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Abstract. We discuss an efficient numerical method for the uncertain kinematic
magnetohydrodynamic system. We include aleatoric uncertainty in the parameters, and then
describe a stochastic collocation method to handle this randomness. Numerical demonstrations
of this method are discussed. We find that the shape of the parameter distributions affect not
only the mean and variance, but also the shape of the solution distributions.

1. Introduction

Magnetohydrodynamics (MHD) is the study of an electrically-conductive medium flowing
through a magnetic field [1]. It is a multi-physics problem, governing the behavior of fluid
flow, electric fields and currents, magnetic fields, and their interactions. MHD has applications
in many different areas of study, such as astrophysics [2], medicine [3] and power generation [1].

These different applications operate under separate conditions, and thus varying assumptions
are made on the system. We focus on the power-generation capabilities of MHD, which involves
applying a large magnetic field to an electrically conductive plasma, artificially creating an
electric field [1]. Following related work to simplify computational complexity [4], we prescribe
the fluid-flow, and focus on the electromagnetic behavior of the MHD system. This model is
called the kinematic MHD equations, further described in Section 2 and [5].

We are ultimately interested in investigating the feasibility of real-time optimization of an
MHD generator. The parameters of the system, including fluid velocity, conductivity, electron
mobility, and ion mobility, need to be estimated via observations. This introduces aleatoric
uncertainty into the system, as the recovered parameters are then described by probability
distributions. Therefore, the optimal design of the generator must consider uncertainty, as each
random parameter is governed by some estimated distribution. Related work has investigated
the well-posedness of the forward problem under uncertainty [4]. We propose here a non-
intrusive approach to quantifying the uncertainty in the forward problem using a numerical
model, implemented in COMSOL [13], that has already been validated [5]. This will be
incorporated into an optimization under uncertainty problem in future work.

There are many different approaches for dealing with uncertainty in a system in general.
Although simplistic for implementation, other methods, such as Monte Carlo, come with a
high computational burden [6]. The method we utilize lessens the computational burden both
through the choice of points in which we sample the domain, and the way in which we choose
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to average the solutions. In the following work, we implement an approximation method called
stochastic collocation (SC) [7]. Utilizing a sparse grid with SC can result in a diminishing of
the ‘curse of dimensionality’ that often affects uncertainty quantification, while maintaining a
high degree of accuracy [8], which will allow the utilization of the model in the inverse problem
under uncertainty.

We begin by stating the well-posedness of the system under uncertainty. Following, we will go
into detail regarding the SC method and the random grid. Finally, we end with a numerical
demonstration of the robustness of the method for a variety of different situations, including
several complex joint probability distributions of the random variables within the system. These
demonstrations will also show that the expected solutions and deterministic solutions vary
significantly enough to warrant an approach to optimal design under uncertainty, and that the
shape of the solutions’ distributions depend on the parameters in the input distributions.

2. Model

For the purposes of this paper, we will not focus on any specific generator model or component,
and work in general with the MHD equations. Let the spatial domain be given by D C R?, open
with compact closure, and denote the boundary as 9D. We denote the random space (Q, H, p),
where € is the set of outcomes, H is a given sigma algebra of events, and p is some continuous
probability measure. As noted in the introduction, we work on the kinematic MHD system,
with prescribed fluid-flow, u. We assume that the induced magnetic field is negligible compared
to the applied magnetic field [9]. Under the generator model, we then prescribe conductivity,
o, applied magnetic field, B, electron-mobility, p., and ion-mobility, u;. We use the standard
definition of the {? norm of a vector in R?, as well as the hall parameter and ion-slip parameter,
eg forxe D we

Be(%,w) = pe(%,w)|B()|12, and B;(x,w) = pe (%, w)pi(x,w)|[B(x)[72-
Finally, we use the conductivity tensor, as defined in [5], given by

) — o (T 0eoW) g ilow) o)
Tl = o) (2 el - Gtimit)

where Z denotes the identity matrix in R3*3 and [B]x is the matrix form of the cross-product.
Invertibility of this matrix is guaranteed by the physical restriction pe, pt; > 0. We now turn to
defining the random solution spaces. First, define the random function space

1/2
Ly, () := {f Q- R’ /QfQ(w)p(w) dw < oo}, with norm || f||z, ) = (/Q A (w)p(w) dw) .

