

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Yang Chen, Alperen Yildiz, Darko Marinov, and Reyhaneh Jabbarvand

a semi-systematic study of various sources of information to con-

struct a comprehensive flaky-defect model2. Using our defect model,

we designed and implemented a total of 18 mutation operators to

automatically inject flakiness into JUnit test suites.

(2) Controlling Non-determinism. Effectiveness of a tech-

nique such as Croissant on assessing test-flakiness detection tools

depends on howwell it can control the probability of observing flaky

behavior. Depending on the nature of flakiness, i.e., if flakiness hap-

pens due to dependency between tests or in isolation, Croissant

adjusts the manifestation probability of the mutants to challenge

test-flakiness detection tools in finding hard-to-detect flaky tests.

For NOD flaky tests, Croissant controls the non-determinism

through a threshold value. By changing the threshold value, the

chance of observing flaky behavior and finding a specific flaky

test also changes. For OD flaky bugs, Croissant controls the non-

determinism by adjusting the number of tests that break the order

dependency. The higher the number of such tests, the harder it is

for a test-flakiness detection tool to find dependent flaky tests.

Controlling non-determinism can also help us with mutation

analysis and ensuring the quality of the mutants. For example,

suppose we inject NOD tests into a test suite but do not observe test

failures in multiple test executions. In general, we cannot determine

if the mutation was incorrect (so the test cannot fail) or if more test

re-executions are needed to observe flaky behavior. However, if we

can control mutants to fail nearly deterministically, it can assure

the mutation was correct, but the flakiness was not observed.

This paper makes the following contributions:
• Flaky anti-patterns: A comprehensive list of flaky anti-

patterns—commonly encountered development practices that

make test suites flaky—structured as a defect model. Compared

to related work that categorizes flaky tests based on the nature

of manifestation [36, 38]—i.e., OD or NOD—our defect model

categorizes flakiness based on the root causes, potentially mak-

ing it easier for practitioners to recognize or debug flaky tests.

Our defect model also introduces new categories for flakiness

not comprehensively studied by prior work.

• Mutation operators: Design of 18 flakiness-inducing mutation

operators based on flaky anti-patterns. The ability to control

the probability of observing flaky behavior makes Croissant

suitable to challenge the ability of test-flakiness detection tools.

Compared to related work that introduces test flakiness using

limited patterns [24] or through probabilistic exceptions [8],

our comprehensive mutation operators are designed based on a

defect model, mimicking real test flakiness and leaving similar

execution footprints as them. That is, while our operators are

probabilistic similar to prior work, we differ by controlling the

execution of flaky anti-patterns rather than generic exceptions.

• Public tool:We implemented our mutation operators in a tool

for Java projects. We call this tool Croissant, the same as our

approach. Our implementation is publicly available [64].

• Empirical evaluation: An extensive empirical evaluation of

Croissant on developer-written test suites of 15 open-source

Java projects widely used in research demonstrates that our

proposed technique is effective and efficient in generating unique

and high-quality mutants to challenge test-flakiness detection

2We do not claim our defect model to be complete but the most comprehensive to date.

tools. Our experiments detected several bugs in iDFlakies [36], a

state-of-the-art tool for detecting OD flaky tests in Java projects.

All the reported bugs and our pull requests for fixing them were

confirmed and accepted by the iDFlakies developers.

2 DEFECT MODEL

We designed Croissant’s mutation operators based on real-world

flaky tests and sources of flakiness. Our methodology for collect-

ing a comprehensive list of sources of flakiness consists of three

main steps: (1) finding issues related to test flakiness in open-source

repositories, (2) identifying the anti-patterns corresponding to iden-

tified flakiness, and (3) designing and injecting mutation operators

based on these anti-patterns. For the first step, we performed a

keyword-based search on GitHub to collect flaky issues. In ad-

dition, we crawled Google Scholar to find prior work related to

test-flakiness detection and mitigation, and then extracted the infor-

mation such as commit and issue numbers from those papers. These

two resources provided us with a list of issues and commits rele-

vant to flaky tests in JUnit test suites. Next, we carefully studied the

code, test suite, and issue comments to identify flaky anti-patterns.

When present in a test suite, these anti-patterns can result in flaky

tests. In the remainder of this section, we explain the details of our

search protocol and defect model construction. We present details

of mutation operators in Section 3.

Mining Open-Source Repositories. We searched GitHub with

the query “flaky test language:Java label:bug comments:>2

state:closed” to retrieve issues that: (1) contain the keywords

“flaky” and “test”, (2) belong to Java projects, (3) are labeled as bugs

by developers (confirming the issue to be a bug), (4) have more than

two comments (which provides a discussion on the issue that could

help us to understand the issue), and (5) are closed (indicating that

the issue is resolved). Such issues likely include information that

can help understand the reported flaky cases. This search provided

266 issues3 in April 2022 for further manual investigation.

Collecting Related Work. To study the related work on test-

flakiness detection and mitigation for JUnit tests, we searched

Google Scholar with the query “JUnit flaky (test | tests)

(source: ACM | IEEE | Elsevier)”4. This search resulted in 145

papers, out of which we removed five replication studies (because

they do not introduce new issues to investigate) and two retracted

papers. In addition, by analyzing the artifacts of these papers, we

identified 64 more GitHub issues for further manual investigation.

Defect Model Construction. From the previous steps, we col-

lected 330 GitHub issues and commits related to JUnit test flakiness.

Two paper authors manually investigated these issues to determine

common flaky anti-patterns in the code of the involved tests. As a

result, we identified 18 unique flaky anti-patterns representing the

sources of flakiness and designedmutation operators based on them.

Table 1 shows these mutation operators categorized into 17 classes.

The classes marked by ∗ implement flakiness not discussed by prior

research. The first column of Table 1 shows a coarser-grained cate-

gorization of flakiness in our defect model following prior work on

classifying flaky tests. OD flaky tests manifest themselves in a spe-

cific order of the tests in the test suite due to a shared state between

3A repeated search would likely result in a different number.
4We only considered the peer-reviewed papers published by ACM, IEEE, or Elsevier.

1081

Transforming Test Suites into Croissants ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Table 1: List of flakiness-inducing mutation operators. The classes marked by an asterisk are either not discussed in prior

work at all (*) or only a subset of their instances has been identified in prior work (**).

Type Class Description Mutation Operators

Instance Variable Dependency The shared state is an instance variable IVD

OD

Static Variable Dependency* The shared state is a static variable SVD

Third-Party Framework Dependency* The shared state is through a third-party framework TPFD

Cached Status Dependency The shared state is cached data CSD

Database State Dependency The shared state has items in the database DSD

File Permission Dependency The shared state is a file handle FPD

Resource Availability The shared state is a specific resource RA

NOD

Memory Dependency The test requires a large amount of memory that may not exist MD

Platform Dependency The test assumes specific platform properties to run PD

System Time Dependency The test relies on specific system time to execute STD-V, STD-Z

Concurrency Timeout Deadlock Non-deterministic timeouts due to deadlocks CTD

Asynchronous Waits The test makes asynchronous calls but does not wait properly AW

Too Restrictive Range The test relies on a restrictive range that can potentially change TRR

Race Condition Test assertion relies on the data manipulated by multiple threads RC

ID

Unordered Collection Index Access** Test converts unordered collection into an ordered collection to access an index UCIA

Unordered Collections Conversion** Test converts the unordered collection into a string UCC

Reflection API Misconception Test assumes deterministic order for the output of reflection APIs RAM

tests. When a test depends on the order of test execution in the test

suite, it is classified as an OD flaky test; otherwise, it is classified

as a flaky test that is not order-dependent (NOD). Implementation-

dependent (ID) flaky tests are a specific subcategory of NOD flaky

tests due to misuse of certain code constructs such as collections.

