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Abstract. Although much of the work in behaviorally detecting mal-
ware lies in collecting the best explanatory data and using the most effica-
cious machine learning models, the processing of the data can sometimes
prove to be the most important step in the data pipeline. In this work,
we collect kernel-level system calls on a resource-constrained Internet
of Things (IoT) device, apply lightweight Natural Language Process-
ing (NLP) techniques to the data, and feed this processed data to two
simple machine learning classification models: Logistic Regression (LR)
and a Neural Network (NN). For the data processing, we group the sys-
tem calls into n-grams that are sorted by the timestamp in which they
are recorded. To demonstrate the effectiveness, or lack thereof, of using
n-grams, we deploy two types of malware onto the IoT device: a Denial-
of-Service (DoS) attack, and an Advanced Persistent Threat (APT) mal-
ware. We examine the effects of using lightweight NLP on malware like
the DoS and the stealthy APT malware. For stealthier malware, such
as the APT, using more advanced, but far more resource-intensive, NLP
techniques will likely increase detection capability, which is saved for
future work.

Keywords: Natural language processing · machine learning · malware
detection · Internet of Things.

1 Introduction

IoT devices have quickly progressed from novelty technology, for early-adopting
users, to ubiquitous technology that is used by many in everyday life. These
devices can range from user-input speech recognition devices such as the Ama-
zon Alexa to various micro electro-mechanical sensor systems for data acquisi-
tion. In the wake of tightly-coupled enterprise platforms, Drexel University has
championed a multi-modal open-source IoT platform named VarIoT, compris-
ing long and short-range wireless communication protocols. This platform can
be repurposed for various use-cases due to its highly customizable and mod-
ular interfaces. The VarIoT gateway offers support for Bluetooth Low Energy
(BLE), WiFi, LoRa, Zigbee and LTE/5G cellular transceivers. Other supported



interfaces include mmWave radar, ultra-high frequency (UHF), radio-frequency
identification (RFID), and sigfox, in order to extend the available application
areas. This enables a multitude of sensors to be deployed for various scenarios.
The VarIoT platform is built on the open-source Thingsboard platform as the
gateway for server-side data collection for advanced processing, visualization and
storage [22].

Fig. 1. The VarIoT platform architecture, which includes the IoT devices, the gateway
with transceivers, capable nodes and server-side infrastructure.

In this work, we configure the VarIoT gateway to connect to a WiFi-enabled
device as the sensor node to gather network data. The node used is the Pur-
pleAir PA-II Air Quality Sensor. This framework is depicted in Figure 2. The Air
Quality Sensor communicates with the VarIoT server once every minute, and is
dormant on the network for the remainder of the time. It uses TLS encryption
for its communication, which means all data sent to or from the sensor is not
easily changeable, and only the TCP header data is visible from each packet.



This makes the communication less susceptible to many attacks in which the
data is corrupted, such as Man-in-the-Middle attacks, but still leaves room for
other attacks, such as DoS attacks, which will be explored further in Section 2
[21] [18].

Fig. 2. The specific framework used in this work: an IoT device, the VarIoT server,
and the gateway connecting them.

Our goal is to deploy malware onto the gateway and detect it using behav-
ioral malware detection, in which kernel-level system calls issued on-device are
transformed using lightweight NLP techniques and subsequently fed into two
ML models.

Behavioral malware detection has been shown to be an effective method to
detect malware that runs on devices, especially on resource-constrained Internet
of Things (IoT) devices [2]. Machine learning (ML) models are often able to
take a small amount of data, such as OS system call sequences or network traffic
information, and produce an accurate classification of whether an observation
is malware or not. However, this method relies heavily on what type of data is
collected and how the data is processed, such that the data consists of the most
explanatory features possible to use to train the models. Since the quality of the
data fed to a machine learning model often dictates the model’s performance, the
data processing step can often be one of the most important steps in determining
whether or not an effective model is produced [12].

One such data processing method is using lightweight NLP techniques to
transform the data into a n-gram language model. n-gram language models
make predictions using conditional word frequencies observed in the data [23].
Our work utilizes unigrams, in which the feature set comprises each observed
system call issued on the VarIoT-gateway. We chose to use system calls because



they provide a wider variety of observed behaviors on the device, since each
process needs to issue system calls to accomplish its tasks. Although other data
sources, such as network traffic, can provide useful behavioral data, system calls
provide the largest breadth of device behavior. We also experimented with using
system call bigrams, which means the feature set consists of each two consecutive
system calls executed during the data collection period. This was not found to
yield significantly better results than using the less intensive unigram method.