Next, define the deterministic solution spaces for the induced current density, J;, and the electric
potential, V, respectively

V(D) = {fe (L3(D))* : fn = — (F(uxB))n on aD}, W(D) = WD) = {f e HY(D) : T(f) = 0},
where n is a vector normal to the boundary and T'(f) is the trace of f on D. Finally we define

the random solution space for J; as the tensor product between the deterministic and random
function spaces, or

Vim V(D) x Loy(@) = {f: Dx Q2 R | f(1) € (Lapl@)®, flx,) € V]

Similarly, define W := W (D) x Lo ,(2) for V. We define the norm on V as the averaging norm,

11l = (E[1E1R])
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and define the norm on W to be the averaging norm using || - ||w. Also define the expected
value of a real-valued function to be E[f] := [, f(w)p(w) dw. With these spaces, the kinematic
weak-form MHD equations are given by: find J; € V,V € W that satisfy

E[/ZU”J-¢ /;vv-¢

/Ji-vw —E[/ (U(uxB))-Vz/}] Vi e W. (1b)
D D

We denote the form (1) the random weak form. In the following work, to guarantee well-
posedness, assume that Yw € €2, u(w),B are in (L*(D))? and bounded, and o(w), Bc(w) and
Bi(w) are positive, bounded, and real-valued on D. Then there exist unique solutions, J;, V), to
(1), that depend continuously on the parameters [4]. With the governing equations defined and
well-posedness established, we turn to the focus of this paper, the numerical approximation of
the solutions.

~E =0V eV, (1a)

—E

3. Polynomial Chaos

As is a standard approach when solving systems numerically, we would like to search for
our solutions on some finite-dimensional representation of the solutions spaces. We do so by
projecting onto the space of polynomials of random variables. We denote this projection a
polynomial chaos expansion. However, we require that this polynomial space has finitely-many
directions, which leads to the first major assumption required.

3.1. Finite-Dimensional Noise

To implement the SC method, we must first assume there are a finite number of random
variables describing the noise [10]. To this end, we assume that the only random variables in
the system are the real-valued random parameters e, i;, o, and u. Furthermore, assume each
are described by a finite number of independent random variables.

Let I' be the tensor product of the image of the events under each random variable. Let p be the
joint independent probability distribution. Then by the Doob-Dynkin’s Lemma [11], we have
that the solutions J;, V can be described by a finite number of random variables. The numerical
problem then equates to approximating J;(x,y), V(x,y) for x € D, y € . Analogous to the
above problem, we attempt to find J; € V x Ly ,(T'), V € W x Ly ,(I") that satisfy

/ 7 ' 3i(x,y) - dx,y) dx — / VV(x,y)  d(x,y) dx =0 Yo €V, for pac.yel (2a)
D D

—/ Ji(x,9)-Vp(x,y) dx = / 7(x,y)(u(x,y) xB(x))-Vi(x,y) dx V¢ € W, for p.a.e.y €T
D D (2b)

For notational convenience, we define V := VxLy ,(T") and W= W x Ly ,(T') as the new random
solution spaces for which we seek a numerical approximation. Note now that this is equivalent to
(1), only with the alternative probability space (I', H, p), where H is the appropriately defined
sigma algebra.

We now define the finite-dimensional (FD) random solution subspaces in which we search for
our approximate solutions. We begin with the spatial dimension. Define V};, C V to be the
standard finite element approximation to V', with quadratic polynomials, on some Delauney
triangular prism mesh ¢, with max side length h. Similarly define W), C W, on the same mesh
tp. For the random solution space, define Py, (I'x) C Lo ,(T'x) for k = 1,..., M as the span
of all polynomials on I'y of degree up to N, for Ny € N. In each direction I'y, we choose to
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Figure 1: Quadrature grids with level = 5. (From left to right) CC Full: 289 nodes, CC
Sparse: 65 nodes, Fejér Sparse: 55 nodes. Constructed using Burkhardt’s repository [12].

use the basis of Legendre polynomials {ri};yz’vo [7], which are orthogonal with respect to the

uniform density function, e.g., ka rirfg dy = d;1, where §;; is the Dirac delta function. Define
N = [N1,...,Ny]. Then we approximate our random Ly(T") space with a tensor product of

these polynomial spaces, i.e. Py(T) := H Pn, (T'x). Note that the dimension of Py is clearly

finite. The FD approximation to the randorn solution spaces are thus given by:
‘7}1,1\] =V}, ® Py(T") and Wh,N =W, ® Pn(T).

With these spaces, we now describe the SC method in detail, defining the finite-dimensional
polynomial chaos expansion.

3.2. Stochastic Collocation Method

We begin the collocation by solving the deterministic equivalent system, for fixed y, to (2).
These will then used to build an interpolatant. By solving for fixed y, we treat J? and V" as
mappings from I" to their respective deterministic spaces, i.e. JZ}-L T =V, VP T = W,
We perform the collocation by averaging the solutions sampled at the zeros of the polynomial
basis of Py, (I'y) for each k =1,..., M. By using the Legendre polynomials, we are able to use
the Clenshaw-Curtis (CC) or Fejér method of numerical quadrature, which guarantees nesting
of the zeros in each random direction [7]. Furthermore, we reduce the number of points, by
constructing a Smolyak sparse grid [8]. Although there is not a closed-form method of giving
the number of nodes required in each domain, we let Nj, denote the total number of points in
the I'y, direction. A more detailed discussion of the construction of such grids can be seen in
[8] or [6], while the error analysis for the full-tensor Clenshaw-Curtis grid can be seen in [4].
Figure 1 depicts the difference between a full-tensor and sparse CC and Fejér grid. For the
purposes of the grid construction, we assume a uniform max level in each random direction, i.e.
an isotropic sparse grid.

