) ≥ u. We now

use this inequality with X substituted by X + Y . Observing also that X and X + Y are monotonically coupled, and that
(4) holds, we deduce that, almost surely,

X ≤ F−1
X

(
FX+Y (X + Y)

)
.

To show the converse implication, we start by observing that, for every (x, y) in the support of the law of (X,Y ), we have

(2.6) P[X ≤ x] ≥ P[X + Y ≤ x + y].
Indeed, we have by (2) (and the symmetry of the definition of monotone coupling) that

P[X > x and Y < y] = 0.

In other words, outside of an event of null measure, we have the implication

(2.7) X > x =⇒ Y ≥ y.

Using the decomposition

P[X + Y ≤ x + y] ≤ P[X ≤ x] + P[X + Y ≤ x + y and X > x],
and noticing that, by (2.7), the last probability must be zero, we obtain (2.6). As a consequence,

F−1
X

(
FX+Y (x + y)

)≤ F−1
X

(
FX(x)

)≤ x.

Since this inequality is valid for every (x, y) in the support of the law of (X,Y ), this completes the proof. �

We also record the following observations, which will be convenient later on.

Lemma 2.2. Under the assumptions of Proposition 2.1, we have

(2.8) F−1
X+Y (U) = F−1

X (U) + F−1
Y (U) a.s.

and

(2.9) F−1
X (U) = F−1

X

(
FX+Y

(
F−1

X+Y (U)
))

a.s.

Proof. The relation (2.9) follows from the fact that X and X + Y are monotonically coupled, and parts (4) and (5) of
Proposition 2.1. Turning to the proof of (2.8), we start by observing that, for any random variable Z, we have

(2.10) Z = F−1
X

(
FX(Z)

)
a.s.
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This can be recovered from part (5) of Proposition 2.1, using that 0 and Z are monotonically coupled. Using this property
once more, we thus deduce that

F−1
X+Y

(
FX+Y (X + Y)

)= F−1
X

(
FX+Y (X + Y)

)+ F−1
Y

(
FX+Y (X + Y)

)
a.s.

Defining

UX+Y := FX+Y

(
F−1

X+Y (U)
)
,

we have shown that

F−1
X+Y (UX+Y ) = F−1

X (UX+Y ) + F−1
Y (UX+Y ) a.s.

Using parts (4) and (5) of Proposition 2.1 once more, we see that

F−1
X (U) = F−1

X (UX+Y ) a.s.

as well as

F−1
X+Y (U) = F−1

X+Y (UX+Y ) a.s.

Combining the last three displays, we obtain (2.8). �

Let X be a random variable taking values in SD+ . We say that X is monotonically coupled, or more simply monotone,
if for every a, b ∈ SD+ , the pair (a · X,b · X) is monotonically coupled. We also say that a measure μ ∈ P(SD+ ) is mono-
tonically coupled, or more simply monotone, whenever a random variable with law μ satisfies this property. In this case,
we write μ ∈P↑(SD+ ).

The next proposition gives equivalent characterizations of monotone couplings over SD+ . Recall the definitions in (2.2)
and (2.3).

Proposition 2.3 (Monotone coupling in SD+ ). Let μ ∈P(SD+ ), X be a random variable with law μ, and U be a uniform
random variable over [0,1]. The following two statements are equivalent.

(1) The measure μ is monotonically coupled.
(2) There exists a random variable X′ with law μ such that, for every a ∈ SD+ ,

(2.11) a · X′ = F−1
a·X(U) a.s.

Under this circumstance, we have, for every a ∈ SD+ ,

(2.12) P[X ≤ a] = inf
b∈SD+

P[b · X ≤ b · a].

Proof. We decompose the proof into two steps.
Step 1. By Proposition 2.1, the fact that (2) implies (1) is clear. We now turn to the converse implication. We write

K := D(D+1)
2 , and let (b1, . . . , bK) be a family of elements of SD+ that form a basis of SD . We can construct a random

variable X′ taking values in SD such that, for every k ∈ {1, . . . ,K},
bk · X′ = F−1

bk ·X(U).

Notice that for any random variable Z and λ > 0, we have F−1
λZ = λF−1

Z . Using also (2.8), we deduce that the identity
(2.11) holds for every a ∈ SD+ . There remains to show that the random variables X and X′ have the same law.

We first observe that, for every a, b, b′ ∈ SD+ and λ > 0 satisfying b = λa + b′, we have

(2.13) a · X = F−1
a·X
(
Fb·X(b · X)

)
a.s.

Indeed, this follows using part (5) of Proposition 2.1 with X and Y there replaced by λa · X and b′ · X respectively, and
using again that F−1

λa·X = λF−1
a·X . By the same argument combined with (2.9), we also have

a · X′ = F−1
a·X
(
Fb·X

(
b · X′)) a.s.



Free energy upper bound for mean-field vector spin glasses 1149

In particular, setting b := b1 + · · · + bk , we see that the vectors (bk · X)1≤k≤K and (bk · X′)1≤k≤K can be obtained as
images, under the same mapping, of the variables b · X and b · X′ respectively. Since the latter random variables have the
same law, we deduce that the random vectors have the same law as well. This implies that the laws of X and X′ are the
same (and in particular, that X′ takes values in SD+ with probability one), as desired.

Step 2. To prepare for the proof of (2.12), we start by showing that, for every sequence (bn)n∈N of elements of SD+ and
N ∈N, we have

(2.14) P
[∀n ∈ {0, . . . ,N}, bn · X ≤ bn · a]= min

n∈{0,...,N}P[bn · X ≤ bn · a].

We prove this by induction on N . The case N = 0 is obvious. Fixing N ∈ N and assuming that the identity (2.14) holds,
we now show that it also holds with N replaced by N + 1. By the induction hypothesis, there exists n0 ∈ {0, . . . ,N} such
that, up to an event of null measure, the events

∀n ∈ {0, . . . ,N}, bn · X ≤ bn · a and bn0 · X ≤ bn0 · a

coincide. Combining this with the fact that X is monotone and part (3) of Proposition 2.1, we obtain

P
[∀n ∈ {0, . . . ,N + 1}, bn · X ≤ bn · a]= P[bn0 · X ≤ bn0 · a and bN+1 · X ≤ bN+1 · a]

= min
(
P[bn0 · X ≤ bn0 · a],P[bN+1 · X ≤ bN+1 · a])

= min
n∈{0,...,N+1}P[bn · X ≤ bn · a].

This completes the induction argument.
We now show (2.12). This identity with the equal sign replaced by “≤” is clearly valid. Conversely, recall first (see for

instance [17, Lemma 2.2]) that, for every q ∈ SD , we have

(2.15) q ≥ 0 ⇐⇒ ∀b ∈ SD+ b · q ≥ 0.

Let (bn)n∈N be a sequence of elements of SD+ that is dense in SD+ . We have

P[X ≤ a] = P
[∀b ∈ SD+ , b · X ≤ b · a]

= P[∀n ∈N, bn · X ≤ bn · a]
= lim

N→∞P
[∀n ∈ {0, . . . ,N}, bn · X ≤ bn · a].

By (2.14), the latter probability is of the form P[b · X ≤ b · a] for some b ∈ SD+ (which depends on N ). This yields the
converse bound, and thus completes the argument. �

A slight variation of the argument above also gives the following alternative description of the set P↑(SD+ ).

Proposition 2.4. Define

M := {
M : [0,1) → SD+ : M is right-continuous with left limits, and is increasing

}
,

where we recall that “M is increasing” means that, for every u,v ∈ [0,1),

u ≤ v =⇒ M(u) ≤ M(v).

Recall also that U denotes a uniform random variable over [0,1]. The mapping

(2.16)

{
M → P↑(SD+

)
M �→ law of M(U)

is a bijection. We denote the preimage of the measure μ ∈ P↑(SD+ ) by Mμ.
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Proof. One can check that the mapping in (2.16) is well-defined and injective. Using the notation of Proposition 2.3 and
Step 1 of its proof, we now slightly rephrase the construction of the random variable X′ appearing there and show that the
mapping in (2.16) is surjective. For each u ∈ (0,1), there exists a unique matrix M−(u) such that for every k ∈ {1, . . . ,K},
we have

bk · M−(u) = F−1
bk ·X(u).

The mapping u �→ M−(u) is left-continuous with right limits on (0,1). Moreover, we have shown that M−(U) takes
values in SD+ with probability one, and that for every a ∈ SD+ ,

a · M−(U) = F−1
a·X(U) a.s.

Since both sides of this identity are left-continuous with right limits, we deduce that M− takes values in SD+ and that, for
every u ∈ (0,1) and a ∈ SD+ , we have

a · M−(u) = F−1
a·X(u).

In particular, for every a ∈ SD+ , we have that the mapping u �→ a · M(u) is increasing over (0,1). This implies that
the mapping u �→ M−(u) is increasing over (0,1). Summarizing, we have identified, for each μ ∈ P↑(SD+ ), a mapping
M− : (0,1) → SD+ which is increasing, left-continuous with right limits, and such that the law of M−(U) is μ. For each
u ∈ [0,1), we set

M(u) := lim
v↓u

M−(v).

Since M− takes values in SD+ , this quantity is well-defined and takes values in SD+ . It is also increasing, and right-
continuous with left limits at every point of [0,1). Finally, since M− has only a countable number of points of disconti-
nuity, we also have that the law of M(U) is μ. This completes the proof. �

Notice that the mappings Mμ allow us to define a joint coupling over all the measures in the set P↑(SD+ ). Although we
will not really need this fact, we observe in the next proposition that these are the optimal transport couplings for a very
large class of cost functions, in analogy with the one-dimensional setting.

Proposition 2.5 (Optimal transport in P↑(SD+ )). Let c : SD+ × SD+ → R+ be a right-continuous function satisfying, for
every x, x′, y, y′ ∈ SD+ ,

(2.17) x ≤ x′ and y ≤ y′ =⇒ c
(
x′, y′)+ c(x, y) ≤ c

(
x, y′)+ c

(
x′, y

)
.

Let (X,Y ) be a pair of random variables such that the law of X is μ ∈P↑(SD+ ) and the law of Y is ν ∈ P↑(SD+ ). If∫
c(x, y)dμ(x)dν(y) < ∞,

then

(2.18) E
[
c
(
Mμ(U),Mν(U)

)]≤ E
[
c(X,Y )

]
.

Remark 2.6. In Proposition 2.5, the statement that c is right-continuous means that for every two sequences (xn) and
(yn) of elements of SD+ satisfying, for every n, the inequalities xn ≥ x and yn ≥ y, and such that xn → x and yn → y as n

tends to infinity, we have c(xn, yn) → c(x, y). Examples of functions satisfying the condition (2.17) include any convex
function of x − y.

Proof of Proposition 2.5. For each μ ∈P↑(SD+ ), we denote

M−1
μ :

{
suppμ → [0,1]
x �→ sup

{
u ∈ [0,1) : Mμ(u) ≤ x

}
.

Since suppμ is the closure of the image of Mμ, the set appearing in the definition of M−1
μ is not empty. The mapping

M−1
μ is right-continuous with left limits. Informally, it plays the role of a cumulative distribution function, similarly to
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the functions FX in one dimension. Letting (X,Y ) be as in the statement of the proposition, we have, similarly to (2.10),

(2.19) X = Mμ

(
M−1

μ (X)
)

a.s.

(This is obtained by noting that, for every x ∈ suppμ, we have Mμ(M−1
μ (x)) ≤ x, while for every u ∈ [0,1), we have

M−1
μ (Mμ(u)) ≥ u.) In particular,

E
[
c(X,Y )

]= E
[
c
(
Mμ

(
M−1

μ (X)
)
,Mν

(
M−1

ν (Y )
))]

.

We consider the optimal transport problem on [0,1] with cost function given, for every u,v ∈ [0,1], by

c̃(u, v) := c
(
Mμ(u),Mν(v)

)
.

By the property (2.17) and the monotonicity of the mappings Mμ and Mν , we have, for every u,u′, v, v′ ∈ [0,1],
u ≤ u′ and v ≤ v′ =⇒ c̃

(
u′, v′)+ c̃(u, v) ≤ c̃

(
u,v′)+ c̃

(
u′, v

)
.

As a consequence (see for instance [29, Theorem 3.1.2]), an optimal transport for the cost function c̃ with marginals
given by the laws of M−1

μ (X) and M−1
ν (Y ) respectively is achieved by the monotone coupling between these laws. This

monotone coupling is realized by the pair (M−1
μ (Mμ(U)),M−1

ν (Mν(U))) (recall from Proposition 2.1 that to verify this,
it suffices to observe that this pair is monotonically coupled and has the correct marginals). That is,

E
[
c
(
Mμ

(
M−1

μ

(
Mμ(U)

))
,Mν

(
M−1

ν

(
Mν(U)

)))]≤ E
[
c
(
Mμ

(
M−1

μ (X)
)
,Mν

(
M−1

ν (Y )
))]

.

Using (2.19) once more (with X replaced by Mμ(U)), we obtain (2.18). �

3. Enriched free energy

In this section, we define the free energy of an enriched model. Roughly speaking, the enriched model is defined in terms
of an energy function which, in addition to the original function HN , also contains another term which can be interpreted
as the energy associated with a random magnetic field with an ultrametric structure. This structure is parametrized by a
measure μ ∈ P↑

1 (SD+ ).
It is much more convenient to start by defining this quantity under the additional assumption that the measure μ has

finite support, and then argue by density. Using (2.15), one can check that a measure μ ∈ P↑(SD+ ) with finite support
must be of the form

(3.1) μ =
K∑

k=0

(ζk+1 − ζk)δqk
,

with K ∈ N, ζ0, . . . , ζK+1 ∈R satisfying

(3.2) 0 = ζ0 < ζ1 < · · · < ζK+1 = 1,

and q−1, q0, . . . , qK ∈ SD+ satisfying

(3.3) 0 = q−1 ≤ q0 ≤ q1 ≤ · · · ≤ qK−1 ≤ qK and ∀k ∈ {1, . . . ,K}, qk−1 �= qk.

We now very briefly recall some properties of Poisson–Dirichlet cascades, and refer to [23, (2.46)] for more precision.
We denote the rooted tree with (countably) infinite degree and depth K by

(3.4) A := N0 ∪N∪N2 ∪ · · · ∪NK,

where N0 = {∅}, and ∅ represents the root of the tree. For every k ∈ {0, . . . ,K} and α ∈ Nk ⊆ A, we write |α| := k to
denote the depth of the vertex α in the tree A. For every leaf α = (n1, . . . , nK) ∈NK and k ∈ {0, . . . ,K}, we write

(3.5) α|k := (n1, . . . , nk),
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with the understanding that α|0 =∅. For every α,α′ ∈NK , we write

α ∧ α′ := sup
{
k ≤ K : α|k = α′|k

}
.

A Poisson–Dirichlet cascade (vα)α∈NK can be interpreted as a probability measure on the set NK of leaves of the tree
A, since vα ≥ 0 and

∑
α∈NK vα = 1; it is meant to serve as a “canonical” ultrametric structure (associated with the

parameters (ζk)1≤k≤K ). Briefly, the construction of (vα)α∈NK for K ≥ 1 is as follows: the progeny of each non-leaf vertex
at level k ∈ {0, . . . ,K − 1} is decorated with the values of an independent Poisson point process of intensity measure
ζk+1x

−1−ζk+1 dx, then the weight of a given leaf α ∈NK is calculated by taking the product of the “decorations” attached
to each parent vertex, including the leaf vertex itself (but excluding the root, which has no assigned “decoration”), and
finally, these weights over leaves are normalized so that their total sum is 1. We take this Poisson–Dirichlet cascade
(vα)α∈NK to be independent of HN .

Since we need to define some refined (ultrametric) analogue of an extraneous random magnetic field, we need to also
introduce some additional random Gaussian variables that will play such a role. By definition, a standard Gaussian vector
z over a finite-dimensional Hilbert space H is a random vector taking values in H and such that, for every σ,σ ′ ∈ H, the
random variable σ · z is a centered Gaussian and

(3.6) E
[
(σ · z)(σ ′ · z)]= σ · σ ′.

