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A B S T R A C T 

Astroph ysical g ases such as the interstellar-, circumgalactic-, or intracluster-medium are commonly multiphase, which poses the 

question of the structure of these systems. While there are many known processes leading to fragmentation of cold gas embedded 

in a (turbulent) hot medium, in this work, we focus on the reverse process: coagulation. This is often seen in wind-tunnel and 

shearing layer simulations, where cold gas fragments spontaneously coalesce. Using 2D and 3D hydrodynamical simulations, 

we find that sufficiently large ( �c s t cool ), perturbed cold gas clouds develop pulsations which ensure cold gas mass growth o v er 

an extended period of time ( �r / c s ). This mass gro wth ef ficiently accelerates hot gas which in turn can entrain cold droplets, 

leading to coagulation. The attractive inverse square force between cold gas droplets has interesting parallels with gravity; the 

‘monopole’ is surface area rather than mass. We develop a simple analytic model which reproduces our numerical findings. 

Key words: hydrodynamics – ISM: clouds – ISM: structure – galaxy: kinematics and dynamics – galaxies: evolution – galaxies: 

haloes. 

1  I N T RO D U C T I O N  

Gases in astrophysics are commonly multiphase, that is, phases 

with vastly different temperatures exist co-spatially. We know, 

for instance, that the interstellar medium is kept in a stable at 

three phase state due to thermal feedback processes (McKee & 

Ostriker 1977 ). More quiescent, the intracluster medium (ICM) or 

cirgumgalactic medium (CGM) are found to have two main phases, 

a T ∼ 10 4 K ‘cold’ and a T � 10 6 K hot phase (e.g. Tumlinson, 

Peeples & Werk 2017 ). Modeling these gases pro v es to be extremely 

difficult due to the corresponding different spatial scales, and large 

simulations struggle with convergence of the cold gas properties 

[Faucher-Giguere et al. 2016 ; Hummels et al. 2019 ; van de Voort 

et al. 2019 ; also see e.g. Nelson et al. ( 2020 ) showing the cold 

gas co v ering fractions are unconv erged]. This is worrisome as this 

phase corresponds to the fuel for future star-formation and is most 

commonly compared to observations [e.g. via quasar absorption line 

studies (Crighton et al. 2015 ; Chen 2017 ; Haislmaier et al. 2021 ), 

or emission measurements (Steidel et al. 2011 ; Hennawi et al. 2015 ; 

Arrigoni Battaia et al. 2019 )]. Thus, if a (mis)match to observations 

is found in such large scale simulations, it is unclear whether this 

is due to numerics/convergence or whether our understanding of 

the physical processes is incomplete. One of the key properties to 

constrain is therefore a characteristic size of this cold phase where –

hopefully – one would find convergence in at least the total cold gas 

mass and other rele v ant observ ables. 

Several past and current studies suggested ‘characteristic length 

scales’ of cold gas (Field 1965 ; Gronke & Oh 2018 ; McCourt et al. 

2018 ). Most of them focused on fragmentation processes leading to 

smaller cold gas ‘droplets’ as a result. Here, we want to focus instead 

� E-mail: maxbg@mpa-garching.mpg.de 

on coagulation between cold gas clouds leading to bigger structures. 

Waters & Proga ( 2019b ) have studied this recently, ho we ver – as we 

will show below – in a different regime where the coagulation speed 

is much slower than the one found in this work. 

There are several examples where cooling-induced coagulation 

appears to be important. For instance: 

(i) Cloud-Crushing. In wind-tunnel simulations of an isolated 

cold cloud subject to a wind, the cloud can initially have a ‘near 

death’ experience as cloud material is dispersed both streamwise 

and laterally (Armillotta et al. 2017 ; Gronke & Oh 2018 ; Grønnow, 

Tepper-Garc ́ıa & Bland-Hawthorn 2018 ; Kanjilal, Dutta & Sharma 

2020 ; Li et al. 2020 ; Farber & Gronke 2021 ), particularly for clouds 

close to the survi v al radius r crit (cf. Gronke & Oh 2018 , 2020b ). As 

the cloud becomes entrained and shear is reduced, ho we ver, cold 

gas fragments rapidly coagulate back to form a cometary structure. 

Subsequently, cloud fragments which are peeled off the side of the 

cloud are refocused back onto the downstream tail. 

(ii) Cloud shattering. In simulations of ‘cloud-shattering’, under- 

pressured clouds lose sonic contact with their surroundings due to 

rapid radiative cooling, and are crushed by surrounding hot gas 

(McCourt et al. 2018 ; Gronke & Oh 2020b ). Since cloud compression 

o v ershoots, the cloud subsequently re-expands, and flings small 

droplets into its surroundings. Ho we ver, for clouds with a final 

o v erdensity (after re gaining pressure balance with surroundings) χ f 

≤ 300, the outflowing droplets turn around and coagulate to once 

again form a monolithic cloud. 

(iii) Turbulence. In simulations of radiatively cooling multiphase 

gas in the presence of extrinsic turbulent driving, coagulation of 

cold gas clumps are frequent, and play a critical role in maintaining 

a scale-free power -law distrib ution d n /d M ∝ M 
−2 (Gronke et al. 

2022 ). While this could simply be geometric (i.e. collisions which 

occur because clumps are entrained in the turbulent velocity field), 
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there are hints of cooling-induced ‘focussing’. For instance, we see 

deviations from this power law at low Mach numbers, which will be 

presented in future work. 

In this work, we want to systematically study the effect of cooling 

induced coagulation. This short paper is structured as follows: in 

Section 2 we describe our (numerical) methods, in Section 3 we 

present our results, discuss them in Section 4 before we conclude 

in Section 5 . Videos visualizing our results can be found at https: 

// max.lyman-alpha.com/ coagulation . 

2  M E T H O D S  

For our hydrodynamical simulation, we use ATHENA 4.0 (Stone et al. 

2008 ) and ATHENA ++ (Stone et al. 2020 ). We use the HLLC Rie- 

mann solver, second-order reconstruction with slope limiters in the 

primiti ve v ariables, and the v an Leer unsplit integrator (Gardiner & 

Stone 2008 ). In both codes, we implemented the Townsend ( 2009 ) 

cooling algorithm which allows for fast and accurate computations 

of the radiative losses. We adopt a solar metallicity cooling curve to 

which we fitted a power-law – similar to the one used in McCourt 

et al. ( 2018 ; see their fig. 2). As these authors, we use a cooling floor 

of T floor = 4 × 10 4 K. This temperature floor is somewhat high, but 

in previous work we have shown that mass growth is not sensitive to 

it (Gronke & Oh 2018 ). We do not employ heating, but in reality the 

balance between heating and cooling sets this temperature floor. 

For this work, we use four different setups: 

(i) Isolated cloud. This 3D setup is similar to the one used in 

(Gronke & Oh 2020b ) i.e. we placed an isolated cloud of size ∼r cl 
1 

with temperature T cl and o v erdensity χ ≡ ρcl / ρh in a hot medium. 

While the setup is initially in pressure equilibrium (and static), the 

cloud will (rapidly) cool to T floor leaving r cl , χ , and T cl / T floor the most 

important parameters. The purpose of this setup is to systematically 

study the pulsation induced mass growth discussed in (Gronke & Oh 

2020a , b ; Tan, Oh & Gronke 2021 ). The large perturbation induced 

by loss of pressure balance with surroundings can occur when a large 

cloud cools rapidly, or if it is o v er-run by a shock. Our setup provides 

a gentler version of the violent loss of pressure balance seen during 

‘shattering’ (McCourt et al. 2018 ; Gronke & Oh 2020b ). 

(ii) Cloud-droplet. Here, in addition to a cloud as described abo v e, 

we place a droplet of size r d and temperature T d at a distance d 0 
away from the cloud. In some cases we also give the droplet an 

initial velocity v d away from the cloud. The purpose of this setup 

is to study the coagulation process of the cloud and the droplet. As 

we need to resolve the droplet sufficiently, we here resort to 2D 

simulations – but also carry out 3D ones to study the dimensionality 

dependence of our results. 

(iii) Multiple droplets. We place N d, 0 droplets with properties as 

described abo v e randomly within a radius d . Again, we perform 2D 

and 3D simulations with the purpose of studying the coagulation 

behaviour. 

(iv) Turbulent droplets. The placement is identical to the 3D 

‘multiple droplets’ setup described abo v e but we continuously stir 

the box in the same manner as in Gronke et al. ( 2022 ), that is, 

with decaying turbulence as well as continuous driving (to produce a 

roughly constant kinetic energy) at the scale of the simulation domain 

with ratio of solenoidal to compressive components of ∼1/3. 

1 As the cloud is non-spherical, the ef fecti ve radius is slightly larger. See 

Gronke & Oh ( 2020b ) for details. 

