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ABSTRACT

We investigate how cosmic rays (CRs) affect thermal and hydrostatic stability of circumgalactic (CGM) gas, in simulations

with both CR streaming and diffusion. Local thermal instability can be suppressed by CR-driven entropy mode propagation,

in accordance with previous analytic work. However, there is only a narrow parameter regime where this operates, before

CRs overheat the background gas. As mass dropout from thermal instability causes the background density and hence plasma

𝛽 ≡ 𝑃𝑔/𝑃B to fall, the CGM becomes globally unstable. At the cool disk to hot halo interface, a sharp drop in density boosts

Alfven speeds and CR gradients, driving a transition from diffusive to streaming transport. CR forces and heating strengthen,

while countervailing gravitational forces and radiative cooling weaken, resulting in a loss of both hydrostatic and thermal

equilibrium. In lower 𝛽 halos, CR heating drives a hot, single-phase diffuse wind with velocities 𝑣 ∝ (𝑡heat/𝑡ff)−1, which exceeds

the escape velocity when 𝑡heat/𝑡ff ≲ 0.4. In higher 𝛽 halos, where the Alfven Mach number is higher, CR forces drive multi-phase

winds with cool, dense fountain ŕows and signiőcant turbulence. These ŕows are CR dominated due to ‘trapping’ of CRs by

weak transverse B-őelds, and have the highest mass loading factors. Thus, local thermal instability can result in winds or fountain

ŕows where either the heat or momentum input of CRs dominates.
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1 INTRODUCTION

In recent years, there has been a surge of interest in how cosmic

rays (CRs) affect feedback in the circumgalactic medium (CGM) and

intracluster medium (ICM), in particular on how they can drive a

wind and provide thermal support. Unlike thermal gas, CRs do not

suffer radiative losses and have smaller adiabatic index, making them

able to sustain their pressure far away from their sources. Simulations

have indeed shown that CRs can drive winds in the CGM (Jubelgas

et al. 2008; Uhlig et al. 2012; Booth et al. 2013; Hanasz et al.

2013; Salem & Bryan 2014; Girichidis et al. 2016; Simpson et al.

2016; Ruszkowski et al. 2017a; Hopkins et al. 2021b; Chan et al.

2022; Rathjen et al. 2023; Armillotta et al. 2021) and heat the ICM

gas sufficiently to prevent a cooling catastrophe (Guo & Oh 2008;

Ruszkowski et al. 2017b; Jacob & Pfrommer 2017; Wang et al. 2020),

but these are apparently dependent on the model for CR transport and

the gas properties, for which results can differ by orders of magnitude

(Pakmor et al. 2016; Buck et al. 2020; Hopkins et al. 2021c, 2022).

For recent reviews on these topics, please see Faucher-Giguere & Oh

(2023) on CGM theory, and Ruszkowski & Pfrommer (2023) on CR

feedback.

To date, there is still considerable uncertainty about CR effects on

galaxy evolution, despite herculean efforts to simulate CR-modulated

feedback and compare to observations. To help dissect the inŕuence

of CRs, we take a distinctly different but complementary approach

★ E-mail: ttsung@ucsb.edu

to that of usual feedback simulations. Our main science questions

are as follows. For a hydrostatic atmosphere in initial thermal equi-

librium supported by thermal gas, magnetic őelds, and CRs, is this

atmosphere thermally and dynamically stable? How do CRs affect

local and global stability? Finally, in regimes where neither stability

criterion holds, what is the nonlinear outcome? Our results conőrm

previous analytic expectations, illuminate connections between local

and global instability, and reveal new insights into how CRs create

and modify large-scale gas ŕows.

A key uncertainty in CR feedback models is the nature of CR

transport. CRs scatter collisionlessly off magnetic turbulence, and

the rapid scattering rate renders their behavior ŕuid-like. However

the exact details of this process are still not yet fully understood,

and sometimes at odds with observations in our Galaxy (Kempski &

Quataert 2022; Hopkins et al. 2021a). CR transport is often divided

into 2 distinct modes: CR streaming, and CR diffusion. In the self-

conőnement picture of CR transport, CRs are scattered by magnetic

turbulence they generate and can lock themselves with self-excited

Alfven waves. They advect or stream down the CR pressure gradients

at the Alfven speed (Kulsrud & Pearce 1969; Zweibel 2017). In

addition, since the CR scattering rate is őnite, CRs are not completely

locked to the Alfven waves, but drift slowly with respect to the Alfven

wave frame. This can be represented as a őeld-aligned diffusion

term. More generally, CRs undergo a random walk due to small-

scale tangled B-őelds, known as ’Field Line Wandering’, even if

CRs stream along B-őeld. In addition, CRs can random walk due to
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scattering by extrinsic turbulence1. This random walk renders CR

transport diffusive, or even super-diffusive (Yan & Lazarian 2004;

Mertsch 2020; Sampson et al. 2022). In reality, CRs are likely to both

stream and diffuse; these processes must be considered in parallel.

There are two aspects of CR streaming which are germane to this

paper. Streaming CRs locked with the Alfven waves transfer energy

to the thermal gas at the rate 𝑣𝐴 · ∇𝑃𝑐 , reŕecting the work done by

the CRs to excite magnetic waves, which then damp and heat the gas.

This only takes place with CR streaming; there is no collisionless CR

heating with CR diffusion. CR heating could plausibly explain ele-

vated heatingś as inferred from line ratiosś in the Reynolds layer of

our Galaxy (Wiener et al. 2013b), reŕecting its potential importance

in the disk halo interface and CGM. It can drive acoustic waves unsta-

ble in sufficiently magnetized environments (𝛽 ≲ 0.5, Begelman &

Zweibel (1994)) and may potentially have signiőcant effect on wind

driving in the CGM (Tsung et al. 2022; Quataert et al. 2022a; Huang

& Davis 2022). In another context, the ICM, CR heating has been

shown able to balance radiative cooling and suppress cooling ŕows

(Guo et al. 2008; Wang et al. 2020). Recently, Kempski & Quataert

(2020) explored, through linear analysis, the effect CR heating has

on local thermal instability, őnding it can cause thermal entropy

modes to propagate and suppress the instability in certain parameter

regimes. The nonlinear effects have not been explored yet.

Secondly, for the streaming instability to be excited, the drift speed

must exceed the local Alfvén velocity 𝑣A. In regions where the CRs

are isotropic (∇𝑃c = 0), or have small drift speed, 𝑣D < 𝑣A, CRs

will not scatter; they decouple from the gas and free stream out of

these ‘optically thin’ regions at the speed of light. This leads to the

‘CR bottleneck effect’ (Skilling 1971; Begelman 1995; Wiener et al.

2017a), which can signiőcantly modulate CR transport in a multi-

phase medium. Since 𝑣D ∼ 𝑣𝐴 ∝ 𝜌−1/2, a cloud of warm (𝑇 ∼ 104K)

ionized gas embedded in hot (𝑇 ∼ 106K) gas results in a minimum in

drift speed. This produces a ‘bottleneck’ for the CR, if the magnetic

őeld is assumed to be constant (or at least does not increase with

the gas density faster than 𝜌1/2): CR density is enhanced as CRs are

forced to slow down, akin to a traffic jam. Since CRs cannot stream

up a gradient, the system readjusts to a state where the CR proőle is

ŕat up to the minimum in 𝑣𝐴; thereafter the CR pressure falls again.

If there are multiple bottlenecks, this produces a staircase structure

in the CR proőle (Tsung et al. 2022). Importantly, since ∇𝑃𝑐 = 0 in

the plateaus, CRs there are no longer coupled to the gas, and can no

longer exert pressure forces or heat the gas. Instead, momentum and

energy deposition is focused at the CR ‘steps’. Small-scale density

contrasts can thus have global inŕuence on CR driving and heating.

