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Ultra-Low-Power and Compact-Area Analog Audio
Feature Extraction Based on Time-Mode Analog
Filterbank Interpolation and Time-Mode
Analog Rectification

Subhajit Ray

Abstract—To address the power and area bottleneck imposed
by the frontend feature extractor relative to the backend neural
network in on-device keyword spotting (KWS), we propose two
time-mode analog signal processing (ASP) circuit techniques
showcased in an analog audio feature extractor chip that
advances the state of the art in power- and area-efficiency. Time-
mode analog filterbank interpolation uses digital XOR gates to
double the number of outputs of an analog bandpass filterbank.
Time-mode analog rectification uses a single digital XOR gate as
an analog full-wave rectifier. The 65 nm low power (LP) CMOS
chip uses only 80 nW and 0.53 mm? to extract from an input
analog audio signal, an output digital auditory feature vector
with 31 elements. This represents 18x and 3.3x improvements in
power/feature and area/feature, as compared, respectively, to the
most area- and power-efficient published analog audio feature
extractor chips. All the while, competitive classification accuracy
is maintained at >90% across ten keywords, as evaluated by
feeding the chip’s digital output directly into a small-footprint
software backend classifier.

Index Terms— Always-on, analog feature extraction, analog
signal processing (ASP), audio, audio recognition, feature extrac-
tion, keyword spotting (KWS), on-device, speech, speech recogni-
tion, time-domain circuits, time-mode circuits, ultra-low power.

I. INTRODUCTION

HE advent of wubiquitous computing calls for

speech-controlled devices that are dispersed everywhere
in the field. Such devices must be always-on in order to
always be listening; must host their speech recognition
on-device to avoid the energy, latency, and privacy issues
that would arise from communication with cloud datacenters;
and must be battery-powered to enable survivability in the
field. With large-vocabulary continuous speech recognition
as the ultimate goal, keyword spotting (KWS)—the task of
recognizing a single spoken word—serves as a preliminary
step. Therefore, the motivating application for this research is
always-on, on-device, battery-powered KWS.
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Fig. 1. Instead of the conventional ADC-DSP paradigm for KWS, we opt

for the less conventional ASP-ADC paradigm, motivated by its relative power
efficiency at the low SNRs (<50 dB) suitable for KWS. The scope of our
chip is the analog-domain feature extraction plus feature-rate ADC, which we
implement using the two proposed time-mode ASP circuit techniques.

For a decade-long lifetime on a typical coin cell battery
(SR927 60 mAh, 1.55 V, 9.5 x 2.7 mm), the power budget
is 1 ©W. However, the lowest-power published KWS chip that
is fully-integrated—receiving analog audio at its input, and
producing a keyword label at its output—exceeds this budget
by more than an order of magnitude, consuming 16.1 uW
for 91%-accuracy 10-KWS [1]. Adopting the conventional
analog-to-digital conversion plus digital signal processing
(ADC-DSP) paradigm depicted at the top of Fig. 1, [1]’s
frontend feature extractor—microphone pre-amplifier, ADC,
digital-domain feature extraction—is the power bottleneck,
consuming 2.6x more power than its backend classifier—a
digital neural network. Therefore, research into power-efficient
frontend feature extractors for KWS is justified.

More power-efficient than the conventional ADC-DSP par-
adigm is the analog signal processing plus ADC (ASP-ADC)
paradigm, originating in the 1980s [2] for audio, and shown
at the bottom of Fig. 1. ASP-ADC pushes the analog-digital
boundary downstream to just before the classifier, enabling
analog-domain feature extraction followed by not Nyquist-rate,
but rather feature-rate [3] ADC. For two reasons, first princi-
ples suggest that ASP-ADC should be more power-efficient
than ADC-DSP in the application of KWS audio feature
extraction.
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1) The feature-rate ADC should be lower power than
the Nyquist-rate ADC, because the audio feature rate
of 100 Hz [4] is slower than the audio Nyquist rate of
8 kHz.

2) The analog-domain feature extractor should be lower
power than the digital-domain feature extractor because,
more generally, ASP is more power-efficient than DSP
at the signal-to-noise ratios (SNRs) of <50 dB [3], [5],
[6], [7] suitable for KWS.

That ASP-ADC can be more power-efficient than ADC-
DSP for KWS audio feature extraction has been demonstrated
experimentally too: the most power-efficient ASP-ADC [8§]
is 12x more power-efficient than the most power-efficient
ADC-DSP (ADC [9], DSP [10]). However, area comparisons
have been largely ignored in the literature. In this example,
ASP-ADC is 4.4x less area-efficient than ADC-DSP—a dis-
advantage that will only worsen with continued technology
scaling. Therefore, achieving both power- and area-efficiency
in analog audio feature extraction, while maintaining classifi-
cation accuracy through a digital backend classifier, remains
a challenge.

