Transforming Test Suites into Croissants

Yang Chen
University of Illinois Urbana-Champaign, USA
yangc9@illinois.edu

Darko Marinov
University of Illinois Urbana-Champaign, USA
marinov@illinois.edu

ABSTRACT

Software developers often rely on regression testing to ensure that
recent changes made to the source code do not introduce bugs.
Flaky tests, which non-deterministically pass or fail regardless of
any change to the code, can negatively impact the effectiveness
of the regression testing. While state-of-the-art is advancing the
techniques for test-flakiness detection and mitigation, the commu-
nity is missing a systematic approach for generating high-quality
benchmarks of flaky tests to compare the effectiveness of such
techniques. Inspired by the power of mutation testing in evaluat-
ing the fault-detection ability of tests, this paper proposes CROIs-
SANT, a framework for injecting flakiness into the test suites to
assess the effectiveness of test-flakiness detection tools in finding
these tests. CROISSANT implements 18 flakiness-inducing mutation
operators. We designed these operators to allow controlling the
non-determinism involved in flakiness, i.e., making many mutants
deterministically pass or fail to observe flaky behavior. Our ex-
tensive empirical evaluation of CROISSANT on the test suites of
15 real-world projects confirms the ability of designed mutation
operators to generate high-quality mutants, and their effectiveness
in challenging test-flakiness detection tools in revealing flaky tests.

CCS CONCEPTS
« Software and its engineering — Software testing and de-
bugging,.

KEYWORDS

Software Testing, Test Flakiness, Fault Injection, Mutation Testing

ACM Reference Format:

Yang Chen, Alperen Yildiz, Darko Marinov, and Reyhaneh Jabbarvand. 2023.
Transforming Test Suites into Croissants. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
'23), July 17-21, 2023, Seattle, WA, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3597926.3598119

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0221-1/23/07...$15.00
https://doi.org/10.1145/3597926.3598119

1080

Alperen Yildiz
Sabanci University, Turkey
alperenyildiz@sabanciuniv.edu

Reyhaneh Jabbarvand
University of Illinois Urbana-Champaign, USA
reyhaneh@illinois.edu

1 INTRODUCTION

Regression testing is essential to detect potential bugs and ensure
the reliability of ever-evolving software. The key idea behind regres-
sion testing is to run the test suite against the modified software
version to check if a recent change may have introduced a bug.
However, flaky tests, which non-deterministically pass or fail, can
drastically degrade the quality of regression testing [41]. A key rea-
son is that test flakiness happens due to code smells in the test suite
rather than a bug in the code under test. Consequently, developers
may spend a great deal of time debugging recent code changes to
search for the root cause of the failure raised by a flaky test, while
the root cause is the test code itself.

Test-flakiness detection techniques [3, 16, 30, 34-38, 41, 45, 52,
53,57, 62, 63, 66, 67, 70] rely on several executions of the test suites
(same order or different orders of the tests) to observe flaky behavior
or search for some pre-defined or learned anti-patterns in the test
code to identify the flakiness promptly. To assess the effectiveness
of these techniques at scale, there is a need for a large benchmark
containing a diverse set of flaky tests under different contexts. Sev-
eral attempts have been made to collect or automatically generate
such benchmarks. IDoFT [36] are FlaPy [22] are two collections of
flaky tests in open-source Java and Python projects, respectively.
Despite being rich resources of real-world flaky tests, they have
limitations. They do not allow one to control the non-determinism
of flaky tests in the benchmark to compare the effectiveness of
test-flakiness detection tools in finding hard-to-observe flaky bugs.
They are also limited in size by the number of tests found to be
flaky. FlakiMe [8] and Flaker [24] automatically inject flakiness into
existing test suites to create flaky mutants. FlakiMe is limited to
injecting exception statements in tests to create non-deterministic,
non-order-dependent (NOD) mutants. Flaker deletes helper state-
ments from tests to make their outcomes order-dependent (OD).
Both of these approaches are limited to a few categories of flaky
tests, failing to generate a diverse benchmark.

In this paper, we propose CROISSANT!, a systematic approach
for injecting various types of flakiness into test suites. In the design
of CROISSANT, we overcome two challenges:

(1) Fault Model Construction. Flaky tests can be complex and
manifest themselves under peculiar contextual conditions such as
test-order execution, race condition, iteration order, etc.; thereby,
small syntactic changes or adding exception statements may not
substitute or represent flakiness effectively [29]. This complexity
demands the design of CroISSANT’s mutation operators based on a
fault model of flaky anti-patterns. To that end, we first conducted

The approach name is inspired by the croissant pastry famous for its flaky texture.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

a semi-systematic study of various sources of information to con-
struct a comprehensive flaky-defect model?. Using our defect model,
we designed and implemented a total of 18 mutation operators to
automatically inject flakiness into JUnit test suites.

(2) Controlling Non-determinism. Effectiveness of a tech-
nique such as CROISSANT on assessing test-flakiness detection tools
depends on how well it can control the probability of observing flaky
behavior. Depending on the nature of flakiness, i.e., if flakiness hap-
pens due to dependency between tests or in isolation, CROISSANT
adjusts the manifestation probability of the mutants to challenge
test-flakiness detection tools in finding hard-to-detect flaky tests.
For NOD flaky tests, CROISSANT controls the non-determinism
through a threshold value. By changing the threshold value, the
chance of observing flaky behavior and finding a specific flaky
test also changes. For OD flaky bugs, CROISSANT controls the non-
determinism by adjusting the number of tests that break the order
dependency. The higher the number of such tests, the harder it is
for a test-flakiness detection tool to find dependent flaky tests.

Controlling non-determinism can also help us with mutation
analysis and ensuring the quality of the mutants. For example,
suppose we inject NOD tests into a test suite but do not observe test
failures in multiple test executions. In general, we cannot determine
if the mutation was incorrect (so the test cannot fail) or if more test
re-executions are needed to observe flaky behavior. However, if we
can control mutants to fail nearly deterministically, it can assure
the mutation was correct, but the flakiness was not observed.
This paper makes the following contributions:

Flaky anti-patterns: A comprehensive list of flaky anti-
patterns—commonly encountered development practices that
make test suites flaky—structured as a defect model. Compared
to related work that categorizes flaky tests based on the nature
of manifestation [36, 38]—i.e., OD or NOD—our defect model
categorizes flakiness based on the root causes, potentially mak-
ing it easier for practitioners to recognize or debug flaky tests.
Our defect model also introduces new categories for flakiness
not comprehensively studied by prior work.

Mutation operators: Design of 18 flakiness-inducing mutation
operators based on flaky anti-patterns. The ability to control
the probability of observing flaky behavior makes CROISSANT
suitable to challenge the ability of test-flakiness detection tools.
Compared to related work that introduces test flakiness using
limited patterns [24] or through probabilistic exceptions [8],
our comprehensive mutation operators are designed based on a
defect model, mimicking real test flakiness and leaving similar
execution footprints as them. That is, while our operators are
probabilistic similar to prior work, we differ by controlling the
execution of flaky anti-patterns rather than generic exceptions.
Public tool: We implemented our mutation operators in a tool
for Java projects. We call this tool CROISSANT, the same as our
approach. Our implementation is publicly available [64].
Empirical evaluation: An extensive empirical evaluation of
CROISSANT on developer-written test suites of 15 open-source
Java projects widely used in research demonstrates that our
proposed technique is effective and efficient in generating unique
and high-quality mutants to challenge test-flakiness detection

2We do not claim our defect model to be complete but the most comprehensive to date.

1081

Yang Chen, Alperen Yildiz, Darko Marinov, and Reyhaneh Jabbarvand

tools. Our experiments detected several bugs in iDFlakies [36], a
state-of-the-art tool for detecting OD flaky tests in Java projects.
All the reported bugs and our pull requests for fixing them were
confirmed and accepted by the iDFlakies developers.

2 DEFECT MODEL

We designed CROISSANT’s mutation operators based on real-world
flaky tests and sources of flakiness. Our methodology for collect-
ing a comprehensive list of sources of flakiness consists of three
main steps: (1) finding issues related to test flakiness in open-source
repositories, (2) identifying the anti-patterns corresponding to iden-
tified flakiness, and (3) designing and injecting mutation operators
based on these anti-patterns. For the first step, we performed a
keyword-based search on GitHub to collect flaky issues. In ad-
dition, we crawled Google Scholar to find prior work related to
test-flakiness detection and mitigation, and then extracted the infor-
mation such as commit and issue numbers from those papers. These
two resources provided us with a list of issues and commits rele-
vant to flaky tests in JUnit test suites. Next, we carefully studied the
code, test suite, and issue comments to identify flaky anti-patterns.
When present in a test suite, these anti-patterns can result in flaky
tests. In the remainder of this section, we explain the details of our
search protocol and defect model construction. We present details
of mutation operators in Section 3.

