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Abstract—This paper presents LLM4SECHW, a novel framework
for hardware debugging that leverages domain-specific Large Language
Model (LLM). Despite the success of LLMs in automating various software
development tasks, their application in the hardware security domain has
been limited due to the constraints of commercial LLMs and the scarcity
of domain-specific data. To address these challenges, we propose a unique
approach to compile a dataset of open-source hardware design defects
and their remediation steps, utilizing version control data. This dataset
provides a substantial foundation for training machine learning models
for hardware. LLM4SECHW employs fine-tuning of medium-sized LLMs
based on this dataset, enabling the identification and rectification of bugs
in hardware designs. This pioneering approach offers a reference workflow
for the application of fine-tuning domain-specific LLMs in other research
areas. We evaluate the performance of our proposed system on various
open-source hardware designs, demonstrating its efficacy in accurately
identifying and correcting defects. Our work brings a new perspective
on automating the quality control process in hardware design.

Index Terms—Hardware Debugging, Large Language Model, Domain-
Specific Models

I. INTRODUCTION

Designing a modern hardware is becoming increasingly challenging
due to the complexity of chips for applications such as IoT, Al, and
Quantum Computing [1]. These intricate hardware designs are hard to
test and verify, raising the risk of hidden bugs and vulnerabilities. One
major reason is that existing verification and testing approaches often
require the manual creation of assertions, data models, and test vectors
[2]. Furthermore, some vulnerabilities may not affect all functionalities
of design, making sole reliance on functional verification insufficient
for ensuring system robustness and reliability [3], [4]. Considering
that flaws in hardware design can be primary sources of potential
security vulnerabilities, it is essential to automatically identify and fix
hardware bugs with minimal human intervention during the design
phase. Fine-tuning Large Language Model (LLM)s for domain-specific
tasks has seen successes in fields like medicine [5] and software
design [6]. LLMs have been at the forefront of advancements in
numerous software programming-related tasks, demonstrating their
potential in automating tasks like auto code completion, malware
detection, and code refactoring [7].

However, when we delve deeper into the domain of hardware
security, the application of LLMs appears to be minimal or largely
restricted to the use of prompts [8]-[10]. The use of these prompts
presents several disadvantages: 1) Performance is constrained by the
general LLMs, which are designed for general use rather than domain-
specific research; 2) There is a high dependency on a specific platform;
3) Privacy concerns arise [11]; and 4) The cost can be substantial.
Overcoming these challenges is possible through fine-tuning the LLMs
for domain-specific scientific areas. However, in the area of hardware
security, the data necessary for effective fine-tuning is limited [12].
This data scarcity becomes a considerable challenge when leveraging
LLMs for removing hardware flaws, especially considering that flaws
in hardware design can be primary sources of potential security

vulnerabilities. Furthermore, accurately identifying and localizing
these bugs are paramount to prevent potential hardware design failures.

This paper introduces a LLM-based hardware debugging framework,
LLM4SECHW, designed to address the aforementioned issues. It
aims to identify bugs and provide debugging suggestions during
the hardware design iteration process. Specifically, we develop an
innovative data collection and preprocessing method to harness version
control information from open-source hardware projects. From this
information, we construct a hardware debugging-oriented dataset by
filtering and processing the version control data, which is subsequently
utilized to fine-tune our model. Leveraging this dataset, we fine-tune a
suite of hardware domain-specific language models capable of reading
hardware designs and autonomously locating and rectifying bugs. The
principal contributions of this paper include:

« We propose a novel approach to compile a unique dataset of open-
source hardware design defects and their remediation steps, utilizing
the version control data. This dataset addresses the scarcity of
functional hardware data and provides a substantial foundation for
training machine learning models.

o LLM4SECHW employs fine-tuning of 7 billion parameters LLMs
based on the constructed dataset, enabling the identification and
rectification of bugs in hardware designs. This framework represents
a pioneering approach in the application of LLMs for automated
hardware bug detection and rectification. Furthermore, it offers
a referable workflow for the practical application of fine-tuning
domain-specific LLMs in other research fields.

o We evaluate the methods’ performance on various open-source hard-
ware designs, demonstrating their efficacy in accurately identifying
and correcting defects. Our solution provides a new perspective on
automating the quality control process in hardware design. We will
release the dataset to the public in the future.