Toward addressing this challenge, we use a time-mode ana-
log signal representation—where an analog value is encoded
along the time axis in a digital pulsewidth that is continuous-
valued—that enables digital gates to perform ASP, so as to
simultaneously harness the low-SNR power-efficiency of ana-
log, and technology scaling-driven area-efficiency of digital.
Case in point, in such a time-mode analog signal represen-
tation, the digital XOR gate serves as an extremely efficient
implementation of an analog subtraction merged with an
analog absolute value [11], a property used in the two proposed
time-mode ASP circuit techniques.

time-mode analog filterbank interpolation uses digital XOR
gates to double the number of outputs an analog bandpass
filterbank. This breaks the N filters — N features architec-
tural limitation of previous analog audio feature extractors,
improving it to N — 2N — 1. Time-mode analog rectification
uses a single digital XOR gate as an analog full-wave rectifier.
This alleviates the power dissipation and area occupancy
bottlenecks imposed by the rectifiers relative to the filters in
previous analog audio feature extractors.

The remainder of the article, which elaborates on the analog
audio feature extractor chip reported in [12], is organized
as follows. Section II overviews the chip architecture, Sec-
tion III develops time-mode analog filterbank interpolation and
time-mode analog rectification, Section I'V discusses their non-
idealities, Section V details circuit design, Section VI reports
experimental results based and discusses them, and finally,
Section VII recapitulates the key points of the article.

II. CHIP ARCHITECTURE

A. Overview
Fig. 2 shows the chip architecture. Tracing the signal flow
as follows.

1) The chip’s input analog audio signal is analyzed into its
bandpass components by a bandpass filterbank.
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2) Each voltage-mode bandpass component is converted
into a proportional time-mode analog signal by com-
paring it against a voltage-mode triangle wave using a
continuous-time comparator (Section II-B).

3) Each green XOR gate computes an absolute-valued
subtraction (Section II-C) between adjacent time-mode
bandpass components, merging two functions: the cre-
ation of an “interpolated” time-mode bandpass compo-
nent (Section III-A), and it full-wave rectification.

4) Each blue XOR gate computes an absolute value of a
“native” time-mode bandpass component to full-wave
rectify it (Section III-B).

5) The output duty cycle of each XOR gate is converted
into a proportional spike rate by an integrate-and-fire
(IAF), and a counter integrates this spike rate by count-
ing the number of spikes over a window as a digital
number, merging windowed integration with conversion
to digital—a technique discussed in more detail in [13].

Finally, the chip output is a digital auditory feature vector,

where each of its 31 elements is a 100 S/s number proportional
to the amplitude integrated over a 20 ms window with 10 ms
overlap in one of 31 sub-bands exponentially distributed across
the speech band from 100 Hz to 4 kHz. Stacking feature
vectors over time forms a digital auditory spectrogram.

B. Time-Mode Analog Signal Representation

Fig. 3 depicts the time-mode analog signal representation
used in the chip architecture. In particular, it shows that a
voltage-mode signal V (¢) is compared against a voltage-mode
triangle wave V() to produce a pulse-width modulated
(PWM) waveform Vpu (¢) of the naturally-sampled asymmet-
ric double edge flavor [14], which is interpreted to represent
a fictitious discrete-time analog signal T'[k] whose values
are equal to Vpwm(#)’s pulsewidths. Specifically, a voltage
of 0 maps to a (1/2)Tpwm-width pulse, while voltages of
+(1/2)VP and —(1/2)V[P map to Tpym-width and 0-width
pulses, respectively.

In this way, it is Vywm(?), or, equivalently, T'[k], that is
the time-mode representation of V (¢). Observing that T[k]’s
sampling frequency is inherited from V4i(f) and equal to
Vi (t)’s fundamental frequency fy, it follows that fi; must
be sufficiently faster than V(¢)’s bandwidth by some factor
in order for T[k] to represent V(¢) with no aliasing. Had
Vowm(?) been of the uniformly-sampled variety, that factor
would simply be 2; but because Vpwm(#) is naturally-sampled,
and because for this case a derivation of the factor is lacking,
we heuristically argue that it would be in the vicinity of the
number two. This, therefore, suggests that given the speech
bandwidth of 4 kHz, fy; should be set to at least 8 kHz.
However, recognizing that the target task is not perfect signal
reconstruction of the input, but rather spotting keywords in
the input, we surmise that some aliasing can be tolerated,
and therefore f; relaxed; we empirically find that relaxing
it from 8 to 4 kHz maintains greater-than-90% 10-word KWS
classification accuracy, as reported in Section VI-B. Finally,
although it is conceivable that the backend neural network
could learn the signal distortion caused by slope nonlinearity
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Fig. 2. Chip architecture, which combines the two proposed techniques of time-mode analog filterbank interpolation and time-mode analog rectification. The
input is an analog audio signal and the output is a digital auditory feature vector.
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Fig. 3.  Chip architecture uses a time-mode analog signal representation.
(a) Voltage-mode signal V (¢) is converted into a PWM waveform Vjwm(?)
by a continuous-time comparator. (b) PWM waveform Vpwm(t) is interpreted
to represent a fictitious discrete-time analog signal 7'[k] whose sample values
are equal to the widths of the pulses and sample times are equal to the times
of the centers of the pulses.

in Vi(?), we keep the absolute slope variation under a couple
percent out of good practice.