3 CROISSANT

We next introduce two main algorithms in Croissant for generat-

ing flaky mutants. We also briefly discuss each class of mutation

operators. The source code and detailed explanation of Croissant’s

mutants are publicly available [65].

3.1 Mutant Generation and Analysis

3.1.1 OD Mutant Generation. OD flaky tests occur when two

or more tests in the test suite are coupled through a shared state that

the developers do not properly manage, e.g., in tearDown or setUp

methods [71]. As a result, if the execution order of tests changes,

e.g., due to test prioritization [55] or test parallelization [5], the

outcome of tests may also change from pass to fail or the other way

round. Tests that can change the outcome based on the shared state

are called either victim or brittle [57]. Victim tests pass when run

alone (but can fail when run after some other tests), while brittle

tests fail when run alone (but can pass when run after some other

tests). A test that changes the shared state for the victim test is

called polluter, while the test that changes the shared state for the

brittle is called state-setter. A victim test passes if executed before

the polluter and fails otherwise. In contrast, a brittle test fails if

executed before the state-setter and passes otherwise.

Detection of OD flaky tests is even more challenging due to the

existence of cleaners [57] and a new category of tests, which we

call state-unsetters. When a cleaner appears between a polluter and

a victim, it neutralizes the state change impact, so the victim passes

even when run after the polluter. Likewise, when a state-unsetter

appears between a state-setter and a brittle, it neutralizes the state

change impact, so the brittle fails even when run after the state-

setter. Without cleaner or state-unsetter tests, a simple technique

that re-executes the tests in one order and its reverse could detect

all OD flaky tests. Prior work [57] has introduced the notion of

Algorithm 1: Injecting OD flakiness

Inputs: Original test suite) ,

Set of flaky anti-patterns �,

Number of cleaner or state-unsetter tests :

Output: Set of mutated test suites - = {)1, . . . ,)< }

1 - ← ∅

2 +� ← identifyVictimsBrittles(),�)

3 foreach E18 ∈ +� do

4 if E18 is victim then

5 ?8 , 28 ← createPolluterCleaner(E18)

6)8 ← mutate(), E18 , ?8 , 28 , :)

7 else

8 B8 ,D8 ← createStateSetterUnsetter(E18)

9)8 ← mutate(), E18 , B8 ,D8 , :)

10 - ← - ∪ {)8 }

11 return -

cleaners, but to the best of our knowledge, no prior work discussed

state-unsetters. To challenge flaky-detection tools, our mutation

operators not only can create a dependency between tests in the

test suite but also can inject cleaners and state-unsetters.

Croissant follows the steps in Algorithm 1 to inject OD flaky

tests into test suites. It takes as inputs the original test suite) , a

set of flaky anti-patterns � identified by the defect model, and the

number of cleaner or state-unsetter tests : to be injected in the test

suite. Given these inputs, the algorithm generates a set of mutated

test suites - . In the first step, Croissant performs a lightweight

static analysis to identify the potential victim or brittle tests that

match the anti-patterns in our defect model (Line 2, more details in

§3.2.1–§3.2.7). For each E18 , if the candidate can be a victim (Line

4), Croissant creates polluter test ?8 and cleaner test 28 (Line 5).

Otherwise, the candidate can be a brittle, so Croissant creates

state-setter B8 and state-unsetter D8 tests (Line 8). The ?8 or B8 tests

modify the shared state according to the type of E18 , e.g., variable,

cache, or file access of specific victim E18 . On the other hand, 28 orD8
tests reverse the changes made by ?8 or B8 . Next,Croissantmutates

1082

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Yang Chen, Alperen Yildiz, Darko Marinov, and Reyhaneh Jabbarvand

) by adding the generated tests into the test suite (Lines 6 and 9) and

adds the mutant)8 to the final set of mutants- (Line 10). All classes

of OD mutation operators, which we will explain in more detail in

Section 3.2, will add new tests to the test suite. Depending on the

type of flakiness, these tests will serve as a polluter, cleaner, state-

setter, or state-unsetter. Croissant reads the number of cleaners

or state-unsetter tests (input parameter : in Algortihm 1) from the

config file, and injects them accordingly in the test suite.

3.1.2 NOD and ID Mutant Generation. NOD and ID flakiness

often happen due to misuse or misunderstanding of programming

APIs, concurrency problems, etc. Compared to OD flakiness which

involves multiple tests, NOD and ID flakiness occur for each test in

isolation. As a result, one can detect these tests by re-executing them

without shuffling the test execution order. Still, detecting NOD and

ID flakiness is challenging when the probability of observing flaky

behavior is tiny, e.g., test-flakiness detection tools may re-execute

the test suite more than 100 times to get a passing test to fail [38].

Algorithm 2 shows Croissant’s approach for injecting NOD

and ID flaky tests into test suites. It takes as inputs the original

test suite) , a set of flaky anti-patterns �, and a threshold value CA

that determines the probability of observing flakiness. Given these

inputs, Algorithm 2 generates a set of NOD and ID mutants - . The

algorithm first employs a simple static analysis to identify unit tests

that invoke specific APIs corresponding to different NOD or ID anti-

patterns (Line 2). Depending on the API invocation and whether

it relates to NOD or ID anti-patterns (details in §3.3–§3.4.3), the

algorithm mutates 58 into a NOD or ID mutant (Line 4). Croissant

controls the non-determinism in NOD and ID mutants through a

threshold value CA , ranging from 0 to 1. Specifically, the probability

of failure for NODmutants is exactly CA ; for ID mutants, it is at most

CA . The threshold value can be adjusted dynamically during mutant

run-time execution, and the mutant checks it against a randomly

generated number. The mutated code will be executed if the random

value is smaller than the threshold. Consequently, a lower threshold

value makes it harder for naïve flakiness detection tools to pinpoint

the injected flaky tests. After mutating the test suite, the algorithm

adds the mutated test suite)8 to the final set of mutants (Line 6).

Unlike ODmutant generation, NOD and IDmutation operators only

modify existing tests to introduce flakiness in the test suite. That

said, the implementation of Croissant contains some template tests,

which can be added to test suites if certain NOD and ID mutation

operators do not apply to them. After adding these template tests,

Croissant can mutate them into flaky tests.

