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Abstract

We present a novel discretization for the two-dimensional incompressible Magnetohydrodynamics (MHD) system coupling

an electromagnetic model and a fluid flow model. Our approach follows the framework of the Virtual Element Method and

offers two main advantages. The method can be implemented on unstructured meshes making it highly versatile and capable

of handling a broad set of problems involving interfaces, free-boundaries, or adaptive refinements of the mesh. The second

advantage concerns the divergence of the magnetic flux field and the fluid velocity. Our approach guarantees that the numerical

approximation of the magnetic flux field and the fluid velocity are divergence free if their initial states are divergence free.

Importantly, the divergence-free condition for the fluid velocity is satisfied in a pointwise sense. We include a theoretical proof

of the condition on the magnetic flux field, energy estimates and a well-posedness study. Numerical testing confirms robustness

of the method and its convergence properties on a variety of meshes.

© 2023 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

In the last few decades, the number of applications involving magnetized fluids has skyrocketed, and the scientific

community has made significant efforts to develop many predictive mathematical models. Magnetohydrodynamics

(MHD) is one approach that has stood the test of time and has become a standard. The MHD model, its derivation,

and its properties are well understood; see, for example, [22,33]. MHD relies on the interaction of fluid flow and

electromagnetics. Maxwell’s equations describe how we model electromagnetics, whereas conservation principles,

precisely momentum and mass conservation, describe fluid motion.

This study aims to develop a novel discretization for the two-dimensional MHD model using the Virtual Element

Method (VEM) framework. The VEM evolved from the Mimetic Finite Difference Method (MFD), for which

we refer to [16,27,42]. We recall that the MFD method’s guiding philosophy is based on a discrete mimicry of

vector and tensor calculus so that the model’s essential properties have a discrete compatible counterpart. Faraday’s

Law from Maxwell’s equation implies that the magnetic fields are solenoidal, i.e., their divergence is always zero.
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When discretizing the electromagnetics system, we must maintain this condition, see [14] for further information.

In particular, discrete divergence-free magnetic fields are a major advantage. Since we mimic the continuous setting

and such a setting meets the magnetic field divergence criterion, a VEM for MHD naturally provides solenoidal

magnetic field approximations. This work aims to prove and validate this condition.

The mesh flexibility is the second significant advantage of the MFD approach inherited by the VEM. The MFD

method and, consequently, the VEM work on unstructured polytopal meshes whose elements can have general,

even nonconvex, geometrical shapes. A recent study on the VEM robustness on meshes with severe deformations

is found in [37].

These features have determined so far the success of the VEM in a wide range of applications, see, for

example, [3–5,9,11–13,17,18,24,44].

We build on [35] to design a VEM for an electromagnetic subsystem. We also model electromagnetics and fluid

flow with the lowest-order VEM proposed in [10,38].

We define each virtual element approximation space on a given mesh element through the solutions of a

local PDE problem. Such a numerical approach employs only the degrees of freedom, avoiding pointwise shape

function computation. To do this, we introduce projectors onto polynomial spaces, the most crucial ones being the

L2−orthogonal projectors. In particular, the L2 projector is computable in some approximation spaces through

a general strategy called the enhancement process introduced in [2] and first applied to Maxwell’s equations

in [9,39,40].

Since the continuous model involves several non-linearities, we propose a linearization that stems from a linear

extrapolation of the magnetic field. This strategy has been initially suggested in [25] for a FEM. Its main advantage

is that we need to solve only one linear system at each time step. We further prove that this method is well-posed

by studying each linear system. To this end, we identify each system as a saddle-point problem, and the well-

posedness of the VEM follows from the more general BBL theory. The well-posedness guarantees the stability of

our computations. Importantly, it may serve as a basis for coming up with efficient preconditioners, which will be

the topic of our future research in this field.

This paper is structured as follows. In Section 2 we present the continuous and discrete models. In Section 3, we

provide the formal definition of the virtual element approximation spaces and detail the scheme’s construction. In

Section 4, we present the energy estimates and provide evidence of the method’s stability. In Section 5, we discuss

the linearization strategy; we prove the well-posedness of the linear solver and we confirm that the approximate

magnetic field is divergence-free. In Section 6 we prove the well-posedness of the method. In Section 7 we offer

a set of numerical experiments, including a convergence test and a model of the well-known cavity benchmark

problem. Finally, in Section 8 we summarize our findings and expose possible further work.

1.1. Notation and preliminary technicalities

Mesh regularity. The virtual element method is formulated on a family of mesh partitions of the computational

domain Ω , here denoted by {Ωh}h . Each mesh Ωh is a collection of nonoverlapping, closed polygonal cells K

with boundary ∂K , area |K |, and diameter hK , such that Ω = ∪K K , and is labeled by the mesh size parameter

h = maxK hK . We denote each edge of ∂K by e and the edge length by |e| = he.

In the VEM formulation, we normally ask the mesh family {Ωh}h to satisfy a few regularity conditions. These

regularity conditions are such that the standard approximation estimates (e.g., for the interpolation operator) and

properties of the finite element method necessary for the convergence analysis extend to the VEM. We report these

regularity conditions below as they also determine the kind of meshes that can be used by the VEM. Such meshes

must be regular in the sense that the two following conditions hold for some non-negative real number ρ independent

of h:

(M1) (star-shapedness): every polygonal cell K of every mesh Ωh is star-shaped with respect to a disk of radius

ρhK ;

(M2) (uniform scaling): every edge e ∈ ∂K of cell K ∈ Ωh satisfies he ≥ ρhK .

These assumptions on the mesh regularity are not quite restrictive and allow us to use polygonal elements with

very general geometric shapes, as for example nonconvex elements or elements with hanging nodes. It is worth
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noting that the hypotheses above can even be further relaxed. A review recent of this topic can be found, for

example, in [37].

Other important implications of (M1)–(M2) are:

(i) every polygonal element is simply connected;

(ii) the number of edges of each polygonal cell in the mesh family {Ωh}h is uniformly bounded;

(iii) a polygonal element cannot have arbitrarily small edges with respect to its diameter for h → 0.

Sobolev spaces. According to [1], L2(D) denotes the Lebesgue space of real-valued square integrable functions

defined on D; L2
0(D) is the subspace of the functions in L2(D) having zero average on D; for any integer

number s > 0, H s(D) is the Sobolev space s of the real-valued functions in L2(D) with all weak partial derivatives

of order up to s in L2(D);
[
L2(D)

]2
,
[
L2

0(D)
]2

, and
[
H s(D)

]2
are the vector versions of these spaces.

We denote the inner product in L2(D) and H s(D) by (v, w)D and (v, w)s,D , respectively; we also denote the

corresponding induced norms by ‖v‖D and ‖v‖s,D , and the seminorm in H s(D) by |v|s,D . When D is the whole

computational domain, i.e., D = Ω , we prefer to omit the subindex Ω and rather use the notation (v, w), ‖v‖, ‖v‖s ,

etc. instead of (v, w)Ω , ‖v‖Ω , ‖v‖s,Ω , etc.

In the light of these definitions, for a given s > 0, we introduce the functional spaces

H s(div, D) :=
{

v ∈
[
H s(D)

]2 | div v ∈ H s(D)
}
, (1)

H s(rot, D) :=
{

v ∈
[
H s(D)

]2 | rot v ∈
[
H s(D)

]2
}
. (2)

If s = 0, we write H (div, D) and H (rot, D) instead of H 0(div, D) and H 0(rot, D), which corresponds to
[
H 1(D)

]2
.

Let nD be the unit vector orthogonal to the boundary ∂ D and pointing out of D. According, e.g., to [32, Section 3.5],

for the spaces (1) and (2), we can define the trace operators γdiv and γrot for the vector-valued functions in H (div, D)

and H (rot, D). These operators are such that

γdiv(v) := nD · v, γrot(v) := nD × v.

Using the trace operators, we define the subspaces of H s(div, D) and H s(rot, D) with zero trace on the boundary

H s
0 (div, D) :=

{
v ∈ H s(div, D) | γdiv(v) = 0

}
,

H s
0 (rot, D) :=

{
v ∈ H s(rot, D) | γrot(v) = 0

}
.

We use these subspaces to incorporate the homogeneous boundary conditions.

Polynomial spaces and orthogonal projection operator. We denote the space of polynomials of degree ℓ = 0, 1

defined on element K and edge e by Pℓ(K ), and Pℓ(e), respectively. We set P−1(K ) = P−1(e) = {0}. The space

P1(K ) is the span of the scaled monomials defined as

m0(x) = 1, m1(x) = x − xK

hK

, m2(x) = y − yK

hK

, ∀x = (x, y)T ∈ K .

The basis of P1(e) is defined in a similar way. We let Pℓ(Ωh) denote the space of the piecewise discontinuous

polynomials of degree ℓ = 0, 1 that are globally defined on Ω and such that q|K ∈ P1(K ) for all elements K ∈ Ωh .

In the forthcoming discrete formulation, for any element K in Ωh , we will use polynomial projectors denoted

either by Π
0,K
ℓ : L2(K ) → Pℓ(K ) or Π̃

K
ℓ : L2(K ) → Pℓ(K ), depending on whether they are orthogonal,

i.e., satisfying that:
(
(Π

0,K
ℓ v − v), q

)
K

= 0 ∀q ∈ Pℓ(K ). (3)

or oblique, when we only require only that

Π̃
K
ℓ q = q, ∀q ∈ Pℓ(K ). (4)

With an abuse of notation, we extend these definitions in a component-wise way to the multidimensional projection

operator Π
0,K
ℓ : [L2(K )]2 → [Pℓ(K )]2. We also define the global projection operators Π

0
ℓ , Π̃ℓ : L2(Ω ) → Pℓ(Ωh)

and Π
0
ℓ :

[
L2(Ω )

]2 →
[
Pℓ(Ωh)

]2
as the operators respectively satisfying

(
Π

0
ℓ v
)
|K = Π

0,K
ℓ

(
v|K
)

and
(
Π̃ℓv

)
|K =

Π̃
K
ℓ

(
v|K
)

for any smooth enough scalar function v as well as
(
Π

0
ℓv
)
|K = Π

0,K
ℓ

(
v|K
)

for any smooth enough vector

field v, and for all mesh elements K ∈ Ωh .
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For simplicity of notation, whenever ℓ = 0, we may omit the subindex 0, so using Π
0v and Π

0v instead of

Π
0
0 v and Π

0
0 v, respectively, to denote the constant projections of a scalar function v or a vector function v.

Other orthogonal operators used in the formulation of the VEM will be introduced when needed in the paper.

