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Abstract

We present a novel discretization for the two-dimensional incompressible Magnetohydrodynamics (MHD) system coupling
an electromagnetic model and a fluid flow model. Our approach follows the framework of the Virtual Element Method and
offers two main advantages. The method can be implemented on unstructured meshes making it highly versatile and capable
of handling a broad set of problems involving interfaces, free-boundaries, or adaptive refinements of the mesh. The second
advantage concerns the divergence of the magnetic flux field and the fluid velocity. Our approach guarantees that the numerical
approximation of the magnetic flux field and the fluid velocity are divergence free if their initial states are divergence free.
Importantly, the divergence-free condition for the fluid velocity is satisfied in a pointwise sense. We include a theoretical proof
of the condition on the magnetic flux field, energy estimates and a well-posedness study. Numerical testing confirms robustness
of the method and its convergence properties on a variety of meshes.
© 2023 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
reserved.
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1. Introduction

In the last few decades, the number of applications involving magnetized fluids has skyrocketed, and the scientific
community has made significant efforts to develop many predictive mathematical models. Magnetohydrodynamics
(MHD) is one approach that has stood the test of time and has become a standard. The MHD model, its derivation,
and its properties are well understood; see, for example, [22,33]. MHD relies on the interaction of fluid flow and
electromagnetics. Maxwell’s equations describe how we model electromagnetics, whereas conservation principles,
precisely momentum and mass conservation, describe fluid motion.

This study aims to develop a novel discretization for the two-dimensional MHD model using the Virtual Element
Method (VEM) framework. The VEM evolved from the Mimetic Finite Difference Method (MFD), for which
we refer to [16,27,42]. We recall that the MFD method’s guiding philosophy is based on a discrete mimicry of
vector and tensor calculus so that the model’s essential properties have a discrete compatible counterpart. Faraday’s
Law from Maxwell’s equation implies that the magnetic fields are solenoidal, i.e., their divergence is always zero.
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When discretizing the electromagnetics system, we must maintain this condition, see [14] for further information.
In particular, discrete divergence-free magnetic fields are a major advantage. Since we mimic the continuous setting
and such a setting meets the magnetic field divergence criterion, a VEM for MHD naturally provides solenoidal
magnetic field approximations. This work aims to prove and validate this condition.

The mesh flexibility is the second significant advantage of the MFD approach inherited by the VEM. The MFD
method and, consequently, the VEM work on unstructured polytopal meshes whose elements can have general,
even nonconvex, geometrical shapes. A recent study on the VEM robustness on meshes with severe deformations
is found in [37].

These features have determined so far the success of the VEM in a wide range of applications, see, for
example, [3-5,9,11-13,17,18,24,44].

We build on [35] to design a VEM for an electromagnetic subsystem. We also model electromagnetics and fluid
flow with the lowest-order VEM proposed in [10,38].

We define each virtual element approximation space on a given mesh element through the solutions of a
local PDE problem. Such a numerical approach employs only the degrees of freedom, avoiding pointwise shape
function computation. To do this, we introduce projectors onto polynomial spaces, the most crucial ones being the
L?—orthogonal projectors. In particular, the L? projector is computable in some approximation spaces through
a general strategy called the enhancement process introduced in [2] and first applied to Maxwell’s equations
in [9,39,40].

Since the continuous model involves several non-linearities, we propose a linearization that stems from a linear
extrapolation of the magnetic field. This strategy has been initially suggested in [25] for a FEM. Its main advantage
is that we need to solve only one linear system at each time step. We further prove that this method is well-posed
by studying each linear system. To this end, we identify each system as a saddle-point problem, and the well-
posedness of the VEM follows from the more general BBL theory. The well-posedness guarantees the stability of
our computations. Importantly, it may serve as a basis for coming up with efficient preconditioners, which will be
the topic of our future research in this field.

This paper is structured as follows. In Section 2 we present the continuous and discrete models. In Section 3, we
provide the formal definition of the virtual element approximation spaces and detail the scheme’s construction. In
Section 4, we present the energy estimates and provide evidence of the method’s stability. In Section 5, we discuss
the linearization strategy; we prove the well-posedness of the linear solver and we confirm that the approximate
magnetic field is divergence-free. In Section 6 we prove the well-posedness of the method. In Section 7 we offer
a set of numerical experiments, including a convergence test and a model of the well-known cavity benchmark
problem. Finally, in Section 8 we summarize our findings and expose possible further work.

1.1. Notation and preliminary technicalities

Mesh regularity. The virtual element method is formulated on a family of mesh partitions of the computational
domain (2, here denoted by {{2,},. Each mesh (2, is a collection of nonoverlapping, closed polygonal cells K
with boundary 0K, area |K|, and diameter hg, such that n = Ug K, and is labeled by the mesh size parameter
h = maxg hg. We denote each edge of K by e and the edge length by |e| = h,.

In the VEM formulation, we normally ask the mesh family {{2,}, to satisfy a few regularity conditions. These
regularity conditions are such that the standard approximation estimates (e.g., for the interpolation operator) and
properties of the finite element method necessary for the convergence analysis extend to the VEM. We report these
regularity conditions below as they also determine the kind of meshes that can be used by the VEM. Such meshes

must be regular in the sense that the two following conditions hold for some non-negative real number p independent
of h:

(M1) (star-shapedness): every polygonal cell K of every mesh (2, is star-shaped with respect to a disk of radius
phk;
(M2) (uniform scaling): every edge e € K of cell K € (2, satisfies h, > phg.

These assumptions on the mesh regularity are not quite restrictive and allow us to use polygonal elements with
very general geometric shapes, as for example nonconvex elements or elements with hanging nodes. It is worth
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noting that the hypotheses above can even be further relaxed. A review recent of this topic can be found, for
example, in [37].
Other important implications of (M1)—(M2) are:

(i) every polygonal element is simply connected,
(ii) the number of edges of each polygonal cell in the mesh family {{2,};, is uniformly bounded;
(iii) a polygonal element cannot have arbitrarily small edges with respect to its diameter for 7 — 0.

Sobolev spaces. According to [1], L2(D) denotes the Lebesgue space of real-valued square integrable functions
defined on D; L%(D) is the subspace of the functions in L?(D) having zero average on D; for any integer
number s > 0, H*(D) is the Sobolev space s of the real-valued functions in L?(D) with all weak partial derivatives
of order up to s in L?(D); [LZ(D)]Z, [L%)(D)]z, and [HS(D)]2 are the vector versions of these spaces.

We denote the inner product in L2(D) and H*(D) by (v, w)p and (v, w); p, respectively; we also denote the
corresponding induced norms by |[v|[p and ||v||s,p, and the seminorm in H*(D) by |v|, . When D is the whole
computational domain, i.e., D = {2, we prefer to omit the subindex {2 and rather use the notation (v, w), ||v]l, [[v]s,
etc. instead of (v, w)p, (|v|e, V.o, etc.

In the light of these definitions, for a given s > 0, we introduce the functional spaces

H’(div, D) == {v e [H(D)] | divy e HX(D)}, (1)
H’(rot, D) = [v e [H(D)]" | rotv e [HS(D)]Z}. )

If s = 0, we write H (div, D) and H (rot, D) instead of H(div, D) and H (rot, D), which corresponds to [HI(D)]2.
Let np be the unit vector orthogonal to the boundary 9 D and pointing out of D. According, e.g., to [32, Section 3.5],
for the spaces (1) and (2), we can define the trace operators yg;, and Yo for the vector-valued functions in H (div, D)
and H (rot, D). These operators are such that

Yai(V) :=1p -V, Yrot(V) == 1p X V.

Using the trace operators, we define the subspaces of H*(div, D) and H*(rot, D) with zero trace on the boundary
H(div, D) := {v € H*(div, D) | yain(v) = 0},
Hg(rot, D) := {v € H*(rot, D) | yrot(V) = 0}.

We use these subspaces to incorporate the homogeneous boundary conditions.

Polynomial spaces and orthogonal projection operator. We denote the space of polynomials of degree £ = 0, 1
defined on element K and edge e by Py(K), and P,(e), respectively. We set IP_;(K) = P_;(e) = {0}. The space
P (K) is the span of the scaled monomials defined as
X —XK’ my(X) = Y YK
hk hk
The basis of Pi(e) is defined in a similar way. We let P;({2,) denote the space of the piecewise discontinuous
polynomials of degree £ = 0, 1 that are globally defined on {2 and such that g|x € IP;(K) for all elements K € (2.
In the forthcoming discrete formulation, for any element K in (2,, we will use polynomial projectors denoted
either by HZO’K . L*(K) — Py(K) or HZK : L*(K) — DPy(K), depending on whether they are orthogonal,
i.e., satisfying that:

(15 v =), q), =0 Vg € Py(K). )

., Vx=(x, T ek.

mo(x) =1, m(x) =

or oblique, when we only require only that

Ifqg=q, VqePyK). &)
With an abuse of notation, we extend these definitions in a component-wise way to the multidimensional projection
operator ITX : [L2(K)]> — [IP¢(K)]?. We also define the global projection operators 110, IT, : L2(£2) — Py(§2;)
2gld mo . [Lz(LQ)]2 — []PZ(L(Z;,)]2 as the operators respectively satisfying (Hzov)”( = HZO’K(U‘K) and (H(U)IK =
1k (v‘ K) for any smooth enough scalar function v as well as (H gv)
field v, and for all mesh elements K € (2,.

K= 7 S’K (V|[() for any smooth enough vector
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For simplicity of notation, whenever £ = 0, we may omit the subindex 0, so using I/ Oy and IT'v instead of
H(? v and H(g)v, respectively, to denote the constant projections of a scalar function v or a vector function v.
Other orthogonal operators used in the formulation of the VEM will be introduced when needed in the paper.

