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ABSTRACT

Astrophysical gases such as the interstellar-, circumgalactic-, or intracluster-medium are commonly multiphase, which poses the
question of the structure of these systems. While there are many known processes leading to fragmentation of cold gas embedded
in a (turbulent) hot medium, in this work, we focus on the reverse process: coagulation. This is often seen in wind-tunnel and
shearing layer simulations, where cold gas fragments spontaneously coalesce. Using 2D and 3D hydrodynamical simulations,
we find that sufficiently large (>>cstc001), perturbed cold gas clouds develop pulsations which ensure cold gas mass growth over
an extended period of time (>>r/cs). This mass growth efficiently accelerates hot gas which in turn can entrain cold droplets,
leading to coagulation. The attractive inverse square force between cold gas droplets has interesting parallels with gravity; the
‘monopole’ is surface area rather than mass. We develop a simple analytic model which reproduces our numerical findings.

Key words: hydrodynamics —ISM: clouds —ISM: structure — galaxy: kinematics and dynamics — galaxies: evolution — galaxies:

haloes.

1 INTRODUCTION

Gases in astrophysics are commonly multiphase, that is, phases
with vastly different temperatures exist co-spatially. We know,
for instance, that the interstellar medium is kept in a stable at
three phase state due to thermal feedback processes (McKee &
Ostriker 1977). More quiescent, the intracluster medium (ICM) or
cirgumgalactic medium (CGM) are found to have two main phases,
aT ~10* K ‘cold” and a T 2 10° K hot phase (e.g. Tumlinson,
Peeples & Werk 2017). Modeling these gases proves to be extremely
difficult due to the corresponding different spatial scales, and large
simulations struggle with convergence of the cold gas properties
[Faucher-Giguere et al. 2016; Hummels et al. 2019; van de Voort
et al. 2019; also see e.g. Nelson et al. (2020) showing the cold
gas covering fractions are unconverged]. This is worrisome as this
phase corresponds to the fuel for future star-formation and is most
commonly compared to observations [e.g. via quasar absorption line
studies (Crighton et al. 2015; Chen 2017; Haislmaier et al. 2021),
or emission measurements (Steidel et al. 2011; Hennawi et al. 2015;
Arrigoni Battaia et al. 2019)]. Thus, if a (mis)match to observations
is found in such large scale simulations, it is unclear whether this
is due to numerics/convergence or whether our understanding of
the physical processes is incomplete. One of the key properties to
constrain is therefore a characteristic size of this cold phase where —
hopefully — one would find convergence in at least the total cold gas
mass and other relevant observables.

Several past and current studies suggested ‘characteristic length
scales’ of cold gas (Field 1965; Gronke & Oh 2018; McCourt et al.
2018). Most of them focused on fragmentation processes leading to
smaller cold gas ‘droplets’ as a result. Here, we want to focus instead
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on coagulation between cold gas clouds leading to bigger structures.
Waters & Proga (2019b) have studied this recently, however — as we
will show below — in a different regime where the coagulation speed
is much slower than the one found in this work.

There are several examples where cooling-induced coagulation
appears to be important. For instance:

(i) Cloud-Crushing. In wind-tunnel simulations of an isolated
cold cloud subject to a wind, the cloud can initially have a ‘near
death’ experience as cloud material is dispersed both streamwise
and laterally (Armillotta et al. 2017; Gronke & Oh 2018; Grgnnow,
Tepper-Garcia & Bland-Hawthorn 2018; Kanjilal, Dutta & Sharma
2020; Li et al. 2020; Farber & Gronke 2021), particularly for clouds
close to the survival radius r.; (cf. Gronke & Oh 2018, 2020b). As
the cloud becomes entrained and shear is reduced, however, cold
gas fragments rapidly coagulate back to form a cometary structure.
Subsequently, cloud fragments which are peeled off the side of the
cloud are refocused back onto the downstream tail.

(ii) Cloud shattering. In simulations of ‘cloud-shattering’, under-
pressured clouds lose sonic contact with their surroundings due to
rapid radiative cooling, and are crushed by surrounding hot gas
(McCourtetal. 2018; Gronke & Oh 2020b). Since cloud compression
overshoots, the cloud subsequently re-expands, and flings small
droplets into its surroundings. However, for clouds with a final
overdensity (after regaining pressure balance with surroundings) ¢
< 300, the outflowing droplets turn around and coagulate to once
again form a monolithic cloud.

(iii) Turbulence. In simulations of radiatively cooling multiphase
gas in the presence of extrinsic turbulent driving, coagulation of
cold gas clumps are frequent, and play a critical role in maintaining
a scale-free power-law distribution dn/dM oc M~2 (Gronke et al.
2022). While this could simply be geometric (i.e. collisions which
occur because clumps are entrained in the turbulent velocity field),

© 2023 The Author(s)

Published by Oxford University Press on behalf of Royal Astronomical Society

£20Z Jaquiaides /z uo Jesn eleqieg ejueg ‘eluiofied 1o Ausiaaiun Aq y£5502./861/1 /772G /o10ne/seiuw/woo dnooiwepese//:sdiy woll papeojumod



there are hints of cooling-induced ‘focussing’. For instance, we see
deviations from this power law at low Mach numbers, which will be
presented in future work.

In this work, we want to systematically study the effect of cooling
induced coagulation. This short paper is structured as follows: in
Section 2 we describe our (numerical) methods, in Section 3 we
present our results, discuss them in Section 4 before we conclude
in Section 5. Videos visualizing our results can be found at https:
//max.lyman-alpha.com/coagulation.

2 METHODS

For our hydrodynamical simulation, we use ATHENA 4.0 (Stone et al.
2008) and ATHENA++(Stone et al. 2020). We use the HLLC Rie-
mann solver, second-order reconstruction with slope limiters in the
primitive variables, and the van Leer unsplit integrator (Gardiner &
Stone 2008). In both codes, we implemented the Townsend (2009)
cooling algorithm which allows for fast and accurate computations
of the radiative losses. We adopt a solar metallicity cooling curve to
which we fitted a power-law — similar to the one used in McCourt
et al. (2018; see their fig. 2). As these authors, we use a cooling floor
of Thoor = 4 x 10* K. This temperature floor is somewhat high, but
in previous work we have shown that mass growth is not sensitive to
it (Gronke & Oh 2018). We do not employ heating, but in reality the
balance between heating and cooling sets this temperature floor.
For this work, we use four different setups:

(i) Isolated cloud. This 3D setup is similar to the one used in
(Gronke & Oh 2020b) i.e. we placed an isolated cloud of size ~r'
with temperature T, and overdensity x = pu/pp in a hot medium.
While the setup is initially in pressure equilibrium (and static), the
cloud will (rapidly) cool to T leaving re, x, and T¢/Theor the most
important parameters. The purpose of this setup is to systematically
study the pulsation induced mass growth discussed in (Gronke & Oh
2020a, b; Tan, Oh & Gronke 2021). The large perturbation induced
by loss of pressure balance with surroundings can occur when a large
cloud cools rapidly, or if it is over-run by a shock. Our setup provides
a gentler version of the violent loss of pressure balance seen during
‘shattering’ (McCourt et al. 2018; Gronke & Oh 2020b).

(ii) Cloud-droplet. Here, in addition to a cloud as described above,
we place a droplet of size rq and temperature 7y at a distance dy
away from the cloud. In some cases we also give the droplet an
initial velocity vy away from the cloud. The purpose of this setup
is to study the coagulation process of the cloud and the droplet. As
we need to resolve the droplet sufficiently, we here resort to 2D
simulations — but also carry out 3D ones to study the dimensionality
dependence of our results.

(iii) Multiple droplets. We place Ny o droplets with properties as
described above randomly within a radius d. Again, we perform 2D
and 3D simulations with the purpose of studying the coagulation
behaviour.