The impact of CRs on halo gas is by now well-trodden ground;

there is a vast and rapidly expanding literature on this topic. Nonethe-

less, as hinted above, there are several key aspects which motivate

this study. Firstly, the inŕuence of collisionless CR heating 𝑣A · ∇𝑃𝑐
on thermal instability and the development of winds, which is a key

prediction of the self-conőnement theory of CR transport, is often

neglected. To date thermal instability simulations with CR stream-

ing do not have background CR heatingśthey either have horizontal

B-őelds, so that there is no CR streaming in the background proőle

(Butsky et al. 2020), or tangled magnetic őelds (Beckmann et al.

2022) or take place in an unstratiőed medium (Huang et al. 2022b).

Wind simulations are also often run in limits (e.g., ignoring stream-

ing, isothermal winds, or considering high 𝛽 winds) where only the

1 Scattering by extrinsic turbulence is thought to be important only at higher

energies, 𝐸 > 100GeV, with lower energy CRs ś where the bulk of the energy

residesś predominantly self-conőned.

momentum input of CRs drive the wind, while CR thermal driving is

negligible. To date, there is only an analytic linear analysis (Kempski

& Quataert 2020) and 1D CR wind models (Ipavich 1975; Modak

et al. 2023) where CR heating plays an important role in thermal

instability and CR winds respectively. We suggest that CR heating

could play a more crucial role than previously thought.

Secondly, we take care to consider the combined effects of CR

streaming and diffusion, operating simultaneously. Until ∼ 5 years

ago, due to numerical challenges (see ğ2.1), CR streaming was ei-

ther ignored or treated in limits where the Alfven speed changes

only on large lengthscales2. These difficulties have since been over-

come with the two moment method (Jiang & Oh 2018; Thomas &

Pfrommer 2019; Chan et al. 2019a). Nonetheless, wind studies of-

ten consider effective limits where either CR streaming or diffusion

are dominant3. We shall see that the combined effects of diffusion

and streaming can be non-trivial, as each can dominate in different

regimes. For instance, diffusion can dominate in the disk, allowing

CRs to escape without strong heating losses, while streaming domi-

nates in the halo, which provides strong CR heating in a low density

regime where radiative cooling is weak. By contrast, streaming-only

simulations lead to strong CR losses at the disk-halo interface, while

diffusion-only simulations ignore the effects of CR heating.

Finally, the impact of local thermal instability on global hydrostatic

and thermal stability have not been sufficiently studied. CR winds

are often studied in models where conditions in the wind base (e.g.,

star formation rate) change, leading to a higher CR momentum ŕux

which drives an outŕow. Our models consider the opposite case where

conditions at the base are őxed, but conditions in the halo gas change.

Local thermal instability reduces the background gas density, thereby

reducing plasma 𝛽 and radiative cooling rates and increasing Alfven

speeds. It also introduces CR ‘bottlenecks’ in a multi-phase medium.

These changes can lead to a loss of global hydrostatic and thermal

stability, and the emergence of phenomena such as CR heated winds

and fountain ŕows. We őnd it is particularly important to include

and resolve the disk/halo interface, where sharp density gradients

drive sharp gradients in Alfven speed and hence CR pressure. Winds

and fountain ŕows are generally launched at this interface, and are

qualitatively different if this phase transition is not modelled.

This paper is organized as follows. In ğ2 we review the governing

equations, and describe the simulation setup used for this study. In

ğ3, we study the effect of CRs on linear thermal instability. In ğ4, we

discusses the nonlinear results of the simulations, in particular the

emergence of galactic fountain ŕows and winds. We discuss some

implications in ğ5, and conclude in ğ6.

2 METHODS

2.1 Governing equations

We utilize the two-moment method (Jiang & Oh 2018), which has

been tested in stringent conditions (e.g. CR-modiőed shocks, Tsung

2 This is not possible in a multi-phase medium, where 𝑣A ∼ 𝜌−1/2 change

on the short lengthscale of the interface width between cold and hot phases.
3 Of course, there are exceptions, such as the FIRE simulations (Chan et al.

2019a; Hopkins et al. 2021d), which incorporate simultaneous streaming and

diffusion with the two moment method. However, they run fully self-consistent

simulations from cosmological initial conditions; the B-őeld strength and

plasma 𝛽 is not an adjustable parameter, as in our idealized simulations, but

a simulation output. Thus, we have greater ŕexibility to survey parameter

space. See additional discussion in ğ5.
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et al. (2021)). A merit of this method is its ability to handle CR

pressure extrema self-consistently and efficiently, which previously

resulted in grid-scale numerical instabilities which rapidly swamped

the true solution. Previous remedies relied on ad-hoc regularization

(Sharma et al. 2009), where the timestep scales quadratically with

resolution; this becomes prohibitively expensively at high resolution.

The ability to resolve sharp gradients in Alfven speed is important in

simulating the CR bottleneck effect (Wiener et al. 2017b; Bustard &

Zweibel 2021; Tsung et al. 2022), a crucial feature of CR streaming

transport in multi-phase media where large volumes of zero CR

pressure gradient are found.

Assuming the gas is fully ionized, the gas ŕow is non-relativistic

and the gyroradii of the CRs are much smaller than any macro scale

of interest, the two-moment equations governing the dynamics of a

CR-MHD ŕuid are given by (Jiang & Oh 2018):

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌v) = 0, (1)

𝜕 (𝜌v)
𝜕𝑡

+ ∇ ·
(
𝜌vv − BB + 𝑃∗I

)
= 𝝈𝑐 · [F𝑐 − (𝐸𝑐 + 𝑃𝑐)v] + 𝜌g,

(2)

𝜕𝐸

𝜕𝑡
+ ∇ ·

[ (
𝐸 + 𝑃∗

)
v − B(B · v)

]
= (v + v𝑠) · 𝝈𝑐 ·

[F𝑐 − (𝐸𝑐 + 𝑃𝑐)v] + 𝜌g · v + L, (3)

𝜕B

𝜕𝑡
= ∇ × (v × B), (4)

𝜕𝐸𝑐

𝜕𝑡
+ ∇ · F𝑐 = −(v + v𝑠) · 𝝈𝑐 · [F𝑐 − (𝐸𝑐 + 𝑃𝑐)v] + Q, (5)

1

𝑐2
red

𝜕F𝑐

𝜕𝑡
+ ∇𝑃𝑐 = −𝝈𝑐 · [F𝑐 − (𝐸𝑐 + 𝑃𝑐)v], (6)

where 𝑐red is the reduced speed of light, L = F − C is the net

heating, deőned by source heating F minus cooling C4, Q is the CR

source/sink term5, v𝑠 = −v𝐴sgn(B · ∇𝑃𝑐) is the streaming velocity,

where v𝐴 = B/√𝜌 is the Alfven velocity, g is the gravitational

acceleration, 𝑃∗ = 𝑃𝑔 + 𝐵2/2 is the total pressure, equal to the

sum of thermal gas pressure and magnetic pressure, 𝐸 = 𝜌𝑣2/2 +
𝑃𝑔/

(
𝛾𝑔 − 1

)
+ 𝐵2/2 is the total energy density, equal to the sum

of kinetic, thermal and magnetic energy densities and 𝝈𝑐 is the

interaction coefficient deőned by

𝝈
−1
𝑐 = 𝝈

−1
𝑑 + 𝝈

−1
𝑠 ,

𝝈
−1
𝑑 =

𝜿

𝛾𝑐 − 1
, 𝝈

−1
𝑠 =

B

|B · ∇𝑃𝑐 |
v𝐴(𝐸𝑐 + 𝑃𝑐), (7)

where 𝜿 is the CR diffusion tensor. The interaction coefficient 𝝈𝑐

links the thermal gas with CRs and acts as a bridge for momentum and

energy transfer (through the source terms𝝈𝑐 · [F𝑐 − (𝐸𝑐 + 𝑃𝑐)v] and

v𝑠 · 𝝈𝑐 · [F𝑐 − (𝐸𝑐 + 𝑃𝑐)v]). It describes the strength of the CR-gas

coupling and consists of two parts: a streaming part𝝈𝑠 and a diffusive

4 Generally, F and C can be any physically motivated, space and time de-

pendent heating and cooling. For our purpose, as we shall deőne in ğ2.2.2, F
takes the form of a phenomenological, space-averaged, ‘feedback heating’

model H = ⟨𝜌2Λ + v𝐴 · ∇𝑃𝑐 ⟩slice (eqn.21, McCourt et al. 2012, the sub-

script ‘slice’ meaning the averaged is taken over each vertical slice) while

C = 𝜌2Λ is the typical radiative cooling term.
5 Similar to the previous footnote, Q can be any physical motivated, space and

time dependent CR source/sink term. For example, it could represent losses

due to hadronic interactions (which might be important in starburst galaxies).