We show that while a model trained with a simple unigram representation of
the data works well for noisier and more disruptive malware, it does not perform
as well for stealthier malware. We believe classification problems for stealthier
malware necessitate the use of more advanced NLP techniques, such as using a
Recurrent Neural Network (RNN) or a Long Short-Term Memory (LSTM) [11],
which we save for future work.

2 Previous Work

2.1 Behavioral Malware Detection

Behavioral malware detection seeks to detect malicious activity by learning the
functionality and actions of malware during its execution [7] [4]. Today, behav-
ioral malware detection often uses machine learning models to observe malware
behavior using system or network data – in our case, kernel-level system calls. In
one study by Hasan et al. [10], a variety of machine learning models were used,
such as Support Vector Machines, Random Forests, Decision Trees, and Neural
Networks.

2.2 IoT Background

IoT is extending its impact from simple devices of convenience, such as pedome-
ters and voice-activated home virtual assistants, to integrated home security
systems, remote-controlled medical devices, and self-navigating vehicles.

IoT devices are commonly the victims of malware due to their lax security,
the number of connected IoT devices, which make them useful for distributed
attacks, and the fact that they are rarely monitored directly by humans. One type
of malware that often infects IoT devices is DoS malware, which compromise IoT
devices with the intent of using them to overload servers and other hosts that
cannot handle the load of millions of requests concurrently. The most notable
DoS attack is Mirai, which disabled many servers, such as Amazon, GitHub, and
Netflix [3] [14]. Another type of malware that can target IoT devices are APT
(Advanced Persistent Threat) malware, which can passively surveil the state of
the device and exfiltrate potentially sensitive information to remote command
and control centers (C&C) [16].

A unique challenge for researchers who want to deploy behavioral malware
detectors on IoT devices, or their corresponding ecosystems, is that such devices
have computational, memory and energy limitations. Therefore, any malware de-
tection technique that takes these constraints into account must be lightweight,
such as the ones we describe in this work.



3 Malware

Two types of malware are deployed on the VarIoT-gateway, each of which rep-
resents malware families that are prevalent today. One is a quiet, stealthy type
of malware, which we represent using an APT malware. The second type of
malware is noisy and debilitating, which we represent using a denial of service
attack. A DoS attack is one that is commonly carried out by IoT devices due to
the scale of attack available. We explain each of these malware types in detail
below.

3.1 Advanced Persistent Threat

Fig. 3. The exfiltration behavior of the APT during the data collection process.

An APT is a type of malware often used for espionage and spying, sometimes
by nation-states and other larger organizations [15]. In this work, the APT is
designed to copy and exfiltrate the contents of files to a user-specified remote
host.

It is controlled by a C&C server remotely and has the ability to be run in
a random mode, which randomizes both the duration of each data exfiltration



as well as the wait time between exfiltrations. An example of the duration and
wait time parameters is depicted in Figure 3. In Figure 3, each data point refers
to one APT run, where the x -axis represents the duration of APT exfiltration,
and the y-axis represents the amount of time the APT sleeps before the next
exfiltration.

Though APTs can be found “in the wild,” these often are unusable for a
number of reasons, such as that they report to C&C servers that are no longer
active. In addition, these APTs are not yet advanced enough to have randomized
behavior, which makes their detection an easier task. In contrast, the APT we
use in this work is stealthy and much more difficult to detect, which will be
discussed further in the Experimental Results section of this paper.

3.2 Denial of Service

Some IoT devices are now becoming sophisticated enough to use encryption for
communication with servers. In the case of the Air Quality Sensor, each packet
sent to or from the sensor is encrypted using TLS. This leaves fewer options for
attackers to use to disable these devices. However, one remaining option is to
conduct a Denial of Service attack, which does not require any information from
the packet payload but only requires the packet header information, such as the
source and destination IP address.

In this work, the Denial of Service attack uses the network utility netwox

to conduct a TCP Reset Attack on the connection between the Air Quality
Sensor and the VarIoT server. netwox is first downloaded onto the gateway by
our malware using the standard apt-get procedure common on Linux machines,
and then it is unpackaged and ready to attack the communication between the
Air Quality Sensor and the VarIoT server.

