
Automatic Reproduction of Workflows in the Snakemake
Workflow Catalog and nf-core Registries

Samuel Grayson
grayson5@illinois.edu

Department of Computer Science
University of Illinois Urbana-Champaign

Urbana, Illinois, USA

Darko Marinov
marinov@illinois.edu

Department of Computer Science
University of Illinois Urbana-Champaign

Urbana, Illinois, USA

Daniel S. Katz
d.katz@ieee.org

NCSA & CS & ECE & iSchool
University of Illinois Urbana-Champaign

Urbana, Illinois, USA

Reed Milewicz
rmilewi@sandia.gov

Department of Software Engineering and Research
Sandia National Laboratories
Albuquerque, New Mexico, US

ABSTRACT

Workflows make it easier for scientists to assemble computational

experiments consisting of many disparate components. However,

those disparate components also increase the probability that the

computational experiment fails to be reproducible. Even if software

is reproducible today, it may become irreproducible tomorrow with-

out the software itself changing at all, because of the constantly

changing software environment in which the software is run.

To alleviate irreproducibility, workflow engines integrate with

container engines. Additionally, communities that sprung up around

workflow engines started to host registries for workflows that fol-

low standards. These standards reduce the effort needed to make

workflows automatically reproducible.

In this paper, we study automatic reproduction of workflows

from two registries, focusing on non-crashing executions. The ex-

perimental data lets us analyze the upper bound to which workflow

engines could achieve reproducibility. We identify lessons learned

in achieving reproducibility in practice.

CCS CONCEPTS

· Software and its engineering→ Software creation and man-

agement; · Information systems → Information systems ap-

plications; · Applied computing→ Digital libraries and archives.

KEYWORDS

reproducibility, workflow engines, research software engineering

ACM Reference Format:

Samuel Grayson, Darko Marinov, Daniel S. Katz, and Reed Milewicz. 2023.

Automatic Reproduction of Workflows in the Snakemake Workflow Cata-

log and nf-core Registries. In 2023 ACM Conference on Reproducibility and

Replicability (ACM REP ’23), June 27ś29, 2023, Santa Cruz, CA, USA. ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3589806.3600037

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

ACM REP ’23, June 27ś29, 2023, Santa Cruz, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0176-4/23/06. . . $15.00
https://doi.org/10.1145/3589806.3600037

1 INTRODUCTION

In recent years, scientific workflows have become a lingua franca for

expressing computational experiments [16]. Workflows offer porta-

bility, extensibility, reusability, and machine-readability, enabling

automated tooling. This success has led to a growing population of

workflows and workflow management systems on the web [15].

However, workflows are often irreproducible1 [19]. They may

have always been irreproducible, or they may have initially been

reproducible but decayed into irreproducibility later due to changes

in computational environments [42]. Science is only self-correcting

because scientists can scrutinize and build on each others’ work [29],

so irreproducibility hinders scientific progress. Scrutiny is hindered

when readers need help to re-execute the workflow on their com-

puter, which in turn harms the communal practice of science, and

requires researcher to independently re-develop each others’ work.

Even outside of basic research, the reproducibility of workflows

is essential. Suppose engineers use workflows to simulate the be-

havior of a physical part. Simulations are rapidly improving, so

they may want to rerun a simulation done in the past with newer

techniques or with different parameters. The physical part may

have a lifetime measured in decades, but the software simulation

is much more fragile, lasting only years. If the computation is not

reproducible, engineers cannot easily rerun the simulation; they

must either attempt time-consuming digital archaeology or rewrite

the simulation from scratch.

A roadmap for workflow technologies by Deelman et al. notes an

urgent need for innovative approaches, methods, and tools to ensure

workflow reproducibility [9]. If archived and made discoverable,

workflows could eventually become an enduring resource for the

scientific community Ð enabling researchers to reproduce and build

upon each others’ work rapidly and credibly.

Current data on the frequency and causes of workflow failures

is crucial to building workflow archival and sustainment solutions.

A 2012 study by Zhao et al. was among the first to examine such

failure causes, specifically among Taverna workflows from the

myExperiment workflow registry [42]. Unfortunately, Taverna is no

longer activelymaintained. The landscape of workflow technologies

1We use the ACM definition of reproducibility: a measurement is reproducible if a
different team can use the same experimental setup to make a concurring observa-
tion [36].

ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA Samuel Grayson, Darko Marinov, Daniel S. Katz, and Reed Milewicz

has changed significantly, and newer tools have displaced Taverna

(see Table 1). In short, several positive developments have happened,

and we need a refreshed perspective on workflow reproducibility.

To explore this topic further, we collected workflows from two

workflow registries, Snakemake Workflow Catalog [38] and nf-

core [14], and attempted to reproduce crash-free executions for

them. We address the following research questions:

• RQ0. What are the characteristics of workflows and revi-

sions in the selected registries? The answer tells us about

the external validity of the study.

• RQ1. How many workflows (and for how many revisions

of those workflows) in each selected registry are crash-free

reproducible? This question quantitatively assesses the level

of reproducibility in practice for those registries.

