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ABSTRACT
Self-supervised learning (SSL) is now a serious competitor
for supervised learning, even though it does not require data
annotation. Several baselines have attempted to make SSL
models exploit information about data distribution, and less
dependent on the augmentation effect. However, there is no
clear consensus on whether maximizing or minimizing the
mutual information between representations of augmentation
views practically contribute to improvement or degradation
in performance of SSL models. This paper is a fundamen-
tal work where, we investigate the role of mutual informa-
tion in SSL, and reformulate the problem of SSL in the con-
text of a new perspective on mutual information. To this end,
we consider joint mutual information from the perspective of
partial information decomposition (PID) as a key step in reli-
able multivariate information measurement. PID enables
us to decompose joint mutual information into three impor-
tant components, namely, unique information, redundant in-
formation and synergistic information. Our framework aims
for minimizing the redundant information between views and
the desired target representation while maximizing the syner-
gistic information at the same time. Our experiments lead to
a re-calibration of two redundancy reduction baselines, and a
proposal for a new SSL training protocol. Experimental re-
sults on multiple datasets and two downstream tasks show the
effectiveness of this framework.

1. INTRODUCTION
Self-supervised learning (SSL) is among very successful
ML principles that are needless of huge labeled datasets [1].
While deep learning has shown tremendous success in many
domains and applications including computer vision [2], bio-
metrics [3], genomics [4], etc, data-efficiency has been the
focus of few problem domains such as deep active learning
[5, 6], and SSL [7]. Essentially, SSL frameworks consist
of two key elements, namely, loss function, and pretext task
[8]. Basically, the pretext task is a proxy task which is to be
solved using a supervisory signal from the unlabeled data,
guided by an objective (loss) function [8]. Loss functions on
the other hand provide guidance in learning the representation
of a given sample by comparing two or multiple augmented
views of the same sample with each other or with views of
other samples. In fact, early baselines known as contrastive
baselines were developed around the idea of contrasting aug-

mented views of a sample with each other (positive pairs)
and also with the views from other samples (negative pairs)
[9, 10, 11, 7, 12]. This type of baselines, however, suffer from
the problem of potential representation collapse, as well as the
need for large negative batches for effective representation.
Next generation of baselines emerged as non-contrastive or
negative pair-free baselines [13, 14], essentially eliminating
the need to contrast against negative views (negative pairs),
and also almost with no risk of representation collapse. There
is also a class of baselines known as clustering baselines
(see [15]), primarily based on clustering views of samples
in the latent space. Two most recent baselines are based on
redundancy reduction in representation of augmented views
of the samples [16, 17]. This class of approaches mainly sug-
gests that whitening the latent/embedding space of the a pair
of networks trained on augmented views of samples allows
for reducing redundant information in representation of the
sample [5]. Later theoretical work on whitening baselines
showed that the prime reason for their success is eliminating
another type of collapse, dimensional collapse [18, 19].

In this work, we assess how this whitening process unwit-
tingly eliminates the synergistic information along with re-
dundant information. This relates to a larger controversy on
how mutual information relates to learning the target repre-
sentation. Hence, in this paper, we start with investigating
long-standing ambiguity about the role of mutual information
in SSL. This eventually leads us to reconsider the problem of
mutual information between two variables (two views of a
sample) by reformulating it as joint mutual information be-
tween three variables (two views and the target representa-
tion). To elaborate on the controversy, the general idea is
to maximize the mutual information between the encoder-
representation of two augmented views for better represen-
tation; however some work [20, 21] suggested that more mu-
tual information does not necessarily improve the representa-
tion. A recent work based on Info-Min principle suggests that,
in fact, less mutual information between augmented views
along with more task-associated information would improve
the representation using a certain augmentation setting [22].
Another recent work [23] acknowledges the questionable role
of mutual information, and suggests that decomposing the es-
timation of mutual information by adding an extra term repre-
senting the condition on the image with some blocked patches
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would reinforce the role of mutual information. However, this
work is different from our work as they decompose the esti-
mation of two-variable mutual information, whereas we fo-
cus on three-variable joint mutual information decomposition
[24]. In fact, we seek out the solution in the theory of par-
tial information decomposition (PID). Eventually, this leads
us to decompose the joint mutual information into its integral
components, i.e., unique, redundant and synergistic compo-
nents as was first introduced in [25]. In the following, we
first state the problem and discuss the decomposition of joint
mutual information, then re-define SSL in this new context.
We elaborate on the SSL baselines that rely on redundancy
reduction, and propose a new training protocol for such SSL
models, then empirically evaluate the new protocol.