An explicit construction of z can be obtained by selecting an orthonormal basis (ei)i∈I of H, letting (zi)i∈I be independent
standard Gaussians, and setting z :=∑

i∈I ziei . We give ourselves (zα)α∈A an independent family of standard Gaussian
vectors over HD

N . We take this family to be independent of HN and of the Poisson–Dirichlet cascade. For every σ ∈ HD
N

and α ∈NK , we set

(3.7) H
μ
N(σ,α) :=

K∑
k=0

(2qk − 2qk−1)
1
2 zα|k · σ.

Recall that 2qk − 2qk−1 ∈ SD+ , and thus the square root of this matrix is well-defined. Any D-by-D matrix a =
(ad,d ′)1≤d,d ′≤D acts on HD

N according to

aσ =
(

D∑
d ′=1

ad,d ′σd ′

)
1≤d≤D

.

It is with this understanding that the expression (2qk −2qk−1)
1
2 zα|k in (3.7) is understood. (This is nothing but a convenient

way to describe a random Gaussian vector with a particular covariance structure depending on the matrix 2qk − 2qk−1.)
In (3.7), the resulting element of HD

N is then “dotted” against σ , according to the scalar product in HD
N defined in (1.4).

Recall that (HN(σ))σ∈HD
N

is a centered Gaussian field with covariance given in (1.1). For every t ≥ 0 and μ as in (3.1),
we define the enriched free energy as

FN(t,μ)

:= − 1

N
log

∫ ∑
α∈NK

exp

(√
2tHN(σ ) − Ntξ

(
σσ ∗

N

)
+ H

μ
N(σ,α) − σ · qKσ

)
vα dPN(σ).

(3.8)

We denote by Ẽ the expectation with respect to the randomness coming from the Poisson–Dirichlet cascade (vα)α∈NK

and the random Gaussian fields (zα)α∈A. Since the only additional source of randomness in the problem comes from the
Gaussian field (HN(σ))σ∈HD

N
, which is independent of (vα)α∈NK and (zα)α∈A, the expectation Ẽ could alternatively be

written as the conditional expectation with respect to (HN(σ))σ∈HD
N

:

Ẽ[·] = E
[·|(HN(σ)

)
σ∈HD

N

]
.

We define the (partially and fully) averaged free energies

(3.9) F̃N (t,μ) = Ẽ
[
FN(t,μ)

]
and FN(t,μ) := E

[
FN(t,μ)

]
.
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Associated with the partition function FN is a Gibbs measure, which we denote by 〈·〉, with canonical random variable
(σ,α) taking values in HN ×NK . That is, for every bounded measurable function f : HN ×NK → R, we have〈

f (σ,α)
〉= exp

(
NFN(t,μ)

)
×
∫ ∑

α∈NK

f (σ,α) exp

(√
2tHN(σ ) − Ntξ

(
σσ ∗

N

)
+ H

μ
N(σ,α) − σ · qKσ

)
vα dPN(σ).

(3.10)

The measure 〈·〉 depends on the choice of the parameters t and μ, although the notation leaves this implicit. We also
consider independent copies of the random pair (σ,α) under 〈·〉, which are often called “replicas” and which we write
(σ ′, α′), (σ ′′, α′′), etc., or, if more replicas are desired, (σ 
,α
)
∈N. We recall from [35], [23, (2.82)], or [18, Lemma 2.3]
that, for every k ∈ {0, . . . ,K}, we have

(3.11) Ẽ〈1{α∧α′=k}〉 = ζk+1 − ζk.

The next proposition, which is similar to a result in [12], gives a continuity estimate for F̃N (t, ·). In order to state it, we
will appeal to the characterization of monotone measures obtained in Proposition 2.4. Throughout the paper, we denote
by U a uniform random variable over [0,1], which for notational convenience we assume to be also defined with respect
to the probability measure P. Using the notation introduced in Proposition 2.4, we define the random variable

(3.12) Xμ := Mμ(U).

This construction provides us with a joint coupling of all the measures in P↑(SD+ ), and thus allows us to write down
optimal-transport-type distances in P↑(SD+ ) in a convenient way (see Proposition 2.5).

Proposition 3.1 (Lipschitz continuity of F̃N ). For any two pairs μ,ν ∈ P↑(SD+ ) of measures with finite support and
t ≥ 0, we have

(3.13)
∣∣F̃N (t,μ) − F̃N (t, ν)

∣∣≤ E
[|Xμ − Xν |

]
,

and the same inequality also holds with F̃N replaced by FN . In particular, the functions F̃N and FN can be extended by
continuity to R+ ×P↑

1 (SD+ ).

Recall that throughout the paper, whenever a = (ad,d ′)1≤d,d ′≤D and b = (bd,d ′)1≤d,d ′≤D are two D-by-D matrices
with real entries, we use the notation

a · b := tr
(
ab∗)=

D∑
d,d ′=1

ad,d ′bd,d ′ , and |a| := (a · a)
1
2 ,

with b∗ denoting the transpose of b, and tr denoting the trace operator.
For σ ∈ HD

N , so far we have only made sense of the notation σ ∗ within the notation “τσ ∗”, with σ, τ ∈ HD
N , in which

case we recall that this is interpreted as the D-by-D matrix

(3.14) τσ ∗ := (τd · σd ′)1≤d,d ′≤D.

We now point out that one can make sense of the object σ ∗ itself, in a way which is consistent with the notation in (3.14).
To start with, in the case when HN = RN , we can view σ and τ as D-by-N matrices; with this interpretation, we can
define σ ∗ to be the N -by-D matrix conjugate to σ , and the notation τσ ∗ is consistent with the matrix product. In the
general case, we can identify σ with the linear map{

HN → RD

τ �→ (σ1 · τ, . . . , σD · τ).

This mapping admits a dual mapping from RD to HN , which we can denote by σ ∗. Explicitly, the mapping σ ∗ is given
by

(3.15)

{
RD → HN

v = (v1, . . . , vD) �→ v1σ1 + · · · + vDσD.
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The composition τσ ∗ is then a linear map from RD to itself, whose matrix representation in the canonical basis is indeed
(3.14).

In order to prove Proposition 3.1, we will study the derivatives of the function F̃N with respect to the matrices q


appearing in (3.1). For any function f = f (q) : U → R defined on an open subset U of SD , we write ∂qf (q) ∈ SD to
denote the unique symmetric matrix such that, for every a ∈ SD ,

lim
ε→0

ε−1(f (q + εa) − f (q)
)= ∂qf (q) · a,

provided that the limit exists for every a ∈ SD . In view of the definition of FN , we will need to differentiate the matrix
square root operator; we thus recall some of its properties. We denote by D√

2q the differential of the mapping{
SD++ → SD

q �→√
2q.

That is, for every q ∈ SD++ and a ∈ SD ,

D√
2q(a) = lim

ε→0
ε−1(√2(q + εa) −√

2q
)
.

As ε → 0, we have

2q + 2εa = (
√

2q + 2εa)2

= (√
2q + εD√

2q(a) + o(ε)
)2

= 2q + ε
(√

2qD√
2q(a) + D√

2q(a)
√

2q
)+ o(ε),

and thus

(3.16)
√

2qD√
2q(a) + D√

2q(a)
√

2q = 2a.

This property characterizes the matrix D√
2q(a) among symmetric matrices, see for instance [17, Lemma 3.1]. In partic-

ular, if b ∈ SD , then we can use the symmetry of b and the fact that the transpose of
√

2qD√
2q(a) is D√

2q(a)
√

2q to get
that

(3.17)
(√

2qD√
2q(a)

) · b = (
D√

2q(a)
√

2q
) · b = a · b.

Proof of Proposition 3.1. We decompose the proof into two steps.
Step 1. In this first step, we show that for every k ∈ {0, . . . ,K},

(3.18) ∂qk
F̃N = 1

N
Ẽ
〈
1{α∧α′=k}σσ ′∗〉.

For every k ∈ {0, . . . ,K − 1} and a ∈ SD , we have

a · ∂qk
FN = − 1

N

〈
D√

2qk−2qk−1
(a)zα|k · σ − D√

2qk+1−2qk
(a)zα|k+1 · σ 〉.

Notice also that, for every σ,σ ′ ∈ HD
N and α,α′ ∈NK , we have

Ẽ
[(

D√
2qk−2qk−1

(a)zα|k · σ )Hμ
N

(
σ ′, α′)]

= Ẽ
[(

zα|k · D√
2qk−2qk−1

(a)σ
)(

(2qk − 2qk−1)
1
2 zα′|k · σ ′)]

= 1{α∧α′≥k}D√
2qk−2qk−1

(a)σ · (2qk − 2qk−1)
1
2 σ ′.

By Gaussian integration by parts (see for instance [19, Lemma A.1]), we deduce that

Ẽ
〈
D√

2qk−2qk−1
(a)zα|k · σ 〉 = Ẽ

〈
D√

2qk−2qk−1
(a)(2qk − 2qk−1)

1
2 · σσ ∗〉

− Ẽ
〈
1{α∧α′≥k}D√

2qk−2qk−1
(a)(2qk − 2qk−1)

1
2 · σσ ′∗〉.



Free energy upper bound for mean-field vector spin glasses 1155

Since the matrix σσ ∗ is symmetric, we have by (3.17) that

Ẽ
〈
D√

2qk−2qk−1
(a)(2qk − 2qk−1)

1
2 · σσ ∗〉= Ẽ

〈
a · σσ ∗〉.

We now observe that the matrix 〈1{α∧α′≥k}σσ ′∗〉 is also symmetric. Indeed,〈
1{α∧α′≥k}σσ ′∗〉= ∑

β∈Nk

〈
1{α|k=β}1{α′|k=β}σσ ′∗〉

=
∑
β∈Nk

〈1{α|k=β}σ 〉〈1{α|k=β}σ 〉∗,
(3.19)

and therefore,

Ẽ
〈
D√

2qk−2qk−1
(a)zα|k · σ 〉= Ẽ

〈
a · σσ ∗ − 1{α∧α′≥k}a · σσ ′∗〉.

Using this also with k replaced by k + 1 yields that

a · ∂qk
F̃N = 1

N
Ẽ
〈
1{α∧α′≥k}a · σσ ′∗ − 1{α∧α′≥k+1}a · σσ ′∗〉.

Recalling from (3.19) that the matrix 1{α∧α′=k}σσ ′∗ is symmetric, we obtain (3.18) for every k < K . The case k = K is
similar. This shows in particular that the function F̃N is uniformly Lipschitz continuous in the variables (qk)0≤k≤K . More
precisely, since

∣∣σσ ′∗∣∣2 =
D∑

d,d ′=1

(
σd · σ ′

d ′
)2 ≤

D∑
d,d ′=1

|σd |2∣∣σ ′
d ′
∣∣2 = |σ |2∣∣σ ′∣∣2,

and recalling the assumption (1.3) on the support of PN , and also (3.11) and the sentence below it, we obtain that, for
every k ∈ {0, . . . ,K},
(3.20) |∂qk

F̃N | ≤ Ẽ〈1{α∧α′=k}〉 = ζk+1 − ζk.

Step 2. We complete the proof. First, we observe that we can allow for repetitions in the parameters (qk)0≤k≤K appearing
in (3.1). That is, our definition of F̃N would also make sense if we were to drop the requirement of (3.3) and replace it
instead by simply

(3.21) 0 = q−1 ≤ q0 ≤ q1 ≤ · · · ≤ qK−1 ≤ qK.

We could also look for a representation of the measure μ in which the parameters (qk)0≤k≤K are not repeated, and this
would formally lead to a different definition of F̃N . The point we are making here is that these two quantities are indeed
the same, as the notation F̃N (t,μ) suggests. The argument to justify this is classical, see for instance Step 1 of the proof
of [18, Proposition 2.1]. (In essence, the point is to observe that a Poisson–Dirichlet cascade of depth K + 1 with nodes
on level k deleted has the same law as a Poisson–Dirichlet cascade of depth K and in which the weight ζk is deleted.)

In view of this, given two measures μ,ν ∈ P↑(SD+ ) with finite support, we can fix parameters (ζk)1≤k≤K satisfying
(3.2), and q0, . . . , qK, q ′

0, . . . , q
′
K ∈ SD+ satisfying (3.21) and

(3.22) 0 = q ′−1 ≤ q ′
0 ≤ q ′

1 ≤ · · · ≤ q ′
K−1 ≤ q ′

K,

in such a way that μ satisfies (3.1), while

(3.23) ν =
K∑

k=0

(ζk+1 − ζk)δq ′
k
.

In view of (3.20), we obtain that

∣∣F̃N (t,μ) − F̃N (t, ν)
∣∣≤ K∑

k=0

(ζk+1 − ζk)
∣∣q ′

k − qk

∣∣.
This is (3.13). �
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Definition 3.2. We call the mapping {
P↑

1

(
SD+
)→R

μ �→ FN(0,μ)

the cascade transform of the measure PN . We say that the cascade transform of the measure PN converges to the function
ψ :P↑

2 (SD+ ) →R as N tends to infinity if, for every μ ∈P↑
2 (SD+ ), we have

lim
N→∞FN(0,μ) = ψ(μ).

Remark 3.3. An alternative interpretation of the mapping μ �→ F̃N (t,μ) is that it is the cascade transform of the measure

exp

(√
2tHN(σ ) − Ntξ

(
σσ ∗

N

))
dPN(σ).

(Normalizing this into a probability measure would only affect F̃N (t,μ) by an additive constant.)

The main focus of the paper is to prove the following result, which implies Theorem 1.1.

Theorem 3.4. Let ξ be a regularization of ξ , and assume that the cascade transform of the measure PN converges to the
function ψ :P↑

2 (SD+ ) →R as N tends to infinity. For every t ≥ 0 and μ ∈P↑
2 (SD+ ), we have

lim inf
N→∞ FN(t,μ) ≥ f (t,μ),

where f : R+ ×P↑
2 (SD+ ) →R is the solution to (1.8).

Remark 3.5. Under the assumptions of Theorem 3.4, I expect that FN actually converges to f , and in particular, I expect
that the solution to (1.8) does not depend on the choice of ξ . To prove the latter point directly, the crucial missing ingre-
dient is an extension of the estimate (4.10), which ensures that a Lipschitz property of the initial condition is propagated
to the whole solution. This estimate measures the norm of the gradient of the solution in an 
2 norm. What is missing is
a version of this result in which this 
2 norm is replaced by an 
∞ norm.

We now explain heuristically why one may expect the free energy FN to converge to the function f solution to
(1.8). For starters, we clarify our definition of the transport derivative ∂μ. Informally, for any sufficiently smooth function

g : P↑
2 (SD+ ) → R and μ ∈ P↑

2 (SD+ ), we want to define a function ∂μg(μ, ·) ∈ L2(SD+ ,μ) such that, as ν tends to μ in
P2(S

D+ ),

g(ν) = g(μ) +E
[
∂μg(μ,Xμ)(Xν − Xμ)

]+ o
(
E
[
(Xν − Xμ)2] 1

2
)
.

In practice, we will always work with measures of finite support, in which case we can rely on the following explicit
definition. For any measure μ of the form (3.1)–(3.3), and k ∈ {0, . . . ,K}, we set

(3.24) ∂μg(μ,qk) := (ζk+1 − ζk)
−1∂qk

g(μ),

where on the right side of this identity, we interpret ∂qk
g(μ) as the derivative with respect to qk of the function

(q0, . . . , qK) �→ g

(
K∑


=0

(ζ
+1 − ζ
)δq


)
.

Coming back to the heuristic derivation of the equation (1.8), we first notice that

∂tFN = − 1

N

〈
1√
2t

HN(σ ) − Nξ

(
σσ ∗

N

)〉
,

and thus, by Gaussian integration by parts (see for instance [19, Lemma A.1]),

(3.25) ∂tFN = E

〈
ξ

(
σσ ′∗

N

)〉
.
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On the other hand, it follows from (3.18) that, for measures μ of the form given in (3.1) and every k ∈ {0, . . . ,K},

∂qk
FN = 1

N
E
〈
1{α∧α′=k}σσ ′∗〉.