2. Continuous and discrete formulations

In the MHD model, we describe the dynamics of an electrically conducting fluid using the velocity field u, the
pressure field p, the electric field E and the magnetic flux field B. The following system of equations governs the
time evolution of these unknowns

w—R'Au—sjxB+Vp=t in 2, (5a)
B, +rotE =0 in {2, (5b)

j—R,'rotB =0 in 2, (5¢)

divB =0 in 2, (5d)

divu =0 in f2. (5e)

The subscript ¢ of u, and B, denotes the differentiation in time; R, and R,, are the viscous and magnetic Reynolds
numbers; s is the Hartman number and plays the role of a coupling coefficient; j is the current density given by

j=FE+uxB. (6)

The quantities u = (u,, uy)T and B = (B,, B}.)T (in bold fonts) are vector-valued fields, while p, E and j are
scalar functions. Consistently, we redefine the cross products in (5a) and (6) as follows:

jxB=j (_Bljy) and uxB=u,B, —u,B,. (7)
We complete the MHD model with the initial conditions for the velocity and the magnetic fields,
u(x, 0) = up(x), B(x, 0) = By(x), for all x € {2, ®)

and the boundary conditions for the velocity and the electric fields,
u(x, 1) = u)(x), Ex,t) = E)(x) forallxedf andtel0,T]. 9)

We assume that the initial solution fields uy and By are divergence free, i.e., divuy = 0 and divBy = 0. To ease
the exposition, we assume that the boundary conditions are time-independent. In order to maintain the consistency
of the formulation, we need that the boundary conditions on the velocity field satisfy

/ u)(x)-nde=0. (10)
IR
2.1. Weak formulation

In the weak formulation of (5), for almost every ¢ € [0, T] we search for

(u(t), p(0), E(t), B(t)) e [H'(D)] x L3(2) x H(rot, 2) x H(div, 2),

such that
W, v) — (p,divv) + R, ' (Vu, Vv) +5(j, v x B) = (£, v) vy e [H (DT, (11a)
(B,,C) + (rot E,C) = 0 YC € H(div, ), (11b)
(j, F)—R,'B,rot F) =0 YF € Hy(rot, 2), (11c)
(divu,g) =0 Vg € L3(9), (11d)

and with u and B satisfying the initial conditions (8) and the Dirichlet-type boundary conditions (9). In (11) the
bilinear forms (£, n) and (&, 5) stand for the L? inner products

&, m 2=/Q§(X)77(X) dx and (&, m) i=/Q§(X)'7I(X) dx. 12)
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The divergence-free condition on B, see (5d), is not explicitly specified in the weak form since it is a consequence
of (11b) combined with a solenoidal initial magnetic field By. For notation’s convenience, we used the formula
(j xB)-v=—(vxB)-j to rewrite the term (j x B, v) as (j, v x B) in Eq. (11a).

2.2. Semi-discrete weak formulation

The conforming virtual element approximation of (11) requires a polygonal meshing of the computational domain
2, which we denote as (2, and a set of finite dimensional subspaces of the functional spaces [H 1(())]2, L(Z)(Q),
H (rot, {2), and H(div, {2). Note that H (rot, {2) is equivalent to [H 1(Q)]2 in our two-dimensional setting. We
denote these subspaces as

2 2
W, C [H' D], Wouc [H (D], Qn C L3(2),
Viode © H(rot, 2), Vi C Hy(rot, 2), Vi C H(div, 2),
with the obvious inclusions
Wos C Wy, Vst c vpede, (13)

We assume that the following approximations are computable

Yuy, vy € Wy 0 my(uy, vi) = (U, v),  ap(uy, vi) = (Vuy, Vvy), (14a)

Yan € On, Vi € Wy, 1 b(vy, qp) = (div vy, qp), (14b)
By, C € V5 : [By, ] 4,0 ~ By, C), (14c)
VEy, Fy € V% [En, Fy], 0 ~ (En. Fi). (14d)

The formal definitions of all these mathematical objects, including the functional spaces, and the discussion of their
properties will be the topics of the next section. Using these definitions, we introduce the semi-discrete virtual
element approximation of problem (11):

For almost every t € [0, T], find u,(t) € Wy, pp(t) € Qp, Bi(t) € Vzdge, E,(t) € Vh“"de, such that:

ma(Up, Vi) + R, an(uy, vi)) — bV, pi) + s(TTEy, 1%, x IT°By)

+(I1%wy, x II°By, 11%, x I1°By) = (4, v;) Vv, € Wo, (15a)
[En. Fu], . + (1w, x I1°By, 11°F))

~R,,'[By., rot F] 4, =0 VE, € Vg5, (15b)

[Br.i, Ci] e + [r0t Eny Ci] e = 0 VC), € V5, (15¢)

b(ay, gn) =0 Van € On, (15d)

where u;, and B, at # = 0 are given by a suitable approximation of uy and By, the initial conditions (8). To simplify
the notation, we omitted the time variable ¢. In (15a), we used the definition of j from (6), so that

(J,vxB)=(E4+uxB,vxB)=(E,vxB)+ (uxB,vxB).

Also, if v denotes a generic scalar field, IT%v is the L?-orthogonal projection of v onto Py({2;), the discontinuous
space of piecewise constant polynomials defined on every K € (2,. The extension to the vector case, i.e., the
polynomial projection I1°v of a generic vector valued-field v, is straightforward in the component-wise sense. The
formal definition of these projection operators will be given in (48).

2.3. Fully discrete virtual element formulation

Finally, we present the fully discrete virtual element approximation of problem (11). To this end, we split the
time interval [0, T] into N equally-sized subintervals with size At > 0, the timestep, so that T = N At¢. These
subintervals form a collocated grid in time composed of the (N +1) points {t” = nAt},’IV:O. We evaluate the unknown
fields wy, pn, En, and B, at these discrete times, and denote such evaluations by the discrete quantities

u, ~u(ndr), B ~BnAt), E;=~EmnAt), p,=~pnAt), (16)
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indexed with a superscript n. For the sake of convenience we also define the discrete differential operator §;» in
time, so that

Vnel[l,N]: 6" w, —uj 5"B, = Db B, (17)
n ,N]: u = ——, = —————.
o At o At
We define a “discrete” current density j;' =~ j(-,t") by
ji = ME} + 1% x II°B}. (18)

The fully-discrete virtual element formulation of Eqs. (15) is obtained by applying the backward-Euler discretization
in time and reads as:
For each n € [1, N], find (u};, p;, B}, E}) € W), X Q) % Vzdge x VI such that:
m (8, vi) + R an (), vi) — b(vy, p)
+s it 10 x 11°B}) = (£, va) Vv € Wou, (192)

(E Fi) g + (1°w) x IT°By, II°F)
~R,'[Bj. rot £ ], =0 VE, € Vi, (19b)
[87Bi, Ci]ogge + [rOtEf, Cp] g =0 VC, € Vi, (19¢)
b(wy, g) =0 Vagn € Q- (19d)

As is done for system (15), we set the initial states B® and u® through a divergence-free approximation of B, and
Ug.

We note that in the above formulation the boundary conditions are implicit in the definition of the discrete
spaces W), and V;Ode, which include a discrete version of (9). In practice, we extend the boundary conditions Ej
and u, to the interior of {2, then we embed them into the their respective discrete spaces using suitable interpolation
operators J(u,) € Wy, and Z,p4(Ep) € V}?Ode (which will be described in detail later on). At each time step we look
for 6, € Wo, and Ej, € V% such that:

w =0() + 8y, Ej = Tooae(Ep) + Ep. (20)

3. Virtual element method

3.1. VEM for Navier—Stokes equations

The conforming virtual element space used in the discretization of the fluid-flow equations in (19) was originally
proposed in [7,8,38]. Here, we consider the enhanced formulation introduced in [38]. This formulation allows us
to compute the L?—orthogonal projection onto the largest polynomial subspace contained in the space of shape
functions. Such operator is used in the construction of the approximate mass matrices.

First, we focus on the construction of the space for the velocity approximation. We consider a cell K € (2, and
the auxiliary spaces:

e By(3K) = {v e C%IK): v, € Pae), Ve € 0K };

o G:i(K) = VP3(K) C [Po(K)]*;

e GP(K) = x®P(K) C [Po(K )]2, with x® = (xp, —x1)7, so that the following direct sum decomposition
holds: [P2(K)]” = Ga(K) ® G2 (K).

According to [8,38], we introduce a set of bounded linear functionals, which associate every vector-valued field
v, € W, (K) with:

e (Dv1): the values of v, at the vertices of element K
e (Dv2): the values of v;, at the midpoint of every edge ¢ € 9K
e (Dv3): the integral moment of v, over K against g¢ = x® € GP(K):

1
—/ v, - X% dx.
K| Jk
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e (Dv4): the integral moments of div v, over K against a basis for IP;(K)/R:

/divvhx_xK dx, and /divvhy_yK dx.
K hK K hK

Let the elliptic projection operator ITy"* : [H**!(K )]2 — [Pa(K )]2, s > 0, be defined such that for every
v, € Vi (K), the vector polynomial IT 2v Ky is the unique solution to the variational problem:

/ Va:V(Z-IF)v dx=0  vqe[PAK],
K
g (7- %) v, =0,

where 7 is the identity operator. Since the vector polynomial IT ZV’KV;, is computable by using only the values
(Dv1)-(Dv4) of v, we use it to define the virtual element space for the velocity approximation:

W(K) = {vh e Up(K) : ((I — Iy ), g®)K =0 vg® € G2(K) \ ggB(K)}, Q1)

where QSB (K )\QSB (K) is the subspace of polynomials in QEB (K) that are L?-orthogonal to all polynomials in QSB (K),
and

Uy(K) == {vh e [H' (K] : vk € [B20K)], divv, € Py(K),

— Av;, — Vs € GZ(K) for some s € Lg(K)}. (22)

All operators and equations in the previous definitions must be interpreted in the distributional sense.

The set of values provided by (Dv1)-(Dv4) is unisolvent in W;(K) and we can take these functionals as the
degrees of freedom of the space. Importantly, we can compute all the moments of v, € W, (K) against the vector
polynomials of degrees up to 2, i.e., all integrals like

/th-q vq € [Po(K)],

using only the values from (Dv1)—(Dv4) of v;. This fact follows on decomposing q = Vg3 —l-gg3 , where g3 € P3(K)
and QSB (K), integrating by part the term containing Vgs and noting that the divergence of v; is computable from
(Dv1)~(Dv2) and (Dv4), while the term containing g3 comes from (Dv3). Thus, the orthogonal projection operator

5% - Wy(K) — [Pa(K)]’, which is defined as

/ q-(Z-MIy*)v, dx=0 Vqe [IPQ(K)]Z,
K
is computable in W;,(K). Then, the global velocity space is
W, = {v,,, e [H' (D] : VK € O, vk € Wi(K) VK € Qh].