3.1.3 Mutation Analysis and Debugging. Mutation analysis

can be challenging in the presence of non-determinism. For example,

supposeCroissant injects a NODmutant using Algorithm 2, where

we do not observe a test failure after re-executing the mutated

test suite multiple times. In that case, we cannot easily conclude

whether the mutation was ineffective (i.e., the test is not flaky at

all) or if the flaky behavior was not observed (although the test is

indeed flaky). To enable such analysis and debug potential issues,

Croissant enables the control of the non-determinism associated

with flaky tests in a fully deterministic fashion, helping users to

control mutants to pass or fail more deterministically. To that end,

Croissant generates helpers as a byproduct of the mutation, which

are the versions of the generated mutants that are more likely to

Algorithm 2: Injecting NOD and ID flakiness

Inputs: Original test suite) ,

Set of flaky anti-patterns �,

Threshold value CA

Output: Set of mutated test suites - = {)1, . . . ,)< }

1 - ← ∅

2 � ← getCandidates(),�)

3 foreach 58 ∈ � do

4)8 ← mutate(), 58 , CA)

5 - ← - ∪ {)8 }

6 return -

fail. Comparing the execution results of helpers5 and the original

test suite for each generated mutant allows us to evaluate if the

flakiness injection was successful.

Croissant generates OD helpers by discarding 28s or D8s from

mutants, i.e., helpers include no cleaner or state-unsetter tests. It

also modifies the order of test execution to reverse the test order

in the original test suite. As a result, if the mutation generates a

polluter/victim test pair, the original test suite passes while the

helper fails. On the other hand, if the mutation generates a state-

setter/brittle test pair, the original test suite fails while the helper

passes. For NOD and ID mutants, Croissant generated helpers by

setting the threshold value to 1, making them fail.

3.2 OD Mutation Operators

Our empirical study identified seven classes of OD flaky tests, de-

pending on the kind of shared state that couple polluter/cleaner/vic-

tim and state-setter/state-unsetter/brittle tests. We next explain the

example flaky tests and corresponding mutation operators mimick-

ing them. The code snippets used to demonstrate how mutants are

injected only show a high-level overview of the code in Croissant.

3.2.1 Instance Variable Dependency (IVD). IVD flakiness hap-

pens when developers define instance variables to be shared among

different test methods inside a test class6.

public void pTest() { // Polluter

instanceVar = CHANGED_STATUS;

}

public void cTest() { // Cleaner

instanceVar = DEFAULT_STATUS;

}

public void vTest() { // Victim

// specific assertion depends on the type of instance variable

assertEquals(DEFAULT_STATUS, instanceVar);

}

Issue 592 in project elasticjob [17] is a real-world example of such a

case, where polluters do not shut down the shared instance; if they

run before the victim that assumes the instance to be shut down, the

victim fails. The snippet above shows the templates of IVD mutants

in Croissant, where the victim test vTest has a dependency with

the polluter test pTest through instanceVar.

3.2.2 Static Variable Dependency (SVD). SVD flaky tests hap-

pen when a polluter changes static variables that are used later by a

victim. Issue 4384 in project nacos [50] demonstrates an instance of

5Each helper is a test suite.
6This feature is available in JUnit 5 but was not available in JUnit 4.

1083

Transforming Test Suites into Croissants ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

such bugs in the real world. The snippet below shows an example

SVD mutant, where the victim vTest has a dependency with the

polluter pTest through a static variable field.

public class ClassWithStaticVariable {

FieldClass fieldClass = new FieldClass();

static class FieldClass {

static int field = defaultValue;

}

public void pTest() { // Polluter

fieldClass.field = diffValue;

}

public void cTest() { // Cleaner

fieldClass.field = defaultValue;

}

public void vTest() { // Victim

assertEquals(defaultValue, fieldClass.field);

}

}

3.2.3 Third-Party Framework Dependency (TPFD). Another

form of dependency between tests could be through third-party

libraries such as Mockito. Developers often mock methods rather

than running them; e.g., they use Mockito to define what a specific

method should return for a given input. After test execution, mocks

can be queried to see what methods were called and how many

times. Not resetting the state of Mockito can create an implicit

dependency between tests that useMockito. The issue 182 in project

alien4cloud [31] shows an example TPFD flaky test. The snippet

below shows how Croissant generates such tests7.

public void pTest() { // Polluter

Mockito.when(mockedClass.stub(input1).thenReturn(output1);

Mockito.when(mockedClass.stub(input2).thenReturn(output2);

}

public void cTest() { // Cleaner

Mockito.reset(mockedClass);

}

public void vTest() { // Victim

Mockito.when(mockedClass.stub(input).thenReturn(output);

verify(mockObject, times(1)).add());

// If polluter executes first, verify(..., times(3)) is true

}

3.2.4 Cached Status Dependency (CSD). Dependencies such

as shared cache lead to flakiness if a polluter modifies the cache

used by a victim. Issue 1165 in project spring-ws [58] is a real-world

of such flakiness. The snippet below shows an example CSDmutant

in Croissant, where the victim vTest assumes a clean cache status

and fails if the polluter pTest runs first unless the cleaner cTest

runs before the victim to clean the shared cache. Croissant uses

Caffeine to create cache objects [4].

public void pTest() { // Polluter

cache.add(cachedObject);

}

public void cTest() { // Cleaner

cache.invalidateAll();

}

public void vTest() { // Victim

assertNull(cache.getIfPresent(cachedObject));

}

7The current implementation of Croissant only supports Mockito. Users can extend
the template to support other mocking libraries.

3.2.5 Database State Dependency (DSD). Relying on other

tests to populate a shared database or failing to reset the state

of the database in tearDown results in DSD flaky tests. A real-

world example of such a test is reported in the issue 8 in project

spring-data-ebean [33]. The snippet below shows an example DSD

mutation operator in Croissant. The shared item between these

tests is not in the database unless state-setter sTest inserts it. If

the brittle bTest runs in isolation, it fails; if the state-setter runs

before the brittle, it passes. However, if the state-unsetter utest

runs before brittle, the shared item is deleted, which makes the

brittle fail again.

public void bTest() { // Brittle

PreparedStatement query = "SELECT * FROM table WHERE ID=item.ID";

assertTrue(query.execute());

}

public void sTest() { // State-Setter

PreparedStatement insert = "INSERT INTO table item";

insert.execute();

}

public void uTest() { // State-Unsetter

PreparedStatement delete = "DELETE FROM table WHERE ID=item.ID";

delete.execute();

}

3.2.6 File Permission Dependency (FPD). For FPD, the shared

state between tests is a file. With such a dependency, the polluter

may modify the permission of a file the victim later attempts to

access. Consequently, access to the file may fail. The issue 484 in

project Wikidata-Toolkit is a real-world example [32], where the

victim testMwRecentCurrentDumpFileProcessing fails since the

polluter changes the permission to the file wdtk-dumpfiles to read-

only. The snippet below shows the template FPD mutant, where

the polluter pTest changes the access permission of a shared file

to non-writable, which leads the victim vTest to fail.

public void pTest() { // Polluter

file.setWritable(false);

}

public void cTest() { // Cleaner

file.setWritable(true);

}

public void vTest() { // Victim

file.write();

}

3.2.7 Resource Availability (RA). A unit test that assumes the

existence of a certain resource, e.g., a file, can become a brittle

test. It can fail if run in isolation but pass if run after another test

that creates the required resource. The snippet below shows the

template RA mutant in Croissant. At the start, the filesystem is

cleared before all tests run, so FileA does not exist. If brittle bTest

runs first, it fails unless state-setter sTest runs before the brittle.