Recalling also (3.11), we can write

(3.26) (ζk+1 − ζk)
−1∂qk

FN = 1

N
E
〈
σσ ′∗|α ∧ α′ = k

〉
,

where the conditional expectation is understood with respect to the measure E〈·〉. Using (3.11) once more, we thus have∫
ξ(∂μFN)dμ =

K∑
k=0

(ζk+1 − ζk)ξ

(
E

〈
σσ ′∗

N

∣∣∣α ∧ α′ = k

〉)
= E

〈
ξ

(
E

〈
σσ ′∗

N

∣∣∣α ∧ α′
〉)〉

.

Summarizing, we have shown that, at least for measures μ that are sums of Dirac masses,

(3.27) ∂tFN −
∫

ξ(∂μFN)dμ = E

〈
ξ

(
σσ ′∗

N

)〉
−E

〈
ξ

(
E

〈
σσ ′∗

N

∣∣∣α ∧ α′
〉)〉

.

We may call the matrix σσ ′∗
N

the σ -overlap, and α ∧ α′ the α-overlap. The right side of (3.27) is small if and only if the
law of the σ -overlap given the α-overlap is concentrated. That is, we need to assert a synchronization property, in the
sense that the α-overlap should essentially determine the σ -overlap.

It would of course be ideal if one could show that the right side of (3.27) becomes small as N becomes large, for any
choice of the parameters t and μ. However, in all likelihood, the right-hand side of (3.27) will only be small for most
choices of the parameters. Indeed, even when studying much simpler situations such as that in which we add a small
viscosity term to a simple Hamilton–Jacobi equation, the “error term” will typically not be uniformly small. The essence
of the problem investigated in this paper revolves around such a difficulty: if we could assert that the right side of (3.27)
is small uniformly over the parameters, then we would immediately obtain the convergence of FN to f as a consequence
of the comparison principle. However, this is too much to ask for. On the other hand, one can construct examples (even in
1 + 1 dimensions) for which the “error term” in the equation is small in L1 (in the “space” variable), and yet which do not
converge to the viscosity solution of the equation without error terms. Hence, in order to conclude for the convergence of
FN to f , we need to identify a rather delicate mechanism by which the viscosity solution to the limit equation is selected.
As far as the lower bound is concerned (that is, the content of Theorem 3.4), this “selection principle” will rest on some
concavity property of the function FN with respect to additional perturbative parameters that are yet to be introduced.
We refer to the discussion below (5.2) for more on this.

We conclude this section with some basic inequalities on the derivatives of F̃N , which will be used as boundary
conditions for the equation (1.8).

Proposition 3.6 (Basic inequalities on ∂qk
F̃ ). For μ a measure of the form (3.1), we have, for every k ≤ 
 ∈ {0, . . . ,K},

(3.28) ∂qk
F̃N ≥ 0,

as well as

(3.29) (ζk+1 − ζk)
−1∂qk

F̃N ≤ (ζ
+1 − ζ
)
−1∂q


F̃N .

Recall that the inequalities in (3.28) and (3.29) are interpreted in the sense of the partial order on SD . For instance, an
equivalent formulation of (3.28) is to say that the symmetric matrix ∂qk

F̃N is positive semidefinite.

Proof of Proposition 3.6. We start by introducing notation. For each y0, . . . , yK ∈HD
N , we define

XK(y0, . . . , yK) := log
∫

exp

(√
2tHN(σ ) − Ntξ

(
σσ ∗

N

)

+
K∑

k=0

(2qk − 2qk−1)
1
2 yk · σ − σ · qKσ

)
dPN(σ),
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We then define recursively, for each k ∈ {1, . . . ,K},
Xk−1(y0, . . . , yk−1) := ζ−1

k logEyk
exp

(
ζkXk(y0, . . . , yk)

)
,

where we use the notation Eyk
to denote the integration of the random variable yk along the standard Gaussian measure

on HD
N , see (3.6). We will also use below the notation Ey≥k to denote the integration of the variables yk, . . . , yK along

the standard Gaussian measure, and use the shorthand Ey for Ey≥0. By [19, Proposition 2.2], we have

(3.30) −NF̃N(t,μ) = X−1 := Ey0

[
X0(y0)

]
.

Within the current proof (and only here), we change the definition of the measure 〈·〉, and set it to be such that, for every
bounded measurable function f : HD

N →R,

〈
f (σ )

〉 = exp(−XK)

∫
f (σ ) exp

(√
2tHN(σ ) − Ntξ

(
σσ ∗

N

)

+
K∑

k=0

(2qk − 2qk−1)
1
2 yk · σ − σ · qKσ

)
dPN(σ).

Although this is implicit in the notation, the measure 〈·〉 depends on the choice of the parameters y0, . . . , yK ∈ HD
N . (It

also depends on the realization of (HN(σ))σ∈HD
N

, which is kept fixed throughout the proof and could have been absorbed
into the definition of the measure PN .) For every k ≤ 
 ∈ {0, . . . ,K}, we write

Dk,
 = Dk
 := exp(ζkXk + · · · + ζ
X
)

Eyk
[exp(ζkXk)] · · ·Ey


[exp(ζ
X
)] .

We decompose the rest of the proof into two steps.
Step 1. We show that, for every k ∈ {0, . . . ,K},

(3.31) ∂qk
F̃N = ζk+1 − ζk

N
Ey

[(
Ey≥k+1

[〈σ 〉Dk+1,K

])(
Ey≥k+1

[〈σ 〉Dk+1,K

])∗
D1k

]
.

Recall that the expression on the right side above is interpreted according to (3.14). As in Step 1 of the proof of [18,
Lemma 2.4], one can first show by decreasing induction on k that, for every k, 
 ∈ {0, . . . ,K},
(3.32) ∂q


Xk−1 = Ey≥k

[
(∂q


Xk)DkK

]
,

and similarly, for every k, 
 ∈ {0, . . . ,K} with k < 
,

(3.33) ∂y

Xk−1 = Ey≥k

[
(∂y


Xk)DkK

]
,

while ∂y

Xk−1 = 0 if k ≥ 
. Moreover, for every 
 ∈ {0, . . . ,K − 1} and a ∈ SD , we have

a · ∂q

XK = 〈

D√
2q
−2q
−1

(a)y
 · σ − D√
2q
+1−2q


(a)y
+1 · σ 〉.
Since we are ultimately interested in ∂q


X−1, and considering (3.32), we need to study

Ey

[〈
D√

2q
−2q
−1
(a)y
 · σ 〉D1K

]
.

(Notice that D0K = D1K since ζ0 = 0.) By Gaussian integration by parts, see for instance [19, (A.1)-(A.2)], the quantity
above can be rewritten as

Ey

[〈
D√

2q
−2q
−1
(a)σ · (2q
 − q
−1)

1
2
(
σ − σ ′)〉D1K

]
+Ey

[〈
D√

2q
−2q
−1
(a)σ

〉 · ∂y

D1K

]
,

(3.34)

where σ ′ denotes an independent copy of the random variable σ under 〈·〉. Moreover,

D√
2q
−2q
−1

(a)σ · (2q
 − q
−1)
1
2 σ = D√

2q
−2q
−1
(a)(2q
 − q
−1)

1
2 · σσ ∗,
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and since σσ ∗ is a symmetric matrix, we can use (3.17) to obtain that

D√
2q
−2q
−1

(a)σ · (2q
 − q
−1)
1
2 σ = a · σσ ∗.

Similarly, using that the matrix 〈σσ ′∗〉 = 〈σ 〉〈σ 〉∗ is symmetric, we have〈
D√

2q
−2q
−1
(a)σ · (2q
 − q
−1)

1
2 σ ′〉= 〈

a · σσ ′∗〉.
Combining these observations allows us to identify the first term in (3.34) as

Ey

[〈
a · σσ ∗ − a · σσ ′∗〉D1K

]
.

Turning to the second term in (3.34), we have

∂y

D1K =

(
K∑

k=


ζk∂y

Xk −

K∑
k=
+1

ζk

Eyk
[∂y


Xk exp(ζkXk)]
Eyk

[exp(ζkXk)]

)
D1K.

Using (3.33), we see that, for every k ≥ 
,

∂y

Xk = Ey≥k+1

[〈
(2q
 − 2q
−1)

1
2 σ
〉
Dk+1,K

]
,

with the understanding that Ey≥K+1 is the identity map, and DK+1,K = 1. It thus follows that

Eyk
[∂y


Xk exp(ζkXk)]
Eyk

[exp(ζkXk)] = Ey≥k

[〈
(2q
 − 2q
−1)

1
2 σ
〉
DkK

]
,

and

∂y

D1K = (2q
 − 2q
−1)

1
2

(
K∑

k=


ζkEy≥k+1

[〈σ 〉Dk+1,K

]−
K∑

k=
+1

ζkEy≥k

[〈σ 〉DkK

])
D1K

= (2q
 − 2q
−1)
1
2

(
〈σ 〉 −

K∑
k=


(ζk+1 − ζk)Ey≥k+1

[〈σ 〉Dk+1,K

])
D1K.

Using again that σσ ∗ is symmetric, we deduce that the second term in (3.34) can be rewritten as

Ey

[〈
a · σσ ∗〉− 〈

D√
2q
−2q
−1

(a)σ
〉 · K∑

k=


(ζk+1 − ζk)(2q
 − 2q
−1)
1
2 Ey≥k+1

[〈σ 〉Dk+1,K

]
D1K

]
.

Using the decomposition D1K = D1kDk+1,K and the fact that D1k does not depend on yk+1, . . . , yK , we see that, for
each k ∈ {
, . . . ,K},

Ey

[
D√

2q
−2q
−1
(a)〈σ 〉 · (2q
 − 2q
−1)

1
2 Ey≥k+1

[〈σ 〉Dk+1,K

]
D1K

]
= Ey

[
D√

2q
−2q
−1
(a)Ey≥k+1

[〈σ 〉Dk+1,K

] · (2q
 − 2q
−1)
1
2 Ey≥k+1

[〈σ 〉Dk+1,K

]
D1k

]
= Ey

[
a · (Ey≥k+1

[〈σ 〉Dk+1,k

]
Ey≥k+1

[〈σ 〉Dk+1,K

]∗)
D1k

]
.

Summarizing, we have shown that, for every 
 ∈ {0, . . . ,K − 1},
−∂q


X−1 = (ζ
+1 − ζ
)Ey

[(
Ey≥
+1

[〈σ 〉D
+1,K

])(
Ey≥
+1

[〈σ 〉D
+1,K

])∗
D1


]
.

By (3.30), this is (3.31).
Step 2. The fact that ∂qk

F̃N is positive semidefinite is clear from (3.31), as an average of matrices of the form ττ ∗,
τ ∈HD

N . Showing (3.29) is equivalent to showing that, for every k ≤ 
 ∈ {0, . . . ,K} and v ∈ RD ,

(ζk+1 − ζk)
−1v · ∂qk

F̃Nv ≤ (ζ
+1 − ζ
)
−1v · ∂q


F̃Nv.
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Recall that, for any τ ∈ HD
N , we can interpret τ ∗ as the mapping in (3.15). In view of (3.31), we need to show that

(3.35) Ey

[∣∣Ey≥k+1

[〈σ 〉∗vDk+1,K

]∣∣2D1k

]≤ Ey

[∣∣Ey≥
+1

[〈σ 〉∗vD
+1,K

]∣∣2D1


]
.

By Jensen’s inequality, we have∣∣Ey≥k+1

[〈σ 〉∗vDk+1,K

]∣∣2 = ∣∣Eyk+1,...,y


[
Ey≥
+1

[〈σ 〉∗vD
+1,K

]
Dk+1,


]∣∣2
≤ Eyk+1,...,y


[∣∣Ey≥
+1

[〈σ 〉∗vD
+1,K

]∣∣2Dk+1,


]
,

and therefore

Ey

[∣∣Ey≥k+1

[〈σ 〉∗vDk+1,K

]∣∣2D1k

]≤ Ey

[
Eyk+1,...,y


[∣∣Ey≥
+1

[〈σ 〉∗vD
+1,K

]∣∣2Dk+1,


]
D1k

]
= Ey

[∣∣Ey≥
+1

[〈σ 〉∗vD
+1,K

]∣∣2D1


]
,

as desired. �

Up to a simple approximation procedure, the property (3.28) can be rephrased as a monotonicity property for the
function μ �→ F̃N (t,μ). Recall the definition of Mμ from Proposition 2.4.

Proposition 3.7 (Monotonicity of F̃N ). The mapping μ �→ F̃N (t,μ) is increasing, in the sense that, for every μ,ν ∈
P↑

1 (SD+ ),

(3.36) Mμ ≤ Mν =⇒ F̃N (t,μ) ≤ F̃N (t, ν).

Proof. In (3.36), the statement Mμ ≤ Mν is understood as a pointwise inequality over the interval [0,1). Arguing as in
Step 2 of the proof of Proposition 3.1, we see that the property in (3.28) allows us to show the implication (3.36) for any
pair of measures μ,ν ∈P↑(SD+ ) of finite support. We now consider general μ,ν ∈ P↑

1 (SD+ ), and argue by approximation.
For each integer K ≥ 1, the mapping ⎧⎨⎩[0,1) → SD+

u �→ Mμ

(�Ku�
K

)
is right-continuous with left limits, and is increasing. We denote by μ(K) ∈ P↑(SD+ ) the measure such that the mapping

above is Mμ(K) . In other words, μ(K) is the law of the random variable Mμ(
�KU�

K
). We construct the measure ν(K)

similarly, replacing μ by ν throughout. Under the assumption that Mμ ≤ Mν , we have Mμ(K) ≤ Nν(K) . Given that the
proposition is valid for measures of finite support, it thus suffices to show that F̃N (t,μ(K)) converges to F̃N (t,μ) as K

tends to infinity (which implies the same result for ν). In view of Proposition 3.1, it suffices to show that

lim
K→∞E

[|Xμ(K) − Xμ|]= 0.

This follows from the dominated convergence theorem. �

In a similar fashion, we can use an approximation argument and combine the two properties appearing in Proposi-
tion 3.6 into the following statement.

Proposition 3.8. For every μ,ν ∈ P↑
1 (SD+ ), we have

(3.37)

(
∀u ∈ [0,1],

∫ 1

u

Mμ(r)dr ≤
∫ 1

u

Mν(r)dr

)
=⇒ F̃N (t,μ) ≤ F̃N (t, ν).

Proof. We first show that the statement is valid for measures μ,ν ∈P↑(SD+ ) that can be written, for some integer K ≥ 1,
in the form

(3.38) μ = 1

K

K∑
k=1

δqk
, ν = 1

K

K∑
k=1

δq ′
k
,
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with parameters q1, . . . , qK, q ′
1, . . . , q

′
K ∈ SD+ satisfying

q1 ≤ · · · ≤ qK, q ′
1 ≤ · · · ≤ q ′

K.

In this case, the property on the left side of (3.37) translates into

(3.39) ∀k ∈ {1, . . . ,K},
K∑


=k

q
 ≤
K∑


=k

q ′

.

For every s ∈ [0,1], we write μs :=∑K
k=1 δ(1−s)qk+sq ′

k
, and observe that, by discrete integration by parts,

F̃N (t, ν) − F̃N (t,μ) =
K∑

k=1

∫ 1

0

(
q ′
k − qk

) · ∂qk
F̃N (t,μs)ds

=
∫ 1

0

K∑
k=1

K∑

=k

(
q ′

 − q


) · (∂qk
F̃N (t,μs) − ∂qk−1 F̃N (t,μs)

)
ds,

with the understanding that ∂q0 F̃N = 0. (For notational convenience, the indexing of the support of the measures starts at
k = 1 here, unlike in the rest of this section, but similarly to the next sections.) By Proposition 3.7, we have

∂qk
F̃N (t,μs) − ∂qk−1 F̃N (t,μs) ≥ 0.