Mining Open-Source Repositories. We searched GitHub with
the query “flaky test language:Java label:bug comments:>2
state:closed” to retrieve issues that: (1) contain the keywords
“flaky” and “test”, (2) belong to Java projects, (3) are labeled as bugs
by developers (confirming the issue to be a bug), (4) have more than
two comments (which provides a discussion on the issue that could
help us to understand the issue), and (5) are closed (indicating that
the issue is resolved). Such issues likely include information that
can help understand the reported flaky cases. This search provided
266 issues® in April 2022 for further manual investigation.

Collecting Related Work. To study the related work on test-
flakiness detection and mitigation for JUnit tests, we searched
Google Scholar with the query “Junit flaky (test | tests)
(source: ACM | IEEE | Elsevier)”. This search resulted in 145
papers, out of which we removed five replication studies (because
they do not introduce new issues to investigate) and two retracted
papers. In addition, by analyzing the artifacts of these papers, we
identified 64 more GitHub issues for further manual investigation.

Defect Model Construction. From the previous steps, we col-
lected 330 GitHub issues and commits related to JUnit test flakiness.
Two paper authors manually investigated these issues to determine
common flaky anti-patterns in the code of the involved tests. As a
result, we identified 18 unique flaky anti-patterns representing the
sources of flakiness and designed mutation operators based on them.
Table 1 shows these mutation operators categorized into 17 classes.
The classes marked by * implement flakiness not discussed by prior
research. The first column of Table 1 shows a coarser-grained cate-
gorization of flakiness in our defect model following prior work on
classifying flaky tests. OD flaky tests manifest themselves in a spe-
cific order of the tests in the test suite due to a shared state between

3 A repeated search would likely result in a different number.
“We only considered the peer-reviewed papers published by ACM, IEEE, or Elsevier.

Transforming Test Suites into Croissants

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

Table 1: List of flakiness-inducing mutation operators. The classes marked by an asterisk are either not discussed in prior
work at all (*) or only a subset of their instances has been identified in prior work (**).

Type Class Description Mutation Operators
Instance Variable Dependency The shared state is an instance variable IVD
Static Variable Dependency* The shared state is a static variable SVD
Third-Party Framework Dependency” | The shared state is through a third-party framework TPFD
OD Cached Status Dependency The shared state is cached data CSD
Database State Dependency The shared state has items in the database DSD
File Permission Dependency The shared state is a file handle FPD
Resource Availability The shared state is a specific resource RA
Memory Dependency The test requires a large amount of memory that may not exist MD
Platform Dependency The test assumes specific platform properties to run PD
System Time Dependency The test relies on specific system time to execute STD-V, STD-Z
NOD | Concurrency Timeout Deadlock Non-deterministic timeouts due to deadlocks CTD
Asynchronous Waits The test makes asynchronous calls but does not wait properly AW
Too Restrictive Range The test relies on a restrictive range that can potentially change TRR
Race Condition Test assertion relies on the data manipulated by multiple threads RC
Unordered Collection Index Access™ | Test converts unordered collection into an ordered collection to access an index | UCIA
D Unordered Collections Conversion™* Test converts the unordered collection into a string ucc
Reflection API Misconception Test assumes deterministic order for the output of reflection APIs RAM
tests. When a test depends on the order of test execution in the test Algorithm 1: Injecting OD flakiness
suite, it is classified as an OD flaky test; otherwise, it is classified Inputs: Original test suite T,
as a flaky test that is not order-dependent (NOD). Implementation- Set of flaky anti-patterns A,
dependent (ID) flaky tests are a specific subcategory of NOD flaky Number of cleaner or state-unsetter tests k
tests due to misuse of certain code constructs such as collections. Output: Set of mutated test suites X = {Tj,..., Trn}

3 CROISSANT

We next introduce two main algorithms in CRoISSANT for generat-
ing flaky mutants. We also briefly discuss each class of mutation
operators. The source code and detailed explanation of CROISSANT’s
mutants are publicly available [65].

3.1 Mutant Generation and Analysis

3.1.1 OD Mutant Generation. OD flaky tests occur when two
or more tests in the test suite are coupled through a shared state that
the developers do not properly manage, e.g., in tearDown or setUp
methods [71]. As a result, if the execution order of tests changes,
e.g., due to test prioritization [55] or test parallelization [5], the
outcome of tests may also change from pass to fail or the other way
round. Tests that can change the outcome based on the shared state
are called either victim or brittle [57]. Victim tests pass when run
alone (but can fail when run after some other tests), while brittle
tests fail when run alone (but can pass when run after some other
tests). A test that changes the shared state for the victim test is
called polluter, while the test that changes the shared state for the
brittle is called state-setter. A victim test passes if executed before
the polluter and fails otherwise. In contrast, a brittle test fails if
executed before the state-setter and passes otherwise.

Detection of OD flaky tests is even more challenging due to the
existence of cleaners [57] and a new category of tests, which we
call state-unsetters. When a cleaner appears between a polluter and
a victim, it neutralizes the state change impact, so the victim passes
even when run after the polluter. Likewise, when a state-unsetter
appears between a state-setter and a brittle, it neutralizes the state
change impact, so the brittle fails even when run after the state-
setter. Without cleaner or state-unsetter tests, a simple technique
that re-executes the tests in one order and its reverse could detect
all OD flaky tests. Prior work [57] has introduced the notion of

1082

1 X0

2 VB « identifyVictimsBrittles(T, A)

3 foreach vb; € VB do

if ob; is victim then

5 pi,ci « createPolluterCleaner(vb;)
‘ T; < mutate(T, vb;, p;, ci, k)

else

L

| X «XU{T}

si, u; < createStateSetterUnsetter(ob;)
T; «— mutate(T, vb;, s;, uj, k)

10

11 return X

cleaners, but to the best of our knowledge, no prior work discussed
state-unsetters. To challenge flaky-detection tools, our mutation
operators not only can create a dependency between tests in the
test suite but also can inject cleaners and state-unsetters.
CroissanT follows the steps in Algorithm 1 to inject OD flaky
tests into test suites. It takes as inputs the original test suite T, a
set of flaky anti-patterns A identified by the defect model, and the
number of cleaner or state-unsetter tests k to be injected in the test
suite. Given these inputs, the algorithm generates a set of mutated
test suites X. In the first step, CRoISsANT performs a lightweight
static analysis to identify the potential victim or brittle tests that
match the anti-patterns in our defect model (Line 2, more details in
§3.2.1-§3.2.7). For each vb;, if the candidate can be a victim (Line
4), CROISSANT creates polluter test p; and cleaner test ¢; (Line 5).
Otherwise, the candidate can be a brittle, so CROISSANT creates
state-setter s; and state-unsetter u; tests (Line 8). The p; or s; tests
modify the shared state according to the type of vb;, e.g., variable,
cache, or file access of specific victim vb;. On the other hand, ¢; or u;
tests reverse the changes made by p; or s;. Next, CROISSANT mutates

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

T by adding the generated tests into the test suite (Lines 6 and 9) and
adds the mutant T; to the final set of mutants X (Line 10). All classes
of OD mutation operators, which we will explain in more detail in
Section 3.2, will add new tests to the test suite. Depending on the
type of flakiness, these tests will serve as a polluter, cleaner, state-
setter, or state-unsetter. CROISSANT reads the number of cleaners
or state-unsetter tests (input parameter k in Algortihm 1) from the
config file, and injects them accordingly in the test suite.

3.1.2 NOD and ID Mutant Generation. NOD and ID flakiness
often happen due to misuse or misunderstanding of programming
APIs, concurrency problems, etc. Compared to OD flakiness which
involves multiple tests, NOD and ID flakiness occur for each test in
isolation. As aresult, one can detect these tests by re-executing them
without shuffling the test execution order. Still, detecting NOD and
ID flakiness is challenging when the probability of observing flaky
behavior is tiny, e.g., test-flakiness detection tools may re-execute
the test suite more than 100 times to get a passing test to fail [38].

Algorithm 2 shows CROISSANT’s approach for injecting NOD
and ID flaky tests into test suites. It takes as inputs the original
test suite T, a set of flaky anti-patterns A, and a threshold value tr
that determines the probability of observing flakiness. Given these
inputs, Algorithm 2 generates a set of NOD and ID mutants X. The
algorithm first employs a simple static analysis to identify unit tests
that invoke specific APIs corresponding to different NOD or ID anti-
patterns (Line 2). Depending on the API invocation and whether
it relates to NOD or ID anti-patterns (details in §3.3-§3.4.3), the
algorithm mutates f; into a NOD or ID mutant (Line 4). CROISSANT
controls the non-determinism in NOD and ID mutants through a
threshold value tr, ranging from 0 to 1. Specifically, the probability
of failure for NOD mutants is exactly ¢r; for ID mutants, it is at most
tr. The threshold value can be adjusted dynamically during mutant
run-time execution, and the mutant checks it against a randomly
generated number. The mutated code will be executed if the random
value is smaller than the threshold. Consequently, a lower threshold
value makes it harder for naive flakiness detection tools to pinpoint
the injected flaky tests. After mutating the test suite, the algorithm
adds the mutated test suite T; to the final set of mutants (Line 6).
Unlike OD mutant generation, NOD and ID mutation operators only
modify existing tests to introduce flakiness in the test suite. That
said, the implementation of CROISSANT contains some template tests,
which can be added to test suites if certain NOD and ID mutation
operators do not apply to them. After adding these template tests,
CROISSANT can mutate them into flaky tests.