For our purpose, a non-zero Q is invoked only in a subset of simulations to

maintain a steady-state background for a proof-of-concept demonstration (see

ğ3.2 and equation 36). Q is not invoked in any other simulations.

part𝝈𝑑 , to model different modes of CR transport. The reduced speed

of light 𝑐red, in combination with 𝝈𝑐 , set the timescale for CRs to

couple with thermal gas. 𝑐red is designed to capture the speed of the

free-streaming CRs, which in reality is close to the speed of light,

though in practice it is always set much lower to allow for a longer

Courant time-step; it has been shown that results are converged with

respect to 𝑐red as long as it is much greater than any other velocity in

the system (Jiang & Oh 2018). Note that if 𝜎𝑐𝑐
2
red

Δ𝑡 ≫ 1 (where Δ𝑡

is the time step), the time derivative 𝜕F𝑐/𝜕𝑡 will be negligible and

one would recover the steady-state CR ŕux

Fc,steady = (𝐸𝑐 + 𝑃𝑐) (v + v𝑠) −
𝜿

𝛾𝑐 − 1
· ∇𝑃𝑐 . (8)

We see two components of CR transport in eqn.8, the őrst term show-

ing CR energy advecting at the combined velocity v + v𝑠 and the

second term depicting diffusion. Note that from eqn.7 𝜎𝑐𝑐
2
red

Δ𝑡 ≫ 1

is not possible if ∇𝑃𝑐 ≈ 0. In this case 𝜎𝑐 ≈ 0, 𝜕F𝑐/𝜕𝑡 is not neg-

ligible and no closed form expression for F𝑐 exists. CR momentum

and energy transfer ≈ 0. In this regime CRs are said to be uncoupled

from the thermal gas and free streaming. On the other hand, if ∇𝑃𝑐
is őnite and 𝑐red is sufficiently large, the CR ŕux would be in steady-

state (eqn.8) and CR-gas are said to be coupled. In this regime CRs

transfer momentum and energy to the gas at the rates

𝝈𝑐 · [F𝑐 − (𝐸𝑐 + 𝑃𝑐)v] → −∇𝑃𝑐 , (9)

v𝑠 · 𝝈𝑐 · [F𝑐 − (𝐸𝑐 + 𝑃𝑐)v] → −v𝑠 · ∇𝑃𝑐 . (10)

Note that there is no heat transfer if v𝑠 (or the magnetic őeld) is

perpendicular to ∇𝑃𝑐 . Since v𝑠 always points down the 𝑃𝑐 gradient,

CRs always heat the gas instead of the other way around.

The diffusion tensor can be expressed in general as 𝜿 = 𝜅∥ b̂b̂ +
𝜅⊥ (I− b̂b̂), where 𝜅∥ and 𝜅⊥ are the őeld-aligned and cross-őeld dif-

fusion coefficients. Cross-őeld diffusion is ignored in this study (i.e.

𝜅⊥ ≈ 0). We also ignore any CR collisional losses due to Coulomb

collisions and hadronic interactions. In this context, 𝜿 accounts for

the slippage from perfect wave locking due to damping. If damping

is weak, slippage is small and 𝜅∥ will be small. In principle, 𝜅∥ is

a function of various plasma parameters (e.g., Wiener et al. 2013a;

Jiang & Oh 2018), but to date the exact contributions from wave

damping are unclear, so in this study unless otherwise stated we shall

consider damping to be weak, and we will set 𝜅∥ to be a small con-

stant. For an implementation of 𝜅∥ with non-negligible ion-neutral

damping, for example, see Bustard & Zweibel (2021).

2.2 Simulation Setup

In this section we describe the simulation setup that is used through-

out the study. The simulations were performed with Athena++ (Stone

et al. 2020), an Eulerian grid-based MHD code using a direction-

ally unsplit, high-order Godunov scheme with the constrained trans-

port (CT) technique. CR streaming was implemented with the two-

moment method (Jiang & Oh 2018), which solves eqn.1-6. Cartesian

geometry is used throughout.

We run our setup in 2D and 3D, 2D for high resolution and 3D

for full dimensional coverage. The setup consists of a set of initial

proőles, source terms and appropriate boundary conditions. Grav-

ity deőnes the direction of stratiőcation, which is taken to be in the

𝑥-direction (g = −𝑔(𝑥)x̂). We sometimes use ‘vertical’ and ‘hori-

zontal’ to denote stratiőcation (𝑥) and perpendicular (𝑦, 𝑧) directions

respectively. Both CR transport modes are present (streaming and

diffusion).
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Figure 1. Top: Example of the initial density (blue) and 𝑃𝑐 (orange) proőles.

Found from solving eqn.14 numerically. Gravity is tapered to zero at 𝑥 =

0, resulting in zero derivatives for 𝜌 and 𝑃𝑐 there. Bottom: Example of

𝛼, 𝛽, 𝜂, 𝜒 for the same initial proőle, normalized by their reference values.

Note that 𝛼0 = 1, 𝛽0 = 5, 𝜂𝐻 = 0.01 and 𝛿𝐻 = 1.

2.2.1 Initial Proőles

The initial proőles are calculated by solving a set of ODEs assuming

hydrostatic and thermal equilibrium. In the absence of any instability,

the initial proőles will remain time-steady. We align the magnetic

őeld with the direction of stratiőcation for background CR heating.

It is initially spatially constant (B = 𝐵x̂)6. Gravity is taken to be

𝑔(𝑥) = 𝑔0
(𝑥/𝑎)3

1 + |𝑥/𝑎 |3
. (11)

Thus, 𝑔(𝑥) approaches 𝑔0, a constant, as 𝑥 → ∞ and approaches

𝑔0 (𝑥/𝑎)3 when 𝑥 ≪ 𝑎. The smoothing parameter 𝑎 tapers the grav-

itational őeld to zero as 𝑥 → 0 so as to avoid discontinuities in

∇𝑃𝑔 and ∇𝑃𝑐 . We found that this functional form maintains hydro-

static equilibrium better than the gravitational softening employed

by McCourt et al. (2012) and thereafter. In hydrostatic equilibrium,

d𝑃𝑔

d𝑥
+ d𝑃𝑐

d𝑥
= −𝜌𝑔. (12)

We take the initial proőle to be isothermal with temperature 𝑇0 such

that d𝑃𝑔
/

d𝑥 = 𝑇0 d𝜌/d𝑥 . If CR transport is streaming dominated,

𝑃𝑐 = 𝑃𝑐0 (𝜌/𝜌0)𝛾𝑐/2, where 𝜌0 and 𝑃𝑐0 are some reference density

6 By symmetry, the magnetic őeld can only vary along 𝑥, the direction of

stratiőcation, i.e. B = 𝐵(𝑥 ) x̂. To satisfy ∇ · 𝐵 = 0, d𝐵/d𝑥 = 0, i.e. the

magnetic őeld is constant.

and CR pressure7. Substituting into eqn.12,
[

𝑇0 + 𝛾𝑐𝑃𝑐0

2𝜌0

(
𝜌

𝜌0

)𝛾𝑐/2−1
]

d𝜌

d𝑥
= −𝜌𝑔. (13)

Integrating both sides,

ln

(
𝜌

𝜌0

)
+ 𝛾𝑐

2 − 𝛾𝑐
𝑃𝑐0

𝑃𝑔0

[

1 −
(
𝜌

𝜌0

)𝛾𝑐/2−1
]