A TCP Reset Attack listens to an ongoing TCP connection and then sends a
spoofed packet with the “R” flag set to the victim, which will terminate the TCP
connection [18]. The netwox TCP Reset Attack is known as netwox 78, which
takes a device name (the desired interface), a pcap filter, and a spoofip parame-
ter, which tells netwox how to generate link layer for spoofing [9]. netwox then
sends many reset packets to the host specified, which disables the communication
between the Air Quality Sensor and the VarIoT server.

4 Data Collection and Processing

4.1 Initial Data Processing

The raw data consists of system calls executed on the VarIoT-gateway during
periods of benign behavior as well as during periods of malware execution on
the device. The malware data was collected separately for each type of malware
running on the device. In addition, before the benign data was collected, the
operating system was reinstalled on the device, ensuring that the environment
was free of malware. The data processing step involves grouping the collected



data into segments that are more useful for behavioral malware detection, and
is shown in detail in Figure 4. After the raw system calls are logged, they are
grouped by timestamp using a user-specified window size.

Fig. 4. The data pipeline. This describes the transformation from ROM raw kernel-
level system calls to a usable feature set for a ML model.

This window size can be thought of as a parameter that breaks up the total
amount of data collection time into a user-specified number of buckets. Through
experimentation, we set the window size to be 10 milliseconds, though this is a
tunable parameter. We chose this small window size due to the rapidity of which
the system calls are executed, such that that the windows could separate system
calls from different processes as effectively as possible.

4.2 Data Transformation using NLP

We then chose to use a lightweight NLP approach of grouping the data into n-
grams. Often this approach is applied to written text, in which words are grouped
into either unigrams (sequences of one), or bigrams (sequences of two). Longer
sequences can also be used, although these are used less frequently due to larger
sequences becoming intractable. We used the bag-of-n-grams approach in the
groupings [13] [17], where the value of n was user-specified [4]. This means that
the feature set is composed of the number of observations of each n consecutive
system calls in a particular time window. Through empirical analysis, we found
that a value of n = 1 is optimal for both performance efficiency and detection
efficacy in our dataset. Since we chose a value of n = 1, the feature set consists



simply of the number of times each system call was observed during each time
window. For example, using unigrams, one column of the data could be a system
call such as mutex lock, and each of the rows of that column will be the total
number of calls to this system call for each time window. The number of obser-
vations of the system calls were then normalized using Term Frequency-Inverse
Document Frequency (TF-IDF) [20], which normalizes the system call counts
instead of using only the total number of times the system call was observed.

5 Experimental Results

Two typical machine learning models were used for evaluation of our data pro-
cessing techniques: logistic regression and a shallow neural network. Both of these
models are lightweight, which make them ideal for use on resource-constrained
IoT devices. As shown in Figures 6-7, more available training data (depicted by
the x -axis of both figures) yields better models. Although the amount of training
data necessary to create useful classifiers can differ between types of malware,
in general, as with many ML models, more training data yields a better model.
Both models are tested using a larger testing set, comprised of 120 minutes of
benign data and 120 minutes of malware data. We explain each of these models
in detail below.

The metric we use for evaluating the efficacy of the models is Area Under the
Curve (AUC), where the curve is the Receiver Operating Characteristic curve.
This metric measures the ability of a classifier to differentiate between classes
in the data, and is useful as a summary of the Receiver Operating Character-
istic (ROC) curve. An example ROC Curve for the neural network is shown
in Figure 5. AUC is an effective metric for evaluating classifiers, and there has
been research that suggests it is actually preferable to overall accuracy for some
problem domains [6].

Three types of malware are used for evaluation in this work.

1. The first is the stealthy APT malware, which was described in detail previ-
ously.

2. The second type of malware is a simple installation and uninstallation script
which is responsible for repeatedly downloading netwox, unpackaging and
installing it, and then removing it from the device. We chose to include this
pseudo-malware because it shows how easily these simple ML models can
detect the malware before any execution starts and without any execution
occurring. This relies on the assumption that the device does not run au-
tomatic updates and if it were updated, the detector would not be running
during that time. This rapid detection is especially important for zero-day
attacks [5], since the only time a user might have to stop a malware at-
tack from damaging their computer is to kill the download process before
execution.