II. BACKGROUND AND RELATED WORKS
A. LLM and Code Analysis

The sequence models pivotal in facilitating the advancement of
LLMs are the Transformers [13]. In recent years, transformer-based
models have emerged as the principal technology in predicting text-
based information. Beyond the significant success in processing and
generating texts and codes, LLMs are also a promising method in
code analysis, especially in checking bugs and vulnerabilities. LLMs
are also adopted in the hardware domain to facilitate code checking.
In the task of generating security assertions, existing works focus
on applying prompts engineering [10], [14]-[16] to generate secure
hardware code or fulfill hardware code completion. However, existing
works on hardware code analysis suffer from insufficient design code
with explicit nature language description, especially in the hardware
security domain, where dedicated datasets of hardware security are
sparse. The Metrics4ML [17] project is an excellent attempt that
provides datasets to bridge the gap between industry and academia,



though the work at the hardware design level remains ongoing. Shailja
compiled a dataset from open-source hardware designs on GitHub
[18], but it lacks functional and debugging descriptions.

B. Version Control, Git and GitHub

In data management, version control plays a crucial role in transient
and fluctuating data. Among the available tools, Git has emerged as a
predominant choice for overseeing code- and text-based content [19].
GitHub, as an augmentation of the Git version control system, offers
an online interface for developers to collaborate on and contribute
to projects. It boasts numerous features, such as Commits, Pull
Requests (PRs), and Issues, streamlining code versioning, review,
and collaboration.

A commit in Git delineates changes made to the files within a
repository. Each commit possesses a distinct identifier, typically a
hash, and is accompanied by metadata detailing the author, date,
and message elucidating the rationale behind the change. A commit
message succinctly conveys the purpose of the modification, its
justification, and potential implications. PRs, on the other hand, enable
developers to propose code alterations for integration into another
branch. A typical PR encompasses a title, description, multiple commit
details intended for merging into the main project, and discussions
within the team. Should a PR aim to address a specific challenge
or task, it frequently associates with a corresponding Issue. Issues
function to monitor and manage bugs, feature enhancements, tasks,
and other pertinent concerns in a project. Often initiated by users, these
concerns are articulated through feedback. Components of an issue
include tags like “bug,” “enhancement,” and “help wanted,” assisting
team members in swiftly pinpointing and addressing concerns.

III. METHODOLOGY
A. Overview of the Proposed Methodology

The architecture of LLM4SECHW is illustrated in Fig. 1. This
structure is predominantly segmented into three core components,
represented by the three differently colored circles in the center of
the figure. On the left, the data collection process is depicted. We
amass a dataset pertinent to bug-related hardware design for fine-
tuning purposes through version control information from multiple
open-source hardware projects. The blue circle of the Figure 1,
represents hardware debugging dataset obtained after rigorous filtering,
processing, and enhancement. The orange circle of the figure denotes
the three models we choose for our study, while the yellow circle
encapsulates the fine-tuning methodologies. Upon completion of the
fine-tuning process, the refined models are equipped to interpret the
input hardware design and a concise task prompt to produce a refined
or corrected version.

B. Data Gathering, Clean, and Enhancement

This section elaborates on the data collection and processing,
training LLMs to understand and rectify potential flaws in hw design.

1) Version Control Information of Hardware Design: We begin by
assembling a collection of notable open-source hardware designs from
GitHub, including CVAG6 [20], CVAS [21], OpenTitan [22], Ibex [23],
morlkx [24], OpenPiton [25], PULP [26], and darkriscv [27], among
others. Having curated this list, we then utilizes the GitHub REST
API to retrieve commit, issue, and PR details from the associated
repositories. Within the amassed data, two distinct filtering phases
were undertaken. First, PRs unrelated to hardware design and their
corresponding commits were screened based on PR labels. Subsequent
refinement targeted modifications in commits, eliminating those
unrelated to hardware design based on file type. The curated set

extracted pre-fix hardware design code, potentially harboring bugs,
and post-fix hardware design code, considered bug-free. Additionally,
commit messages, PR descriptions, and issue content were captured.
We constructed a raw dataset containing over 11, 000 hardware design
files, each with pre- and post-correction versions.

2) Data Clean: However, the raw dataset is unsuitable for fine-
tuning LLMs directly.Two main challenges arise:

« Data Repetitiveness: Repetitive source data, a commonplace in
GitHub projects, could pose considerable adverse biases during
LLM training [28]. In response, we instituted a filtration process
to expunge redundant entries.