(iv) Turbulent droplets. The placement is identical to the 3D
‘multiple droplets’ setup described above but we continuously stir
the box in the same manner as in Gronke et al. (2022), that is,
with decaying turbulence as well as continuous driving (to produce a
roughly constant kinetic energy) at the scale of the simulation domain
with ratio of solenoidal to compressive components of ~1/3.

IAs the cloud is non-spherical, the effective radius is slightly larger. See
Gronke & Oh (2020b) for details.
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For all our setups, we strive to resolve the cold gas by at least ~16
cells to ensure convergent behaviour. We do, however, increase the
resolution to ~64 cells to check this explicitly in some cases (see
Appendix A; also see Tan et al. 2021 for an extensive discussion
on resolution requirements). Furthermore, we employ ‘outflowing’
boundary conditions — except in the ‘turbulent droplets’ setup where
we used periodic ones.

For the setups involving a droplet, we also inject a advectable
scalar field in the droplet furthest away from the origin, which we
can use to track droplet motion.

3 RESULTS

3.1 Pulsations and mass growth in a static medium

If a cloud does not fragment, it instead oscillates. These oscillations
are accompanied by cold gas mass growth’. Analogous to our
findings in Gronke & Oh (2020a) we expect the mass growth to
be

m ~ UmixAc]phUt (1)

with a cold gas surface area A, and a surrounding hot gas density
Phot- The characteristic mixing velocity is given by

—1/4 1/4
Tcool Tel

Umix ~ OCs ~ o ) @)
Ise eshaner

where all the quantities c;, f.o0, and t;. are evaluated at the floor,
that is, vy« is of the order of the cold gas sound speed, and « is a
dimensionless quantity of order unity we calibrate to simulations.
This scaling has been confirmed with high-resolution turbulent
mixing layer simulations (Fielding et al. 2020; Tan et al. 2021).’

Fig. 1 shows examples of our simulations with different initial
overdensities and temperatures (x, 7, respectively), and different
cloud sizes. The upper panel shows the cold gas volume from
which we see that the oscillations take place on the order of the
final sound crossing time Zs, fioor ™~ 7cl/Cs, fioor- 1 he system essentially
behaves like a damped, driven oscillator, where damping is due to
hydrodynamic drag and driving is due to pressure fluctuations from
cooling mixed gas. Initially, there is a transient as the amplitude of the
oscillations decay (clearly visible in Fig. 1). However, eventually the
system reaches an equilibrium between driving and damping. This
is reflected in the fact that mixing induced mass growth is roughly
constant for many sound crossing times (see Fig. A3, where mass
growth continues out to ~f ). Pulsations (and mixing induced
mass growth) would cease for a purely damped oscillator. Similar
pulsations and long term growth are observed in a cloud accelerated
by a wind, even after the cloud is entrained i.e. the shear between
the phases is negligible (Gronke & Oh 2020a; Abruzzo, Fielding &
Bryan 2022b). In Gronke & Oh (2020a), we dubbed these pulsations
‘overstable sound waves’ as they occur on a sound crossing time of
the cloud (cf. Fig. 1).

The lower panel of Fig. 1 shows the mass growth rate (obtained
from finite differencing of the cold gas mass) — which we normalize
by the analytic estimate equation (1) (where we used for simplicity
the initial cloud size Ay ~ 47 rczl). ‘We see that for all the simulations,

2Note that the oscillations are crucial in order to obtain a converged mass
growth, as we illustrate in Appendix Al.

3In general, Vpmix X u which depends on the geometrical parameters (such
as the shear velocity). However, for transonic motion as simulated here, u ~
Cs, cold (see discussion in sections 4.6 and 5.3.3 in Tan et al. 2021).
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Figure 1. Evolution of pulsating clouds with various initial conditions. The
upper panel shows the cold gas volume normalized by its initial value,
the central panel the cloud pressure (normalized by the initial/ambient
pressure), and the lower panel shows the mass growth rate normalized by
the theoretically expected value.

the values oscillate around ~0.5, implying o ~ 0.5. Moreover, mass
growth at this rate keeps this value for many 7 _goor, Which is longer
than we naively expect the initial turbulence in the mixing layer
between the hot and cold medium to last. Instead, mixing is facilitated
and continuously supported by cooling induced pulsations (see also
Appendix Al and in particular Fig. A3 for a longer simulation run).

On overview of the mass growth rate for a range of simulations
is shown in Fig. 2. Shown are simulations which did not shatter
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Figure 2. Mass growth rate of different pulsating clouds. Note that we dis-
play simulations that do not fragment i.e. have either x final (1074 re1/shatter) 70
< 300 or a perturbation of T¢/Toor < 1.6. We display simulations with
different overdensities x (colour coded) and resolutions (marker type) and
a minimum perturbation of T¢/Toor > 1.1. The dashed line shows the
theoretical expectation, and the error bars correspond to the fluctuation around
the median (16th and 84th percentile).

i.e. we excluded the simulations for which the maximum number
of droplets was >100 which occurs for xgna = To/ThoorX 2
300(10™*rg/lspatier)® (Gronke & Oh 2020b). Note that for this
plot we normalized the radii by the theoretical estimate by us-
ing the overdensity, temperature, and cloud radius at the point
at which the cloud loses sonic contact i.e. x* = x(rg /rc*l)3 with
r& = vk T3 /(ump)teoo(TS, X* prot) (Gronke & Oh 2020b).

Fig. 2 shows that (i) the mass growth follows the scaling relation of
equation (2) over 2 5 orders of magnitude in cloud size and 2> 2 orders
of magnitude in overdensity, (ii) for small clouds (r}; S 100€per for
x 2 100, larger for smaller overdensities) the mass growth is less
than expected, and (iii) the high-resolution runs (of /. /r = 64 i.e.
a factor of 4 improvement compared to our fiducial resolution) are
consistent with these findings.

As stated above, the clouds in the simulations shown in Fig. 2
were ‘sufficiently’ perturbed to allow mass growth without shattering
(i.e. keeping X finar S 300 or T¢)/Thoor < 2). The impact of this initial
perturbation — which sheds light on what ‘sufficiently’ exactly means
— is shown in Fig. 3. In this, we can see that (i) as seen before
equation (2) is valid only for clouds 7 > £spaer Which will pulsate
and grow,* (ii) if To/Thoor = 1.5, the mass growth does not depend
on the extent of the perturbation, and (iii) for smaller perturbations
(Ta/Thoor S 1.5), the mass growth does grow with the perturbation
but even a value T/Thoor ~ 1.01 (representing our initial random
fluctuations, cf. Section 2) does lead to a significantly larger mass
growth than for an unperturbed cloud, where mixing is only due to
numerical diffusion.

As mentioned above, the fact that the initial temperature lies
above the floor temperature might seem artificial and not occur
in nature. However, such an abrupt loss of pressure balance can
occur in realistic scenarios (e.g. a thermally unstable gas cloud in
the ICM/CGM or when a cloud is over-run by a shock). When the
pressure difference is large, this leads to the well-known ‘shattering’
phenomenon (McCourt et al. 2018; Gronke & Oh 2020b). One can
interpret Ty > Tpoor @S a Way to simply perturb the system out of

4Note that Fig. 3 shows a small overdensity of only x = 10 which we show to
be able to explore a range of T¢i/Tfoor Values without x final 2, X crit and, thus,
shattering. We also note that r¢/€shatter Shown in Fig. 3 is clearly a borderline
case, thus, falling off the expected 7.
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Figure 3. Mass growth versus the initial perturbation T¢1/Tfoor- If 1ol >
Lshatter» 11 is independent of T¢i/Thoor for Te1/Taoor 2, 1.5. The minimum per-
turbation shown with filled symbols is T¢j/Tfoor = 1.01. As an unfilled black
circle, we also show a simulation with T¢/Tfo0r = 1 which does not grow.

pressure balance which happens in reality through such mechanisms.
In fact, such oscillations have been observed in simulations where
cold gas is ram pressure accelerated; they are seen even in the later
entrained state (Gronke & Oh 2020a; Abruzzo et al. 2022b).