= − 1

𝑇0

∫ 𝑥

0
𝑔
(
𝑥′
)
d𝑥′ ,

(14)

where 𝑃𝑔0 = 𝜌0𝑇0 is some reference gas pressure. The density

proőle 𝜌(𝑥) is then found numerically from eqn.14 using a numerical

integrator and root-őnder. The gas and CR pressure, CR ŕux proőles

are then found from 𝑃𝑔 = 𝜌𝑇0, 𝑃𝑐 = 𝑃𝑐0 (𝜌/𝜌0)𝛾𝑐/2 and

𝐹𝑐 (𝑥) =
𝛾𝑐

𝛾𝑐 − 1
𝑃𝑐𝑣𝐴 −

𝜅∥
𝛾𝑐 − 1

d𝑃𝑐

d𝑥
, (15)

where we have used eqn.8. See the top panel of őg.1 for an example of

the density and 𝑃𝑐 proőle. Here we discuss several important ratios

characterizing our initial proőles:

𝛼 =
𝑃𝑐

𝑃𝑔
, 𝛽 =

2𝑃𝑔

𝐵2
, 𝜂 =

𝜅∥
𝛾𝑐𝑣𝐴𝐿𝑐

, 𝛿 =
𝑡cool

𝑡ff
, 𝜒 =

𝑣𝐴 |∇𝑃𝑐 |
𝜌2Λ

, (16)

which determine the CR to gas (𝛼), magnetic to gas (𝛽) pressure

ratios, diffusive to streaming ŕux ratio (𝜂) and the ratio of cool-

ing to free-fall time (𝛿) and CR heating to radiative cooling (𝜒).

𝐿𝑐 = 𝑃𝑐/|∇𝑃𝑐 | is the CR scale height. 𝜂, the ratio of the diffu-

sive to streaming ŕux, is small if streaming transport dominates. As

𝜌, 𝑃𝑐 , 𝑃𝑔 in the initial proőles are functions of 𝑥, the ratios in eqn.16

in general also vary with 𝑥.

The density proőle can be fully determined given 𝑔0, 𝑎, 𝜌0, 𝑇0, 𝛼0.

The reference values 𝜌0, 𝛼0 are set at the base 𝑥 = 0. Note that

𝑇0 is a constant in our isothermal proőle. With 𝜌(𝑥) determined,

𝑃𝑔 (𝑥), 𝑃𝑐 (𝑥) can be obtained easily from the ideal gas law and 𝑃𝑐 ∝
𝜌𝛾𝑐/2. The latter is true for steady-state, static streaming dominated

ŕows8 (Breitschwerdt et al. 1991; Wiener et al. 2017b). The magnetic

őeld can be obtained by specifying 𝛽0, i.e. 𝛽 at 𝑥 = 0. Note that in

our setup the őeld is aligned with gravity. The diffusion coefficient

𝜅∥ is found by setting 𝜂 not at 𝑥 = 0 as 𝐿𝑐 is inőnite there but at a

thermal scale height 𝑥 = 𝐻 = 𝑇0/𝑔0 (we shall denote this by 𝜂𝐻 , with

subscript 𝐻 meaning it is set at 𝑥 = 𝐻). Without loss of generality,

we shall set 𝑔0, 𝑇0, 𝜌0 all to 1 and 𝑎 = 0.1𝐻. In őg.1 we show an

example of the how these proőles (top panel) and the respective ratios

𝛼, 𝛽, 𝜂 (bottom panel) vary in space. Since CR pressure declines

more weakly with density (𝑃𝑐 ∝ 𝜌2/3) than isothermal gas pressure

(𝑃g ∝ 𝜌), the proőle becomes slightly more CR dominated the

further out. Plasma 𝛽 decreases with height as the 𝐵-őeld is spatially

constant. Apart from the peak at 𝑥 ∼ 𝑎 where |∇𝑃𝑐 | is maximized, 𝜂

generally decreases with increasing 𝑥.

7 The expression 𝑃𝑐 = 𝑃𝑐0 (𝜌/𝜌0 )𝛾𝑐/2 in the streaming dominated regime

can be derived by taking the time-steady state (i.e. ignoring the time deriva-

tives) of the CR energy and ŕux equations (eqn.5 and 6), ignoring any CR

source/sink term Q and diffusion coefficient 𝜅 . In a static background ŕow,

the equations reduce to ∇ · [ (𝐸𝑐 + 𝑃𝑐 )v𝑠 ] = v𝑠 · ∇𝑃𝑐 . Integrating this

equation for constant 𝐵 then gives this relation.
8 We ignore CR diffusion in our initial proőles. Thus, our background proőles

are not exactly in steady state, particularly in proőles where diffusion is

comparable to streaming, 𝜂H ∼ 1. In practice, we have found that our results

are not sensitive to the initial deviation from perfect equilibrium. We also őnd

that the global background proőle eventually always evolves signiőcantly,

once thermal instability triggers mass dropout.
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2.2.2 Source Terms

We adopt a power law cooling function

Λ = Λ0 (𝑇/𝑇0)Λ𝑇 . (17)

Using the density and 𝑃𝑐 proőles found from ğ2.2.1, the cooling

strength Λ0 is determined by 𝛿 or 𝜒. The cooling index Λ𝑇 can be

adjusted to mimic the cooling curve in cluster (Λ𝑇 = 0.5) and galaxy

halo (Λ𝑇 = −2/3; we use this exclusively in this paper) contexts.

When 𝛿𝐻 (i.e. 𝛿 at a thermal scale-height) is speciőed, the cooling

strength is given by

Λ0 =
𝑇0(

𝛾𝑔 − 1
)
𝛿𝐻 𝜌𝐻 𝑡ff,H

, (18)

where 𝑡ff,H is the free-fall time at 𝑥 = 𝐻 deőned by

𝑡ff =

√︄
2𝑥

𝑔0
, (19)

with 𝑥 replaced by 𝐻. The subscript 𝐻 again denotes quantity eval-

uated at 𝑥 = 𝐻. When 𝜒𝐻 is speciőed, the cooling strength is:

Λ0 =

��𝑣𝐴,𝐻∇𝑃𝑐,𝐻
��

𝜒𝐻 𝜌
2
𝐻

. (20)

Thus, we can specify either 𝛿 or 𝜒 to our desired value for the purpose

of the study.

Unless 𝜒 = 1 everywhere, CR heating cannot fully balance radia-

tive cooling. The residual heating needed to attain thermal balance

is provided by ‘feedback heating’ (or ‘magic heating’) H (McCourt

et al. 2012; Sharma et al. 2012), a phenomenological heating model

where global thermal equilibrium is enforced by őat. At each time-

step, uniform heating is input at a rate given by the spatially averaged

cooling rate at a given height (or radius), so that the average net cool-

ing is zero. However, the ŕuctuations in the net cooling rate can give

rise to thermal instability. In our system, this means that the heating

rate is given by:

H(𝑥, 𝑡) = ⟨𝜌2
Λ + |𝑣𝐴 · ∇𝑃𝑐 |⟩slice, (21)

where ⟨·⟩slice denotes spatial average over the 𝑦, 𝑧-slice at any partic-

ular 𝑥. This term is activated only when the RHS of eqn.21 is greater

than zero; H will be set to zero if the RHS is negative. H can be

interpreted physically as other sources of heating, such as thermal

star formation or AGN feedback.

In the absence of a CR source at the base (𝑥 = 0), the CR proőles

will not maintain steady state as CRs stream away, causing the 𝑃𝑐
proőle to ŕatten (see őg.1 of Jiang & Oh (2018) for an example). We

supply CRs at the base by őxing the CR pressure 𝑃𝑐 as

𝑃𝑐 (𝑥, 𝑡) = 𝛼0𝑃𝑔 (𝑥, 𝑡) (22)

for |𝑥 | < 0.7Δ𝑥, where Δ𝑥 is the grid size. Physically this represents

sources of CRs from the galactic disk (e.g., due to supernovae or

AGN). An alternative is to őx the CR ŕux 𝐹𝑐 at the base. We show

some results from this in Appendix C. There is no qualitative change

in our conclusions.