(Notice that we use (3.28) in the case k = 1.) By (3.39), we also have that

K∑

=k

(
q ′

 − q


)≥ 0.

Since the dot product of two matrices in SD+ is nonnegative (a · b = |√a
√

b|2), we obtain the result for measures μ, ν of
the form (3.38). To conclude, we can then argue as in the proof of Proposition 3.7. �

4. Viscosity solutions

The goal of this section is to give a rigorous meaning to the partial differential equation in (1.8). The approach taken up
here is to define the solution as the limit of finite-dimensional approximations. Since this specific aspect was covered in
rather wide generality in [19], we will be able to borrow several ingredients from there. Compared with [19], there are
however important differences that relate to the handling of the boundary condition. As will be explained below, these
difficulties come from the fact that the geometry of the set of positive definite matrices is more intricate than that of that of
the set R2+ (or RD+ ) that replaces it in [19]. We will bypass these difficulties by modifying the nonlinearity in the equation,
outside of its “natural” domain of definition; see in particular (4.19) below.

4.1. Analysis of finite-dimensional equations

Let K ≥ 1 be an integer. We define the open set

(4.1) UK := {
x = (x1, . . . , xK) ∈ (SD++

)K : ∀k ∈ {1, . . . ,K − 1}, xk+1 − xk ∈ SD++
}
,

and its closure

(4.2) UK := {
x = (x1, . . . , xK) ∈ (SD+

)K : x1 ≤ · · · ≤ xK

}
.

The finite-dimensional equations we consider take the form

(4.3) ∂tf −H(∇f ) = 0 in (0, T ) × UK,
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for a given locally Lipschitz function H : (SD)K → R, T ∈ (0,∞], and with a prescribed initial condition at t = 0. In the
expression above, we use the notation, with the understanding that f = f (t, x) with x = (x1, . . . , xK),

∇f := (∂x1f, . . . , ∂xK
f ).

Recall that each ∂xk
f takes values in the set SD . We also impose a Neumann boundary condition on ∂UK for solutions

to (4.3). We define the outer normal to a point x ∈ ∂UK as the set

n(x) := {
ν ∈ (SD

)K : |ν| = 1 and ∀y ∈ UK, (y − x) · ν ≤ 0
}
.

To display the Neumann boundary condition, we write the equation formally as

(4.4)

{
∂tf −H(∇f ) = 0 in (0, T ) × UK,

n · ∇f = 0 on (0, T ) × ∂UK.

Definition 4.1. We say that a function f ∈ C([0, T )×UK) is a viscosity subsolution to (4.4) if for every (t, x) ∈ (0, T )×
UK and φ ∈ C∞((0, T ) × UK) such that (t, x) is a local maximum of f − φ, we have

(4.5)
(
∂tφ −H(∇φ)

)
(t, x) ≤ 0 if x ∈ UK,

and

(4.6) min
(

inf
ν∈n(x)

∇φ · ν, ∂tφ −H(∇φ)
)
(t, x) ≤ 0 if x ∈ ∂UK.

We say that a function f ∈ C([0, T ) × UK) is a viscosity supersolution to (4.4) if for every (t, x) ∈ (0, T ) × UK and
φ ∈ C∞((0, T ) × UK) such that (t, x) is a local minimum of f − φ, we have(

∂tφ −H(∇φ)
)
(t, x) ≥ 0 if x ∈ UK,

and

(4.7) max
(

sup
ν∈n(x)

∇φ · ν, ∂tφ −H(∇φ)
)
(t, x) ≥ 0 if x ∈ ∂UK.

We say that a function f ∈ C([0, T ) × UK) is a viscosity solution to (4.4) if it is both a viscosity subsolution and a
viscosity supersolution to (4.4).

We often drop the qualifier viscosity and simply talk about subsolutions, supersolutions, and solutions to (4.4). We say
that a function f ∈ C([0, T ) × UK) is a solution to

(4.8)

{
∂tf −H(∇f ) ≤ 0 in (0, T ) × UK,

n · ∇f ≤ on (0, T ) × ∂UK,

whenever it is a subsolution to (4.4); and similarly with the inequalities reversed for supersolutions.
We now recall the comparison principle proved in [19, Proposition 3.2], which in particular implies, for a given initial

condition, the uniqueness of solutions.

Proposition 4.2 (Comparison principle). Let T ∈ (0,∞], and let u and v be respectively a sub- and a super-solution to
(4.4) that are both uniformly Lipschitz continuous in the x variable. We have

(4.9) sup
[0,T )×UK

(u − v) = sup
{0}×UK

(u − v).

For any x = (x1, . . . , xK) ∈ (SD)K , we use the notation

|x| :=
(

K∑
k=1

|xk|2
) 1

2

.

The existence and regularity of solutions are provided by the next result, borrowed from [19, Proposition 3.4].
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Proposition 4.3 (Existence of solutions). For every uniformly Lipschitz initial condition f0 : UK → R, there exists a
viscosity solution f to (4.4) that satisfies f (0, ·) = f0. Moreover, the function f is Lipschitz continuous, and we have

(4.10)
∥∥|∇f |∥∥

L∞(R+×UK)
= ∥∥|∇f0|

∥∥
L∞(UK)

.

4.2. Tilted functions and boundary condition

Our strategy for the verification of the boundary condition relies crucially on the monotonicity properties of the free
energy, see Propositions 3.6 and 3.8. In order to discuss this precisely, it is convenient to introduce the cone dual to UK ,
denoted U

∗
K . We recall the following result from [19, Lemma 3.3].

Lemma 4.4 (Dual cone to UK ). Let U
∗
K denote the cone dual to UK , that is,

(4.11) U
∗
K := {

x ∈ (SD
)K : ∀v ∈ UK,x · v ≥ 0

}
.

We have

(4.12) U
∗
K =

{
x ∈ (SD

)K : ∀k ∈ {1, . . . ,K},
K∑


=k

x
 ≥ 0

}
,

and

(4.13) UK = {
v ∈ (SD

)K : ∀x ∈ U
∗
K,x · v ≥ 0

}
.

For V a subset of (SD)K , we say that a function f : V → R is tilted if, for every x, y ∈ V , we have

y − x ∈ U
∗
K =⇒ f (x) ≤ f (y),

For any interval I ⊆ R+, we say that a function f : I × V → R is tilted if the function f (t, ·) is tilted for every t ∈ I .
We recall from [19, Lemma 3.5] that a Lipschitz function f is tilted if and only if ∇f ∈ UK almost everywhere. By
Proposition 3.8, we see that the mapping

(4.14)

⎧⎪⎪⎨⎪⎪⎩
R+ × UK → R

(t, x) �→ FN

(
t,

1

K

K∑
k=1

δxk

)

is tilted; and therefore, by [19, Proposition 3.6], that it satisfies the boundary condition for being a subsolution to (4.4).
In the remainder of this subsection, we explain why the strategy used in [19] for the verification of the boundary

condition for being a supersolution cannot be applied in the present more general setting. As just discussed, the gradient
∇FN of the mapping in (4.14) belongs to UK . Suppose that φ is a smooth function such that FN −φ has a local minimum
at (t, x). If x ∈ UK , it then follows that ∇φ = ∇FN , and in particular ∇φ ∈ UK . Notice also that if x = 0, then the cone
generated by n(x) = n(0) is −U

∗
K , by (4.11). Using also (4.13), we thus see that

sup
ν∈n(0)

ν · ∇φ(t,0) ≥ 0 or ∇φ(t,0) ∈ UK.

Whenever x ∈ UK or x = 0, we thus only have to verify the inequality(
∂tφ − H(∇φ)

)
(t, x) ≥ 0

in situations for which ∇φ(t, x) ∈ UK . In [19] (see Step 5 of the proof of Theorem 4.1 there), we could extend this
observation to every x ∈ UK . However, this relied on particular properties of the simpler geometry of the domain under
consideration there, in which SD+ is replaced by R2+ (or RD+ ). This crucial point is no longer valid in our context, as we
explain now. That is, we can find a tilted function f , a smooth test function φ, and a contact point (t, x) ∈ (0,∞) × UK

such that f − φ has a local minimum at (t, x), and yet

sup
ν∈n(x)

ν · ∇φ(t, x) < 0 and ∇φ(t, x) /∈ UK.
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We give an example for which f and φ are constant in time and linear in x (one can then add a linear function of time
to f if one wants to ensure that f is indeed a supersolution). In this case, the condition that (t, x) be a local minimum of
f − φ is equivalent to

(4.15) ∀y ∈ UK, (y − x) · ∇(f − φ) ≥ 0.

We consider, for K = 1 and D = 2, the choice of

x =
(

0 0
0 1

)
, ∇f =

(
4 2
2 1

)
, and ∇φ =

(
1 2
2 1

)
.

We clearly have x ∈ S2+ = U1, ∇f ∈ S2+ = U1 (and therefore f is tilted), and ∇φ /∈ S2+ = U1. The property in (4.15) is
satisfied since

∇(f − φ) =
(

3 0
0 0

)
and for every y ∈ S2+, we have that the (1,1) entry of the matrix y − x is that of y, which is nonnegative, since y ∈ S2+.
On the other hand, since here K = 1, we have that

n(x) = {
ν ∈ SD : |ν| = 1 and ∀y ∈ S2+, (y − x) · ν ≤ 0

}
.

Since we can in particular select y ∈ x + S2+ in this definition, we see using (2.15) that every ν ∈ n(x) must be such
that −ν ∈ S2+. Choosing diagonal matrices for y, we also see that the (2,2) entry of ν must be zero. Since −ν ∈ S2+,
the Cauchy–Schwarz inequality then yields that −ν must be diagonal; and since it is normalized to be of unit norm, we
conclude that

n(x) =
{(−1 0

0 0

)}
.

In particular, the condition ∇φ · ν < 0 is indeed satisfied for every ν ∈ n(x).
The situation described here is unlike the one faced in [19]. In this earlier work, in some sense the problem “only

looks at the diagonal elements of the matrices”; for instance, the “counterexample” above simplifies into x = (0,1),
∇f = (4,1), ∇φ = (1,1), and so ∇φ ∈ R2+, as desired. Our strategy to circumvent this difficulty is to find a suitable
modification of the nonlinearity outside of UK , see (4.19) below.

4.3. Convergence of finite-dimensional approximations

We now proceed to state the convergence of finite-dimensional approximations to (1.8). In order to do so, we first need to
find good “representatives” of a measure μ ∈ P↑(SD) within the sets UK . Mapping an element of UK into a measure is
straightforward: for every x ∈ UK , we can simply consider the measure

(4.16)
1

K

K∑
k=1

δxk
.

There is some flexibility to define a converse operation, mapping a given measure to an element of UK . Fixing K ≥ 1,
and recalling the definition of Mμ from Proposition 2.4, we set, for every μ ∈P↑

1 (SD) and k ∈ {1, . . . ,K},

(4.17) x
(K)
k (μ) := K

∫ k
K

k−1
K

Mμ(u)du.

Notice that x(K)(μ) := (x
(K)
k (μ))1≤k≤K belongs to UK .

We next discuss the discretization of the nonlinearity in (1.8). Recalling (3.24), and for μ of the form in (4.16), we
have ∫

ξ(∂μf )dμ = 1

K

K∑
k=1

ξ(K∂xk
f ).
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Recall also that, for the function of interest to us, namely FN (or more precisely: the function appearing in (4.14)) we
have that ∇FN ∈ UK ; see the discussion around (4.14). In view of this, we set

(4.18) ∀p ∈ UK, HK(p) := 1

K

K∑
k=1

ξ(Kpk).

For almost every p ∈ UK , we can compute

∇HK(p) = (∇ξ(Kp1), . . . ,∇ξ(KpK)
)
.

Since ξ is proper, we see that ∇HK maps UK to itself. In other words, the mapping HK is tilted on UK .
As discussed in the previous subsection, we need to identify a suitable extension of HK to p /∈ UK . For every p ∈

(SD)K , we set

(4.19) HK(p) := inf
{
HK(q) : q ∈ UK ∩ (p + U

∗
K

)}
.

Since HK is tilted over UK , whenever p ∈ UK and q ∈ UK ∩ (p + U
∗
K), we have that HK(p) ≤ HK(q), and therefore

the identity (4.19) is indeed valid when p ∈ UK . We will see in the course of the proof of Proposition 4.5 that HK is
well-defined, finite, and uniformly Lipschitz over (SD)K . Recalling the notation Xμ from (3.12), we are now ready to
state the main result of this section.

Proposition 4.5 (Convergence of finite-dimensional approximations). Let ξ : SD+ → R be a proper and uniformly

Lipschitz function, L < ∞, and ψ :P↑
1 (SD) → R be such that for every μ,ν ∈ P↑

1 (SD),

(4.20)
∣∣ψ(μ) − ψ(ν)

∣∣≤ LE
[|Xμ − Xν |

]
.

For every integer K ≥ 1, with HK defined in (4.18)–(4.19), let f (K) :R+ × UK →R be the viscosity solution to

(4.21)

{
∂tf

(K) −HK

(∇f (K)
)= 0 in (0,∞) × UK,

n · ∇f (K) = 0 on (0,∞) × ∂UK,

with initial condition given, for every x ∈ UK , by

(4.22) f (K)(0, x) = ψ

(
1

K

K∑
k=1

δxk

)
.

For every t ≥ 0 and μ ∈P↑
2 (SD), the following limit exists and is finite:

(4.23) f (t,μ) := lim
K→∞f (K)

(
t, x(K)(μ)

)
,

where on the right side, we use the notation defined in (4.17). By definition, we interpret this limit as the solution to (1.8).
Moreover, there exists a constant C < ∞ such that for every integer K ≥ 1, t ≥ 0, and μ,ν ∈P↑

2 (SD), we have

(4.24)
∣∣f (t,μ) − f (K)

(
t, x(K)(μ)

)∣∣≤ C√
K

(
t + (

E
[|Xμ|2]) 1

2
)
,

as well as

(4.25)
∣∣f (t,μ) − f (t, ν)

∣∣≤ L
(
E
[|Xμ − Xν |2

]) 1
2 .

Remark 4.6. Our redefinition of the nonlinearities HK outside of UK , see (4.19), renders the notation in (1.8) somewhat
misleading. Indeed, since the identity in (4.18) is only valid for p ∈ UK , the notation in (1.8) is only really legitimate if
the solution to (4.21) satisfies ∇f (K) ∈ UK . For tilted initial conditions ψ , this is rather plausible, but this property is not
proved in the present paper. Recall however that we do know that the gradient of the free energy in (4.14) belongs to UK ,
and we ultimately aim to show that f (K) becomes a sharp approximation of this free energy.



1166 J.-C. Mourrat

Proof of Proposition 4.5. The strategy is similar to that for the proof of [19, Proposition 3.7], so we only discuss the
new ingredients. For all integers K , R ≥ 1, we set K ′ := KR, and for every p ∈ (SD)K , we define

(4.26) p′ := 1

R
(p1, . . . , p1,p2, . . . , p2, . . . , pK, . . . ,pK) ∈ (SD

)K ′
,

where each term pk is repeated R times. We claim that

(4.27) HK ′
(
p′)= HK(p).

When p ∈ UK , this is clear, by (4.18). In general, using this observation and (4.19), we readily see that HK ′(p′) ≤ HK(p).
Let q ∈ UK ′ ∩ (p′ + U

∗
K ′),

q̃ :=
(

1

R

R∑
r=1

qr ,
1

R

R∑
r=1

qR+r , . . . ,
1

R

R∑
r=1

q(K−1)R+r

)
∈ (SD

)K
,

and let q̃ ′ ∈ (SD)K
′

be defined from q̃ as p′ was defined from p in (4.26), repeating each coordinate R times. One can
verify that q̃ ′ ∈ UK ′ ∩ (p′ + U

∗
K ′). We also have q̃ − q̃ ′ ∈ U

∗
K ′ , and thus

HK ′(q) ≤ HK ′
(
q̃ ′)= HK(̃q),

where we used (4.27) in UK in the last step. This shows the converse bound HK ′(p′) ≥ HK(p), and completes the proof
of (4.27) for arbitrary p ∈ (SD)K . This ensures that the argument in the first step of the proof of [19, Proposition 3.7] still
applies.