3.1.3 Mutation Analysis and Debugging. Mutation analysis
can be challenging in the presence of non-determinism. For example,
suppose CROISSANT injects a NOD mutant using Algorithm 2, where
we do not observe a test failure after re-executing the mutated
test suite multiple times. In that case, we cannot easily conclude
whether the mutation was ineffective (i.e., the test is not flaky at
all) or if the flaky behavior was not observed (although the test is
indeed flaky). To enable such analysis and debug potential issues,
CROISSANT enables the control of the non-determinism associated
with flaky tests in a fully deterministic fashion, helping users to
control mutants to pass or fail more deterministically. To that end,
CROISSANT generates helpers as a byproduct of the mutation, which
are the versions of the generated mutants that are more likely to

Yang Chen, Alperen Yildiz, Darko Marinov, and Reyhaneh Jabbarvand

Algorithm 2: Injecting NOD and ID flakiness
Inputs: Original test suite T,
Set of flaky anti-patterns A,
Threshold value ¢r
Output: Set of mutated test suites X = {T1, ...
X0
F « getCandidates(T, A)
foreach f; € F do
T; « mutate(T, f;, tr)
L X « XU{T;}
return X

T}

fail. Comparing the execution results of helpers® and the original
test suite for each generated mutant allows us to evaluate if the
flakiness injection was successful.

Cro1ssaNT generates OD helpers by discarding c¢;s or u;s from
mutants, i.e., helpers include no cleaner or state-unsetter tests. It
also modifies the order of test execution to reverse the test order
in the original test suite. As a result, if the mutation generates a
polluter/victim test pair, the original test suite passes while the
helper fails. On the other hand, if the mutation generates a state-
setter/brittle test pair, the original test suite fails while the helper
passes. For NOD and ID mutants, CROISSANT generated helpers by
setting the threshold value to 1, making them fail.

3.2 OD Mutation Operators

Our empirical study identified seven classes of OD flaky tests, de-
pending on the kind of shared state that couple polluter/cleaner/vic-
tim and state-setter/state-unsetter/brittle tests. We next explain the
example flaky tests and corresponding mutation operators mimick-
ing them. The code snippets used to demonstrate how mutants are
injected only show a high-level overview of the code in CROISSANT.

3.2.1 Instance Variable Dependency (IVD). IVD flakiness hap-
pens when developers define instance variables to be shared among
different test methods inside a test class®.

public void pTest() { // Polluter
instanceVar = CHANGED_STATUS;

3

public void cTest() { // Cleaner
instanceVar = DEFAULT_STATUS;

public void vTest() { // Victim
// specific assertion depends on the type of instance variable
assertEquals(DEFAULT_STATUS, instanceVar);

}

1083

Issue 592 in project elasticjob [17] is a real-world example of such a
case, where polluters do not shut down the shared instance; if they
run before the victim that assumes the instance to be shut down, the
victim fails. The snippet above shows the templates of IVD mutants
in CROISSANT, where the victim test vTest has a dependency with
the polluter test pTest through instanceVar.

3.2.2 Static Variable Dependency (SVD). SVD flaky tests hap-
pen when a polluter changes static variables that are used later by a
victim. Issue 4384 in project nacos [50] demonstrates an instance of

SEach helper is a test suite.
OThis feature is available in JUnit 5 but was not available in JUnit 4.

Transforming Test Suites into Croissants

such bugs in the real world. The snippet below shows an example
SVD mutant, where the victim vTest has a dependency with the
polluter pTest through a static variable field.

public class ClassWithStaticVariable {
FieldClass fieldClass = new FieldClass();
static class FieldClass {
static int field = defaultValue;
3

public void pTest() { // Polluter
fieldClass.field = diffValue;

public void cTest() { // Cleaner
fieldClass.field = defaultValue;

}

public void vTest() { // Victim
assertEquals(defaultValue, fieldClass.field);

}

3.23 Third-Party Framework Dependency (TPFD). Another
form of dependency between tests could be through third-party
libraries such as Mockito. Developers often mock methods rather
than running them; e.g., they use Mockito to define what a specific
method should return for a given input. After test execution, mocks
can be queried to see what methods were called and how many
times. Not resetting the state of Mockito can create an implicit
dependency between tests that use Mockito. The issue 182 in project
alien4cloud [31] shows an example TPFD flaky test. The snippet
below shows how CROISSANT generates such tests’.

public void
Mockito.
Mockito.

pTest() { // Polluter
when(mockedClass.stub(input1).thenReturn(outputl);
when(mockedClass. stub(input2).thenReturn(output2);

public void
Mockito.

cTest() { // Cleaner
reset(mockedClass);

public void vTest() { // Victim
Mockito.when(mockedClass.stub(input).thenReturn(output);
verify(mockObject, times(1)).add());
// If polluter executes first, verify(..., times(3)) is true

3.24 Cached Status Dependency (CSD). Dependencies such
as shared cache lead to flakiness if a polluter modifies the cache
used by a victim. Issue 1165 in project spring-ws [58] is a real-world
of such flakiness. The snippet below shows an example CSD mutant
in Cro1ssANT, where the victim vTest assumes a clean cache status
and fails if the polluter pTest runs first unless the cleaner cTest
runs before the victim to clean the shared cache. CROISSANT uses
Caffeine to create cache objects [4].

public void pTest() { // Polluter
cache.add(cachedObject);

public void cTest() { // Cleaner
cache.invalidateAll();

3

public void vTest() { // Victim
assertNull(cache.getIfPresent(cachedObject));

3

7The current implementation of Cro1ssaNT only supports Mockito. Users can extend
the template to support other mocking libraries.

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

3.25 Database State Dependency (DSD). Relying on other
tests to populate a shared database or failing to reset the state
of the database in tearDown results in DSD flaky tests. A real-
world example of such a test is reported in the issue 8 in project
spring-data-ebean [33]. The snippet below shows an example DSD
mutation operator in CROISSANT. The shared item between these
tests is not in the database unless state-setter sTest inserts it. If
the brittle bTest runs in isolation, it fails; if the state-setter runs
before the brittle, it passes. However, if the state-unsetter utest
runs before brittle, the shared item is deleted, which makes the
brittle fail again.

public void bTest() { // Brittle
PreparedStatement query = "SELECT * FROM table WHERE ID=item.ID";
assertTrue(query.execute());

public void sTest() { // State-Setter
PreparedStatement insert = "INSERT INTO table item";
insert.execute();

3

public void uTest() { // State-Unsetter
PreparedStatement delete = "DELETE FROM table WHERE ID=item.ID";
delete.execute();

}

3.2.6 File Permission Dependency (FPD). For FPD, the shared
state between tests is a file. With such a dependency, the polluter
may modify the permission of a file the victim later attempts to
access. Consequently, access to the file may fail. The issue 484 in
project Wikidata-Toolkit is a real-world example [32], where the
victim testMwRecentCurrentDumpFileProcessing fails since the
polluter changes the permission to the file wdtk-dumpfiles to read-
only. The snippet below shows the template FPD mutant, where
the polluter pTest changes the access permission of a shared file
to non-writable, which leads the victim vTest to fail.

public void pTest() { // Polluter
file.setWritable(false);

public void cTest() { // Cleaner
file.setWritable(true);

public void vTest() { // Victim
file.write();
3

3.27 Resource Availability (RA). A unit test that assumes the
existence of a certain resource, e.g., a file, can become a brittle
test. It can fail if run in isolation but pass if run after another test
that creates the required resource. The snippet below shows the
template RA mutant in CROISSANT. At the start, the filesystem is
cleared before all tests run, so FileA does not exist. If brittle bTest
runs first, it fails unless state-setter sTest runs before the brittle.
However, if the state-unsetter uTest runs before the brittle, the file
resource is unavailable, which causes the brittle to fail again.

public void bTest() { // Brittle
assertTrue(File.exist(FileA)); // FileA does not exist at first

public void sTest() { // State-Setter
File.create(FileA);

3

public void uTest() { // State-Unsetter
File.delete(FileA);

3

1084

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

3.3 NOD Mutation Operators

Our empirical study identified seven classes of NOD flaky tests
depending on the type of APIs they misuse. We next explain some
flaky tests and their corresponding mutation operators.