2.2.3 Simulation Box and Boundary Conditions

The simulation box extends symmetrically in all directions about the

origin for 2 thermal scale-heights 𝐻, employing hydrostatic bound-

ary conditions in the 𝑥-direction and periodic boundaries otherwise.

Hydrostatic boundaries mandate

d𝑃𝑔

d𝑥

����
bond

+ d𝑃𝑐

d𝑥

����
bond

= − 𝜌𝑔

����
bond

(23)

at the ghost zone cell faces. We provide details of our boundary

implementation in Appendix B. In ğ4 we shall see that in some cases

the ŕow could become non-hydrostatic, but no signiőcant difference

is seen when we adopt an outŕow type boundary condition (see

Appendix B). We refrain from extending the box beyond 2𝐻 to

prevent plasma 𝛽 from dropping below ∼ 0.5 and exciting acoustic

instabilities right from the beginning of the simulation (Begelman &

Zweibel 1994; Tsung et al. 2022). It is also to prevent 𝜒 > 1 at large

𝑥 (see őg.1) for which overheating occurs and the gas would be out

of thermal equilibrium.

To prevent spurious numerical behavior, we apply buffers with

thickness 𝑎 near the 𝑥 boundaries and the base. There is no cooling

or CR heating within these buffers.

2.2.4 Resolution, Reduced Speed of Light and Temperature Floors

We run our simulations in 2D with 1024×512 grids (higher resolution

along the 𝑥-axis). In Appendix D we run a selected subset of cases in

higher resolution (2048× 512) and in 3D with 256× 128× 128 grids

and show that our conclusions remain unchanged. We use a reduced

speed of light 𝑐red = 200, which is much greater than any other

velocity scale in the problem (in most cases this should be sufficient,

though in some cases with particularly strong magnetic őeld and

low density, for which 𝑣𝐴 is large, we increase 𝑐red accordingly).

The temperature ŕoor is set to 𝑇0/100 while the ceiling is set to

5𝑇0. In general, in a multi-phase medium, cooling is dominated by

the cool gas, so enforcing global thermal equilibrium means that

the hot gas, where cooling is inefficient, could be heated up to even

higher temperatures. It is customary, in thermal instability studies,

to set a temperature ceiling to prevent the time-step from becoming

extremely small. However, given the possibility that CR heating can

potentially heat the gas to very high temperatures in the nonlinear

evolution, we remove the ceiling for simulations in ğ4.

2.2.5 Simulation Runs

Table 1 summarizes the test cases used to produce the results shown in

this study. As previously discussed, the initial proőle is characterized

by 𝑔0, 𝜌0, 𝑇0, 𝑎, 𝛼0, 𝛽0, 𝜂𝐻 while the cooling term is determined by

the cooling index Λ𝑇 , and 𝜒𝐻 or 𝛿𝐻 . These parameters are deőned

therein. Without loss of generality, we set 𝑔0, 𝜌0, 𝑇0 = 1 in all our

simulations. The scale height 𝐻 should always be understood as

the initial gas scale height 𝑥 = 𝐻 = 𝑇0/𝑔0 = 1, which is therefore a

constant. Although we report all our results in code units, we translate

our results into physical units scaled to the Milky Way in ğ5.1.

3 LINEAR EVOLUTION: THERMAL INSTABILITY

3.1 Previous Work; Analytic Expectations

Local thermal instability is caused by runaway radiative cooling,

i.e. hot gas that has been cooled slightly becomes denser, causing

it to cool faster. In gravitationally stratiőed media, however, buoy-

ant oscillations can damp local thermal instability (McCourt et al.

2012; Sharma et al. 2012). Stability is determined by the ratio of

two timescales: the cooling time 𝑡cool and the free fall 𝑡ff , where

𝑡ff ≈
√︁

2ℎ/𝑔 for the constant gravity setup in this paper. If cooling

acts faster than buoyant damping, the instability can proceed, oth-

erwise it is damped. This idea has been pursued by many others

in various geometries and background proőles, generally leading to

an instability condition of 𝑡cool/𝑡ff ≲ 10, although in our particular
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Identiőer 𝛼0 𝛽0 𝜂𝐻 𝜒𝐻 𝛿𝐻 Λ𝑇 Resolution 𝑐red Remarks

Test cases for ğ3.2

a1b3k.01c.4in.67res1024c200single 1 3 0.01 0.4 - -2/3 1024 × 512 200 -

a.5b3k.01c.3in.67res1024c200single 0.5 3 0.01 0.3 - -2/3 1024 × 512 200 -

a5b100k.01c.7in.67res1024c200single 5 100 0.01 0.7 - -2/3 1024 × 512 200 -

a1b3k.01c.4in.67res1024c200single − nocrh 1 3 0.01 0.4 - -2/3 1024 × 512 200 No CR heating

a.5b3k.01c.3in.67res1024c200single − nocrh 0.5 3 0.01 0.3 - -2/3 1024 × 512 200 No CR heating

a5b100k.01c.7in.67res1024c200single − nocrh 5 3 0.01 0.7 - -2/3 1024 × 512 200 No CR heating

a1b3k1c.4in.67res1024c200single 1 3 1 0.4 - -2/3 1024 × 512 200 -

Test cases for ğ3.3

a1b3k.01c.4in.67res1024c200 1 3 0.01 0.4 - -2/3 1024 × 512 200 -

a1b3k.01c.4in.67res1024c200 − nocrh 1 3 0.01 0.4 - -2/3 1024 × 512 200 No CR heating

a1b3k1c.4in.67res1024c200 1 3 1 0.4 - -2/3 1024 × 512 200 -

a1b3k.01c1in.67res1024c200 1 3 0.01 1 - -2/3 1024 × 512 200 -

a1b3k.01c1in.67res1024c200 − nocrh 1 3 0.01 1 - -2/3 1024 × 512 200 No CR heating

a1b3k1c1in.67res1024c200 1 3 1 1 - -2/3 1024 × 512 200 -

a1b3k.01c2.5in.67res1024c200 1 3 0.01 2.5 - -2/3 1024 × 512 200 -

a1b3k.01c2.5in.67res1024c200 − nocrh 1 3 0.01 2.5 - -2/3 1024 × 512 200 No CR heating

a1b3k1c2.5in.67res1024c200 1 3 1 2.5 - -2/3 1024 × 512 200 -

Test cases for ğ4

a1b5k.0001d1in.67res1024c200 1 5 0.0001 - 1 -2/3 1024 × 512 200 -

a1b5k.001d1in.67res1024c200 1 5 0.001 - 1 -2/3 1024 × 512 200 -

a1b5k.01d1in.67res1024c200 1 5 0.01 - 1 -2/3 1024 × 512 200 ‘slow wind’

a1b5k.01d1in.67res1024c200 − nocrh 1 5 0.01 - 1 -2/3 1024 × 512 200 ‘slow wind’ (nocrh)

a1b5k.1d1in.67res1024c200 1 5 0.1 - 1 -2/3 1024 × 512 200 -

a1b5k.5d1in.67res1024c200 1 5 0.5 - 1 -2/3 1024 × 512 200 -

a1b5k1d1in.67res1024c200 1 5 1 - 1 -2/3 1024 × 512 200 ‘fast wind’

a1b5k1d1in.67res1024c200 − nocrh 1 5 1 - 1 -2/3 1024 × 512 200 ‘fast wind’ (nocrh)

a1b5k5d1in.67res1024c1000 1 5 5 - 1 -2/3 1024 × 512 1000 -

a10b5k.01d1in.67res1024c1000 10 5 0.01 - 1 -2/3 1024 × 512 1000 -

a1b10k1d1in.67res1024c200 1 10 1 - 1 -2/3 1024 × 512 200 -

a1b30k1d1in.67res1024c200 1 30 1 - 1 -2/3 1024 × 512 200 -

a1b50k1d1in.67res1024c200 1 50 1 - 1 -2/3 1024 × 512 200 -

a1b100k1d1in.67res1024c200 1 100 1 - 1 -2/3 1024 × 512 200 -

a1b300k.01d1in.67res1024c200 1 300 0.01 - 1 -2/3 1024 × 512 200 -

a1b300k1d1in.67res1024c200 1 300 1 - 1 -2/3 1024 × 512 200 ‘fountain’