• RQ2. For workflows that we were unable to reproduce crash-

free executions, what are the most common failure modes?

These modes inform future work of workflow engine devel-

opers for what to fix, researchers on automatic reproducibil-

ity on what to focus on inferring, and workflow users of

what to watch out for.

• RQ3. What is the survival rate of crash-free reproducibility

of workflows over time? While we cannot wait for a specific

workflow to break, which may take months or years, we can

assume that software in the future will behave similarly to

software in the past and make population-level inferences.

• RQ4. For crash-free reproductions, how much and what

kinds of outputs do they produce? Future research seeking

to compare subsequent revisions semantically will need to

develop a handler for each kind of output. This research

question tells them what kinds of outputs to focus on.

The main differences between our work and prior large-scale

studies on automatic reproducibility [32, 39, 41, 41, 42] are:

• We study workflows2, not arbitrary computational exper-

iments (c.f. [32, 39, 41]). Workflows specifically aim to be

reproducible, and the workflows we study containerize each

step, for example, so they stand a better chance of being

reproduced than arbitrary computational experiments.

• We analyze the łsurvival ratež of workflows over time. To

the best of our knowledge, prior work [39, 42] used time as

a categorical rather than a continuous variable (informally,

łso many workflows from that year still workž) or did not

analyze time [32, 41].

• We analyze not only one but two registries and contrast their

results. To our knowledge, prior work has not examined the

similarities and differences in reproducibility from different

workflow registries.

The remainder of this paper is structured as follows. Sections 2

and 3 provide background and related work in curating and sustain-

ing scientific workflows. Section 4 describes our data collection and

analysis methodology. Section 5 presents the findings of our study.

Section 6 provides a detailed discussion of those findings, including

the limitations of our study. Finally, Section 7 summarizes the key

results of our study and describes directions for future work.

2For our purposes, a workflow language is a programming language where one as-
sembles an explicit dataflow graph, where each node is an existing program.

2 PRELIMINARIES

The Association for Computing Machinery defines reproducibility

and replicability as follows:

Reproducibility means łThe measurement can be obtained

with stated precision by a different team using the same measure-

ment procedure, the same measuring system, under the same op-

erating conditions, in the same or a different location on multiple

trials. For computational experiments, this means that an inde-

pendent group can obtain the same result using the author’s own

artifacts.ž [36]

Replicability means łThe measurement can be obtained with

stated precision by a different team, a different measuring system,

in a different location on multiple trials. For computational ex-

periments, this means that an independent group can obtain the

same result using artifacts which they develop completely indepen-

dently.ž [36]

Both definitions use łmeasurementž. For our study on reproduc-

ing scientific workflows, we define the following as łmeasurementž:

Crash-free execution refers to whether the computational

experiment runs to completion without crashing (specifically, ter-

minating with a non-zero exit code for POSIX programs).

While replicable research conclusions are the end goal, assessing

that goal in practice requires expert case-by-case analysis. Assessing

reproducible crash-free executions, on the other hand, is possible

to do automatically and is a vital stepping-stone for replicable

research conclusions. If an experiment has a reproducible crash-

free execution, the workflow can be scrutinized, extended, and

reused in future inquiries.

One salient question about reproducibility is how it relates to

time. A computational experiment may be reproducible only up to

some point in time but become irreproducible after that point. This

change could be due to several reasons. For example, the software

environment may not be fully specified, so retrieving the łlatestž de-

pendency may stop working at some point. It could also be because

the software depends on some network resource that is no longer

available. This phenomenon is often called software collapse [21]

because software with an unstable foundation is analogous to a

building with an unstable foundation. Software collapse for work-

flows manifests itself as irreproducible computational experiments.

3 PRIORWORK

Prior works on large-scale quantitative reproducibility studies can

be split into those whose reproduction is assessed by automatic

means versus a manual effort.

Zhao et al. [42] evaluate automatic reproducibility of Taverna

workflows from the myExperiment registry. However, Taverna is

now defunct, and there have been many changes since 2012 (see

Table 1), so we should expect the results to change. Furthermore,

Zhao et al. do not examine the correlation of crashes with time or

the kinds of outputs when the execution is crash-free.

Trisovic et al. [39] evaluate automatic reproducibility of R code

from the Harvard Dataverse repository. While Trisovic et al. pro-

pose to study reproducibility based on R version and time (in their

RQ8), they treat time as a categorical variable and do not perform a

statistical analysis to generalize their data. Furthermore, Trisovic et

al.’s reproduction of R code does not include the order in which the

Automatic Reproduction of Workflows in the Snakemake Workflow Catalog and nf-core Registries ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA

scripts in a single project were originally run, so it incurs failures

that may be simply due to a wrong order; our work studies work-

flows, which avoid the ordering problem because the workflow

specifies dependencies between tasks.