2. Continuous and discrete formulations

In the MHD model, we describe the dynamics of an electrically conducting fluid using the velocity field u, the

pressure field p, the electric field E and the magnetic flux field B. The following system of equations governs the

time evolution of these unknowns

ut − R−1
e ∆u − s j × B + ∇ p = f in Ω , (5a)

Bt + rot E = 0 in Ω , (5b)

j − R−1
m rotB = 0 in Ω , (5c)

div B = 0 in Ω , (5d)

div u = 0 in Ω . (5e)

The subscript t of ut and Bt denotes the differentiation in time; Re and Rm are the viscous and magnetic Reynolds

numbers; s is the Hartman number and plays the role of a coupling coefficient; j is the current density given by

j := E + u × B. (6)

The quantities u = (ux , u y)T and B = (Bx , By)T (in bold fonts) are vector-valued fields, while p, E and j are

scalar functions. Consistently, we redefine the cross products in (5a) and (6) as follows:

j × B = j

(
−By

Bx

)
and u × B = ux By − u y Bx . (7)

We complete the MHD model with the initial conditions for the velocity and the magnetic fields,

u(x, 0) = u0(x), B(x, 0) = B0(x), for all x ∈ Ω , (8)

and the boundary conditions for the velocity and the electric fields,

u(x, t) = u∂
b(x), E(x, t) = E∂

b (x) for all x ∈ ∂Ω and t ∈ [0, T ]. (9)

We assume that the initial solution fields u0 and B0 are divergence free, i.e., div u0 = 0 and div B0 = 0. To ease

the exposition, we assume that the boundary conditions are time-independent. In order to maintain the consistency

of the formulation, we need that the boundary conditions on the velocity field satisfy
∫

∂Ω

u∂
b(x) · n dℓ = 0. (10)

2.1. Weak formulation

In the weak formulation of (5), for almost every t ∈ [0, T ] we search for
(

u(t), p(t), E(t), B(t)
)

∈
[
H 1(Ω )

]2 × L2
0(Ω ) × H (rot,Ω ) × H (div,Ω ),

such that

(ut , v) − (p, div v) + R−1
e (∇u, ∇v) + s( j, v × B) = (f, v) ∀v ∈

[
H 1

0 (Ω )
]2

, (11a)

(Bt , C) + (rot E, C) = 0 ∀C ∈ H (div,Ω ), (11b)

( j, F) − R−1
m (B, rot F) = 0 ∀F ∈ H0(rot,Ω ), (11c)

(div u, q) = 0 ∀q ∈ L2
0(Ω ), (11d)

and with u and B satisfying the initial conditions (8) and the Dirichlet-type boundary conditions (9). In (11) the

bilinear forms (ξ, η) and (ξ , η) stand for the L2 inner products

(ξ, η) :=
∫

Ω

ξ (x)η(x) dx and (ξ , η) :=
∫

Ω

ξ (x) · η(x) dx. (12)
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The divergence-free condition on B, see (5d), is not explicitly specified in the weak form since it is a consequence

of (11b) combined with a solenoidal initial magnetic field B0. For notation’s convenience, we used the formula

( j × B) · v = −(v × B) · j to rewrite the term ( j × B, v) as ( j, v × B) in Eq. (11a).

2.2. Semi-discrete weak formulation

The conforming virtual element approximation of (11) requires a polygonal meshing of the computational domain

Ω , which we denote as Ωh , and a set of finite dimensional subspaces of the functional spaces
[
H 1(Ω )

]2
, L2

0(Ω ),

H (rot,Ω ), and H (div,Ω ). Note that H (rot,Ω ) is equivalent to
[
H 1(Ω )

]2
in our two-dimensional setting. We

denote these subspaces as

Wh ⊂
[
H 1(Ω )

]2
, W0,h ⊂

[
H 1

0 (Ω )
]2

, Qh ⊂ L2
0(Ω ),

V node
h ⊂ H (rot,Ω ), V node

0,h ⊂ H0(rot,Ω ), V
edge

h ⊂ H (div,Ω ),

with the obvious inclusions

W0,h ⊂ Wh, V node
0,h ⊂ V node

h . (13)

We assume that the following approximations are computable

∀uh, vh ∈ Wh : mh(uh, vh) ≈ (uh, vh), ah(uh, vh) ≈ (∇uh, ∇vh), (14a)

∀qh ∈ Qh, vh ∈ Wh : b(vh, qh) = (div vh, qh), (14b)

∀Bh, Ch ∈ V
edge

h :
[
Bh, Ch

]
edge

≈ (Bh, Ch), (14c)

∀Eh, Fh ∈ V node
h :

[
Eh, Fh

]
node

≈ (Eh, Fh). (14d)

The formal definitions of all these mathematical objects, including the functional spaces, and the discussion of their

properties will be the topics of the next section. Using these definitions, we introduce the semi-discrete virtual

element approximation of problem (11):

For almost every t ∈ [0, T ], find uh(t) ∈ Wh , ph(t) ∈ Qh , Bh(t) ∈ V
edge

h , Eh(t) ∈ V node
h , such that:

mh(uh,t , vh) + R−1
e ah(uh, vh) − b(vh, ph) + s(Π̃Eh,Π

0vh × Π
0Bh)

+(Π 0uh × Π
0Bh,Π

0vh × Π
0Bh) =

(
fh, vh

)
∀vh ∈ W0,h, (15a)[

Eh, Fh

]
node

+ (Π 0uh × Π
0Bh,Π

0 Fh)

−R−1
m

[
Bh, rot Fh

]
edge

= 0 ∀Fh ∈ V node
0,h , (15b)

[
Bh,t , Ch

]
edge

+
[
rot Eh, Ch

]
edge

= 0 ∀Ch ∈ V
edge

h , (15c)

b(uh, qh) = 0 ∀qh ∈ Qh, (15d)

where uh and Bh at t = 0 are given by a suitable approximation of u0 and B0, the initial conditions (8). To simplify

the notation, we omitted the time variable t . In (15a), we used the definition of j from (6), so that

( j, v × B) = (E + u × B, v × B) = (E, v × B) + (u × B, v × B).

Also, if v denotes a generic scalar field, Π 0v is the L2-orthogonal projection of v onto P0(Ωh), the discontinuous

space of piecewise constant polynomials defined on every K ∈ Ωh . The extension to the vector case, i.e., the

polynomial projection Π
0v of a generic vector valued-field v, is straightforward in the component-wise sense. The

formal definition of these projection operators will be given in (48).

2.3. Fully discrete virtual element formulation

Finally, we present the fully discrete virtual element approximation of problem (11). To this end, we split the

time interval [0, T ] into N equally-sized subintervals with size ∆t > 0, the timestep, so that T = N∆t . These

subintervals form a collocated grid in time composed of the (N +1) points
{
tn = n∆t}N

n=0. We evaluate the unknown

fields uh , ph , Eh , and Bh at these discrete times, and denote such evaluations by the discrete quantities

un
h ≈ u(n∆t), Bn

h ≈ B(n∆t), En
h ≈ E(n∆t), pn

h ≈ p(n∆t), (16)
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indexed with a superscript n. For the sake of convenience we also define the discrete differential operator δtn in

time, so that

∀n ∈ [1, N ] : δn
t uh = un

h − un−1
h

∆t
, δn

t Bh = Bn
h − Bn−1

h

∆t
. (17)

We define a “discrete” current density jn
h ≈ j(·, tn) by

jn
h := Π̃En

h + Π
0un

h × Π
0Bn

h . (18)

The fully-discrete virtual element formulation of Eqs. (15) is obtained by applying the backward-Euler discretization

in time and reads as:

For each n ∈ [1, N ], find (un
h, pn

h , Bn
h, En

h ) ∈ Wh × Qh × V
edge

h × V node
h , such that:

mh(δn
t uh, vh) + R−1

e ah(un
h, vh) − b(vh, pn

h )

+s( jn
h ,Π 0vh × Π

0Bn
h) =

(
fn
h, vh

)
∀vh ∈ W0,h, (19a)[

En
h , Fh

]
node

+ (Π 0un
h × Π

0Bn
h,Π

0 Fh)

−R−1
m

[
Bn

h, rot Fh

]
edge

= 0 ∀Fh ∈ V node
0,h , (19b)

[
δn

t Bh, Ch

]
edge

+
[
rot En

h, Ch

]
edge

= 0 ∀Ch ∈ V
edge

h , (19c)

b(un
h, qh) = 0 ∀qh ∈ Qh . (19d)

As is done for system (15), we set the initial states B0 and u0 through a divergence-free approximation of B0 and

u0.

We note that in the above formulation the boundary conditions are implicit in the definition of the discrete

spaces Wh and V node
h , which include a discrete version of (9). In practice, we extend the boundary conditions Eb

and ub to the interior of Ω , then we embed them into the their respective discrete spaces using suitable interpolation

operators I(ub) ∈ Wh and Inode(Eb) ∈ V node
h (which will be described in detail later on). At each time step we look

for ûh ∈ W0,h and Êh ∈ V node
0,h such that:

un
h = I(ub) + ûh, En

h = Inode(Eb) + Êh . (20)

3. Virtual element method

3.1. VEM for Navier–Stokes equations

The conforming virtual element space used in the discretization of the fluid-flow equations in (19) was originally

proposed in [7,8,38]. Here, we consider the enhanced formulation introduced in [38]. This formulation allows us

to compute the L2−orthogonal projection onto the largest polynomial subspace contained in the space of shape

functions. Such operator is used in the construction of the approximate mass matrices.

First, we focus on the construction of the space for the velocity approximation. We consider a cell K ∈ Ωh and

the auxiliary spaces:

• B2(∂K ) :=
{
v ∈ C0(∂K ) : v|e ∈ P2(e), ∀e ∈ ∂K

}
;

• G2(K ) := ∇P3(K ) ⊂
[
P2(K )

]2
;

• G
⊕
2 (K ) := x⊕

P1(K ) ⊂
[
P2(K )

]2
, with x⊕ = (x2, −x1)T , so that the following direct sum decomposition

holds:
[
P2(K )

]2 = G2(K ) ⊕ G
⊕
2 (K ).

According to [8,38], we introduce a set of bounded linear functionals, which associate every vector-valued field

vh ∈ Wh(K ) with:

• (Dv1): the values of vh at the vertices of element K ;

• (Dv2): the values of vh at the midpoint of every edge e ∈ ∂K ;

• (Dv3): the integral moment of vh over K against g⊕
0 = x⊕ ∈ G

⊕
1 (K ):

1

|K |

∫

K

vh · x⊕ dx.
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• (Dv4): the integral moments of div vh over K against a basis for P1(K )/R:
∫

K

div vh

x − xK

hK

dx, and

∫

K

div vh

y − yK

hK

dx.

Let the elliptic projection operator Π
∇,K
2 :

[
H s+1(K )

]2 →
[
P2(K )

]2
, s > 0, be defined such that for every

vh ∈ Vh(K ), the vector polynomial Π
∇,K
2 vh is the unique solution to the variational problem:

∫

K

∇q : ∇
(
I − Π

∇,K
2

)
vh dx = 0 ∀q ∈

[
P2(K )

]2
,

Π
0,K
0

(
I − Π

∇,K
2

)
vh = 0,

where I is the identity operator. Since the vector polynomial Π
∇,K
2 vh is computable by using only the values

(Dv1)–(Dv4) of vh , we use it to define the virtual element space for the velocity approximation:

Wh(K ) :=
{

vh ∈ Uh(K ) :
((
I − Π

∇,K
2

)
vh, g⊕

)
K

= 0 ∀g⊕ ∈ G
⊕
2 (K ) \ G⊕

0 (K )

}
, (21)

where G
⊕
2 (K )\G⊕

0 (K ) is the subspace of polynomials in G
⊕
2 (K ) that are L2-orthogonal to all polynomials in G

⊕
0 (K ),

and

Uh(K ) :=
{

vh ∈
[
H 1(K )

]2 : vh |∂K ∈
[
B2(∂K )

]2
, div vh ∈ P1(K ),

− ∆vh − ∇s ∈ G
⊕
2 (K ) for some s ∈ L2

0(K )

}
. (22)

All operators and equations in the previous definitions must be interpreted in the distributional sense.