3.3.1 Memory Dependency (MD). MD flaky tests require a spe-
cific amount of memory that may or may not be available, e.g., due
to the frequency of garbage collection and memory usage of other
tests. Consequently, the test passes if enough memory is available
and fails otherwise.

public void MDTest() { // NOD test
System.gc();
long totalMemory = getTotalMemory();
System.gc();
long usedMemory = getTotalMemory() - getFreeMemory();
assertEquals(totalMemory, usedMemory);

3.3.2 Platform Dependency (PD). Platform-dependent flaki-
ness occurs when a test assumes certain properties about the
running platform, including the availability of local ports. Con-
sequently, if it runs on a different platform that does not satisfy the
assumption, e.g., during continuous integration, test outcome can
differ. The code snippet below shows the template PD mutant in
CROISSANT, which makes a test rely on the availability of a specific
port. The test passes if the port is available but fails otherwise.

public void PDTest() { // NOD test
int PORT = 638@; // hard-coded port
assertTrue(isPortAccessible(PORT));

3.3.3 System Time Dependency (STD). The outcome of STD
flaky tests depends on the timezone of the execution environment
or a specific timestamp. Thus, running the test at a different time,
e.g., with daylight saving, can trigger flakiness. We implement two
types of STD flaky tests, namely STD-Z and STD-V. The flakiness in
the former is due to the time-zone difference, while the time values
in the latter result in the flakiness.

1) Time-zone-dependency (STD-Z) flaky tests. The snippet be-
low shows how Cro1SsANT injects STD-Z flakiness, where a test
assumes one specific timezone, but the actual timezone differs.

public void STDZTest() { // NOD test
SimpleDateFormat dateFormat;
dateFormat.setTimeZone(TimeZone.getTimeZone("UTC"));
int datel = dateFormat.parse("2022-11-22 10:13:55");
dateFormat.setTimeZone(TimeZone.getDefault());
int date2 = dateFormat.parse("2022-11-22 10:13:55");
assertEquals(datel, date2);

2) Timestamp-Value-dependency (STD-V) flaky tests. Such flaki-
ness is caused when a test assertion depends on the system times-
tamp. An example real-world issue is 1935 in project hutool [25],
where an assertion compares the current time with a precision of a
second.

public void STDVTest() { // NOD test
long timeStampl = System.currentTimeMillis();
Thread.sleep(1L);
long timeStamp2 = System.currentTimeMillis();
assertEquals(timeStampl1, timeStamp2);

Yang Chen, Alperen Yildiz, Darko Marinov, and Reyhaneh Jabbarvand

When a time object is created, the current timestamp is saved. If
there is a delay between the creation time and the assert time, the
test fails. The code snippet below shows an example of STD-V
mutant generated by CROISSANT.

3.3.4 Concurrency Timeout Deadlock (CTD). Another
root cause of test flakiness is timeouts, which happen non-
deterministically due to concurrency. For example, a test may
make some calls and wait for some time to get the return value. If
the wait time is not long enough to ensure the return, different
executions of the test may show flaky behavior. Also, threads
may get stuck in a deadlock in some executions while returning
successfully in others, resulting in test flakiness.

@Test(timeout=5)
public void CTDTest() { // NOD test
Object lockil new Object();
Object lock2 = new Object();
Thread threadl = new Thread() {
public void run() {
synchronized (lockl) {
Thread.sleep(100);
synchronized (lock2) {}

}
¥
Thread thread2 = new Thread() {
public void run() {
synchronized (lock2) {
Thread.sleep(100);
synchronized (lock1) {3}

3}
b
threadl.run();
thread2.run();

3.3.5 Asynchronous Wait (AW). When a test makes an asyn-
chronous call and does not wait properly to get the returned result, it
leads to test flakiness. A real-world example is issue 3683 in project
retrofit [54]. The snippet below shows how CROISSANT injects AW
flaky tests, with CountDownLatch to mimic multi-threaded effects.

public void AWTest() { // NOD test
CountDownLatch latch = new CountDownLatch(1);
Thread thread = new CountDownThread(latch);
thread.start();
assertTrue(latch.await (1000, TimeUnit.MILLISECONDS));

3.3.6 Too Restrictive Range (TRR). If the test design does not
consider some valid output values, actual outputs can be outside
the assertion range. A restrictive range for test assertions causes
such flakiness. CRoISSANT injects TRR flakiness by mimicking an
extremely restricted range, similar to the code snippet below.

public void TRRTest() { // NOD test
boolean output = true;
int restrictRange = getAcceptableRange();
if (restrictRange >= @ || restrictRange <= 0) {
output = false;
}

assertTrue(output);

1085

Transforming Test Suites into Croissants

3.3.7 Race Condition (RC). Multi-threading may cause test flak-
iness due to the seemingly non-deterministic behavior of thread
interleaving. For example, the test outcome may depend on a vari-
able shared by multiple threads in a non-thread-safe manner, where
race conditions result in non-determinism.

public void RCTest() throws IOException { // NOD test
ArrayList<Integer> list = new ArraylList<>();
list.add(0);
for (int 1 = @; i < 1000; i++) {
Thread thread = new Thread(new NonSafeThread(list));
thread.start();
}
assertEqual (1000, list.get(Q));

class NonSafeThread implements Runnable {
ArraylList<Integer> list;
NonSafeThread(ArrayList<Integer> var2) {
this.list = var2;
3
list.set(@, list.get(@) + 1);

3.4 ID Mutation Operators

Implementation-dependent (ID) flaky tests are a subcategory of
NOD flaky tests in which the flakiness is due to an incorrect as-
sumption on some implementation-specific AP, e.g., the order of
unordered collections [23]. For example, Map and Set collections in
Java do not provide any order for iteration. We separated ID from
NOD, as some test-flakiness detection and prevention techniques
may focus on IDs [23, 49] but not general NODs. The remainder
of the section discusses mutation operators that mimic different
misuses of unordered collections.

3.4.1 Unordered Collection Index Access (UCIA). Java does
not allow direct indexing of unordered collections. Some tests by-
pass this constraint by converting an unordered collection into an
ordered collection. However, this conversion does not preserve the
index of items deterministically, which can lead to test flakiness.
The issue 4717 in project druid [14] shows a real-world example.
CROISSANT generates UCIA mutants by converting one unordered
collection into two lists and checking if the items at index 0 are the
same, as shown in the code snippet below.

public void UCIATest() { // ID test
HashMap<> map = getAMap();
List<> 1list1 = new ArraylList<>(map.values());
List<> 1list2 = new ArraylList<>(map.values());
assertEquals(listl.get(@), list2.get(Q));

3.4.2 Unordered Collections Conversion (UCC). UCC flaky
tests happen when developers convert unordered collections such
as Map to String to use for comparison in assertions. Due to the
non-deterministic order of elements in unordered collections, the
actual string generated may or may not match the expected string.

public void UCCTest() { // ID test
HashMap<> map = getAMap();
Set<> set = new HashSet<>(map.values());
assertEquals(set.toString(), set.toString());

}

Cro1ssaNT generates UCC mutants by converting an unordered
collection into a string twice and checking if the two strings match.

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

34.3 Reflection API Misuse (RAM). Developers use reflection
APIs to inspect methods or classes at runtime, but the results of such
APIs are non-deterministic. As a result, assuming a specific order is
incorrect. The issue 480 in project commons-lang [39] demonstrates
a real-world RAM flaky test, which assumes a specific order of
elements returned by the reflection method getDeclaredFields.
The snippet below shows CROISSANT’s technique for generating
RAM flaky tests. The test uses getMethods from the same class
twice and checks if the first returned elements are the same.

public void RAMTest() { // ID test
Method[] methods1 classA.getMethods();
Method[] methods2 = classA.getMethods();
assertEquals(methods1[@], methods2[0@]);

}

1086

4 EVALUATION

To evaluate the effectiveness of CROISSANT, we investigate the
following research questions:

RQ1: Quality of the Mutants. To what extent the designed muta-
tion operators are successful in making test suites flaky? What is the
percentage of mutants that are non-compilable (test or whole test-
suite cannot be compiled) or non-executable (test(s) permanently
fails due to exception caused by mutation)?

RQ2: Effectiveness of the Mutation. To what extent do the mu-
tants challenge the state-of-the-art test-flakiness detection tools?
RQ3: Comparison with Other Techniques. How prevalent are
our mutants compared to the alternative mutation testing approach,
FlakiMe [8]? To what extent can FlakiMe challenge test-flakiness
detection tools compared to CROISSANT?

RQ4: Performance. What are the performance characteristics of
the proposed technique?

4.1 Experimental Setup and Data Availability

Test-Flakiness Detection Tools. To analyze CROISSANT’s mu-
tants, we used state-of-the-practice Maven Surefire [40] and
two state-of-the-research tools for Java: NonDex [23] and iD-
Flakies [36]. Surefire is the default Maven plugin for running
unit tests. One feature it offers is re-running failed tests when
rerunFailingTestsCount parameter is set to a value greater than
0. If the test outcome differs in multiple executions, Surefire raises
flaky failure or flaky error. As a result, Surefire can only detect
NOD flaky tests. NonDex is a tool for detecting ID and NOD flaky
tests by randomly exploring different behaviors of certain APIs
during test execution. iDFlakies detects OD flaky tests by reorder-
ing and rerunning tests in the test suite; it can also detect NOD
tests as a byproduct of rerunning tests. We were not able to use
learning-based techniques such as FlakeFlagger [2], FlakyVocabu-
lary [53], and Flakify [19], due to the limitations of these techniques.
Specifically, these tools can only extract features from the source
code, while CROISSANT generates binary files for mutants®. We
choose bytecode manipulation in the current implementation of
CROISSANT, because it is faster and does not require expensive com-
pilation to generate executable mutants, which can reduce the cost
of mutation testing.