Pimentel et al. [32] and Wang et al. [41] automatically run

Jupyter Notebooks from GitHub. Jupyter Notebooks have different

strengths and use-cases than workflows. Jupyter Notebooks are

usually used for small, interactive jobs, whereas workflows are used

for large, batch-processing jobs [12, 27]. For example, Snakemake

and Nextflow at the language-level both provide facilities to run jobs

on a cluster. Snakemake and Nextflow, by default, write interme-

diate results to disk so that workflows can be resumed if the node

halts or needs to be restarted. While both batch-scheduling sub-

mission, crash-recovery, and containerization can be implemented

in Python, workflow engines are more specialized for analyzing

data at a large scale. Therefore, we expect that the reproducibility

characteristics can be quite different. For example, Wang et al. find

that using one set of Python packages, namely those in the default

Anaconda distribution3, was sufficient for running their evaluation;

in contrast, workflows in Snakemake and Nextflow often provide a

distinct set of Python packages for each task! Finding the correct

set of packages is non-trivial, as we will see in RQ2.

As an example of manual reproduction, Krafczyk et al. execute

an in-depth case study on a small set of computational experi-

ments [25]. Stodden et al. [37] perform case studies with specific

attention to journal policies. The case-study methodology is helpful

for in-depth results but has difficulty generalizing the results to an

entire population. Our work attempts an automatic reproduction

of a large set of experiments to address population-level questions

but does not perform an in-depth analysis of a small subset.

Continuous integration [20] seeks to run tests at every change.

However, software can fail not just by changes to the code itself

but also by changes to the environment (see łsoftware collapsež

above). Continuous integration usually does not seek to cover the

case of static code under an evolving environment. Beaulieu-Jones

and Greene [4] propose łcontinuous analysisž to maintain repro-

ducibility. That approach is complementary to ours; future work

could combine techniques with our work to continuously evaluate

large-scale reproductions.

Provenance is also an important research direction. Pouchard et

al. showed how collecting provenance data and performance met-

rics can aid in confirming the reproducibility of extreme-scale appli-

cation workflows [33]. Meng and Thain developed a framework for

capturing execution environments of workflows at a task-by-task

level of granularity [28]. Large-scale reproduction tells provenance

researchers where to start looking for examples of working work-

flows, examples of common errors, and other data. On the other

hand, provenance systems improve the reproducibility of workflow

engines, which large-scale reproductions can evaluate.

Functional package managers such as Nix and Guix [6, 7] treat

building and installing a package as a pure function. To enforce

purity, a functional package manager builds packages inside a sand-

boxed environment that only contains the declared inputs. One can

use symlinks to link together built aritfacts into a project-specific

environment. This approach solves dependency issues but leaves

3See https://www.anaconda.com/

Table 1: A sample of tools, organizations, and policies regard-

ing reproducibility since 2010.

Year Kind Description

2012 Tool Snakemake paper [27]

2013 Policy Geoscientific Model Development (GMD) jour-

nal requires code sharing [1]

2013 Policy Office of Science and Technology Policy memo-

randum (Holden et al.) [22]

2015 Tool Spack paper [18]

2015 Org Volume 1 of ReScienceC published [35]

2015 Tool Guix for HPC paper [7]

2017 Tool Nextflow paper [12]

2017 Tool Singularity paper [26]

2017 Tool Nix for HPC paper [6]

2020 Org Nextflow community curates nf-core [14]

2022 Policy Office of Science and Technology Policy memo-

randum (Nelson et al.) [30]

2022 Policy NASA Science Mission Directorate Science Pol-

icy Document 41a [43]

other sources of irreproducibility open, such as applications that

access network resources at run-time (at build-time the network is

unavailable). A subset of the problems we are studying here would

also be problems for Nix and Guix. Guix Workflow Language [40]

takes this idea a step further by creating a workflowwhere each step

runs in a Guix-specified environment. While these are promising

tools for future development, this work focuses on current, popular

workflow engines such as Snakemake and Nextflow to capture an

image of reproducibility in the real-world.

Besides research literature, the community has been developing

new policies, organizations, and tools to encourage reproducibility

(see Table 1).

4 METHODOLOGY

The Workflow Community Initiative4 lists four registries: Dock-

store [31], Snakemake workflow catalog [38] (here on, łSWCž),

WorkflowHub [17], and nf-core [14]. Dockstore and WorkflowHub

contain workflows of many different workflow languages, and they

overlap as the same workflow can be in both registries. For this

study, we chose SWC and nf-core because they contain only one

workflow language each but are still well-populated. The Pegasus

Workflow Engine also has a workflow hub called PegasusHub5, but

at the time of this writing, it had only twelve workflows, most of

which were examples. Future work could extend our experiment to

more workflow registries.

Each entry in SWC and nf-core refers to a specific project on

GitHub. These registries are in machine-readable formats.

• The SWC registry includes any project on GitHub that satis-

fies its requirements, of which the chief is to have a Snakefile

or workflows/Snakefile in the root directory. Users can op-

tionally include a .snakemake-workflow-catalog.yml, with

a machine-readable description of how to run the workflow.