In the virtual element approximation of the momentum equation, we use the bilinear forms

ap(uy, vi) = Z af (u,, wy), (23)
Keg,
where
ak (uy, vi)) = (VH2V~Kuh, VIIZV’KV;,>K +SK ((z — 1Y, (T - sz’K)Vh> . (24)
and
maQuy, Vi) = Y mp (wy, vi), (25)
Ke(2y,
where
mg wy, vi) = (T 5w, Iy vk + 1KISKE((Z - Ty, (Z — T35)w,), (26)
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which are defined for all pairs of vector-valued functions uy,, v, € Wj,. In (24) and (26), the bilinear form S]f G,-)
is a suitable stabilization term, see [38].
The bilinear forms (24) and (26) satisfy the stability and consistency properties

e Stability: there exist two pairs of real positive constants (i, ™) and (o, @*) independent of /# (and K) such
that

allvillix < af o) <aflvillix Vv € Wi(K)™ @7
and
wallVillg < mp o vi) < ¥ valls e YVn € Wa(K)?, (28)
e Consistency:
ak @) =¥, @k Yv, € Wi(K), q e [Pk (29)
and
mp (V. @) = (Vi Qk Vu, € Wy(K), q € Py(K), (30)

Now, we introduce the pressure space. We define the local space of pressures over cell K as Q;(K) = IP(K).
Every function ¢ € Qj(K) is uniquely described by the following set of degrees of freedom, which are the elemental
moment against the linear polynomials

- - 1
/‘x xk dax, / YK yk and —/ q dx.
K| |K| K| Jk

We define the global pressure space as

Q;: = [C]h € LZ(Q) : VK € 'Qhr Qh‘]{ S QZ(K)}’ (31)

endowed with the inner product

Vpwan € Qh: bulpn @) =Y, b (puan) for bf (pu, qn) = [ P dX. (32)
Keg, K

Finally, in formulation (19) we use

Qh={61h€QZ3 /QCIth=0}~ (33)

The finite dimensional spaces W), and Q) are a stable Stokes pair, as stated in the following Theorem.

Theorem 3.1. The spaces W;, and Qy, satisfy the inf-sup condition
div vy,
inf  sup M >B>0
an€Qn vyew,\0) IVallv, llgllg, —

for some strictly positive, real constant B, where

1/2
IVilly, = (ma(vi, Vi) + an(vi, vi))'’*  and ||qh||Q,,=</ |qh|2dx) :
K

Proof. See [8,38]. O

Definition 3.1. The interpolation operator J : [HS“(.Q)]2 — W,, s > 0, is defined as follows. Given

\AS [H ‘V“(Q)]z, the function Jv satisfies (Dv1)Jv = (Dv1)v and the same holds for (Dv3) and (Dv4). Instead, the
DoFs (Dv2) (i.e. the midpoint evaluations of J(v)) are selected so that such operator preserves the flux across all
edges e of element K

/sm.nde =/V~ndﬂ. (34)
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! ’ rot div
@

Fig. 1. Degrees of freedom of the virtual element spaces Vé“’de(l( ) defined in (38) (left panel), Vzdge(l( ) defined in (47) (central panel),

and the”(K ) defined in (56) (right panel). These three functional spaces and the differential operators rot and div form a de Rham chain.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

We define operator J(v) in this way to have the following property on by, -).
Lemma 3.2. Foranyv e [HHI(Q)]Z, s > 0, and any p € P1({2,), the interpolation operator J : [HHI(Q)]2 —
Wo.n locally preserves the bilinear form by(-, -) in the sense that
br@av, p)=bi(v,p) VK € . (35)
Proof. Consider a mesh element K € (2, and a scalar function p € P;(K) \ R. Eq. (35) holds because operator

J preserves the degrees of freedom (Dv4). To prove that Eq. (35) also holds for constant fields, we test div(Jv)
against p = 1, integrate by parts and use (34). We find that

b (3v, 1)=/ div(Ivydx = Y /3v~nd£= Z/v.nde
K e e

ecdK ecdK

= / div(v) dx = bf (v, 1). (36)
K

This completes the proof due to linearity of bX (-, ). O

We conclude this subsection by defining the norm on the space of continuous linear operators that act on W,
by

f
Ill-1w, = inf e -
3.2. VEM for electromagnetic equations
The nodal space. Let K € §2,. The formal definition of the nodal elemental space is given by
Vi(K) = { Dy € Hxot, K) : Dijax € C°OK), Di € Pi(e) Ve € K,
rotrot D, =0 in K } (38)

Every function D;, € V°%(K) is uniquely determined by
(V) the values D, (V) at the vertices V of cell K.

The set of the vertex values associated with element K is unisolvent in the elemental space Vh“"de(K ) defined in (38).
Accordingly, every set of vertex values uniquely defines a virtual element function in V}f“’de(K ) and every function
in Vh“‘)de(K ) corresponds to a unique set of vertex values. Fig. 1 (left panel) shows the vertex values associated with
a given cell K of the mesh as blue disks.

In the space Vh""de(K ) the orthogonal projection onto IP; is non-computable. The classical technique implemented
in this situation is to enhance the space into another where such a projection is computable. Instead, we take a

different approach. Here, we will define an oblique projection which we will denote I satisfying:
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P1 The projection IIX Dy, is computable from the degrees of freedom of Dy,.
P2 If D, € P;(K) then IIXD;, = D,,.
P3 There exists a constant C > 0 independent of mesh-size and time-step such that

ITTX Dyllo.x < ClDallok- (39)

This, approach is original to [35] where the authors present three possible options. In the numerical results Section 7
we use the well-known elliptic projector. For D), € Vh""de(K ) the elliptic projector is the solution to the variational
problem

Vg € Pi(K): / rot (D), — ITX D}) - rotgd A = 0, (40a)
Py(Dy — IT¥ D) i 0, (40b)
where,
Po(Dy) =Y Dy(V). (41)
Vv

We also define a global oblique projection operator i Vh“‘)de — P1({2,), that is such that ﬁDhl K = 1K (Dnix)
for all K € (2,, where IP{({2,) is the space of piecewise linear polynomials on mesh (2.
On all element K, we define the local bilinear form

[En. Di),ge ¢ =( ¥ En. IT¥ Dk + SV<(1 — %) Ey, (1 - ﬁK)Dh), 42)

where SY is a suitable stabilization. In the VEM construction, for the stabilization S¥ we usually consider any
bilinear form for which there exist two real constants s, and s* independent of & such that

s I Dull5 x < SY(Dy, Di) < s™ID4IIG YDy € ker ITK N V(K. 43)

Practical choices for the stabilizations and the related analysis can be found in [15,43]. Since (42) defines an inner
1

product on the elemental space V'°®(K), it induces the mesh-dependent norm || Dy [lnode, x = [Dh, Dh][fo G k- LThe

inner product (42) is stable and linearly consistent according to the following definitions:

e Stability: There exist two real constants o, and a* > 0 independent of & (and K) such that
ol Dyllo.x < NDillypose x) < @ Dullo.x YDy € Vi (K. (44)
e Consistency:

[Dh: q] e x = (Pn: @) VDi € Vi°®(K), g € Pi(K). (45)

Finally, we define the global nodal space Vh'“’de by collecting together in the conforming way all the elemental
virtual element spaces

V,;“’de — [Dh € H(rot, 2): Dy x € V;ode([(), VK € Qh]. (46)

The functions in Vh“"de are uniquely characterized by their nodal values at the mesh vertices, and their global
unisolvence is a consequence of their unisolvence at the elemental level. Thus, we define Zoqe : C*°(£2) — Vh“ode
such that Z%°%(D) and D share the same nodal evaluations. The global space V,;‘O‘R is endowed with the global
inner product

[Ehv Dh]node = Z [Eh’ Dh]node,K
Kef,

and is an Hilbert space with induced norm || Dy, ||node = [Dr, Dh]%.
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The edge space. The edge space that was introduced in [10] is the finite dimensional counterpart of H (div, {2). Its
formal definition over the cell K reads as

Vzdge(K) = {Ch € H(div, K)N H(rot, K) : divC), € Py(K), rotC, =0,
Cie € Po(e) Ve € 9K |. 47)

Every virtual element vector-valued field C; € V;dge(K ) is characterized by

(E) the moment of its flux across all the elemental edges

1
Ve € 0K : —/Ch~nd£.
lel J.

The set of values associated with the edges of the boundary of a given element K is unisolvent in the elemental
edge

space V, © (K) defined in (47). Fig. 1 (central panel) shows such values as red arrows pointing out of element K.
An important property of space Vzdge(K ) is that the orthogonal projection IT1%X : Vzdge(K ) — Po(K) is

computable using the degrees of freedom (E). This operator is such that for every C, € V;dge(K ), the constant

polynomial H&K is the solution to the variational problem

2
(Ch — 1*%Cy.q), =0 Vqe [Po(K)]". (48)
We define the inner product in the space V{**(K) by using the projection operator I1°K, so that
[Bii, Ch]gge.x = (1B, I°KCy)  + (T — T*F)By, (T — 11°F)Cy) (49)

for every possible pair of virtual element functions By, C;, € Vzdge(K ). As before, we need a stabilization term,
e.g., §¢, which can be any continuous bilinear form for which there exist two strictly positive constants s, and s*
independent of £ such that

s IChll3 ¢ < S°(Ch, Ci) < 5*IChll3 ¢ VCi € ker 1K N Vi*(K), (50)

(the two constants s, and s* are not the same of Eq. (43)). Practical choices of the stabilization term S¢(-, -) can
be found in [10]. This inner product induces the norm
1/2 edge
IChNleaze. x = [Ci» Chlhee . YCi € V(K. (51)
Furthermore, the two following fundamental properties of IPy-consistency and stability hold

e Stability: there exist two real constants 8, and 8* > 0 independent of 4 and K, such that

BllChllo.x < IChlleage.x < B*ICullo.x  VCi € Vi (K). (52)
o Consistency: for all C, € Vzdge(K ), it holds that
[Che a]gge x = (Cho @) Y@ € [Po(K)P (53)

We define the global virtual element space V** by a conforming coupling if the elemental spaces V*£°(K)

yedee {C,, € H(div, 2): Cpx € VE(K) VK € Qh}.
We endow this space with the inner product

(B Cilogee = D [Br Ciloguex VB Ci € Vi, (54)
Kef,

edge

and the induced norm

IChllZee = [Ch. Ci]

edge vC, € Vzdge' (55)

edge

The cell space. Finally, we introduce the local space of constant polynomials on each element K, i.e., V,fe“(K )=
Py(K), and the global space of piecewise constant polynomials on the mesh (2,