In order to get the remainder of this proof to work, the key point is to verify that the nonlinearity HK is Lipschitz
continuous, uniformly over K , once the norms are scaled properly in terms of K . The rescaled norm is defined, for every
p ∈ (SD)K , by

|p|2∗ :=
(

1

K

K∑
k=1

(
K|pk|

)2) 1
2

.

We show that there exists a constant C < ∞ such that for every K ≥ 1 and p,p′ ∈ (SD)K ,

(4.28)
∣∣HK

(
p′)−HK(p)

∣∣≤ C
∣∣p′ − p

∣∣
2∗.

When p and p′ both belong to UK , the validity of (4.28) follows from (4.18) and the fact that ξ is Lipschitz continuous.
For the general case, with arbitrary p,p′ ∈ (SD)K , let m denote the projection of p′ − p onto UK . In other words,
m ∈ UK is the minimizer of the mapping m′ �→ |p′ − p − m|2 over UK . Since UK is closed, the point m is well-defined,
and since it is also convex, we have

∀v ∈ UK, (v − m) · (p′ − p − m
)≤ 0.

Since UK is a cone, we can in particular choose v = αm in the expression above, for every α ∈ [0,∞). It follows that

(4.29)
(
p′ − p − m

) · m = 0,

and thus

∀v ∈ UK, v · (p′ − p − m
)≤ 0.

By (4.11), this means that p − p′ + m ∈ U
∗
K . From this, we now deduce that

(4.30) ∀q ∈ UK ∩ (p + U
∗
K

)
, q + m ∈ UK ∩ (p′ + U

∗
K

)
.

Indeed, since UK is a convex cone, and q,m ∈ UK , we clearly have q + m ∈ UK . By assumption, we also have that
q − p ∈ U

∗
K , and since p − p′ + m ∈ U

∗
K , we obtain that q + m ∈ p′ + U

∗
K . In particular, using (4.30) with p = 0, we

see that UK ∩ (p′ + U
∗
K) is not empty. Recalling (4.29), we also have that∣∣p′ − p

∣∣2 = ∣∣p′ − p − m
∣∣2 + |m|2,



Free energy upper bound for mean-field vector spin glasses 1167

and in particular,

|m| ≤ ∣∣p′ − p
∣∣.

Since q and q + m both belong to UK , we can thus combine this with (4.28) to get that∣∣HK(q + m) −HK(q)
∣∣≤ C

∣∣p′ − p
∣∣
2∗.

Since this derivation is valid for every q ∈ UK ∩ (p + U
∗
K), we deduce that

HK(p) ≥ HK

(
p′)− C

∣∣p′ − p
∣∣
2∗.

Having established this inequality for every p,p′ ∈ (SD)K , we have thus completed the proof of (4.28). We can then
follow the arguments from the proof of [19, Proposition 3.7] to obtain the announced results. �

5. The free energy is a supersolution

In this section, we show that finite-dimensional approximations of the function FN are approximate supersolutions to the
finite-dimensional equations appearing in (4.21). We then combine this result with Proposition 4.5 to prove Theorems 3.4
and 1.1. Throughout the section, we fix a regularization ξ of the function ξ appearing in (1.1). Recall that the definition of
a regularization appears just before the statement of Theorem 1.1, and that the nonlinearity HK is defined in (4.18)–(4.19),
and that the function FN is defined in (3.8)–(3.9).

Proposition 5.1 (Approximate supersolution). There exists a constant C < ∞ (depending only on D and ξ ) such that
the following holds. Let K ≥ 1 be an integer, and for every t ≥ 0 and q ∈ UK , denote

(5.1) F
(K)

N (t, q) := FN

(
t,

1

K

K∑
k=1

δqk

)
.

Let f be any subsequential limit of F
(K)

N as N tends to infinity. The function f is a solution to

(5.2)

⎧⎨⎩∂tf −HK(∇f ) ≥ − C

K
in (0,∞) × UK,

n · ∇f ≥ 0 on (0,∞) × ∂UK.

Since FN(0, δ0) = 0 and FN is Lipschitz continuous, see Proposition 3.1 and (3.25), it is clear that the family of

functions (F
(K)

N )N≥1 is precompact for the topology of uniform convergence. We understand the notion of subsequential
limits in the statement of Proposition 5.1 as referring to this topology.

As should be apparent from (3.27), the proof of Proposition 5.1 will rely on the fact that the overlap matrix σσ ′∗ is
essentially determined by the knowledge of the overlap α ∧ α′. This “synchronization” of the overlaps can be obtained
by using the technique introduced in [24], which itself is based on the proof of ultrametricity obtained in [22]; we will
appeal to the finitary version of these results developed in [19] for this purpose. Compared to the setting explored in [19],
a new difficulty arises, since it is a priori only possible to obtain an approximate synchronization of the symmetric part of
the matrix σσ ′∗. To overcome this, we will borrow an argument from [25] allowing to show that the antisymmetric part
of the matrix N−1σσ ′∗ tends to zero as N tends to infinity.

As discussed below (3.27), we stress that the synchronization and “symmetrization” properties described above will
not be shown to hold for every possible choice of the parameters. First, we will add various additional terms to the energy
function. Contrary to the “enrichment” of the energy function that was performed in Section 3, here the additional terms
will be perturbative, in the sense that they will not affect the value of the limit free energy. On the other hand, recall

that our goal here is to show that F
(K)

N is an approximate supersolution to (5.2). By slightly tilting the test function φ

appearing in Definition 4.1, we will be able to “activate” these perturbative parameters, and show that the synchronization
and symmetrization properties hold at the contact point appearing in Definition 4.1, up to a small error. In fact, we will
show that at the contact point, the perturbative terms ensure the validity (up to a small error) of certain distributional
identities involving multiple overlaps, which are usually called Ghirlanda–Guerra identities; and these in turn imply the
sought-after synchronization and symmetrization properties.
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We start by introducing some notation. Let (σ 
,α
)
≥1 be a family of independent copies of (σ,α) under the Gibbs
measure 〈·〉. Recall that this measure depends on the choice of parameters (t,μ) ∈ R+ ×P↑

1 (SD+ ); throughout this section
we understand that the measure μ is of the form

1

K

K∑
k=1

δqk
,

for some integer K ≥ 1 and q ∈ UK , in agreement with (5.1). For every 
, 
′ ≥ 1, we write

R

,
′
0 := α
 ∧ α
′

K
, R


,
′
+ = (

R

,
′
d,d ′

)
1≤d,d ′≤D

= σ
(σ 
′
)∗

N
, R
,
′ = (

R

,
′
0 ,R


,
′
+
)
,

and for every n ≥ 1,

R≤n := (
R
,
′)

1≤
,
′≤n
, R := (

R
,
′)

,
′≥1.

For every 
, 
′ ≥ 1, we denote by R

,
′
sym and R


,
′
skew the symmetric and skew-symmetric parts of the matrix R


,
′
+ respec-

tively. That is, for every d, d ′ ∈ {1, . . . ,D},

R

,
′
sym,d,d ′ = R


,
′
d,d ′ + R


,
′
d ′,d

2
and R


,
′
skew,d,d ′ = R


,
′
d,d ′ − R


,
′
d ′,d

2
.

For every matrix A ∈ RD×D and integer p ≥ 1, we denote by A�p its p-fold Schur product, that is, for every d, d ′ ∈
{1, . . .D}, (

A�p
)
d,d ′ = (Ad,d ′)p.

We denote by (λn)n∈N an enumeration of the set [0,1] ∩ Q, and by (an)n∈N an enumeration of the set of matrices
in SD+ with norm bounded by 1 and rational coefficients. For convenience, we impose that λ0 = 0, a0 = 0, and that
(a1, . . . , aD(D+1)

2
) is a basis of SD (which we can fix explicitly).

Proposition 5.2 (GG implies symmetrization and synchronization). There exists a constant C < ∞ depending only
on D and, for every ε > 0, an integer h+ ≥ 1 such that the following holds for every N , K ≥ 1, t ≥ 0, and q ∈ UK .
Assume that, for every continuous function f = f (R≤n) such that ‖f ‖L∞ ≤ 1 and n,h1, . . . , h4 ∈ {0, . . . , h+}, we have∣∣∣∣∣E〈f (R≤n

)(
ah1 · (R1,n+1

+
)�h2 + λh3R

1,n+1
0

)h4
〉

− 1

n
E
〈
f
(
R≤n

)〉
E
〈(
ah1 · (R1,2

+
)�h2 + λh3R

1,2
0

)h4
〉

(5.3)

− 1

n

n∑

=2

E
〈
f
(
R≤n

)(
ah1 · (R1,


+
)�h2 + λh3R

1,

0

)h4
〉∣∣∣∣∣≤ 1

h+
.

We then have

(5.4) E
〈∣∣R1,2

skew

∣∣〉≤ ε

and

(5.5) E
〈|R1,2

+ −E
〈
R

1,2
+
∣∣R1,2

0

〉∣∣2〉≤ C

K
+ εK3.

Remark 5.3. The phrase “for every N , K ≥ 1, t ≥ 0, and q ∈ UK” in the statement of Proposition 5.2 is a convenience
employed here to avoid changing setting and notation, but can be replaced by something more general. Indeed, the
statement really applies to any random Gibbs measure 〈·〉 defined on HD

N for any Hilbert space HN , provided that the

support of the measure 〈·〉 is contained in the unit ball, and that the law of R
1,2
0 is sufficiently “spread out”; see [19,

Proposition 5.5] for a more precise statement. Another notational convenience employed here is that, as will be seen
below, the proof of Proposition 5.2 only really uses (5.3) with h2 ∈ {1,2} (and this is not the only case that appears in the
assumption but is not actually used in the proof: for instance, in the case of h2 = 2, we only use (5.3) with h3 = 0).
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Proof of Proposition 5.2. For every a ∈ SD+ and 
, 
′ ∈HD
N , we have

a · R
,
′
+ =

√
aσ 


√
N

·
√

aσ 
′
√

N
.

We can thus appeal to [19, Proposition 5.5] to obtain the existence of an integer h+ ∈ N such that, under the assumption
that (5.3) holds for every n,h1, . . . , h4 ∈ {0, . . . , h+}, we have for every h1 ∈ {0, . . . , h+} that

E
〈(
ah1 · R1,2

+ −E
〈
ah1 · R1,2

+ |R1,2
0

〉)2〉≤ 12

K
+ εK3.

For h+ ≥ D(D+1)
2 , the sequence (ah1)h1∈{0,...,h+} contains a given basis of SD . It thus follows that, for some constant

C < ∞ that depends only on D,

E
〈|R1,2

sym −E
〈
R1,2

sym

∣∣R1,2
0

〉∣∣2〉≤ C

K
+ CεK3.

This is (5.5) for the symmetric part of R
1,2
+ , up to a redefinition of ε > 0. It thus remains to show that (5.4) holds for h+

sufficiently large. We argue by contradiction, assuming that no such h+ exists. That is, we assume that there exists ε > 0
and, for every h+ ∈ N, a random Gibbs measure 〈·〉 such that (5.4) is invalid. Up to the extraction of a subsequence, we
can further assume that the overlap array R converges in law under the measure E〈·〉, in the sense of finite-dimensional
distributions. We denote a limit overlap array by R, defined with respect to a probability measure M. In particular, we
have that, for every n,h1, . . . , h4 ∈N,

M
[
f
(
R≤n

)(
ah1 · (R1,n+1

+
)�h2

)h4
]

= 1

n
M
[
f
(
R≤n

)]
M
[(

ah1 · (R1,2
+
)�h2

)h4
]+ 1

n

n∑

=2

M
[
f
(
R≤n

)(
ah1 · (R1,


+
)�h2

)h4
]
,

(5.6)

while

M
[∣∣R1,2

skew

∣∣]≥ ε.

We can then use the argument from the proof of [25, Theorem 3] to reach a contradiction. We recall this argument briefly
here. Notice first that, by density and linearity, the identity (5.6) holds for every ah1 ∈ SD+ . Using this relation with h2 = 1

and arguing as in [24] or [19], we have that R1,2
sym is monotonically coupled. Indeed, this follows from the fact that for

each a, b ∈ SD+ , the hypothesis of [19, Theorem 5.3] is satisfied with the quantities R
1,n+1
1 and R

1,n+1
2 appearing there

replaced by a · R
1,2
sym and b · R

1,2
sym respectively, and with δ > 0 arbitrary. The same holds for the symmetric part of the

matrix (R1,2
+ )�2, using (5.6) with h2 = 2. Using also Talagrand’s positivity principle, see [23, Theorem 2.16], it thus

follows that the laws of these matrices have representations as described in Proposition 2.4. Notice also that for every
M ∈ M (with M defined in Proposition 2.4), there exists a function that allows us to calculate the value of M(u) from
the knowledge of its trace only; indeed, this follows from the fact that the function M cannot increase while keeping
its trace constant. In particular, with probability one, the entire matrix R1,2

sym can be recovered from the knowledge of its

trace only. The knowledge of the matrix R1,2
sym then allows us to compute the trace of the symmetric part of (R1,2

+ )�2, and
therefore to also recover all of the entries of this symmetric matrix as well. These observations combine to ensure that,
for each d, d ′ ∈ {1, . . .D}, the quantities

R1,2
d,d ′ +R1,2

d ′,d and
(
R1,2

d,d ′
)2 + (

R1,2
d ′,d

)2
can be inferred from the knowledge of tr(R1,2

sym). In particular, for a given value of tr(R1,2
+ ) and for each d, d ′ ∈ {1, . . . ,D},

we can infer the identity of the set {
R1,2

d,d ′ ,R
1,2
d ′,d

}
.

We aim to show that this set has cardinality one. Here and throughout the rest of this proof, we keep the indices d, d ′ ∈
{1, . . . ,D} fixed.

By (5.6) and [22], we have that the array Id ·R+ = tr(R+) is ultrametric. As a consequence, it satisfies the duplication
property. That is, if t ∈ R is a point in the support of tr(R1,2

sym), then for each integer n ≥ 1, the support of (R≤n
+ ) contains a
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point R̃≤n such that, for every 
 �= 
′ ≤ n, we have tr(R̃
,
′
) = t. It thus follows that there exist r, r ′ ∈ R such that for this

overlap array R̃≤n in the support of (R≤n
+ ), we have for every 
 �= 
′ ∈ {1, . . . , n} that{

R̃

,
′
d,d ′ , R̃


,
′
d ′,d

}= {
r, r ′}.

Arguing by contradiction, suppose that r �= r ′. We can then construct a graph with vertex set {1, . . . , n} and, for each

 �= 
′ ∈ {1, . . . , n}, draw an oriented edge from 
 to 
′ if R̃


,
′
d,d ′ = r and R̃


,
′
d ′,d = r ′; and draw an oriented edge from 
′ to 


otherwise. In this graph, there exist two disjoint subsets V , V ′ of {1, . . . , n} of cardinality sn, with sn → ∞ as n tends to
infinity, such that every edge between a point in V and a point in V ′ is oriented from V to V ′ (see for instance [10]). By
[23, Theorem 1.7], there exist variables (σ 
)
≥1 taking values in the unit ball of HD for some Hilbert space H and such
that for every 
 �= 
′, we have R̃
,
′ = σ
(σ 
′

)∗. We set

b := 1

|V |
∑

∈V

σ 
, b′ := 1

|V |
∑

∈V ′

σ
,

and consider ∣∣b − b′∣∣2 = 1

|V |2
D∑

d ′′=1

∣∣∣∣∑

∈V

σ 

d ′′ −

∑

∈V ′

σ

d ′′

∣∣∣∣2.
Expanding the square, and recalling that σ


d ′′ · σ
′
d ′′ does not depend on (
, 
′) provided that 
 �= 
′, we obtain the existence

of a constant C < ∞ not depending on n such that

∣∣b − b′∣∣2 ≤ C

|V | .