3.2 Cooling induced coagulation

As we have seen in the previous section, the mass transfer rate from
hot to cold medium depends on the size of the cold gas cloud, and
is generally an important prediction to compare to observations. In
the circumgalactic medium, for instance, characteristic scales of the
cold ~ 10* K gas are commonly inferred from absorption line studies
(e.g. Schaye, Carswell & Kim 2007; Lan & Fukugita 2017; Churchill
etal. 2020) or through emission properties (e.g. Cantalupo et al. 2014;
Hennawi et al. 2015; Li et al. 2021) which indicate the presence of
small < 100 pc clouds. This finding has sparked a range of theoretical
studies. As mentioned above, McCourt et al. (2018) suggested
droplets of the size of Lghayer = min(csteoor) to be the outcome of
a cooling and fragmentation process. Furthermore, a characteristic
size of a cloud 7 2 Fe,crit = Vwinafeool,mix/+/X 18 also required for it
to survive ram pressure acceleration (Gronke & Oh 2018; Kanjilal
et al. 2020; Li et al. 2020). These predictions can be compared to
observations; they also set resolution requirements for larger-scale
simulations. Using the example of the circumgalactic medium again,
current cosmological simulations are not yet numerically converged
in cold gas properties, which makes comparisons to observations
problematic (e.g. Faucher-Giguere et al. 2016; Hummels et al. 2019).

Fragmentation and mixing are processes lowering the size of the
cloud. On the other hand, mass growth through cooling (as discussed
in the last section), and coagulation of clouds are processes increasing
the characteristic cloud size. Coagulation of cold gas clouds is seen to
occur in larger scale simulations (Gronke et al. 2022). Here, we want
to study the coagulation process due to cooling in highly idealized
setups.

3.2.1 Static 2D setup

Fig. 4 shows the outcome of 2D simulations where we placed a
single droplet of size rq ~ 0.1r¢ at a distance dy. We perturb the
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Figure 4. Evolution of 2D simulations of a droplet located at dy/r¢; merging
with a cloud of radius r¢; which cools from T to Tqeor. Top panel: Cold gas
mass as a function of time. Central panel: Ratio of measured to predicted cold
gas mass growth. Bottom panel: Velocity of the droplet as a function of time.
The dashed lines in the upper and lower panel show the curves stemming
from solving equation (5) with &« = 0.5 which is marked as a black line in
the central panel. See https://max.lyman-alpha.com/coagulation for videos
of this setup.

cloud and the droplet as in the previous section by initializing their
temperature to T¢; > Thoor- As seen before, the cold gas mass growth
(upper and central panel of Fig. 4) follows the expected evolution
given by equation (1). Due to this mass growth, which is dominated
by the cloud, the surrounding hot gas streams towards, and entrains
the droplet. In the lower panel of Fig. 4, we show the droplet velocity
as a function of time. Note that the droplet gets accelerated both via
ram pressure and momentum transfer due to cooling of the mixed
material which take place on time-scales of Zarg ~ X 7a/Vnor and

. r
lgrowEm/m ~X T (3)

Umix
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Figure 5. Evolution of 2D simulations of a droplet located at do/rg = 1.1,
and an initial velocity vq o merging with a cloud of radius r¢; which cools
from T¢ & 2Tq00r. TOp panel: Mass growth rate normalized by the expected
value from equation (1). Bottom panel: Location of the droplet as a function of
time. The dashed lines correspond to equation (5) with a velocity dependent
g ~ (Ud/cs, ﬁoor)”2~

respectively. The ratio of these two time-scales is

lag  Vmin A @
tgrow Unot Fel
where we used vVpo ~ Umix(7a/d) (i.e. assuming the mass growth is
dominated by the central cloud; see Section 3.2.3 for a multidroplet
setup), which comes from mass conservation in 2D. This shows that
we expect the momentum transfer via mass growth to dominate.
The net force acting on the droplet, evaluated in the droplet’s
rest frame, i F ~ P ~ 5itvg) + MU ~ Fyrag ~ phvrzelAmss, where
the relative velocity between the droplet and the hot wind is
Urel = Umix,c1(re1/d) + d (note thatd < 0). Fyy,g represents the hydro-
dynamic drag force. We previously saw that Fre /10 ~ tgrow /tarag ™~
ra/d < 1 (equation 4). Thus, the equation of motion simplifies to
MU ~ —HVg. Plugging in the expression for vy, this gives

. ) Fel . Fel .
m(t)d = =it (Vo +d) +mvms (2 ) d )
with 7t ~ 27 Upix a7aon as before. The third term on the right hand
side is a fictitious force which arises from the transformation to
the non-inertial wind frame (e.g. similar to Coriolis forces). Hence,
for an entrained droplet, with f4, < ty, and d= —VUmix,cltel/d,
the acceleration is given wholly by the third term, d = vy d/d =
Umix (re1/d*) d. The first two terms represent acceleration due to
entrainment process, which exerts a force ~ miv,. For completeness,
the mass growth of the cloud and the droplets should also be taken into
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Figure 6. Evolution of 3D simulations of a droplet located at do/r) merging
with a cloud of radius r¢ which cools from T to Tqoor. The solid, dashed,
and dotted lines show runs with overdensities of x ~ 50, ~103, and ~10%,
respectively. The runs marked with * are the ones were we perturbed the
dropleti.e. Tq = T¢. Top panel: Ratio of measured to predicted cold gas mass
growth. Bottom panel: Normalized velocity of the droplet as a function of
time.

account, by integrating i ~ 27TUix c17c1 Pn s Well (and analogous for
the droplets), and using 23 ~ ma /(7 pa)-

Note that vy, o r* is a scale dependent quantity, and thus it
is distinct for the cloud and the droplet. However, equation (2) was
derived in 3D (and with larger perturbations), so it is unclear if it
holds here. The dashed lines in Fig. 4 shows the outcome of this
analytic model and we see that (using o ~ 0.5) it fits the numerical
solution reasonably well.

3.2.2 Static 3D setup including large x

Fig. 6 shows the evolution of three dimensional runs of the same
setup. Note that as here vp o d? the coagulation process is much
slower compared to the 2D runs described above. Nevertheless, the
droplets do move towards the cloud and they do so approximately
with the velocity expected.

In Fig. 6, we also show the results of a run with a much larger
overdensity of x ~ 1000 (with dashed lines). We can note that (i)
the mass growth follows the predicted scaling equation (1), (ii) the
droplet’s motion is independent of x. This might seem counter-
intuitive since the acceleration (both via drag and mass growth) is
to first order proportional to x. However, since fgow ~ X ¥a/Umix and
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tady ~ A/[Vmix(ra/d)?], we have

tgmwN?,( X ) (rd/rcl)3/4 (rcl/d>3. 6)
tady 1000 0.1 025 ) °
the entrainment time is at most comparable to the advection time (and
much shorter for the low x case). Thus, the droplet can be treated as
comoving with the wind, independent of overdensity. Interestingly,
we find for large x (= 10*) mass growth rates larger than expected
from equation (6). We attribute this to increased fragmentation of the
droplet,’ which s clearly visible in slice plots. We defer more detailed
analysis and better understanding of this boost in mass growth to
future work.

This is no longer the case once the growth time of the droplet is
larger than the travel time i.e. setting fgrow, a ™ firavel yi€lds a critical
overdensity of

d3 rq 174
Astuck ™~ ﬂT (*) @)

rald \Te

above which the droplet should not move. Here, B is a fudge factor
encapsulating the deviation from the expected droplet’s mass growth
rate discussed above. Setting B ~ 0.1 (consistent with the mass
growths from the simulation), we obtain a xgucx ~ 3600 (for d ~
4ry, ralrq ~ 10). Fig. 6 also shows a simulation with x ~ 10* where
indeed the velocity of the droplet v ~ 0 (dotted red line in the lower
panel of Fig. 6).