2. METHODS
2.1. Problem Statement
From an information theoretic perspective, the general,
though controversial, idea is that SSL frameworks gen-
erally tend to maximize the mutual information between
encoder representation f(.) of two augmented views x1

and x2 of sample data x upper bounded by I(x1;x2), i.e.,
I(f(x1); f(x2)) ≤ I(x1;x2) [23, 26]. This objective comes
with challenges including how to optimally generate x1

and x2 [22] for actionable mutual information, as well as
how to reduce redundant information in the representation
[17, 16]. To elaborate on the former challenge, Tian et al
[22] suggested an heterodox idea, indicating that the aug-
mentation process for generating views should be modified
in a way that will enable reducing the mutual information
between representation of positive views without affecting
task-relevant information, i.e., mutual information is not nec-
essarily task-relevant information. The later challenge, on
the other hand, suggests that whitening the latent/embedding
space would reduce redundant information. However, we ar-
gue that rather than focusing on mutual information between
the representation of augmented views’, the joint mutual
information between views’ representations and the target
representation could provide a possible way to resolve this
controversy. Hence, we take a different approach by formu-
lating the core of SSL in terms of joint mutual information
between views and the target representation . This leads

us to the observation that, even though rigorous redundancy
reduction through whitening such as in [16] drops redundant
information, it also risks reduction of useful synergistic in-
formation. This motivates us to design experiments to assess
this claim in Sec. 2.4, and then to offer a training protocol to
alleviate this loss of the synergistic element in joint mutual
information. Specifically, we find it necessary to revisit the
SSL principle from the joint mutual information perspective.
Therefore, we assess two most recent baselines, Barlow-
Twins [16] and W-MSE [17] which aim for redundancy
reduction. Below we elaborate on joint mutual information
(in contrast with mutual information) and then we investigate
two most recent baselines on whitening, which are also most

Fig. 1. Partial information decomposition in case of three variables.

relevant baseline to study redundancy and synergy.

2.2. Decomposing Joint Mutual Information
For the first time ever we consider the general SSL problem
setting from the viewpoint of PID, which has diverse practical
applications including in neuroscience, game theory and sta-
tistical learning. Hence, first we present the PID introduced
in [25] and then reformulate the SSL accordingly. We note
that PID is not the only approach to multivariate measure-
ment of information. However, it has multiple advantages in
our SSL context, including non-negative decomposition of in-
formation as well as separate and simultaneous measurement
of redundancy and synergy as distinct quantities [27]. This
new interpretation of SSL is primarily posed to address the
ambiguity in the role of mutual information in SSL.

The PID is an approach to a non-overlapping decompo-
sition of the joint mutual information between two sets of
variables, a set of two or more source variables carrying in-
formation about a target, as well as the single target variable.
This decomposition has been challenging as the proposed so-
lutions mostly consisted of negative information terms, until
a breakthrough work in [25] which introduced a non-negative
decomposition in terms of quantifying three components, the
unique, redundant, and synergistic information.

In its simplest form, suppose we have two source variables
S1 and S2 carrying joint mutual information I(T ;S1, S2)
about a target variable T . Hence each of the source variables
has mutual information with the target variable. Decom-
posing the joint mutual information into some non-negative
components, models information interaction to assess the
contribution offered by each source variable and combina-
tion of sources. According to [25], as shown in Fig. 1 the
joint mutual information between sources and target, could
be decomposed as three elements, unique, redundant, and
synergistic information. Unique information is the part pro-
vided by each source separately, redundant information is the
minimum information provided by each source (aka common
mutual information), and synergistic information is the infor-
mation provided only by a combination of S1 and S2 about
T , which neither alone can provide [24].