However, if the state-unsetter uTest runs before the brittle, the file

resource is unavailable, which causes the brittle to fail again.

public void bTest() { // Brittle

assertTrue(File.exist(FileA)); // FileA does not exist at first

}

public void sTest() { // State-Setter

File.create(FileA);

}

public void uTest() { // State-Unsetter

File.delete(FileA);

}

1084

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Yang Chen, Alperen Yildiz, Darko Marinov, and Reyhaneh Jabbarvand

3.3 NOD Mutation Operators

Our empirical study identified seven classes of NOD flaky tests

depending on the type of APIs they misuse. We next explain some

flaky tests and their corresponding mutation operators.

3.3.1 Memory Dependency (MD). MD flaky tests require a spe-

cific amount of memory that may or may not be available, e.g., due

to the frequency of garbage collection and memory usage of other

tests. Consequently, the test passes if enough memory is available

and fails otherwise.

public void MDTest() { // NOD test

System.gc();

long totalMemory = getTotalMemory();

System.gc();

long usedMemory = getTotalMemory() - getFreeMemory();

assertEquals(totalMemory, usedMemory);

}

3.3.2 Platform Dependency (PD). Platform-dependent flaki-

ness occurs when a test assumes certain properties about the

running platform, including the availability of local ports. Con-

sequently, if it runs on a different platform that does not satisfy the

assumption, e.g., during continuous integration, test outcome can

differ. The code snippet below shows the template PD mutant in

Croissant, which makes a test rely on the availability of a specific

port. The test passes if the port is available but fails otherwise.

public void PDTest() { // NOD test

int PORT = 6380; // hard-coded port

assertTrue(isPortAccessible(PORT));

}

3.3.3 System Time Dependency (STD). The outcome of STD

flaky tests depends on the timezone of the execution environment

or a specific timestamp. Thus, running the test at a different time,

e.g., with daylight saving, can trigger flakiness. We implement two

types of STD flaky tests, namely STD-Z and STD-V. The flakiness in

the former is due to the time-zone difference, while the time values

in the latter result in the flakiness.

1) Time-zone-dependency (STD-Z) flaky tests. The snippet be-

low shows how Croissant injects STD-Z flakiness, where a test

assumes one specific timezone, but the actual timezone differs.

public void STDZTest() { // NOD test

SimpleDateFormat dateFormat;

dateFormat.setTimeZone(TimeZone.getTimeZone("UTC"));

int date1 = dateFormat.parse("2022-11-22 10:13:55");

dateFormat.setTimeZone(TimeZone.getDefault());

int date2 = dateFormat.parse("2022-11-22 10:13:55");

assertEquals(date1, date2);

}

2) Timestamp-Value-dependency (STD-V) flaky tests. Such flaki-

ness is caused when a test assertion depends on the system times-

tamp. An example real-world issue is 1935 in project hutool [25],

where an assertion compares the current time with a precision of a

second.

public void STDVTest() { // NOD test

long timeStamp1 = System.currentTimeMillis();

Thread.sleep(1L);

long timeStamp2 = System.currentTimeMillis();

assertEquals(timeStamp1, timeStamp2);

}

When a time object is created, the current timestamp is saved. If

there is a delay between the creation time and the assert time, the

test fails. The code snippet below shows an example of STD-V

mutant generated by Croissant.

3.3.4 Concurrency Timeout Deadlock (CTD). Another

root cause of test flakiness is timeouts, which happen non-

deterministically due to concurrency. For example, a test may

make some calls and wait for some time to get the return value. If

the wait time is not long enough to ensure the return, different

executions of the test may show flaky behavior. Also, threads

may get stuck in a deadlock in some executions while returning

successfully in others, resulting in test flakiness.

@Test(timeout=5)

public void CTDTest() { // NOD test

Object lock1 = new Object();

Object lock2 = new Object();

Thread thread1 = new Thread() {

public void run() {

synchronized (lock1) {

Thread.sleep(100);

synchronized (lock2) {}

}

}

};

Thread thread2 = new Thread() {

public void run() {

synchronized (lock2) {

Thread.sleep(100);

synchronized (lock1) {}

}

}

};

thread1.run();

thread2.run();

}

3.3.5 Asynchronous Wait (AW). When a test makes an asyn-

chronous call and does notwait properly to get the returned result, it

leads to test flakiness. A real-world example is issue 3683 in project

retrofit [54]. The snippet below shows how Croissant injects AW

flaky tests, with CountDownLatch to mimic multi-threaded effects.

public void AWTest() { // NOD test

CountDownLatch latch = new CountDownLatch(1);

Thread thread = new CountDownThread(latch);

thread.start();

assertTrue(latch.await(1000, TimeUnit.MILLISECONDS));

}

3.3.6 Too Restrictive Range (TRR). If the test design does not

consider some valid output values, actual outputs can be outside

the assertion range. A restrictive range for test assertions causes

such flakiness. Croissant injects TRR flakiness by mimicking an

extremely restricted range, similar to the code snippet below.

public void TRRTest() { // NOD test

boolean output = true;

int restrictRange = getAcceptableRange();

if (restrictRange >= 0 || restrictRange <= 0) {

output = false;

}

assertTrue(output);

}

1085

Transforming Test Suites into Croissants ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

3.3.7 Race Condition (RC). Multi-threading may cause test flak-

iness due to the seemingly non-deterministic behavior of thread

interleaving. For example, the test outcome may depend on a vari-

able shared by multiple threads in a non-thread-safe manner, where

race conditions result in non-determinism.

public void RCTest() throws IOException { // NOD test

ArrayList<Integer> list = new ArrayList<>();

list.add(0);

for (int i = 0; i < 1000; i++) {

Thread thread = new Thread(new NonSafeThread(list));

thread.start();

}

assertEqual(1000, list.get(0));

}

class NonSafeThread implements Runnable {

ArrayList<Integer> list;

NonSafeThread(ArrayList<Integer> var2) {

this.list = var2;

}

list.set(0, list.get(0) + 1);

}

3.4 ID Mutation Operators

Implementation-dependent (ID) flaky tests are a subcategory of

NOD flaky tests in which the flakiness is due to an incorrect as-

sumption on some implementation-specific API, e.g., the order of

unordered collections [23]. For example, Map and Set collections in

Java do not provide any order for iteration. We separated ID from

NOD, as some test-flakiness detection and prevention techniques

may focus on IDs [23, 49] but not general NODs. The remainder

of the section discusses mutation operators that mimic different

misuses of unordered collections.

3.4.1 Unordered Collection Index Access (UCIA). Java does

not allow direct indexing of unordered collections. Some tests by-

pass this constraint by converting an unordered collection into an

ordered collection. However, this conversion does not preserve the

index of items deterministically, which can lead to test flakiness.

The issue 4717 in project druid [14] shows a real-world example.