With this in mind, we let y,’gn" for mp =1,... ,N;w k=1,...,M be the mzh unique zero in the
direction T'y. To ease the notation, define m = [mq,...,mys| as an array of orders, and define
ym = [y, ..., yy/], that is, a collection of zeroes in each direction of I'. As well, define the

product of the polynomials of a given order in each direction as r,,(y) = [] r;nj.

Then the polynomial chaos expansions of J; and V are given by

N]M NI\I

JhN Z Z Ji (%, Ym)rm(y), and VhN(x y) Z Z V(X Ym)Tm (Y)-

mi=1 mpr=1 mi=1 myr=1
(3)



XXXII ITUPAP Conference on Computational Physics IOP Publishing
Journal of Physics: Conference Series 2207(2022) 012007  doi:10.1088/1742-6596/2207/1/012007

Table 1: Distribution parameters for the random parameters. Beta distribution shape
parameters recovered from mean and standard deviation, and then translation maps from [0, 1]
to the bounded space. Uniform distribution determines the bounds from the given mean and
standard deviation.

Parameter Distribution Lower Bound Upper Bound Mean Standard Deviation

Lbe beta 8/6 12/6 10/6 0.5/6
u, beta 1200 1800 1700 100
Lbe uniform 9.13/6 10.86/6 10/6 0.5/6
u, uniform 1527 1873 1700 100

Using this interpolation, we arrive at a deterministic form of estimating the expected values of
the true solutions. Using Gaussian quadrature to approximate the integral yields

Nas N
Z Z X ym ymﬁ”?(y), and E VhN Z Z V X ym ym)wzl(y)
mi1=1 may=1 m1=1 mpr=1
h e T ™ and o™ = w2 d the weights of the pol ial in each
where w}* = ‘H1 wy, and wy? = kaj (rkj )* dy, e.g. the weights of the polynomial in eac

direction. Note that we must include the density functions in the summations as well, to account
for the transformation from the given joint density function to a strictly uniform one, which is
required to use the CC or Fejér grid.

4. Numerical Experiments

With the collocation method established, and our choice of grid made, we now demonstrate the
robustness of the method. For simplicity, we consider only pe,u as the random parameters in
the system. Furthermore, the fluid flow is assumed to be in one direction, u = (u,,0,0). We
also assume that each is described by a single random variable and are spatially constant. For
demonstration purposes, we assume both random variables are described by either a uniform
or beta distribution, with a given mean and variance. The distributional choices are described
in Table 1.

The results from these numerical experiments can be seen in Figure 2. In these, we examine
a 1-D center line of the full 3-D model, running from channel inlet to outlet, of the electric
potential V. The random-grid and weights are implemented using Burkhardt’s repository [12],
while the deterministic solutions are computed with the COMSOL [13] model desribed in [5].
In Figure 2, we see a spatial dependence for the variation of the solution, with higher variances
seen at the inlet of the channel. However, despite having the same mean and variance, the
shape of the distribution clearly also had an impact on the distribution shape of the solutions,
as seen in the right plot of Figure 2. Thus, the shape and variance of the random variables
have a significant effect on the variance of the solutions, and inclusion of uncertain parameters
within the model is necessary for reliable simulations.

5. Conclusion

In this paper, we explored the numerical propagation of uncertainty within an MHD system.
We began by defining the governing equations for our model. We then introduced major
assumptions required to implement the SC method, including the FD noise assumption. Next,
we described the SC method itself, performing a FD polynomial chaos expansion of the solutions
as an interpolation in the random space. We also defined the interpolating points by using the
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Figure 2: Results from numerical experiments. (Left) beta distributions. Exp. V is the expected
value of V, solved for using the SC method at a level of 5. Det. V is the deterministic V), solved for
with the means of each random parameter. (Inset plot) Relative error defined as the normalized
difference between the Exp. V and Det. V. (Right) Difference between Exp. V and Det. V,
with variances included. Solid line indicates uniform distribution results, dashed line indicates
beta distribution results.

zeros of the orthogonal Lagrange basis of the random space, and further reducing the system
complexity by utilizing a CC or Fejér sparse grid. Finally, we demonstrated the effectiveness of
the SC method with two random variables within the system. It was shown that the inclusion
of uncertainty is warranted. The efficiency of the SC method with a sparse grid enables the
inverse problem to be considered under uncertainty, and allows for future work involving the
optimal design problem of the MHD system.
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