I(S1, S2 : T ) = Redundancy(T ;S1, S2)+

Synergy(T ;S1, S2) + Unique(T ;S1) + Unique(T ;S2)
(1)

Now consider the general setting of SSL, where at least two
random augmented views of a sample are generated. The goal
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is to contrast them in order to learn a representation that is
maximally informative about the original sample distribution,
while minimally informative about the augmentation. This
contrast in essence creates an information interaction between
the information of the variables which could be studied under
the PID framework. Here, the two augmented views could
be seen as source variables S1 and S2, whereas the original
sample distribution is the target variable T . In a more gen-
eral sense, T could be considered the class distribution rep-
resenting the invariant representation of the views of a given
sample, i.e., the class the data sample belongs to. Here, as
only redundant and synergistic information will be the results
of interaction in contrasting views in SSL frameworks, unique
information is not the subject matter of our study in this work.
Unique information would be the subject of non-contrastive
supervised learning on labeled data.

2.3. Redundancy Reduction Baselines
Interestingly, two most recent SSL baselines [17, 16] are re-
dundancy reduction (aka hard/soft whitening) baselines. Both
baselines take advantage of whitening (Cholskey whitening)
of latent/embedding space of a cross-correlation matrix com-
puted from augmented views of the same sample. Ermolov et
al [17] proposed a hard whitening method based on a recent
version of Cholesky decomposition [28, 29] for whitening
the latent space vectors. At the same time, Zbontar et al [16]
has gained more popularity by proposing as simpler process
called soft whitening, which essentially forces the cross-
correlation matrix of the embedding vectors of two networks
to identity matrix. The later approach, known as Barlow-
Twins, suggests that their whitening approach intuitively
results in redundancy reduction embedded in off-diagonal
elements of the cross-correlation matrix. We use both ap-
proaches for our investigation, and provide further insight
on synergy versus redundancy. However due to the lack
of space we only represent the theoretical reformulation of
Barlow-Twins under our framework, as it is more popular.
The following is the loss function of Barlow-Twins:

LBT ≜
∑
i

(1 − Cii)
2
+ λ

∑
i

∑
j ̸=i

(Cij)
2 (2)

Cij ≜

∑
m zA

m,iz
B
m,j√∑

m(zA
m,i)

2
√∑

m(zB
m,j)

2
(3)

where Cij are elements of the cross-correlation matrix C be-
tween the embedding vectors with element z of two networks
(twins), as presented in Eq. 3. λ as a weighting factor, origi-
nally set to 5× 10−3.
2.4. Assessing synergy and redundancy
In order to provide a context for PID with respect to SSL, we
find it necessary to design simple experiments around redun-
dancy reduction and synergy in Barlow-Twins (BT). Note that
as the augmented views for a sample generated under stan-
dard augmentation for SSL share lots of information in com-
mon (redundant or commonly known as mutual information),

BT attains desirable performance by implementing rigorous
redundancy reduction. However we argue that if the redun-
dant information was not as much, the performance would
drop sharply. To assess this, we apply heavy augmentation
on samples (such as [30]) to generate views with significantly
less redundant information, and then test BT performance on
these. The top-1 accuracy for CIFAR10 and CIFAR100 (un-
der experimental settings in next section) drops by %5.69 and
%5.13 respectively. Now under same heavy augmentation,
we re-calibrate BT by setting λ = 0.1 and also forcing off-
diagonal elements to a multivariate Gaussian N (0, 1) rather
than zero to allow them to better affect the learned represen-
tation. We gain accuracy, +%0.91, and +%0.81 compared
with the former case. This implies that the off-diagonal el-
ements not only carry redundant information, but also some
other type of information. Otherwise allowing more redun-
dancy by using multivariate Gaussian off-diagonal elements
would have degraded the performance. We argue that off-
diagonal elements do not only represent redundant informa-
tion, but also synergistic information. This is why when
we reduce the redundant information by implementing heavy
augmentation, BT’s rigorous redundancy reduction constraint
on off-diagonal elements of the cross-correlation matrix, de-
grades the performance by targeting synergistic information.
Below, we propose a training protocol that works even better
than forcing off-diagonal elements to multivariate Gaussian,
and present our experimental results on two baselines BT and
W-MSE in Sec. 4 to show the generality of our framework.