Croissant generates UCIA mutants by converting one unordered

collection into two lists and checking if the items at index 0 are the

same, as shown in the code snippet below.

public void UCIATest() { // ID test

HashMap<> map = getAMap();

List<> list1 = new ArrayList<>(map.values());

List<> list2 = new ArrayList<>(map.values());

assertEquals(list1.get(0), list2.get(0));

}

3.4.2 Unordered Collections Conversion (UCC). UCC flaky

tests happen when developers convert unordered collections such

as Map to String to use for comparison in assertions. Due to the

non-deterministic order of elements in unordered collections, the

actual string generated may or may not match the expected string.

public void UCCTest() { // ID test

HashMap<> map = getAMap();

Set<> set = new HashSet<>(map.values());

assertEquals(set.toString(), set.toString());

}

Croissant generates UCC mutants by converting an unordered

collection into a string twice and checking if the two strings match.

3.4.3 Reflection API Misuse (RAM). Developers use reflection

APIs to inspect methods or classes at runtime, but the results of such

APIs are non-deterministic. As a result, assuming a specific order is

incorrect. The issue 480 in project commons-lang [39] demonstrates

a real-world RAM flaky test, which assumes a specific order of

elements returned by the reflection method getDeclaredFields.

The snippet below shows Croissant’s technique for generating

RAM flaky tests. The test uses getMethods from the same class

twice and checks if the first returned elements are the same.

public void RAMTest() { // ID test

Method[] methods1 = classA.getMethods();

Method[] methods2 = classA.getMethods();

assertEquals(methods1[0], methods2[0]);

}

4 EVALUATION

To evaluate the effectiveness of Croissant, we investigate the

following research questions:

RQ1: Quality of theMutants. To what extent the designed muta-

tion operators are successful in making test suites flaky?What is the

percentage of mutants that are non-compilable (test or whole test-

suite cannot be compiled) or non-executable (test(s) permanently

fails due to exception caused by mutation)?

RQ2: Effectiveness of the Mutation. To what extent do the mu-

tants challenge the state-of-the-art test-flakiness detection tools?

RQ3: Comparison with Other Techniques. How prevalent are

our mutants compared to the alternative mutation testing approach,

FlakiMe [8]? To what extent can FlakiMe challenge test-flakiness

detection tools compared to Croissant?

RQ4: Performance. What are the performance characteristics of

the proposed technique?

4.1 Experimental Setup and Data Availability

Test-Flakiness Detection Tools. To analyze Croissant’s mu-

tants, we used state-of-the-practice Maven Surefire [40] and

two state-of-the-research tools for Java: NonDex [23] and iD-

Flakies [36]. Surefire is the default Maven plugin for running

unit tests. One feature it offers is re-running failed tests when

rerunFailingTestsCount parameter is set to a value greater than

0. If the test outcome differs in multiple executions, Surefire raises

flaky failure or flaky error. As a result, Surefire can only detect

NOD flaky tests. NonDex is a tool for detecting ID and NOD flaky

tests by randomly exploring different behaviors of certain APIs

during test execution. iDFlakies detects OD flaky tests by reorder-

ing and rerunning tests in the test suite; it can also detect NOD

tests as a byproduct of rerunning tests. We were not able to use

learning-based techniques such as FlakeFlagger [2], FlakyVocabu-

lary [53], and Flakify [19], due to the limitations of these techniques.

Specifically, these tools can only extract features from the source

code, while Croissant generates binary files for mutants8. We

choose bytecode manipulation in the current implementation of

Croissant, because it is faster and does not require expensive com-

pilation to generate executable mutants, which can reduce the cost

of mutation testing.

Subjects. To collect subjects, we searched GitHub for Java reposito-

ries with the following properties: (1) popular and well-maintained

8Decompilation of the binary files resulted in non-compilable test suites.

1086

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Yang Chen, Alperen Yildiz, Darko Marinov, and Reyhaneh Jabbarvand

Table 2: The breakdown of the number of mutants generated by Croissant for each subject test suite.

Project Total IVD SVD TPFD CSD DSD FPD RA MD PD STD-V STD-Z AW CTD RC TRR UCIA UCC RAM

cli 1003 20 20 28 28 28 28 28 378 28 23 28 51 28 28 175 28 28 28

codec 2532 50 50 59 65 65 59 65 1088 57 57 62 114 59 59 452 57 57 57

crypto 530 19 19 19 19 19 19 19 136 17 17 29 34 17 17 79 17 17 17

csv 1058 22 22 25 26 26 25 26 440 25 25 26 50 25 25 195 25 25 25

email 601 13 13 18 18 14 18 18 218 15 15 14 15 29 14 125 15 15 15

fileupload 410 13 13 13 13 13 13 13 127 13 13 14 26 13 13 61 13 13 13

graph 700 21 21 23 23 23 23 23 228 21 21 21 42 21 21 105 21 21 21

jsoup 1765 30 30 32 32 30 32 32 816 31 31 32 62 32 32 418 31 31 31

marine 3650 79 79 79 79 78 79 79 1372 77 73 79 150 77 77 962 77 77 77

math 1219 33 33 33 33 33 33 33 406 32 32 32 64 31 31 264 32 32 32

monitoring 552 16 16 16 16 16 16 16 203 17 17 34 17 34 17 67 17 17 17

scxml 1688 52 52 52 52 52 52 52 499 52 52 52 107 52 52 302 52 52 52

text 3556 82 82 82 86 86 80 86 1499 80 80 84 160 77 77 675 80 80 80

unix4j 716 48 48 51 51 45 48 44 180 14 14 14 28 14 14 61 14 14 14

xmlgraphics 1835 61 60 61 61 61 61 61 502 61 61 62 123 61 61 295 61 61 61

Total 21815 559 558 591 602 589 586 595 8092 540 567 530 1074 538 538 4236 540 540 540

Table 3: The number of flaky tests for each subject test suite

using FlakiMe and Croissant (NE = Non-Executable).

Project #tests #FlakiMe mutants #Croissant mutants (NE)

cli [6] 438 324 1003 (0)

codec [7] 1336 865 2532 (0)

crypto [9] 121 92 530 (0)

csv [10] 326 435 1058 (0)

email [18] 139 190 601 (0)

fileupload [20] 78 83 410 (0)

graph [21] 131 138 727 (27)

jsoup [28] 1136 1035 1765 (0)

marine [43] 995 1097 3697 (47)

math [46] 375 328 1267 (48)

monitoring [48] 118 108 552 (0)

scxml [56] 239 261 1688 (0)

text [59] 1153 1182 3556 (0)

unix4j [60] 136 453 716 (0)

xmlgraphics [69] 196 205 1835 (0)

Total 6302 6796 21937 (122)

(> 200 stars, recent commits within six months, > 100 closed issues,

and < 20 open issues tagged as bugs); (2) has > 100 existing JUnit

tests; (3) has size > 5 KLoC; (4) is written in Java 8 (requirement

of iDFlakies); and (5) with test suites using only JUnit 4 or JUnit 5,

and not the mix (requirement of iDFlakies). From these repositories,

we excluded those that we could not compile and those for which

FlakiMe could not generate mutants. To eliminate the impact of

original flakiness on the evaluation results, we used Surefire and

NonDex first to ensure the initial test suites did not have obvious

NOD and ID flakiness. For the cases that passed the first step, we

ran iDFlakies to check for obvious OD flaky tests. Table 3 (first

column) shows our 15 subjects.