3.2.3 Static multidroplet setup

Instead of placing a single droplet next to a large cloud, we placed
a large number of droplets randomly within a sphere. We again
perturb them using an initial temperature of 7/Theo ~ 2. Due to
their combined growth, these droplets will merge to form a single
blob. Fig. 7 visualizes this evolution via density projections of a 3D
simulation. As a proxy of how fast the droplets are coagulating, we
use the droplet initially furthest away from the centre of the sphere.
Figs 8 and 9 show this droplet’s distance to the centre of the sphere for
2D and 3D simulations, respectively. An increased droplet number
density implies more mass growth, and thus faster coagulation. We
adopted our cloud-droplet model to this fog of droplets by using a
cloud of mass m. = NgropMgrop i.€. considering the combined mass
growth. This simple model (shown as dashed lines in Figs 8 and 9)
reproduces the contraction process reasonably well. Discrepancies
occur at extremely dense droplet placement when the free-streaming
of the hot gas no longer occurs (i.e. shielding becomes important),
and for small droplets rq < Cghaer (thick lines in Fig. 9). As shown
in Section 3.1 for these clouds the pulsations do not occur, leading
to slower mass growth — and hence, the speed of coagulation — is
significantly slower.

3.2.4 Droplets with initial velocity (2D)

Using this simple model of cooling induced coagulation, we can
add additional complexities. Fig. 5 shows the evolution of 2D runs in
which we impose an initial droplet velocity vq4 o away from the cloud.
This is akin to the situation for ‘shattering’ clouds when droplets
fly away with high (v4 o < afew X ¢ coq) velocities (Gronke &
Oh 2020b). With the model described above, we can reproduce the

SWe confirm that this fragmentation also occurs in a smooth v o r—2

background flow i.e. is not due to perturbations caused by the central cloud.

Cooling-driven coagulation 503

droplets trajectory quite accurately but note that we use a velocity
dependent fudge factor® for the droplet’s mass growth rate of agy
~ (va/cs,fioor)?. Note that this non-constant a4 is inconsistent with
the growth used for the (pulsating) cloud thus far (cf. equation 2).
However, the clouds in these simulations undergo significant initial
shear and fragmentation, due to its initial velocity. As such, it is
roughly consistent with findings of higher resolution simulations of
turbulent mixing layers showing a dependence of vy, on the shear
velocity (Tan et al. 2021).

In summary, the coagulation process of cold gas structures em-
bedded within a hotter surrounding is driven by the cold gas mass
growth in two ways. First, in order to sustain the global cold mass
growth, the hot medium is moving at a velocity v Vmix (Fa/d)?
in 3D towards the cold gas. And secondly, due to their own mass
growth, droplets become rapidly entrained in this velocity field (cf.
equation 4). We developed a simple model describing this system,
which reproduces our numerical results reasonably well. Such a static
setup does not represent, however, reality for most astrophysical
systems. We therefore study cold gas mass growth and coagulation
in a turbulent setup next.

3.3 Coagulation in a turbulent medium

As we saw in the last section, the coagulation velocity is ~c . i.e.
rather small. In typical astrophysical systems with turbulent velocity
dispersion ~cs pot it seems at first sight that coagulation cannot
‘win’ over dispersion. This is in line with simulations of multiphase
gas in a turbulent medium which show fragmentation of the cold
gas (e.g. Saury et al. 2014; Gronke et al. 2022; Mohapatra et al.
2022). However, since the dispersion is not a directed bulk motion
like coagulation but instead more akin to a random walk, it is of
interest to study the threshold vegeg ~ vaisp- There are two interesting
questions: (i) when does a system of clouds coagulate? (ii) when
does an individual cloud fragment in the face of turbulence?

Turbulent dispersion is a large area of research in fluid mechanics
(for reviews see e.g. Sawford 2001; Salazar & Collins 2009) with a
long history. Batchelor (1950) found that initially the mean separation
of two particles in a turbulent medium scales as (d?) o (edy)?*F
whereas for later times’ the particles ‘forget’ their initial separation
and (d%) o €. In both cases, turbulent dispersion is superdiffusive,
compared to the customary diffusive expectation (d?) o« f.

Since we are interested in the dominant process initially — which
governs the further evolution — we equate the velocity dispersion
prior to the ‘Batchelor time’ (where the scalings change) to the
coagulation velocity. In this regime, the mean dispersion velocity is
given by

d do\ '
b~ ) P~ av (f”) 8)

where we have used € ~ vfurb /L, Vi ~ Mccpe 18 the driving
velocity on the scale of the box and a ~ 2 a numerical prefactor.® Note

In 3D shearing layers, vpmix ~ (u/)m(r/tcoal)”4 scales with the turbulent
velocity i rather than the cold gas sound speed, where u o v, giving
Umix & v°7° (Tan et al. 2021). Since we have not investigated this in 2D, and
also the modification of droplet surface area by the initial velocity, we merely
note that this fudge factor (which is ~2 or less in our numerical experiments)
works well.

7Specifically fort > tg ~ dg & (€)~1/3 where dy and € is the initial separation
and the turbulent dissipation, respectively.

8Specifically, a = /T1/6C; with C being the Kolmogorov constant for the
second order velocity structure function. Ni & Xia (2013) find C; ~ 4.02.
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Figure 7. Projections of a 3D simulations with Ng = 50 droplets of size rq ~ 500€shater placed randomly in a sphere with radius 15r4 (marked as white dashed

line). The droplets coagulate on a time-scale of ~40¢t,, (1.
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Figure 8. Evolution of 2D simulations of a fog of droplets randomly placed
within r < 100rq. Plotted is the distance of the droplet initially furthest away
from the origin as a function of time. The dashed lines are our analytical
estimate of this scenario using & = 0.1.
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Figure 9. Evolution of 3D simulations of a fog of droplets randomly places
within r < dj. Plotted is the distance of the droplet initially furthest away
from the origin as a function of time. The dashed lines are our analytical
estimate of this scenario using & = 0.2. Note how the coagulation is very
slow if rg < O(Lgpatter) due to the lack of pulsations.

that while equation (8) follows from the {d?) o< £ scaling described
above, it simply represents the Kolmogorov scaling.

MNRAS 524, 498-511 (2023)

If we evaluate turbulence and coagulation at the scale of the cloud
dy = rq, and require Veoag ~ Umix > U, this yields a critical Mach
number,

( e )]/4
oM ©)

= 06 (<) (40) () o)

Mcoz\g ~

below which coagulation is stronger than dispersion and clouds
should be more robust to fragmentation. In equation (10), we plugged
in typical values and used the fiducial values a =2 and o« = 0.2 as
suggested by the result presented in Section 3.1 and Gronke & Oh
(2020a). In Section 4.1, we also estimate critical Mach numbers
below which clouds can coagulate (equation 21). The point we
will show below is that although there is strong inverse square
geometric dimming of coagulation forces, the critical Mach number
for coagulation is still M ~ vy /csn ~ 0.1(x/100)~1/2 if cold gas
covering fractions are high.

Fig. 10 shows snapshots of simulations with multiphase, turbulent
media. The boxes were initiated with decaying as well as driven
turbulence to ensure approximately constant Mach number, and 10
cold clumps were placed in them (with overdensity x ~ 100 and size
ra ~ 500€ghaer; the numerical setup is identical to Gronke et al. 2022
and we refer the reader to this paper for more details on the setup).
The M ~ 1 simulation shows the most fragmentation, whereas in
the M ~ 0.1 run, coagulation of droplets occurs.