For all our setups, we strive to resolve the cold gas by at least ∼16 

cells to ensure convergent behaviour. We do, ho we ver, increase the 

resolution to ∼64 cells to check this explicitly in some cases (see 

Appendix A ; also see Tan et al. 2021 for an e xtensiv e discussion 

on resolution requirements). Furthermore, we employ ‘outflowing’ 

boundary conditions – except in the ‘turbulent droplets’ setup where 

we used periodic ones. 

For the setups involving a droplet, we also inject a advectable 

scalar field in the droplet furthest away from the origin, which we 

can use to track droplet motion. 

3  RESULTS  

3.1 Pulsations and mass growth in a static medium 

If a cloud does not fragment, it instead oscillates. These oscillations 

are accompanied by cold gas mass growth 2 . Analogous to our 

findings in Gronke & Oh ( 2020a ) we expect the mass growth to 

be 

ṁ ∼ v mix A cl ρhot (1) 

with a cold gas surface area A cl , and a surrounding hot gas density 

ρhot . The characteristic mixing velocity is given by 

v mix ∼ αc s 

(

t cool 

t sc 

)−1 / 4 

∼ αc s 

(

r cl 

� shatter 

)1 / 4 

, (2) 

where all the quantities c s , t cool , and t sc are e v aluated at the floor, 

that is, v mix is of the order of the cold gas sound speed, and α is a 

dimensionless quantity of order unity we calibrate to simulations. 

This scaling has been confirmed with high-resolution turbulent 

mixing layer simulations (Fielding et al. 2020 ; Tan et al. 2021 ). 3 

Fig. 1 shows examples of our simulations with different initial 

o v erdensities and temperatures ( χ , T cl , respectively), and different 

cloud sizes. The upper panel shows the cold gas volume from 

which we see that the oscillations take place on the order of the 

final sound crossing time t sc, floor ∼ r cl / c s, floor . The system essentially 

behaves like a damped, driven oscillator, where damping is due to 

hydrodynamic drag and driving is due to pressure fluctuations from 

cooling mixed gas. Initially, there is a transient as the amplitude of the 

oscillations decay (clearly visible in Fig. 1 ). Ho we ver, e ventually the 

system reaches an equilibrium between driving and damping. This 

is reflected in the fact that mixing induced mass growth is roughly 

constant for many sound crossing times (see Fig. A3 , where mass 

growth continues out to ∼t sc, cl ). Pulsations (and mixing induced 

mass growth) would cease for a purely damped oscillator. Similar 

pulsations and long term growth are observed in a cloud accelerated 

by a wind, even after the cloud is entrained i.e. the shear between 

the phases is negligible (Gronke & Oh 2020a ; Abruzzo, Fielding & 

Bryan 2022b ). In Gronke & Oh ( 2020a ), we dubbed these pulsations 

‘o v erstable sound waves’ as they occur on a sound crossing time of 

the cloud (cf. Fig. 1 ). 

The lower panel of Fig. 1 shows the mass growth rate (obtained 

from finite differencing of the cold gas mass) – which we normalize 

by the analytic estimate equation ( 1 ) (where we used for simplicity 

the initial cloud size A cl ∼ 4 πr 2 cl ). We see that for all the simulations, 

2 Note that the oscillations are crucial in order to obtain a converged mass 

growth, as we illustrate in Appendix A1 . 
3 In general, v mix ∝ u 

′ 
which depends on the geometrical parameters (such 

as the shear velocity). Ho we ver, for transonic motion as simulated here, u 
′ ∼

c s, cold (see discussion in sections 4.6 and 5.3.3 in Tan et al. 2021 ). 
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Figure 1. Evolution of pulsating clouds with various initial conditions. The 

upper panel shows the cold gas volume normalized by its initial value, 

the central panel the cloud pressure (normalized by the initial/ambient 

pressure), and the lower panel shows the mass growth rate normalized by 

the theoretically expected value. 

the values oscillate around ∼0.5, implying α ∼ 0.5. Moreo v er, mass 

growth at this rate keeps this value for many t sc, floor , which is longer 

than we naively expect the initial turbulence in the mixing layer 

between the hot and cold medium to last. Instead, mixing is facilitated 

and continuously supported by cooling induced pulsations (see also 

Appendix A1 and in particular Fig. A3 for a longer simulation run). 

On o v erview of the mass growth rate for a range of simulations 

is shown in Fig. 2 . Shown are simulations which did not shatter 

Figure 2. Mass growth rate of different pulsating clouds. Note that we dis- 

play simulations that do not fragment i.e. have either χfinal (10 −4 r cl / � shatter ) 
1/6 

≤ 300 or a perturbation of T cl / T floor < 1.6. We display simulations with 

different o v erdensities χ (colour coded) and resolutions (marker type) and 

a minimum perturbation of T cl / T floor > 1.1. The dashed line shows the 

theoretical expectation, and the error bars correspond to the fluctuation around 

the median (16th and 84th percentile). 

i.e. we excluded the simulations for which the maximum number 

of droplets was > 100 which occurs for χfinal = T cl / T floor χ � 

300(10 −4 r cl / � shatter ) 
1/6 (Gronke & Oh 2020b ). Note that for this 

plot we normalized the radii by the theoretical estimate by us- 

ing the o v erdensity, temperature, and cloud radius at the point 

at which the cloud loses sonic contact i.e. χ∗ = χ ( r cl /r 
∗
cl ) 

3 with 

r ∗cl = 
√ 

γ k B T 
∗

cl / ( μm p ) t cool ( T 
∗

cl , χ
∗ρhot ) (Gronke & Oh 2020b ). 

Fig. 2 shows that (i) the mass gro wth follo ws the scaling relation of 

equation ( 2 ) o v er � 5 orders of magnitude in cloud size and � 2 orders 

of magnitude in o v erdensity, (ii) for small clouds ( r ∗cl � 100 � shatter for 

χ � 100, larger for smaller o v erdensities) the mass growth is less 

than expected, and (iii) the high-resolution runs (of l cell / r cl = 64 i.e. 

a factor of 4 impro v ement compared to our fiducial resolution) are 

consistent with these findings. 

As stated abo v e, the clouds in the simulations shown in Fig. 2 

were ‘sufficiently’ perturbed to allow mass growth without shattering 

(i.e. keeping χfinal � 300 or T cl / T floor � 2). The impact of this initial 

perturbation – which sheds light on what ‘sufficiently’ exactly means 

– is shown in Fig. 3 . In this, we can see that (i) as seen before 

equation ( 2 ) is valid only for clouds r cl � � shatter which will pulsate 

and grow, 4 (ii) if T cl / T floor � 1.5, the mass growth does not depend 

on the extent of the perturbation, and (iii) for smaller perturbations 

( T cl / T floor � 1.5), the mass gro wth does gro w with the perturbation 

but even a value T cl / T floor ∼ 1.01 (representing our initial random 

fluctuations, cf. Section 2 ) does lead to a significantly larger mass 

growth than for an unperturbed cloud, where mixing is only due to 

numerical diffusion. 

As mentioned abo v e, the fact that the initial temperature lies 

abo v e the floor temperature might seem artificial and not occur 

in nature. Ho we ver, such an abrupt loss of pressure balance can 

occur in realistic scenarios (e.g. a thermally unstable gas cloud in 

the ICM/CGM or when a cloud is o v er-run by a shock). When the 

pressure difference is large, this leads to the well-known ‘shattering’ 

phenomenon (McCourt et al. 2018 ; Gronke & Oh 2020b ). One can 

interpret T cl > T floor as a way to simply perturb the system out of 

4 Note that Fig. 3 shows a small o v erdensity of only χ = 10 which we show to 

be able to explore a range of T cl / T floor values without χfinal � χ crit and, thus, 

shattering. We also note that r cl / � shatter shown in Fig. 3 is clearly a borderline 

case, thus, falling off the expected ṁ . 
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Figure 3. Mass growth versus the initial perturbation T cl / T floor . If r cl �
� shatter , ṁ is independent of T cl / T floor for T cl / T floor � 1.5. The minimum per- 

turbation shown with filled symbols is T cl / T floor = 1.01. As an unfilled black 

circle, we also show a simulation with T cl / T floor = 1 which does not grow. 

pressure balance which happens in reality through such mechanisms. 

In fact, such oscillations have been observed in simulations where 

cold gas is ram pressure accelerated; they are seen even in the later 

entrained state (Gronke & Oh 2020a ; Abruzzo et al. 2022b ). 