C. XOR Gate as Absolute-Valued Subtractor

In the time-mode analog signal representation, the digital
XOR gate functions as an analog absolute-valued subtractor,
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Fig. 4. In the time-mode analog signal representation of Fig. 3, a single
digital XOR gate (a) serves as an extremely efficient implementation of an
analog subtraction merged with an analog absolute value (b). The subtraction
part is used in time-mode analog filterbank interpolation, while the absolute
value part is used in time-mode analog rectification.

which [11] reports, but does not prove. Fig. 4(a) shows an XOR
gate, and Fig. 4(b) shows PWM input and output waveforms
that sketch a proof of this absolute-valued subtraction property.
Intuitively, when XOR gate’s two inputs are fed with two
different width pulses, it zeroes out the portion where the two
pulses overlap, which amounts to a subtraction of pulsewidths;
further, because the truth table of the XOR gate is symmetric
between its inputs, when its inputs are interchanged, the output
remains unchanged, implying the subtraction is absolute-
valued.

III. TIME-MODE ANALOG TECHNIQUES
A. Time-Mode Analog Filterbank Interpolation

1) Advantages: The architecture of previously published
state-of-the-art analog audio feature extractors [8], [15], [16],

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 27,2023 at 08:42:28 UTC from IEEE Xplore. Restrictions apply.



1028

5 T — T T T T T T
f_If,=1.279 e |H (§
— c2 o il fy I 1(J.w)l
% 0rQ,=Q,=3 —IHZ(Ju‘))I H
— filter order = 2 [Hy )l
3 o = H,(w) - H, (oI
2
= 10 J
<]
©
=-15 J
-20 - .
Frequency [Hz]
(@)
+
(b)
Fig. 5. Principle of time-mode analog filterbank interpolation. Subtracting

two “native” bandpass transfer functions, H;(s) and H(s): (a) creates an
“interpolated” bandpass transfer function, H»;(s) and (b) with the correspond-
ing signal processing-level diagram. Fig. 2 shows that the subtractor in (b) is
implemented using a XOR gate. In this way, digital XOR gates double the
number of bandpass outputs of an analog bandpass filterbank.

[17], [18] is essentially the same as it was 40 years ago [2],
requiring N bandpass filters to produce N bandpass features.
Time-mode analog filterbank interpolation breaks this N — N
limitation, improving it N — 2N — 1, by simply inserting
N — 1 digital XOR gates. For a target number of features, this
reduces filterbank power and area by 2x and 2x, and con-
sequently total feature extractor power and area by 1.6x and
1.7x, as compared to not using time-mode analog filterbank
interpolation, but still using time-mode analog rectification
(Section III-B).

2) Principle: Time-mode analog filterbank interpolation is
the result of a signal processing insight and circuits insight.
Fig. 5 depicts the signal processing insight, which is that the
subtraction between two “native” bandpass transfer functions,
H,(s) and H;(s), is another, “interpolated” bandpass transfer
function H,|(s) = H,(s) — H;(s) that has a magnitude
response |H, (jw)| with a center frequency f.»; that is inter-
polated between those, f.1 and f., of |[Hi(jw)| and |H>(jw)],
and is given by fo; = (fe1 fr2)'/?. In this design, f.1/fec2 1S
set to 1.279, as is required to exponentially distribute 16 center
frequencies from 100 Hz to 4 kHz. Given f./f» = 1.279,
the native Q; and Q, are set to 3, as this results in an
interpolated Q»; close in value at 2.7. Finally, second-order
transfer functions are used for H(s) and H,(s), as they have
been shown to be sufficient for KWS [8].

Fig. 2 depicts the circuit’s insight in its green shaded
part, which is that the necessary subtraction in Fig. 5(b)
can be implemented using the subtraction part of the XOR
gate’s absolute-valued subtraction.! Fig. 2 further shows that

'The absolute value part is used in time-mode analog rectification
(Section III-B).
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with the filters in Fig. 5(b) implemented as voltage-mode
filters, subsequent conversion to time mode is necessary to
interface the voltage-mode output of the filters with the
time-mode input of the XOR gate. More generally, starting
with N analog bandpass filters, time-mode analog filterbank
interpolation uses N — 1 digital XOR gates to compute analog
subtractions between adjacent bandpass filter outputs to create
N — 1 interpolated bandpass features, which, together with the
N native bandpass features from the N filters, make for a total
of 2N — 1 bandpass features.

B. Time-Mode Analog Rectification

1) Advantages: In general, analog audio feature extractors
are composed of filters followed by rectifiers, and previous
works suffer from the rectifiers consuming 3.3 x—19.8 x more
power than the filters [13], [19]. Time-mode analog recti-
fication replaces the conventional, complex, voltage/current-
mode rectifiers used in both with a single digital XOR gate.
This reduces rectifier power/area by 6.6x/2.8 x (including the
overhead of conversion to time-mode) as compared to [13],
and consequently total feature extractor power and area in this
work by 3.7x and 1.9x, as compared to not using time-mode
analog rectification (and, necessarily, not using time-mode
analog filterbank interpolation).