Vit = {au € L) aux € Po(K) VK € 0y} (56)
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The degrees of freedom of a function g;, € V! are given by

(C) the elemental averages of ¢, over every cell K € {2,

al
— qhn dx.
K| Jx

These degrees of freedom are unisolvent in V!l We define the interpolation operator Zeoy : L*(£2) — V! such
that

1
Vg € L* () Ten(q)x = ﬁ/ q dx.
K

Fig. 1 (right panel) represents the degree of freedom associated with element K by an internal (red) disk.
We endow the cell space V! with the inner product

(Phs Gn)een = Z \K| pk gk Vpu-an € Vi,
K

which is the L2({2) inner product of the two piecewise constant functions p;, = (pk) and g, = (gg) defined on (2,
so that px = pn|gx, gk = qn g This inner product induces the norm

1
Ignllcen = (s an)ly VYau € VL

which is the L?(§2)-norm restricted to the functions of V¢!, so that

1l
Ngnllcen = lgnllo.c VYan € Vi<

3.3. The de Rham complex

The spaces H (rot, (2), H(div, £2) and L?({2) form the well-known de Rham chain

rot

H(rot, ) — > H(div, ) —2 12(0). (57)

If (2 is simply connected, the chain is exact, cf. [34]. Equivalently, we can say that

rot H (rot, () = {c e H(div, ) : divC = 0}.
The spaces Vh""de, V,idge and V¢! introduced in the previous section also form a similar exact de Rham chain

thode Vzdge V hcdl . (5 8)

The chain (58), also shown in Fig. 1, was first introduced in [41], and explored in more detail and generality
in [10]. Accordingly, the degrees of freedom of the virtual element spaces V"%, Vidge and V! transform as in
the diagram depicted in Fig. 1. In fact, the two following main properties are satisfied

rot Vo c Ve (59
div V5 ¢yl (60)

rot div

Hence, if D, € V%, then rot D;, € V5", and we can compute the degrees of freedom of rot Dy, in Vi from

the degrees of freedom of Dy, in Vh“‘)d"’. Consider an edge e in one of the cells in the mesh (2,. Then, the Theorem

of Line Integrals implies that
L/rochde:L/VD;1~t51Z:M, 61)
lel Je lel Je le

where x; and x, are the coordinate vectors of the endpoint vertices of edge e. Thus, the degrees of freedom of

Viode provide the necessary information to compute the image in Vi**° of the rotational operator.

The same is true about the divergence of a vector-valued field in V;dge. Let K € (2, and consider C;, € V;dge.

Then, the Divergence Theorem implies that

1 / . 1 / 1
— | divCydx=— | C, ndt=— C, -n.de, (62)
K| Je o " K| Jox " K| 2 G

ecdK V€
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and we can compute the degrees of freedom of divC; in V! from the degrees of freedom of Cj, in VE*°. Thus,
the degrees of freedom of V;dge provide the necessary information to compute the image in Vhcell of the divergence

operator.
b These properties, summarized by Egs. (61) and (62), are crucial to study the finite-dimensional spaces V°%, V'

and the“ and their relationship with the continuous larger spaces H (rot, £2), H (div, £2) and L?({2). These spaces
and the corresponding interpolation operators, i.e., Znodes Zedge> Leell, form the de Rham diagram

H(rot, 2) — H(div, ?) —2 12(0)

lInode lfedge ll-cell (63)

node rot edge div cell
v \n yeell,

This diagram is commutative, meaning that the following identities hold
VD € H(rot, 2) :  Zgge o Tot (D) = rot o Io4.(D), (64a)
VC € H(div, 2) 1 Zeen 0 div(C) = div 0 Zegee(C). (64b)

We summarize our findings in the following theorem.
Theorem 3.3. The chain in (58) is well-defined and exact. Moreover, the diagram in (63) is commutative.

4. Energy stability estimates

The conforming nature of VEM allows us to mimic many properties that are present in the continuous scenario.
One of the more important is preserving certain types of estimates in the L?(f2)—norm. These usually come about
after testing the variational formulation against the exact solution and applying the Gronwall’s Lemma, see [23]. In
this section, we present an estimate of this type, true for the solutions to the continuous variational formulation (11),
and its discrete virtual element counterpart! (19).

Let u, and E;, denote the liftings of the boundary functions ug and E 2 that we introduced in (9) in [H 1((2)]2
and H (rot, (2), respectively, with the assumption that divu, = 0. In order to reveal the boundary information, we
consider the decompositions

u=td+u, and E=E+E, (65)

where 0 € [HO'(Q)]2 and E € H,(rot, §2). Since divu, = 0, Eq. (65) and the divergence-free nature of u imply
that diva = 0. Next, using (65) we write j = j + j, where

f:f—i—ﬁxB and j, = E, +u, x B. (66)
We state the continuous energy estimate in the following theorem, whose proof is reported for completeness. Similar

estimates can be found in [26,28,29].

Lemma 4.1. Let (u, B, E, p) solve the variational formulation (11) in the time interval [0, T]. Then, we have the
equality

1d . s . d _ n N
5771806, + SR, IBIG o + RV o + 511716, ¢
= (£, 0) — (up,, 8) — R, (Vuy, Vi) — sR,, ' (rot E;, B) — s(ji, /), (67)

with the notation u, , = 0u,/0t.

Proof. We set (v,C, F,q) = (4, B, E, p) in (11a)—=(11d). Since divii = 0, (j, x B, @) = —(j, @ xB), jn = j + ji,
cf. (66), and using the notation u,, = du,/dt, we find that

1d . B R A R R B R
ﬁuuuag + RVAIG o + 5,0 x B) = (£, 0) — (wp,, ) — R, (Vuy, Vi)

— 5(jp, 0 X B), (68a)
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d )
%R,;IEHBII%ﬂ +sR(rot £, B) = —sR_(rot Ey, B), (68b)
s(j, E) — sR;,' (B, rot E) = —s(ji, E). (68¢)

Adding Eqgs. (68a), (68b), and (68c) yields the equality (67). [

Theorem 4.2. Under the assumptions of Lemma 4.1, as a consequence of equality (67), we have the following
estimate
T ~
JG(T)IR ¢ + s R, B ¢ + f 70 (RN o + sl IR ) dr
0
T
< 185 o + Ry, IBO)G o + / T (2RI, + 0 1,
0

+ 2R [Vl ¢ + SR, ot EylI§ o + sl jsll§ o ) dt. (69)

Proof. To obtain inequality (69) from equality (67) we first take the absolute value on the right-hand side of (67)
and use the triangle inequality to obtain

——lag , + iR*ian% o+ RNVAIR o +sll3
2dt ’ 2° " dt ’ ¢ ’ '
< |(F, )| + [y, &)] + R, [(Vuy, V)| + sR,, " [(rot Ey, B) + 5|(ji, ). (70)
We bound the right-hand side of (70) using the following Young’s inequalities:
. . |
|, ®)| < Ifll-1.0lIViloo < RN, o + iR NIV o (71a)
A 1 2 1 A2
|(uh,t, ll)| =< E”llh,t”(),g + EHUHQQa (71b)
-1 A —11 2 —ll A2
R |[(Vu,, Vi)| < R; SVl o + RS IVElG o, (71c)
_ 1S 1S5
SR |(rot E,, B)| < Rm15||rot Ebll§ o + Ry = IBIIG o (71d)
L% s § 20
s |G D] = S 1ol + 51718 (71e)
Substituting (71) into the RHS of (70) and rearranging the terms, yields,
d 1 A2 S 2 1 ) s 2 1 _ A2 s o~
- (§||u||0,9 + R, ||B||0,Q> - (Enuuw + 3R IBIG. ) + S RIVAEIG o + 51116,
1 _ s s .
<RI, o+ Enub,,né,g + RIVu 5., + Elenrot Epllg o + Enjbné,g. (72)
Note that
d ., , . _
T “(1815 o + R, IBIG )
d . _ o _
=e ZE (18115, + s Ry, IBIIG ) — e~ (115, + sR;, " IBIIG ) - (73)

Multiplying (72) by 2e~" and using (73) we get

e (1815 g+ R, IBIR o) + ¢ (R IV o + 51715 ) = 27 RIMIZ,

+ e up g o + 2 RINIVWlI§ o + s Ry, irot EylI§ o + se™" 1 jsllg - (74)
Finally, we integrate (74) in time over [0, T] and multiply by e’ to obtain estimate (69). [

To obtain a discrete version of the estimate of Theorem 4.2, we consider the decomposition of the electric and
the velocity fields E,’:’Ll and uZH into the deterministic boundary components Z,0q.(Ep) and J(u,) and the internal
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components E'*! and &+
Eff' = EM' 4 Tooqe(Ep) and wi ™ =& 4+ 3(uy), (75)

where the integer n for 1 <n < N is the time step index, and J is the interpolation operator of Definition 3.1.
In (75), we have that E"! € Vg‘j’lde Next, for all integers 1 < n < N, we introduce the discrete current densities

jr=ME"+ 1) x I°B),  and  jI', = [ZwaeEp + I1°Tu; x 11°B], (76)
so that
Jr=ir+ Jny = IE} + II°u), x II°B},

as defined in (18), which by definition is a piecewise constant field on the elements of (2,. Lemma 4.3 and Theorem
4.3 are the discrete analogs of Lemma 4.1 and Theorem 4.2.