3. The third type of malware is the randomized netwox, which not only encom-
passes the installation/uninstallation process, but also executes the netwox

TCP Reset Attack for a random duration of time.



Fig. 5. An example ROC Curve using the neural network and 30 minute randomized-
netwox data, as shown on the right side of Figure 7.

5.1 Logistic Regression

Perhaps the most lightweight, yet effective, machine learning model suitable for
our task is logistic regression. In addition to being lightweight, it does not require
much data for training, which also makes it ideal for our problem space. The
results show that the LR model could easily detect the netwox-related malware,
but struggled more to detect the APT.

5.2 Shallow Neural Network

Another lightweight ML model is a shallow neural network. In this work, we use
a three layer NN that is provided off-the-shelf from scikit-learn called MLPClas-
sifier [19]. This model is a three-layer neural network that optimizes the log-loss
function. It uses L2 regularization (α = 1e−3), a logistic sigmoid activation func-
tion, and the Adam optimizer with learning rate 1e−3. Each of the parameters
are user-specified and were chosen through experimentation with the data.

As with the LR model, the NN is easily able to detect the netwox-related
malware, but again struggled more to detect the APT.

It is interesting to note how the AUC values for both the LR and NN
models follow the same trajectory and have essentially the same values for the
netwox-related malware, with the only major difference being that the NN had
marginally better results for the APT malware. Similarly, both models show a



Fig. 6. Area Under the Curves for detecting the three flavors of malware on the
VarIoT-gateway using a Logistic Regression model.

slight decrease in AUC using the 15 minute training data. This suggests that
the slight AUC decrease has more to do with limitations from that particular
training dataset rather than a model deficiency.

6 Conclusions

In this work, we built a simple, yet fully-functional, IoT testbed which is com-
prised of an Air Quality Sensor, a gateway, and an instance of a ThingsBoard
server. Kernel-level system calls were logged on the gateway, which is configured
specifically to connect to a VarIoT server. This gateway connects a common IoT
device and a VarIoT server which relays information to users, which is shown in
Figure 2. These raw system calls were collected during periods of strictly benign
behavior as well as during periods of malware execution on the gateway.

The raw system calls were then transformed into usable features using a
lightweight NLP technique. Specifically, we transformed them into a feature set
of unigrams, which is a lightweight representation of the data and thus ideal
for resource-constrained IoT devices. Lastly, two lightweight and efficacious ma-
chine learning classifiers were built and were successful in classifying malware,
especially the netwox-related malware.



Fig. 7. Area Under the Curves for detecting the three flavors of malware on the
VarIoT-gateway using a Neural Network model.

The ability of the classifiers to detect the installation/uninstallation malware
is quite promising and useful because with only 1 minute of training data, both
models were able to detect malware with greater than 90% Area Under the
Curve. This finding is very useful from a user standpoint, because if the malware
can be stopped early before it executes, the user has a chance to prevent malware
from damaging their system. Likewise, both models were able to detect the
randomized netwox just as well, which suggests that even if the data contains less
obvious DoS behavior than downloading packages, the models will still perform
well. However, the models were significantly less successful in classifying the
stealthier APT malware. Because of the randomization of the APT’s behavior
as well as its much smaller system call footprint, it is harder to detect using only
the lightweight NLP data representations used in this work.

6.1 Future Work

We would like to extend this work in two different directions. The first is by
using more advanced NLP techniques, such as Recurrent Neural Networks, Gated
Recurrent Units (GRU) [8], and Long Short-Term Memory (LSTM) [11]. We
believe these techniques will work better for stealthier malware such as the APT
and will result in more effective behavioral malware detection.



Secondly, we would like to explore this topic further using other IoT devices.
In addition to other WiFi-enabled devices, we would like to work with devices
that communicate using other protocols. These can include Bluetooth-enabled
devices, which are ubiquitous, as well as devices that support protocols like
LoRa, ZigBee, SigFox, UHF RFID and mmWave radar, which are both used by
low-power and long-range IoT devices [1].

Since all of these devices are already natively supported by the VarIoT plat-
form, we can replicate the work in this research and compare the effectiveness
of the techniques shown here using devices that connect using a wide variety of
protocols. This will not only further validate the work presented, but will also
show the feasibility of using these methods for IoT devices that are less common
and more often overlooked in security research.
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