a1b300k1d1in.67res1024c200 − nocrh 1 300 1 - 1 -2/3 1024 × 512 200 ‘fountain’ (nocrh)

a1b300k10d1in.67res1024c200 1 300 10 - 1 -2/3 1024 × 512 200 -

a1b1000k1d1in.67res1024c200 1 1000 1 - 1 -2/3 1024 × 512 200 -

a1b10000k1d1in.67res1024c200 1 10000 1 - 1 -2/3 1024 × 512 200 -

a10b300k.01d1in.67res1024c1000 10 300 0.01 - 1 -2/3 1024 × 512 1000 -

a10b300k1d1in.67res1024c1000 10 300 1 - 1 -2/3 1024 × 512 1000 -

a.3b300k.01d1in.67res1024c200 0.3 300 0.01 - 1 -2/3 1024 × 512 200 -

a.1b300k1d1in.67res1024c200 0.1 300 1 - 1 -2/3 1024 × 512 200 -

Test cases for Appendix D

a1b5k.01d1in.67res2048c200 1 5 0.01 - 1 -2/3 2048 × 512 200 -

a1b5k1d1in.67res2048c200 1 5 1 - 1 -2/3 2048 × 512 200 -

a1b300k1d1in.67res2048c200 1 300 1 - 1 -2/3 2048 × 512 200 -

a1b5k.01d1in.67res256c2003d 1 5 0.01 - 1 -2/3 256 × 128 × 128 200 -

a1b5k1d1in.67res256c2003d 1 5 1 - 1 -2/3 256 × 128 × 128 200 -

a1b300k1d1in.67res256c2003d 1 300 1 - 1 -2/3 256 × 128 × 128 200 -

Table 1. Test cases used in this study. Each test case has an identiőer, listed in column 1. Identiőers suffixed with ‘single’ have a single density bump as initial

perturbation while ‘nocrh’ denotes no CR heating. Column 2 and 3 list the proőle parameters 𝛼0, 𝛽0 used in determining the initial proőles 𝜌, 𝑃𝑔 , 𝑃𝑐 (𝛼0 and

𝛽0 are the initial ratio of CR to gas pressure and magnetic to gas pressure at 𝑥 = 0, respectively). With the initial 𝜌, 𝑃𝑔 , 𝑃𝑐 , column 4 to 7 are parameters used

to determine the CR diffusivity 𝜅 , cooling normalization Λ0 and cooling index Λ𝑇 , which are constants throughout the simulation. 𝜂𝐻 refers to the initial ratio

of CR diffusive to streaming ŕux at a scaleheight 𝐻, and similarly for 𝜒𝐻 and 𝛿𝐻 . Please refer to ğ2.2.1 and ğ2.2.2 for complete description. The resolution,

reduced speed of light and box domain are listed in column 8 to 10.

setup, where we evaluate 𝑡cool/𝑡ff at a scale-height, the condition is

𝑡cool/𝑡ff ≲ 19. Observationally, this threshold has been quite suc-

9 This result only holds for small linear perturbations. Choudhury et al.

(2019) have shown that buoyant oscillations cannot suppress large amplitude

perturbations 𝛿𝜌/𝜌 ∼ O(1) , where thermal instability is independent of

𝑡cool/𝑡ff and only depends on 𝑡cool.

cessful in ŕagging clusters which host substantial cold gas (Donahue

& Voit 2022), though the applicability to galaxy halos, which are

not in hydrostatic or thermal equilibrium, and where large amplitude

density perturbations are present, is less clear (Nelson et al. 2020;

Esmerian et al. 2021). Note that the 𝑡cool/𝑡ff criterion is still debated:

there are observational claims in early-type, elliptical galaxies and

central-cluster galaxies that cold gas forms when 𝑡cool ≲ 1 Gyr at a
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radius of 10 kpc, irrespective of the value of 𝑡cool/𝑡ff (Babyk et al.

2019).

Non-thermal forces can modify thermal instability. Magnetic ten-

sion suppresses buoyant oscillations, leading to instability even when

the threshold is exceeded (Ji et al. 2018). This effect takes hold even

for high plasma 𝛽 ∼ 300 and is independent of őeld orientation

relative to the gravitational őeld. Magnetic őelds can also provide

pressure support for the cold clouds, so that they can be vastly out of

thermal pressure balance with the surrounding. While CRs can sim-

ilarly provide non-thermal pressure support (Huang et al. 2022a),

their impact does depend on the orientation of magnetic őelds. But-

sky et al. (2020) include CR streaming transport in their stratiőed

simulations. However, the magnetic őeld is oriented perpendicular

to gravity in the study, making CR streaming heating, −𝑣𝑠 · ∇𝑃𝑐 ,

non-existent in the background and only a second order effect in the

evolution of the instability. In this case, the main inŕuence of CRs

is via their pressure support. Cold gas is underdense relative to the

purely thermal case (reducing net density ŕuctuations 𝛿𝜌/𝜌 in the at-

mosphere), and thus more buoyant; they can levitate for longer and TI

saturation is less sensitive to 𝑡cool/𝑡ff . However, if the magnetic őeld

is aligned with gravity (as should be the case if there are outŕows),

the background heating will change the nature of thermal instability.

This has been studied in a linear stability analysis by Kempski &

Quataert (2020), although it has not yet been simulated.

We now review analytic expectations for the CR-modiőed thermal

instability when the magnetic őeld is aligned with gravity (Kempski

& Quataert 2020). The relevant dimensionless parameters are the

cooling index Λ𝑇 ≡ 𝜕 lnΛ/𝜕 ln𝑇 , the ratio of CR pressure to gas

pressure 𝛼 = 𝑃𝑐/𝑃𝑔, and

𝜉 =
𝜅∥

𝛼𝑡cool𝑣
2
𝐴

∼
(
𝐹c,diff

𝐹c,st

) (
𝑡heat

𝑡cool

)
∼ 𝜂

𝜒
(24)

where in the last equality of equation 24, we have used the diffusive

ŕux 𝐹c,diff ∼ 𝜅∥∇𝑃𝑐 , the streaming ŕux 𝐹c,st ∼ 𝑃𝑐𝑣𝐴, and the

heating time 𝑡heat ∼ 𝑃𝑔/𝑣𝐴 · ∇𝑃𝑐; the symbols 𝜂, 𝜒 are deőned in

equation 16. In the limit where background cooling is balanced by CR

heating, 𝑡cool ∼ 𝑡heat, 𝜉 is simply the ratio of diffusive to streaming

ŕux. For őducial values in galaxies, it is of order unity:

𝜉 ∼ 1
(𝜅∥/1028 cm2s−1) (𝛽/10)

(𝛼/1) (𝑡cool/30 Myr)
(
𝑐𝑠/100 kms−1

)2 . (25)

The CR to gas pressure 𝛼 determines how gas density changes with

cooling. If 𝛼 ≫ 1, CR pressure dominates and cooling is isochoric

(Δ𝑃𝑔/𝑃𝑔 ≫ 𝛿𝜌/𝜌), while if 𝛼 ≪ 1, cooling is isobaric (Δ𝑃𝑔/𝑃𝑔 ≪
𝛿𝜌/𝜌) 10. The cooling index Λ𝑇 determines if the gas is isobarically

(Λ𝑇 < 2) and/or isochorically (Λ𝑇 < 0) thermally unstable (Field

1965). Ignoring the inŕuence of cosmic ray transport for now, this

means that gas will be thermally unstable for Λ𝑇 < 2 when 𝛼 ≪ 1

(and cooling is isobaric), and it will be thermally unstable forΛ𝑇 < 0

when 𝛼 ≫ 1 (and cooling is isochoric). In between, there is a critical

cooling index 0 ≲ ΛT,c (𝛼) ≲ 2, for which gas with Λ𝑇 < ΛT,c (𝛼)
will be thermally unstable. As ambient hot galaxy halo gas in the

temperature range 105 < 𝑇 < 107K always has Λ𝑇 < 0 (we adopt

ΛT = −2/3 in our simulations), it will always be thermally unstable.