2) Principle: Time-mode analog rectification is the result
of the insight that the absolute value part of the XOR
gate’s absolute-valued subtraction can be used to compute an
absolute value, i.e., full-wave rectification. This is done by
feeding one input of the XOR gate with a 50% duty-cycle
squarewave, which, because it is the time-mode representation
of the number zero (Section II-B), causes the absolute-valued
subtraction that the XOR gate would otherwise compute,
to reduce to just an absolute value. Fig. 6 shows the XOR
gate’s transfer characteristic, from input pulsewidth to output
pulsewidth, along with exemplary waveforms. Note that the
frequency of the squarewave, Vi, (f), must be the same as
the frequency of the PWM input to the XOR gate, V>"" (),
which itself is inherited from and equal to the triangle wave
frequency, fui, which is 4 kHz.

Fig. 2 shows in the blue shaded part that, as with time-
mode analog filterbank interpolation, the XOR gate must be
preceded by conversion to time mode using a continuous-time
comparator to interface its time-mode input with the filter’s
voltage-mode output.

IV. NON-IDEALITIES

In principle, each and every non-ideality of each and every
circuit block contributes to the degradation of the quality of
the chip’s digital output features. However, at the nA current
levels and kHz input signal bandwidth made possible and
necessitated by the target KWS application, we empirically
observe that the dominant non-idealities are those of the
continuous-time comparators. In contrast, an example of a
negligible circuit block non-ideality is the delay of the XOR
gate. This is because the kHz input signal bandwidth allows
the PWM period to be as long as on the order of 100 us,
whereas the delay of an XOR gate is as short as on the order
of 10 ns (at the reduced 0.4 V digital supply the chip uses).
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Fig. 7. Dominant non-ideality in time-mode analog filterbank interpolation
is comparator offset (a), which causes the XOR gate to output nonzero
pulsewidths (b) despite zero chip input. This limits the stopband rejection
of the interpolated features. The rejection can be improved by realizing
each comparator with many sub-comparators, then selecting the pair of
sub-comparators that minimizes the XOR gate output duty cycle. Note that
the effect of offset is exaggerated for illustration purposes.

A. Time-Mode Analog Filterbank Interpolation

The dominant non-ideality in time-mode analog filterbank
interpolation is comparator offset. Fig. 7 shows that for zero
chip input, if a pair of adjacent comparators have different
offsets, then each comparator outputs pulsewidths slightly
different from the ideal (1/2)7,wm. This causes the XOR gate
to output nonzero pulsewidths proportional to the absolute dif-
ference between the two offsets, |Vos1 — Vos2|, despite zero chip
input. Therefore, the stopband rejection of the interpolated
features is limited by comparator offset. A guideline is to limit
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the comparator offset to a small fraction of the triangle-wave
amplitude V}?.

That the stopband rejection of the interpolated features is
limited by comparator offset is because at any frequency in
the stopband of an interpolated feature, the corresponding
bandpass filter is outputting nearly zero voltage, as if the chip
input were zero. And, so, an interpolated feature’s stopband
value is instead given, up to a proportionality constant, by the
interpolated feature’s corresponding green XOR gate’s zero-
chip-input—output pulsewidth, which itself is a function of the
comparator offset.

1) Calibration: Instead of increasing the area of the com-
parator by M x to reduce its offset by /M x—because doing
so would incur an M x power penalty to maintain the same
delay—the M x larger area can be used instead to realize M
copies of the comparator, of which the lowest-offset one can
be selected with the other M — 1 powered off. This technique
offers two simultaneous advantages. The first is that the offset
of the selected comparator is reduced by more than /M x;
for example, our MATLAB Monte Carlo simulations show
that for M = 8, the reduction is 1.84x larger2 than the
/8 x reduction that the alternative M x-larger-area comparator
would have. The second, and more significant advantage,
is that the selected comparator consumes M x less power
than the alternative M x-larger-area comparator would for the
same delay. The concept of “selection” versus “averaging” of
comparators was demonstrated as many as 20 years ago, that
time in the application of flash ADCs [20].

Although it is not the standard deviation of a single com-
parator’s offset, but rather the expected value of the absolute
difference between the two offsets in a pair of comparators,
E[|Vos2 — Vosil], that is sought to be reduced, selection can
still be applied. In particular, in this chip, each of the N =
16 comparators is composed of M = 8 sub-comparators, and
for each of the N — 1 = 15 pairs of adjacent comparators,
that pair of sub-comparators that minimizes the interpolated
feature output for zero chip input, is selected. This selection
of sub-comparators is performed once for each chip, consti-
tuting a calibration that compensates for comparator offset to
improve the stopband rejection of the interpolated features.

The calibration algorithm, which is executed OFF-chip by a
personal computer (PC), entails: 1) feeding the chip zero input;
2) for a particular pair of adjacent comparators, programming
the chip’s scan chain to sweep across the 8 x 8 possible sub-
comparators and, for each sweep point, measuring the corre-
sponding interpolated feature chip output; 3) identifying the
sub-comparator pair that minimizes this output; 4) repeating
this sweep-and-identify for all pairs of adjacent comparators;
and 5) re-programming the chip’s scan chain such that all
identified sub-comparators are selected.