Fig. 11 shows this behaviour in a more quantitative manner. As
the turbulent, multiphase medium evolves, the cold gas mass grows
(if it is initially larger than some critical size; see Gronke et al.
2022) — and fragments. The extent of this fragmentation depends on
the competition between coagulation and dispersion. In Fig. 11 we
show the results from six simulations with different Mach numbers
and a single initial cloud of varying size (256> cells, Lyox/rey = 40,
and x ~ 100) which we analysed using a clump finding algorithm.
In the re/€ghayer ~ 500 case, the M ~ 1 and M ~ 0.3 simulations
fragment into 2 100 clumps while in the runs with r./€gaer ~ 5000
this is only true for M ~ 1. Note that in these simulations, we have
kept L/r¢ ~ 40 constant. Our results are in line with the discussion
in Section 4.1, equation (10) which yields a critical mach number of
Meoag ~ 0.16 and 0.28 for the smaller and larger cloud, respectively.

Due to numerical constraints, we can only probe small dynamic
temporal and spatial range. However, we showed that coagulation
does affect the dynamics of turbulent, multiphase media. Naturally,
also other potentially observable properties such as the cloud size
distribution are also affected. We will study this point in detail in
future works.
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Figure 10. Time evolution of turbulent multiphase boxes with different Mach numbers and 10 droplets of size rqg ~ 500£gparer- While the M ~ 1 case shows

fast fragmentation, in the M ~ 0.1 case some droplets have coagulated.
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Figure 11. Number of clumps versus the cold gas mass for six simulations of
turbulent, multiphase media with different Mach numbers and cold gas sizes.
The runs with lower Mach number and larger cloud sizes show stronger
coagulation in line with equation (10). The lines are horizontally slightly
offset for better visualization.

4 DISCUSSION

4.1 Analogies between coagulation and gravity

Consider two clouds separated by a distance d. Cloud 1 experiences
a force due to cloud 2 given by

. Ay
Fi 2 ~ 111Veoag2 ™~ phvmix,lAlUmixlm- (11)

On the other hand, cloud 2 experiences a force due to cloud 1 given
by
A

4md?
Thus, the two clouds exert equal and opposite attractive forces on
one another, with magnitude scaling as the inverse square of their
separation F oc d~2. This reminds us of another extremely well-
studied force — gravity — with the same characteristics, |F) 2| =
|Fa. 1| ~ Gmymy/d®. Despite the fact that gravity is relatively ‘weak’”
and also decays as F oc d72, it is of course crucial in structuring
mass distributions; despite the simple nature of Newtonian gravity,
it gives rise to very rich and complex behaviour (e.g. Binney &

FZ,] ~ m2vcoag,l ~ phvmix,ZAZUmix,l (12)

“For instance, the ‘gravitational fine-structure constant’ ag ~ Gmi /hc ~

10738 is orders of magnitude weaker than the electromagnetic fine-structure
constant, o« = ¢2/hic = 1/137.
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Tremaine 2008). This is in part because it is a long range attractive
force without any shielding; unlike electromagnetism, there are no
negative charges. Similarly, cooling-induced coagulation is a wholly
attractive force with no negative charges.'® While there are important
differences,!! the parallels between gravity and coagulation are
strong enough to be a useful avenue for thinking about this problem.

From examining equations (11) and (12), we can identify the
analogue of gravitational mass to be area m — A, and the analogue
of the gravitational constant to be a peculiar form of kinetic energy
density'’G — pyv2,,. Already this tells us about an important
difference between gravitational and coagulational dynamics. Mass
is conserved under fragmentation and coagulation. However, area is
not conserved: for instance, if one ‘shatters’ a cloud into tiny droplets
of radius r4, with the number of droplets N ~ (ra/rq)?, then the area
increases by a factor Nr2/r2 ~ rq/rq, so that coagulation becomes
significantly more important.'3 This surface area dependence is key
to the strong modulation of coagulation; ‘shattering’ (which rapidly
increases the surface area to mass ratio) boosts the importance of
coagulation, while mergers/coagulation itself (which decrease the
surface area to mass ratio) reduces the importance of coagulation. In
a multibody system, each cloud is weighted by area, not by mass,
and we can follow the motion of an extended distribution by writing
an equation for the ‘centre of area’ (rca) = f rdA/ f dA, rather than
the centre of mass (rcy) = [rdM/[dM. We can also think about
the analogue of the free fall time, # ~ 1/4/Gp. Consider the total
forces acting on a single cloud of mass m, and area A at distance d
to the ‘centre of area’ of a collection of clouds with total area A(<
d) in a sphere with r = d,

md ~ ,Ohv,%ﬂx AclAtol(< d) ~
4 d?
where f3 ~ Ay(< d)/4m d?, the number of times a random line of sight
with impact parameter less than d to the ‘centre of area intersects a
surface,'* we can obtain the coagulation time for a cloud embedded

in a collection of clouds:

1/2 D2
tcoag ~ ( X ) & (14)

f A Umix

Note the appearance of 7 in fcq: there will be mass segregation in
coagulational collapse, with larger clouds falling to the centre more
slowly. In gravity, we have the principle of equivalence, due to the
equivalence of gravitating and inertial mass: F = ma = mg, so a =
g, independent of mass — feathers and rocks fall at the same rate in
a vacuum. However, for coagulation, F' = ma = Mcoaggeoag X A&coag»
s0 a o< A/m o 1/r; larger objects fall more slowly.!

We can compare the coagulation time equation (14) with the
results shown in Fig. 9, where N, = 50 clouds of size r. are

P Vs faAct (13)

10There can be geometric shielding in an optically thick flow (where a cloud
blocks hot gas and thus modulates hot gas flow behind it), but we will ignore
this complication for now.

For instance, smaller signal speed: coagulational forces propagate at the
sound speed of hot gas, and time delay effects can be important.

12Note that vmix o '/ is size dependent. We adopt a value (vmix) Which is
understood to be averaged over the size spectrum of cloudlets in the system.
13 As discussed in Section 3.1, this only holds for sizes down to ~€sharer after
which no pulsations — and thus no ‘cooling induced’ coagulation — will occur.
However, mixing, cooling (and coagulation) due to external factors such as
shear flows can still play a role for these tiny fragments.

14Similar to optical depth, fo > 1 is possible, which boosts the importance
of coagulation and decreases fcoag -

150f course, mergers and fragmentation will modulate feoag Of a cloud, just
as evolving density modulates i ~ 1/4/Gp.
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randomly distributed within a sphere of size d = 15r. This gives
fa = [AV ngmrd/(@mr?) &~ Na(ra/d)?, where the cloud number
density n¢ ~ 3N /(A d®). Inserting into equation (14) (and using for
simplicity vmix ~ s, ) yields

feong __ g (L)”z (Ncl>”2(d/rcl)3/2 (15)
tse.cl 100 50 15

which is a factor of 2 larger than the simulation result of Zcoag/?c, o1
~ 40. This is good for an order of magnitude estimate, since clouds
accelerate as they fall towards the centre (Feoag d=?). Moreover,
Fig. 9 shows rough agreement with a #cpe o¢ Ny 1/2
fooag ¢ d*? scaling.

In practice, the clouds, or the hot medium itself, will often be
endowed with some relative velocities, which can cause the clouds
to disperse. It would be nice to have some rule of thumb or intuition
as to when the system coagulates or when it flies apart. In self-
gravitating systems, we can compare potential energy U with kinetic
energy K. If |U| > K, the system collapse; if |U| < K, it is unbound
and flies apart. Could a similar criterion be helpful in coagulating
systems? Let us first study how to define potential energy U. Consider
the work done to separate two clouds from d; to d,:

AU /d2 Fodr = Pty 4 (11 (16)
= coagdl" = T
P an '\a 4

as well as the

Since Fo, is a radial force, it is conservative: AU is independent
of the path taken from d; to d,, and any closed loop (i.e. a path that
ends back up at d; means that no net work'® is done by Foq,.