Subjects. To collect subjects, we searched GitHub for Java reposito-
ries with the following properties: (1) popular and well-maintained

8Decompilation of the binary files resulted in non-compilable test suites.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

Yang Chen, Alperen Yildiz, Darko Marinov, and Reyhaneh Jabbarvand

Table 2: The breakdown of the number of mutants generated by CRo1ssaNT for each subject test suite.

Project [Total [IVD [SVD [TPFD [CSD [DSD [FPD [RA [MD [PD [STD-V [STD-Z [AW [CTD [RC [TRR [UCIA | UCC [RAM |
cli 1003 [20 [20 [28 | 28 [28 | 28 [28 | 378 [28 | 23 28 51 [28 [28 [175 [28 | 28 | 28
codec 2532 | 50 [50 | 59 [65 | 65 | 59 | 65 | 1088 | 57 | 57 62 | 114 | 59 [59 [452 [57 [57 | 57
crypto 530 [19 [19 [19 [19 [19 [19 [19 [136 | 17 [17 29 3¢ | 17 [w [79 [1 [1|17
csv 1058 [22 | 22 | 25 | 26 | 26 | 25 | 26 | 440 | 25 | 25 26 50 | 25 [25 [195 [25 [25 | 25
email 601 [13 [13 [18 | 18 [14 | 18 [18 | 218 [15 | 15 14 15 [29 |14 [125 | 15 15 [15
fileupload 410 [13 [13 [13 | 13 [13 [13 |13 | 127 [13| 13 14 26 | 13 [13 | 61 13 | 13 [13
graph 700 | 21 [21 | 23 | 23 | 23 | 23 | 23 [228 [21 | 21 21 42 | 21 [21 | 105 [21 N
jsoup 1765 | 30 | 30 | 32 | 32 | 30 | 32 [32 | 816 | 31 | 31 32 62 | 32 [32 [418 [31 [31 | 31
marine 3650 | 79 [[79 | 79 79 [78 [79 |79 [1372] 77 | 73 79 |50 | 77 [77 [ve2 | 77 [|7
math 1219 [33 | 33 | 33 | 33 [33 | 33 [33| 406 | 32 | 32 32 64 | 31 [31 [264 | 32 | 32 | 32
monitoring | 552 [16 | 16 | 16 | 16 | 16 | 16 | 16 | 203 [17 | 17 34 17 [34 |17 [e7 | 17 | 17 [17
scxml 1688 | 52 | 52 | 52 | 52 | 52 | 52 [52 | 499 [52 | 52 52 | 107 | 52 [52 [302 [52 | 52 | 52
text 3556 | 82 | 82 | 82 | 86 | 8 | 80 | 86 | 1499 | 80 | 80 8¢ [160 | 77 [77 [75 [80 [80 | 80
unix4j 716 | 48 | 48 | 51 | 51 | 45 [48 | 44 [180 | 14 | 14 14 28 | 14 [14 [61 [14 [14 | 14
xmlgraphics | 1835 | 61 | 60 | 61 | 61 [61 | 61 [61 | 502 | 61 | 61 62 | 123 | 61 [61 | 205 [61 | 61 | el
Total 21815 | 559 | 558 | 591 | 602 | 589 | 586 | 595 | 8092 | 540 | 567 530 | 1074 | 538 | 538 [4236 | 540 | 540 | 540

Table 3: The number of flaky tests for each subject test suite
using FlakiMe and CroissanT (NE = Non-Executable).

Project #tests | #FlakiMe mutants | #CROISSANT mutants (NE)
cli [6] 438 324 1003 (0)
codec [7] 1336 865 2532 (0)
crypto [9] 121 92 530 (0)
csv [10] 326 435 1058 (0)
email [18] 139 190 601 (0)
fileupload [20] 78 83 410 (0)
graph [21] 131 138 727 (27)
jsoup [28] 1136 1035 1765 (0)
marine [43] 995 1097 3697 (47)
math [46] 375 328 1267 (48)
monitoring [48] 118 108 552 (0)
sexml [56] 239 261 1688 (0)
text [59] 1153 1182 3556 (0)
unix4j [60] 136 453 716 (0)
xmlgraphics [69] 196 205 1835 (0)
Total 6302 6796 21937 (122)

(> 200 stars, recent commits within six months, > 100 closed issues,
and < 20 open issues tagged as bugs); (2) has > 100 existing JUnit
tests; (3) has size > 5 KLoC; (4) is written in Java 8 (requirement
of iDFlakies); and (5) with test suites using only JUnit 4 or JUnit 5,
and not the mix (requirement of iDFlakies). From these repositories,
we excluded those that we could not compile and those for which
FlakiMe could not generate mutants. To eliminate the impact of
original flakiness on the evaluation results, we used Surefire and
NonDex first to ensure the initial test suites did not have obvious
NOD and ID flakiness. For the cases that passed the first step, we
ran iDFlakies to check for obvious OD flaky tests. Table 3 (first
column) shows our 15 subjects.

Mutant Generation. We use CROISSANT for the generation of
flaky mutants. The implementation of CROISSANT is publicly avail-
able [64] as a stand-alone tool that takes the source code of test
suites as an input and generates a mutated test suite bytecode as
an output. To pinpoint tests of interest in test suites, i.e., those
that should be modified or can act as a victim/brittle in the test
suites, CROISSANT employs lightweight flow-sensitive analysis us-
ing Soot [61]. The current implementation supports both first- and
higher-order mutation injection. However, all the experiments have

1087

been performed on first-order mutation injection. We also compare
CroissaNT with FlakiMe [8], which injects exception statements
that can be executed with some probabilities, making the test suites
flaky. FlakiMe can generate more mutants than the number of tests
in the test suite because it mutates tests as well as methods such as
setUp in test classes.

4.2 RQ1: Quality of the Mutants

To measure the quality of CROISSANT’s mutation operators, we
check the extent to which it creates executable flaky test suites. Ta-
ble 3 shows the summary results of applying CROISSANT to subject
test suites. In total, CROISSANT generated 21, 937 mutants for all
the subjects, of which only 122 (< 0.5%) were non-executable (last
column in Table 3). To validate that the generated mutants induce
flakiness, we executed mutant helpers (§3.1.3) and the original test
suites. If the pass/fail outcome of these two test suites differed, we
confirmed that flakiness injection was successful. This validation
process confirmed that all the executable mutants (> 99.5% of the
generated mutants) made the original test suite flaky. Due to the
design of our mutation operators and ensuring that mutants rep-
resent flaky behavior, CROISSANT produces no equivalent mutant.
Similarly, given the uniqueness of flaky anti-patterns concerning
specific tests in the test suite, CROISSANT will never generate du-
plicate mutants. These results confirm that CROISSANT is a viable
technique for injecting various flakiness types into test suites.

4.3 RQ2: Effectiveness of the Mutation

To evaluate the effectiveness of CRoOISSANT in challenging flakiness-
detection tools, we applied Surefire and NonDex on NOD and ID mu-
tants, and iDFlakies on OD mutants. We configure Surefire with re-
runFailing TestsCount=5, NonDex with nondexRuns=>5, and iDFlakies
with rounds=5 repeating 5 runs with different random seeds.
NOD mutants. We introduce thresholds for NOD mutants to
control the possibility of test failures. Higher threshold leads to a
higher possibility of test failures. We vary the threshold tr from
0.1 to 1. When tr = 0, tests always pass. As tr increases, tests
have more chance to fail (but can still pass during some of the 5
reruns), so more tests behave as flakes. After achieving the high-
est point of flakiness, tests have a much higher possibility to fail

Transforming Test Suites into Croissants

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

gso’ 80 80 1 80
hel
£ 601 & & 60 60 60 =
& % %éé = qu
E4o~? = & & 40 4 é 40 4 T 40 lfl
g % = Fﬁ
b2 @ % 20 20+ * 20+ @ é
= . & & . & é . E] ,
"02 04 06 08 1.0 "02 04 06 08 1.0 "02 04 06 08 1.0 "02 04 06 08 1.0
(a) MD (b) PD (c) STD-Z (d) STD-V
gso— 80 - 80 80 @ NonDex
-8 Surefire
Eeo— % g]@ 60 4 * é%l 60 ? Iil 60 4 ﬁgﬁéé?é
[
240-? @ l Iﬂ 40«% -f% 40-* I? I% 40-% {3% %? &
Ezo—éﬂ] T%é 20-I:21 ? 20-#E] *%# 201 & 5
= 8 2 7
®T02 o4 o6 o8 1o _ 02 04 06 08 1o 02 04 06 08 10 _ 02 04 06 08 Lo
(e) AW (f) RC (g) CTD (h) TRR