Context Length Limitations: LLMs adhere to specific context length
constraints. Maintaining input compatibility with LLMs requires
the removal of lengthy files that exceed these set limits. Although
the models’ tokenizers used in LLM4SECHW have distinct
implementations, their foundational mechanism is the same. Among
the models we considered, Falcon 7B has the shortest allowable
context length, roughly half that of the others. Consequently, we
used Falcon 7B as our benchmark for segmentation.

Concurrently, files containing less than 15 tokens, about ten words,
were determined to be overly succinct to convey meaningful informa-
tion. We excluded these files to enhance the overall information density
of the dataset. The dataset encompasses over 3, 000 file pairs, which,
when tokenized using the Falcon tokenizer, amounts to approximately
6 million tokens.

3) Data Enhancement for Downstream Tasks: Two downstream
tasks are included in LLM4SECHW - bug localization and bug repair.
Our method accurately detect defects within original designs, thereby
facilitating bug localization. Simultaneously, it can establish a rela-
tionship between hardware design buggy versions and corresponding
bug-free versions to train LLMs for hardware bug repair. To improve
the support for both downstream tasks, LLM4SECHW enhances the
dataset from the following aspects.

o Linguistic and knowledge for hardware design: The dataset includes
original and preprocessed code pairs via Verilator [29] and correla-
tion between code and finite-state automata to enhance the model’s
understanding of hardware design principles and language grammar.
Knowledge of hardware bugs: The data includes specific commits,
issues, and PR pairs to enhance the model’s understanding of
the relationship between hardware design programming language
defects and issues described in natural language.

The primary challenge during data enhancement arises from the version
control information offered by open-source hardware communities.
The information often comes with limited documentation and needs
more standardized formats. We crafted comprehensive commit mes-
sages enriched with details by leveraging the commit message and
pre- and post-revision code. The dataset consists of 15,000 samples,
amounting to approximately 28 million tokens. The dataset is divided
into training (75%), validation (15%), and testing (10%) sets.

C. Fine-Tuning Domain-Specific LLMs

This section elaborates on the models chosen for LLM4SECHW,
the rationale behind their selection, and the fine-tuning method. Table
I provides a comprehensive overview of the various models we
employed, encompassing their architectures, pre-training datasets,
and fine-tuning hyperparameters. To provide more detailed insight,
the table features the following key elements:

o Model details: Name (type and version), metrics including number
of parameters, layers, hidden size, and content length.
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Fig. 1. Method overview of the proposed LLM4SECHW

« Hyperparameters: Adamw [30] optimizer’s learning rate, 31, and
B2. Trainable and non-trainable parameters count for LLaMA-
Adapter V2 [31] fine-tuning method.

1) Choice of Models for Fine-Tuning: We selected three models for
our experiment. First, we considered the StableLM model [32] from the
GPT-NeoX series [32], which gained prominence alongside ChatGPT
in late 2022, offering parameter sizes of 3b and 7b. Following that, we
adopted the Falcon model [33], which topped the HuggingFace Open
LLM Leaderboard in July 2023 [34], available in 7b and 40b sizes.
Lastly, the LLama2 model [35], which emerged in August 2023 and
rapidly earned its reputation as a state-of-the-art open-source LLM,
offers 7b, 13b, and 70b versions. Given computational constraints, we
chose the 7b version of each model for our study. Notably, models
like Bard [36], GPT3.5, and GPT4 [37], which currently exhibit
state-of-the-art performance and are widely used, were excluded from
our study due to their closed-source nature and lack of fine-tuning
support.

2) Fine-Tuning Process: The selected LLMs were fine-tuned
by utilizing the LLaMA-Adapter V2 [31], an innovative method
characterized by the introduction of learnable adaptation prompts
within certain layers of the Transformer model, thereby unlocking
additional trainable parameters. These parameters significantly enhance
the model’s learning capability and can more efficiently adapt to the
specific instruction following tasks. Unlike a standard Transformer
model with a fixed distribution of trainable parameters, the LLaMA-
Adapter V2 increases trainable parameters in the initial layers,
enhancing the model’s learning capacity. The fine-tuning process is
elaborated in Algorithm 1. Table I also provides a detailed account of
the number of trainable and non-trainable parameters for each model
variant. Applying this innovative approach to increase the number
of trainable parameters ensures the model’s enhanced adaptability
without significantly increasing the overall model size or computational
demand, making the fine-tuning process more efficient and effective.