It turns out that inclusion of CR transport changes some details, but

10 Assuming that the perturbation 𝑙 ≪ 𝑐𝑠𝑡cool, where 𝑐𝑠𝑡cool is evaluated at

the background temperature, so that it is in sonic contact with its surroundings.

Note that as the perturbation cools to lower temperatures and 𝑐s𝑡cool falls, it

can fall out of pressure balance and be subject to fragmentation by ‘shattering’

(McCourt et al. 2018), but this is immaterial in the linear evolution.

does not change the conclusion that CRs do not generally suppress

thermal instability (except in speciőc conditions described below)

(Kempski & Quataert 2020).

The perturbed CR heating rate due to CR streaming has two po-

tential effects (Kempski & Quataert 2020). If it is in phase with the

perturbed cooling rate, and also is sufficiently strong, it can sup-

press thermal instability. If CR heating is out of phase with the

perturbed cooling rate, which is more generally the case, the asso-

ciated gas pressure ŕuctuations will drive an acoustic mode11. In

this case, thermally unstable modes result in overstable oscillations

which propagates at the characteristic velocity of the heating front,

i.e. the Alfven velocity.

We can gain some intuition from the perturbation equations. In

Appendix A, we present a fuller analysis, but below we outline the

main elements. The perturbed CR heating is

𝛿(−v𝐴 · ∇𝑃𝑐) = −𝑖𝜔𝐴𝛿𝑃𝑐 , (26)

where 𝜔𝐴 = 𝑘𝑣𝐴, while the perturbed cooling is

𝛿
(
−𝜌2

Λ

)
= −𝜌2

Λ(2 − Λ𝑇 )
𝛿𝜌

𝜌
− 𝜌2

ΛΛ𝑇

𝛿𝑃𝑔

𝑃𝑔
. (27)

If the background is in thermal equilibrium, local thermal stability

is then determined by the perturbed CR heating and gas cooling

rates. Their ratio in the isobaric (𝛿𝑃𝑔/𝑃𝑔 ≪ 𝛿𝜌/𝜌) and isochoric

(𝛿𝑃𝑔/𝑃𝑔 ≫ 𝛿𝜌/𝜌) cases is:

𝛿(CR Heating)
𝛿(Cooling) =

{
𝑖𝜔𝐴

(2−Λ𝑇 )𝜔𝑐

𝛿𝑃𝑐/𝑃𝑔

𝛿𝜌/𝜌 Isobaric
𝑖𝜔𝐴

𝜔𝑐Λ𝑇
Isochoric,

(28)

where 𝜔𝑐 = 𝜌2Λ/𝑃𝑐 is the cooling rate and we have used 𝛿𝑃𝑐 ∼
−𝛿𝑃𝑔 in the isochoric case12 In the isochoric case, the perturbed CR

heating is always 𝜋/2 out of phase with cooling. Thus, they cannot

cancel. The effect of CR heating in this case is to cause the modes

to oscillate and propagate at frequency ∝ 𝜔𝐴 up the CR pressure

gradient, as Kempski & Quataert (2020) has shown. In the isobaric

case, CR heating can suppress cooling if there is an out of phase

component between 𝛿𝑃𝑐 and 𝛿𝜌. CR diffusion can provide this phase

shift. In the strong diffusion limit (𝑘𝜅∥/𝑣𝐴 ≫ 1), 𝛿𝑃𝑐 will scale as

𝛿𝑃𝑐/𝑃𝑔 ∼ 𝑖(𝛼𝜔𝐴/𝜔𝑑) (𝛿𝜌/𝜌), i.e. shifted by a phase of 𝜋/2 from

𝛿𝜌. Substituting this into eqn.28 gives

𝛿(CR Heating)
𝛿(Cooling) ∼ −

𝛼𝑣2
𝐴
𝑡cool

𝜅∥
= −𝜉−1, (29)

where the minus sign indicates the opposite nature of CR heating and

cooling. The perturbed CR heating suppresses cooling only if diffu-

sion is subdominant in the background (𝜉 < 1). Then, on small scales

where CR diffusion across the perturbation dominates (𝑘𝜅/𝑣𝐴 ≫ 1),

there is a CR ’Field length’ 𝜆𝐶𝑅𝐹 below which the perturbed heating

balances cooling (Kempski & Quataert 2020). Thermal instability is

suppressed for 𝜆 < 𝜆CRF, where

𝜆CRF ∼ min(𝛼1/2, 𝛼−1/2)√𝜅𝑡cool. (30)

Note the close analogy to the Field length 𝜆F ∼ √
𝜅cond𝑡cool set

by thermal conduction, where 𝜅cond is the heat diffusion coefficient

11 For adiabatic sound waves, this can drive an acoustic instability, where

sound waves grow in amplitude and steepen into shocks (Begelman & Zweibel

1994; Tsung et al. 2022).
12 By isochoric, we mean 𝛿𝜌/𝜌 ≪ 𝛿𝑃𝑔/𝑃𝑔 . The above specializes to the

case where the total pressure is constant, 𝛿𝑃𝑔 + 𝛿𝑃𝑐 ≈ 0, and CR pressure

increases to compensate for loss of gas pressure due to cooling (Kempski &

Quataert (2020); see Appendix A).
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8 Tsung et al.

associated with thermal electrons. Of course, this is only relevant

parallel to B-őelds; strong suppression of diffusion in the perpen-

dicular direction means that cold gas structures can be considerably

smaller.

To summarize, isochoric modes (ΛT < 0) are always thermally

unstable. In addition, if 𝜉 > 1, all isobaric modes are unstable. If

𝜉 < 1, then small scale modes are stabilized, but large scale modes

𝜆 > 𝜆CRF are still unstable. In general, CRs are unable to directly

quench thermal instability in galaxy halos, where ΛT < 0. We shall

see this is consistent with our simulations13.

However, the phase velocity of thermal modes up the CR pressure

gradient, which can be approximated as (Kempski & Quataert 2020):

𝑣ph ∼ −min( 2

3
,

4

15
𝛼) 𝑣𝐴 (31)

is potentially of more interest (see Appendix E for an intuitive ex-

planation for why these modes would propagate up the CR pressure

gradient). The ratio of the crossing time 𝑡cross ∼ 𝐿/𝑣ph to the cooling

time 𝑡cool is:

𝜃 ≡ 𝑡cool

𝑡cross
∼
(
𝑡cool

𝑡heat

) (
𝑡heat

𝑡cross

)
∼ 𝜒

𝐿𝑐

𝐿
min( 2

3
𝛼−1,

4

15
), (32)

where 𝐿𝑐 = 𝑃𝑐/∇𝑃𝑐 , and 𝑡heat ∼ 𝑃𝑔/(𝑣𝐴 · ∇𝑃𝑐), and we have

used equation 31. If 𝜃 > 1, then thermal modes will propagate out

of the system before cooling signiőcantly. In general, we expect

𝜃 < 1, since 𝜒 = 𝑡cool/𝑡heat < 1 (otherwise the background will be

overheated), and we also expect 𝐿𝑐/𝐿 ≲ 1. We can also see this from

the parametrization:

𝜃 ≡ 𝑡cool

𝑡cross
∼
(
𝑡cool

𝑡ff

) (
𝑡ff

𝑡cross

)
∼ 𝛿

𝛽1/2 min( 2

3
,

4

15
𝛼) (33)

so that when there is thermal instability in our setup, 𝛿 = 𝑡cool/𝑡ff < 1,

the fact that 𝛽 ≳ 1 means that 𝜃 < 1.

However, there is sufficient uncertainty that it is worth investi-

gating numerically how the propagation of thermal modes affect

thermal instability. In addition, Kempski & Quataert (2020) suggest

that the oscillations induced by mode propagation could also poten-

tially damp thermal instability and change the threshold for thermal

instability, particularly if the oscillation frequency 𝜔A is higher than

the free-fall frequency. We now address this in our simulations.