3. SYNERGY-BASED TRAINING PROTOCOL

We aim for re-calibrating the redundancy reduction in BT
[16] and W-MSE [17] toward protecting the most synergis-
tic information during the redundancy reduction process. In
its current form, BT approach does not seem to optimally re-
duce redundancy, without significant loss in the synergistic
component. Our approach consists of a serial pre-training
with first phase of dropping redundancy and second phase of
adding synergy. Hence, in this section, we define a new train-
ing protocol aiming for extracting more synergistic informa-
tion during the process of redundancy reduction which will be
implemented on both BT and W-MSE. We present this pro-
tocol aimed at more synergy and less redundancy via the use
of engineered off-diagonal elements, to show the effective-
ness of the joint mutual information decomposition in SSL.
As the augmented views of a sample under standard augmen-
tation share lots of mutual information, we find it practically
more efficient to update/replace the loss function of BT and
W-MSE after initial pre-training with the original loss func-
tion which solely aims at redundancy reduction. This is done
under a new training protocol with two phases of pre-training
in two different settings. First phase aims at reducing the re-
dundancy, while the second phase aims at adding to synergy.
Below we only present the new formulation for BT, however,
we provide the experimental results for both BT and W-MSE.
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A. Gaussian off-diagonal: After initial pre-training of
original model, here BT, the network is fixed, to resume the
training with an updated loss. For BT we set λ = 0.1 and re-
place the second term in Eq. 2 with λ

∑
i

∑
j ̸=i(Cij −Gij)

2

where Gij are the multivariate Gaussian elements of a square
matrix G of proper size. This allows the BT to better con-
sider the off-diagonal elements of the cross-correlation ma-
trix, which convey synergy and redundancy.

B. Reinforced off-diagonal: After initial pre-training of
original model, here BT, the network is fixed and the aver-
age CAve

ij = 1
n

∑
n Cij over all n samples will be computed.

Then training resumes with new λ = 0.1 and the second term
in Eq. 2 updated as λ

∑
i

∑
j ̸=i(Cij − CAve

ij )2 forcing each
off-diagonal element to its corresponding average.

4. EXPERIMENTS AND RESULTS
4.1. Experiments
Baselines: Our modification on BT and W-MSE [16, 17]
resulted in GSBT and RSBT, as well as GSW-MSE and
RSW-MSE respectively. We perform experiments using our
new training protocol under standard and heavy data augmen-
tation. We contrast it with most recent baselines including
Whitening-MSE (d = 4) [17], a non-contrastive baseline
BYOL [13], and a clustering-based baseline SwAV [15]. Fol-
lowing [17], latent spaces of all methods are L2-normalized.

Dataset and augmentation: We use six datasets includ-
ing ImageNet [31], CIFAR10, CIFAR100 [32], Tiny Ima-
geNet [33], ImageNet-100, and VOC0712. We use two sets
of augmentation protocols, standard and heavy. For standard
augmentation including random grayscaling, random crop,
color jittering, aspect ratio adjustment, and horizontal mirror-
ing, we follow the settings in [7], and for heavy augmentation
we follow the settings in [30].

Network & implementation details: For CIFAR10/100,
following the details of each baseline [7, 13, 14, 15, 17, 16],
we use ResNet18, while for ImageNet, Tiny ImageNet, and
VOC0712 we use ResNet50 [34], for the encoder and the
same projector head as [16], with the same size of projec-
tor output in all baselines. For VOC0712 similar to [16],
Faster R-CNN [35] is used. Optimization of all experiments
were done using Adam optimizer [36]. Pre-training of RSBT,
GSBT as well as RSW-MSE and GSW-MSE are performed
in two phases, a phase one (redundancy reduction) consists
of 500 epochs with batch size of 1024, which starts with a
learning rate of 0.15 for some 20 epochs and drops to 0.001
for the remaining epochs. Phase two (synergy addition) also
consists of another 500 epochs with the learning rate of 0.001,
with their modified loss functions. The weight decay in both
phases and all other experiments is 10−6.
4.2. Evaluation and results
Similar to former methods, we perform the standard super-
vised linear evaluation for classification task as well as de-
tection. Classification involves fixing the encoder weights
after pre-training and replacing the projector with a linear