However, by the construction of V and V ′, we have bd ·b′
d ′ = r and b′

d ·bd ′ = r ′. Combining these observations yields that

|r − r ′| ≤ 2(C/|V |) 1
2 . Since n was arbitrary, and |V | = sn tends to infinity with n, we conclude that r = r ′, as desired. �

We now proceed to introduce the random fields that we will add to the energy function as small perturbations. These
perturbations will be used later to ensure the validity of the assumption in Proposition 5.2. For every h = (h1, . . . , h4) ∈
N4, let (Hh

N(σ,α))σ∈HD
N ,α∈Nk be the centered Gaussian random field whose covariance is such that, for every σ, τ ∈ HD

N

and α,β ∈ Nk , we have

(5.7) E
[
Hh

N(σ,α)Hh
N(τ,β)

]= N

(
ah1 ·

(
στ ∗

N

)�h2

+ λh3

α ∧ β

K

)h4

.

The existence of these random fields is shown in Section 6, see in particular (6.2) and Proposition 6.5. We assume that they
are independent of each other, and independent of any other sources of randomness in the problem. For an integer h+ ∈N

that will be chosen sufficiently large as a function of K in the course of the proof, and setting h̃+ := (h+ + 1)4 + D(D+1)
2 ,

we define our perturbation by setting, for every x ∈ Rh̃+ , σ ∈HD
N and α ∈Nk ,

(5.8) Hx
N(σ,α) := N− 1

16
∑

h∈{0,...,h+}4

xhH
h
N(σ,α) + N− 1

16

D(D+1)/2∑
h=1

xhah · σσ ∗,

where we use the following non-standard indexing convention for x ∈ Rh̃+ :

x = (
(xh)h∈{0,...,h+}4, (xh)h∈{1,...,D(D+1)/2}

)
.

As has become clear, we allow ourselves to use essentially the same notation for H
μ
N , Hh

N , and Hx
N , which are defined

respectively in (3.7), (5.7), and (5.8). This allows us to avoid heavier notation, and does not in fact create ambiguities,
provided that the “type” of the “exponent” is known: the quantity μ in (3.7) is a probability measure; the quantity h in
(5.7) belongs to N4; and the quantity x in (5.8) belongs to Rh̃+ . The same remarks apply as well to the notation xh, which

refers to different things according to whether h ∈ {0, . . . , h+}4 or h ∈ {1, . . . ,
D(D+1)

2 }. The prefactor N− 1
16 in (5.8) will
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ensure that this additional energy function does not contribute to the limit free energy. We now add this perturbative term
to the definition in (3.8): that is, for every t ≥ 0, μ as in (3.1), and x ∈Rh̃+ , we set

FN(t,μ,x) := − 1

N
log

∫ ∑
α∈NK

exp

(√
2tHN(σ ) − Ntξ

(
σσ ∗

N

)

+ H
μ
N(σ,α) − σ · qKσ + Hx

N(σ,α)

)
vα dPN(σ),

as well as FN(t,μ,x) := E[FN(t,μ,x)]. It is again convenient to use the same notation as that introduced in (3.8) and
(3.9) here. The properties of FN obtained in Section 3 are still valid with the new, extended definition of FN , for any fixed
value of x, so the formulas displayed there are still valid. Note also that we can always dispel any possible confusion as
to the identity of the function we wish to refer to by writing, respectively, (t,μ) �→ FN(t,μ) and (t,μ, x) �→ FN(t,μ,x).

The next proposition gives an upper bound on the size of the fluctuations of FN .

Proposition 5.4 (concentration property). Let K , h+ ≥ 1 be integers, and for every (t, q, x) ∈R+ × UK ×Rh̃+ , let

F
(K)
N (t, q, x) := FN

(
t,

1

K

K∑
k=1

δqk
, x

)
, F

(K)

N (t, q, x) := E
[
FN(t, q, x)

]
.

For every M ∈ [0,∞), p ∈ [1,∞), and ε > 0, there exists a constant C < ∞ such that, letting

BM :=
{
(t, q, x) ∈R+ × UK ×Rh̃+ : t ≤ M, |qK | ≤ M,

and ∀h ∈ {0, . . . , h+}4 ∪
{

1, . . . ,
D(D + 1)

2

}
, |xh| ≤ M

}
,

we have for every N ≥ 1 that

E

[
sup
BM

∣∣F (K)
N − F

(K)

N

∣∣p] 1
p ≤ CN− 1

2 +ε.

The proof of Proposition 5.4 is similar to that of [19, Proposition 4.2] and relies on relatively classical techniques, so
we will not provide further details here. We record for future use that for every h ∈ {0, . . . , h+}4, we have, by Gaussian
integration by parts,

∂xh
FN = −N−1− 1

16 E
〈
Hh

N(σ,α)
〉

= N− 1
8 xhE

〈(
ah1 ·

(
σσ ′∗

N

)�h2

+ λh3

α ∧ α′

K

)h4

−
(

ah1 ·
(

σσ ∗

N

)�h2

+ λh3

)h4
〉
,

while, for every h ∈ {1, . . . ,
D(D+1)

2 },
∂xh

FN = −N−1− 1
16 E

〈
ah · σσ ∗〉.

We are now ready to prove the main result of this section.

Proof of Proposition 5.1. We fix h+ sufficiently large that Proposition 5.2 holds with ε = K−4. Throughout the proof,

we lighten the notation and write FN and FN in place of F
(K)
N and F

(K)

N . With this convention in place, recall that
the function appearing in the statement of Proposition 5.1 is (t, q) �→ FN(t, q), and we will also use the “extended”
function (t, q, x) �→ FN(t, q, x) during the course of the proof. Let f be a subsequential limit of (t, q) �→ FN(t, q). For
convenience, we also omit to denote the subsequence along which the convergence of (t, q) �→ FN(t, q) to f holds.

Since our aim is to show that f is a solution to (5.2), we give ourselves (t∞, q∞) ∈ (0,∞) × UK , and a smooth
function φ ∈ C∞((0,∞) × UK) such that f − φ has a local minimum at (t∞, q∞). We will show that, for a constant
C0 < ∞ that depends only on D and ξ , we have

(5.9)
(
∂tφ − HK(∇φ)

)
(t∞, q∞) ≥ −C0

K
.
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The structure of the proof is similar in outline to that of [19, Theorem 4.1]. Whenever the arguments are similar, we will
thus simply recall this structure; we only provide details when the arguments differ. We denote by C < ∞ a constant that
may depend on D, ξ , K , h+ (itself already fixed in terms of K), φ, t∞, and q∞. We write

x∞ = (1, . . . ,1) ∈Rh̃+ ,

and set, for every (t, q, x) ∈ (0,∞) × UK ×Rh̃+ ,

φ̃(t, q, x) := φ(t, q) − (t − t∞)2 − |q − q∞|2 − |x − x∞|2.

As in [19], we can identify (tN , qN, xN) ∈ (0,∞) × UK × Rh̃+ which, for N sufficiently large, is a local minimum of
FN − φ̃, and such that

(5.10) lim
N→∞(tN , qN , xN) = (t∞, q∞, x∞).

Using this property, one can show that

(5.11) −C ≤ ∇2
xFN(tN , qN, xN) ≤ 0

(this follows from [19, (4.25)]); and using also Proposition 5.4, that for every ε > 0,

(5.12) E
[∣∣∇x(FN − FN)(tN , qN, xN)

∣∣2]≤ CN− 1
2 +ε,

where the constant C < ∞ is now also allowed to depend on ε > 0. These two estimates ensure the concentration of
Hh

N(σ,α). Indeed, we start by writing, for every h ∈ {0, . . . , h+}4,

E
〈(
Hh

N −E
〈
Hh

N

〉)2〉= E
〈(
Hh

N − 〈
Hh

N

〉)2〉+E
〈(〈

Hh
N

〉−E
〈
Hh

N

〉)2〉
.

Moreover,

∂2
xh

FN = N−1− 1
8 E
〈(
Hh

N − 〈
Hh

N

〉)2〉
,

and

∂xh
(FN − FN) = N−1− 1

16
(〈
Hh

N

〉−E
〈
Hh

N

〉)
.

Combining this with (5.11) and (5.12), we thus get that, for every h ∈ {0, . . . , h+}4,

(5.13) E
〈(
Hh

N −E
〈
Hh

N

〉)2〉≤ CN
3
2 + 1

8 +ε,

where we implicitly understand that this relation is for the parameters (tN , qN , xN). The same reasoning also gives that,
for every h ∈ {1, . . . ,

D(D+1)
2 },

(5.14) E
〈(
ah · σσ ∗ −E

〈
ah · σσ ∗〉)2〉≤ CN

3
2 + 1

8 +ε.

It follows from (5.13) that, for every n ∈N and function g = g(R≤n) satisfying ‖g‖L∞ ≤ 1,∣∣E〈g(R≤n
)
Hh

N(σ,α)
〉−E

〈
g
(
R≤n

)
Hh

N(σ,α)
〉∣∣≤ CN

3
4 + 1

16 +ε.

A Gaussian integration by parts then essentially ensures the validity of (5.3), with in fact a right-hand side that is re-

placed by N− 1
8 +ε . The only difference is that there are some spurious “self-overlap” terms involving σσ ∗. These can be

controlled using (5.14).
At this stage, we can then appeal to Proposition 5.2, and recall our choice of h+, to deduce that, for a constant C0 < ∞

which only depends on D, we have

N−2E
〈|σσ ′∗ −E

〈
σσ ′∗∣∣α ∧ α′〉∣∣2〉≤ C0

K
.
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(This is still understood to be for the parameters (tN , qN, xN).) Allowing ourselves to enlarge the constant C0 if necessary,
and to let it depend on ξ as well as D, we thus infer from (3.27) that∣∣∣∣∣∂tFN − 1

K

K∑
k=1

ξ(K∂qk
FN)

∣∣∣∣∣(tN , qN, xN) ≤ C0

K
.

Since each coordinate of the positive semidefinite matrix K∂qk
FN = N−2E〈σσ ′∗|α ∧ α′ = k〉 is bounded by 1, we may

as well replace ξ by ξ in the above display. Moreover, by Proposition 3.6, we have that ∇qFN ∈ UK . Recalling also
(4.18), we thus get that

(5.15)
∣∣∂tFN −HK(∇qFN)

∣∣(tN , qN, xN) ≤ C0

K
.

We now argue that

(5.16)
(
HK(∇qFN) −HK(∇q φ̃)

)
(tN , qN, xN) ≥ 0.

In view of (4.19), this would follow from

(5.17) (∇qFN − ∇q φ̃)(tN , qN , xN) ∈ U
∗
K.

Since (tN , qN, xN) is a local minimum of FN − φ̃, we have for every q ′ ∈ UK that(
q ′ − qN

) · (∇qFN − ∇q φ̃)(tN , qN, xN) ≥ 0.

In particular, since UK is a convex cone, we can substitute (q ′ − qN) by q ′ in the display above. Recalling also (4.11),
we obtain (5.17).

We can now combine (5.15), (5.16), and the observation that ∂t (FN − φ̃)(tN , qN, xN) = 0, to obtain that(
∂t φ̃ −HK(∇q φ̃)

)
(tN , qN, xN) ≥ −C0

K
.

Since φ̃ is smooth and HK is continuous, see (4.28), we then use (5.10) to replace (tN , qN , xN) by (t∞, q∞, x∞) in the
above display. In view of the definition of φ̃, this yields (5.9). �

6. Examples

In this section, we present examples of spin systems that satisfy the assumptions of the present paper. These include
vector-valued spins, spins with multiple types, as well as systems in which a spin system is coupled with a random
variable coming from a Poisson–Dirichlet cascade. The main point is to encode each of these situations in the form of
(1.1), and to verify that the function ξ appearing there is proper. We recall that a function ξ : SD+ →R is said to be proper
if it is increasing and for every b ∈ SD+ , the mapping a �→ ξ(a + b) − ξ(a) is increasing over SD+ . If ξ is continuously
differentiable, then this is equivalent to the statement that ∇ξ takes values in SD+ , and is increasing there. We will most of
the time discuss functions ξ defined on the whole set RD×D of D-by-D matrices; in this case, we say that ξ is proper if its
restriction to SD+ is proper. After going through several examples and explaining how they fit into the present framework,
we show in Proposition 6.6 that, up to a regularity assumption on ξ , every function ξ such that (1.1) holds must be proper.
In the last subsection, we explain how to build regularizations as defined in the paragraph preceding Theorem 1.1.

6.1. Vector-valued spins

We fix HN =RN , an integer p ≥ 2, coefficients β1, . . . , βD ≥ 0, and for each σ = (σd,i)1≤d≤D,1≤i≤N ∈RD×N , we set

HN(σ) := N− p−1
2

D∑
d=1

βd

∑
1≤i1,...,ip≤N

Ji1,...,ipσd,i1 · · ·σd,ip ,

where (Ji1,...,ip )1≤i1,...,ip≤N are independent standard Gaussians. This model was treated in the case when p is even in
[26]. One motivation for considering this model is the situation in which the vectors σ1 and σ2 ∈ RN are two “replicas”
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with some nontrivial coupling, and this motivates the choice of using the same random coupling variables Ji1,...,ip for all
values of d . The following more general model could also be considered:

(6.1) HN(σ) := N− p−1
2

D∑
d=1

∑
1≤i1,...,ip≤N

J
(d)
i1,...,ip

σd,i1 · · ·σd,ip ,

where, for each i1, . . . , ip , the Gaussian vector (J
(d)
i1,...,ip

)1≤d≤D has covariance C ∈ RD×D , and where these vectors
are independent as we vary i1, . . . , ip (and we can absorb the parameters βd into the covariance matrix C). For every
σ, τ ∈ RD×N , we have

E
[
HN(σ)HN(τ)

]= N

D∑
d,d ′=1

Cd,d ′
(

σd · τd ′

N

)p

.

Letting ξ :RD×D →R denote the function

ξ(A) :=
D∑

d,d ′=1

Cd,d ′Ap

d,d ′

thus allows us to match the expression in (1.1). Denoting by A�p the p-fold Schur product of A, that is, for every
d, d ′ ∈ {1, . . . ,D}, (

A�p
)
d,d ′ := (Ad,d ′)p,

we can rewrite the function ξ as

(6.2) ξ(A) = C · A�p.

We also write A � B to denote the Schur product of two matrices A,B ∈ RD×D , that is, for every d, d ′ ∈ {1, . . . ,D}, we
set

(A � B)d,d ′ := Ad,d ′Bd,d ′ .

Proposition 6.1 (Convexity criterion and monotonicity of ∇ξ ).

(1) For every C ∈ SD+ and integer p ≥ 2, the function ξ defined in (6.2) is proper.
(2) The function ξ is convex over SD+ if and only if one of the following two conditions hold:

(a) the integer p is even and every entry of the matrix C is nonnegative;
(b) the integer p is odd and the matrix C is diagonal.

Proof. The statement that ∇ξ is increasing over SD+ can be equivalently rewritten as: for every A,B,E ∈ SD+ ,

(6.3) A ≤ B =⇒ ∇ξ(A) · E ≤ ∇ξ(B) · E.

For every A,E ∈ RD×D , we have, as ε → 0,

(6.4) ξ(A + εE) = ξ(A) + pC · (εA�p−1 � E + (p − 1)ε2A�p−2 � E�2)+ O
(
ε3).

In particular,

∇ξ(A) · E = pC · (A�p−1 � E
)
.

By the Schur product theorem, see e.g. [36, Theorem 7.21], if A,B ∈ SD+ are such that A ≤ B , then A�p−1 ≤ B�p−1.
Using the Schur product theorem once more yields (6.3). The fact that ∇ξ maps SD+ into itself can be proved in the same
way.