Thus, we can meaningfully define a potential energy U where

Feoag = —VU. If we set U(co) = 0, we can write
2
1% vmixA A
Ud) ~ S5~ 30, 2@ Vi, (7

where V,; ~ (47/3)d’, and Q; = A;/(4 d*) is the solid angle subtended
by cloud i. The potential energy density is pv2, ©21Q,: the kinetic
energy density pnv2; modulated by the area covering fractions
Q, Q,. As the covering fractions increase, so does |U|. Thus,
fragmentation increases |U|, and mergers/coagulation decrease |U|.

For a collection of clouds, we sum the potential energy contribu-
tions from all pairs of clouds. From the analogy to Newtonian gravity,
where U ~ GM2,/(d), where (d) is a characteristic scale (such as
the half mass radius), we can write the total potential energy as

2 2
PhVnix A tot

Ut ~
ot A7 (d)

~ Myvg f (18)
where My, ~ pn(d)? is the hot gas mass, and the area covering
fraction/enhancement factor fy ~ Ay/(d)> modulates the strength
of potential energy. Thus, if fo > 1 (and indeed, fa > 1 is possible in
"fog-like’ cloud topology), the potential energy will exceed the naive
bound M,v2, , due to the superposition of the flows from multiple
small clouds. Of course, at that point a more careful treatment which
takes geometric shielding into account is necessary.

What about the kinetic energy? There are at least two classes
of problems: (i) the hot gas is initially static and the cloudlets
have some initial relative velocity. A prototypical example is cloud
shattering. This statement is also approximately true of the cloud
growth problem in the frame of the wind, when cloud fragments of
different size have undergone differential acceleration. In this case
the relevant kinetic energy is K ~ M,o2, where o 2(d) is the velocity

16There will be work done by other drag forces; we only consider work done
by F coag-
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dispersion of cold gas at scale d. (ii) The hot gas velocity field has
significant velocity structure (e.g. in the form of shear or turbulence),
and can potentially entrain the clouds. In this case, the relevant kinetic
energy is K ~ M0, where o is the velocity dispersion of hot gas.

Although energy is not strictly conserved,!” we can use this to
estimate whether coagulation is likely to happen. For coagulation to
happen, we require that |Uyy| > |Kio|, or 04(d) < vmixfa. If we use
Kolmogorov scalings for o(d), this gives a critical Mach number
for coagulation,

ot/ Csharter)/*
Meoag ~ a(:,.ll//th)f'/zil/zf/‘ (19)

below which clouds will coagulate. This yields the same scalings
as found in equation (9), but a much lower normalization, due to
the small value of fy ~ 0.05[(ra/d)/15]*(N./10). We discuss this in
Section 4.2 but note that the normalization of this equation needs
to be calibrated against simulations (and will likely change). This
equation provides testable scalings for the dependence of Equation 9
on physical parameters. We defer this to future work.

We can also use this to understand why there is a critical
final overdensity xix &~ 300 for recollapse and coagulation during
‘shattering’ (Gronke & Oh 2020b). For an expanding cloud to achieve
momentum contact with its surroundings and decelerate, it must
sweep up of order its own mass: ,oc.rfl ~ ppd>, which gives d ~
xPra. Assuming droplets are launched at a velocity v ~ ¢ ¢, we
have

U My v} (Nrj )2 N2

mix o —— (20)

Koo M 2, \ 32 x4

where A ~ N r§ ~ rczl(rcl /ra), where N ~ (ry/rq)®. The first two
factors My/M. and v, /c? . are order unity. The number of cloudlets
N is difficult to model, but it is clear that as overdensity x increases,
the ratio U,/K, decreases, and eventually coagulation is not
possible. Overdense gas is launched out to larger distances d before it
is slowed down by the hot gas, and by that time, the covering fraction
fa drops sufficiently that coagulation is suppressed.

Of course, more careful study and detailed comparisons to sim-
ulations are required to transform these remarks into a quantitative
theory, which we defer to future work.

4.2 The competition of coagulation versus dispersion

At first blush, the results of this paper might suggest that coagulation
should be unimportant. The coagulation velocity vepag ™~ Vmix ™~
¢, ¢ is small and diminishes rapidly with distance, vcoag d~?. This
corresponds to a small Mach number, even a relatively small distance
from the cloud,

-2

M~ Umix (@)2 ~ 102 ( Ymix (L)’”z a4 21
csh N d Csc 100 3ra

which would appear miniscule compared to other velocities in

the system, so that coagulational inflow is a negligibly small

7n the first case, the hot medium provides an additional drag force which
slows dispersal and promotes coagulation. In the second case, the hot medium
(if it entrains the clouds) promotes dispersal. Therefore, unlike the self-
gravitating case, there are additional dissipative or driving forces acting,
besides the conservative force. Thus, there is no energy conservation: in the
first case, kinetic energy decays (due to ‘friction’ against the hot gas); in the
second case, cloud entrainment transfers kinetic energy from the hot to cold
gas. And, as previously noted, fragmentation/mergers modulates potential
energy.
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perturbation. Yet, there are configurations, such as cloud crushing
and cloud shattering, where coagulation is undeniably important.
Indeed, a multiphase mixing layer (Kwak & Shelton 2010; Tan
et al. 2021) is itself an example of coagulation — despite the high
velocity of shearing hot gas, vVsnear ~ McCsn > Umix ~ Cs.c, cOOling
gas fragments in the mixing layer advect towards the cold gas layer.

The previous section (Section 4.1) addressed the vy d? fall-
off. This only holds for a single cloud. If surface area is enhanced
(e.g. by fragmentation), so that the area covering fraction f, is large,
then the fall-off with distance is suppressed. Thus, for instance,
Ut ~ thﬁﬁx when f) ~ 1 (equation 18); all the hot gas is moving
with velocity vpix. This is similar to Obler’s paradox: if every
sightline in an infinite static universe ends on the surface of a star,
then the surface brightness of the night sky would be that of a stellar
surface, since the reduced solid angle (which increases the number
of stars which tile the sky) and inverse square dimming behave in
the same way. Similarly, if fo ~ 1, then veoag ~ Umix, regardless of
distance. Alternatively, we can use the analogy between gravity and
coagulation to use Gauss’s law to find how vy, diminishes with
distance. For the cometary tail of a cloud in a wind or a filamentary
cold gas structure, Feoag X Vcoag X d~! (as for the gravitational force
of a filament). For a semi-infinite slab of cold gas (as in a mixing
layer), Feoag X Veoag ™~ Umix 18 independent of distance (as for the
gravitational field above a mass sheet). Slab-like geometry can arise
in strongly stratified atmospheres, and filamentary geometry can arise
in systems with strong B-fields.

Still, that leaves the second question: even if veoey ~ Vmix ~
¢, ¢, how can that compete against much larger turbulent velocities
oy ~ Mycep? Indeed, it cannot in general.!® However, it can in
laminar bulk flows (where even if the bulk flow velocity is large, the
relative velocity between cold gas fragments is small as they entrain
in the hot wind), or in quiescent regions of a turbulent medium. For
instance, as hot and cold gas mix, the ‘mass loading’ of cold gas
into the hot gas results in a new velocity dispersion o pix, where
(p)o2i = pnol, and (p) ~ fope + (1 — fo)pn = fepe. This gives
Omix ™~ Ul/(X fc)|/2 ~ thc_l/zcs,c, so that O mix < Cs,c if fc > M]%
Note that here o is the velocity dispersion of the multiphase (hot
and cold) gas mixture; it is not the velocity dispersion of mixed gas
at some intermediate temperature. All situations where coagulation
is observed to be important (e.g. coagulation onto the cometary tail
of a cloud; shattering; turbulent mixing layers) are those where cold
gas mass loading f. is fairly large and the gas turbulent velocity does
in fact obey omix < vmix- The same is not true if (p) < p., and
thus o mix > Vmix. For instance, in the driven turbulence multiphase
setup of (Gronke et al. 2022) (where o pnix > Unmix; see fig 19 in that
paper), coagulation indeed does not outcompete fragmentation by
turbulence. Instead of coalescing into a large central cloud, a scale-
free power-law mass distribution of clouds forms.