Figure 1: Effectiveness of NOD mutants in challenging NonDex and Surefire running with thresholds from 0.1 to 1 with the

increment value 0.1 (¢r introduced in Section 4.3)

B

i
i%

g 100 A % E ***** q
g 80 % 1
2
(9]
g
2 60 1
7
@ 40 4 i
>
©
S 204 |
0.2 04 06 08 1.0 0.2
(a) UCC

0.4

(b) UCIA

T

1.0

T

04 06 08 1.0

(c) RAM

0.6 0.8 0.2

Figure 2: Effectiveness of ID mutants in challenging NonDex running with thresholds from 0.1 to 1, with the increment value

0.1 (tr introduced in Section 4.3)

during all reruns, so more and more mutants are categorized as
Failure or Error. For tr = 1, tests always fail, resulting in no
flakiness. Figure 1 shows the percentages of flaky tests detected by
Surefire and NonDex as the threshold ¢r changes. Each box plot
represents values for each of 15 projects, where each value is a
percentage of all generated flaky tests detected by the used tool.
The trends of both Surefire and NonDex detection first increase and
then decrease, which is expected. However, we observe the turning
points of Surefire and NonDex detection to greatly differ. Surefire
achieves the highest percentage of flaky tests when tr € [0.6,0.8],
while NonDex achieves the highest percentage when tr € [0.2,0.4].
When tr < 0.5, NonDex works more effectively than Surefire. We
further calculated flakiness detection formulas ¢r(1 — ¢7°) for Sure-
fire and (1—tr)(1—(1—tr)?) for NonDex. The trends in Figure 1 are
consistent with the probabilities calculated by formulas. In practice,
we can expect that flaky tests do not fail too often (with tr most
likely less than 0.5); otherwise, tests that fail too often would lead
to broken builds and likely be addressed by developers.

ID mutants. NonDex is designed to detect wrong assumptions
on Java APIs with implementation-specific behavior, targeting flaky
ID tests. It specifically checks for the invocation of such APIs in
tests and examines different behaviors, e.g., different order of un-
ordered data structures to ensure there is no wrong assumption.

1088

With the threshold tr increasing, the ID mutants have a higher
chance of executing flakiness, thereby being detected by NonDex.
Figure 2 shows the percentages of flaky tests detected by NonDex
and Surefire when they are run on ID mutants. With ¢r increasing,
NonDex can detect more flaky tests and, in all cases, achieves 100%
when tr € [0.6,1.0]. (Note that the trends differ for NOD and ID
flaky tests.) However, Surefire cannot detect any of the ID flaky
tests when tr varies from 0 to 1.

OD mutants. Test suites with more cleaners/state-unsetters
should make it harder for iDFlakies to detect victims/brittles. To con-
firm this behavior, we varied the number of cleaners/state-setters in
the test suite from 0 to 50. Figure 3 demonstrates the result of this
experiment. From these results, iDFlakies can always detect nearly
100% victims/brittles when the number of cleaners/state-unsetters
is sent to 0. By increasing this number, the ability of iDFlakies to de-
tect flaky tests degrades, such that with 50 cleaners/state-unsetters,
it can only detect about 10% of the flaky tests.

The results on the effectiveness of Cro1ssANT in challenging dif-
ferent tools show similar trends, regardless of the type of flakiness.
This is mainly because the current dynamic flakiness-detection
tools need to observe the flaky behavior first and then confirm
the flakiness. As researchers develop smarter tools for flakiness
detection that involve deeper analysis of the test suites, they can

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

Yang Chen, Alperen Yildiz, Darko Marinov, and Reyhaneh Jabbarvand

O
—

B -3 @
o S S

N
15}

Flaky Tests detected (%)

Q11T 99041

o

|7 T

Pibdas | 198hd4s

0 10 20 30 35 40 45 50

0 10 20 30 35 40 45 50
(a) IVD (b) FPD

0 10 20 30 35 40 45 50 0 10 20 30 35 40 45 50
(c) TPFD

:100-? :?

80
60
40

SRLLITTY

0

Flaky Tests detected (%

T

b

n

TIIT

0 10 20 30 35 40 45 50
(e) DSD

6 1‘0 2‘0 Bb 3‘5 4‘0 4‘5 5‘0
(f) SVD (g) RA

0 10 20 30 35 40 45 50

Figure 3: Effectiveness of OD mutants in challenging iDFlakies running with the number of cleaners from 0 to 50

choose which mutation operators to use, showing the superiority
of their tool, regardless of the probability of observing flakiness.

Mutation operators that change file systems (RA and FPD), mem-
ory (MD), and database (DSD) are specifically important since these
resources are always used in real-world development. These opera-
tors also helped us find diverse bugs in iDFlakies. Specifically, in
the initial phase of our experiments, we observed that increasing
the number of cleaners in these mutants does not consistently de-
grade the detection of victims. Our further investigation revealed
two non-deterministic bugs in iDFlakies: (1) iDFlakies collects test
methods by name, and not by signature. In the presence of helper
methods with the same name as tests, iDFlakies ignores the test if it
collects the helper method first. Consequently, the list of methods
does not always include all tests consistently, resulting in differ-
ent results regardless of the change in the number of cleaners and
state-unsetters; (2) iDFlakies uses an unordered collection when
collecting the test orders in the original test suite, resulting in non-
determinism, resulting a mismatch when comparing the original
and shuffled order. Our fixes to these issues [1], which were ac-
cepted by the developers of iDFlakies, resolved the inconsistency
in the reported results.

4.4 RQ3: Comparison with Other Techniques

In this RQ, we evaluate (1) how the mutants generated by Crors-
saNT differ from those of prior techniques and (2) to what extent
such techniques can challenge test-flakiness detection tools. To
that end, we qualitatively and quantitatively compare the mutants
generated by Cro1ssanT and FlakiMe for three aspects listed below.

Flaky test type. Compared to CROISSANT that generates all
types of flakiness—OD, NOD, and ID—FlakiMe generates only NOD
flaky tests. Consequently, one cannot use FlakiMe to evaluate flaki-
ness detection and mitigation tools designed for ID and OD flaky
tests. Furthermore, we investigate the effectiveness of FlakiMe NOD
mutants in challenging Surefire and NonDex. As demonstrated by
Figure 4, FlakiMe’s mutants are similar to CROISSANT s mutants in
showing that re-execution of tests poses challenges to detecting
infrequent NOD flaky tests. The detection rate follows a similar

1089

60

50

4

S

30

20

Flaky Tests detected (%)

0.2 0.4 0.6 08 1.0 0.2 0.4 0.6 0.8 1.0

(a) (b)

Figure 4: Effectiveness of the FlakiMe mutants in challeng-
ing (a) NonDex and b) Surefire with flake rate from 0.1 to 1

trend. However, for the same threshold and flake rate value, the aver-
age detection rate of FlakiMe’s mutants is lower than CROISSANT’s.
The reason is that FlakiMe computes the flake rate—probability
to observe flaky behavior—as FRy X Pfjakiness> Where Priakiness
is a predefined value computed by a prediction model, and FR,
is similar to the threshold value tr in CroissanT. Hence, flake
rate value in FlakiMe is always smaller than the threshold value
in CROISSANT, resulting in a lower chance to manifest flakiness.
Furthermore, computing the exact probability of failure in FlakiMe
mutants is challenging. In CROISSANT, we can control the proba-
bility to trigger flakiness through ¢r and k values. In contrast, for
FlakiMe, this depends on the number of times a test reaches the
threshold checks. FlakiMe adds such checks in various methods in
test classes, and these methods may be executed more than once
(e.g., a test method may call setUp and tearDown methods).
Flakiness signature. CROISSANT can inject 18 unique patterns
of flaky bugs into test suites. These mutants are designed based on
an extensive study of the issues and commits of open-source Java
projects; thereby, their footprints are more similar to real flaky tests
than FlakiMe’s mutants, which are created by adding only a condi-
tional exception statement, always resulting in exception failure as
a footprint. As a result, while FlakiMe mutants represent flaky test
outcome, they do not represent flaky test behavior. This difference is
specifically important for benchmarking because different flakiness
detection and mitigation techniques may focus on the particular
properties of flaky tests. For example, another way to detect RC

Transforming Test Suites into Croissants

flaky tests could involve a data-flow analysis, while a lightweight
static analysis could detect potential FPD flaky tests. Without a
fine-grained benchmark similar to CROISSANT, one cannot truly
distinguish the extent to which these sophisticated techniques work
better than rerun techniques such as Surefire and iDFlakies.