The set of values provided by (Dv1)–(Dv4) is unisolvent in Wh(K ) and we can take these functionals as the

degrees of freedom of the space. Importantly, we can compute all the moments of vh ∈ Wh(K ) against the vector

polynomials of degrees up to 2, i.e., all integrals like
∫

K

vh · q ∀q ∈
[
P2(K )

]2
,

using only the values from (Dv1)–(Dv4) of vh . This fact follows on decomposing q = ∇q3 +g⊕
2 , where q3 ∈ P3(K )

and G
⊕
2 (K ), integrating by part the term containing ∇q3 and noting that the divergence of vh is computable from

(Dv1)–(Dv2) and (Dv4), while the term containing g⊕
2 comes from (Dv3). Thus, the orthogonal projection operator

Π
0,K
2 : Wh(K ) →

[
P2(K )

]2
, which is defined as

∫

K

q ·
(
I − Π

0,K
2

)
vh dx = 0 ∀q ∈

[
P2(K )

]2
,

is computable in Wh(K ). Then, the global velocity space is

Wh :=
{

vh ∈
[
H 1(Ω )

]2 : ∀K ∈ Ωh, vh |K ∈ Wh(K ) ∀K ∈ Ωh

}
.

In the virtual element approximation of the momentum equation, we use the bilinear forms

ah(uh, vh) =
∑

K∈Ωh

aK
h (uh, vh), (23)

where

aK
h (uh, vh) =

(
∇Π

∇,K
2 uh, ∇Π

∇,K
2 vh

)
K

+ S
K
h

(
(I − Π

∇,K
2 )uh, (I − Π

∇,K
2 )vh

)
. (24)

and

mh(uh, vh) =
∑

K∈Ωh

mK
h (uh, vh), (25)

where

mK
h (uh, vh) = (Π

0,K
2 uh,Π

0,K
2 vh)K + |K |SK

h

(
(I − Π

0,K
2 )uh, (I − Π

0,K
2 )vh

)
, (26)
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which are defined for all pairs of vector-valued functions uh, vh ∈ Wh . In (24) and (26), the bilinear form SK
h (·, ·)

is a suitable stabilization term, see [38].

The bilinear forms (24) and (26) satisfy the stability and consistency properties

• Stability: there exist two pairs of real positive constants (µ∗, µ∗) and (α∗, α∗) independent of h (and K ) such

that

α∗‖vh‖2
1,K ≤ aK

h (vh, vh) ≤ α∗‖vh‖2
1,K ∀vh ∈ Wh(K )2. (27)

and

µ∗‖vh‖2
0,K ≤ mK

h (vh, vh) ≤ µ∗‖vh‖2
0,K ∀vh ∈ Wh(K )2, (28)

• Consistency:

aK
h (vh, q) = aK (vh, q)K ∀vh ∈ Wh(K ), q ∈

[
P2(K )

]2
. (29)

and

mK
h (vh, q) = (vh, q)K ∀uh ∈ Wh(K ), q ∈ P2(K ), (30)

Now, we introduce the pressure space. We define the local space of pressures over cell K as Q∗
h(K ) := P1(K ).

Every function q ∈ Q∗
h(K ) is uniquely described by the following set of degrees of freedom, which are the elemental

moment against the linear polynomials

1

|K |

∫

K

x − xK

hK

q dx,
1

|K |

∫

K

y − yK

hK

q dx, and
1

|K |

∫

K

q dx.

We define the global pressure space as

Q∗
h =

{
qh ∈ L2(Ω ) : ∀K ∈ Ωh, qh |K ∈ Q∗

h(K )
}
, (31)

endowed with the inner product

∀ph, qh ∈ Q∗
h : bh(ph, qh) =

∑

K∈Ωh

bK
h (ph, qh) for bK

h (ph, qh) =
∫

K

phqh dx. (32)

Finally, in formulation (19) we use

Qh =
{

qh ∈ Q∗
h :

∫

Ω

qh dx = 0

}
. (33)

The finite dimensional spaces Wh and Qh are a stable Stokes pair, as stated in the following Theorem.

Theorem 3.1. The spaces Wh and Qh satisfy the inf–sup condition

inf
qh∈Qh

sup
vh∈Wh\{0}

(div vh, qh)

‖vh‖Vh
‖q‖Qh

≥ β > 0,

for some strictly positive, real constant β, where

‖vh‖Vh
= (mh(vh, vh) + ah(vh, vh))1/2 and ‖qh‖Qh

=
(∫

K

|qh |2 dx

)1/2

.

Proof. See [8,38]. �

Definition 3.1. The interpolation operator I :
[
H s+1(Ω )

]2 → Wh , s > 0, is defined as follows. Given

v ∈
[
H s+1(Ω )

]2
, the function Iv satisfies (Dv1)Iv = (Dv1)v and the same holds for (Dv3) and (Dv4). Instead, the

DoFs (Dv2) (i.e. the midpoint evaluations of I(v)) are selected so that such operator preserves the flux across all

edges e of element K
∫

e

I(v) · n dℓ =
∫

e

v · n dℓ. (34)
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Fig. 1. Degrees of freedom of the virtual element spaces V node
h (K ) defined in (38) (left panel), V

edge
h (K ) defined in (47) (central panel),

and V cell
h (K ) defined in (56) (right panel). These three functional spaces and the differential operators rot and div form a de Rham chain.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

We define operator I(v) in this way to have the following property on bh(·, ·).

Lemma 3.2. For any v ∈
[
H s+1(Ω )

]2
, s > 0, and any p ∈ P1(Ωh), the interpolation operator I :

[
H s+1(Ω )

]2 →
W0,h locally preserves the bilinear form bh(·, ·) in the sense that

bK
h (Iv, p) = bK

h (v, p) ∀K ∈ Ωh . (35)

Proof. Consider a mesh element K ∈ Ωh and a scalar function p ∈ P1(K ) \ R. Eq. (35) holds because operator

I preserves the degrees of freedom (Dv4). To prove that Eq. (35) also holds for constant fields, we test div(Iv)

against p = 1, integrate by parts and use (34). We find that

bK
h (Iv, 1) =

∫

K

div(Iv) dx =
∑

e∈∂K

∫

e

Iv · n dℓ =
∑

e∈∂K

∫

e

v · n dℓ

=
∫

K

div(v) dx = bK
h (v, 1). (36)

This completes the proof due to linearity of bK
h (·, ·). �

We conclude this subsection by defining the norm on the space of continuous linear operators that act on Wh

by

|||fh |||−1,Wh
:= inf

vh∈W0,h

(fh, vh)

ah(vh, vh)
. (37)

3.2. VEM for electromagnetic equations

The nodal space. Let K ∈ Ωh . The formal definition of the nodal elemental space is given by

V node
h (K ) :=

{
Dh ∈ H (rot, K ) : Dh |∂K ∈ C0(∂K ), Dh |e ∈ P1(e) ∀e ∈ ∂K ,

rot rot Dh = 0 in K
}
. (38)

Every function Dh ∈ V node
h (K ) is uniquely determined by

(V) the values Dh(V ) at the vertices V of cell K .

The set of the vertex values associated with element K is unisolvent in the elemental space V node
h (K ) defined in (38).

Accordingly, every set of vertex values uniquely defines a virtual element function in V node
h (K ) and every function

in V node
h (K ) corresponds to a unique set of vertex values. Fig. 1 (left panel) shows the vertex values associated with

a given cell K of the mesh as blue disks.

In the space V node
h (K ) the orthogonal projection onto P1 is non-computable. The classical technique implemented

in this situation is to enhance the space into another where such a projection is computable. Instead, we take a

different approach. Here, we will define an oblique projection which we will denote Π̃
K satisfying:
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P1 The projection Π̃
K Dh is computable from the degrees of freedom of Dh .

P2 If Dh ∈ P1(K ) then Π̃
K Dh = Dh .

P3 There exists a constant C > 0 independent of mesh-size and time-step such that

‖Π̃ K Dh‖0,K ≤ C‖Dh‖0,K . (39)

This, approach is original to [35] where the authors present three possible options. In the numerical results Section 7

we use the well-known elliptic projector. For Dh ∈ V node
h (K ) the elliptic projector is the solution to the variational

problem

∀q ∈ P1(K ) :
∫

K

rot
(
Dh − Π̃

K Dh

)
· rot qd A = 0, (40a)

P0(Dh − Π̃
K Dh) = 0, (40b)

where,

P0(Dh) =
∑

V

Dh(V ). (41)

We also define a global oblique projection operator Π̃ : V node
h → P1(Ωh), that is such that Π̃Dh |K = Π̃

K (Dh |K )

for all K ∈ Ωh , where P1(Ωh) is the space of piecewise linear polynomials on mesh Ωh .

On all element K , we define the local bilinear form

[
Eh, Dh

]
node,K

=
(
Π̃

K Eh, Π̃
K Dh)K + S

V
((

1 − Π̃
K
)
Eh,

(
1 − Π̃

K
)
Dh

)
, (42)

where SV is a suitable stabilization. In the VEM construction, for the stabilization SV we usually consider any

bilinear form for which there exist two real constants s∗ and s∗ independent of h such that

s∗‖Dh‖2
0,K ≤ S

V (Dh, Dh) ≤ s∗‖Dh‖2
0,K ∀Dh ∈ ker Π̃ K ∩ V node

h (K ). (43)

Practical choices for the stabilizations and the related analysis can be found in [15,43]. Since (42) defines an inner

product on the elemental space V node
h (K ), it induces the mesh-dependent norm |||Dh |||node,K =

[
Dh, Dh

] 1
2

node,K
. The

inner product (42) is stable and linearly consistent according to the following definitions:

• Stability: There exist two real constants α∗ and α∗ > 0 independent of h (and K ) such that

α∗‖Dh‖0,K ≤ |||Dh |||V node
h

(K ) ≤ α∗‖Dh‖0,K ∀Dh ∈ V node
h (K )2. (44)

• Consistency:

[
Dh, q

]
node,K

=
(
Dh, q

)
K

∀Dh ∈ V node
h (K ), q ∈ P1(K ). (45)

Finally, we define the global nodal space V node
h by collecting together in the conforming way all the elemental

virtual element spaces

V node
h :=

{
Dh ∈ H (rot,Ω ) : Dh |K ∈ V node

h (K ), ∀K ∈ Ωh

}
. (46)

The functions in V node
h are uniquely characterized by their nodal values at the mesh vertices, and their global

unisolvence is a consequence of their unisolvence at the elemental level. Thus, we define Inode : C∞(Ω ) → V node
h

such that Inode(D) and D share the same nodal evaluations. The global space V node
h is endowed with the global

inner product

[
Eh, Dh

]
node

:=
∑

K∈Ωh

[
Eh, Dh

]
node,K

and is an Hilbert space with induced norm |||Dh |||node = [Dh, Dh]
1
2 .

310



S. Naranjo-Alvarez, L. Beirão da Veiga, V.A. Bokil et al. Mathematics and Computers in Simulation 211 (2023) 301–328

The edge space. The edge space that was introduced in [10] is the finite dimensional counterpart of H (div,Ω ). Its

formal definition over the cell K reads as

V
edge

h (K ) :=
{

Ch ∈ H (div, K ) ∩ H (rot, K ) : div Ch ∈ P0(K ), rot Ch = 0,

Ch |e · n ∈ P0(e) ∀e ∈ ∂K
}
. (47)

Every virtual element vector-valued field Ch ∈ V
edge

h (K ) is characterized by

(E) the moment of its flux across all the elemental edges

∀e ∈ ∂K : 1

|e|

∫

e

Ch · ndℓ.