classifier (fully connected followed by softmax), and train-
ing the linear classifier for some 500 epochs on evaluation
data, and then testing it. The classification resluts for Im-
ageNet, CIFAR10/100, Tiny ImageNet, and ImageNet-100
with different settings of proposed training protocol are pre-
sented in the Tables 1, 2, and 3, whereas the detection results
with VOC0712 is presented in Table 1. Results for modi-
fied BT using our protocol is presented in Table 1 and 2,
whereas the results for modified W-MSE using our protocol
are shown in Table 3. In both settings of data augmentation,
our method outperforms prior approaches. While heavy aug-
mentation degrade the performance of other approaches, it
even improves the RSBT, GSBT, as well as RSW-MSE and
GSW-MSE which shows robustness of our approach.

Table 1. Results of our methods on 2 downstream tasks – classification and
object detection. Top-1 classification accuracy with supervised linear evalu-
ation on ImageNet (Left), and Tiny ImageNet (Middle). Object detection
results for VOC0712 (Right). Used both standard and heavy augmentations.

Framework ImageNet (Class.) Tiny ImageNet (Class.) VOC0712 (Det.)

Standard Heavy Standard Heavy AAll A50

BYOL 74.3 60.5 (↓ ) 51.43 47.16 (↓ ) 56.8 82.5
SwAV 71.8 58.9 (↓ ) 51.03 44.25 (↓ ) 56.1 82.6
W-MSE4 73.1 61.6 (↓ ) 50.59 48.11 (↓ ) 56.9 82.4
B-Twins 73.2 61.9 (↓ ) 50.63 47.49 (↓ ) 56.8 82.6

GSBT 75.4 75.5 (↑ ) 51.54 52.08 (↑ ) 57.3 82.6
RSBT 76.1 76.5 (↑ ) 51.94 52.46 (↑ ) 57.8 82.7

Table 2. Top-1 classification accuracy with supervised linear evaluation
for CIFAR10/100 under both standard and heavy augmentations.

Framework CIFAR10 CIFAR100

Standard Heavy Standard Heavy

BYOL 91.81 84.11 (↓ ) 66.65 59.93 (↓ )
SwAV 92.11 85.25 (↓ ) 67.77 60.89 (↓ )
W-MSE4 91.89 87.74 (↓ ) 67.58 62.14 (↓ )
B-Twins 92.33 86.64 (↓ ) 67.47 62.34 (↓ )

GSBT 92.83 93.10 (↑ ) 67.81 68.23 (↑ )
RSBT 93.03 93.47 (↑ ) 68.11 68.83 (↑ )

Table 3. Experiments on another baseline, W-MSE, Top-1 classification
accuracy with supervised linear evaluation for CIFAR100 and ImageNet-100.

Framework CIFAR100 ImageNet100

Standard Heavy Standard Heavy

W-MSE4 67.58 62.14 (↓ ) 79.02 71.14 (↓ )
B-Twins 67.47 62.34 (↓ ) 77.93 72.57 (↓ )

GSW-MSE 68.26 68.51 (↑ ) 79.58 79.91 (↑ )
RSW-MSE 69.11 69.32 (↑ ) 79.93 80.66 (↑ )

5. CONCLUSION
We address the ambiguity regarding how mutual information
relates to better representation in SSL. To this end, we ex-
plore the use of PID in SSL and we re-define the formulation
of SSL problem in terms of joint mutual information between
three variables (two views of a sample and its original rep-
resentation). This allows for recognition of synergistic infor-
mation along with the redundant information and their role
in boosting performance. We design and perform extensive
experiments on the most recent redundancy reduction base-
lines, BT and W-MSE and instantiate the theoretical solution
in practice under a new training protocol.
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