4https://workflows.community/registries
5https://pegasushub.io

ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA Samuel Grayson, Darko Marinov, Daniel S. Katz, and Reed Milewicz

The result (Table 5) shows that when there are common outputs,

at least one of them is usually ASCII text with no łhigher levelž

structure like CSV or JSON. Only 25% of the nf-core workflows can

be compared through CSV.

If one cannot deduce any structure of plain text files, the only

choice may be to treat them as strings or a list of strings (for each

line). Future work may investigate methods for quantifying the

difference between ASCII text files; e.g., one could use the edit

distance at a line-level (similar to what diff does). If there are a

lot of sub-line changes, one might use edit-distance on characters,

although this comparison would be time-consuming.

RQ4. The most common output across revisions of a workflow

is usually unstructured text.

6 DISCUSSION

6.1 Lessons learned for reproducers

Superuser is required to reproduce normal workflows!

Big supercomputers are often shared among a whole department or

multiple institutions, so most users do not have superuser access.

Ideally, one should not need superuser access just to reproduce

someone else’s computational experiment. However, some func-

tionality in container engines currently requires superuser access,

which did affect this work. While a normal user can install Singu-

larity and its successor Apptainer, that installation do not support

full set of features and experience worse filesystem performance

than when installed by a superuser [11, 13] in łsetuid mode.ž We

noticed several failures due to inability to mount the right paths

in a Singularity container, which we fixed by installing Singularity

as superuser. While one does not need to run the workflow engine

itself as a superuser, it calls Singularity, which calls a setuid binary

that escalates into superuser privileges, so a superuser has to install

that binary. Also note that setuid Singularity cannot nest within

another Singularity (setuid or not) [13], so we had to run our ex-

periment on bare-metal such that the workflow engine could start

a setuid Singularity container.

Ongoing developments in the łunpriveleged user namespacež

feature of the Linux Kernel open the door to container engines

that do not run as root, but old versions of the kernel hinder this

use-case. For example, CentOS 6 uses the 2.6 Linux Kernel, but

user namespaces were not available until 3.8 or later [10]. Even

in later kernels, user namespaces may be disabled. Enabling user

namespaces opens a much larger surface for attacks (e.g., see CVE-

2020-14386 in Linux Kernel 5.9 [8]), so many security standards

recommend disabling them [2]. Still, Linux developers are making

progress in securing user namespaces, and old supercomputers

are being retired, so eventually, reproducibility can be improved

through unpriveleged user namespaces. Given a recent enough

kernel, Charliecloud [34] provides precisely that. However, Snake-

make has yet to integrate with Charliecloud (see ongoing issue12).

Future work could quantify how the choice of container engine and

root-user privilege changes the non-crashing reproducibility rate.

12https://github.com/snakemake/snakemake/issues/44

Continuous integration (CI) scripts do not help much.

Often, a human could glean how to run a computational experi-

ment given the CI scripts. However, selecting the right target is

difficult to automate because the CI scripts contain instructions

for many different goals besides the goal of testing the software.

When looking at GitHub Action scripts in SWC, we found scripts

that lint, generate reports (without running), and test the Conda

environment; these would have to be excluded by automatic repro-

ducibility software. If the computational experiment has a rather

long running time, users will exclude it from CI testing, so we have

no guarantee that any CI action actually tests the code.

There can be more than one way to test the workflow.

The CI discussion also raises another point: what should the łtest

configurationž be? Should it be a scaled-down execution or a full-

fledged one? What if the experiment supports multiple different

modes; which should be used? In practice, the nf-core repositories

specify one configuration as the łdefaultž test configuration, but

they often contain multiple test_* configurations, providing for

test variants. An open ontology could describe what knobs to turn

in each test. Such configurability would open the door to many

automatic testing applications, such as autotuning configuration

parameters, outcome-preserving input reduction, or other kinds of

parameter searching if the system knows what knobs it can turn

without breaking the experiment’s semantics.

6.2 Recommendations for workflow engine

designers

The presence and rigor of community standards greatly affect

reproducibility.

The nf-core repositories usually have a configuration profile in the

root called test that runs whatever the workflow author defines as

a test. Other tools choose conventions to make their tools easier to

use (e.g., make all). Other Nextflow workflows outside of nf-core

do not usually follow this convention13, so it would be much harder

to test them automatically.

SWC does have a similar convention, but it is not rigorous

enough. While SWC workflows have a place for łmandatory flagsž

in the .snakemake-workflow-catalog.yml, there is no place for

an example invocation14. As such, many of the workflows fail be-

cause our default command does not provide them with any exam-

ple data.

We should use metadata to link the publication, funding, and

authors to the workflow.

We could not find a machine-readable link between the workflow

and the publication, funding, and authors. Linking the workflow

would allow us to study the impact of policies on reproducibility.

Git stores a history of the authors who touch the code, but these do

13For an example, see https://github.com/marcodelapierre/toy-gpu-nf
14See https://github.com/snakemake-workflows/dna-seq-varlociraptor/pull/204 for
discussion

Automatic Reproduction of Workflows in the Snakemake Workflow Catalog and nf-core Registries ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA

not include all collaborators (e.g., a university professors when the

student does the work) or other facilitators. Transitive Credit aims

to solve this problem with JSON-LD [23], but it is not yet widely

used.