The set of values associated with the edges of the boundary of a given element K is unisolvent in the elemental

space V
edge

h (K ) defined in (47). Fig. 1 (central panel) shows such values as red arrows pointing out of element K .

An important property of space V
edge

h (K ) is that the orthogonal projection Π
0,K : V

edge

h (K ) → P0(K ) is

computable using the degrees of freedom (E). This operator is such that for every Ch ∈ V
edge

h (K ), the constant

polynomial Π
0,K
Ch

is the solution to the variational problem

(
Ch − Π

0,K Ch, q
)

K
= 0 ∀q ∈

[
P0(K )

]2
. (48)

We define the inner product in the space V
edge

h (K ) by using the projection operator Π 0,K , so that
[
Bh, Ch

]
edge,K

=
(
Π

0,K Bh,Π
0,K Ch

)
K

+ S
e
(
(I − Π

0,K )Bh, (I − Π
0,K )Ch

)
(49)

for every possible pair of virtual element functions Bh , Ch ∈ V
edge

h (K ). As before, we need a stabilization term,

e.g., Se, which can be any continuous bilinear form for which there exist two strictly positive constants s∗ and s∗

independent of h such that

s∗‖Ch‖2
0,K ≤ S

e(Ch, Ch) ≤ s∗‖Ch‖2
0,K ∀Ch ∈ kerΠ 0,K ∩ V

edge

h (K ), (50)

(the two constants s∗ and s∗ are not the same of Eq. (43)). Practical choices of the stabilization term Se(·, ·) can

be found in [10]. This inner product induces the norm

|||Ch |||edge,K =
[
Ch, Ch

]1/2

edge,K
∀Ch ∈ V

edge

h (K ). (51)

Furthermore, the two following fundamental properties of P0-consistency and stability hold

• Stability: there exist two real constants β∗ and β∗ > 0 independent of h and K , such that

β∗‖Ch‖0,K ≤ |||Ch |||edge,K ≤ β∗‖Ch‖0,K ∀Ch ∈ V
edge

h (K ). (52)

• Consistency: for all Ch ∈ V
edge

h (K ), it holds that
[
Ch, q

]
edge,K

=
(
Ch, q

)
K

∀q ∈ [P0(K )]2 (53)

We define the global virtual element space V
edge

h by a conforming coupling if the elemental spaces V
edge

h (K )

V
edge

h =
{

Ch ∈ H (div,Ω ) : Ch |K ∈ V
edge

h (K ) ∀K ∈ Ωh

}
.

We endow this space with the inner product
[
Bh, Ch

]
edge

=
∑

K∈Ωh

[
Bh, Ch

]
edge,K

∀Bh, Ch ∈ V
edge

h , (54)

and the induced norm

|||Ch |||2edge =
[
Ch, Ch

]
edge

∀Ch ∈ V
edge

h . (55)

The cell space. Finally, we introduce the local space of constant polynomials on each element K , i.e., V cell
h (K ) =

P0(K ), and the global space of piecewise constant polynomials on the mesh Ωh

V cell
h =

{
qh ∈ L2(Ω ) : qh |K ∈ P0(K ) ∀K ∈ Ωh

}
. (56)
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The degrees of freedom of a function qh ∈ V cell
h are given by

(C) the elemental averages of qh over every cell K ∈ Ωh

1

|K |

∫

K

qh dx.

These degrees of freedom are unisolvent in V cell
h . We define the interpolation operator Icell : L2(Ω ) → V cell

h such

that

∀q ∈ L2(Ω ) : Icell(q)|K = 1

|K |

∫

K

q dx.

Fig. 1 (right panel) represents the degree of freedom associated with element K by an internal (red) disk.

We endow the cell space V cell
h with the inner product

(ph, qh)cell =
∑

K

|K | pK qK ∀ph, qh ∈ V cell
h ,

which is the L2(Ω ) inner product of the two piecewise constant functions ph = (pK ) and qh = (qK ) defined on Ωh ,

so that pK = ph |K , qK = qh |K . This inner product induces the norm

|||qh |||cell = (ph, qh)
1
2
cell ∀qh ∈ V cell

h ,

which is the L2(Ω )-norm restricted to the functions of V cell
h , so that

|||qh |||cell = ‖qh‖0,Ω ∀qh ∈ V cell
h .

3.3. The de Rham complex

The spaces H (rot,Ω ), H (div,Ω ) and L2(Ω ) form the well-known de Rham chain

H (rot,Ω )
rot−−−−→ H (div,Ω )

div−−−−→ L2(Ω ). (57)

If Ω is simply connected, the chain is exact, cf. [34]. Equivalently, we can say that

rot H (rot,Ω ) =
{

C ∈ H (div,Ω ) : div C = 0
}
.

The spaces V node
h , V

edge

h and V cell
h introduced in the previous section also form a similar exact de Rham chain

V node
h

rot−−−−→ V
edge

h

div−−−−→ V cell
h . (58)

The chain (58), also shown in Fig. 1, was first introduced in [41], and explored in more detail and generality

in [10]. Accordingly, the degrees of freedom of the virtual element spaces V node
h , V

edge

h and V cell
h transform as in

the diagram depicted in Fig. 1. In fact, the two following main properties are satisfied

rot V node
h ⊂ V

edge

h (59)

div V
edge

h ⊂ V cell
h (60)

Hence, if Dh ∈ V node
h , then rot Dh ∈ V

edge

h , and we can compute the degrees of freedom of rot Dh in V
edge

h from

the degrees of freedom of Dh in V node
h . Consider an edge e in one of the cells in the mesh Ωh . Then, the Theorem

of Line Integrals implies that

1

|e|

∫

e

rot Dh · n dℓ = 1

|e|

∫

e

∇ Dh · t dℓ = Dh(x2) − Dh(x1)

|e| , (61)

where x1 and x2 are the coordinate vectors of the endpoint vertices of edge e. Thus, the degrees of freedom of

V node
h provide the necessary information to compute the image in V

edge

h of the rotational operator.

The same is true about the divergence of a vector-valued field in V
edge

h . Let K ∈ Ωh and consider Ch ∈ V
edge

h .

Then, the Divergence Theorem implies that

1

|K |

∫

K

div Ch dx = 1

|K |

∫

∂K

Ch · ndℓ = 1

|K |
∑

e∈∂K

∫

e

Ch · ne dℓ, (62)
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and we can compute the degrees of freedom of div Ch in V cell
h from the degrees of freedom of Ch in V

edge

h . Thus,

the degrees of freedom of V
edge

h provide the necessary information to compute the image in V cell
h of the divergence

operator.

These properties, summarized by Eqs. (61) and (62), are crucial to study the finite-dimensional spaces V node
h , V

edge

h

and V cell
h and their relationship with the continuous larger spaces H (rot,Ω ), H (div,Ω ) and L2(Ω ). These spaces

and the corresponding interpolation operators, i.e., Inode, Iedge, Icell, form the de Rham diagram

H (rot,Ω )
rot−−−−→ H (div,Ω )

div−−−−→ L2(Ω )
yInode

yIedge

yIcell

V node
h

rot−−−−→ V
edge

h

div−−−−→ V cell
h .

(63)

This diagram is commutative, meaning that the following identities hold

∀D ∈ H (rot,Ω ) : Iedge ◦ rot (D) = rot ◦ Inode(D), (64a)

∀C ∈ H (div,Ω ) : Icell ◦ div(C) = div ◦ Iedge(C). (64b)

We summarize our findings in the following theorem.

Theorem 3.3. The chain in (58) is well-defined and exact. Moreover, the diagram in (63) is commutative.

4. Energy stability estimates

The conforming nature of VEM allows us to mimic many properties that are present in the continuous scenario.

One of the more important is preserving certain types of estimates in the L2(Ω )−norm. These usually come about

after testing the variational formulation against the exact solution and applying the Gronwall’s Lemma, see [23]. In

this section, we present an estimate of this type, true for the solutions to the continuous variational formulation (11),

and its discrete virtual element counterpart! (19).

Let ub and Eb denote the liftings of the boundary functions u∂
b and E∂

b that we introduced in (9) in
[
H 1(Ω )

]2

and H (rot,Ω ), respectively, with the assumption that div ub = 0. In order to reveal the boundary information, we

consider the decompositions

u = û + ub and E = Ê + Eb, (65)

where û ∈
[
H 1

0 (Ω )
]2

and Ê ∈ H0(rot,Ω ). Since div ub = 0, Eq. (65) and the divergence-free nature of u imply

that div û = 0. Next, using (65) we write j = ĵ + jb where

ĵ = Ê + û × B and jb = Eb + ub × B. (66)

We state the continuous energy estimate in the following theorem, whose proof is reported for completeness. Similar

estimates can be found in [26,28,29].

Lemma 4.1. Let (u, B, E, p) solve the variational formulation (11) in the time interval [0, T ]. Then, we have the

equality

1

2

d

dt
‖û‖2

0,Ω + s

2
R−1

m

d

dt
‖B‖2

0,Ω + R−1
e ‖∇û‖2

0,Ω + s‖ ĵ‖2
0,Ω

= (f, û) −
(
ub,t , û

)
− R−1

e (∇ub, ∇û) − s R−1
m (rot Eb, B) − s( jb, ĵ), (67)

with the notation ub,t = ∂ub/∂t .

Proof. We set (v, C, F, q) = (û, B, Ê, p) in (11a)–(11d). Since div û = 0, ( jh ×B, û) = −( jh, û×B), jh = ĵ + jb,

cf. (66), and using the notation ub,t = ∂ub/∂t , we find that

1

2

d

dt
‖û‖2

0,Ω + R−1
e ‖∇û‖2

0,Ω + s( ĵ, û × B) = (f, û) − (ub,t , û) − R−1
e (∇ub, ∇û)

− s( jb, û × B), (68a)
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s

2
R−1

m

d

dt
‖B‖2

0,Ω + s R−1
m (rot Ê, B) = −s R−1

m (rot Eb, B), (68b)

s( ĵ, Ê) − s R−1
m (B, rot Ê) = −s( jb, Ê). (68c)

Adding Eqs. (68a), (68b), and (68c) yields the equality (67). �

Theorem 4.2. Under the assumptions of Lemma 4.1, as a consequence of equality (67), we have the following

estimate

‖û(T )‖2
0,Ω + s R−1

m ‖B(T )‖2
0,Ω +

∫ T

0

e(T −t)
(

R−1
e ‖∇û‖2

0,Ω + s‖ ĵ‖2
0,Ω

)
dt

≤ ‖û(0)‖2
0,Ω + R−1

m ‖B(0)‖2
0,Ω +

∫ T

0

e(T −t)
(

2Re‖f‖2
−1,Ω + ‖ub,t‖2

0,Ω

+ 2R−1
e ‖∇ub‖2

0,Ω + s R−1
m ‖rot Eb‖2

0,Ω + s‖ jb‖2
0,Ω

)
dt. (69)

Proof. To obtain inequality (69) from equality (67) we first take the absolute value on the right-hand side of (67)

and use the triangle inequality to obtain

1

2

d

dt
‖û‖2

0,Ω + s

2
R−1

m

d

dt
‖B‖2

0,Ω + R−1
e ‖∇û‖2

0,Ω + s‖ ĵ‖2
0,Ω

≤ |(f, û)| + |(ub,t , û)| + R−1
e |(∇ub, ∇û)| + s R−1

m |(rot Eb, B) + s|( jb, ĵ)||. (70)