Mutant Generation. We use Croissant for the generation of

flaky mutants. The implementation of Croissant is publicly avail-

able [64] as a stand-alone tool that takes the source code of test

suites as an input and generates a mutated test suite bytecode as

an output. To pinpoint tests of interest in test suites, i.e., those

that should be modified or can act as a victim/brittle in the test

suites, Croissant employs lightweight flow-sensitive analysis us-

ing Soot [61]. The current implementation supports both first- and

higher-order mutation injection. However, all the experiments have

been performed on first-order mutation injection. We also compare

Croissant with FlakiMe [8], which injects exception statements

that can be executed with some probabilities, making the test suites

flaky. FlakiMe can generate more mutants than the number of tests

in the test suite because it mutates tests as well as methods such as

setUp in test classes.

4.2 RQ1: Quality of the Mutants

To measure the quality of Croissant’s mutation operators, we

check the extent to which it creates executable flaky test suites. Ta-

ble 3 shows the summary results of applying Croissant to subject

test suites. In total, Croissant generated 21, 937 mutants for all

the subjects, of which only 122 (< 0.5%) were non-executable (last

column in Table 3). To validate that the generated mutants induce

flakiness, we executed mutant helpers (§3.1.3) and the original test

suites. If the pass/fail outcome of these two test suites differed, we

confirmed that flakiness injection was successful. This validation

process confirmed that all the executable mutants (> 99.5% of the

generated mutants) made the original test suite flaky. Due to the

design of our mutation operators and ensuring that mutants rep-

resent flaky behavior, Croissant produces no equivalent mutant.

Similarly, given the uniqueness of flaky anti-patterns concerning

specific tests in the test suite, Croissant will never generate du-

plicate mutants. These results confirm that Croissant is a viable

technique for injecting various flakiness types into test suites.

4.3 RQ2: Effectiveness of the Mutation

To evaluate the effectiveness of Croissant in challenging flakiness-

detection tools, we applied Surefire andNonDex onNOD and IDmu-

tants, and iDFlakies on OD mutants. We configure Surefire with re-

runFailingTestsCount=5, NonDex with nondexRuns=5, and iDFlakies

with rounds=5 repeating 5 runs with different random seeds.

NOD mutants. We introduce thresholds for NOD mutants to

control the possibility of test failures. Higher threshold leads to a

higher possibility of test failures. We vary the threshold CA from

0.1 to 1. When CA = 0, tests always pass. As CA increases, tests

have more chance to fail (but can still pass during some of the 5

reruns), so more tests behave as flakes. After achieving the high-

est point of flakiness, tests have a much higher possibility to fail

1087

Transforming Test Suites into Croissants ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

flaky tests could involve a data-flow analysis, while a lightweight

static analysis could detect potential FPD flaky tests. Without a

fine-grained benchmark similar to Croissant, one cannot truly

distinguish the extent to which these sophisticated techniques work

better than rerun techniques such as Surefire and iDFlakies.

Mutation location. Croissant uses a lightweight static analy-

sis to identify the potential location of flakiness injection, depending

on specific flaky anti-pattern. On the other hand, FlakiMe relies on a

vocabulary-based machine-learning model to identify the injection

location. Specifically, FlakiMe mutates a test in the subject test suite

if there is a high similarity between its vocabulary with previously

identified flaky tests in real-world settings. As a result of this dif-

ference, Croissant can determine all the applicable locations for a

specific class of mutation operators in a given test suite, generating

a more diverse set of flaky tests as a benchmark. While a bigger

set of mutants adds to the cost of mutation testing, it can create a

more representative set of mutants.

4.5 RQ4: Performance for Mutant Generation

To answer this research question, we evaluated the time required for

Croissant to mutate subject test suites. We ran the experiments on

a CPU cluster with 2.6 GHz Intel Xeon(R) Platinum 8171M processor

and 16 GB DDR3 RAM. Overall, it takes 0.35 seconds on average

(min=0.19, max=0.57) to mutate a test suite with a single mutation

operator and 8 minutes on average (min=1, max=21) to create all

the mutants for subject test suites. The time required for assessing

test-flakiness detection tools is unique to their underlying approach

and is independent of Croissant’s design choices.

5 RELATED WORK

Our research is related to prior work on mutation testing as well

as approaches aimed to characterize, detect, or mitigate flaky tests.

Mutation Testing. Mutation testing has been widely used in test-

ing programs written in different languages [11, 12, 12, 13, 42, 47],

as well as testing program properties such as specifications [44],

memory usage [68], and energy consumption [27]. The most closely

related work to Croissant on injecting flakiness into test suites

are FlakiMe [8] and Flaker [24].

FlakiMe creates NOD flaky tests by adding exception statements

into the tests. The probability of observing flaky behavior depends

on the combination of test flakiness probability, which is provided

by a prediction model integrated into FlakiMe, and nominal flake

rate, which is a parameter that users can adjust. Similar to FlakiMe,

Croissant’s flakiness rate can be determined by users (threshold

value) to control the experiments and investigate the effectiveness

of test-flakiness detection tools. However,Croissant’s mutation op-

erators are designed based on real-world flaky tests. Consequently,

the footprint of our mutants is more similar to actual flaky tests

compared to FlakiMe’s mutants. This property is important for

benchmarking flaky tests, which can have usages beyond evaluat-

ing test-flakiness detection tools discussed in this paper.

Flaker injects OD flaky tests into test suites by removing the

helper statements in cleaners and state-setter tests. Croissant’s

OD mutation operators are superior to Flaker’s in two ways. First,

the flakiness behavior of our mutation operators can be adjusted

by changing the number of cleaners and state-setters. Second, re-

moving helper statements, i.e., voiding the impact of cleaners and

state-setters, makes detecting OD flaky tests easier because the

only remaining dependency is now between polluter/victim or pol-

luter/brittle tests, and flakiness behavior can be observed in more

test-suite permutations.

Test Flakiness. Test flakiness could be frustrating in software

development [51]. To help developers, several techniques have

been proposed to characterize [15, 16, 34, 35, 37, 38, 41], de-

tect [3, 30, 36, 45, 52, 53, 62, 67, 70], or mitigate [57, 63, 66] flaky

tests. The related work characterizing flaky tests has investigated

and analyzed flaky tests in traditional programs, probabilistic pro-

gramming systems, machine learning projects, and mobile apps.

These techniques aim to understand the nature of flaky tests and

what makes their detection of them challenging. Consequently,

they characterize flaky tests at a very high level, e.g., OD, NOD,

or ID. In contrast, Croissant categorizes flaky tests based on the

unique flaky anti-patterns. Such fine-grained categorization can

better describe flaky tests and distinguish test-flakiness detection

tools in detecting specific classes of tests.

Croissant is orthogonal to test-flakiness detection and mitiga-

tion body of work. That is, Croissant can generate the evaluation

benchmark to fairly compare such techniques with prior work and

identify the strengths and weaknesses of newer techniques. Fur-

thermore, the capability of injecting Croissant’s mutants into

given JUnit test suites also enables large-scale evaluation for such

tools. Compared to IDoFT [26], which is a distributed/community

effort to construct a dataset of real-world flaky tests, Croissant

can inject flaky tests into any given test suite in JUnit 4 or JUnit 5.