Workflow engines should report resource requirements in a

machine-readable format.

Each of these different test variants may have different resource

requirements too. In batch compute systems, such as supercom-

puters, on which many computational scientists work, the users

request a compute resource allocation (such as the number of CPUs,

GPUs, peak disk utilization, peak memory utilization, or total time).

In practice, the users guess the request using rules-of-thumb; if

the guess is wrong, their job may fail, and they will have to retry

with a larger resource request. While not strictly necessary for

reproducibility, it may be easier if the original authors publish the

resources needed to run their experiment. Modern retrospective

provenance systems [5, 24] do not yet provide a way of capturing

or storing this information, although it would be straightforward to

add. Knowing at least the total time the computational experiment

takes helps future users to know if the run got łstuckž in a deadlock

or infinite loop. We do report resource utilization requirements for

the workflows in our dataset, which can be found in Appendix A.

Opaque container images may be reproducible but are not ideal.

Workflow programs supply a container image for each step of their

execution. This gives a high level of reproducibility for the task

which runs in the container, but the dozens of container images

used in an experiment become another digital artifact which need

to either be archived (heavy storage cost) or reproducibly built

(pushes the buck to another tool). Functional package managers

have the potential to fill this gap by either building container images

reproducibly or managing the environment natively for each step

in the experiment.

6.3 Threats to Validity

The workflows we selected may not be representative of all work-

flows. We worked with two large registries and ran every workflow

in each registry uniformly, but there may be a selectivity bias for

workflows submitted to workflow registries. Still, problems for the

community’s most publicized workflows are likely also problems

for the other workflows.

We only test for reproducible crash-free execution. We cannot

test research reproducibility because we do not have access to the

original results, and we would need the expertise to compare results

from two runs to see if they are equivalent. However, reproducible

crash-free execution is a necessary condition for reproducible re-

search results, and right now, only 51% of nf-core workflows and

11% of SWC workflows have even crash-free reproducibility.

Our system’s packages may also be conflicting with the packages

that the experiment wants to install. While the exact symptom is

specific to our system, the pathology is a problem for reproducibility

more generally.

The workflows we test may be reproducible, but our automated

system could not figure out the correct command to run. These
would be manually reproducible but not automatically reproducible.

However, automatic reproducibility confers benefits that manual

reproducibility does not. For example, automatic reproducibility

makes it easy to set up continuous integration.

On the other hand, one might argue that in designing our auto-

mated system, we encoded too much information discovered from

manually debugging failed workflows. For example, we found that

the SWC workflows often require Peppy and Pandas, just to sub-

select the data for input to the tasks. Because it is reasonable to

expect these packages might be installed on the user’s machine,

we added them into our software environment. One might argue

that experiments which depend on a package without declaring

a dependency on that package should be marked as not automati-

cally reproducible; we considered this position, but then so many

workflows would be not reproducible that we would not have much

data left to work with for the rest of the RQs.

7 CONCLUSION

Reproducibility allows science to be self-correcting and helps us

build on each other’s results. While it intuitively seems that com-

putational experiments should be perfectly reproducible, especially

compared to bench work, computational experiments are often the

root of irreproducible research.

In this work, we investigate how reproducible workflows are

in practice by looking at workflows from two specific registries,

SWC and nf-core. The fact that our experiment on reproducibility

is possible is a testament to the improvements in tooling and com-

munity practices. The nf-core registry could be used an example

of how communities standardize around standard conventions and

tooling. However, the current practice needs to be improved for a

higher degree of reproducibility. In particular, workflow authors

should incorporate example data that runs łout of the box.ž More

work needs to be done on standardizing how to specify the means

to reproduce a computational experiment.

A CODE & DATA AVAILABILITY

A snapshot of the latest state of this code can be found at: https:

//doi.org/10.5281/zenodo.7996835.

A rolling release of the code can be found at: https://github.com/

charmoniumQ/wf-reg-test.

In the rolling release or snapshot:

• data holds a machine-readable view of the data, split across

several files.

• data/results.html is a human-readable HTML view of

the data.

• REPRODUCING.md contains instructions on how to reproduce

the results in this paper from various steps.

• spack/spack.lock contains the Spack environment inwhich

this experiment was run.

ACKNOWLEDGMENTS

This work was partially supported by NSF grants CCF-1763788 and

CCF-1956374. We acknowledge support for research on flaky tests

from Google and Meta.

ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA Samuel Grayson, Darko Marinov, Daniel S. Katz, and Reed Milewicz

REFERENCES
[1] J. Annan, D. Hargreaves, D. Lunt, A. Ridgwell, I. Rutt, and R. Sander. 2013. Edi-

torial: The publication of geoscientific model developments v1.0. Geoscientific
Model Development 6, 4 (Aug. 2013), 1233ś1242. https://doi.org/10.5194/gmd-6-
1233-2013 Publisher: Copernicus GmbH.