Mutation location. CROISSANT uses a lightweight static analy-
sis to identify the potential location of flakiness injection, depending
on specific flaky anti-pattern. On the other hand, FlakiMe relies on a
vocabulary-based machine-learning model to identify the injection
location. Specifically, FlakiMe mutates a test in the subject test suite
if there is a high similarity between its vocabulary with previously
identified flaky tests in real-world settings. As a result of this dif-
ference, CROISSANT can determine all the applicable locations for a
specific class of mutation operators in a given test suite, generating
a more diverse set of flaky tests as a benchmark. While a bigger
set of mutants adds to the cost of mutation testing, it can create a
more representative set of mutants.

4.5 ROQ4: Performance for Mutant Generation

To answer this research question, we evaluated the time required for
CROISSANT to mutate subject test suites. We ran the experiments on
a CPU cluster with 2.6 GHz Intel Xeon(R) Platinum 8171M processor
and 16 GB DDR3 RAM. Overall, it takes 0.35 seconds on average
(min=0.19, max=0.57) to mutate a test suite with a single mutation
operator and 8 minutes on average (min=1, max=21) to create all
the mutants for subject test suites. The time required for assessing
test-flakiness detection tools is unique to their underlying approach
and is independent of CROISSANT’s design choices.

5 RELATED WORK

Our research is related to prior work on mutation testing as well
as approaches aimed to characterize, detect, or mitigate flaky tests.

Mutation Testing. Mutation testing has been widely used in test-
ing programs written in different languages [11, 12, 12, 13, 42, 47],
as well as testing program properties such as specifications [44],
memory usage [68], and energy consumption [27]. The most closely
related work to CROISSANT on injecting flakiness into test suites
are FlakiMe [8] and Flaker [24].

FlakiMe creates NOD flaky tests by adding exception statements
into the tests. The probability of observing flaky behavior depends
on the combination of test flakiness probability, which is provided
by a prediction model integrated into FlakiMe, and nominal flake
rate, which is a parameter that users can adjust. Similar to FlakiMe,
Cro1ssaNT’s flakiness rate can be determined by users (threshold
value) to control the experiments and investigate the effectiveness
of test-flakiness detection tools. However, CROISSANT s mutation op-
erators are designed based on real-world flaky tests. Consequently,
the footprint of our mutants is more similar to actual flaky tests
compared to FlakiMe’s mutants. This property is important for
benchmarking flaky tests, which can have usages beyond evaluat-
ing test-flakiness detection tools discussed in this paper.

Flaker injects OD flaky tests into test suites by removing the
helper statements in cleaners and state-setter tests. CROISSANT’s
OD mutation operators are superior to Flaker’s in two ways. First,
the flakiness behavior of our mutation operators can be adjusted
by changing the number of cleaners and state-setters. Second, re-
moving helper statements, i.e., voiding the impact of cleaners and

1090

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

state-setters, makes detecting OD flaky tests easier because the
only remaining dependency is now between polluter/victim or pol-
luter/brittle tests, and flakiness behavior can be observed in more
test-suite permutations.

Test Flakiness. Test flakiness could be frustrating in software
development [51]. To help developers, several techniques have
been proposed to characterize [15, 16, 34, 35, 37, 38, 41], de-
tect [3, 30, 36, 45, 52, 53, 62, 67, 70], or mitigate [57, 63, 66] flaky
tests. The related work characterizing flaky tests has investigated
and analyzed flaky tests in traditional programs, probabilistic pro-
gramming systems, machine learning projects, and mobile apps.
These techniques aim to understand the nature of flaky tests and
what makes their detection of them challenging. Consequently,
they characterize flaky tests at a very high level, e.g., OD, NOD,
or ID. In contrast, CROISSANT categorizes flaky tests based on the
unique flaky anti-patterns. Such fine-grained categorization can
better describe flaky tests and distinguish test-flakiness detection
tools in detecting specific classes of tests.

CROISSANT is orthogonal to test-flakiness detection and mitiga-
tion body of work. That is, CROISSANT can generate the evaluation
benchmark to fairly compare such techniques with prior work and
identify the strengths and weaknesses of newer techniques. Fur-
thermore, the capability of injecting CROISSANT’s mutants into
given JUnit test suites also enables large-scale evaluation for such
tools. Compared to IDoFT [26], which is a distributed/community
effort to construct a dataset of real-world flaky tests, CROISSANT
can inject flaky tests into any given test suite in JUnit 4 or JUnit 5.

6 CONCLUDING REMARKS

Test flakiness can drastically impact the effectiveness of regression
testing and the quality of the software products. Despite recent
advancements in the detection and mitigation of test flakiness, the
research is still in its infancy. Specifically, the community lacks
systematic approaches or benchmarks for fairly comparing such
techniques. We proposed CROISSANT, a framework to inject realistic
flaky tests into test suites. The current version of CROI1SSANT offers
18 high-quality mutation operators. The experimental results show
that these mutation operators can indeed challenge test-flakiness
detection tools to further design better heuristics and algorithms
for reliably pinpointing flaky tests.

We believe that CRo1SSANT offers several directions for future
work. While the focus of this paper is using flaky anti-patterns
for assessing test-flakiness detection tools, one can use the defect
model and anti-patterns for two other purposes: (1) developing a
static analysis tool to find these anti-patterns in test suites and (2)
curating a realistic, high-quality dataset for training machine learn-
ing models to detect flaky tests without the need for re-execution.
To that end, one direction for future research can be an empirical
study that measures the correlation between real flaky tests and
CROISSANT mutants, and compare how different or similar their
footprints are.

ACKNOWLEDGMENTS

This work was partially supported by NSF grants CCF-1763788,
CCF-1956374, and CCF-2238045, and grants from IBM and C3.ai. We
also acknowledge support for research on flaky tests from Google
and Meta.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

REFERENCES

(1]
(2]

(3]

[13]

[14
[15]

[16

[17

[18]
[19]
[20]

[21]
[22

[23]

[24

oo
A}

[26

[27]

[28
[29]

[30]

[31

[n.d.]. Issue 51 iDFlakies. https://github.com/idflakies/iDFlakies/issues/51.
Abdulrahman Alshammari, Christopher Morris, Michael Hilton, and Jonathan
Bell. [n. d.]. FlakeFlagger: Predicting flakiness without rerunning tests. https:
//doi.org/10.1109/ICSE43902.2021.00140

Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung,
and Darko Marinov. 2018. DeFlaker: Automatically detecting flaky tests. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE). IEEE,
433-444.

Caffeine 2023. Caffeine caching library. https://github.com/ben-manes/caffeine.
Jeanderson Candido, Luis Melo, and Marcelo d’Amorim. 2017. Test suite paral-
lelization in open-source projects: A study on its usage and impact. In 2017 32nd
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 838-848.

cli 2023. cli Project. https://github.com/apache/commons-cli

codec 2023. https://github.com/apache/commons-codec

Maxime Cordy, Renaud Rwemalika, Adriano Franci, Mike Papadakis, and Mark
Harman. 2022. FlakiMe: Laboratory-controlled test flakiness impact assessment.
In 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE).
982-994.

crypto 2023. crypto Project. https://github.com/apache/commons-crypto

csv 2023. csv Project. https://github.com/apache/commons-csv

Marcio Eduardo Delamaro, JC Maidonado, and Aditya P. Mathur. 2001. Interface
mutation: An approach for integration testing. IEEE transactions on software
engineering 27, 3 (2001), 228-247.

Lin Deng, Nariman Mirzaei, Paul Ammann, and Jeff Offutt. 2015. Towards
mutation analysis of Android apps. In 2015 IEEE Eighth International Conference
on Software Testing, Verification and Validation Workshops (ICSTW). IEEE, 1-10.
Lin Deng, Jeff Offutt, Paul Ammann, and Nariman Mirzaei. 2017. Mutation
operators for testing Android apps. Information and Software Technology 81
(2017), 154-168.

druid4717 [n.d.]. Issue 4717 druid. https://github.com/alibaba/druid/pull/4717.
Saikat Dutta, August Shi, Rutvik Choudhary, Zhekun Zhang, Aryaman Jain, and
Sasa Misailovic. 2020. Detecting flaky tests in probabilistic and machine learning
applications. In Proceedings of the 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis. 211-224.

Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli. 2019.
Understanding flaky tests: The developer’s perspective. In Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 830-840.

elasticjob592 [n.d.]. Issue 592 elasticjob. https://github.com/apache/
shardingsphere-elasticjob/pull/592.

email 2023. email Project. https://github.com/apache/commons-email

Sakina Fatima, Taher A Ghaleb, and Lionel Briand. 2022. Flakify: A black-box,
language model-based predictor for flaky tests. IEEE Transactions on Software
Engineering (2022), 1912-1927.
fileupload 2023. fileupload Project.
fileupload

graph 2023. graph Project. https://github.com/apache/commons-graph
Martin Gruber and Gordon Fraser. 2023. FlaPy: Mining Flaky Python Tests at
Scale. arXiv preprint arXiv:2305.04793 (2023).

Alex Gyori, Ben Lambeth, August Shi, Owolabi Legunsen, and Darko Marinov.
2016. NonDex: A tool for detecting and debugging wrong assumptions on Java
API specifications. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. 993-997.