3.2 Cooling induced coagulation 

As we have seen in the previous section, the mass transfer rate from 

hot to cold medium depends on the size of the cold gas cloud, and 

is generally an important prediction to compare to observations. In 

the circumgalactic medium, for instance, characteristic scales of the 

cold ∼ 10 4 K gas are commonly inferred from absorption line studies 

(e.g. Schaye, Carswell & Kim 2007 ; Lan & Fukugita 2017 ; Churchill 

et al. 2020 ) or through emission properties (e.g. Cantalupo et al. 2014 ; 

Hennawi et al. 2015 ; Li et al. 2021 ) which indicate the presence of 

small � 100 pc clouds. This finding has sparked a range of theoretical 

studies. As mentioned abo v e, McCourt et al. ( 2018 ) suggested 

droplets of the size of � shatter ≡ min( c s t cool ) to be the outcome of 

a cooling and fragmentation process. Furthermore, a characteristic 

size of a cloud r cl � r cl , crit = v wind t cool , mix / 
√ 

χ is also required for it 

to survive ram pressure acceleration (Gronke & Oh 2018 ; Kanjilal 

et al. 2020 ; Li et al. 2020 ). These predictions can be compared to 

observations; they also set resolution requirements for larger-scale 

simulations. Using the example of the circumgalactic medium again, 

current cosmological simulations are not yet numerically converged 

in cold gas properties, which makes comparisons to observations 

problematic (e.g. Faucher-Giguere et al. 2016 ; Hummels et al. 2019 ). 

Fragmentation and mixing are processes lowering the size of the 

cloud. On the other hand, mass growth through cooling (as discussed 

in the last section), and coagulation of clouds are processes increasing 

the characteristic cloud size. Coagulation of cold gas clouds is seen to 

occur in larger scale simulations (Gronke et al. 2022 ). Here, we want 

to study the coagulation process due to cooling in highly idealized 

setups. 

3.2.1 Static 2D setup 

Fig. 4 shows the outcome of 2D simulations where we placed a 

single droplet of size r d ∼ 0.1 r cl at a distance d 0 . We perturb the 

Figure 4. Evolution of 2D simulations of a droplet located at d 0 / r cl merging 

with a cloud of radius r cl which cools from T cl to T floor . Top panel: Cold gas 

mass as a function of time. Central panel: Ratio of measured to predicted cold 

gas mass growth. Bottom panel: Velocity of the droplet as a function of time. 

The dashed lines in the upper and lower panel show the curves stemming 

from solving equation ( 5 ) with α = 0.5 which is marked as a black line in 

the central panel. See https:// max.lyman-alpha.com/ coagulation for videos 

of this setup. 

cloud and the droplet as in the previous section by initializing their 

temperature to T cl > T floor . As seen before, the cold gas mass growth 

(upper and central panel of Fig. 4 ) follows the expected evolution 

given by equation ( 1 ). Due to this mass growth, which is dominated 

by the cloud, the surrounding hot gas streams towards, and entrains 

the droplet. In the lower panel of Fig. 4 , we show the droplet velocity 

as a function of time. Note that the droplet gets accelerated both via 

ram pressure and momentum transfer due to cooling of the mixed 

material which take place on time-scales of t drag ∼ χr d / v hot and 

t grow ≡ m/ ̇m ∼ χ
r 

v mix 
, (3) 
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Figure 5. Evolution of 2D simulations of a droplet located at d 0 / r cl = 1.1, 

and an initial velocity v d, 0 merging with a cloud of radius r cl which cools 

from T cl ≈ 2 T floor . Top panel: Mass growth rate normalized by the expected 

value from equation ( 1 ). Bottom panel: Location of the droplet as a function of 

time. The dashed lines correspond to equation ( 5 ) with a velocity dependent 

αd ∼ ( v d / c s, floor ) 
1/2 . 

respectively. The ratio of these two time-scales is 

t drag 

t grow 
∼

v mix 

v hot 
∼

d 

r cl 
(4) 

where we used v hot ∼ v mix ( r cl / d ) (i.e. assuming the mass growth is 

dominated by the central cloud; see Section 3.2.3 for a multidroplet 

setup), which comes from mass conservation in 2D. This shows that 

we expect the momentum transfer via mass growth to dominate. 

The net force acting on the droplet, e v aluated in the droplet’s 

rest frame, is F ∼ ṗ ∼ ṁ v rel + m ̇v rel ∼ F drag ∼ ρh v 
2 
rel A cross , where 

the relative velocity between the droplet and the hot wind is 

v rel = v mix , cl ( r cl /d) + ḋ (note that ḋ < 0). F drag represents the hydro- 

dynamic drag force. We previously saw that F drag / ̇m v ∼ t grow /t drag ∼
r cl /d � 1 (equation 4 ). Thus, the equation of motion simplifies to 

m ̇v rel ∼ −ṁ v rel . Plugging in the expression for v rel , this gives 

m ( t) ̈d = −ṁ 

(

v mix , cl 
r cl 

d 
+ ḋ 

)

+ mv mix 

( r cl 

d 2 

)

ḋ (5) 

with ṁ ∼ 2 πv mix , d r d ρh as before. The third term on the right hand 

side is a fictitious force which arises from the transformation to 

the non-inertial wind frame (e.g. similar to Coriolis forces). Hence, 

for an entrained droplet, with t grow � t adv , and ḋ = −v mix , cl r cl /d , 

the acceleration is given wholly by the third term, d̈ = v hot ̇d /d = 

v mix 

(

r cl / d 
2 
)

ḋ . The first two terms represent acceleration due to 

entrainment process, which e x erts a force ∼ ṁ v rel . For completeness, 

the mass growth of the cloud and the droplets should also be taken into 

Figure 6. Evolution of 3D simulations of a droplet located at d 0 / r cl merging 

with a cloud of radius r cl which cools from T cl to T floor . The solid, dashed, 

and dotted lines show runs with o v erdensities of χ ∼ 50, ∼10 3 , and ∼10 4 , 

respectively. The runs marked with ∗ are the ones were we perturbed the 

droplet i.e. T d = T cl . Top panel: Ratio of measured to predicted cold gas mass 

growth. Bottom panel: Normalized velocity of the droplet as a function of 

time. 

account, by integrating ṁ ∼ 2 πv mix , cl r cl ρh as well (and analogous for 

the droplets), and using r 2 cl ∼ m cl / ( πρcl ). 

Note that v mix ∝ r 1/4 is a scale dependent quantity, and thus it 

is distinct for the cloud and the droplet. Ho we ver, equation ( 2 ) was 

derived in 3D (and with larger perturbations), so it is unclear if it 

holds here. The dashed lines in Fig. 4 shows the outcome of this 

analytic model and we see that (using α ∼ 0.5) it fits the numerical 

solution reasonably well. 

3.2.2 Static 3D setup including large χ

Fig. 6 shows the evolution of three dimensional runs of the same 

setup. Note that as here v hot ∝ d −2 the coagulation process is much 

slower compared to the 2D runs described abo v e. Nev ertheless, the 

droplets do mo v e towards the cloud and they do so approximately 

with the velocity expected. 

In Fig. 6 , we also show the results of a run with a much larger 

o v erdensity of χ ∼ 1000 (with dashed lines). We can note that (i) 

the mass growth follows the predicted scaling equation ( 1 ), (ii) the 

droplet’s motion is independent of χ . This might seem counter- 

intuitive since the acceleration (both via drag and mass growth) is 

to first order proportional to χ . Ho we ver, since t grow ∼ χr d / v mix and 
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t adv ∼ d /[ v mix ( r cl / d ) 
2 ], we have 

t grow 

t adv 
∼ 3 

( χ

1000 

)

(

r d /r cl 

0 . 1 

)3 / 4 (
r cl /d 

0 . 25 

)3 

; (6) 

the entrainment time is at most comparable to the advection time (and 

much shorter for the low χ case). Thus, the droplet can be treated as 

comoving with the wind, independent of overdensity . Interestingly , 

we find for large χ ( � 10 3 ) mass growth rates larger than expected 

from equation ( 6 ). We attribute this to increased fragmentation of the 

droplet, 5 which is clearly visible in slice plots. We defer more detailed 

analysis and better understanding of this boost in mass growth to 

future work. 

This is no longer the case once the growth time of the droplet is 

larger than the travel time i.e. setting t grow, d ∼ t travel yields a critical 

o v erdensity of 

χstuck ∼ β
d 3 

r 2 cl r d 

(

r d 

r cl 

)1 / 4 

(7) 

abo v e which the droplet should not mo v e. Here, β is a fudge factor 

encapsulating the deviation from the expected droplet’s mass growth 

rate discussed abo v e. Setting β ∼ 0.1 (consistent with the mass 

growths from the simulation), we obtain a χ stuck ∼ 3600 (for d ∼
4 r cl , r cl / r d ∼ 10). Fig. 6 also shows a simulation with χ ∼ 10 4 where 

indeed the velocity of the droplet v ∼ 0 (dotted red line in the lower 

panel of Fig. 6 ). 