Lemma 4.3. Let {(uZ,BZ, E}, pZ)}flV:1 e W, x Vedge X V“°de X Qp solve the discrete formulation (19) with

uy0 = J(o) and By, g = Leqee(Bo). Then, we have the following equality

Lo+L1+Lr=TR, (77
where
Ly e, — a3y, R 1B, — B lI2u
’ 2At " 2 At ’
[ LA L Y L e L (7%a)
‘ 2A¢ m 2A¢ ’
£2 — R;lah(A7+1 An+1) + ”]n+1”0,(2 —‘,—SV ((I— (78b)
PiObDE!™ (T — IDE!"), (78¢)
R=my (B, 0"") — R ay(Jup, &) — R, [rot Zooge Ep. BZH]Cdge
— Gt ity = 8Y((Z — IDZwoae(Ep). (T — IDE;T). (78d)

Proof. We set (v, Cy, Fy,qn) = (@ By, E"“,p}:“) in (192)—(19d) at the discrete time ¢"*!. Using
decompositions (75) we obtain

~n+1 ~n
u —u, . N N N
mh( h h n+l) +R ah( Z-H uz-&-l) b( n+l’pz+l)

+ (]thl HOAn—H x HOBn—H) =my (iz +1 uZ+l) o Re_lah(jub l;l+1) (7921)
(]thl’ HOA"+1 X HOBZ+1),

n+1  fn+l Onl Opn+l Tron+1\ p—1[pn+l rn+1
[ER T ER ] e + (1w < ITOBH TTEG DR, B rot E541] =0, (79b)
Bn+l Bn .
—1 h h n+1 —1 n+1 n+1
R, [T B } + R, [rot E BT
edge
= —R,,'[rot Tooae E; 7 By e (79¢)
b(uy™, pitt) =o0. (794d)

We will now focus on Eq. (79b). The first term in Eq. (79b), based on (42), admits the decomposition
[Eptt EptY  =(TEM, TET) +SY(Z — E}, (T — EF). (80)
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Grouping the first term in (80) with the second term in (79b) we get
(ﬁEZH, ﬁEAZH) + (HOHZH > HOBZH, ﬁEZ+1)
= (IE;*" + 1%} x [1°B}, TTE;*)
— (J'ZlHaﬁE}?H) ( *n+1 _}_J;lzZl’HErH—l) 81)
Thus, Eq. (79b) takes form
Sv ((I _ ﬁ)E;le’ T — INDEZH) ( *n+1 + ]/z::l’ HEn+l)
—R,'[B}™", rot ;'] cdge = 0- (82)

Using property of the interpolation operator J of preserving the value of the bilinear form b(u, p;) and the weak
divergence free property of the boundary lifting term u; we have

b(Juy, pi') = b(u,, pjt') = 0. (83)
Moreover, a straightforward calculation using the identity 2(a — b)a = (a — b)> 4+ a*> — b* shows that
ot - ant |||A"+] — sy, IR, — I, (84a)
m _—, )
" At h 2 At 2 At
B!t — B! B = B B g — 1B 2
h h gyl hledge | dg dge (84b)
At e@e 2At 2At

Adding Eqgs. (79a), (82), (79¢)—(79d), using (83) and (84a)—(84b) yield (78). U

Theorem 4.4. Under the assumptions of Lemma 4.3, as a consequence of equality (78), we have the following
energy stability estimate

65 3y, + Ry 1B logee < (1+ Ar)N[m [y, + R, IB) |||edée]
N—-1
+ 2At Z(l + AI)N’(”H)J-—"“(fZH, u,, Ep), (85)
n=0
where

1 1
Fruet o, Ep) :=§Re|||tz“|||%1,9 + ER—'ahwub, Juy)

1 n
+5 Ry, 00t Zooae B lligge + ||] 50
1 ~
+_SV((I - H)Inode(Eb)9 (I - H)Inode(Eb))- (86)
4
Proof. We ﬁrst note that
Lo= 5 (0647 — &0y, + UB)" — BfI,.) = O
Thus, the demonstrated equality (78) implies that
Ly=L" 4% <RI - L, 87)
where
oL 16 13y, — N3y, . B 200 — B 12 gge
172 At ' b At ’
and

|R| < |mh(fn+1 n+1)| +R 1 |ah(~’ubv n+1)| + R

|Gt i)+ [8Y(@ = IToae(Ew, @ — TDEF)) .
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The term |R| contains mixed terms, while £, contains quadratic terms only. Our strategy will be to estimate each
of the terms in the RHS of (88) using Young’s inequalities so that the quadratic terms for the solution functions
a7t Byt and E,’j“ that come out cancel with the corresponding quadratic terms in £,, see (78b):

1 1 ~Nn
ImupB 0| < 5 Re el 12 o + SR Lay (@ ath, (89a)
i 1 1 AN AN
|R; ap(Tuy, 0)7H] < ZR Lan(Juy, Jup) + = R Lap@)t!, apth, (89b)
1 1
R, |[rot Zooae En, By '] | < 2 R, |||rotzmdeEh|||edge+ R IBY 2 gge (89c)
Gt 3| = 1 o+ 3 1 1 o (89d)
ST = ITasaeEn), (T = TDE;™)|
1 ~ ~
< ZSV((I — INToae(Ep), (T — INInoae(Ep))
+8Y(@ - IDE}M, @ - IDE;™). (89%)

For the first term on the RHS of (89¢) we use the upper bound property (50) of the stabilization term and the
property of the projection operator

SY((Z — I ZTnose(Ep), (T — MTnoae(Ep)) < s* (T — IDE, > < s*|| Ep 1> (90)

We note that when substituting inequalities (89) into (87) all terms in L, cancel exactly. The only term on the RHS

of (89) that does not cancel and depends on the solution function is 5 '|||B”Jrl |||edge in inequality (89c). To control

this term we will move it to the LHS of (87) and combine it with L’l B to get a modified version of EI];":

n+1 n 2
B e — (1 A0} o

= 1
Yo
! 2 m At

For convenience purpose we will now consider a modified version of E'l”’ analogous to (91):

~ LI Ry, — (L AN IR,

L == 92
! 2 At ©2)
and note that
£ <ot 93)
Substituting the modified L’?h and C?” into (87) we get the following estimate
LY+ L7 < FEH wp, Ep), (94)
where
1 1
FrE w, ) =2 RAG T, o + ER;lahwub, Ju,)
1 - n
+5 R ot Tooae Eplgge + 5 ||] 5.0
1 ~ ~
+ZSV((I — IDZoae(Ep), (L — H)Inode(Eb))~ 95)
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To obtain an estimate on |||BN I12,.. and |||u}’,v |||w after N integration time steps, multiply inequality (94) by

edge

(1 4+ A)N="=1 and sum over all n =0, 1, .. — 1 to form a telescopic series on the LHS. Indeed,
N—1 n+]
1B, 1124ee — (1 4+ ADIBIIZ,
1+ ApN-n—1 edge edge
;( + At) n
| Nl | Nl
= — Z At)N n— 1|”Bn+l|”edge o Z(l + AI)N7H||B ”edge
At ~ At ot
I||B |||e@1ge - (1 + AV |BY, ||ed?>e (96)
Similarly,
—1 An+1 A2
I 13, — (1 + A I3
1 A N—n—1 h h
;( + Ar) T
. Z 3 I, — L1+ AV IR ©7)
W, llw, Ar W, llw,, -

Using the results of the telescoping series (96) and (97), remembering the coefficients %R,;' and % in (91) and (92),
respectively, and summing up (1 + A)V "=\ Fr1(f w,, E,) we get the desired estimate (85). [

Remark 4.1. The factor (1 + At)" on the RHS of (85) approaches e’ for a fixed time integration window T and
the number N of time integration steps going to infinity:

7\" T\T7T
(1+At)N=<l+ﬁ> Z(Hﬁ) — el as N - oo.

5. Linearization

The semi-discrete form in (19) requires further treatment in order to provide computable approximations to
the flow of the magnetized fluid. Precisely, we need a linearization strategy to handle the non-linear terms that
appear in the time discretization. The approach we follow in this section is similar to the linearizations proposed,
e.g., in [6,25,45]. The central idea is to make an “educated guess” BZ,* for the value of Bj, so that we can
approximate the three non-linear terms in (19) as follows:

(ITE}, 1%, x 11°B}) ~ (ITE}, 1%, x 1I°B] ) (98)
(11%, x I1°B}, I, x II°B}) ~ (11}, x II'B} ,, II°v, x II°B}) (99)
(11} x II°B}, Fy) ~ (II°w} x II'B} ,, Fy), (100)

and we define the linearized current density j; ., = i E} + II%), x IT OBZ’ .- Since now Bj is substituted by the
known field Bj, ,, the expressions on the right are bilinear forms that we can compute as matrices, yielding the
following linearized scheme: For each n € [1, N1, find (u}, p}, B}, E}) € Wy, x Qp x Vi x Vi such that:

mu(8)wy, i) + R, 'an iy, vi) — b(vy, pi) + s 110V x 11B), ) = (£}, vi) Vv € Wo, (101a)
[Ef. Fu) y + (%) x 1I°B} . II°F,) — R,,'[B] .. rot Fh]ed, =0 VF, € Vg9, (101b)
[8/B1, Ch] e + [TOLE}, €] 1 =0 VCi € V™, (101c)

b(wy, g,) =0 Vg, € Qp. (101d)

According to [25], we compute B
e.g., Bl~! and B} 7%, by setting that
B, - B BB~

At N At ’

h.x for n > 2 as the linear extrapolation between two successive approximations,
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or, equivalently, through the formula

B, =2B;' —B; .
At the first timestep, i.e., n = 1, we guess B;l,,* = Bj,0 = Zeaee(Bo) through the initial solution By. Finally, we
present a proof that the approximations to the magnetic field provided by solving the linearized VEM (101) is still

solenoidal. To this end, we first mention the standard argument that Faraday’s law from the continuous system
naturally enforces the divergence-free condition to the magnetic field. Indeed, from (5b) it holds that

ad a
—divB =div —B = —divrot E;, = 0.
at ot

Thus, the divergence if B is constant in time, and since the initial magnetic field By satisfies div By = 0, then, this
property is preserved throughout the evolution of the system. The following theorem states that this property also
holds for the discrete magnetic field B, that is solution of the linearized system (101).

Theorem 5.1. For every time-step n > 0 the magnetic field satisfies

divB] = divB} . (102)
and the discrete magnetic field B, solving (101) is solenoidal if the initial condition of the continuous problem is
solenoidal, i.e., divBy = 0.
Proof. The proof mimics the argument mentioned above. The discrete Faraday’s law (101b) implies that
rot(V,°%) C V5*°. Therefore, we obtain the time evolution equation for B}, which reads as

B} =B} ' + Atrot E). (103)

Taking the divergence of both sides above yields the first theorem’s assertion, i.e., (102). Eq. (102) implies that the
divergence of the discrete magnetic field does not change in time. Then, repeating inductively Eq. (102) we need
only show that divB) = 0 to prove that By, is a divergence-free field. To this end, we use the commuting property
of the diagram in Theorem 3.3, which implies that

div B(h) = div Zegge(Bo) = Zeen(div Bg) =0, (104)
and the second assertion of the theorem follows. [
The same argument can be used to prove that also the discrete magnetic field that solves the non-linearized VEM,
i.e., system (19), is a divergence-free field.
6. Well-posedness analysis

Throughout this section, we will fix the value of n € N (and remove the superscript n) and we study the
well-posedness of the linearized VEM (101). To this end, we introduce two equivalent auxiliary problems and show
that they are inf—sup stable saddle-point problems.