To summarize: coagulation is efficient, despite the small amplitude
Vcoag ™ Vmix ™~ Cs, ¢ and rapid fall-off veyae o d2,in regions where (i)
the extrinsic dispersion velocity is low, e.g. if the cold gas fraction f,
is high, and (p) ~ f; p. (since this mass loading reduces the turbulent
velocity to o ix < ¢s ¢ if fo > /\/lﬁ) and (ii) the geometrical dimming
can be overcome, for instance, through the geometry of the cold

181t is true that ¢ o ['3 in Kolmogorov turbulence, so that turbulence
decreases at small scales, but o] < ¢, ¢ is only true for [ < (X_l/th)3L,
where L is the driving scale. For instance, for x ~ 100, M}y ~ 0.5, then [
< 0.01L. Such scales are at best only a few grid cells apart in simulations
where coagulation is seen, and coagulating cloudlets are generally separated
by larger distances.
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medium or if the cold gas covering fraction fa is high (since the
fall-off with distance in veo,g goes away as fy — 1).

Next, we discuss some of these cases where coagulation is
important in more detail:

(1) Mixing layers, clouds, and streams. Plane parallel Kelvin—
Helmholtz mixing layers have fj ~ 1, and thus v ~ Vpmix does
not decline with distance. Also, regions where cold gas mass loading
is substantial have turbulent velocities u" ~ Vgpear/ /X ~ Cc,s» thus
comparable to vpix, as one might expect from the above arguments.
Clouds in a hot wind develop an extended cometary tail with a cylin-
drical structure (e.g. Gronke & Oh 2020a). Thus, entrained clouds,
or cold gas streams (e.g. Mandelker et al. 2020; Bustard & Gronke
2022) correspond to our 2D (Fig. 5), rather than our 3D (Fig. 6)
simulations, with v;, oc d~! instead of vy, oc d=2. Similar to Fig. 5,
the droplet returns on a time-scale ~ & fioor (Where & ~ 5 — 10),
during which time it travels a distance ~ vy @ foor ~ & x /> Mr.

(ii) Expulsion from a central origin. Droplets dispersed from a
central origin can eventually coagulate back together. In Gronke &
Oh (2020b), we argued that the competition between dispersion
and coagulation sets the threshold of ‘shattering” which we found
to be X final Z 300(rcl/104€shaner)l/6 (fOf T > eshatler and §P/P
2 1.5). In our simulations, clouds straddling this boundary had
vastly different outcomes. In principle, since drag forces cause
kinetic energy to decay, coagulation could potentially once again
dominate at late times,'® though in practice turbulence will further
separate the fragments and shape the mass distribution. While the
exact mechanism of fragmentation and dispersion in the ‘shattering’
scenario needs revisiting, in broad terms the role of coagulation here
is clear.

(iii) Coagulation in extrinsic turbulence. In Gronke et al. (2022),
we studied turbulent, multiphase dynamics in more detail and found
that the droplets follow a power-law mass distribution dn/dm oc m=2
(which is also found in larger scale simulations of the ICM; cf.
Li & Bryan 2014b). This simulations were all run at Mach numbers
above the critical Mach number (equation 10) where we might
expect coagulation to play a role. For low Mach numbers, we expect
deviations from this power law, which we will analyse in future work.

Note that in the above scenarios mixing and subsequent cooling
is often not necessarily provided by the ‘cooling induced pulsations’
discussed in Section 3.1; all that is necessary is that mixing takes
place.

4.3 Caveats

Our study does not address a range of topics which we hope to revisit
in future work.

(1) Magnetic fields. Most plasmas are magnetized, which affects
the mixing and thus the mass transfer process (Ryu, Jones & Frank
1995; Ji, Oh & Masterson 2018). Furthermore, B-fields imply a non-
thermal pressure support which can become large in the cold medium
even with initially large plasma B due to magnetic compression
(Sharma, Parrish & Quataert 2010; Gronke & Oh 2020a).

(i1) Cosmic rays. Similar to magnetic fields, cosmic rays are
present in astrophysical plasmas and provide non-thermal pressure
support which changes the cooling rates of the gas (e.g. Salem,
Bryan & Corlies 2016; Butsky et al. 2020).

19Similarly, pulsations could potentially damp in an otherwise static medium.
However, we showed that they continue on time-scales much longer than f,
and in practice turbulence will always perturb the cloud.
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(iii) Simplified setup. The goal of this study was to develop a
simple model for coagulation. Thus, we focused on very simplified
initial conditions. In future work, we want to apply this model in
more realistic scenarios such as multiphase galactic winds.

(iv) Resolution and dynamic range. As all numerical studies,
we suffer from finite resolution and limited dynamic range. We
tried to support our findings with resolution studies throughout as
well as analytic models matching our numerical findings. Note that
throughout this work we do not aspire to achieve full convergence
i.e. to have converged cold gas morphology. We merely aim for
convergence in cold gas mass.

We do not consider the neglect of thermal conduction to be a
major caveat of this work. We have previously shown that when heat
diffusion is dominated by turbulent mixing (as is true here), thermal
conduction has little impact on mass growth rates and coagulation
velocities (see sections 4.6, 5.5, and 5.6 in Tan et al. 2021 for a
detailed discussion).

4.4 Comparison to the literature

The oscillations for cooling clouds were previously discussed in
the literature, in particular in Waters & Proga (2019a) and Das,
Choudhury & Sharma (2021) in 1D and in Gronke & Oh (2020b)
in 3D simulations. Notably, Waters & Proga (2019a) and Das et al.
(2021) carry out in-depth analyses of linear non-isobaric thermal
instability and found pulsations for ‘large clouds’. Waters & Proga
(2019a) show that the pulsations decay on along (= 10¢.) time-scale,
and that the cloud settle eventually (2 50¢.) back to the equilibrium
state. However, note that gas mixing — which can fuel cooling and
further pulsations — is not captured in 1D.

The further mass growth associated with these pulsations was
not studied in these simplified setups. In Gronke & Oh (2018),
similar pulsations were seen in the entrained state of a ‘windtunnel’
simulations. There, the pulsations were, thus, not seeded by the initial
cooling but by the shock hitting the cloud. The mass growth rates of
the cold gas agree well including the characteristic oc tc_ml)l/4 scaling.
The rates as well as the scalings have been confirmed in turbulent
mixing layer simulations (Fielding et al. 2020; Tan et al. 2021),%°
although there gas mixing is driven by shear, rather than pulsations
from overstable sound waves.

Similarly, coagulation was observed in previous studies.
Zel’Dovich & Pikel’Ner (1969) computed the cooling rate at the
(laminar) boundary of a two-phase medium, and noted that this leads
to coagulation of the cold medium. However, they also point out
that this velocity of the front is minuscule. Building upon this work,
Elphick, Regev & Spiegel (1991) constructed a 1D framework to
study the coagulation of an ensemble of cold gas fronts — which they
extend to include bulk fluid motions in Elphick, Regev & Shaviv
(1992). This work was later extended to more dimensions (Shaviv &
Regev 1994).

More recently, Koyama & Inutsuka (2004) and Waters & Proga
(2019b) also discuss cooling induced coagulation in 1D and 2D,
respectively. They point out that not only do the fronts move due to
growth of the cold gas, but that motion is induced by the cooling (see
e.g. fig. 2 in Koyama & Inutsuka 2004). In particular, Waters & Proga
(2019b) analyse the coagulation behaviour and note the coalescence
time-scales.