[2] STIG Authors. 2020. Red Hat Enterprise Linux 8 Security Technical Implementa-
tion Guide. https://www.stigviewer.com/stig/red_hat_enterprise_linux_8/2020-
11-25/

[3] Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S. Katz, Ben Clifford, Rohan
Kumar, Lukasz Lacinski, Ryan Chard, Justin M. Wozniak, Ian Foster, Michael
Wilde, and Kyle Chard. 2019. Parsl: Pervasive Parallel Programming in Python.
In Proceedings of the 28th International Symposium on High-Performance Parallel
and Distributed Computing (HPDC ’19). Association for Computing Machinery,
New York, NY, USA, 25ś36. https://doi.org/10.1145/3307681.3325400

[4] Brett K. Beaulieu-Jones and Casey S. Greene. 2017. Reproducibility of computa-
tional workflows is automated using continuous analysis. Nature Biotechnology
35, 4 (April 2017), 342ś346. https://doi.org/10.1038/nbt.3780 Number: 4 Publisher:
Nature Publishing Group.

[5] Anila Sahar Butt and Peter Fitch. 2020. ProvONE+: A Provenance Model for Sci-
entific Workflows. In Web Information Systems Engineering ś WISE 2020 (Lecture
Notes in Computer Science), Zhisheng Huang, Wouter Beek, Hua Wang, Rui Zhou,
and Yanchun Zhang (Eds.). Springer International Publishing, Cham, 431ś444.
https://doi.org/10.1007/978-3-030-62008-0_30

[6] Bruno Bzeznik, Oliver Henriot, Valentin Reis, Olivier Richard, and Laure Tavard.
2017. Nix as HPC package management system. In Proceedings of the Fourth
International Workshop on HPC User Support Tools (HUST’17). Association for
ComputingMachinery, New York, NY, USA, 1ś6. https://doi.org/10.1145/3152493.
3152556 interest: 99.

[7] Ludovic Courtès and Ricardo Wurmus. 2015. Reproducible and User-Controlled
Software Environments in HPC with Guix. In Euro-Par 2015: Parallel Processing
Workshops (Lecture Notes in Computer Science), Sascha Hunold, Alexandru Costan,
Domingo Giménez, Alexandru Iosup, Laura Ricci, María Engracia Gómez Re-
quena, Vittorio Scarano, Ana Lucia Varbanescu, Stephen L. Scott, Stefan Lankes,
Josef Weidendorfer, and Michael Alexander (Eds.). Springer International Pub-
lishing, Cham, 579ś591. https://doi.org/10.1007/978-3-319-27308-2_47 interest:
99.

[8] CVE database. 2020. CVE - CVE-2020-14386. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2020-14386

[9] Ewa Deelman, Tom Peterka, Ilkay Altintas, Christopher D Carothers, Ker-
stin Kleese van Dam, Kenneth Moreland, Manish Parashar, Lavanya Ramakrish-
nan, Michela Taufer, and Jeffrey Vetter. 2018. The future of scientific workflows.
The International Journal of High Performance Computing Applications 32, 1 (Jan.
2018), 159ś175. https://doi.org/10.1177/1094342017704893 Publisher: SAGE
Publications Ltd STM.

[10] Linux Developers. 2021. user_namespaces(7) - Linux manual page. https:
//www.man7.org/linux/man-pages/man7/user_namespaces.7.html

[11] Singularity Developers. 2023. Security in SingularityCE Ð SingularityCE Admin
Guide 3.11 documentation. https://docs.sylabs.io/guides/latest/admin-guide/
security.html

[12] Paolo Di Tommaso, Maria Chatzou, Evan W. Floden, Pablo Prieto Barja, Emilio
Palumbo, and Cedric Notredame. 2017. Nextflow enables reproducible compu-
tational workflows. Nature Biotechnology 35, 4 (April 2017), 316ś319. https:
//doi.org/10.1038/nbt.3820 Number: 4 Publisher: Nature Publishing Group.

[13] Dave Dykstra. 2022. Apptainer Without Setuid. https://doi.org/10.48550/arXiv.
2208.12106 arXiv:2208.12106 [cs].

[14] Philip A. Ewels, Alexander Peltzer, Sven Fillinger, Harshil Patel, Johannes Al-
neberg, Andreas Wilm, Maxime Ulysse Garcia, Paolo Di Tommaso, and Sven
Nahnsen. 2020. The nf-core framework for community-curated bioinformatics
pipelines. Nature Biotechnology 38, 3 (March 2020), 276ś278. https://doi.org/10.
1038/s41587-020-0439-x Number: 3 Publisher: Nature Publishing Group.