To ease the exposition, we assume homogeneous Dirichlet boundary conditions, i.e., u, = 0 and E, = 0 on 9{2.
We consider the functional space &) = Wy, x V;dge X V&(;,de, endowed with the norm

I€,0%, = sl + IBa e iy + IER I e ror (105)
for &, = (uy, By, Ep) € &), where

Py, p = A Nl + (s, w) + A idivug I, | (106a)

IBA I g = At~ 1By lgge + iy By li2, (106b)

NEnI s ror = N Enlloqe + Azllrot Ey |3y (106¢)
Then, we consider the two bilinear forms c¢;, co, : X x X, — R given by

cn(&y, 1) = L1(Vy) + £o(Fp) + £3(Cp), (107a)

co.n&psmy) = cn(&y, ) + [diVBh, div Ch]cell’ (107b)
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for &, = (uy, By, Ep) and u;, = (vi,, Cp, Fp), where
el(V/,) = At_lmh(uh, Vh) + Re_lah(uh, Vh) + S(ﬁEh, HOVh X HOBZ’*)‘F

s(I1°wy, x 1I°By, ,, 11%, x 1I°B} ), (108a)
G(Fp) = S[En, Fu] o + 5 ("wy x 1I°B} . Fy) — sR,,'[By, rot Fy ] . (108b)
6(Cp) = sR,' (A1 [By, Cp] g, + [rot En, Ci] ) (108¢)

By introducing £5(C;) = £3(C;) + [divBy, div Cy ] . we can also redefine co (€, ;) as
co.n(&ps M) = €1(Vi) + £2(Fp) + €3(Cy). (109)

The linearized VEM (101) is equivalent to the problem: Find &, = (i, B, E"h) € X, and py € Qy, such that
cnEpymp) — bOvi, pr) = (&), Vi) + At my () ) + SR, A B Ch e (110a)
b(ay, gn) =0, (110b)
for all y, € X, and q;, € Q.

However, the saddle-point analysis is more naturally carried out for the following problem: Find &, =
(Gy, By, Ep) € Xy, and py, € Qy, such that

co.nEps 1) = DVay pa) = (B, Vi) + At~ my ™ vi) + s R AC BT G e (111a)
b(ly,, gn) =0, (111b)

for all y, € &) and g, € Q.
So, we first establish the equivalence between problems (110) and (111). To do this, we show that the magnetic
field arising from the solution to (111) is solenoidal as stated in the following lemma.

Lemma 6.1. Ler &, = (ay, By, Eh) € Xy, and p, € Qy, solve (111) with an initial divergence-free magnetic field
B, i.e., divBj o = 0. Then, the discrete magnetic field is divergence free, so it holds that divB;, = 0,

Proof. We prove the lemma inductively. We already know that divB; o = 0 from the hypothesis; so, we are only
left to prove that div BZ" = 0 implies that divB, = 0. To this end, we test (111) against 5, = (0, C;, 0) and
gn = 0 and we find that

sR, A [By, + Arrot Ej, Cp ]y + [divBy, divCi] = sR, A7 [B ', €y

cell edge’

or, equivalently, that

sR,'[At7' By, — By~ + rot Ey, ], + [divBy, div Cy ] 0. (112)

cell =

We set C, = At~! (B, —B}™") + rot E,, and note that divC, = Ar™! div(B, — B},") since divrot E, = 0. We
substitute C;, in (112) and we find that

SR, 1At~ (B, — B ") + rot £y 1%, + At~ [divBy, div(B, — B} ]

edge =0.

cell —
If div B;fl = 0, we obtain
SR, AT By — B ") + rot Ey[|2, + At IdivBy ||, = 0.
which implies that ||div By ||cen = O; hence, divB, =0. O
The result of the above theorem can be leveraged to show that both problems (110) and (111) are equivalent.
We present this result in the following lemma:

Lemma 6.2. Problems (110) and (111) are equivalent.

Proof. If &, = (u,, B, Eh) € &, and p;, € Q) solve the linear system (110), then Theorem 5.1 implies that
div B;, = 0. Therefore, from (107b) we find that

conp-mp) = cnEpomy) Yy, € X, (113)
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implying that &, and p; solve (111). Conversely, if &, = (u,, By, Eh) and p; solve the linear system (111), then
by Lemma 6.1 we know that divB, = 0 and Eq. (113) is satisfied. Therefore, &, and pj solve (110). [

To prove that the equivalent formulation (111) is inf—sup stable, we need two technical lemmas that we state
and prove below.

Lemma 6.3. The bilinear form cy (-, -) is continuous in the norm defined by (105) provided that st < 1.

Proof. Let &, = (u,, By, E) and 5, = (v, Cp, Fj) be arbitrary elements in &j. A series of applications of the
Cauchy—Schwartz inequality yields that

At~ my(uy, vi) < A2 g llw, A2 Vil < sl acy Vel ar e (114)
an (W, Vi) < @i w)? @i, vi)? < lwgllany IVallay (115)
Ar7![By, Ch] gqe < A1 2UIBilleage Ar™2I1Chlledge < 1Bl ar,aiv ICill ar,aive (116)
[rot Ej, Ch] gpe < At'?lIvot Eplleage At~ IChlleage < 1 Enll ar,rot 1Chll av,aiv (117)
(En. Fu],pge < WEnllnode I Fnllnode < INEnl Av.xot | Fll At rot- (118)

[div By, div Cp ], < ldiv By lleen ldiv Chlleen < 1B ll ar.aivs NChll Ar.aiv- (119)

Continuity of the coupling terms comes about by similar arguments. To derive an upper bound for the two
representative terms in (108a) and (108b) we note that || Fjllo.o < C||VFullo.o = |rot Fyllo,o for every F;, €
ng‘;lde C HOI(Q), where the strictly-positive constant C is independent of Az and k. Thus, the first coupling term is
bounded as follows:

(y x By, vy x 1By ) < [T, x 1T°Byullo, @ 111° x 1T°By i llo,
< HI°By s lIZ, llupllo. 1Vallo.2
< CAP By )12, A7 [ Vayllo,0 At~ IV V4]0, 0
< CAP| "By |12 ol arw Vil ar v
The second coupling term is bounded as follows:
(I°w;, x 11°By, ., ITFy) < | 1T%w;, x 11°By, . llo. | TTFyllo.0
< 1By, wlloo 111 %nllo, 2 | LT F o, 2

0
=< ”H Bh,*”oo ”uh IlO,Q”Fh”O.Q

0 1
< At|HI"By slloo At~ g llo, 2 | Frllo, 2

0
< ClI" By oo llall ar,v W1 F3ll At rot-

The assertion of the lemma follows by noting that I1°B,, , = 2/1°B}~' — II°B} 2 and, thus, it is bounded at any
timestep since we can recursively assume that I/ OBZ“ and I/ OBZ_Z are bounded, and using all the inequalities
above to derive an upper bound for the bilinear form |co (-, -)]. O

Next, we prove that the bilinear form ¢, is inf—sup stable on the kernel of the bilinear form b(-, ).

Lemma 6.4. There exists a positive constant B > 0 independent of At and h such that
inf sup —ohnm) g (120)
EneXon nyexo, 180, I,

where Xy, = {(Vh, B, E) € &), such that divvy, = O}.
Proof. To prove the lemma statement, we will prove that for every virtual element field &, € A}, there exists a
virtual element field y, € A}, such that

I€4llx, = Billmullx, and  con(Es ms) = Ball&nll, 121
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for some pair of positive constants 8; and ,, which are independent of 4 and At. Relations (121) imply (120) by

assuming 8 = B 8,.
For any &, = (u,, By, Ej,), we obtain a virtual element field », = (v;, Cy, F},) satisfying inequalities (121) by

setting
1
vpi=u,, C,= E(Bh + Atrot E,), F, =E,. (122)

Indeed, from the definition of || - || a;.giv» cf. (106b), and an application of the triangular inequality, we find that

By, + Arrot Eylly, giy = At~ 1By + Atrot Ej lI5q + ldiv By

edge cell
< 2417 IBylZgqe + 24t |[rot E |y + lldiv ByllZ,
= 2[IBlI%s; g3y + 247 [[r0t Epll2y- (123)

Then, we use (123) in the definition of ||y, |||g(h, cf. (105), and we obtain
2 2 1 2 2
Imallz, = lwnlla, v + ZmBh + Atrot Epll 5, iy + WER I Ay ot

< 2 lB z o lAt t 12 EL %
_"|uh”|Az,V+2”| h”|At,dw+2 lirot Epllcage + NER ¢ rot

1 3 3
= HunlZw + 5B gy + SR o = 5 1€4 N, - (124)

The inequality chain (124) implies the first inequality of (121) by setting 8, = /2/3.
To prove the second inequality of (121), we first note that

() = At luglly, + R. ' an(ui, wy) + s(TEy,, 1%, x 1I°B}, )

+ s(11%y, x II°B}, ., IT°w, x 1I°B} ). (125a)
6(Ep) = sl Enlloge + sUTw, x 1I°B} . IIE,) — sR;'[By, rot Ep], dse (125b)
sSR! _
€5((By + Arrot £,)/2) = —= (At Byl + 2[rot By, By legge
+ At||rot Ej 134 + lldivBalZ,y). (125¢)

where we recall that £5(-) was introduced in (109).
Then, using the definition of the nodal norm based on the inner product (42) and noting that the stabilization
term SV (., -) is nonnegative, we obtain the estimate

I Ewoge + (TTE;, Ty, x II°B} ) + (I1%w, x I1°B},, 1%, x [I°B] )
+ (1", x II°B}.,, IIE;)
= (IIEw, TIE,) + 8" ((Z — IDEy, (T — IDEy) + 2(11Ey, 11%;, x 11°B} )
+ (I, x II°B}, ., IT°w, x 1I°B} )
> (IIEy, ITE}) + 2(IEy, 1%, x 1I°B} ) + (1I°w, x 1I°B] ., IT°u;, x I1°B} )
= (IIE; + II°, x II°B}.,, TIE, + IT°w;, x 1I°B} )
= | IIE), + I1%w;, x I1°B},|I3 ;. (126)
Next, we add Egs. (125a), (125b), and (125c) together, and use the positive term resulting from (126) to obtain:

con(€p, my) = €1(wy) + L(Ep) + €65((By, + Atrot E)/2)
> At~ wylly, + R an(uy, wy) + SITTEy + 1%, x II°B] |15 -
sR
edge + 2