D. Downstream Tasks and Evaluation Metrics

This section elaborates on two downstream tasks, bug localization
and repair, and the metrics for evaluating their performance.

1) Bug Localization: LLM4SECHW constructed a bug localization
test set composed of original design code and code removed during
repair (regarded as defective parts) sourced from the validation set.
This code corresponds to hardware designs scripted in (System)Verilog.
Under the prompt “Could you identify the possible bug inside the
design?”, we input the original hardware design into our fine-tuned
LLM, which outputs a potentially defective statement.

Algorithm 1 Fine-tuning Training Process with Adapter v2

procedure TRAIN(model, optimizer, train_data)
Initialize training status
AddAdapterParametersToLinearLayers(model)
MarkOnlyAdapterAsTrainable(model)
for each iteration in max_iterations do
Update learning rate
input_ids, targets < GetBatch(train_data)
logits, loss < ComputeLoss(model, input_ids, targets)
Backward and Optimize(loss, optimizer)
if iteration mod eval_interval == O then
Validate(model, val_data)
SaveModel(model) > Save with adapter parameters
end if
end for
end procedure

2) Bug Repair: In LLM4SECHW, our focus is on leveraging the
capabilities of fine-tuned LLMs for identifying and repairing bugs. We
extract the original and repaired design from the validation set to serve
as our gold standard for comparison. To assess the model’s repair
proficiency, we gave it with a prompt: “Could you fix the possible
bug inside the design?” for all models. Given the original design, the
model was able to output a refined or corrected version. This output
from the model is subsequently compared to the repaired version
from the validation set to gauge accuracy.

IV. IMPLEMENTATION AND DEMONSTRATION
A. Experiment Setup

The fine-tuning process was carried out on a server running
Ubuntu 20.04.6 LTS, equipped with an Intel(R) Xeon(R) Silver 4314
CPU (2.40 GHz, 64 cores), 251 GB of memory, and dual NVIDIA
A100 80 GB graphics cards. We utilized PyTorch’s Fully Sharded
Data Parallel API [38] for parallel acceleration, with the AdamW
optimizer [30] used for weight updates and loss minimization. As
shown in Table I, different learning rates were applied based on each
model’s recommendation. These hyperparameters represent typical
values found in the literature [32], [33], [35]. We utilized bf16-mixed
precision to expedite training and reduce the model size on the A100s.

B. Fine-tuned LLMs Performance Evaluation and Comparisons

We utilize Rouge [39] to measure the fine-tuned model’s perfor-
mance and compare it with the actual modifications to determine its
relative accuracy. Note, since we set the model during training to



TABLE 1
DESCRIPTION OF MODELS EVALUATED AND FINE-TUNING HYPERPARAMETERS

. . Content | Learnin, # of Trainable | # of Non-Trainable
Model #Param Layers | Hidden Size Length Rate § b B2 Parameters Parameters
StableLM-Base-Alpha-7b | 7,868,755,968 16 6144 4096 0.00016 3,136,672 7,868,350,464
Falcon-7b 6,921,720,704 32 4544 2048 0.0006 0.9 | 0.9999 3,839,186 7,216,889,856
Llama-2 7b 6,738,415,616 32 4096 4096 0.0003 4,279,744 6,738,149,376

preferentially remove comments and indents to save content length,
this might result in relatively lower Rouge scores. Table II presents
the automatic evaluation of LLM4SECHW for correctly locating
commit modifications on the validation set. Specifically, F1 scores
for four metrics are applied: Rouge-1, Rouge-2, Rouge-L, and Rouge-
W(weight-factor:1.2). Additionally, we include the names of the
organizations and projects from which the validation set data originates,
along with the corresponding Git Commit SHA. This information
substantially validates the effectiveness of our work. The result for
the original three LLMs falls within the range of 0 to 0.02. Due to its
lack of significance, it is not compared in the table. Red background
entries highlight the best performance for specific test data.