We note that a viable alternative calibration technique
for compensating for the comparator offset is to make the
comparator’s input device widths programmable.

2The 95% confidence interval for this factor is [1.82, 1.87], as calculated
from a 10000-trial MATLAB Monte Carlo simulation.
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Fig. 8. Dominant non-idealities in time-mode analog rectification are
comparator offset and delay (a), which cause the XOR gate to output nonzero
pulsewidths (b) despite zero chip input. This limits the stopband rejection of
the native features. The rejection can be improved by trimming the duty cycle
and delay of the squarewave Vg to match those of the comparator output
Vemp- Note that the effect of offset and delay are exaggerated for illustration
purposes.

B. Time-Mode Analog Rectification

Given the selected sub-comparator, its offset still enters
into time-mode analog rectification, as does its delay, which
together are the dominant non-idealities in time-mode analog
rectification. Fig. 8 shows that comparator offset by itself
causes the comparator output Vimp(f) to have pulsewidths
slightly different from (1/2)T,wm, Whereas the squarewave
Vigr(t) it’s XOR’d against has (1/2)T,wm-wide pulsewidths.
This causes the XOR gate to output pulsewidths proportional to
the absolute offset, | V|, despite zero chip input. Fig. 8 further
shows that comparator delay by itself causes the comparator
output Venp(f) to be delayed with respect to the squarewave
Viqr(t) it’s XOR’d against. This causes the XOR gate to output
pulsewidths proportional to Tge, despite zero input. Therefore,
the stopband rejection of the native features is limited by both
comparator offset and delay. In addition to the guideline to
limit comparator offset to a small fraction of the triangle-wave
amplitude V[T, a guideline for comparator delay is to limit it
to a small fraction of the PWM period Tpwm.

That the stopband rejection of the native features is limited
by comparator offset and delay is because at any frequency in
the stopband of a native feature, the corresponding bandpass
filter is outputting nearly zero voltage, as if the chip input
were zero. And, so, a native feature’s stopband value is instead
given, up to a proportionality constant, by the native fea-
ture’s corresponding blue XOR gate’s zero-chip-input—output
pulsewidth, which itself is a function of comparator offset and
delay.

1) Calibration: Fig. 8(b) implies that trimming the duty
cycle and delay of the squarewave Vyq to match those of the
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comparator output Veyp would reduce the XOR gate output
pulsewidth. This trimming is performed once for each chip,
constituting a calibration that compensates for comparator
offset and delay to improve the stopband rejection of the native
features.

The calibration algorithm, which is executed off-chip by a
PC, entails: 1) feeding the chip zero input; 2) programming the
chip’s scan chain such that the sub-comparators identified from
the previous calibration procedure detailed in Section IV-Al
are selected; 3) for a particular native feature channel, sweep-
ing the duty cycle and delay of the OFF-chip-generated-square-
wave feeding the blue XOR gate in the channel and, for
each sweep point, measuring the native feature chip output;
4) identifying the duty cycle and delay that minimize this
output; 5) repeating this sweep-and-identify for all native
feature channels; and 6) programming the OFF-chip digital
pattern generator to generate square-waves with the identified
duty cycles and delays.

V. CIRCUIT DESIGN

Fig. 2 shows that the chip architecture has the following
circuit blocks in the signal path: filterbank, continuous-time
comparators, XOR gates, IAFs, and counters. With the XOR
gates and counters implemented with standard cells of the
high- V7 flavor and near-minimum size, so as to decrease static
leakage power and dynamic power, and the design of the IAFs
similar to that in [13] except that a charge pump is used
to convert the duty cycle of its input PWM waveform into
a current, the designs of the filterbank and continuous-time
comparators will be discussed.

A. Filterbank

The filterbank consists of 16 bandpass filters with center
frequencies, f.’s, exponentially distributed from 100 Hz to
4 kHz by biasing the filters with currents, [,’s, that are
exponentially distributed from 25 pA to 1 nA. This leverages
the fact that at the nA current levels the filters are biased
at, they are in deep weak inversion where (g,,/1;) is constant
at ~ 30 V~!, implying that g,, o I, and further implying that
fe X gm, provided f, « (g,,/C) and C is kept the same across
the bank. The necessary auxiliary circuit block that generates
the pA-to-nA-level exponentially distributed currents is based
on [21].

1) Filter: Fig. 9 shows the schematic of the bandpass filter,
which, because of its power- and area- efficiency, is based
on the super-source-follower (SSF) biquad, originally reported
at radio frequency (RF) in its lowpass form [22], and since
then re-purposed for audio in its bandpass form [13]. Because
the original SSF topology [13], [22] suffers from limited
common-mode and power supply rejection due to lack of a tail
current source, we add M., as is done in [23]. Because the
original SSF topology [13], [22] suffers from limited quality
factor Q due to transistor output resistances, we introduce
negative resistance via the cross-coupled pair (M3,, M3,,) to
boost it. The resulting expressions for the filter’s Q and f,
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are given by

8m1 8m2—83
0= ¢ G f _ | 8m1 8m2 — 8m3
—_ c — - .
&m2 8m3 > Cl Cz

C, GG /(Ci+Cy)

By choosing (C1C2)'2, (gmigm2)'? gm = &mo
(C2/C)Y2, g3 = (1/5)gma, the output integrated noise is
set to 0.13 mVys—0.32 mV s across the bank, the f, is set
to 100 Hz—4 kHz across the bank, the output integrated noise
is minimized, the quality factor is set to 3, and oscillations are
avoided, all respectively.