+ sR,,' At||rot E |14y

-1
-1 2
= At Byl

—sR;,'[By. rot Ey | cdge

+ SR,;I [I‘Ot E;, Bh]edge
+ sR,, " lldiv By (127)

cell*
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We note that:
IEAII3, < 20TE, + ITuy, x II°B] |13 o + 2011wy, x I1°B] |13 o,
<2\ TE, + I, x I°B] 112 o + 2 11°B} 1% o2 1110w, 3 ¢

< 2max(1, [11°B] 1% o) (1TTE) + 11w, x 1B 113 o + w3 )
n 2 7 n w
< 2max(L, [[11°B} 1%, ) max(l, M_>(”HEh + 11%;, x II°B} 1§ o + 7*||uh||(2)’9).
LetC~ ! =2 max(l, ||]]0BZ!* ||§O!Q) max(l, i) Reversing the inequality above and using the left inequality in (28)
yields

—1 2 77 0 0 2
At uplly, + 1E, + 1%, x 1B} 12

\

1 _ M ~ n
7 A Ry, + =M lG o + TEy + 1Ty x 1178} 15,0

1 N
340 Il + CIELG o

v

NARAYE
. mm(i, c) (4 Bually, + B4R o).

We use this inequality in (127), simplify the terms involving [rot Ey, Bh] , add ||div uy, "l%Vh =0, and find that

edge

conEpm) = /32<[Ar—‘|||uh Ry, + B2 an i, wi) + divus Iy, |

+ [AF B + NV B | + [IEZ g + Atlirot £ |||nge])

= Bo (s lasv + UBI, iy + DEn; ror) = Ball&s %, - (128)
with 8, = min ( 1/2, sC, R; ', s/2,sR,!/2), and using the norm definitions (105) and (106). O

Finally, we present the main result of this section.
Theorem 6.5. The linear problem in (101) is well-posed.

Proof. Lemmas 6.3, 6.4 Theorem 3.1 prove that the hypothesis of LBB Theorem are satisfied yielding as a
conclusion that (111) is well-posed. By Lemma 6.2 problems (110) and (111) are equivalent. The well-posedness
of one implies the well-posedness of both. [J

We note that this well-posedness result exposes the saddle-point nature of the linear system. This result can
be leveraged to come up with efficient preconditioner following the framework laid out in [30]. This was done
for a similar MHD system in [31] using a Picard fixed point iteration as the choice of linearization. Efficient
implementation of this preconditioner will require a generalization of mass lumping. While it is unclear how this
can be done in general, in [36] some strategies are laid out in the context of elastodynamics. We also note that
these type of preconditioners have been used in 3D VEMs for problems in fluid flow as well as electromagnetics,
see [21]. Other physics-based preconditioners have been developed, see [19,20].

7. Numerical results

In this section we will present the results of a series of numerical experiments that shed some light on the
performance of the VEM developed and analyzed throughout this article. It is divided in three subsections: the
first one, Section 7.1, explores the rate of convergence; the second one, Section 7.2, relates to the preservation of
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Fig. 2. Test meshes used in the convergence test. The cells of the left-most mesh are perfect squares, the cells of the mesh in the center
are distorted hexagons and the right-most mesh is a Voronoi tessellation.

the divergence-free condition on the magnetic field; the last one, Section 7.3, presents the qualitative results of the
classical driven-cavity problem.
7.1. Convergence test

To assess, experimentally, the rate of convergence of our method we will study approximations made on the

computational domain {2 = [0, 1]>. We begin by setting the source functions, initial and boundary conditions in
accordance to the exact solution:

_ (cos(y +1) I _ 0 _
u= < 0 ) , p= > sinl —xcosy, B= cos(x +1)) E = cos(x +1). (129)
We evolve the system until 7 = 0.2 and set the time-step parameter according to
At = 0.1h% (130)

Our tests involve the three different mesh families illustrated in Fig. 2. We consider a family of square meshes
(left panel) for comparison; a family of smoothly-remapped polygons that may have distorted elements (central
panel); a family of Voronoi tessellations that can be affected by small edges. We will use four meshes of each
type differing in mesh size to show that as this parameter shrinks our numerical approximations approach the
manufactured solution (129). The results are summarized in Fig. 3. There we find evidence to conclude that our
method achieves an optimal convergence rate. This is to say that the pressure and electric field converge quadratically
in the L>—norm, the velocity field converges quadratically in the H'-norm and the magnetic field converges linearly
in the L>—norm.

Another conclusion that we can draw from Fig. 3 has to do with the robustness of the method. Note that, on
each plot, the three convergence lines are very close to each other. This implies that regardless of the type of
mesh used in our simulations, we can expect the same error. Thus, the VEM we developed is not sensitive to
mesh-type.

7.2. The divergence-free condition on the magnetic field

We also tested to guarantee that the method does preserve the solenoidal nature of the magnetic field at the
discrete level. We can compute the piece-wise constant divergence over each cell K using the formula:

1
divB;, = i Z B, - n d¢. (131)
eck V¢

Since the quantities required can be obtained from the degrees of freedom. The initial and boundary conditions
are the same as those given in Section 7.1. The results up to 7 = 1 are summarized in Table 1 and confirm the
divergence-free property in this time integration domain.
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Fig. 3. Error plots for the approximation to the velocity field, pressure, magnetic field and electric fields. The three different colored lines
represent the results attained in the different meshes. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 1
Summary of the evolution of the square L> norm of the divergence of the magnetic field on the three different types of meshes.
Time |l divByllo,2 on a square mesh [[divBy o, on a hexagonal mesh [[div By |lo,> on a Voronoi tessellation
0.00 4.234e—16 3.987e—15 4.220e—15
0.25 1.640e—13 3.716e—13 5.573e—13
0.50 2.896e—13 6.485e—13 9.958e—13
0.75 3.735e—13 8.338¢—13 1.313e—12
1.00 4.169¢—13 9.378e—13 1.514e—12

7.3. The driven cavity test

The driven cavity problem is a classic benchmark from computational fluid mechanics. In this experiment we
consider an electrically conducting fluid that is entirely trapped inside a container with hard walls. The container,
in our simulations, will be the square 2 = [0, 1]%. This fluid is subjected to an external magnetic field given by the
initial conditions

Bo(x,y) =(,0). (132)

We borrow the set up from [25]. The source term in the momentum equation is neglected, i.e., f = 0. The initial
and boundary conditions on the velocity field are given by

up(x, y) = wp(x, y, 1) = (v(x, y), 0) (133)
325



S. Naranjo-Alvarez, L. Beirdo da Veiga, V.A. Bokil et al. Mathematics and Computers in Simulation 211 (2023) 301-328

T=0 T = 0.05

0.8 - 1 08 -

0.6 - 1 06 -

04 4 04

02 1 0.2

08

0.6

04

02| oL ST g 02 |

0.2 0 0.2 04 0.6 0.8 1 12 -0.2 0 0.2 04 0.6 0.8 1 12

Fig. 4. Streamlines of the velocity field for the driven-cavity test at different times starting with zero velocity at time 7 = 0.

where v € C'(£2) is defined as

1 y=1,
v(x,y) = 134
(x,y) 0 0<y<1—h (134)
where 0 < h < 1 is the mesh-size. Finally, we will consider the walls of our cavity to be made from a perfect
conductor. This is reflected in the boundary conditions on the electric field

Ep(x,y,1) =0 (135)

One way to interpret the test is to consider a stream of some fluid with magnetic properties running in a perfectly
laminar flow that flows left to right. Further consider a square cavity on its side (bottom) filled with the same fluid
initially perfectly still. Thus the initial velocity field of the fluid inside the cavity is zero everywhere except for at
the very top. The boundary conditions are also a consequence of the previously described stream. This influence
alone will result in the fluid inside the cavity to run against the solid walls of the cavity forcing the fluid to bounce
around at swirl. Thus, the result of the cavity test is that the streamlines of the velocity field will swirl around in
a vortex as presented in Fig. 4.

8. Conclusions

This paper presented a VEM design for a two-dimensional incompressible MHD model coupling electromag-
netics and fluid flow. The numerical method uses a set of projectors onto polynomial spaces that we can compute
using only the degrees of freedom of the solution approximations, thus avoiding computing them pointwise. The
continuous model involves several non-linearities. To treat them, we propose a linearization that stems from a
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linear extrapolation of the magnetic field as suggested in [25] for a FEM. The main advantage of this approach
is that we need to solve only one linear system at each time step. We proved that this method is well-posed by
studying each linear system. Precisely, we identified each system as a saddle-point problem, and the well-posedness
of the VEM follows from the more general BBL theory. The well-posedness guarantees a degree of stability in our
computations. Importantly, it may serve as a basis to design efficient preconditioners, one of the topics of our future
research in this field, as an application of the theory presented in [30]. It is worth mentioning that the development of
such preconditioners has already been successful in the case of MHD systems for a different linearization strategy,
see [31]. Finally, we presented numerical experiments that demonstrate the performance of this VEM, including
testing the convergence rate, the preservation of the divergence-free condition on the magnetic field, and qualitative
results of the classical driven-cavity problem.

Acknowledgments

Dr. S. Naranjo-Alvarez’s work was fully supported by the italian PRIN 2017 Grant “Virtual Element Methods:
Analysis and Applications” from April 2021 to February 2022 for his post-doctoral studies at the Department of
Mathematics and Applications of the University of Milano-Bicocca, Italy, and during his doctoral studies by (i)
the National Science Foundation (NSF), USA grant #1545188, “NRT-DESE: Risk and uncertainty quantification in
marine science and policy”, which provided a one year fellowship and internship support at Los Alamos National
Laboratory (LANL), USA; (ii) the DOE-ASCR AM (Applied Math), USA base program grant for a summer
internship at LANL; (iii) the graduate research funding from Prof. V. A. Bokil’s DMS, USA grant #1720116 and
# 2012882, an INTERN supplemental award to Professor Bokil’s DMS grant # 1720116 for a second internship
at LANL, and teaching support from the Department of Mathematics at Oregon State University, USA. Prof. L.
Beirao da Veiga was partially supported by the italian PRIN 2017 Grant “Virtual Element Methods: Analysis and
Applications”. Prof. V. A. Bokil was partially supported by The National Science Foundation, USA funding from
the DMS grants # 1720116 and # 2012882. Dr. V. Gyrya and Dr. G. Manzini were supported by the LDRD-ER
program at LANL, USA under project number 20180428ER. Los Alamos National Laboratory is operated by Triad
National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (Contract
No. 89233218CNA000001).