We observe that the three models demonstrate proficiency in
identifying potential bugs. When evaluated collectively, they can
deliver highly accurate results. However, the stability of their outputs
varies significantly. Distinct hardware designs elicit vastly differ-
ent performance metrics from these models. Despite the marginal
differences in size, we attribute this inconsistency to two primary
factors. First is attention discrepancy: the attention heads’ quantity
and parameters differ among the models. We cannot guarantee that
attention parameters, initially designed for natural language processing,
align seamlessly with the nuances of hardware design source code.
This misalignment potentially introduces instability. The second is
dataset size: the dataset must be expanded to ensure consistent
performance across the current or larger parameter count LLMs.

In bug repair, LLama2 outperforms, which aligns with its relative
advantages over Falcon and StableLM. It is essential to highlight that
the models’ proficiency in locating bugs surpasses their competence
in repairing them. Bug repair often demands more extensive outputs
compared to mere identification. We have noticed that models tend
to prematurely terminate their generation, even before providing
a comprehensive repaired hardware design. The model’s cessation
mechanism, ruled by predefined probability settings, implies that our
models might encounter confusion when tasked with more extended
content generation. A more extensive training set is imperative to
reduce the perplexity the model experiences.

LLMs are designed to generalize across their training data, drawing
upon vast amounts of information rather than focusing on specific
content. Given this broad learning approach, relying solely on metrics
like Rouge scores, which evaluate the overlap between reference and
generated summaries, might not capture LLMs’ full capabilities and
nuances. Therefore, we provide two examples to demonstrate the
effectiveness of LLM4SECHW and compare its performance with
that of ChatGPT, BARD, and the original model without fine-tuning.
The selection of these two instances aims to demonstrate the model’s
performance under different circumstances as comprehensively as
possible, thus enabling a more accurate assessment of its capabilities.

C. Results and Analysis: Bug Localization

In the Bug Localization task, we choose a modification of the
OpenTitan project. The modified code at [40] plays a vital role in
hardware verification, defining a JTAG DPI module for interactions
with the JTAG interface—a common hardware testing interface. In

a recent modification, the module was updated by Section 6.14 of
the IEEE Standard for SystemVerilog (1800-2017) [41], which states,
“Chandles should always be initialized to the value null”, equating to
0 in C. In the original design code, ctx=0 was revised to ctx=null.
This commit rectified three distinct hardware designs, two integrated
into the training set and one incorporated into the validation set.
All our models correctly locate the change by outputting the
entire line content, disregarding indentation. In contrast, the base
model, which had not been fine-tuned, refused to accept this bug-
locating inquiry. BARD and ChatGPT offered insightful but differing
perspectives. ChatGPT focused on handling the rst_ni reset signal
in the always_£f block, highlighting a potential issue with the
structure of the block itself. BARD, meanwhile, pointed out the lack
of initialization for the ctx variable in the always_ff block, which
could lead to undefined behavior when jtagdpi_tick the function
is invoked. Both models, however, failed to directly identify the crux
of the problem, that is, the incorrect initialization of ctx that violates
the guideline of the 1800-2017 IEEE Standard for SystemVerilog.

D. Results and Analysis: Bug Repair

We show a case study of preparing a bug from the Base proxy
class for all security countermeasure interfaces in OpenTitan [42].

In the Listing 1, lines prefixed with the symbol ’-’ denote the
original code, whereas those prefixed with ’+’ indicate the revised
segments. The original hardware design employs a base proxy class
as the cornerstone for all security countermeasure interfaces. Notably,
the inject_fault () and restore_fault () pure virtual tasks are
initially static, meaning all variables are instantiated on their first
call and destroyed by the simulation’s end. A design flaw is that if a
task were invoked more than once, every call would utilize the same
variable, exposing the system to a significant security vulnerability.

Recognizing this vulnerability, lowRISC introduces the automatic
keyword to guarantee that every task or function call would allocate
new storage space for the associated variables. Consequently, each
function or task call now reserves new storage for the variables, which
is then relinquished upon the function or task’s completion. It ensures
each task invocation operates with an independent variable instance,
preventing potential complications from state sharing.

// Copyright 1lowRISC contributors.
// Licensed under the Apache
LICENSE for details.