6 CONCLUDING REMARKS

Test flakiness can drastically impact the effectiveness of regression

testing and the quality of the software products. Despite recent

advancements in the detection and mitigation of test flakiness, the

research is still in its infancy. Specifically, the community lacks

systematic approaches or benchmarks for fairly comparing such

techniques. We proposed Croissant, a framework to inject realistic

flaky tests into test suites. The current version of Croissant offers

18 high-quality mutation operators. The experimental results show

that these mutation operators can indeed challenge test-flakiness

detection tools to further design better heuristics and algorithms

for reliably pinpointing flaky tests.

We believe that Croissant offers several directions for future

work. While the focus of this paper is using flaky anti-patterns

for assessing test-flakiness detection tools, one can use the defect

model and anti-patterns for two other purposes: (1) developing a

static analysis tool to find these anti-patterns in test suites and (2)

curating a realistic, high-quality dataset for training machine learn-

ing models to detect flaky tests without the need for re-execution.

To that end, one direction for future research can be an empirical

study that measures the correlation between real flaky tests and

Croissant mutants, and compare how different or similar their

footprints are.

ACKNOWLEDGMENTS

This work was partially supported by NSF grants CCF-1763788,

CCF-1956374, and CCF-2238045, and grants from IBM and C3.ai. We

also acknowledge support for research on flaky tests from Google

and Meta.

1090

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Yang Chen, Alperen Yildiz, Darko Marinov, and Reyhaneh Jabbarvand

REFERENCES
[1] [n. d.]. Issue 51 iDFlakies. https://github.com/idflakies/iDFlakies/issues/51.
[2] Abdulrahman Alshammari, Christopher Morris, Michael Hilton, and Jonathan

Bell. [n. d.]. FlakeFlagger: Predicting flakiness without rerunning tests. https:
//doi.org/10.1109/ICSE43902.2021.00140

[3] Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung,
and Darko Marinov. 2018. DeFlaker: Automatically detecting flaky tests. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE). IEEE,
433–444.

[4] Caffeine 2023. Caffeine caching library. https://github.com/ben-manes/caffeine.
[5] Jeanderson Candido, Luis Melo, and Marcelo d’Amorim. 2017. Test suite paral-

lelization in open-source projects: A study on its usage and impact. In 2017 32nd
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 838–848.

[6] cli 2023. cli Project. https://github.com/apache/commons-cli
[7] codec 2023. https://github.com/apache/commons-codec
[8] Maxime Cordy, Renaud Rwemalika, Adriano Franci, Mike Papadakis, and Mark

Harman. 2022. FlakiMe: Laboratory-controlled test flakiness impact assessment.
In 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE).
982–994.

[9] crypto 2023. crypto Project. https://github.com/apache/commons-crypto
[10] csv 2023. csv Project. https://github.com/apache/commons-csv
[11] Marcio Eduardo Delamaro, JC Maidonado, and Aditya P. Mathur. 2001. Interface

mutation: An approach for integration testing. IEEE transactions on software
engineering 27, 3 (2001), 228–247.

[12] Lin Deng, Nariman Mirzaei, Paul Ammann, and Jeff Offutt. 2015. Towards
mutation analysis of Android apps. In 2015 IEEE Eighth International Conference
on Software Testing, Verification and Validation Workshops (ICSTW). IEEE, 1–10.

[13] Lin Deng, Jeff Offutt, Paul Ammann, and Nariman Mirzaei. 2017. Mutation
operators for testing Android apps. Information and Software Technology 81
(2017), 154–168.

[14] druid4717 [n. d.]. Issue 4717 druid. https://github.com/alibaba/druid/pull/4717.
[15] Saikat Dutta, August Shi, Rutvik Choudhary, Zhekun Zhang, Aryaman Jain, and

Sasa Misailovic. 2020. Detecting flaky tests in probabilistic and machine learning
applications. In Proceedings of the 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis. 211–224.

[16] Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli. 2019.
Understanding flaky tests: The developer’s perspective. In Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 830–840.

[17] elasticjob592 [n. d.]. Issue 592 elasticjob. https://github.com/apache/
shardingsphere-elasticjob/pull/592.

[18] email 2023. email Project. https://github.com/apache/commons-email
[19] Sakina Fatima, Taher A Ghaleb, and Lionel Briand. 2022. Flakify: A black-box,

language model-based predictor for flaky tests. IEEE Transactions on Software
Engineering (2022), 1912–1927.

[20] fileupload 2023. fileupload Project. https://github.com/apache/commons-
fileupload

[21] graph 2023. graph Project. https://github.com/apache/commons-graph
[22] Martin Gruber and Gordon Fraser. 2023. FlaPy: Mining Flaky Python Tests at

Scale. arXiv preprint arXiv:2305.04793 (2023).
[23] Alex Gyori, Ben Lambeth, August Shi, Owolabi Legunsen, and Darko Marinov.

2016. NonDex: A tool for detecting and debugging wrong assumptions on Java
API specifications. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. 993–997.

[24] Sarra Habchi, Maxime Cordy, Mike Papadakis, and Yves Le Traon. 2021. On
the Use of Mutation in Injecting Test Order-Dependency. arXiv preprint
arXiv:2104.07441 (2021).

[25] hutool1935 [n. d.]. Issue 1935 hutool. https://github.com/dromara/hutool/pull/
1935.

[26] idoft 2023. International Dataset of Flaky Tests (IDoFT). https://github.com/
TestingResearchIllinois/idoft.

[27] Reyhaneh Jabbarvand and Sam Malek. 2017. `droid: An energy-aware mutation
testing framework for Android. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. 208–219.

[28] jsoup 2023. jsoup Project. https://github.com/jhy/jsoup
[29] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and

Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software
testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. 654–665.

[30] Tariq M King, Dionny Santiago, Justin Phillips, and Peter J Clarke. 2018. Towards
a Bayesian network model for predicting flaky automated tests. In 2018 IEEE
International Conference on Software Quality, Reliability and Security Companion
(QRS-C). IEEE, 100–107.

[31] l1 [n. d.]. Issue 182 alien4cloud. https://github.com/alien4cloud/alien4cloud/pull/
182.

[32] l2 [n. d.]. Issue 484 Wikidata-Toolkit. https://github.com/Wikidata/Wikidata-
Toolkit/pull/484/files.

[33] l3 [n. d.]. Issue 8 spring-data-ebean. https://github.com/hexagonframework/
spring-data-ebean/pull/8.

[34] Wing Lam, Patrice Godefroid, Suman Nath, Anirudh Santhiar, and Suresh Thum-
malapenta. 2019. Root causing flaky tests in a large-scale industrial setting. In
Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis. 101–111.

[35] Wing Lam, Kıvanç Muşlu, Hitesh Sajnani, and Suresh Thummalapenta. 2020.
A study on the lifecycle of flaky tests. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering. 1471–1482.