Further, because in deep weak inversion, the (g,,/l;) of
a device is constant independent of its W and L, both are
freed up as design variables. In particular, W - L is increased
to make the f, standard deviation small enough to ensure
with high confidence that the sequence of f.’s across the
bank is monotonic, and W/L is decreased to make the total
D-S leakage current in the lowest-frequency filter 10% of its
total bias current.

B. Continuous-Time Comparator

Fig. 10 shows the schematic of the continuous-time com-
parator. Its function is to compare the voltage-mode output of
the filter against a voltage-mode triangle wave (generated ON-
chip using the circuit from [24]) to produce a PWM waveform
interpreted as a time-mode representation of the filter output.
Because the comparison must be done continuously over time,
the comparator must be continouous-time instead of discrete-
time, and is therefore implemented as a multi-stage operational
transconductance amplifier (OTA). Because the filter output
and triangle wave are both differential, the comparator must
have a differential difference input. Because the comparator
must interface with a subsequent XOR gate, it must have a
single-ended, rail-to-rail output. Therefore, the comparator’s
first stage is a differential difference input/differential output
OTA, the second stage a differential input/single-ended output
wide-swing OTA, and the third stage is a cascade of inverters.

As IV explains, each comparator is composed of eight
sub-comparators, of which one is selected, while the other
seven are powered OFF. The Monte-Carlo-simulated random

Schematic of the bandpass filter, which has a differential input and differential output.

offset of the sub-comparator is [12.1 mV, 16.0 mV] with 95%
confidence (with the systematic offset an order of magnitude
smaller at 0.8 mV), which is further reduced after selection.
Because the delay of the sub-comparator limits the min/max
pulsewidths at its output, its bias current is set such that its
delay is a small fraction, less than 10%, of the 250 us PWM
period, at a value of 17 us. For this bias current, the simulated
input-referred noise is 0.3 mVys, turning out to be much
smaller than the input-referred offset.

VI. EXPERIMENTAL RESULTS

The 65 nm low power (LP) CMOS chip’s die photograph
is shown in Fig. 11(a). The chip occupies 0.53 mm? of active
area, with Fig. 11(b) showing that the dominant contributors
are the filters then comparators. The chip consumes 80 nW
from the 0.6 V analog and 0.4 V digital supplies combined,
with Fig. 11(b) showing that the dominant contributors are the
comparators then filters. The chip’s nW-level power consump-
tion is measured by inserting a MQ-sized precision resistor
between the OFF-chip supply voltage and chip’s supply pin,
then measuring a mV-level voltage across it to infer supply
current and thus power consumption, with the block-level
breakdown inferred from simulation.

The die is mounted in a 64-pin QFP inserted into a socket
that is soldered onto a PCB. The chip’s analog input is
generated using an Agilent 33220 A 20 MHz function genera-
tor, and converted from single-ended to differential on-board,
before being fed to the chip. The chip’s 31-feature x 8-bit
digital output is brought out on eight pins owing to an on-chip
serializer, and captured using an Arduino Due.

The chip’s scan chain is controlled using another Arduino
Due, and the chip’s reference squarewave inputs are generated
using a Digilent Digital Discovery pattern generator. All mea-
surement equipment and devices are controlled by a PC. Each
of the chip’s analog sub-systems—filterbank, comparator grid,
IAF array, triangle wave generator—receives its own uA-level
bias current from OFF-chip that once ON-chip is divided down
by approximately 1000x to the necessary nA level using the
current divider circuit from [21].
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A. Chip Characterization

The chip is characterized with a frequency response, as mea-
sured by feeding a differential analog sinewave into the chip,
and capturing and averaging its 31 digital outputs. Fig. 12(a)
shows the results for the 16 native features. Fig. 12(b) shows
the results for 15 interpolated features, which, because they
have bandpass shapes, confirms that time-mode analog filter-
bank interpolation indeed creates new bandpass features using
the native features. Furthermore, Fig. 12(c) shows that the
center frequencies of these new features fall in between those
of the native features, confirming that these new features cre-
ated by time-mode analog filterbank interpolation indeed have
center frequencies that are interpolated. Fig. 12(c) additionally
suggests that the native and interpolated center frequencies are
well-controlled in that their sequence is monotonic. Even so,
the interpolated center frequencies do slightly depart from their
ideal positions at the geometric means of the adjacent pairs
of native center frequencies. These departures are due to the
amplitude variations in the native features.