We bound the right-hand side of (70) using the following Young’s inequalities:

∣∣(f, û)
∣∣ ≤ ‖f‖−1,Ω‖∇û‖0,Ω ≤ Re‖f‖2

−1,Ω + 1

4
R−1

e ‖∇û‖2
0,Ω , (71a)

∣∣(ub,t , û)
∣∣ ≤ 1

2
‖ub,t‖2

0,Ω + 1

2
‖û‖2

0,Ω , (71b)

R−1
e

∣∣(∇ub, ∇û)
∣∣ ≤ R−1

e

1

2
‖∇ub‖2

0,Ω + R−1
e

1

2
‖∇û‖2

0,Ω , (71c)

s R−1
m |(rot Eb, B)| ≤ R−1

m

s

2
‖rot Eb‖2

0,Ω + R−1
m

s

2
‖B‖2

0,Ω , (71d)

s

∣∣∣( jb, ĵ)

∣∣∣ ≤ s

2
‖ jb‖2

0,Ω + s

2
‖ ĵ‖2

0,Ω . (71e)

Substituting (71) into the RHS of (70) and rearranging the terms, yields,

d

dt

(
1

2
‖û‖2

0,Ω + s

2
R−1

m ‖B‖2
0,Ω

)
−
(

1

2
‖û‖2

0,Ω + s

2
R−1

m ‖B‖2
0,Ω

)
+ 1

2
R−1

e ‖∇û‖2
0,Ω + s

2
‖ ĵ‖2

0,Ω

≤ Re‖f‖2
−1,Ω + 1

2
‖ub,t‖2

0,Ω + R−1
e ‖∇ub‖2

0,Ω + s

2
R−1

m ‖rot Eb‖2
0,Ω + s

2
‖ jb‖2

0,Ω . (72)

Note that

d

dt
e−t

(
‖û‖2

0,Ω + s R−1
m ‖B‖2

0,Ω

)

= e−t d

dt

(
‖û‖2

0,Ω + s R−1
m ‖B‖2

0,Ω

)
− e−t

(
‖û‖2

0,Ω + s R−1
m ‖B‖2

0,Ω

)
. (73)

Multiplying (72) by 2e−t and using (73) we get

d

dt
e−t

(
‖û‖2

0,Ω + s R−1
m ‖B‖2

0,Ω

)
+ e−t

(
R−1

e ‖∇û‖2
0,Ω + s‖ ĵ‖2

0,Ω

)
≤ 2e−t Re‖f‖2

−1,Ω

+ e−t‖ub,t‖2
0,Ω + 2e−t R−1

e ‖∇ub‖2
0,Ω + se−t R−1

m ‖rot Eb‖2
0,Ω + se−t‖ jb‖2

0,Ω , (74)

Finally, we integrate (74) in time over [0, T ] and multiply by eT to obtain estimate (69). �

To obtain a discrete version of the estimate of Theorem 4.2, we consider the decomposition of the electric and

the velocity fields En+1
h and un+1

h into the deterministic boundary components Inode(Eb) and I(ub) and the internal
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components Ên+1
h and ûn+1

h :

En+1
h = Ên+1

h + Inode(Eb) and un+1
h = ûn+1

h + I(ub), (75)

where the integer n for 1 ≤ n ≤ N is the time step index, and I is the interpolation operator of Definition 3.1.

In (75), we have that Ên+1 ∈ V node
0,h . Next, for all integers 1 ≤ n ≤ N , we introduce the discrete current densities

ĵn
h := Π̃ Ên + Π

0ûn
h × Π

0Bn
h and jn

h,b := Π̃Inode Eb + Π
0
Iub × Π

0Bn
h, (76)

so that

jn
h = ĵn

h + jn
h,b = Π̃En

h + Π
0un

h × Π
0Bn

h,

as defined in (18), which by definition is a piecewise constant field on the elements of Ωh . Lemma 4.3 and Theorem

4.3 are the discrete analogs of Lemma 4.1 and Theorem 4.2.

Lemma 4.3. Let
{
(un

h, Bn
h, En

h , pn
h )
}N

n=1
∈ Wh × V

edge

h × V node
h × Qh solve the discrete formulation (19) with

uh,0 = I(u0) and Bh,0 = Iedge(B0). Then, we have the following equality

L0 + L1 + L2 = R, (77)

where

L0 :=
(

|||ûn+1
h − ûn

h |||2Wh

2∆t
+ R−1

m

|||Bn+1
h − Bn

h |||2edge

2∆t

)
,

L1 :=
(

|||ûn+1
h |||2Wh

− |||ûn
h |||2Wh

2∆t
+ R−1

m

|||Bn+1
h |||2edge − ‖Bn

h‖2
edge

2∆t

)
, (78a)

L2 := R−1
e ah

(
ûn+1

h , ûn+1
h

)
+ ‖ ĵn+1

h ‖2
0,Ω + S

V
(

(I− (78b)

Pi Obl)Ên+1
h , (I − Π̃)Ên+1

h

)
, (78c)

R := mh

(
fn+1
h , ûn+1

h

)
− R−1

e ah

(
Iub, ûn+1

h

)
− R−1

m

[
rot Inode Eb, Bn+1

h

]
edge

−
(

jn+1
h,b , ĵn+1

h

)
− S

V
(
(I − Π̃)Inode(Eb), (I − Π̃)Ên+1

h

)
. (78d)

Proof. We set (vh, Ch, Fh, qh) = (ûn+1
h , Bn+1

h , Ên+1
h , pn+1

h ) in (19a)–(19d) at the discrete time tn+1. Using

decompositions (75) we obtain

mh

(
ûn+1

h − ûn
h

∆t
, ûn+1

h

)
+ R−1

e ah

(
ûn+1

h , ûn+1
h

)
− b

(
ûn+1

h , pn+1
h

)

+
(

ĵn+1
h ,Π 0ûn+1

h × Π
0Bn+1

h

)
= mh

(
fn+1
h , ûn+1

h

)
− R−1

e ah

(
Iub, ûn+1

h

)
(79a)

−
(

jn+1
h,b ,Π 0ûn+1

h × Π
0Bn+1

h

)
,

[
En+1

h , Ên+1
h

]
node

+ (Π 0un+1
h × Π

0Bn+1
h , Π̃ Ên+1

h )R−1
m

[
Bn+1

h , rot Ên+1
h

]
edge

= 0, (79b)

R−1
m

[
Bn+1

h − Bn
h

∆t
, Bn+1

h

]

edge

+ R−1
m

[
rot Ên+1

h , Bn+1
h

]
edge

= −R−1
m

[
rot Inode En+1

b , Bn+1
h

]
edge

, (79c)

b
(
un+1

h , pn+1
h

)
= 0. (79d)

We will now focus on Eq. (79b). The first term in Eq. (79b), based on (42), admits the decomposition

[
En+1

h , Ên+1
h

]
node

=
(
Π En+1

h , Π̃ Ên+1
h ) + S

V
(
(I − Π̃)En+1

h , (I − Π̃)Ên+1
h

)
. (80)
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Grouping the first term in (80) with the second term in (79b) we get
(
Π̃En+1

h , Π̃ Ên+1
h

)
+
(
Π

0un+1
h × Π

0Bn+1
h , Π̃ Ên+1

h

)

=
(
Π̃En+1

h + Π
0un

h × Π
0Bn

h, Π̃ Ên+1
h

)

=
(

jn+1
h , Π̃ Ên+1

h

)
=
(

ĵn+1
h + jn+1

h,b , Π̃ Ên+1
h

)
. (81)

Thus, Eq. (79b) takes form

S
V
(
(I − Π̃)En+1

h , (I − Π̃)Ên+1
h

)
+
(

ĵn+1
h + jn+1

h,b , Π̃ Ên+1
h

)

−R−1
m

[
Bn+1

h , rot Ên+1
h

]
edge

= 0. (82)

Using property of the interpolation operator I of preserving the value of the bilinear form b(u, ph) and the weak

divergence free property of the boundary lifting term ub we have

b
(
Iub, pn+1

h

)
= b

(
ub, pn+1

h

)
= 0. (83)

Moreover, a straightforward calculation using the identity 2(a − b)a = (a − b)2 + a2 − b2 shows that

mh

(
ûn+1

h − ûn
h

∆t
, ûn+1

h

)
=

|||ûn+1
h − ûn

h |||2Wh

2∆t
+

|||ûn+1|||2Wh
− |||ûn|||2Wh

2∆t
, (84a)

[
Bn+1

h − Bn
h

∆t
, Bn+1

h

]

edge

=
|||Bn+1

h − Bn
h |||2edge

2∆t
+

|||Bn+1
h |||2edge − ‖Bn

h‖2
edge

2∆t
. (84b)

Adding Eqs. (79a), (82), (79c)–(79d), using (83) and (84a)–(84b) yield (78). �

Theorem 4.4. Under the assumptions of Lemma 4.3, as a consequence of equality (78), we have the following

energy stability estimate

|||ûN
h |||2Wh

+ R−1
m |||BN

h |||2edge ≤ (1 + ∆t)N
[
|||û0

h |||2Wh
+ R−1

m |||B0
h |||2edge

]

+ 2∆t

N−1∑

n=0

(1 + ∆t)N−(n+1)
F

n+1(fn+1
h , ub, Eb), (85)

where

F
n+1(fn+1

h , ub, Eb) :=1

2
Re|||fn+1

h |||2−1,Ω + 1

2
R−1

e ah(Iub, Iub)

+1

2
R−1

m |||rot Inode Eb|||2edge + 1

2
‖ jn+1

h,b ‖2
0,Ω

+1

4
S

V
(
(I − Π̃)Inode(Eb), (I − Π̃)Inode(Eb)

)
. (86)

Proof. We first note that

L0 = 1

2∆t

(
|||ûn+1

h − ûn
h |||2Wh

+ |||Bn+1
h − Bn

h |||2edge

)
≥ 0.