[15] Rafael Ferreira da Silva, Henri Casanova, Kyle Chard, Ilkay Altintas, RosaM Badia,
Bartosz Balis, Taina Coleman, Frederik Coppens, Frank Di Natale, Bjoern Enders,
Thomas Fahringer, Rosa Filgueira, Grigori Fursin, Daniel Garijo, Carole Goble,
Dorran Howell, Shantenu Jha, Daniel S. Katz, Daniel Laney, Ulf Leser, Maciej
Malawski, Kshitij Mehta, Loic Pottier, Jonathan Ozik, J. Luc Peterson, Lavanya
Ramakrishnan, Stian Soiland-Reyes, Douglas Thain, and Matthew Wolf. 2021. A
Community Roadmap for Scientific Workflows Research and Development. In
2021 IEEEWorkshop onWorkflows in Support of Large-Scale Science (WORKS). IEEE,
St. Louis, MO, USA, 81ś90. https://doi.org/10.1109/WORKS54523.2021.00016
arXiv:2110.02168 [cs] interest: 90.

[16] Rafael Ferreira da Silva, Kyle Chard, Henri Casanova, Dan Laney, Dong Ahn,
Shantenu Jha, William E. Allcock, Gregory Bauer, Dmitry Duplyakin, Bjoern
Enders, Todd M. Heer, Eric Lançon, Sergiu Sanielevici, and Kevin Sayers. 2021.
Workflows Community Summit: Tightening the Integration between Computing
Facilities and Scientific Workflows. Technical Report ORNL/TM-2022/1832. Oak
Ridge National Lab. (ORNL), Oak Ridge, TN (United States). https://doi.org/10.
2172/1842590

[17] Rafael Ferreira da Silva, Loïc Pottier, Tainã Coleman, Ewa Deelman, and Henri
Casanova. 2020. WorkflowHub: Community Framework for Enabling Scientific
Workflow Research and Development. In 2020 IEEE/ACM Workflows in Support
of Large-Scale Science (WORKS). IEEE, Georgia, USA, 49ś56. https://doi.org/10.
1109/WORKS51914.2020.00012

[18] Todd Gamblin, Matthew LeGendre, Michael R. Collette, Gregory L. Lee, Adam
Moody, Bronis R. de Supinski, and Scott Futral. 2015. The Spack package man-
ager: bringing order to HPC software chaos. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analy-
sis (SC ’15). Association for Computing Machinery, New York, NY, USA, 1ś12.
https://doi.org/10.1145/2807591.2807623 interest: 80.

[19] José Manuel Gómez-Pérez, Esteban García-Cuesta, Aleix Garrido, José Enrique
Ruiz, Jun Zhao, and Graham Klyne. 2013. When History Matters - Assessing
Reliability for the Reuse of Scientific Workflows. In The Semantic Web ś ISWC
2013 (Lecture Notes in Computer Science), Harith Alani, Lalana Kagal, Achille
Fokoue, Paul Groth, Chris Biemann, Josiane Xavier Parreira, Lora Aroyo, Natasha
Noy, Chris Welty, and Krzysztof Janowicz (Eds.). Springer, Berlin, Heidelberg,
81ś97. https://doi.org/10.1007/978-3-642-41338-4_6

[20] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, costs, and benefits of continuous integration in open-source projects.
In Proceedings of the 31st IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE ’16). Association for Computing Machinery, New York,
NY, USA, 426ś437. https://doi.org/10.1145/2970276.2970358

[21] Konrad Hinsen. 2019. Dealing With Software Collapse. Computing in Science
& Engineering 21, 3 (May 2019), 104ś108. https://doi.org/10.1109/MCSE.2019.
2900945 Conference Name: Computing in Science & Engineering.

[22] John P. Holden. 2013. Increasing Access to the Results of Federally Funded
Scientific Research.

[23] Daniel S. Katz and Arfon M. Smith. 2015. Transitive Credit and JSON-LD. Journal
of Open Research Software 3, 1 (Nov. 2015), e7. https://doi.org/10.5334/jors.by
Number: 1 Publisher: Ubiquity Press.

[24] Farah Zaib Khan, Stian Soiland-Reyes, Richard O Sinnott, Andrew Lonie, Carole
Goble, and Michael R Crusoe. 2019. Sharing interoperable workflow provenance:
A review of best practices and their practical application in CWLProv. GigaScience
8, 11 (Nov. 2019), giz095. https://doi.org/10.1093/gigascience/giz095 interest: 98.

[25] Matthew S. Krafczyk, August Shi, Adhithya Bhaskar, DarkoMarinov, and Victoria
Stodden. 2021. Learning from reproducing computational results: introducing
three principles and the Reproduction Package. Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences 379, 2197
(March 2021), 20200069. https://doi.org/10.1098/rsta.2020.0069 Publisher: Royal
Society.

[26] Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. 2017. Singularity:
Scientific containers for mobility of compute. PLOS ONE 12, 5 (May 2017),
e0177459. https://doi.org/10.1371/journal.pone.0177459 Publisher: Public Library
of Science.

[27] Johannes Köster and Sven Rahmann. 2012. SnakemakeÐa scalable bioinformatics
workflow engine. Bioinformatics 28, 19 (Oct. 2012), 2520ś2522. https://doi.org/
10.1093/bioinformatics/bts480

[28] Haiyan Meng and Douglas Thain. 2017. Facilitating the Reproducibility of Scien-
tific Workflows with Execution Environment Specifications. Procedia Computer
Science 108 (Jan. 2017), 705ś714. https://doi.org/10.1016/j.procs.2017.05.116

[29] Robert K. Merton. 1974. The sociology of science: theoretical and empirical investi-
gations (4. dr. ed.). Univ. of Chicago Pr, Chicago.