[36] Wing Lam, Reed Oei, August Shi, Darko Marinov, and Tao Xie. 2019. iDFlakies:
A framework for detecting and partially classifying flaky tests. In 2019 12th ieee
conference on software testing, validation and verification (icst). IEEE, 312–322.

[37] Wing Lam, StefanWinter, Angello Astorga, Victoria Stodden, and Darko Marinov.
2020. Understanding reproducibility and characteristics of flaky tests through
test reruns in Java projects. In 2020 IEEE 31st International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 403–413.

[38] Wing Lam, Stefan Winter, Anjiang Wei, Tao Xie, Darko Marinov, and Jonathan
Bell. 2020. A large-scale longitudinal study of flaky tests. Proceedings of the ACM
on Programming Languages 4, OOPSLA (2020), 1–29.

[39] lang480 [n. d.]. Issue 480 commons-lang. https://github.com/apache/commons-
lang/pull/480.

[40] Qingzhou Luo. 2014. https://maven.apache.org/surefire/maven-surefire-plugin/
examples/rerun-failing-tests.html

[41] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and DarkoMarinov. 2014. An empir-
ical analysis of flaky tests. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. 643–653.

[42] Yu-Seung Ma, Jeff Offutt, and Yong Rae Kwon. 2005. MuJava: An automated
class mutation system. Software Testing, Verification and Reliability 15, 2 (2005),
97–133.

[43] marine 2023. marine Project. https://github.com/ktuukkan/marine-api
[44] Evan Martin and Tao Xie. 2007. A fault model and mutation testing of access

control policies. In Proceedings of the 16th international conference on World Wide
Web. 667–676.

[45] Maximiliano A Mascheroni and Emanuel Irrazabal. 2018. Identifying key success
factors in stopping flaky tests in automated REST service testing. Journal of
Computer Science and Technology 18, 02 (2018), e16–e16.

[46] math 2023. math Project. https://github.com/apache/commons-math
[47] Shabnam Mirshokraie, Ali Mesbah, and Karthik Pattabiraman. 2013. Efficient

JavaScript mutation testing. In 2013 IEEE Sixth International Conference on Soft-
ware Testing, Verification and Validation. IEEE, 74–83.

[48] monitoring [n. d.]. monitoring Project. https://github.com/google/java-
monitoring-client-library

[49] Rashmi Mudduluru, JasonWaataja, Suzanne Millstein, and Michael D. Ernst. 2021.
Verifying Determinism in Sequential Programs. In ICSE. 37–49.

[50] nacos [n. d.]. Issue 4384 nacos. https://github.com/alibaba/nacos/pull/4384.
[51] Owain Parry, Gregory M Kapfhammer, Michael Hilton, and Phil McMinn. 2022.

Surveying the developer experience of flaky tests. In Proceedings of the 44th
International Conference on Software Engineering: Software Engineering in Practice.
253–262.

[52] Suzette Person and Sebastian Elbaum. 2015. Test analysis: Searching for faults in
tests (N). In 2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 149–154.

[53] Gustavo Pinto, Breno Miranda, Supun Dissanayake, Marcelo d’Amorim,
Christoph Treude, and Antonia Bertolino. 2020. What is the vocabulary of
flaky tests?. In Proceedings of the 17th International Conference on Mining Software
Repositories. 492–502.

[54] retrofit3683 [n. d.]. Issue 3683 retrofit. https://github.com/square/retrofit/pull/
3683.

[55] Gregg Rothermel, Roland H Untch, Chengyun Chu, and Mary Jean Harrold. 1999.
Test case prioritization: An empirical study. In Proceedings IEEE International
Conference on Software Maintenance-1999 (ICSM’99).’Software Maintenance for
Business Change’(Cat. No. 99CB36360). IEEE, 179–188.

[56] scxml [n. d.]. scxml Project. https://github.com/apache/commons-scxml
[57] August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov. 2019. iFixFlakies:

A framework for automatically fixing order-dependent flaky tests. In Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 545–555.

[58] spring [n. d.]. Issue 1165 spring-ws. https://github.com/spring-projects/spring-
ws/pull/1165.

[59] text 2023. text Project. https://github.com/apache/commons-text
[60] unix4j 2023. unix4j Project. https://github.com/tools4j/unix4j
[61] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and

Vijay Sundaresan. 2010. Soot: A Java bytecode optimization framework. In
CASCON First Decade High Impact Papers. 214–224.

[62] Roberto Verdecchia, Emilio Cruciani, Breno Miranda, and Antonia Bertolino.
2021. Know you neighbor: Fast static prediction of test flakiness. IEEE Access 9

1091

Transforming Test Suites into Croissants ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

(2021), 76119–76134.
[63] Ruixin Wang, Yang Chen, and Wing Lam. 2022. iPFlakies: A Framework for

Detecting and Fixing Python Order-Dependent Flaky Tests. In Proceedings of
the ACM/IEEE 44th International Conference on Software Engineering: Companion
Proceedings. 120–124.

[64] website [n. d.]. CROISSANT website. https://github.com/Intelligent-CAT-
Lab/Croissant

[65] website-mutants [n. d.]. List of proposed mutation operators. https://sites.
google.com/view/croissant-website/mutation-operators

[66] Anjiang Wei, Pu Yi, Zhengxi Li, Tao Xie, Darko Marinov, and Wing Lam. 2022.
Preempting flaky tests via Non-Idempotent-Outcome tests. In International Con-
ference on Software Engineering (ICSE’22). 1730–1742.

[67] Anjiang Wei, Pu Yi, Tao Xie, Darko Marinov, and Wing Lam. 2021. Probabilistic
and systematic coverage of consecutive test-method pairs for detecting order-
dependent flaky tests. In International Conference on Tools and Algorithms for the

Construction and Analysis of Systems. Springer, 270–287.
[68] Fan Wu, Jay Nanavati, Mark Harman, Yue Jia, and Jens Krinke. 2017. Memory

mutation testing. Information and Software Technology 81 (2017), 97–111.
[69] xmlgraphics 2023. xmlgraphics Project. https://github.com/apache/xmlgraphics-

commons
[70] Pu Yi, Anjiang Wei, Wing Lam, Tao Xie, and Darko Marinov. 2021. Finding

polluter tests using Java PathFinder. ACM SIGSOFT Software Engineering Notes
46, 3 (2021), 37–41.

[71] Sai Zhang, Darioush Jalali, Jochen Wuttke, Kıvanç Muşlu, Wing Lam, Michael D
Ernst, and David Notkin. 2014. Empirically revisiting the test independence
assumption. In Proceedings of the 2014 International Symposium on Software
Testing and Analysis. 385–396.

Received 2023-02-16; accepted 2023-05-03

1092

	Abstract
	1 Introduction
	2 Defect Model
	3 Croissant
	3.1 Mutant Generation and Analysis
	3.2 OD Mutation Operators
	3.3 NOD Mutation Operators
	3.4 ID Mutation Operators

	4 Evaluation
	4.1 Experimental Setup and Data Availability
	4.2 RQ1: Quality of the Mutants
	4.3 RQ2: Effectiveness of the Mutation
	4.4 RQ3: Comparison with Other Techniques
	4.5 RQ4: Performance for Mutant Generation

	5 Related Work
	6 Concluding Remarks
	References