Thus, the demonstrated equality (78) implies that

L1 = L
ûh

1 + L
Bh

1 ≤ |R| − L2, (87)

where

L
ûh

1 = 1

2

|||ûn+1
h |||2Wh

− |||ûn
h |||2Wh

∆t
, L

Bh

1 = 1

2
R−1

m

|||Bn+1
h |||2edge − ‖Bn

h‖2
edge

∆t
,

and

|R| ≤
∣∣mh

(
fn+1
h , ûn+1

h

)∣∣+ R−1
e

∣∣ah

(
Iub, ûn+1

h

)∣∣+ R−1
m

∣∣∣
[
rot Inode Eb, Bn+1

h

]
edge

∣∣∣

+
∣∣∣
(

jn+1
h,b , ĵn+1

h

)∣∣∣+
∣∣∣SV

(
(I − Π̃)Inode(Eb), (I − Π̃)Ên+1

h

)∣∣∣ . (88)
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The term |R| contains mixed terms, while L2 contains quadratic terms only. Our strategy will be to estimate each

of the terms in the RHS of (88) using Young’s inequalities so that the quadratic terms for the solution functions

ûn+1
h , Bn+1

h and Ên+1
h that come out cancel with the corresponding quadratic terms in L2, see (78b):

∣∣mh(fn+1
h , ûn+1

h )
∣∣ ≤ 1

2
Re|||un+1

h |||2−1,Ω + 1

2
R−1

e ah(ûn+1
h , ûn+1

h ), (89a)

∣∣R−1
e ah(Iub, ûn+1

h )
∣∣ ≤ 1

2
R−1

e ah(Iub, Iub) + 1

2
R−1

e ah(ûn+1
h , ûn+1

h ), (89b)

R−1
m

∣∣∣
[
rot Inode Eb, Bn+1

h

]
edge

∣∣∣ ≤ 1

2
R−1

m |||rot Inode Eb|||2edge + 1

2
R−1

m |||Bn+1
h |||2edge, (89c)

∣∣∣( jn+1
h,b , ĵn+1

h )

∣∣∣ ≤ 1

2
‖ jn+1

h,b ‖2
0,Ω + 1

2
‖ ĵn+1

h ‖2
0,Ω , (89d)

∣∣∣SV
(
(I − Π̃)Inode(Eb), (I − Π̃)Ên+1

h

)∣∣∣

≤ 1

4
S

V
(
(I − Π̃)Inode(Eb), (I − Π̃)Inode(Eb)

)

+ S
V
(
(I − Π̃)Ên+1

h , (I − Π̃)Ên+1
h

)
. (89e)

For the first term on the RHS of (89e) we use the upper bound property (50) of the stabilization term and the

property of the projection operator

S
V
(
(I − Π̃)Inode(Eb), (I − Π̃)Inode(Eb)

)
≤ s∗‖(I − Π̃)Eb‖2 ≤ s∗‖Eb‖2. (90)

We note that when substituting inequalities (89) into (87) all terms in L2 cancel exactly. The only term on the RHS

of (89) that does not cancel and depends on the solution function is 1
2

R−1
m |||Bn+1

h |||2edge in inequality (89c). To control

this term we will move it to the LHS of (87) and combine it with L
Bh

1 to get a modified version of L
Bh

1 :

L̃
Bh

1 := 1

2
R−1

m

|||Bn+1
h |||2edge − (1 + ∆t)‖Bn

h‖2
edge

∆t
. (91)

For convenience purpose we will now consider a modified version of L
ûh

1 analogous to (91):

L̃
ûh

1 := 1

2

|||ûn+1
h |||2Wh

− (1 + ∆t)|||ûn
h |||2Wh

∆t
(92)

and note that

L̃
ûh

1 ≤ L
ûh

1 . (93)

Substituting the modified L̃
ûh

1 and L̃
Bh

1 into (87) we get the following estimate

L̃
ûh

1 + L̃
Bh

1 ≤ F
n+1(fn+1

h , ub, Eb), (94)

where

F
n+1(fn+1

h , ub, Eb) :=1

2
Re|||fn+1

h |||2−1,Ω + 1

2
R−1

e ah(Iub, Iub)

+1

2
R−1

m |||rot Inode Eb|||2edge + 1

2
‖ jn+1

h,b ‖2
0,Ω

+1

4
S

V
(
(I − Π̃)Inode(Eb), (I − Π̃)Inode(Eb)

)
. (95)
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To obtain an estimate on |||BN
h |||2edge and |||ûN

h |||2Wh
after N integration time steps, multiply inequality (94) by

(1 + ∆t)N−n−1 and sum over all n = 0, 1, . . . N − 1 to form a telescopic series on the LHS. Indeed,

N−1∑

n=0

(1 + ∆t)N−n−1
|||Bn+1

h |||2edge − (1 + ∆t)‖Bn
h‖2

edge

∆t

= 1

∆t

N−1∑

n=0

(1 + ∆t)N−n−1|||Bn+1
h |||2edge − 1

∆t

N−1∑

n=0

(1 + ∆t)N−n‖Bn
h‖2

edge

= 1

∆t
|||BN

h |||2edge − 1

∆t
(1 + ∆t)N ‖B0

h‖2
edge. (96)

Similarly,

N−1∑

n=0

(1 + ∆t)N−n−1
|||ûn+1

h |||2Wh
− (1 + ∆t)|||ûn

h |||2Wh

∆t

= 1

∆t
|||ûN

h |||2Wh
− 1

∆t
(1 + ∆t)N |||û0

h |||2Wh
. (97)

Using the results of the telescoping series (96) and (97), remembering the coefficients 1
2

R−1
m and 1

2
in (91) and (92),

respectively, and summing up (1 + ∆t)N−n−1Fn+1(fn+1
h , ub, Eb) we get the desired estimate (85). �

Remark 4.1. The factor (1 +∆t)N on the RHS of (85) approaches eT for a fixed time integration window T and

the number N of time integration steps going to infinity:

(1 + ∆t)N =
(

1 + T

N

)N

=
(

1 + T

N

) N
T

T

→ eT as N → ∞.

5. Linearization

The semi-discrete form in (19) requires further treatment in order to provide computable approximations to

the flow of the magnetized fluid. Precisely, we need a linearization strategy to handle the non-linear terms that

appear in the time discretization. The approach we follow in this section is similar to the linearizations proposed,

e.g., in [6,25,45]. The central idea is to make an “educated guess” Bn
h,∗ for the value of Bn

h , so that we can

approximate the three non-linear terms in (19) as follows:
(
Π̃En

h ,Π 0vh × Π
0Bn

h

)
≈
(
Π̃En

h ,Π 0vh × Π
0Bn

h,∗
)

(98)(
Π

0un
h × Π

0Bn
h,Π

0vh × Π
0Bn

h

)
≈
(
Π

0un
h × Π

0Bn
h,∗,Π

0vh × Π
0Bn

h

)
(99)(

Π
0un

h × Π
0Bn

h, Fh

)
≈
(
Π

0un
h × Π

0Bn
h,∗, Fh

)
, (100)

and we define the linearized current density jn
h,∗ = Π̃En

h + Π
0vh × Π

0Bn
h,∗. Since now Bn

h is substituted by the

known field Bn
h,∗, the expressions on the right are bilinear forms that we can compute as matrices, yielding the

following linearized scheme: For each n ∈ [1, N ], find (un
h, pn

h , Bn
h, En

h ) ∈ Wh × Qh × V
edge

h × V node
h such that:

mh(δn
t uh, vh) + R−1

e ah(un
h, vh) − b(vh, pn

h ) + s( jn
h,∗,Π

0vh × Π
0Bn

h,∗) =
(
fn
h, vh

)
∀vh ∈ W0,h, (101a)[

En
h , Fh

]
node

+ (Π 0un
h × Π

0Bn
h,∗,Π

0 Fh) − R−1
m

[
Bn

h,∗, rot Fh

]
edge

= 0 ∀Fh ∈ V node
0,h , (101b)

[
δn

t Bh, Ch

]
edge

+
[
rot En

h, Ch

]
edge

= 0 ∀Ch ∈ V
edge

h , (101c)

b(un
h, qh) = 0 ∀qh ∈ Qh . (101d)

According to [25], we compute Bn
h,∗ for n ≥ 2 as the linear extrapolation between two successive approximations,

e.g., Bn−1
h and Bn−2

h , by setting that

Bn
h,∗ − Bn−1

h

∆t
= Bn−1

h − Bn−2
h

∆t
,
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or, equivalently, through the formula

Bn
h,∗ = 2Bn−1

h − Bn−2
h .

At the first timestep, i.e., n = 1, we guess B1
h,∗ = Bh,0 = Iedge(B0) through the initial solution B0. Finally, we

present a proof that the approximations to the magnetic field provided by solving the linearized VEM (101) is still

solenoidal. To this end, we first mention the standard argument that Faraday’s law from the continuous system

naturally enforces the divergence-free condition to the magnetic field. Indeed, from (5b) it holds that

∂

∂t
div B = div

∂

∂t
B = − div rot Eh = 0.

Thus, the divergence if B is constant in time, and since the initial magnetic field B0 satisfies div B0 = 0, then, this

property is preserved throughout the evolution of the system. The following theorem states that this property also

holds for the discrete magnetic field Bh that is solution of the linearized system (101).

Theorem 5.1. For every time-step n > 0 the magnetic field satisfies

div Bn
h = div Bn−1

h . (102)

and the discrete magnetic field Bh solving (101) is solenoidal if the initial condition of the continuous problem is

solenoidal, i.e., div B0 = 0.

Proof. The proof mimics the argument mentioned above. The discrete Faraday’s law (101b) implies that

rot
(
V node

h

)
⊂ V

edge

h . Therefore, we obtain the time evolution equation for Bn
h , which reads as

Bn
h = Bn−1

h + ∆trot Eh . (103)

Taking the divergence of both sides above yields the first theorem’s assertion, i.e., (102). Eq. (102) implies that the

divergence of the discrete magnetic field does not change in time. Then, repeating inductively Eq. (102) we need

only show that div B0
h = 0 to prove that Bh is a divergence-free field. To this end, we use the commuting property

of the diagram in Theorem 3.3, which implies that

div B0
h = div Iedge(B0) = Icell(div B0) = 0, (104)

and the second assertion of the theorem follows. �

The same argument can be used to prove that also the discrete magnetic field that solves the non-linearized VEM,

i.e., system (19), is a divergence-free field.

6. Well-posedness analysis

Throughout this section, we will fix the value of n ∈ N (and remove the superscript n) and we study the

well-posedness of the linearized VEM (101). To this end, we introduce two equivalent auxiliary problems and show

that they are inf–sup stable saddle-point problems.

To ease the exposition, we assume homogeneous Dirichlet boundary conditions, i.e., ub = 0 and Eb = 0 on ∂Ω .

We consider the functional space Xh = W0,h × V
edge

h × V node
0,h , endowed with the norm

|||ξ h |||2Xh
:= |||uh |||2∆t,∇ + |||Bh |||2∆t,div + |||Eh |||2∆t,rot, (105)

for ξ h = (uh, Bh, Eh) ∈ Xh , where

|||uh |||2∆t,∇ := ∆t−1|||uh |||2Wh
+ ah(uh, uh) + ∆t−1|||div uh |||2Qh

, (106a)

|||Bh |||2∆t,div := ∆t−1|||Bh |||2edge + |||div Bh |||2cell, (106b)

|||Eh |||2∆t,rot := |||Eh |||2node + ∆t |||rot Eh |||2edge. (106c)

Then, we consider the two bilinear forms ch, c0,h : Xh × Xh → R given by

ch(ξ h, ηh) := ℓ1(vh) + ℓ2(Fh) + ℓ3(Ch), (107a)

c0,h(ξ h, ηh) := ch(ξ h, ηh) +
[
div Bh, div Ch

]
cell

, (107b)
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for ξ h = (uh, Bh, Eh) and ηh = (vh, Ch, Fh), where

ℓ1(vh) = ∆t−1mh(uh, vh) + R−1
e ah(uh, vh) + s

(
Π̃Eh,Π

0vh × Π
0Bn

h,∗
)
+

s
(
Π

0uh × Π
0Bn

h,∗,Π
0vh × Π

0Bn
h,∗
)
, (108a)

ℓ2(Fh) = s
[
Eh, Fh

]
node

+ s
(
Π

0uh × Π
0Bn

h,∗, Fh

)
− s R−1

m

[
Bh, rot Fh

]
edge

, (108b)

ℓ3(Ch) = s R−1
m

(
∆t−1

[
Bh, Ch

]
edge

+
[
rot Eh, Ch

]
edge

)
(108c)

By introducing ℓ∗
3(Ch) = ℓ3(Ch) +

[
div Bh, div Ch

]
cell

, we can also redefine c0,h(ξ h, ηh) as

c0,h(ξ h, ηh) = ℓ1(vh) + ℓ2(Fh) + ℓ∗
3(Ch). (109)

The linearized VEM (101) is equivalent to the problem: Find ξ h = (ûh, Bh, Êh) ∈ Xh and ph ∈ Qh such that

ch(ξ h, ηh) − b(vh, ph) = 〈fn
h, vh〉 + ∆t−1mh(un−1

h , vh) + s R−1
m ∆t−1

[
Bn−1

h , Ch

]
edge

, (110a)

b(ûh, qh) = 0, (110b)

for all ηh ∈ Xh and qh ∈ Qh .