3.2.3 Static multidroplet setup 

Instead of placing a single droplet next to a large cloud, we placed 

a large number of droplets randomly within a sphere. We again 

perturb them using an initial temperature of T / T floor ∼ 2. Due to 

their combined growth, these droplets will merge to form a single 

blob. Fig. 7 visualizes this evolution via density projections of a 3D 

simulation. As a proxy of how fast the droplets are coagulating, we 

use the droplet initially furthest away from the centre of the sphere. 

Figs 8 and 9 show this droplet’s distance to the centre of the sphere for 

2D and 3D simulations, respectively. An increased droplet number 

density implies more mass growth, and thus faster coagulation. We 

adopted our cloud-droplet model to this fog of droplets by using a 

cloud of mass m cl = N drop m drop i.e. considering the combined mass 

growth. This simple model (shown as dashed lines in Figs 8 and 9 ) 

reproduces the contraction process reasonably well. Discrepancies 

occur at extremely dense droplet placement when the free-streaming 

of the hot gas no longer occurs (i.e. shielding becomes important), 

and for small droplets r d � � shatter (thick lines in Fig. 9 ). As shown 

in Section 3.1 for these clouds the pulsations do not occur, leading 

to slower mass growth – and hence, the speed of coagulation – is 

significantly slower. 

3.2.4 Droplets with initial velocity (2D) 

Using this simple model of cooling induced coagulation, we can 

add additional complexities. Fig. 5 shows the evolution of 2D runs in 

which we impose an initial droplet velocity v d, 0 away from the cloud. 

This is akin to the situation for ‘shattering’ clouds when droplets 

fly away with high ( v d, 0 � afew × c s, cold ) velocities (Gronke & 

Oh 2020b ). With the model described abo v e, we can reproduce the 

5 We confirm that this fragmentation also occurs in a smooth v ∝ r −2 

background flow i.e. is not due to perturbations caused by the central cloud. 

droplets trajectory quite accurately but note that we use a velocity 

dependent fudge factor 6 for the droplet’s mass growth rate of αd 

∼ ( v d / c s, floor ) 
1/2 . Note that this non-constant αd is inconsistent with 

the growth used for the (pulsating) cloud thus far (cf. equation 2 ). 

Ho we ver, the clouds in these simulations undergo significant initial 

shear and fragmentation, due to its initial velocity. As such, it is 

roughly consistent with findings of higher resolution simulations of 

turbulent mixing layers showing a dependence of v mix on the shear 

velocity (Tan et al. 2021 ). 

In summary, the coagulation process of cold gas structures em- 

bedded within a hotter surrounding is driven by the cold gas mass 

growth in tw o w ays. First, in order to sustain the global cold mass 

growth, the hot medium is moving at a velocity v ∝ v mix ( r cl / d ) 
2 

in 3D towards the cold gas. And secondly, due to their own mass 

growth, droplets become rapidly entrained in this velocity field (cf. 

equation 4 ). We developed a simple model describing this system, 

which reproduces our numerical results reasonably well. Such a static 

setup does not represent, ho we ver, reality for most astrophysical 

systems. We therefore study cold gas mass growth and coagulation 

in a turbulent setup next. 

3.3 Coagulation in a turbulent medium 

As we saw in the last section, the coagulation velocity is ∼c s, c i.e. 

rather small. In typical astrophysical systems with turbulent velocity 

dispersion ∼c s, hot it seems at first sight that coagulation cannot 

‘win’ o v er dispersion. This is in line with simulations of multiphase 

gas in a turbulent medium which show fragmentation of the cold 

gas (e.g. Saury et al. 2014 ; Gronke et al. 2022 ; Mohapatra et al. 

2022 ). Ho we ver, since the dispersion is not a directed bulk motion 

like coagulation but instead more akin to a random walk, it is of 

interest to study the threshold v coag ∼ v disp . There are two interesting 

questions: (i) when does a system of clouds coagulate? (ii) when 

does an individual cloud fragment in the face of turbulence? 

Turbulent dispersion is a large area of research in fluid mechanics 

(for re vie ws see e.g. Sawford 2001 ; Salazar & Collins 2009 ) with a 

long history. Batchelor ( 1950 ) found that initially the mean separation 

of two particles in a turbulent medium scales as 〈 d 2 〉 ∝ ( εd 0 ) 
2/3 t 2 

whereas for later times 7 the particles ‘forget’ their initial separation 

and 〈 d 2 〉 ∝ εt 3 . In both cases, turbulent dispersion is superdif fusi ve, 

compared to the customary dif fusi v e e xpectation 〈 d 2 〉 ∝ t . 

Since we are interested in the dominant process initially – which 

go v erns the further evolution – we equate the velocity dispersion 

prior to the ‘Batchelor time’ (where the scalings change) to the 

coagulation velocity. In this regime, the mean dispersion velocity is 

given by 

v̄ ∼
d 

d t 
〈 d 2 〉 1 / 2 x ∼ av turb 

(

d 0 

L 

)1 / 3 

(8) 

where we have used ε ∼ v 3 turb /L , v turb ∼ M c c , hot is the driving 

velocity on the scale of the box and a ∼ 2 a numerical prefactor. 8 Note 

6 In 3D shearing layers, v mix ∼ ( u 
′ 
) 3/4 ( r / t cool ) 

1/4 scales with the turbulent 

velocity u 
′ 

rather than the cold gas sound speed, where u 
′ ∝ v 4/5 , giving 

v mix ∝ v 3/5 (Tan et al. 2021 ). Since we have not investigated this in 2D, and 

also the modification of droplet surface area by the initial velocity, we merely 

note that this fudge factor (which is ∼2 or less in our numerical experiments) 

works well. 
7 Specifically for t � t B ∼ d 

2 / 3 
0 〈 ε〉 −1 / 3 where d 0 and ε is the initial separation 

and the turbulent dissipation, respectively. 
8 Specifically, a = 

√ 
11 / 6 C 2 with C 2 being the Kolmogorov constant for the 

second order velocity structure function. Ni & Xia ( 2013 ) find C 2 ∼ 4.02. 
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Figure 7. Projections of a 3D simulations with N d = 50 droplets of size r d ∼ 500 � shatter placed randomly in a sphere with radius 15 r d (marked as white dashed 

line). The droplets coagulate on a time-scale of ∼40 t sc, cl . 

Figure 8. Evolution of 2D simulations of a fog of droplets randomly placed 

within r < 100 r d . Plotted is the distance of the droplet initially furthest away 

from the origin as a function of time. The dashed lines are our analytical 

estimate of this scenario using α = 0.1. 

Figure 9. Evolution of 3D simulations of a fog of droplets randomly places 

within r < d 0 . Plotted is the distance of the droplet initially furthest away 

from the origin as a function of time. The dashed lines are our analytical 

estimate of this scenario using α = 0.2. Note how the coagulation is very 

slow if r d � O( � shatter ) due to the lack of pulsations. 

that while equation ( 8 ) follows from the 〈 d 2 〉 ∝ t 2 scaling described 

abo v e, it simply represents the Kolmogorov scaling. 

If we e v aluate turbulence and coagulation at the scale of the cloud 

d 0 = r cl , and require v coag ∼ v mix > v̄ , this yields a critical Mach 

number, 

M coag ∼ α( r cl / � shatter ) 
1 / 4 

a( r cl /L ) 1 / 3 χ1 / 2 (9) 

∼ 0 . 16 
(

r cl / � shatter 
500 

)1 / 4 (L/r cl 
40 

)1 / 3 ( χ

100 

)−1 / 2 
(10) 

below which coagulation is stronger than dispersion and clouds 

should be more robust to fragmentation. In equation ( 10 ), we plugged 

in typical values and used the fiducial values a = 2 and α = 0.2 as 

suggested by the result presented in Section 3.1 and Gronke & Oh 

( 2020a ). In Section 4.1 , we also estimate critical Mach numbers 

below which clouds can coagulate (equation 21 ). The point we 

will show below is that although there is strong inverse square 

geometric dimming of coagulation forces, the critical Mach number 

for coagulation is still M ∼ v mix /c s , h ∼ 0 . 1( χ/ 100) −1 / 2 if cold gas 

co v ering fractions are high. 

Fig. 10 shows snapshots of simulations with multiphase, turbulent 

media. The boxes were initiated with decaying as well as driven 

turbulence to ensure approximately constant Mach number, and 10 

cold clumps were placed in them (with o v erdensity χ ∼ 100 and size 

r d ∼ 500 � shatter ; the numerical setup is identical to Gronke et al. 2022 

and we refer the reader to this paper for more details on the setup). 

The M ∼ 1 simulation shows the most fragmentation, whereas in 

the M ∼ 0 . 1 run, coagulation of droplets occurs. 