// SPDX-License-Identifier:

Version 2.0, see

License,
Apache-2.0

// This is the base proxy class for all the sec_cm
interfaces.
virtual class sec_cm_base_if proxy extends uvm_object;
sec_cm_type_e sec_cm_type;
string path;

‘uvm_object_new

- pure virtual task inject_fault();

- pure virtual task restore_fault();

+ pure virtual task automatic inject_fault();
+ pure virtual task automatic restore_fault();

endclass

Listing 1. Opentitan Proxy Class Adjustments




TABLE I
COMPARATIVE EVALUATION OF DIFFERENT FINE-TUNED MODELS FOR HARDWARE DESIGN DOWNSTREAM TASKS

Downstream Task Or 'y Name Git Commit SHA Model ROUGE-1 FI Score | ROUGE-2 F1 Score | ROUGE-L F1 Score [ ROUGE-W F1 Score
Falcon-7B 0.666666667 0.626087 0.71896 0417834
OpenHW Group CORE V MCU 580275ce67d3c8fa92facff0828b0f4b335¢8bfe Llama2-7B 0.626086957 0.619469 0.683108 0.399298
StableLM-base-alpha-7b 0.677966102 0.672414 0.728704 0.428563
Falcon-7B 0.369863014 0.277778 0.414738 0.214051
fb115220b0c8570ee773f4d609501f28bd72e600 Llama2-7B 0.575163399 0.556291 0.639046 0.370246
StableLM-base-alpha-7b 0.438356164 0.388889 0.512094 0.305373
Falcon-7B 0.436363636 0.333333 0.506878 0.26954
Fix the Possible Bug inside the design d914eb9bectd15cdec953072ec6d74be2b6054d6 Llama2-7B 0.805555556 0.8 0.837331 0.50795
lowRISC OpenTitan StableLM-base-alpha-7b 0.540540541 0.458716 0.588562 0.333338
Falcon-7B 0.269967645 0.217939 0.332595 0.17633
0395 1da3306913 59b8c Llama2-7B 0.705882353 0.68 0.75268 0.463655
StableLM-base-alpha-7b 0.505354752 0.499423 0.575968 0.338396
Falcon-7B 0.339896188 0.22258 0.405916 0221039
03fbb03f78db0e0565a359cc683288a41d69dbb Llama2-7B 049704142 0491018 0.569061 0.324888
StableLM-base-alpha-7b 0.479687983 0417485 0.551211 0313176
Falcon-7B 1 1 1 0.890579
OpenHW Group CORE V MCU 580275ce67d3c8fa92facff0828b0f4b335¢8bfe Llama2-7B 0.181818182 0 0.245251 0.147212
StableLM-base-alpha-7b 0.139534884 0 0.207069 0.084116
Falcon-7B 0.487201989 0.398693 0.52284 0.326274
143df43e328c62fa08ac5cb64d0404cch2a8f0c9 Llama2-7B 1 1 1 0.706368
StableLM-base-alpha-7b 0.454203122 0.435464 0.495669 0.301564
Falcon-7B 0.2 0.058824 0.261591 0.134438
cfcfde74dc77881cad7870f706320cf042cd26f9 Llama2-7B 0.315789474 0.290909 0.385101 0.261872
Find the possible bug inside the design StableLM-base-alpha-7b 0.615384615 0.447368 0.667372 0.392397
: ) Falcon-7B 0.253229974 0.166667 0.289436 0.221765
lowRISC OpenTitan 03fbb03f78db0e0565a359cc6832f88a41d69dbb Llama2-7B 0 0.292272 0.162201
StableLM-base-alpha-7b 0 0.060415 0.024152
Falcon-7B 0.311727 0.441126 0.274217
9c922ae8c623c2e4d4el7 1 ceff1506a2¢7170fcd Llama2-7B 0.818182 0.860715 0.624436
StableLM-base-alpha-7b . 0.190432 0.243214 0.181597
Falcon-7B 0.5 0.263158 0.571747 0.271375
4172d4d7c2al3al 6e69421e16e2fa0bded39ea0f Llama2-7B 0.045454545 0 0.082274 0.031019
StableLM-base-alpha-7b 0 0 0 0

This bug-fixing effort involved modifications across multiple files,
including three in the training set, and demonstrated cases from the
validation dataset. The fine-tuned Falcon-7B and LLama2 7B model
learned the pattern and correctly applied the fix in Listing 2.

virtual class sec_cm_base_if proxy extends uvm_object;
sec_cm_type_e sec_cm_type;
string path;
‘uvm_object_new
pure virtual task automatic inject_fault();
pure virtual task automatic restore_fault();
endclass

Listing 2. Response from Finetuned Falcon 7B and LLama2 7B with prompt:
“Fix the possible BUG inside the given hardware design.”