Sarra Habchi, Maxime Cordy, Mike Papadakis, and Yves Le Traon. 2021. On
the Use of Mutation in Injecting Test Order-Dependency. arXiv preprint
arXiv:2104.07441 (2021).

hutool1935 [n. d.]. Issue 1935 hutool. https://github.com/dromara/hutool/pull/
1935.

idoft 2023. International Dataset of Flaky Tests (IDoFT). https://github.com/
TestingResearchlllinois/idoft.

Reyhaneh Jabbarvand and Sam Malek. 2017. pdroid: An energy-aware mutation
testing framework for Android. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. 208-219.

jsoup 2023. jsoup Project. https://github.com/jhy/jsoup

René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and
Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software
testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. 654-665.

Tariqg M King, Dionny Santiago, Justin Phillips, and Peter J Clarke. 2018. Towards
a Bayesian network model for predicting flaky automated tests. In 2018 IEEE
International Conference on Software Quality, Reliability and Security Companion
(ORS-C). IEEE, 100-107

11 [n. d.]. Issue 182 alien4cloud. https://github.com/alien4cloud/alien4cloud/pull/
182.

https://github.com/apache/commons-

1091

(32

[33

[34

@
0,

~
=

o
=

Yang Chen, Alperen Yildiz, Darko Marinov, and Reyhaneh Jabbarvand

12 [n.d.]. Issue 484 Wikidata-Toolkit. https://github.com/Wikidata/Wikidata-
Toolkit/pull/484/files.

13 [n.d.]. Issue 8 spring-data-ebean. https://github.com/hexagonframework/
spring-data-ebean/pull/8.

Wing Lam, Patrice Godefroid, Suman Nath, Anirudh Santhiar, and Suresh Thum-
malapenta. 2019. Root causing flaky tests in a large-scale industrial setting. In
Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis. 101-111.

Wing Lam, Kivan¢ Muslu, Hitesh Sajnani, and Suresh Thummalapenta. 2020.
A study on the lifecycle of flaky tests. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering. 1471-1482.

Wing Lam, Reed Oei, August Shi, Darko Marinov, and Tao Xie. 2019. iDFlakies:
A framework for detecting and partially classifying flaky tests. In 2019 12th ieee
conference on software testing, validation and verification (icst). IEEE, 312-322.
Wing Lam, Stefan Winter, Angello Astorga, Victoria Stodden, and Darko Marinov.
2020. Understanding reproducibility and characteristics of flaky tests through
test reruns in Java projects. In 2020 IEEE 31st International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 403-413.

Wing Lam, Stefan Winter, Anjiang Wei, Tao Xie, Darko Marinov, and Jonathan
Bell. 2020. A large-scale longitudinal study of flaky tests. Proceedings of the ACM
on Programming Languages 4, OOPSLA (2020), 1-29.

lang480 [n.d.]. Issue 480 commons-lang. https://github.com/apache/commons-
lang/pull/480.

Qingzhou Luo. 2014. https://maven.apache.org/surefire/maven-surefire-plugin/
examples/rerun-failing-tests.html

Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An empir-
ical analysis of flaky tests. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. 643-653.

Yu-Seung Ma, Jeff Offutt, and Yong Rae Kwon. 2005. MuJava: An automated
class mutation system. Software Testing, Verification and Reliability 15, 2 (2005),
97-133.

marine 2023. marine Project. https://github.com/ktuukkan/marine-api

Evan Martin and Tao Xie. 2007. A fault model and mutation testing of access
control policies. In Proceedings of the 16th international conference on World Wide
Web. 667-676.

Maximiliano A Mascheroni and Emanuel Irrazabal. 2018. Identifying key success
factors in stopping flaky tests in automated REST service testing. Journal of
Computer Science and Technology 18, 02 (2018), e16—e16.

math 2023. math Project. https://github.com/apache/commons-math
Shabnam Mirshokraie, Ali Mesbah, and Karthik Pattabiraman. 2013. Efficient
JavaScript mutation testing. In 2013 IEEE Sixth International Conference on Soft-
ware Testing, Verification and Validation. IEEE, 74-83.

monitoring [n.d.]. monitoring Project. https://github.com/google/java-
monitoring-client-library

Rashmi Mudduluru, Jason Waataja, Suzanne Millstein, and Michael D. Ernst. 2021.
Verifying Determinism in Sequential Programs. In ICSE. 37-49.

nacos [n.d.]. Issue 4384 nacos. https://github.com/alibaba/nacos/pull/4384.
Owain Parry, Gregory M Kapfhammer, Michael Hilton, and Phil McMinn. 2022.
Surveying the developer experience of flaky tests. In Proceedings of the 44th
International Conference on Software Engineering: Software Engineering in Practice.
253-262.

Suzette Person and Sebastian Elbaum. 2015. Test analysis: Searching for faults in
tests (N). In 2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 149-154.

Gustavo Pinto, Breno Miranda, Supun Dissanayake, Marcelo d’Amorim,
Christoph Treude, and Antonia Bertolino. 2020. What is the vocabulary of
flaky tests?. In Proceedings of the 17th International Conference on Mining Software
Repositories. 492-502.

retrofit3683 [n. d.]. Issue 3683 retrofit. https://github.com/square/retrofit/pull/
3683.

Gregg Rothermel, Roland H Untch, Chengyun Chu, and Mary Jean Harrold. 1999.
Test case prioritization: An empirical study. In Proceedings IEEE International
Conference on Software Maintenance-1999 (ICSM’99).’Software Maintenance for
Business Change’(Cat. No. 99CB36360). IEEE, 179-188.

scxml [n. d.]. scxml Project. https://github.com/apache/commons-scxml
August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov. 2019. iFixFlakies:
A framework for automatically fixing order-dependent flaky tests. In Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 545-555.

spring [n. d.]. Issue 1165 spring-ws. https://github.com/spring-projects/spring-
ws/pull/1165.

text 2023. text Project. https://github.com/apache/commons-text

unix4j 2023. unix4j Project. https://github.com/tools4j/unix4j

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 2010. Soot: A Java bytecode optimization framework. In
CASCON First Decade High Impact Papers. 214-224.

Roberto Verdecchia, Emilio Cruciani, Breno Miranda, and Antonia Bertolino.
2021. Know you neighbor: Fast static prediction of test flakiness. IEEE Access 9

Transforming Test Suites into Croissants

(2021), 76119-76134.

Ruixin Wang, Yang Chen, and Wing Lam. 2022. iPFlakies: A Framework for
Detecting and Fixing Python Order-Dependent Flaky Tests. In Proceedings of
the ACM/IEEE 44th International Conference on Software Engineering: Companion
Proceedings. 120-124.

website [n.d.]. CROISSANT website. https://github.com/Intelligent-CAT-
Lab/Croissant

website-mutants [n.d.]. List of proposed mutation operators. https://sites.
google.com/view/croissant-website/mutation-operators

Anjiang Wei, Pu Yi, Zhengxi Li, Tao Xie, Darko Marinov, and Wing Lam. 2022.
Preempting flaky tests via Non-Idempotent-Outcome tests. In International Con-
ference on Software Engineering (ICSE’22). 1730-1742.

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

Construction and Analysis of Systems. Springer, 270-287.

Fan Wu, Jay Nanavati, Mark Harman, Yue Jia, and Jens Krinke. 2017. Memory
mutation testing. Information and Software Technology 81 (2017), 97-111.
xmlgraphics 2023. xmlgraphics Project. https://github.com/apache/xmlgraphics-
commons

Pu Yi, Anjiang Wei, Wing Lam, Tao Xie, and Darko Marinov. 2021. Finding
polluter tests using Java PathFinder. ACM SIGSOFT Software Engineering Notes
46, 3 (2021), 37-41.

Sai Zhang, Darioush Jalali, Jochen Wuttke, Kivan¢ Muslu, Wing Lam, Michael D
Ernst, and David Notkin. 2014. Empirically revisiting the test independence
assumption. In Proceedings of the 2014 International Symposium on Software
Testing and Analysis. 385-396.

[67] Anjiang Wei, Pu Yi, Tao Xie, Darko Marinov, and Wing Lam. 2021. Probabilistic
and systematic coverage of consecutive test-method pairs for detecting order-

Received 2023-02-16; accepted 2023-05-03
dependent flaky tests. In International Conference on Tools and Algorithms for the

1092

	Abstract
	1 Introduction
	2 Defect Model
	3 Croissant
	3.1 Mutant Generation and Analysis
	3.2 OD Mutation Operators
	3.3 NOD Mutation Operators
	3.4 ID Mutation Operators

	4 Evaluation
	4.1 Experimental Setup and Data Availability
	4.2 RQ1: Quality of the Mutants
	4.3 RQ2: Effectiveness of the Mutation
	4.4 RQ3: Comparison with Other Techniques
	4.5 RQ4: Performance for Mutant Generation

	5 Related Work
	6 Concluding Remarks
	References