Fig. 11 shows this behaviour in a more quantitative manner. As 

the turbulent, multiphase medium evolves, the cold gas mass grows 

(if it is initially larger than some critical size; see Gronke et al. 

2022 ) – and fragments. The extent of this fragmentation depends on 

the competition between coagulation and dispersion. In Fig. 11 we 

show the results from six simulations with different Mach numbers 

and a single initial cloud of varying size (256 3 cells, L box / r cl = 40, 

and χ ∼ 100) which we analysed using a clump finding algorithm. 

In the r cl / � shatter ∼ 500 case, the M ∼ 1 and M ∼ 0 . 3 simulations 

fragment into � 100 clumps while in the runs with r cl / � shatter ∼ 5000 

this is only true for M ∼ 1. Note that in these simulations, we have 

kept L / r cl ∼ 40 constant. Our results are in line with the discussion 

in Section 4.1 , equation ( 10 ) which yields a critical mach number of 

M coag ∼ 0 . 16 and 0.28 for the smaller and larger cloud, respectively. 

Due to numerical constraints, we can only probe small dynamic 

temporal and spatial range. Ho we ver, we sho wed that coagulation 

does affect the dynamics of turbulent, multiphase media. Naturally, 

also other potentially observable properties such as the cloud size 

distribution are also affected. We will study this point in detail in 

future works. 
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Figure 10. Time evolution of turbulent multiphase boxes with different Mach numbers and 10 droplets of size r d ∼ 500 � shatter . While the M ∼ 1 case shows 

fast fragmentation, in the M ∼ 0 . 1 case some droplets have coagulated. 

Figure 11. Number of clumps versus the cold gas mass for six simulations of 

turbulent, multiphase media with different Mach numbers and cold gas sizes. 

The runs with lower Mach number and larger cloud sizes show stronger 

coagulation in line with equation ( 10 ). The lines are horizontally slightly 

offset for better visualization. 

4  DI SCUSSI ON  

4.1 Analogies between coagulation and gravity 

Consider two clouds separated by a distance d . Cloud 1 experiences 

a force due to cloud 2 given by 

F 1 , 2 ∼ ṁ 1 v coag , 2 ∼ ρh v mix , 1 A 1 v mix , 2 
A 2 

4 πd 2 
. (11) 

On the other hand, cloud 2 experiences a force due to cloud 1 given 

by 

F 2 , 1 ∼ ṁ 2 v coag , 1 ∼ ρh v mix , 2 A 2 v mix , 1 
A 1 

4 πd 2 
. (12) 

Thus, the two clouds e x ert equal and opposite attractive forces on 

one another, with magnitude scaling as the inverse square of their 

separation F ∝ d −2 . This reminds us of another extremely well- 

studied force – gravity – with the same characteristics, | F 1, 2 | = 

| F 2, 1 | ∼ Gm 1 m 2 / d 
2 . Despite the fact that gravity is relatively ‘weak’ 9 

and also decays as F ∝ d −2 , it is of course crucial in structuring 

mass distributions; despite the simple nature of Newtonian gravity, 

it gives rise to very rich and complex behaviour (e.g. Binney & 

9 For instance, the ‘gravitational fine-structure constant’ αG ∼ Gm 2 p / � c ∼
10 −38 is orders of magnitude weaker than the electromagnetic fine-structure 

constant, α = e 2 / � c = 1/137. 
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Tremaine 2008 ). This is in part because it is a long range attractive 

force without any shielding; unlike electromagnetism, there are no 

ne gativ e charges. Similarly, cooling-induced coagulation is a wholly 

attractive force with no negative charges. 10 While there are important 

differences, 11 the parallels between gravity and coagulation are 

strong enough to be a useful avenue for thinking about this problem. 

From examining equations ( 11 ) and ( 12 ), we can identify the 

analogue of gravitational mass to be area m → A , and the analogue 

of the gravitational constant to be a peculiar form of kinetic energy 

density 12 G → ρh v 
2 
mix . Already this tells us about an important 

difference between gravitational and coagulational dynamics. Mass 

is conserved under fragmentation and coagulation. Ho we ver, area is 

not conserved: for instance, if one ‘shatters’ a cloud into tiny droplets 

of radius r d , with the number of droplets N ∼ ( r cl / r d ) 
3 , then the area 

increases by a factor Nr 2 d /r 
2 
cl ∼ r cl /r d , so that coagulation becomes 

significantly more important. 13 This surface area dependence is key 

to the strong modulation of coagulation; ‘shattering’ (which rapidly 

increases the surface area to mass ratio) boosts the importance of 

coagulation, while mergers/coagulation itself (which decrease the 

surface area to mass ratio) reduces the importance of coagulation. In 

a multibody system, each cloud is weighted by area, not by mass, 

and we can follow the motion of an extended distribution by writing 

an equation for the ‘centre of area’ 〈 r CA 〉 = 
∫ 

r d A / 
∫ 

d A , rather than 

the centre of mass 〈 r CM 〉 = 
∫ 

r d M / 
∫ 

d M . We can also think about 

the analogue of the free fall time, t ff ∼ 1 / 
√ 

Gρ. Consider the total 

forces acting on a single cloud of mass m cl and area A cl at distance d 

to the ‘centre of area’ of a collection of clouds with total area A ( < 

d ) in a sphere with r = d , 

m ̈d ∼ ρh v 
2 
mix 

A cl A tot ( < d) 

4 πd 2 
∼ ρh v 

2 
mix f A A cl (13) 

where f A ∼ A tot ( < d )/4 πd 2 , the number of times a random line of sight 

with impact parameter less than d to the ‘centre of area intersects a 

surface, 14 we can obtain the coagulation time for a cloud embedded 

in a collection of clouds: 

t coag ∼
(

χ

f A 

)1 / 2 
( r cl d) 1 / 2 

v mix 
. (14) 

Note the appearance of r cl in t coag : there will be mass se gre gation in 

coagulational collapse, with larger clouds falling to the centre more 

slowly . In gravity , we have the principle of equi v alence, due to the 

equi v alence of gravitating and inertial mass: F = ma = mg , so a = 

g , independent of mass – feathers and rocks fall at the same rate in 

a v acuum. Ho we ver, for coagulation, F = ma = m coag g coag ∝ Ag coag , 

so a ∝ A / m ∝ 1/ r ; larger objects fall more slowly. 15 

We can compare the coagulation time equation ( 14 ) with the 

results shown in Fig. 9 , where N cl = 50 clouds of size r cl are 

10 There can be geometric shielding in an optically thick flow (where a cloud 

blocks hot gas and thus modulates hot gas flow behind it), but we will ignore 

this complication for now. 
11 For instance, smaller signal speed: coagulational forces propagate at the 

sound speed of hot gas, and time delay effects can be important. 
12 Note that v mix ∝ r 1/4 is size dependent. We adopt a value 〈 v mix 〉 which is 

understood to be averaged over the size spectrum of cloudlets in the system. 
13 As discussed in Section 3.1 , this only holds for sizes down to ∼� shatter after 

which no pulsations – and thus no ‘cooling induced’ coagulation – will occur. 

Ho we ver, mixing, cooling (and coagulation) due to external factors such as 

shear flows can still play a role for these tiny fragments. 
14 Similar to optical depth, f A > 1 is possible, which boosts the importance 

of coagulation and decreases t coag . 
15 Of course, mergers and fragmentation will modulate t coag of a cloud, just 

as evolving density modulates t ff ∼ 1 / 
√ 

Gρ. 

randomly distributed within a sphere of size d = 15 r cl . This gives 

f A ≈
∫ 

d V n cl πr 2 cl / (4 πr 2 ) ≈ N cl ( r cl /d) 2 , where the cloud number 

density n cl ≈ 3 N cl /(4 πd 3 ). Inserting into equation ( 14 ) (and using for 

simplicity v mix ∼ c s, c ) yields 

t coag 

t sc , cl 
∼ 80 

( χ

100 

)1 / 2 
(

N cl 

50 

)−1 / 2 (
d/r cl 

15 

)3 / 2 

(15) 

which is a factor of 2 larger than the simulation result of t coag / t sc, cl 

≈ 40. This is good for an order of magnitude estimate, since clouds 

accelerate as they fall towards the centre ( F coag ∝ d −2 ). Moreo v er, 

Fig. 9 shows rough agreement with a t coag ∝ N 
−1 / 2 
cl as well as the 

t coag ∝ d 3/2 scaling. 