However, the saddle-point analysis is more naturally carried out for the following problem: Find ξ h =
(ûh, Bh, Êh) ∈ Xh and ph ∈ Qh such that

c0,h(ξ h, ηh) − b(vh, ph) = 〈fn
h, vh〉 + ∆t−1mh(un−1

h , vh) + s R−1
m ∆t−1

[
Bn−1

h , Ch

]
edge

, (111a)

b(ûh, qh) = 0, (111b)

for all ηh ∈ Xh and qh ∈ Qh .

So, we first establish the equivalence between problems (110) and (111). To do this, we show that the magnetic

field arising from the solution to (111) is solenoidal as stated in the following lemma.

Lemma 6.1. Let ξ h = (ûh, Bh, Êh) ∈ Xh and ph ∈ Qh solve (111) with an initial divergence-free magnetic field

Bh,0, i.e., div Bh,0 = 0. Then, the discrete magnetic field is divergence free, so it holds that div Bh = 0,

Proof. We prove the lemma inductively. We already know that div Bh,0 = 0 from the hypothesis; so, we are only

left to prove that div Bn−1
h = 0 implies that div Bh = 0. To this end, we test (111) against ηh = (0, Ch, 0) and

qh = 0 and we find that

s R−1
m ∆t−1

[
Bh + ∆trot Êh, Ch

]
edge

+
[
div Bh, div Ch

]
cell

= s R−1
m ∆t−1

[
Bn−1

h , Ch

]
edge

,

or, equivalently, that

s R−1
m

[
∆t−1(Bh − Bn−1

h ) + rot Êh, Ch

]
edge

+
[
div Bh, div Ch

]
cell

= 0. (112)

We set Ch = ∆t−1
(

Bh − Bn−1
h ) + rot Êh , and note that div Ch = ∆t−1 div

(
Bh − B−1

h

)
since div rot Êh = 0. We

substitute Ch in (112) and we find that

s R−1
m |||∆t−1(Bh − Bn−1

h ) + rot Êh |||2edge + ∆t−1
[
div Bh, div(Bh − Bn−1

h )
]

cell
= 0.

If div Bn−1
h = 0, we obtain

s R−1
m |||∆t−1(Bh − Bn−1

h ) + rot Êh |||2edge + ∆t−1|||div Bh |||2cell = 0.

which implies that |||div Bh |||cell = 0; hence, div Bh = 0. �

The result of the above theorem can be leveraged to show that both problems (110) and (111) are equivalent.

We present this result in the following lemma:

Lemma 6.2. Problems (110) and (111) are equivalent.

Proof. If ξ h = (uh, Bh, Êh) ∈ Xh and ph ∈ Qh solve the linear system (110), then Theorem 5.1 implies that

div Bh = 0. Therefore, from (107b) we find that

c0,h(ξ h, ηh) = ch(ξ h, ηh) ∀ηh ∈ Xh, (113)
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implying that ξ h and ph solve (111). Conversely, if ξ h = (uh, Bh, Êh) and ph solve the linear system (111), then

by Lemma 6.1 we know that div Bh = 0 and Eq. (113) is satisfied. Therefore, ξ h and ph solve (110). �

To prove that the equivalent formulation (111) is inf–sup stable, we need two technical lemmas that we state

and prove below.

Lemma 6.3. The bilinear form c0,h(·, ·) is continuous in the norm defined by (105) provided that s(α−1) < 1.

Proof. Let ξ h = (uh, Bh, Eh) and ηh = (vh, Ch, Fh) be arbitrary elements in Xh . A series of applications of the

Cauchy–Schwartz inequality yields that

∆t−1mh(uh, vh) ≤ ∆t−1/2|||uh |||Wh
∆t−1/2|||vh |||Wh

≤ |||uh |||∆t,∇ |||vh |||∆t,∇, (114)

ah(uh, vh) ≤ ah(uh, uh)
1
2 ah(vh, vh)

1
2 ≤ |||uh |||∆t,∇ |||vh |||∆t,∇ (115)

∆t−1
[
Bh, Ch

]
edge

≤ ∆t−1/2|||Bh |||edge ∆t−1/2|||Ch |||edge ≤ |||Bh |||∆t,div|||Ch |||∆t,div, (116)
[
rot Eh, Ch

]
edge

≤ ∆t1/2|||rot Eh |||edge ∆t−1/2|||Ch |||edge ≤ |||Eh |||∆t,rot |||Ch |||∆t,div, (117)
[
Eh, Fh

]
node

≤ |||Eh |||node |||Fh |||node ≤ |||Eh |||∆t,rot |||Fh |||∆t,rot, (118)
[
div Bh, div Ch

]
cell

≤ |||div Bh |||cell |||div Ch |||cell ≤ |||Bh |||∆t,div, |||Ch |||∆t,div. (119)

Continuity of the coupling terms comes about by similar arguments. To derive an upper bound for the two

representative terms in (108a) and (108b) we note that ‖Fh‖0,Ω ≤ C‖∇Fh‖0,Ω = ‖rot Fh‖0,Ω for every Fh ∈
V node

0,h ⊂ H 1
0 (Ω ), where the strictly-positive constant C is independent of ∆t and h. Thus, the first coupling term is

bounded as follows:

(uh × Π
0Bh,∗, vh × Π

0Bh,∗) ≤ ‖Π 0uh × Π
0Bh,∗‖0,Ω ‖Π 0vh × Π

0Bh,∗‖0,Ω

≤ ‖Π 0Bh,∗‖2
∞ ‖uh‖0,Ω ‖vh‖0,Ω

≤ C∆t2‖Π 0Bh,∗‖2
∞ ∆t−1‖∇uh‖0,Ω ∆t−1‖∇vh‖0,Ω

≤ C∆t2‖Π 0Bh,∗‖2
∞ |||uh |||∆t,∇ |||vh |||∆t,∇ .

The second coupling term is bounded as follows:

(Π 0uh × Π
0Bh,∗, Π̃Fh) ≤ ‖Π 0uh × Π

0Bh,∗‖0,Ω ‖Π̃Fh‖0,Ω

≤ ‖Π 0Bh,∗‖∞ ‖Π 0uh‖0,Ω‖Π̃Fh‖0,Ω

≤ ‖Π 0Bh,∗‖∞ ‖uh‖0,Ω‖Fh‖0,Ω

≤ ∆t‖Π 0Bh,∗‖∞ ∆t−1‖uh‖0,Ω‖Fh‖0,Ω

≤ C‖Π 0Bh,∗‖∞ |||uh |||∆t,∇ |||Fh |||∆t,rot.

The assertion of the lemma follows by noting that Π 0Bh,∗ = 2Π 0Bn−1
h − Π

0Bn−2
h and, thus, it is bounded at any

timestep since we can recursively assume that Π
0Bn−1

h and Π
0Bn−2

h are bounded, and using all the inequalities

above to derive an upper bound for the bilinear form |c0,h(·, ·)|. �

Next, we prove that the bilinear form c0,h is inf–sup stable on the kernel of the bilinear form b(·, ·).

Lemma 6.4. There exists a positive constant β > 0 independent of ∆t and h such that

inf
ξh∈X0,h

sup
ηh∈X0,h

c0,h(ξ h, ηh)

|||ξ h |||Xh
|||ηh |||Xh

≥ β, (120)

where X0,h =
{
(vh, Bh, Eh) ∈ Xh such that div vh = 0

}
.

Proof. To prove the lemma statement, we will prove that for every virtual element field ξ h ∈ Xh , there exists a

virtual element field ηh ∈ Xh such that

|||ξ h |||Xh
≥ β1|||ηh |||Xh

and c0,h(ξ h, ηh) ≥ β2‖ξ h‖2
Xh

(121)
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for some pair of positive constants β1 and β2, which are independent of h and ∆t . Relations (121) imply (120) by

assuming β = β1β2.

For any ξ h = (uh, Bh, Eh), we obtain a virtual element field ηh = (vh, Ch, Fh) satisfying inequalities (121) by

setting

vh = uh, Ch = 1

2
(Bh + ∆trot Eh), Fh = Eh . (122)

Indeed, from the definition of ||| · |||∆t,div, cf. (106b), and an application of the triangular inequality, we find that

|||Bh + ∆trot Eh |||2∆t,div = ∆t−1|||Bh + ∆trot Eh |||2edge + |||div Bh |||2cell

≤ 2∆t−1|||Bh |||2edge + 2∆t |||rot Eh |||2edge + |||div Bh |||2cell

= 2|||Bh |||2∆t,div + 2∆t |||rot Eh |||2edge. (123)

Then, we use (123) in the definition of |||ηh |||2Xh
, cf. (105), and we obtain

|||ηh |||2Xh
= |||uh |||2∆t,∇ + 1

4
|||Bh + ∆trot Eh |||2∆t,div + |||Eh |||2∆t,rot

≤ |||uh |||2∆t,∇ + 1

2
|||Bh |||2∆t,div + 1

2
∆t |||rot Eh |||2edge + |||Eh |||2∆t,rot

≤ |||uh |||2∆t,∇ + 1

2
|||Bh |||2∆t,div + 3

2
|||Eh |||2∆t,rot ≤ 3

2
|||ξ h |||2Xh

. (124)

The inequality chain (124) implies the first inequality of (121) by setting β1 =
√

2/3.

To prove the second inequality of (121), we first note that

ℓ1(uh) = ∆t−1|||uh |||2Wh
+ R−1

e ah(uh, uh) + s(Π̃Eh,Π
0uh × Π

0Bn
h,∗)

+ s(Π 0uh × Π
0Bn

h,∗,Π
0uh × Π

0Bn
h,∗). (125a)

ℓ2(Eh) = s|||Eh |||2node + s(Π 0uh × Π
0Bn

h,∗, Π̃Eh) − s R−1
m

[
Bh, rot Eh

]
edge

(125b)

ℓ∗
3

(
(Bh + ∆trot Eh)/2

)
= s R−1

m

2

(
∆t−1|||Bh |||2edge + 2[rot Eh, Bh]edge

+ ∆t |||rot Eh |||2edge + |||div Bh |||2cell

)
, (125c)

where we recall that ℓ∗
3(·) was introduced in (109).