References

[1] R.A. Adams, J.J.F. Fournier, Sobolev Spaces, Vol. 140, Academic Press, 2003.

[2] B. Ahmad, A. Alsaedi, F. Brezzi, L.D. Marini, A. Russo, Equivalent projectors for virtual element methods, Comput. Math. Appl. 66
(3) (2013) 376-391.

[3] PF. Antonietti, G. Manzini, I. Mazzieri, HM. Mourad, M. Verani, The arbitrary-order virtual element method for linear elastodynamics
models. Convergence, stability and dispersion-dissipation analysis, Internat. J. Numer. Methods Engrg. 122 (4) (2021a) 934-971,
http://dx.doi.org/10.1002/nme.6569.

[4] PF. Antonietti, G. Manzini, S. Scacchi, M. Verani, A review on arbitrarily regular conforming virtual element methods for
second- and higher-order elliptic partial differential equations, Math. Models Methods Appl. Sci. 31 (14) (2021b) 2825-2853,
http://dx.doi.org/10.1142/S0218202521500627.

[5] P.F. Antonietti, G. Manzini, M. Verani, The conforming virtual element method for polyharmonic problems, Comput. Math. Appl. 79
(7) (2020) 2021-2034, http://dx.doi.org/10.1016/j.camwa.2019.09.022, published online: 4 October 2019.

[6] F. Armero, J.C. Simo, Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with applications to the
incompressible MHD and Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 131 (1-2) (1996) 41-90.

[7] L. Beirdo da Veiga, C. Lovadina, G. Vacca, Divergence free virtual elements for the Stokes problem on polygonal meshes, ESAIM
Math. Model. Numer. Anal. 51 (2) (2017) 509-535.

[8] L. Beirdo da Veiga, C. Lovadina, G. Vacca, Virtual elements for the Navier-Stokes problem on polygonal meshes, SIAM J. Numer.
Anal. 56 (3) (2018) 1210-1242.

[9] L. Beird da Veiga, F. Dassi, G. Manzini, L. Mascotto, Virtual elements for maxwell’s equations, Comput. Math. Appl. (2021)
http://dx.doi.org/10.1016/j.camwa.2021.08.019.

[10] L. Beirdo Da Veiga, F. Brezzi, L.D. Marini, A. Russo, H(div) and h(curl)-conforming virtual element methods, Numer. Math. 133 (2)
(2016) 303-332.

[11] E. Benvenuti, A. Chiozzi, G. Manzini, N. Sukumar, Extended virtual element method for the Laplace problem with singularities and
discontinuities, Comput. Methods Appl. Mech. Engrg. 356 (2019) 571-597, http://dx.doi.org/10.1016/j.cma.2019.07.028.

[12] Benvenuti, A. Chiozzi, G. Manzini, N. Sukumar, Extended virtual element method for two-dimensional linear elastic fracture, Comput.
Methods Appl. Mech. Engrg. 390 (2022) 114352, http://dx.doi.org/10.1016/j.cma.2021.114352.

[13] S. Berrone, A. Borio, Manzini, SUPG stabilization for the nonconforming virtual element method for advection-diffusion-reaction
equations, Comput. Methods Appl. Mech. Engrg. 340 (2018) 500-529.

327



S. Naranjo-Alvarez, L. Beirdo da Veiga, VA. Bokil et al. Mathematics and Computers in Simulation 211 (2023) 301-328

(14]
[15]

[16]
[17]

[18]
[19]
[20]
[21]

[22]
(23]

[24]
[25]
[26]
(271
(28]
[29]
[30]
(311
[32]
(33]
[34]
(351
[36]
(371
(38]
(391
[40]

[41]

[42]
[43]

[44]

[45]

J.U. Brackbill, D.C. Barnes, The effect of nonzero Div B on the numerical solution of the magnetohydrodynamic equations, J. Comput.
Phys. 35 (3) (1980) 426-430.

S.C. Brenner, L.Y. Sung, Virtual element methods on meshes with small edges or faces, Math. Models Methods Appl. Sci. 28 (07)
(2018) 1291-1336, http://dx.doi.org/10.1142/S0218202518500355.

F. Brezzi, A. Buffa, G. Manzini, Mimetic scalar products for discrete differential forms, J. Comput. Phys. 257-Part B (2014) 1228-1259.
0. Certik, F. Gardini, G. Manzini, L. Mascotto, G. Vacca, The p- and hp-versions of the virtual element method for elliptic eigenvalue
problems, Comput. Math. Appl. 79 (7) (2020) 2035-2056.

O. Certik, F. Gardini, G. Manzini, G. Vacca, The virtual element method for eigenvalue problems with potential terms on polytopic
meshes, Appl. Math. 63 (3) (2018) 333-365.

L. Chacon, An optimal, parallel, fully implicit Newton—Krylov solver for three-dimensional viscoresistive magnetohydrodynamics, Phys.
Plasmas 15 (5) (2008) 056103.

E.C. Cyr, J.N. Shadid, R.S. Tuminaro, R.P. Pawlowski, L. Chacén, A new approximate block factorization preconditioner for
two-dimensional incompressible (reduced) resistive MHD, SIAM, J. Sci. Comput. 35 (3) (2013) B701-B730.

F. Dassi, S. Scacchi, Parallel block preconditioners for three-dimensional virtual element discretizations of saddle-point problems,
Comput. Methods Appl. Mech. Engrg. 372 (2020) 113424.

P.A. Davidson, An introduction to magnetohydrodynamics, 2002.

E. Emmrich, Discrete Versions of Gronwall’s Lemma and their Application To the Numerical Analysis of Parabolic Problems, Techn.
Univ., 1999.

F. Gardini, G. Manzini, G. Vacca, The nonconforming virtual element method for eigenvalue problems, ESAIM Math. Model. Numer.
Anal. 53 (2019) 749-774.

R. Hiptmair, L. Li, S. Mao, W. Zheng, A fully divergence-free finite element method for magnetohydrodynamic equations, Math.
Models Methods Appl. Sci. 28 (04) (2018) 659-695.

K. Hu, Y. Ma, J. Xu, Stable finite element methods preserving divB=0 exactly for MHD models, Numer. Math. 135 (2) (2017)
371-396.

K. Lipnikov, G. Manzini, F. Brezzi, A. Buffa, The mimetic finite difference method for 3D magnetostatics fields problems, J. Comput.
Phys. 230 (2) (2011) 305-328, http://dx.doi.org/10.1016/j.jcp.2010.09.007.

J.G. Liu, W.C. Wang, An energy-preserving MAC—yee scheme for the incompressible MHD equation, J. Comput. Phys. 174 (1) (2001)
12-37.

J.G. Liu, W.C. Wang, Energy and helicity preserving schemes for hydro-and magnetohydro-dynamics flows with symmetry, J. Comput.
Phys. 200 (1) (2004) 8-33.

D. Loghin, A.J. Wathen, Analysis of preconditioners for saddle-point problems, SIAM J. Sci. Comput. 25 (6) (2004) 2029-2049.

Y. Ma, K. Hu, X. Hu, J. Xu, Robust preconditioners for incompressible MHD models, J. Comput. Phys. 316 (2016) 721-746.

P. Monk, Finite Element Methods for Maxwell’s Equations, Oxford University Press, 2003.

R.J. Moreau, Magnetohydrodynamics, Vol. 3, Springer Science & Business Media, 2013.

J.R. Munkres, Analysis on Manifolds, CRC Press, 2018.

S. Naranjo-Alvarez, A.V. Bokil, V. Gyrya, G. Manzini, The virtual element method for resistive magnetohydrodynamics, Comput.
Methods Appl. Mech. Engrg. 381 (2021) 113815.

K. Park, H. Chi, G.H. Paulino, On nonconvex meshes for elastodynamics using virtual element methods with explicit time integration,
Comput. Methods Appl. Mech. Engrg. 356 (2019) 669-684.

T. Sorgente, S. Biasotti, G. Manzini, M. Spagnuolo, The role of mesh quality and mesh quality indicators in the virtual element
method, Adv. Comput. Math. 48 (3) (2022).

G. Vacca, An H'-conforming virtual element for Darcy and brinkman equations, Math. Models Methods Appl. Sci. 28 (01) (2018)
159-194.

L. Beirdo da Veiga, F. Brezzi, F. Dassi, L.D. Marini, A. Russo, Virtual element approximation of 2D magnetostatic problems, Comput.
Methods Appl. Mech. Engrg. 327 (2017a) 173-195.

L. Beirdo da Veiga, F. Brezzi, F. Dassi, L.D. Marini, A. Russo, A family of three-dimensional virtual elements with applications to
magnetostatics, SIAM J. Numer. Anal. 56 (5) (2018) 2940-2962.

L. Beirao da Veiga, F. Brezzi, L.D. Marini, A. Russo, Mixed virtual element methods for general second order elliptic problems on
polygonal meshes, ESAIM Math. Model. Numer. Anal. 50 (3) (2016) 727-747.

L. Beirdo da Veiga, K. Lipnikov, G. Manzini, The Mimetic Finite Difference Method for Elliptic Problems, Vol. 11, Springer, 2014.
L. Beirdo da Veiga, C. Lovadina, A. Russo, Stability analysis for the virtual element method, Math. Models Methods Appl. Sci. 27
(13) (2017b) 2557-2594, http://dx.doi.org/10.1142/S021820251750052X.

L. Beirdo da Veiga, G. Manzini, L. Mascotto, A posteriori error estimation and adaptivity in hp virtual elements, Numer. Math. 143
(2019) 139-175, http://dx.doi.org/10.1007/s00211-019-01054-6.

Y. Zhang, Y. Hou, L. Shan, Numerical analysis of the Crank—Nicolson extrapolation time discrete scheme for magnetohydrodynamics
flows, Numer. Methods Partial Differential Equations 31 (6) (2015) 2169-2208.

328