[30] Alondra Nelson. 2022. Ensuring Free, Immediate, and Equitable Access to Feder-
ally Funded Research.

[31] Brian D. O’Connor, Denis Yuen, Vincent Chung, Andrew G. Duncan, Xiang Kun
Liu, Janice Patricia, Benedict Paten, Lincoln Stein, and Vincent Ferretti. 2017.
The Dockstore: enabling modular, community-focused sharing of Docker-based
genomics tools and workflows. F1000Research 6 (Jan. 2017), 52. https://doi.org/
10.12688/f1000research.10137.1

[32] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
2019. A Large-Scale Study About Quality and Reproducibility of Jupyter
Notebooks. In Proceedings of the 16th International Conference on Mining Soft-
ware Repositories (MSR ’19). IEEE Press, Montreal, Quebec, Canada, 507ś517.
https://doi.org/10.1109/MSR.2019.00077 ISSN: 2574-3864.

[33] Line Pouchard, Sterling Baldwin, Todd Elsethagen, Shantenu Jha, Bibi Raju,
Eric Stephan, Li Tang, and Kerstin Kleese Van Dam. 2019. Computational
reproducibility of scientific workflows at extreme scales. International Jour-
nal of High Performance Computing Applications 33, 5 (April 2019), 763ś776.
https://doi.org/10.1177/1094342019839124 Institution: Brookhaven National Lab.
(BNL), Upton, NY, Number: BNL-211854-2019-JAAM Publisher: SAGE.

[34] Reid Priedhorsky and Tim Randles. 2017. Charliecloud: unprivileged containers
for user-defined software stacks in HPC. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis. ACM,
Denver Colorado, 1ś10. https://doi.org/10.1145/3126908.3126925

[35] Nicolas P. Rougier and Konrad Hinsen. 2019. ReScience C: A Journal for Repro-
ducible Replications in Computational Science. In Reproducible Research in Pat-
tern Recognition (Lecture Notes in Computer Science), Bertrand Kerautret, Miguel

Automatic Reproduction of Workflows in the Snakemake Workflow Catalog and nf-core Registries ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA

Colom, Daniel Lopresti, Pascal Monasse, and Hugues Talbot (Eds.). Springer
International Publishing, Cham, 150ś156. https://doi.org/10.1007/978-3-030-
23987-9_14

[36] ACM Inc. staff. 2020. Artifact Review and Badging. https://www.acm.org/
publications/policies/artifact-review-and-badging-current

[37] Victoria Stodden and Sheila Miguez. 2014. Best Practices for Computational
Science: Software Infrastructure and Environments for Reproducible and Ex-
tensible Research. Journal of Open Research Software 2, 1 (July 2014), e21.
https://doi.org/10.5334/jors.ay Number: 1 Publisher: Ubiquity Press.

[38] The Snakemake Team. 2023. https://snakemake.github.io/snakemake-workflow-
catalog.

[39] Ana Trisovic, Matthew K. Lau, Thomas Pasquier, and Mercè Crosas. 2022. A
large-scale study on research code quality and execution. Scientific Data 9, 1
(Feb. 2022), 60. https://doi.org/10.1038/s41597-022-01143-6 Number: 1 Publisher:
Nature Publishing Group.

[40] Nicolas Vallet, David Michonneau, and Simon Tournier. 2022. Toward practical
transparent verifiable and long-term reproducible research using Guix. Scientific
Data 9, 1 (Oct. 2022), 597. https://doi.org/10.1038/s41597-022-01720-9 interest:
99 Number: 1 Publisher: Nature Publishing Group.

[41] Jiawei Wang, Tzu-yang Kuo, Li Li, and Andreas Zeller. 2021. Assessing and restor-
ing reproducibility of Jupyter notebooks. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE ’20). Associa-
tion for Computing Machinery, New York, NY, USA, 138ś149. https://doi.org/
10.1145/3324884.3416585

[42] Jun Zhao, Jose-Manuel Gomez-Perez, Khalid Belhajjame, Graham Klyne, Esteban
Garcia-cuesta, Aleix Garrido, Kristina Hettne, Marco Roos, David De Roure, and
Carole Goble. 2012. Why workflows break Ð understanding and combating decay
in Taverna workflows. In 2012 IEEE 8th International Conference on E-Science
(e-Science). IEEE, Chicago, IL, 9. https://doi.org/10.1109/eScience.2012.6404482

[43] Thomas H. Zurbuchen. 2022. SMD Policy Document SPD-41a.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Prior Work
	4 Methodology
	5 Results
	6 Discussion
	6.1 Lessons learned for reproducers
	6.2 Recommendations for workflow engine designers
	6.3 Threats to Validity

	7 Conclusion
	A Code & data availability
	Acknowledgments
	References