In practice, the clouds, or the hot medium itself, will often be 

endowed with some relative velocities, which can cause the clouds 

to disperse. It would be nice to have some rule of thumb or intuition 

as to when the system coagulates or when it flies apart. In self- 

gravitating systems, we can compare potential energy U with kinetic 

energy K . If | U | > K , the system collapse; if | U | < K , it is unbound 

and flies apart. Could a similar criterion be helpful in coagulating 

systems? Let us first study how to define potential energy U . Consider 

the work done to separate two clouds from d 1 to d 2 : 

�U = 

∫ d 2 

d 1 

F coag d r = 
ρh v 

2 
mix 

4 π
A 1 A 2 

(

1 

d 1 
−

1 

d 2 

)

. (16) 

Since F coag is a radial force, it is conserv ati ve: � U is independent 

of the path taken from d 1 to d 2 , and any closed loop (i.e. a path that 

ends back up at d 1 means that no net work 16 is done by F coag . 

Thus, we can meaningfully define a potential energy U where 

F coag = −∇U . If we set U ( ∞ ) = 0, we can write 

U ( d) ∼
ρh v 

2 
mix A 1 A 2 

4 πd 
∼ 3 ρh v 

2 
mix �1 �2 V d , (17) 

where V d ∼ (4 π /3) d 3 , and �i = A i /(4 πd 2 ) is the solid angle subtended 

by cloud i . The potential energy density is ρv 2 mix �1 �2 : the kinetic 

energy density ρh v 
2 
mix modulated by the area co v ering fractions 

�1 , �2 . As the co v ering fractions increase, so does | U | . Thus, 

fragmentation increases | U | , and mergers/coagulation decrease | U | . 
For a collection of clouds, we sum the potential energy contribu- 

tions from all pairs of clouds. From the analogy to Newtonian gravity, 

where U ∼ GM 
2 
tot / 〈 d〉 , where 〈 d 〉 is a characteristic scale (such as 

the half mass radius), we can write the total potential energy as 

U tot ∼
ρh v 

2 
mix 

4 π

A 
2 
tot 

〈 d〉 
∼ M h v 

2 
mix f 

2 
A (18) 

where M h ∼ ρh 〈 d 〉 3 is the hot gas mass, and the area co v ering 

fraction/enhancement factor f A ∼ A tot / 〈 d 〉 2 modulates the strength 

of potential energy. Thus, if f A > 1 (and indeed, f A � 1 is possible in 

’fog-like’ cloud topology), the potential energy will exceed the naive 

bound M h v 
2 
mix , due to the superposition of the flows from multiple 

small clouds. Of course, at that point a more careful treatment which 

takes geometric shielding into account is necessary. 

What about the kinetic energy? There are at least two classes 

of problems: (i) the hot gas is initially static and the cloudlets 

have some initial relative velocity. A prototypical example is cloud 

shattering. This statement is also approximately true of the cloud 

growth problem in the frame of the wind, when cloud fragments of 

different size have undergone differential acceleration. In this case 

the rele v ant kinetic energy is K ∼ M c σ
2 
c , where σ 2 

c ( d) is the velocity 

16 There will be work done by other drag forces; we only consider work done 

by F coag . 
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dispersion of cold gas at scale d . (ii) The hot gas velocity field has 

significant velocity structure (e.g. in the form of shear or turbulence), 

and can potentially entrain the clouds. In this case, the rele v ant kinetic 

energy is K ∼ M h σ
2 
h , where σ 2 

h is the velocity dispersion of hot gas. 

Although energy is not strictly conserved, 17 we can use this to 

estimate whether coagulation is likely to happen. For coagulation to 

happen, we require that | U tot | > | K tot | , or σ h ( d ) < v mix f A . If we use 

Kolmogorov scalings for σ h ( d ), this gives a critical Mach number 

for coagulation, 

M coag ∼ α( r cl / � shatter ) 
1 / 4 f A 

( r cl /L ) 1 / 3 χ1 / 2 (19) 

below which clouds will coagulate. This yields the same scalings 

as found in equation ( 9 ), but a much lower normalization, due to 

the small value of f A ∼ 0.05[( r cl / d )/15] 2 ( N cl /10). We discuss this in 

Section 4.2 but note that the normalization of this equation needs 

to be calibrated against simulations (and will likely change). This 

equation provides testable scalings for the dependence of Equation 9 

on physical parameters. We defer this to future work. 

We can also use this to understand why there is a critical 

final o v erdensity χ crit ≈ 300 for recollapse and coagulation during 

‘shattering’ (Gronke & Oh 2020b ). For an expanding cloud to achieve 

momentum contact with its surroundings and decelerate, it must 

sweep up of order its own mass: ρc r 
3 
cl ≈ ρh d 

3 , which gives d ≈
χ1/3 r cl . Assuming droplets are launched at a velocity v ∼ c s, c , we 

have 

U tot 

K tot 
∼

M h 

M c 

v 2 mix 

c 2 s , c 

(

Nr 2 d 

χ2 / 3 r 2 cl 

)2 

∝ 
N 

2 / 3 

χ4 / 3 
(20) 

where A tot ∼ Nr 2 d ∼ r 2 cl ( r cl /r d ), where N ∼ ( r cl / r d ) 
3 . The first two 

factors M h / M c and v 2 mix /c 
2 
s , c are order unity. The number of cloudlets 

N is difficult to model, but it is clear that as o v erdensity χ increases, 

the ratio U tot / K tot decreases, and eventually coagulation is not 

possible. Overdense gas is launched out to larger distances d before it 

is slowed down by the hot gas, and by that time, the co v ering fraction 

f A drops sufficiently that coagulation is suppressed. 

Of course, more careful study and detailed comparisons to sim- 

ulations are required to transform these remarks into a quantitative 

theory, which we defer to future work. 

4.2 The competition of coagulation versus dispersion 

At first blush, the results of this paper might suggest that coagulation 

should be unimportant. The coagulation velocity v coag ∼ v mix ∼
c s, c is small and diminishes rapidly with distance, v coag ∝ d −2 . This 

corresponds to a small Mach number, even a relatively small distance 

from the cloud, 

M ∼
v mix 

c s , h 

( r cl 

d 

)2 

∼ 10 −2 

(

v mix 

c s , c 

)

( χ

100 

)−1 / 2 
(

d 

3 r cl 

)−2 

(21) 

which would appear miniscule compared to other velocities in 

the system, so that coagulational inflow is a negligibly small 

17 In the first case, the hot medium provides an additional drag force which 

slows dispersal and promotes coagulation. In the second case, the hot medium 

(if it entrains the clouds) promotes dispersal. Therefore, unlike the self- 

gravitating case, there are additional dissipative or driving forces acting, 

besides the conserv ati ve force. Thus, there is no energy conservation: in the 

first case, kinetic energy decays (due to ‘friction’ against the hot gas); in the 

second case, cloud entrainment transfers kinetic energy from the hot to cold 

gas. And, as previously noted, fragmentation/mergers modulates potential 

energy. 

perturbation. Yet, there are configurations, such as cloud crushing 

and cloud shattering, where coagulation is undeniably important. 

Indeed, a multiphase mixing layer (Kwak & Shelton 2010 ; Tan 

et al. 2021 ) is itself an example of coagulation – despite the high 

velocity of shearing hot gas, v shear ∼ M c s , h � v mix ∼ c s , c , cooling 

gas fragments in the mixing layer advect towards the cold gas layer. 

The previous section (Section 4.1 ) addressed the v coag ∝ d −2 fall- 

off. This only holds for a single cloud. If surface area is enhanced 

(e.g. by fragmentation), so that the area co v ering fraction f A is large, 

then the fall-off with distance is suppressed. Thus, for instance, 

U tot ∼ M h v 
2 
mix when f A ∼ 1 (equation 18 ); all the hot gas is moving 

with velocity v mix . This is similar to Obler’s paradox: if every 

sightline in an infinite static universe ends on the surface of a star, 

then the surface brightness of the night sky would be that of a stellar 

surface, since the reduced solid angle (which increases the number 

of stars which tile the sky) and inverse square dimming behave in 

the same way . Similarly , if f A ∼ 1, then v coag ∼ v mix , regardless of 

distance. Alternatively, we can use the analogy between gravity and 

coagulation to use Gauss’s law to find how v coag diminishes with 

distance. For the cometary tail of a cloud in a wind or a filamentary 

cold gas structure, F coag ∝ v coag ∝ d −1 (as for the gravitational force 

of a filament). For a semi-infinite slab of cold gas (as in a mixing 

layer), F coag ∝ v coag ∼ v mix is independent of distance (as for the 

gravitational field abo v e a mass sheet). Slab-like geometry can arise 

in strongly stratified atmospheres, and filamentary geometry can arise 

in systems with strong B-fields. 