Indeed, both the native and interpolated features exhibit
variations in their passbands and stopbands. Their levels along
with their causes are summarized in Table I. Such variations
plague state-of-the-art analog audio feature extractors more

(b)

(a) Die photograph of the 65 nm LP chip. (b) Along with its area and power breakdowns.

generally. For example, [8], [15], [17] exhibit 7.0, 7.1, and
8.2 dB passband variations, respectively, whereas in this
work the passband variation is controlled to 5.4 dB. Despite
their variations, [8], [15], [17] all report competitive KWS
accuracies, as does this work to be shown in Section VI-B.
This suggests that the backend classifiers used in all these
works, this work included, are learning the variations in the
analog audio feature extractors. The extent to which variation
can be tolerated in the frontend analog feature extractor with
the backend digital classifier learning the variation remains
an open question, as does the dual question of the extent to
which the backend can be simplified by reducing the variation
in the frontend. Nevertheless, in this work, the variation could,
in principle, be reduced further by calibrating the IAF gains
through the TAF currents, as is done in [8].

B. KWS Demonstration

Having characterized the chip, it was then interfaced with
a software backend classifier for a KWS demonstration. The
Google Speech Commands (GSC) dataset was used [25]. Each
example in the dataset is a pair consisting of a 1-s long, 8 kS/s,
16-bit audio clip of a keyword, along with the keyword label.
We partitioned the dataset into training and test sets consisting
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TABLE I

SUMMARY OF LEVELS OF VARIATION IN NATIVE AND INTERPOLATED
FEATURES IN THEIR PASSBANDS AND STOPBANDS, ALONG WITH
THE CAUSES OF THE VARIATIONS

Native Interpolated
Passband| 5.4dB Filter gain varia- | 4.5dB Filter gain varia-
tion, IAF gain vari- tion, IAF gain vari-
ation ation
Stopband| 10dB| IAF gain variation 10dB| IAF gain variation,
Comparator offset

of approximately 2500 and 350 examples, respectively, for a
training-to-test ratio of 7:1. Each clip from the training set
was generated as an analog signal by a function generator
and fed into the chip, and the chip’s resulting digital output
spectrogram was captured, as shown in Fig. 13. The output
spectrogram together with the keyword label constitutes one
training example. This was repeated for all examples in the
training set for two chips, and the same was done for the test
set. The resulting two-chip training set was then used to train a
standard small-footprint software neural network [26]. Finally,
the two-chip test set was processed with the trained software
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neural network to produce the confusion matrix and bar chart
shown in Fig. 14. Even though the feature extractor exhibits
significant variation (Table I), and the max/min in a typical
spectrogram (Fig. 13) is modest at 35 dB, Fig. 14 shows that
the classification accuracy is 91.5% across ten keywords—
a competitive result that, as an indirect measure, proves the
quality of the chip-extracted features.

To evaluate the marginal accuracy increase owing to the
interpolated features, a software experiment was conducted.
The interpolated features were removed from and native
features retained in all spectrograms of the two-chip training
and test sets. Then, the software neural network was retrained
using the native-feature-only training set. Finally, the native-
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10-keyword demo < 10-keyword demo
This work ISSCC'22 [17] TCASI'21 [15] ISSCC'21 [16] JSSC'21 [8]
S|gna_| processing X Time-Mode Time-Mode Switched-Capacitor Nonhqe ar'+ Nonlinear
technique Normalization
Technology [nm] 65 65 130 65 65
Input/output format X analog/digital analog/digitala analog/analog analog/events analog/events
q q yes,
- ?
CHFEMpANE requlesy? [ noe No to interface with classifier no no
Num of bandpass #] ) 16 32 16 16
features
5 . o 80 2 800 (w/o off-chip ADC) o4 38
ower (W] 11040 1500 (w/ off-chip ADC?)
Area [mm?] 0.53 1.6 0.79¢ 0.72 0.90
25.0 (w/o off-chip ADC)
Power per feature [nW] 2.6 690 46.9 (w/ off-chip ADC) 5.9 2.4
Area per feature [mm2] 0.017 0.1 0.025° 0.045 0.056
Frequency Range [Hz - HZ] 100 - 4k 111 - 10.4k 30 - 8k 100 - 5k 100 - 5k
Bandwidth-normalized 66.2 (w/o off-chip ADC)
nW 9.5 1118 ) 17.5 7.0
power per feature’ (W] 124.1 (w/ off-chip ADC)
Feature rate [Hz] 100 62.5 100 100 100.0
Keyword spotting demonstrations
91.5% 86% 82.4 - 87.4% 90.2% 94.2%
0,
(REEEEy CEE %l on 10 words on 10 words on 10 words on 4 words on 1 word
yes, no, up, down,
Keywords used X left, right, on, off, ygs, no, up, down, left, ygs, no, up, down, left, N/A four
right, on, off, stop, go right, on, off, stop, go
stop, go
. off-chip software on-chip off-chip software off-chip hardware | off-chip software
Classifier L CNN RNN RNN SNN CNN

*for fair comparison, power of mic pre-amp subtracted from [16], [8]

Tcalu::ulated according to eqn used in [15]:

Paorm = Protal R R
Zincludes PFM decoder

1-r 4kHz i
= (Lo

)ﬂ

bestimate of 700nW for off-chip ADC is from Fig. 15 in [15], Cdoes not include area of necessary off-chip ADC

dincludes the 5-10% degradation from excluding the off-chip logarithm, as stated in sec. IV-B of [15]

Fig. 15.

feature-only test set was processed with the native-feature-
only-trained neural network, giving an accuracy of 90.8%.
Together with the native-and-interpolated-feature 91.5% accu-
racy, this implies that the interpolated features increase
the classification accuracy by 0.7% points, translating to
a 7.6% improvement in classification error. This suggests
that approaching 100% KWS accuracy becomes progressively
challenging; for example, improving from 90% to 91% is
likely more challenging than 89%-90%.