Coming back to (6.4), we see that the convexity of the function ξ over SD+ is equivalent to the statement that, for every
A ∈ SD++ and E ∈ SD , we have

(6.5) C · (A�p−2 � E�2)≥ 0.
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If p is even and every entry of C is nonnegative, then (6.5) is clearly satisfied. Irrespectively of the value of p, each
diagonal element of A is nonnegative, since A ∈ SD+ . Hence, each diagonal element of the matrix A�p−2 � E�2 is
nonnegative. Recalling also that C ∈ SD+ , we see that the condition (6.5) is also satisfied whenever C is a diagonal matrix.

Suppose now that some non-diagonal element of C is nonzero; without loss of generality we may assume that C1,2 �= 0,
and denote s := − C1,2

2|C1,2| ∈ {− 1
2 , 1

2 }. We choose matrices A and E that only have nonzero coordinates at indices in {1,2}2,
so that we can represent them as 2-by-2 matrices. Consider

A :=
(

1 s

s 1

)
∈ SD++, and E :=

(
0 1
1 0

)
∈ SD.

Then

A�p−2 � E�2 =
(

0 sp−2

sp−2 0

)
,

so that

C · (A�p−2 � E�2)= (−1)p−2
C

p−1
1,2

2p−1|C1,2|p−2
.

This violates (6.5) whenever p is odd, and also whenever p is even and C1,2 < 0. �

Remark 6.2. Similar arguments allow us to build functions that are convex (and with null gradient at the origin) but not
proper; examples can for instance be constructed by defining ξ as in (6.2), for an even integer p and a matrix C with
nonnegative entries, but with C /∈ SD+ . As shown in greater generality in Proposition 6.6 below, for such functions, there
does not exist any Gaussian random field (HN) such that (1.1) holds.

6.2. Multiple types of spins

We partition the set {1, . . . ,N} into

{1, . . . ,N} =
D⋃

d=1

Id,

where the subsets (Id)1≤d≤D are pairwise disjoint. Following [24], we would like to represent energy functions such as

(6.6)
1√
N

N∑
i,j=1

Jijσiσj ,

where (Jij ) are independent Gaussians whose variance may depend on the identity of the indices d , d ′ such that i ∈ Id

and j ∈ Id ′ . In order to fit this model into our framework, we reparametrize σ as σ = (σd,i)1≤d≤D,1≤i≤N ∈ RD×N , and
rewrite the energy function in (6.6) as

(6.7) HN(σ) := 1√
N

D∑
d1,d2=1

N∑
i,j=1

J
(d1,d2)
ij σd1,iσd2,j ,

where (J
(d1,d2)
ij )1≤d1,d2≤D,1≤i,j≤N are centered Gaussian random variables, and the D2-dimensional vectors

((J
d1,d2
ij )1≤d1,d2≤D)1≤i,j≤N are independent and identically distributed as the indices i and j vary. We denote by

C ∈ SD2×D2

+ the covariance matrix of the vector (J
(d1,d2)
ij )1≤d1,d2≤D , that is, for every d1, d2, d

′
1, d

′
2 ∈ {1, . . . ,D},

C(d1,d2),(d
′
1,d

′
2)

:= E
[
J

(d1,d2)
ij J

(d ′
1,d

′
2)

ij

]
.

To recover the model in (6.6), we would impose that the matrix C be diagonal, and focus on reference measures PN such
that with PN -probability one, we have for every d ∈ {1, . . . ,D} and i ∈ {1, . . . ,N} \ Id that σd,i = 0.
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For every σ, τ ∈ RD×N , we have

E
[
HN(σ)HN(τ)

]= 1

N

D∑
d1,d2,d

′
1,d

′
2=1

C(d1,d2),(d
′
1,d

′
2)

(σd1 · τd ′
1
)(σd2 · τd ′

2
).

This identity is of the form given in (1.1), provided that we set, for every A ∈ RD×D ,

(6.8) ξ(A) :=
D∑

d1,d2,d
′
1,d

′
2=1

C(d1,d2),(d
′
1,d

′
2)

Ad1,d
′
1
Ad2,d

′
2
.

Proposition 6.3 (Convexity criterion and monotonicity of ξ ).

(1) For every C ∈ SD2

+ , the function ξ defined in (6.8) is proper.

(2) Let Ĉ ∈ RD2×D2
be obtained from C by rearranging its entries in such a way that, for every d1, d2, d

′
1, d

′
2 ∈ {1, . . . ,D},

Ĉ(d1,d
′
1),(d2,d

′
2)

:= C(d1,d2),(d
′
1,d

′
2)

.

The function ξ is convex if and only if the symmetric part of the matrix Ĉ is positive semidefinite.

Proof. For every A,B ∈RD×D , we denote by A⊗B ∈ RD2×D2
the matrix such that, for every d1, d

′
1, d2, d

′
2 ∈ {1, . . . ,D}

(A ⊗ B)(d1,d2),(d
′
1,d

′
2)

= Ad1,d
′
1
Bd2,d

′
2
.

With this notation in place, we can write the function ξ as, for every A ∈ RD×D ,

ξ(A) = C · (A ⊗ A).

Notice that, for every A,E ∈ RD×D , we have

ξ(A + εE) = ξ(A) + εC · (A ⊗ E + E ⊗ A) + O
(
ε2)(ε → 0).

As in the proof of Proposition 6.1, in order to show that ∇ξ is increasing over SD+ , it suffices to verify that, for every
A,B,E ∈ SD+ with A ≤ B , we have

∇ξ(A) · E ≤ ∇ξ(B) · E.

This is equivalent to

C · ((B − A) ⊗ E + E ⊗ (B − A)
)≥ 0.

Recalling that the tensor product of two positive semidefinite matrices is positive semidefinite, see for instance [36,
Theorem 7.20], we obtain the result. The second part of the statement is immediate from the definition of ξ . �

Notice that, whenever C is diagonal, the function ξ actually only depends on the diagonal entries of its argument. In
this case, it is at least heuristically reasonable to expect that the equation (1.8) collapses to one that is posed over RD+ only,
instead of SD+ (since only diagonal elements enter into the equation). This is what was found in [19] in the case D = 2,
and with the matrix C having only one nonzero entry at C(1,2),(1,2). In this case, the matrix Ĉ has only one nonzero entry,
which is off the diagonal, so its symmetric part is not positive semidefinite.

6.3. General tensor models

The model in (6.7) is a generalization of the case p = 2 of the model introduced in (6.1). (Relatedly, the Schur product
A � A is a submatrix of the tensor product A ⊗ A.) One can also introduce a setting that would generalize the model in
(6.1) for arbitrary values of the integer p ≥ 2. We thus fix an integer p ≥ 2, and let (J

(d)
i )d∈{1,...D}p,i∈{1,...,N}p be centered

Gaussian random variables such that the Dp-dimensional Gaussian vectors ((J
(d)
i )d∈{1,...,D}p )i∈{1,...,N}p are independent
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and identically distributed as the index i varies. We denote by C ∈ SDp×Dp

+ the covariance matrix of one of these vectors,
so that for every d,d′ ∈ {1, . . . ,D}p and i ∈ {1, . . . ,N}p ,

Cd,d′ := E
[
J

(d)
i J

(d′)
i

]
.

We then set, for every σ = (σd,i)1≤d≤D,1≤i≤N ∈RD×N ,

HN(σ) := N− p−1
2

D∑
d1,...,dp=1

N∑
i1,...,ip=1

J
(d1,...,dp)

i1,...,ip
σd1,i1 · · ·σdp,ip .

We have that (1.1) holds for the function ξ such that, for every A ∈ RD×D ,

(6.9) ξ(A) = C · A⊗p.

Proposition 6.4. For every C ∈ SDp

+ , the function ξ defined in (6.9) is proper.

Proof. For every A,E ∈ RD×D , we have, as ε tends to zero,

ξ(A + εE) = ξ(A) + εC · (A⊗p−1 ⊗ E + A⊗p−2 ⊗ E ⊗ A + · · · + E ⊗ A⊗p−1)+ O
(
ε2).

The conclusion follows as in the proof of Proposition 6.3. �

The models investigated in [3] are particular examples of this situation, with p = 2 and

Cd,d′ = β2
min(d1,d2)

1{d=d′,|d1−d2|=1}.

In [3], the spin vectors σ1, . . . , σD are thought of as having different total lengths. This can be encoded into the reference
measure PN .

6.4. Poisson–Dirichlet variables

Even for scalar models (called p-spin models), it is of interest to study the interplay between the spin variables and the
Poisson–Dirichlet variables that are being added in the enriched model (for instance, one may want to understand the
concentration of σ · σ ′ conditionally on α ∧ α′ taking a certain value). In this subsection, we explain how these Poisson–
Dirichlet variables can be incorporated into the framework explored in the present paper. Concretely, recall the definition
of H

μ
N(σ,α) in (3.7), for a fixed choice of μ as in (3.1). For every σ, τ ∈ HD

N and α,β ∈NK , we have

(6.10) E
[
H

μ
N(σ,α)H

μ
N(τ,β)

]= 2σ · qα∧βτ = 2qα∧β · στ ∗.

This is only one example of a natural energy function whose correlation features the quantity qα∧β . In order to match
(1.1), we would ideally want to represent this quantity as the matrix of scalar products of some variables in a Hilbert
space. That is, for some Hilbert space Ĥ, we would like to identify a mapping from NK to ĤD , which we may denote by
α �→ α̂, such that α̂β̂∗ = qα∧β , with α̂β̂∗ as in (1.2). Since we have been working with finite-dimensional Hilbert spaces
so far, we will only realize such an identification for arbitrarily large but finite approximations of the set NK . We fix an
integer n ≥ 1, which we think of as being large, and let

An := {0, . . . , n}0 ∪ · · · ∪ {0, . . . , n}K,

with the understanding that {0, . . . , n}0 = {∅}. The set An should be thought of as an approximation of the infinitary tree
of depth K , denoted A, that was introduced in (3.4). We denote by Ln = {0, . . . , n}K the set of leaves of An, and also use
the notation α|k introduced in (3.5) for elements α ∈ Ln. Let (fα)α∈An

be an orthonormal basis of R|An|, and for each
α ∈ Ln, let α̂ be the element of the tensor product RD×D ⊗R|An| defined by

(6.11) α̂ :=
K∑

k=0

(qk − qk−1)
1
2 ⊗ fα|k .
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In order to match the setting of (1.1), we can view RD×D ⊗R|An| as a D-fold Cartesian product:

RD×D ⊗R|An| �RD ⊗RD ⊗R|An| � (
RD ⊗R|An|)D.

Explicitly, writing (ed)1≤d≤D for the canonical basis of RD , we realize the identification above through the mapping

∑
α∈An

D∑
d,d ′=1

aα
dd ′ed ⊗ ed ′ ⊗ fα �→

(∑
α∈An

D∑
d ′=1

aα
1d ′ed ′ ⊗ fα, . . . ,

∑
α∈An

D∑
d ′=1

aα
Dd ′ed ′ ⊗ fα

)
.

Let a, b ∈RD×D ⊗R|An| have the decompositions

a =
∑

α∈An

D∑
d,d ′=1

aα
dd ′ed ⊗ ed ′ ⊗ fα and b =

∑
α∈An

D∑
d,d ′=1

bα
dd ′ed ⊗ ed ′ ⊗ fα.

Using the identification above to rewrite a, b as (ad)1≤d≤D , (bd)1≤d≤D ∈ (RD ⊗ R|An|)D , we have, for every d, d ′ ∈
{1, . . . ,D},

ad · bd ′ =
∑

α∈An

D∑
d ′′=1

aα
dd ′′bα

d ′d ′′ .

If moreover a, b ∈ SD ⊗R|An|, then, using the notation in (1.2),

ab∗ =
∑

α∈An

aαbα.

In particular, in view of (6.11), we have for every α,β ∈ Ln that

α̂β̂∗ = qα∧β,

as desired. In particular, the right side of (6.10) can now be seen as having the same bipartite structure as that investigated
in [19].

Let us write Ĥn := RD ⊗R|An|. In expressions such as (1.1), we understood that the energy function was defined over
the entire Hilbert space, now HD

N × ĤD
n , while so far we have only made sense of the energy function over a subset of this

Hilbert space. The framework could be modified to require the energy function to be defined only on the support of the
measure of interest; however, it is simpler to indeed extend the energy function (σ,α) �→ H

μ
N(σ,α): we give ourselves a

standard Gaussian vector J over the tensor product HN ⊗ Ĥn, and set, for every σ ∈ HD
N and a ∈ ĤD

n ,

H ′
N(σ, a) := J ·

D∑
d=1

σd ⊗ ad.

We then have, for every σ, τ ∈HD
N and a, b ∈ ĤD

n ,

E
[
H ′

N(σ, a)H ′
N(τ, b)

]=
D∑

d,d ′=1

(ad · bd ′)(σd · τd ′) = (
ab∗) · (στ ∗).

We have thus defined a random energy function H ′
N over the entire space HD

N × ĤD
n , and for every α,β ∈ Ln, we have

E
[
H ′

N(σ, α̂)H ′
N(τ, β̂)

]= qα∧β · (στ ∗).
The difference between this model and the one investigated in [19] is contained in the choice of the underlying reference
measure for the variables taking values in ĤD

n . We would want this measure to be a truncated version of∑
α∈Nk

vαδα̂,
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for instance

Qn :=
∑
α∈Nk

(1{α∈Ln}vαδα̂ + 1{α/∈Ln}vαδ0) ∈ P
(
ĤD

n

)
.

We can then let n diverge to infinity with N to get an asymptotically exact description of the model of interest. For
instance, we have indeed that the Gibbs measure over HD

N × ĤD
n proportional to

1{a �=0} exp
(
HN(σ) + H ′

N(σ, a)
)

dPN(σ)dQn(a)

is the image of the measure over HD
N ×Ln proportional to

(6.12)
∑
α∈Ln

exp
(
HN(σ) + H

μ
N(σ,α)

)
dPN(σ)vαδα

under the mapping {
HD

N ×Ln → HD
N × ĤD

n

(σ,α) �→ (σ, α̂).

The measure in (6.12) was only chosen for illustration; the same consideration applies to the measure appearing in (3.10)
for instance (in fact, this measure is of the form of (6.12) after a change of the measure PN ).

6.5. Closure properties of covariance functions

In this subsection, we first discuss the closure properties of the space of functions ξ that satisfy (1.1) for some random
energy function HN . It is straightforward to verify that the space of functions ξ that satisfy (1.1) for some HN is a convex
cone: that is, if ξ1 and ξ2 are two functions in this space, and if α, β ≥ 0, then the function αξ1 + βξ2 also belongs to this
space. This space is also closed under multiplication, as shown in the following proposition.

Proposition 6.5 (Closure under multiplication). Let (H1(σ ))σ∈H and (H2(σ ))σ∈H be two centered Gaussian fields
defined over the same Hilbert space H. There exists a centered Gaussian field (H(σ))σ∈H whose covariance is the
product of the covariances of H1 and H2: for every σ, τ ∈ H,

(6.13) E
[
H(σ)H(τ)

]= E
[
H1(σ )H1(τ )

]
E
[
H2(σ )H2(τ )

]
.