The base Falcon 7B model’s performance, which has not been fine-
tuned, is substantially different. As shown in Listing 3, the model’s
response illustrates its lack of specialized hardware design domain-
specific training. The model correctly recognized its limitations.
Despite not providing a direct solution to the issue, it offered valuable
advice—underlining the necessity of professional assistance when
dealing with complex hardware problems.

I'm sorry, I cannot provide a solution to fix a possible
BUG inside the given hardware design. It requires
knowledge of hardware design, software development,

debugging techniques. It is recommended to consult
with experienced hardware and software engineers or
seek professional help.

and

Listing 3. Response from base Falcon with prompt: “Fix the possible BUG
inside the given hardware design.”

For the Llama2 model, we opted for the llama2 70b-chat version,
which boasts an average performance that is 22% superior to the
7B baseline model [34] for comparison. In Listing 4, it chose not to
respond and recommended seeking advice from a professional.

I cannot provide an answer to this question.

[/ e Omitted section for clarity............. //

Instead, I suggest that you seek assistance from a
qualified hardware engineer or software developer who
can evaluate the entirety of your code and provide
appropriate guidance on how to address any issues.

[/ e Omitted section for clarity............. //

Listing 4. Response from LLama2-70b-chat with prompt: “Fix the possible
BUG inside the given hardware design.”

Concurrently, ChatGPT4(July 19, 2023 Version) provides a high-
level perspective in its responses in Listing 5, emphasizing the impor-
tance of method implementations in subclasses and the significance

of hardware design or simulation testing. However, it did not directly
identify the crux of the problem—namely, that the inject_fault ()
and restore_fault () pure virtual tasks might share states when
called multiple times, potentially causing errors. This may stem from
GPT4 not receiving training in the hardware design domain and may
be incapable of responding to issues.

.............. Omitted section for clarity.............
The code you provided is a class definition with some
virtual tasks, which are intended to be overridden by
subclasses. There’s nothing inherently wrong with the
code you’ve provided. However, it’s worth noting that
bugs in hardware designs or simulations typically don’t
originate from such high-level descriptions or
interface definitions. Instead, they tend to stem from
the implementation of these interfaces and the specific
logic of the design. If you suspect that there’s a bug
in your hardware design, I would recommend inspecting
the implementation of these methods in the child
classes, and checking the simulation testbenches or the
hardware design itself.
.............. Omitted section for clarity.............

Listing 5. Response from ChatGPT4 (July 19, 2023 Version) with prompt:
“Fix the possible BUG inside the given hardware design.”

While BARD (2023.07.13 version), as indicated in Listing 6, can
pinpoint potential issues in the code, especially the declaration of these
two tasks as pure virtual functions which could result in undefined
behavior if not defined in subclasses, this isn’t the primary concern.
Its proposed solution (changing pure virtual functions to virtual
functions) cannot address the problem. This might also be due to
BARD not having received hardware design domain-specific training,
thus potentially lacking the capability to respond to such problems.

The possible bug in the given hardware design is that the
inject_fault () and restore_fault () tasks are declared
as pure virtual. This means that they must be
overridden by any subclass of sec_cm_base_if_proxy.
However, if a subclass does not override these tasks,
then they will be left undefined, which could lead to
undefined behavior.To fix this bug, the inject_fault ()
and restore_fault () tasks should be declared as virtual

instead of pure virtual. This will allow subclasses to
override these tasks without having to define them.

.............. Omitted section for clarity.............//

Listing 6. Response from BARD (2023.07.13 version) with prompt: “Fix the
possible BUG inside the given hardware design.”




V. CONCLUSION

This paper presents LLM4SECHW, a groundbreaking framework
that leverages domain-specific LLMs for hardware debugging. Our
evaluation shows our method’s effectiveness in accurately identifying
and correcting defects, offering a new perspective on automating the
quality control process in hardware design. Moreover, our findings
corroborate that, despite emerging architectures, there needs to be
a subtle but not pronounced performance variance in models with
similar parameter sizes post-fine-tuning. This necessitates a need for
data to train LLM and acquiring a computational platform capable of
supporting larger-parameter LLMs. Such requirements introduce new
challenges when applying fine-tuned LLMs for hardware debugging
and security.
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