20Note that, more recently, these scalings were extended into the high-M
regime (Yang & Ji 2023; see also Bustard & Gronke 2022).
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Our work differs from these previous studies in several aspects.
First, we carry out 2D and 3D simulations and build an analytic
model reproducing our hydrodynamical results. More importantly,
however, we focus on the production of intermediate temperature gas
by turbulent mixing — which cannot be captured in 1D — as opposed
to laminar heat transport due to thermal conduction alone. For this
reason, our coagulation velocities are much greater (in the same way
as the turbulent diffusion dominates over laminar heat transport; cf.
Tan et al. 2021). For instance, for their fiducial 2D run in which they
placed a r ~ 8fghaer and a r ~ 23,4 clouds at a distance of d ~
330 gharter, Waters & Proga (2019b) found a coagulation velocity of
order v ~ dftcoag ~ 0.02¢; (cf. their table 4) which is much less than
the Veoag ~ Umixt/d ~ cs we find.?!

Coagulation can be observed in many larger scale simulations. As
already mentioned, many ‘cloud crushing’ simulations with radiative
cooling display signs of cold gas coagulation (e.g. Schneider &
Robertson 2017; Gronke & Oh 2020a; Abruzzo, Bryan & Fielding
2022a). Also in simulations studying thermal instabilities, coagula-
tion has been observed (Sharma et al. 2010; Butsky et al. 2020).
In even larger scale simulations, e.g. of the multiphase dynamics in
the CGM (e.g. Hafen et al. 2019; Hummels et al. 2019), the ICM
(Li & Bryan 2014a), or in ram pressure stripped tails of galaxies
(Tonnesen & Bryan 2010; Farber et al. 2022) coagulation should
take place and play a role — however, it is unclear whether current
resolutions are sufficient to capture this effect.

5 CONCLUSION

We investigated cooling-driven coagulation process of cold gas in a
multiphase medium, a phenomenon which has been seen in diverse
simulations. For instance, it is observed in the ‘focusing’ of cold gas
droplets onto the cometary tail of a cold cloud in a hot wind. To gain
understanding, we first investigated cooling induced coagulation in
a static medium. Our findings can be summarized as follows:

(i) Perturbed cold gas blobs of size > £ ,uer = Min(csteo01) develop
pressure fluctuations which lead to continuous pulsations and mass
growth of the cold gas.

(ii) This process leads to a flow of hot gas with velocity veoa ~
Umix (Fa/d)? in 3D, where vpmix (given by equation 2) is of order of the
cold gas sound speed. Cold droplets can get rapidly entrained in this
hot gas flow (due to their own growth and the associated momentum
transfer), eventually merging with other cold gas structures.

We furthermore developed an analytic model describing the mass
growth and coagulation process which fits our numerical results
reasonably well. Although vcpye ~ Umix (rai/d)? may appear small,
note that (i) turbulent gas velocities can be small, e.g. if the cold gas
mass fraction is high. Also, in bulk flows (as in a wind), the relative
velocities between entrained gas fragments becomes small. (ii) The
EOMELriC Vegag X d~? dimming can be much weaker in different
geometries (€.8. Veoag X d~! for a cometary tail), or if the cold gas
covering fraction fy is high (where vcoeg A~ Viix Aconst).

Our finding supports the idea that cooling-driven coagulation of
adjacent cold gas is possible and we establish a criterion defining
the regimes where coagulation or dispersion in transonic turbulence
dominates. Due to the similar F o« d=2 force, we draw analogies to
gravity. The monopole term for coagulation is surface area, rather

2INote that the small cloud sizes they employed would lead to reduced
pulsations and thus an actual slower coagulation velocity; see Fig. 3.
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than mass. Thus, fragmentation, which increases area at fixed mass,
also increases coagulation.

We have neglected magnetic fields, cosmic rays, and the inclusion
of a more realistic (turbulent and stratified) background. We plan to
address these issues in future works.
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APPENDIX A: CONVERGENCE OF MASS
GROWTH

A1 Importance of pulsations for convergence in mass growth

Fig. Al shows the cold gas mass evolution for our 3D ‘static’ setup
(x ~ 100, ro/€spaner ~ 2500) with different resolutions ranging from
8 to 64 cells per cloud radius. The solid lines indicate the evolution
for a perturbed cloud which are (i) fairly well converged, and (ii)
follow the expected behaviour from equation (1) while the dashed
lines show unperturbed clouds in which the mass growth is driven
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by numerical diffusion, and is unconverged. Note that we also show
different resolution runs in Figs 2 and 3 for different overdensities
and cloud sizes showing that the mass growth rates (for pulsating
clouds) are approximately resolution independent.

Fig. A2 shows the same convergence test but in 2D and (in the
right-hand panel) with a smaller cloud of size r¢/gpager ~ 60. Thus, in
the highest resolution runs there, £, is resolved. Still, the growth
rates are similar to that in runs where £gper 1S N0t resolved.

Fig. A3 shows the same convergence test as in Fig. A1 but for an
extended period of time (> 1007 foor). We can see that the mass
transfer rate does not decay but instead continues to grow as 7z &
Ay o m?3 (cf. equation 1) as expected from monolithic growth.
While the initial pulsation pattern is imprinted for ~ 307,, more
unstructured pulsations dominate later on leading to continuous mass
growth.

A2 Change of box size

We checked whether the pulsations are caused by reflecting waves
off the simulation boundary by increasing the boxsize. Fig. A4 shows
the mass evolution for three box sizes. For the largest box size
we used a statically refined mesh for the inner region with side
length ~8r. Since we have fg. vox ~ Lbox/Cs.n ~ Lpox/(x *Cs.¢) ~
(Lbox/rcl)([sc, ﬂoor/X 1/2) ~ 25tsc, floor for our largeSt box where Lbox/rch
in our largest box, reflecting waves cannot perturb the cloud (over

1.5
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8
149 — 16 [
s — 64
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e B 15
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0 2 4 6 8 10 12
t/tsc,floor

Figure Al. Mass evolution of a perturbed and non-perturbed (solid and
dashed lines, respectively) cold gas blob using various resolutions (marked
with different colours). The dotted line shows the approximate mass growth
using equation (1).
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Figure A2. 2D convergence study of pulsating blobs. The left-hand panel shows our fiducial setup (x ~ 100, T¢1/Tfoor = 1.5, rei/shatter ~ 2500). In the
right-hand panel the clumps are a factor 40 smaller i.e. r¢1/shatter ~ 60 allowing us to resolve €shatter-
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Figure A3. Mass growth for our fiducial x ~ 100, r¢1/€shatter ~ 2500, rei/lcen
~ 16, Te1/Thoor ~ 1.5 run for an extended period of time. Clearly the pulsations
and the mass growth does not cease.
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Figure A4. Mass evolution for clouds with 7/Tqoor ~ 2, rei/lcen = 16 for
different box sizes. Note that for the largest box, we used a static refined mesh
for the inner region.
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Figure AS. Convergence test for the coagulation process. The setup is the
same as in Fig. 4/Section 3.2.1 with do/rc) = 8, Tei/Thoor = 2.

a run time of ~14f foor), but the mass growth is consistent with
smaller boxes.

A3 Convergence test for coagulation
Fig. A5 shows our coagulation setup discussed in Fig. 4/Section 3.2.1

with different resolutions and shows the coagulation process is fairly
converged.

This paper has been typeset from a TEX/I&TEX file prepared by the author.

MNRAS 524, 498-511 (2023)

£20Z Jaquiaides /z uo Jesn eleqieg ejueg ‘eluiofied 1o Ausiaaiun Aq y£5502./861/1 /772G /o10ne/seiuw/woo dnooiwepese//:sdiy woll papeojumod



	1 INTRODUCTION
	2 METHODS
	3 RESULTS
	4 DISCUSSION
	5 CONCLUSION
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: CONVERGENCE OF MASS GROWTH