Proof. By Kolmogorov’s extension theorem, it suffices to justify, for every finite subset S of H, the existence of a
centered Gaussian field satisfying (6.13) for every σ, τ ∈ S . This in turn amounts to the verification of the statement that
the matrix (

E
[
H1(σ )H1(τ )

]
E
[
H2(σ )H2(τ )

])
σ,τ∈S

is positive semidefinite. Since, for every a ∈ {1,2}, the matrix (E[Ha(σ)Ha(τ)])σ,τ∈S is positive semidefinite, the desired
result follows from the Schur product theorem. �

In principle, these observations (stability under positive linear combinations and multiplications) allow us to generate
more examples of random fields whose covariance function can be put in the form displayed in (1.1); for instance, the
existence of a random field with covariance given by (6.13) becomes clear. However, except by the obvious operation of
taking positive linear combinations, we cannot generate truly new random fields by proceeding in this way. Indeed, the
general form (6.9), with p ∈ N and C ∈ SDp

+ , encompasses all other examples discussed in the previous subsections; and

for every p,p′ ∈N, C ∈ SD
p
+ , C′ ∈ SDp′

+ , and A ∈RD×D , we have(
C · A⊗p

)(
C′ · A⊗p′)= (

C⊗ C′) · A⊗(p+p′),

with C⊗ C′ ∈ SDp+p′
+ . So far the most general functions ξ that we can construct are therefore of the form

ξ(A) =
+∞∑
p=0

C(p) · A⊗p,
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where C(p) ∈ SDp

+ , and the norm of C(p) decays sufficiently fast (faster than any negative exponential of p would do) as
p tends to infinity. The next proposition provides with some evidence that there cannot be many more examples.

Proposition 6.6 (Characterization of admissible functions). Let D ≥ 1 be an integer, H be a Hilbert space,
(H(σ))σ∈HD be a centered Gaussian field, and ξ : RD×D →R be a function such that, for every σ, τ ∈ HD ,

(6.14) E
[
H(σ)H(τ)

]= ξ
(
στ ∗).

If ξ admits an absolutely convergent power series expansion, then there exists a sequence of matrices (C(p))p∈N, with
C(p) ∈ SDp

+ for every p ≥ 1, such that for every σ, τ ∈ HD ,

(6.15) ξ
(
στ ∗)=

+∞∑
p=0

C(p) · (στ ∗)⊗p
.

Remark 6.7. If the Hilbert space H has dimension less than D, then the statement of (6.15) does not fully determine the
function ξ . However, since we only ever want to refer to functions ξ as they appear in (6.14), this is irrelevant, and we
may modify ξ outside of the set {στ ∗, σ, τ ∈HD} so that (6.15) holds with στ ∗ replaced by any matrix A ∈ RD×D . Once
this is done, the possibly modified function ξ is proper, by Proposition 6.4.

Proof of Proposition 6.6. Without loss of generality, we may assume that the space H is finite-dimensional. The state-
ment is obvious if H = {0}. Otherwise, we may identify H with RI for some integer I ≥ 1, and index every element σ of
HD as σ = (σd)1≤d≤D = (σd,i)1≤d≤D,1≤i≤I . Differentiating the relation (6.14), and using that ξ has a power expansion
and Kolmogorov’s continuity theorem, we can choose of modification of the mapping σ �→ H(σ) that is C∞; and in
fact, we then have that the mapping σ �→ Hp(σ) can be written as a power series. More precisely, for every p ∈ N and
d1, . . . , dp ∈ {1, . . . ,D}, letting

J
(d1,...,dp)

i1,...,ip
:= 1

p!∂
p
σd1,i1 ···σdp,ip

Hp(0),

we have, for every σ ∈RD ,

HN(σ) =
∞∑

p=0

D∑
d1,...,dp=1

I∑
i1,...,ip=1

J
(d1,...,dp)

i1,...,ip
σd1,i1 · · ·σdp,ip .

Notice that, for every p ∈ N, d1, . . . , dp ∈ {1, . . . ,D}, and i1, . . . , ip ∈ {1, . . . , I }, we have uniformly over |σ | ≤ 1 that as
τ tends to 0,

∂p
σd1,i1 ···σdp,ip

ξ
(
στ ∗)= O

(|τ |p),
and as a consequence, for every p,q ∈ N with q < p, d1, . . . , dp, d ′

1, . . . , d
′
q ∈ {1, . . . ,D}, and i1, . . . , ip, i′1, . . . , i′q ∈

{1, . . . , I }, we have

∂p
σd1,i1 ···σdp,ip

∂q
τd′

1,i′1
···τd′

q ,i′q
ξ(0) = 0.

(We implicitly understand that it is the function (σ, τ ) �→ ξ(στ ∗) that is being differentiated.) By differentiation of (6.14),
we thus obtain that for every p,q ∈ N with q < p and d1, . . . , dp, d ′

1, . . . , d
′
q ∈ {1, . . . ,D}, the vectors J (d1,...,dp) and

J (d ′
1,...,d

′
q ) are uncorrelated, and therefore independent, since the family of all the J variables is jointly Gaussian. A similar

reasoning also yields the independence of the components of the vector J (d1,...,dp). Denoting by C(p) ∈ SDp

+ the covariance
matrix of the vector (J (d1,...,dp))d1,...,dp∈{1,...,D}, we thus obtain (6.15). �

6.6. Construction of a regularization

In this subsection, we briefly explain how to build a regularization of a proper function.

Proposition 6.8 (Construction of a regularization). Every locally Lipschitz and proper function ξ : SD+ → R admits a
regularization.
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Proof. For every r > 0, we write

B(r) := {
a ∈ SD+ : tr(a) ≤ r

}
.

Notice that all positive semidefinite matrices with entries in [−1,1] belong to B(D). For every a ∈ SD+ , we denote by
|a|∞ the largest eigenvalue of a. We let

L := ∥∥|∇ξ |∞
∥∥

L∞(B(2D))
,

and for every a ∈ SD+ ,

ξ(a) :=
∣∣∣∣max

(
ξ(a), ξ(0) + 2L

(
tr(a) − D

))
if tr(a) ≤ 2D,

ξ(0) + 2L
(
tr(a) − D

)
if tr(a) > 2D.

For every a ∈ B(2D), we have

ξ(0) ≤ ξ(a) ≤ ξ(0) + L tr(a),

and thus ξ and ξ coincide on B(D), and ξ is a uniformly Lipschitz function. Its gradient takes values in SD+ almost
everywhere, and is increasing. This shows that ξ is proper. �
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[10] P. Erdős, A. Hajnal and J. Pach. A Ramsey-type theorem for bipartite graphs. Geombinatorics 10 (2) (2000) 64–68. MR1784373
[11] F. Guerra. Sum rules for the free energy in the mean field spin glass model. Fields Inst. Commun. 30 (2001) 161. MR1867553
[12] F. Guerra. Broken replica symmetry bounds in the mean field spin glass model. Comm. Math. Phys. 233 (1) (2003) 1–12. MR1957729

https://doi.org/10.1007/s00220-002-0773-5
[13] A. Jagannath, J. Ko and S. Sen. Max κ-cut and the inhomogeneous Potts spin glass. Ann. Appl. Probab. 28 (3) (2018) 1536–1572. MR3809471

https://doi.org/10.1214/17-AAP1337
[14] J. Ko. Free energy of multiple systems of spherical spin glasses with constrained overlaps. Electron. J. Probab. 25 (2020) 28. MR4073689

https://doi.org/10.1214/20-ejp431
[15] M. Mézard, G. Parisi and M. Virasoro. Spin Glass Theory and Beyond: An Introduction to the Replica Method and Its Applications, 9. World

Scientific, Singapore, 1987. MR1026102
[16] J.-C. Mourrat. Hamilton–Jacobi equations for mean-field disordered systems. Ann. Henri Lebesgue. To appear. MR4275243 https://doi.org/10.

5802/ahl.77
[17] J.-C. Mourrat. Hamilton–Jacobi equations for finite-rank matrix inference. Ann. Appl. Probab. to appear. MR4149527 https://doi.org/10.1214/

19-AAP1556
[18] J.-C. Mourrat Parisi’s formula is a Hamilton–Jacobi equation in Wasserstein space. Preprint. Available at arXiv:1906.08471. MR4430924

https://doi.org/10.4153/s0008414x21000031
[19] J.-C. Mourrat Nonconvex interactions in mean-field spin glasses. Preprint. Available at arXiv:2004.01679. MR4408014 https://doi.org/10.2140/

pmp.2021.2.281
[20] J.-C. Mourrat and D. Panchenko. Extending the Parisi formula along a Hamilton–Jacobi equation. Electron. J. Probab. 25 (2020) 23. MR4073684

https://doi.org/10.1214/20-ejp432

https://mathscinet.ams.org/mathscinet-getitem?mr=4140500
https://doi.org/10.1063/5.0009291
https://mathscinet.ams.org/mathscinet-getitem?mr=2977685
https://doi.org/10.1063/1.4729233
http://arxiv.org/abs/arXiv:2004.04495
https://mathscinet.ams.org/mathscinet-getitem?mr=4289496
https://doi.org/10.1007/s00023-021-01027-2
https://mathscinet.ams.org/mathscinet-getitem?mr=3089483
https://doi.org/10.1140/epjb/e2013-40334-6
https://mathscinet.ams.org/mathscinet-getitem?mr=2727596
https://doi.org/10.1088/1742-5468/2010/09/p09006
http://arxiv.org/abs/arXiv:2006.05328
http://arxiv.org/abs/arXiv:2009.01678
https://mathscinet.ams.org/mathscinet-getitem?mr=4421607
https://doi.org/10.1214/21-aihp1183
https://mathscinet.ams.org/mathscinet-getitem?mr=3988771
https://doi.org/10.1214/18-AOS1763
https://mathscinet.ams.org/mathscinet-getitem?mr=3951707
https://doi.org/10.1007/s00220-019-03308-8
https://mathscinet.ams.org/mathscinet-getitem?mr=1784373
https://mathscinet.ams.org/mathscinet-getitem?mr=1867553
https://mathscinet.ams.org/mathscinet-getitem?mr=1957729
https://doi.org/10.1007/s00220-002-0773-5
https://mathscinet.ams.org/mathscinet-getitem?mr=3809471
https://doi.org/10.1214/17-AAP1337
https://mathscinet.ams.org/mathscinet-getitem?mr=4073689
https://doi.org/10.1214/20-ejp431
https://mathscinet.ams.org/mathscinet-getitem?mr=1026102
https://mathscinet.ams.org/mathscinet-getitem?mr=4275243
https://doi.org/10.5802/ahl.77
https://mathscinet.ams.org/mathscinet-getitem?mr=4149527
https://doi.org/10.1214/19-AAP1556
http://arxiv.org/abs/arXiv:1906.08471
https://mathscinet.ams.org/mathscinet-getitem?mr=4430924
https://doi.org/10.4153/s0008414x21000031
http://arxiv.org/abs/arXiv:2004.01679
https://mathscinet.ams.org/mathscinet-getitem?mr=4408014
https://doi.org/10.2140/pmp.2021.2.281
https://mathscinet.ams.org/mathscinet-getitem?mr=4073684
https://doi.org/10.1214/20-ejp432
https://doi.org/10.5802/ahl.77
https://doi.org/10.1214/19-AAP1556
https://doi.org/10.2140/pmp.2021.2.281


1182 J.-C. Mourrat

[21] D. Panchenko. Free energy in the generalized Sherrington–Kirkpatrick mean field model. Rev. Math. Phys. 17 (7) (2005) 793–857. MR2159369
https://doi.org/10.1142/S0129055X05002455

[22] D. Panchenko. The Parisi ultrametricity conjecture. Ann. of Math. (2) 177 (1) (2013) 383–393. MR2999044 https://doi.org/10.4007/annals.2013.
177.1.8

[23] D. Panchenko. The Sherrington–Kirkpatrick Model. Springer Monographs in Mathematics. Springer, New York, 2013. MR3052333
https://doi.org/10.1007/978-1-4614-6289-7

[24] D. Panchenko. The free energy in a multi-species Sherrington–Kirkpatrick model. Ann. Probab. 43 (6) (2015) 3494–3513. MR3433586
https://doi.org/10.1214/14-AOP967

[25] D. Panchenko. Free energy in the Potts spin glass. Ann. Probab. 46 (2) (2018) 829–864. MR3773375 https://doi.org/10.1214/17-AOP1193
[26] D. Panchenko. Free energy in the mixed p-spin models with vector spins. Ann. Probab. 46 (2) (2018) 865–896. MR3773376 https://doi.org/10.

1214/17-AOP1194
[27] G. Parisi. Infinite number of order parameters for spin-glasses. Phys. Rev. Lett. 43 (23) (1979) 1754. MR0702601 https://doi.org/10.1103/

PhysRevLett.50.1946
[28] G. Parisi. A sequence of approximated solutions to the SK model for spin glasses. J. Phys. A 13 (4) (1980) L115–L121.
[29] S. T. Rachev and L. Rüschendorf. Mass Transportation Problems. Vol. I.Theory. Probability and Its Applications (New York). Springer-Verlag,

New York, 1998. MR1619171
[30] E. Subag TAP approach for multi-species spherical spin glasses I: General theory. Preprint. Available at arXiv:2111.07132.
[31] E. Subag On the second moment method and RS phase of multi-species spherical spin glasses. Preprint. Available at arXiv:2111.07133.
[32] E. Subag TAP approach for multi-species spherical spin glasses II: The free energy of the pure models. Preprint. Available at arXiv:2111.07134.
[33] M. Talagrand. The Parisi formula. Ann. of Math. (2) 163 (1) (2006) 221–263. MR2195134 https://doi.org/10.4007/annals.2006.163.221
[34] M. Talagrand. Mean Field Models for Spin Glasses. Volume I. Ergebnisse der Mathematik und Ihrer Grenzgebiete 54. Springer-Verlag, Berlin,

2011. MR2731561 https://doi.org/10.1007/978-3-642-15202-3
[35] M. Talagrand. Mean Field Models for Spin Glasses. Volume II. Ergebnisse der Mathematik und Ihrer Grenzgebiete. 55. Springer, Heidelberg,

2011. MR3024566
[36] F. Zhang. Matrix Theory, 2nd edition. Universitext. Springer, New York, 2011. MR2857760 https://doi.org/10.1007/978-1-4614-1099-7

https://mathscinet.ams.org/mathscinet-getitem?mr=2159369
https://doi.org/10.1142/S0129055X05002455
https://mathscinet.ams.org/mathscinet-getitem?mr=2999044
https://doi.org/10.4007/annals.2013.177.1.8
https://mathscinet.ams.org/mathscinet-getitem?mr=3052333
https://doi.org/10.1007/978-1-4614-6289-7
https://mathscinet.ams.org/mathscinet-getitem?mr=3433586
https://doi.org/10.1214/14-AOP967
https://mathscinet.ams.org/mathscinet-getitem?mr=3773375
https://doi.org/10.1214/17-AOP1193
https://mathscinet.ams.org/mathscinet-getitem?mr=3773376
https://doi.org/10.1214/17-AOP1194
https://mathscinet.ams.org/mathscinet-getitem?mr=0702601
https://doi.org/10.1103/PhysRevLett.50.1946
https://mathscinet.ams.org/mathscinet-getitem?mr=1619171
http://arxiv.org/abs/arXiv:2111.07132
http://arxiv.org/abs/arXiv:2111.07133
http://arxiv.org/abs/arXiv:2111.07134
https://mathscinet.ams.org/mathscinet-getitem?mr=2195134
https://doi.org/10.4007/annals.2006.163.221
https://mathscinet.ams.org/mathscinet-getitem?mr=2731561
https://doi.org/10.1007/978-3-642-15202-3
https://mathscinet.ams.org/mathscinet-getitem?mr=3024566
https://mathscinet.ams.org/mathscinet-getitem?mr=2857760
https://doi.org/10.1007/978-1-4614-1099-7
https://doi.org/10.4007/annals.2013.177.1.8
https://doi.org/10.1214/17-AOP1194
https://doi.org/10.1103/PhysRevLett.50.1946

	Introduction
	Statement of the main result
	Previous works
	Organization of the paper

	Monotone couplings
	Enriched free energy
	Viscosity solutions
	Analysis of ﬁnite-dimensional equations
	Tilted functions and boundary condition
	Convergence of ﬁnite-dimensional approximations

	The free energy is a supersolution
	Examples
	Vector-valued spins
	Multiple types of spins
	General tensor models
	Poisson-Dirichlet variables
	Closure properties of covariance functions
	Construction of a regularization

	Acknowledgements
	References