Then, using the definition of the nodal norm based on the inner product (42) and noting that the stabilization

term SV (·, ·) is nonnegative, we obtain the estimate

|||Eh |||2node + (Π̃Eh,Π
0uh × Π

0Bn
h,∗) + (Π 0uh × Π

0Bn
h,∗,Π

0uh × Π
0Bn

h,∗)

+ (Π 0uh × Π
0Bn

h,∗, Π̃Eh)

=
(
Π̃Eh, Π̃Eh

)
+ S

V
(
(I − Π̃)Eh, (I − Π̃)Eh

)
+ 2(Π̃Eh,Π

0uh × Π
0Bn

h,∗)

+ (Π 0uh × Π
0Bn

h,∗,Π
0uh × Π

0Bn
h,∗)

≥
(
Π̃Eh, Π̃Eh

)
+ 2

(
Π̃Eh,Π

0uh × Π
0Bn

h,∗
)
+
(
Π

0uh × Π
0Bn

h,∗,Π
0uh × Π

0Bn
h,∗
)

=
(
Π̃Eh + Π

0uh × Π
0Bn

h,∗, Π̃Eh + Π
0uh × Π

0Bn
h,∗
)

= ‖Π̃Eh + Π
0uh × Π

0Bn
h,∗‖2

0,Ω . (126)

Next, we add Eqs. (125a), (125b), and (125c) together, and use the positive term resulting from (126) to obtain:

c0,h(ξ h, ηh) = ℓ1(uh) + ℓ2(Eh) + ℓ∗
3

(
(Bh + ∆trot Eh)/2

)

≥ ∆t−1|||uh |||2Wh
+ R−1

e ah(uh, uh) + s‖Π̃Eh + Π
0uh × Π

0Bn
h,∗‖2

0,Ω .

− s R−1
m

[
Bh, rot Eh

]
edge

+ s R−1
m

2
∆t−1|||Bh |||2edge

+ s R−1
m

[
rot Eh, Bh

]
edge

+ s R−1
m ∆t |||rot Eh |||2edge

+ s R−1
m |||div Bh |||2cell. (127)
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We note that:

‖Eh‖2
0,Ω ≤ 2‖Π̃Eh + Π

0uh × Π
0Bn

h,∗‖2
0,Ω + 2‖Π 0uh × Π

0Bn
h,∗‖2

0,Ω

≤ 2‖Π̃Eh + Π
0uh × Π

0Bn
h,∗‖2

0,Ω + 2‖Π 0Bn
h,∗‖2

∞,Ω2 ‖Π 0uh‖2
0,Ω

≤ 2 max
(
1, ‖Π 0Bn

h,∗‖2
∞,Ω

)(
‖Π̃Eh + Π

0uh × Π
0Bn

h,∗‖2
0,Ω + ‖uh‖2

0,Ω

)

≤ 2 max
(
1, ‖Π 0Bn

h,∗‖2
∞,Ω

)
max

(
1,

2

µ∗

)(
‖Π̃Eh + Π

0uh × Π
0Bn

h,∗‖2
0,Ω + µ∗

2
‖uh‖2

0,Ω

)
.

Let Ĉ−1 = 2 max
(
1, ‖Π 0Bn

h,∗‖2
∞,Ω

)
max

(
1, 2

µ∗

)
. Reversing the inequality above and using the left inequality in (28)

yields

∆t−1|||uh |||2Wh
+ ‖Π̃Eh + Π

0uh × Π
0Bn

h,∗‖2
0,Ω

≥ 1

2
∆t−1|||uh |||2Wh

+ µ∗
2

‖uh‖2
0,Ω + ‖Π̃Eh + Π

0uh × Π
0Bn

h,∗‖2
0,Ω

≥ 1

2
∆t−1|||uh |||2Wh

+ Ĉ‖Eh‖2
0,Ω

≥ min

(
1

2
, Ĉ

)(
∆t−1|||uh |||2Wh

+ ‖Eh‖2
0,Ω

)
.

We use this inequality in (127), simplify the terms involving
[
rot Eh, Bh

]
edge

, add |||div uh |||2Wh
= 0, and find that

c0,h(ξ h, ηh) ≥ β2

([
∆t−1|||uh |||2Wh

+ R−1
e ah(uh, uh) + |||div uh |||2Wh

]

+
[
∆t−1|||Bh |||2edge + |||div Bh |||2cell

]
+
[
|||Eh |||2node + ∆t |||rot Eh |||2edge

])

= β2

(
|||uh |||2∆t,∇ + |||Bh |||2∆t,div + |||Eh |||2∆t,rot

)
= β2|||ξ h |||2Xh

, (128)

with β2 = min
(

1/2, sĈ, R−1
e , s/2, s R−1

m /2), and using the norm definitions (105) and (106). �

Finally, we present the main result of this section.

Theorem 6.5. The linear problem in (101) is well-posed.

Proof. Lemmas 6.3, 6.4 Theorem 3.1 prove that the hypothesis of LBB Theorem are satisfied yielding as a

conclusion that (111) is well-posed. By Lemma 6.2 problems (110) and (111) are equivalent. The well-posedness

of one implies the well-posedness of both. �

We note that this well-posedness result exposes the saddle-point nature of the linear system. This result can

be leveraged to come up with efficient preconditioner following the framework laid out in [30]. This was done

for a similar MHD system in [31] using a Picard fixed point iteration as the choice of linearization. Efficient

implementation of this preconditioner will require a generalization of mass lumping. While it is unclear how this

can be done in general, in [36] some strategies are laid out in the context of elastodynamics. We also note that

these type of preconditioners have been used in 3D VEMs for problems in fluid flow as well as electromagnetics,

see [21]. Other physics-based preconditioners have been developed, see [19,20].

7. Numerical results

In this section we will present the results of a series of numerical experiments that shed some light on the

performance of the VEM developed and analyzed throughout this article. It is divided in three subsections: the

first one, Section 7.1, explores the rate of convergence; the second one, Section 7.2, relates to the preservation of

323



S. Naranjo-Alvarez, L. Beirão da Veiga, V.A. Bokil et al. Mathematics and Computers in Simulation 211 (2023) 301–328

Fig. 2. Test meshes used in the convergence test. The cells of the left-most mesh are perfect squares, the cells of the mesh in the center

are distorted hexagons and the right-most mesh is a Voronoi tessellation.

the divergence-free condition on the magnetic field; the last one, Section 7.3, presents the qualitative results of the

classical driven-cavity problem.

7.1. Convergence test

To assess, experimentally, the rate of convergence of our method we will study approximations made on the

computational domain Ω = [0, 1]2. We begin by setting the source functions, initial and boundary conditions in

accordance to the exact solution:

u =
(

cos(y + t)

0

)
, p = 1

2
sin 1 − x cos y, B =

(
0

cos(x + t)

)
, E = cos(x + t). (129)

We evolve the system until T = 0.2 and set the time-step parameter according to

∆t = 0.1h2 (130)

Our tests involve the three different mesh families illustrated in Fig. 2. We consider a family of square meshes

(left panel) for comparison; a family of smoothly-remapped polygons that may have distorted elements (central

panel); a family of Voronoi tessellations that can be affected by small edges. We will use four meshes of each

type differing in mesh size to show that as this parameter shrinks our numerical approximations approach the

manufactured solution (129). The results are summarized in Fig. 3. There we find evidence to conclude that our

method achieves an optimal convergence rate. This is to say that the pressure and electric field converge quadratically

in the L2−norm, the velocity field converges quadratically in the H 1-norm and the magnetic field converges linearly

in the L2−norm.

Another conclusion that we can draw from Fig. 3 has to do with the robustness of the method. Note that, on

each plot, the three convergence lines are very close to each other. This implies that regardless of the type of

mesh used in our simulations, we can expect the same error. Thus, the VEM we developed is not sensitive to

mesh-type.

7.2. The divergence-free condition on the magnetic field

We also tested to guarantee that the method does preserve the solenoidal nature of the magnetic field at the

discrete level. We can compute the piece-wise constant divergence over each cell K using the formula:

div Bh = 1

|K |
∑

e∈K

∫

e

Bh · n dℓ. (131)

Since the quantities required can be obtained from the degrees of freedom. The initial and boundary conditions

are the same as those given in Section 7.1. The results up to T = 1 are summarized in Table 1 and confirm the

divergence-free property in this time integration domain.
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Fig. 3. Error plots for the approximation to the velocity field, pressure, magnetic field and electric fields. The three different colored lines

represent the results attained in the different meshes. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

Table 1

Summary of the evolution of the square L2 norm of the divergence of the magnetic field on the three different types of meshes.

Time ‖ div Bh‖0,Ω on a square mesh ‖ div Bh‖0,Ω on a hexagonal mesh ‖ div Bh‖0,Ω on a Voronoi tessellation

0.00 4.234e−16 3.987e−15 4.220e−15

0.25 1.640e−13 3.716e−13 5.573e−13

0.50 2.896e−13 6.485e−13 9.958e−13

0.75 3.735e−13 8.338e−13 1.313e−12

1.00 4.169e−13 9.378e−13 1.514e−12

7.3. The driven cavity test

The driven cavity problem is a classic benchmark from computational fluid mechanics. In this experiment we

consider an electrically conducting fluid that is entirely trapped inside a container with hard walls. The container,

in our simulations, will be the square Ω = [0, 1]2. This fluid is subjected to an external magnetic field given by the

initial conditions

B0(x, y) = (1, 0). (132)

We borrow the set up from [25]. The source term in the momentum equation is neglected, i.e., f ≡ 0. The initial

and boundary conditions on the velocity field are given by

u0(x, y) = ub(x, y, t) = (v(x, y), 0) (133)
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Fig. 4. Streamlines of the velocity field for the driven-cavity test at different times starting with zero velocity at time T = 0.

where v ∈ C1(Ω ) is defined as

v(x, y) =
{

1 y = 1,

0 0 ≤ y ≤ 1 − h,
(134)

where 0 < h < 1 is the mesh-size. Finally, we will consider the walls of our cavity to be made from a perfect

conductor. This is reflected in the boundary conditions on the electric field

Eb(x, y, t) = 0 (135)

One way to interpret the test is to consider a stream of some fluid with magnetic properties running in a perfectly

laminar flow that flows left to right. Further consider a square cavity on its side (bottom) filled with the same fluid

initially perfectly still. Thus the initial velocity field of the fluid inside the cavity is zero everywhere except for at

the very top. The boundary conditions are also a consequence of the previously described stream. This influence

alone will result in the fluid inside the cavity to run against the solid walls of the cavity forcing the fluid to bounce

around at swirl. Thus, the result of the cavity test is that the streamlines of the velocity field will swirl around in

a vortex as presented in Fig. 4.

8. Conclusions

This paper presented a VEM design for a two-dimensional incompressible MHD model coupling electromag-

netics and fluid flow. The numerical method uses a set of projectors onto polynomial spaces that we can compute

using only the degrees of freedom of the solution approximations, thus avoiding computing them pointwise. The

continuous model involves several non-linearities. To treat them, we propose a linearization that stems from a
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linear extrapolation of the magnetic field as suggested in [25] for a FEM. The main advantage of this approach

is that we need to solve only one linear system at each time step. We proved that this method is well-posed by

studying each linear system. Precisely, we identified each system as a saddle-point problem, and the well-posedness

of the VEM follows from the more general BBL theory. The well-posedness guarantees a degree of stability in our

computations. Importantly, it may serve as a basis to design efficient preconditioners, one of the topics of our future

research in this field, as an application of the theory presented in [30]. It is worth mentioning that the development of

such preconditioners has already been successful in the case of MHD systems for a different linearization strategy,

see [31]. Finally, we presented numerical experiments that demonstrate the performance of this VEM, including

testing the convergence rate, the preservation of the divergence-free condition on the magnetic field, and qualitative

results of the classical driven-cavity problem.
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