Still, that leaves the second question: even if v coag ∼ v mix ∼
c s, c , how can that compete against much larger turbulent velocities 

σt ∼ M h c s , h ? Indeed, it cannot in general. 18 Ho we ver, it can in 

laminar bulk flows (where even if the bulk flow velocity is large, the 

relativ e v elocity between cold gas fragments is small as they entrain 

in the hot wind), or in quiescent regions of a turbulent medium. For 

instance, as hot and cold gas mix, the ‘mass loading’ of cold gas 

into the hot gas results in a new velocity dispersion σ mix , where 

〈 ρ〉 σ 2 
mix ≈ ρh σ

2 
t , and 〈 ρ〉 ∼ f c ρc + (1 − f c ) ρh ≈ f c ρc . This gives 

σmix ∼ σt / ( χf c ) 
1 / 2 ∼ M h f 

−1 / 2 
c c s , c , so that σ mix < c s, c if f c > M 

2 
h . 

Note that here σ mix is the velocity dispersion of the multiphase (hot 

and cold) gas mixture; it is not the velocity dispersion of mixed gas 

at some intermediate temperature. All situations where coagulation 

is observed to be important (e.g. coagulation onto the cometary tail 

of a cloud; shattering; turbulent mixing layers) are those where cold 

gas mass loading f c is fairly large and the gas turbulent velocity does 

in fact obey σ mix � v mix . The same is not true if 〈 ρ〉 � ρc , and 

thus σ mix > v mix . For instance, in the driven turbulence multiphase 

setup of (Gronke et al. 2022 ) (where σ mix > v mix ; see fig 19 in that 

paper), coagulation indeed does not outcompete fragmentation by 

turbulence. Instead of coalescing into a large central cloud, a scale- 

free power-law mass distribution of clouds forms. 

To summarize: coagulation is efficient, despite the small amplitude 

v coag ∼ v mix ∼ c s, c and rapid fall-off v coag ∝ d −2 , in regions where (i) 

the extrinsic dispersion velocity is low, e.g. if the cold gas fraction f c 
is high, and 〈 ρ〉 ≈ f c ρc (since this mass loading reduces the turbulent 

velocity to σ mix < c s, c if f c > M 
2 
h ) and (ii) the geometrical dimming 

can be o v ercome, for instance, through the geometry of the cold 

18 It is true that σ ∝ l 1/3 in Kolmogorov turbulence, so that turbulence 

decreases at small scales, but σ l < c s, c is only true for l < ( χ−1 / 2 M h ) 
3 L , 

where L is the driving scale. For instance, for χ ∼ 100, M h ∼ 0.5, then l 

� 0.01 L . Such scales are at best only a few grid cells apart in simulations 

where coagulation is seen, and coagulating cloudlets are generally separated 

by larger distances. 
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medium or if the cold gas co v ering fraction f A is high (since the 

fall-off with distance in v coag goes away as f A → 1). 

Next, we discuss some of these cases where coagulation is 

important in more detail: 

(i) Mixing layers, clouds, and streams. Plane parallel Kelvin–

Helmholtz mixing layers have f A ∼ 1, and thus v coag ∼ v mix does 

not decline with distance. Also, regions where cold gas mass loading 

is substantial have turbulent velocities u 
′ ∼ v shear / 

√ 
χ ∼ c c , s , thus 

comparable to v mix , as one might expect from the abo v e arguments. 

Clouds in a hot wind develop an extended cometary tail with a cylin- 

drical structure (e.g. Gronke & Oh 2020a ). Thus, entrained clouds, 

or cold gas streams (e.g. Mandelker et al. 2020 ; Bustard & Gronke 

2022 ) correspond to our 2D (Fig. 5 ), rather than our 3D (Fig. 6 ) 

simulations, with v in ∝ d −1 instead of v in ∝ d −2 . Similar to Fig. 5 , 

the droplet returns on a time-scale ∼ ˜ αt sc , floor (where ˜ α ∼ 5 − 10), 

during which time it travels a distance ∼ v w ̃  αt sc , floor ∼ ˜ αχ1 / 2 M r cl . 

(ii) Expulsion from a central origin. Droplets dispersed from a 

central origin can eventually coagulate back together. In Gronke & 

Oh ( 2020b ), we argued that the competition between dispersion 

and coagulation sets the threshold of ‘shattering’ which we found 

to be χfinal � 300( r cl /10 4 � shatter ) 
1/6 (for r cl � � shatter and δP / P 

� 1.5). In our simulations, clouds straddling this boundary had 

v astly dif ferent outcomes. In principle, since drag forces cause 

kinetic energy to decay, coagulation could potentially once again 

dominate at late times, 19 though in practice turbulence will further 

separate the fragments and shape the mass distribution. While the 

exact mechanism of fragmentation and dispersion in the ‘shattering’ 

scenario needs revisiting, in broad terms the role of coagulation here 

is clear. 

(iii) Coagulation in extrinsic turbulence. In Gronke et al. ( 2022 ), 

we studied turbulent, multiphase dynamics in more detail and found 

that the droplets follow a power-law mass distribution d n /d m ∝ m 
−2 

(which is also found in larger scale simulations of the ICM; cf. 

Li & Bryan 2014b ). This simulations were all run at Mach numbers 

abo v e the critical Mach number (equation 10 ) where we might 

expect coagulation to play a role. For low Mach numbers, we expect 

deviations from this power law, which we will analyse in future work. 

Note that in the abo v e scenarios mixing and subsequent cooling 

is often not necessarily provided by the ‘cooling induced pulsations’ 

discussed in Section 3.1 ; all that is necessary is that mixing takes 

place. 

4.3 Caveats 

Our study does not address a range of topics which we hope to revisit 

in future work. 

(i) Magnetic fields. Most plasmas are magnetized, which affects 

the mixing and thus the mass transfer process (Ryu, Jones & Frank 

1995 ; Ji, Oh & Masterson 2018 ). Furthermore, B -fields imply a non- 

thermal pressure support which can become large in the cold medium 

even with initially large plasma β due to magnetic compression 

(Sharma, Parrish & Quataert 2010 ; Gronke & Oh 2020a ). 

(ii) Cosmic rays. Similar to magnetic fields, cosmic rays are 

present in astrophysical plasmas and provide non-thermal pressure 

support which changes the cooling rates of the gas (e.g. Salem, 

Bryan & Corlies 2016 ; Butsky et al. 2020 ). 

19 Similarly, pulsations could potentially damp in an otherwise static medium. 

Ho we ver, we sho wed that they continue on time-scales much longer than t sc , 

and in practice turbulence will al w ays perturb the cloud. 

(iii) Simplified setup. The goal of this study was to develop a 

simple model for coagulation. Thus, we focused on very simplified 

initial conditions. In future work, we want to apply this model in 

more realistic scenarios such as multiphase galactic winds. 

(iv) Resolution and dynamic range. As all numerical studies, 

we suffer from finite resolution and limited dynamic range. We 

tried to support our findings with resolution studies throughout as 

well as analytic models matching our numerical findings. Note that 

throughout this work we do not aspire to achieve full convergence 

i.e. to have converged cold gas morphology. We merely aim for 

convergence in cold gas mass. 

We do not consider the neglect of thermal conduction to be a 

major caveat of this work. We have previously shown that when heat 

diffusion is dominated by turbulent mixing (as is true here), thermal 

conduction has little impact on mass growth rates and coagulation 

velocities (see sections 4.6, 5.5, and 5.6 in Tan et al. 2021 for a 

detailed discussion). 

4.4 Comparison to the literature 

The oscillations for cooling clouds were previously discussed in 

the literature, in particular in Waters & Proga ( 2019a ) and Das, 

Choudhury & Sharma ( 2021 ) in 1D and in Gronke & Oh ( 2020b ) 

in 3D simulations. Notably, Waters & Proga ( 2019a ) and Das et al. 

( 2021 ) carry out in-depth analyses of linear non-isobaric thermal 

instability and found pulsations for ‘large clouds’. Waters & Proga 

( 2019a ) show that the pulsations decay on a long ( � 10 t sc ) time-scale, 

and that the cloud settle eventually ( � 50 t sc ) back to the equilibrium 

state. Ho we ver, note that gas mixing – which can fuel cooling and 

further pulsations – is not captured in 1D. 

The further mass growth associated with these pulsations was 

not studied in these simplified setups. In Gronke & Oh ( 2018 ), 

similar pulsations were seen in the entrained state of a ‘windtunnel’ 

simulations. There, the pulsations were, thus, not seeded by the initial 

cooling but by the shock hitting the cloud. The mass growth rates of 

the cold gas agree well including the characteristic ∝ t 
−1 / 4 
cool scaling. 

The rates as well as the scalings have been confirmed in turbulent 

mixing layer simulations (Fielding et al. 2020 ; Tan et al. 2021 ), 20 

although there gas mixing is driven by shear, rather than pulsations 

from o v erstable sound wav es. 

Similarly, coagulation was observed in previous studies. 