Nevertheless, the modest improvement calls into question
the value of the interpolated features. Toward answering this
question, a similar software experiment was conducted, but
this time the native features were removed and the interpolated
features retained. The resulting accuracy was 85.4%, which
although not leading edge, is still above 80% and, in fact,
is on par with the accuracy reported for the state-of-the-art
switched-capacitor-based analog audio feature extractor chip
plus software neural network reported in [15].

Taken together, we conclude that adding the interpolated
features to the native features only modestly increases accu-
racy, although using the interpolated features alone does give
adequate accuracy. Because this conclusion is specific to this
particular chip’s design point of N = 16 native features and
N —1 = 15 interpolated features, and keeping in mind that the
interpolated features alone give adequate accuracy, we surmise
that for a target accuracy of 90%, the hypothetical design point

Comparison table for state-of-the-art analog audio feature extractors with KWS demonstrations.

of N = 8 native features and N — 1 = 7 interpolated features
for a total 2N —1 = 15 features would be more power-optimal.

C. Comparison to State of the Art

Making fair comparisons among audio feature extractor
chips is challenging for several reasons.

1) There Is Little Consensus on the Type of Feature: For
example, [1] and [10] use Mel frequency cepstral coeffi-
cients (MFCCs), [13] uses Mel filterbank energies, [17]
uses Mel filterbank energies with subsequent logarithm,
and [16] uses Mel filterbank energies with a subsequent
“per-channel energy normalization.”

2) Even for the Same Feature Type, There Is Little Consen-
sus on its Parameters: For example, for Mel filterbank
energies, [27] uses ten filters ranging up to 2 kHz with
quality factors as low as 0.7, while [15] uses 32 filters
ranging up to 8 kHz with quality factors as high as 30.

3) There Is Diversity in the Architecture of the Backend
Classifier: For example, [8] uses a convolutional neural
network, [15] uses a recurrent neural network, and [16]
uses a spiking neural network.

4) There Is Diversity in the Recognition Task: For exam-
ple, [13] targets voice activity detection, [15] targets
KWS, and [1] targets speaker identification (in addition
to KWS).
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With this context, toward a fair comparison, we narrow the
focus to analog audio feature extractor chips with KWS
demonstrations, as compared in Fig. 15. Compared to the most
area-efficient previously published work [15], this work is 18 x
for power-efficient in terms of power/feature, while compared
to most power-efficient previously published work [8], this
work is 3.3x more area-efficient in terms of area/feature.
And, compared to the only other work that uses time-mode
ASP [17], this work is 265x and 5.9x more power- and
area-efficient in terms of power/feature and area/feature.

The primary reason for the extreme 265x power/feature
gap between this work and [17]’s is that for the task of
10-word KWS, [17] targets unnecessarily high feature extrac-
tor dynamic range of 55 dB, whereas we target 35 dB.
The secondary reason is that [17] targets unnecessarily high
bandwidth of 10 kHz, whereas we target 4 kHz. Nevertheless,
because the choices of dynamic range and bandwidth are
task-dependent, and because given any analog audio feature
extractor circuit architecture, its dynamic range and bandwidth
can be scaled, a figure of merit (FoM) that normalizes power
for dynamic range, bandwidth (as well as number of features)
is warranted. Using the FoM created by [17], our work’s FoM
is 95.2 dB, which is 2.1 dB higher than [17]’s 93.1 dB FoM.
However, the FoM created by [17] is not necessarily well-
defined; for example, it rewards arbitrarily short frame shifts,
although, for example, 1 ms frame shifts are known to be
worse for speech recognition than 10 ms frame shifts. A well-
defined FoM for analog audio feature extractors remains a
challenging and open question.

VII. CONCLUSION

An analog audio feature extractor chip is reported that
uses only 80 nW and 0.53 mm? to extract 31 features,
advancing the state of the art in power/feature and area/feature
by 18x and 3.3x, as compared, respectively, to the most
area- and power-efficient previously published analog audio
feature extractor chips. All the while, competitive classifi-
cation accuracy is maintained at >90% on ten keywords
using a small-footprint software backend classifier. The chip’s
power- and area-efficiency is due to the proposed time-
mode techniques, paving the way to broader adoption of
the technology-scaling-favored time-mode ASP paradigm,
in which analog information is encoded in the timing of digital
edges, and processed by digital gates.
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