Zel’Dovich & Pikel’Ner ( 1969 ) computed the cooling rate at the 

(laminar) boundary of a two-phase medium, and noted that this leads 

to coagulation of the cold medium. Ho we v er, the y also point out 

that this velocity of the front is minuscule. Building upon this work, 

Elphick, Re gev & Spie gel ( 1991 ) constructed a 1D framework to 

study the coagulation of an ensemble of cold gas fronts – which they 

extend to include bulk fluid motions in Elphick, Regev & Shaviv 

( 1992 ). This w ork w as later extended to more dimensions (Shaviv & 

Regev 1994 ). 

More recently, Koyama & Inutsuka ( 2004 ) and Waters & Proga 

( 2019b ) also discuss cooling induced coagulation in 1D and 2D, 

respectiv ely. The y point out that not only do the fronts mo v e due to 

growth of the cold gas, but that motion is induced by the cooling (see 

e.g. fig. 2 in Koyama & Inutsuka 2004 ). In particular, Waters & Proga 

( 2019b ) analyse the coagulation behaviour and note the coalescence 

time-scales. 

20 Note that, more recently, these scalings were extended into the high- M 

regime (Yang & Ji 2023 ; see also Bustard & Gronke 2022 ). 
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Our work differs from these previous studies in several aspects. 

First, we carry out 2D and 3D simulations and build an analytic 

model reproducing our hydrodynamical results. More importantly, 

ho we ver, we focus on the production of intermediate temperature gas 

by turbulent mixing – which cannot be captured in 1D – as opposed 

to laminar heat transport due to thermal conduction alone. For this 

reason, our coagulation velocities are much greater (in the same way 

as the turbulent diffusion dominates o v er laminar heat transport; cf. 

Tan et al. 2021 ). For instance, for their fiducial 2D run in which they 

placed a r ∼ 8 � shatter and a r ∼ 23 � shatter clouds at a distance of d ∼
33 � shatter , Waters & Proga ( 2019b ) found a coagulation velocity of 

order v ∼ d / t coag ∼ 0.02 c s (cf. their table 4) which is much less than 

the v coag ∼ v mix r / d ∼ c s we find. 21 

Coagulation can be observed in many larger scale simulations. As 

already mentioned, many ‘cloud crushing’ simulations with radiative 

cooling display signs of cold gas coagulation (e.g. Schneider & 

Robertson 2017 ; Gronke & Oh 2020a ; Abruzzo, Bryan & Fielding 

2022a ). Also in simulations studying thermal instabilities, coagula- 

tion has been observed (Sharma et al. 2010 ; Butsky et al. 2020 ). 

In even larger scale simulations, e.g. of the multiphase dynamics in 

the CGM (e.g. Hafen et al. 2019 ; Hummels et al. 2019 ), the ICM 

(Li & Bryan 2014a ), or in ram pressure stripped tails of galaxies 

(Tonnesen & Bryan 2010 ; Farber et al. 2022 ) coagulation should 

take place and play a role – ho we ver, it is unclear whether current 

resolutions are sufficient to capture this effect. 

5  C O N C L U S I O N  

We investigated cooling-driven coagulation process of cold gas in a 

multiphase medium, a phenomenon which has been seen in diverse 

simulations. For instance, it is observed in the ‘focusing’ of cold gas 

droplets onto the cometary tail of a cold cloud in a hot wind. To gain 

understanding, we first investigated cooling induced coagulation in 

a static medium. Our findings can be summarized as follows: 

(i) Perturbed cold gas blobs of size >� shatter ≡ min( c s t cool ) develop 

pressure fluctuations which lead to continuous pulsations and mass 

growth of the cold gas. 

(ii) This process leads to a flow of hot gas with velocity v coag ∼
v mix ( r cl / d ) 

2 in 3D, where v mix (given by equation 2 ) is of order of the 

cold gas sound speed. Cold droplets can get rapidly entrained in this 

hot gas flow (due to their own growth and the associated momentum 

transfer), eventually merging with other cold gas structures. 

We furthermore developed an analytic model describing the mass 

growth and coagulation process which fits our numerical results 

reasonably well. Although v coag ∼ v mix ( r cl / d ) 
2 may appear small, 

note that (i) turbulent gas velocities can be small, e.g. if the cold gas 

mass fraction is high. Also, in bulk flows (as in a wind), the relative 

velocities between entrained gas fragments becomes small. (ii) The 

geometric v coag ∝ d −2 dimming can be much weaker in different 

geometries (e.g. v coag ∝ d −1 for a cometary tail), or if the cold gas 

co v ering fraction f A is high (where v coag ≈ v mix ≈const). 

Our finding supports the idea that cooling-driven coagulation of 

adjacent cold gas is possible and we establish a criterion defining 

the regimes where coagulation or dispersion in transonic turbulence 

dominates. Due to the similar F ∝ d −2 force, we draw analogies to 

gravity. The monopole term for coagulation is surface area, rather 

21 Note that the small cloud sizes they employed would lead to reduced 

pulsations and thus an actual slower coagulation velocity; see Fig. 3 . 

than mass. Thus, fragmentation, which increases area at fixed mass, 

also increases coagulation. 

We hav e ne glected magnetic fields, cosmic rays, and the inclusion 

of a more realistic (turbulent and stratified) background. We plan to 

address these issues in future works. 
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APPENDIX  A :  C O N V E R G E N C E  O F  MASS  

G ROW T H  

A1 Importance of pulsations for conv er gence in mass growth 

Fig. A1 shows the cold gas mass evolution for our 3D ‘static’ setup 

( χ ∼ 100, r cl / � shatter ∼ 2500) with different resolutions ranging from 

8 to 64 cells per cloud radius. The solid lines indicate the evolution 

for a perturbed cloud which are (i) fairly well converged, and (ii) 

follow the expected behaviour from equation ( 1 ) while the dashed 

lines show unperturbed clouds in which the mass growth is driven 

by numerical diffusion, and is unconverged. Note that we also show 

different resolution runs in Figs 2 and 3 for different o v erdensities 

and cloud sizes showing that the mass growth rates (for pulsating 

clouds) are approximately resolution independent. 

Fig. A2 shows the same convergence test but in 2D and (in the 

right-hand panel) with a smaller cloud of size r cl / � shatter ∼ 60. Thus, in 

the highest resolution runs there, � shatter is resolved. Still, the growth 

rates are similar to that in runs where � shatter is not resolved. 

Fig. A3 shows the same convergence test as in Fig. A1 but for an 

extended period of time ( > 100 t sc , floor ). We can see that the mass 

transfer rate does not decay but instead continues to grow as ṁ ∝ 

A cl ∝ m 
2 / 3 (cf. equation 1 ) as expected from monolithic growth. 

While the initial pulsation pattern is imprinted for ∼ 30 t sc , more 

unstructured pulsations dominate later on leading to continuous mass 

growth. 

A2 Change of box size 

We checked whether the pulsations are caused by reflecting waves 

off the simulation boundary by increasing the boxsize. Fig. A4 shows 

the mass evolution for three box sizes. For the largest box size 

we used a statically refined mesh for the inner region with side 

length ∼8 r cl . Since we have t sc, box ∼ L box / c s, h ∼ L box /( χ
1/2 c s, c ) ∼

( L box / r cl )( t sc, floor / χ
1/2 ) ∼ 25 t sc, floor for our largest box where L box / r cl , 

in our largest box, reflecting waves cannot perturb the cloud (o v er 

Figure A1. Mass evolution of a perturbed and non-perturbed (solid and 

dashed lines, respectively) cold gas blob using various resolutions (marked 

with different colours). The dotted line shows the approximate mass growth 

using equation ( 1 ). 
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Figur e A2. 2D conver gence study of pulsating blobs. The left-hand panel shows our fiducial setup ( χ ∼ 100, T cl / T floor = 1.5, r cl / � shatter ∼ 2500). In the 

right-hand panel the clumps are a factor 40 smaller i.e. r cl / � shatter ∼ 60 allowing us to resolve � shatter . 

Figure A3. Mass growth for our fiducial χ ∼ 100, r cl / � shatter ∼ 2500, r cl / l cell 

∼ 16, T cl / T floor ∼ 1.5 run for an extended period of time. Clearly the pulsations 

and the mass growth does not cease. 

Figure A4. Mass evolution for clouds with T / T floor ∼ 2, r cl / l cell = 16 for 

different box sizes. Note that for the largest box, we used a static refined mesh 

for the inner region. 

Figur e A5. Conver gence test for the coagulation process. The setup is the 

same as in Fig. 4 /Section 3.2.1 with d 0 / r cl = 8, T cl / T floor = 2. 

a run time of ∼14 t sc, floor ), but the mass growth is consistent with 

smaller boxes. 

A3 Conv er gence test for coagulation 

Fig. A5 shows our coagulation setup discussed in Fig. 4 /Section 3.2.1 

with different resolutions and shows the coagulation process is fairly 

converged. 

This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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