3.2 Propagation of modes

We begin by verifying that thermal entropy modes do propagate at

the expected velocity given by linear analysis. To do this we insert a

Gaussian density bump of form

𝛿𝜌 = A𝜌(𝑥𝑏)𝑒
−
(
(𝑥−𝑥𝑏 )2+(𝑦−𝑦𝑏 )2

Δ

)

, (34)

where A is the amplitude (in units of 𝜌(𝑥𝑏), the local background

density), (𝑥𝑏 , 𝑦𝑏) is the location of the bump and Δ is the width. We

place the bump at (1.5𝐻, 0), with amplitude A = 0.01 and width

0.1𝐻. The velocity, gas and CR pressure proőles are unperturbed

initially. Thus, besides density, the only other perturbed quantity

is temperature, which is perturbed at constant pressure (𝛿𝑇/𝑇 =

−𝛿𝜌/𝜌). The other parameters used are listed on top of each panel

13 There also exists another kind of entropy mode, driven by CR pressure

with oscillation frequency 𝜔 = 𝜔𝐴 and 𝜔𝐴/2 (Kempski & Quataert 2020).

These modes are stable to cooling and thus play no role in the development

of thermal instability. We shall not discuss them.

in őg.2 and the resulting evolution is shown. In each panel we plot

the 𝑥 − 𝑡 trajectory of the perturbation and display snapshots of the

temperature őeld at different times. The perturbation is tracked by

őnding the location with minimum temperature. CR heating to the

thermal gas −𝑣𝐴 · ∇𝑃𝑐 is switched off for the bottom row as a control

to illustrate the effect of CR heating. To ensure the background is in

steady state while the mode is propagating (for the sake of clarity in

our demonstration), we impose the CR source term Q (only for the

studies of mode propagation in ğ3; we do not include such source

terms in ğ4) on the right hand side of equation 5:

Q(𝑥) = d𝐹𝑐

d𝑥
− 𝑣𝐴

d𝑃𝑐

d𝑥
. (35)

Since 𝑃𝑐 ∝ 𝜌𝛾𝑐/2 initially, this simpliőes to

Q(𝑥) = − 𝜅

𝛾𝑐 − 1

d2𝑃𝑐

d𝑥2
= − 𝛾𝑐

𝛾𝑐 − 1
𝜂𝐿𝑐𝑣𝐴

d2𝑃𝑐

d𝑥2
. (36)

In őg.2 we present three test cases, corresponding (from left

to right) to parameters (𝛼0, 𝛽0, 𝜂𝐻 , 𝜃𝐻 ) = (0.5, 3, 0.01, 0.12),
(1, 3, 0.01, 0.16) and (5, 100, 0.01, 0.14). CR streaming dominate

the transport as 𝜂𝐻 ≪ 1. Note that 𝜃𝐻 is adjusted through 𝜒𝐻 via

eqn.32. Changing 𝛽0 changes the Alfven speed 𝑣𝐴 while changing

𝛼0 affects the fraction of the Alfven speed the modes propagate

at. Using the (1, 3, 0.01, 0.16) (middle column) as a reference case,

halving the CR pressure roughly halves the propagation speed while

increasing it by 5 times boosts the propagation to the asymptotic

limit of 𝑣 ∼ −2𝑣𝐴/3 ∼ −0.67𝑣𝐴. The propagation speed of the refer-

ence case, ⟨𝑣⟩ = −0.25𝑣𝐴,𝐻 , is consistent with −4𝛼𝑣𝐴/15 predicted

from linear theory (eqn.31). Note that the mode velocity displayed

in the őgure ⟨𝑣⟩ is given in terms of 𝑣𝐴,𝐻 , the Alfven velocity at

a thermal scale-height. 𝑣𝐴 varies with density along the proőle, so

the slight difference found in our test cases from that predicted from

linear theory is to be expected. In addition, the mode’s phase speed

displayed in eqn.31 is derived in the limit of high 𝛽 and is therefore

just an approximation in our moderate 𝛽 simulation. In light of this,

the agreement between linear theory and simulation is quite reassur-

ing. The minus sign in the propagation speeds indicate the modes are

propagating up the 𝑃𝑐 gradient.

The bottom row of őg.2, with CR heating switched off, shows

no propagation of the modes and reŕects clearly that propagation is

completely due to CR heating. In őg.3 we show again the middle

column case (𝛼0 = 1, 𝛽0 = 3, 𝜃𝐻 = 0.16) but with increased diffu-

sion (𝜂𝐻 = 1, i.e. the diffusive ŕux is equal to the streaming ŕux at

a thermal scale-height). There is no mode propagation in this case.

The reason is diffusion causes CRs to slip out of the perturbation

before they can heat the gas, thus removing the effects of CR heating.

From these test cases we have shown that CR streaming, through

streaming heating, can cause thermal entropy modes to propagate at

some fraction of the Alfven velocity consistent with linear theory.

If one removes the effect of CR heating, either by switching off the

source term −𝑣𝐴 · ∇𝑃𝑐 or by increasing diffusion, the modes do not

propagate.

3.3 Does propagation suppress thermal instability?

Having shown in ğ3.2 that thermal entropy modes propagate in a CR

streaming dominated ŕow under the effect of CR heating, we consider

whether thermal instability can be suppressed as proposed in ğ3.1,

that is, if mode propagation sets a time limit 𝑡cross on how much the

perturbations can grow before moving out of the cooling region. If

𝑡cross ≪ 𝑡cool, perturbations can hardly grow before they propagate

out of the cooling region, effectively suppressing the instability.
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The Impact of Cosmic Rays on Thermal and Hydrostatic Stability in Galactic Halos 9

Figure 2. Propagation of thermal entropy modes for different values of 𝛼0, 𝛽0, 𝜃𝐻 = 𝑡cool,H/𝑡cross,H with (top row) and without (bottom row) CR heating (note

that 𝜃𝐻 is related to 𝜒𝐻 , the ratio of CR heating to radiative cooling through eqn.32). Note that subscripts 0 and 𝐻 means quantities evaluated at the base 𝑥 = 0

and at the initial gas scale-height 𝑥 = 𝐻 = 𝑇0/𝑔0 = 1 respectively. A Gaussian density bump is placed at 𝑥 = 1.5 initially and its trajectory followed. In each

panel we trace the location of the bump with time, showing snapshots of the temperature őeld. With CR heating, the bump is clearly moving. No propagation

is seen without CR heating. We őt the slope of the 𝑥 − 𝑡 plot while the bump is in its linear phase (i.e. 𝛿𝜌/𝜌 < 1) to extract its propagation velocity ⟨𝑣⟩ (in

units of 𝑣𝐴,𝐻 ). The propagation speeds are consistent with that predicted from linear theory eqn.31. The propagating mode appear stretched out due to slight

differences in 𝑣ph across its width.

In this section, we initiate a stratiőed proőle in hydrostatic and

thermal balance and seed random isobaric perturbations:

𝛿𝜌

𝜌
=




∑
𝑚𝑛

4𝐴𝑚𝑛√
𝑁

sin
(

2𝜋𝑛𝑥
𝐿𝑥

+ 𝜙𝑥,𝑛
)

sin
(

2𝜋𝑚𝑦
𝐿𝑦

+ 𝜙𝑦,𝑚
)
, (2D)

∑
𝑙𝑚𝑛

8𝐴𝑙𝑚𝑛√
𝑁

sin
(

2𝜋𝑛𝑥
𝐿𝑥

+ 𝜙𝑥,𝑛
)

sin
(

2𝜋𝑚𝑦
𝐿𝑦

+ 𝜙𝑦,𝑚
)

(3D)

sin
(

2𝜋𝑙𝑧
𝐿𝑧

+ 𝜙𝑧,𝑙
)
,

(37)

where 1 ≤ 𝑛, 𝑚, 𝑙 ≤ 10, 𝜙𝑥 , 𝜙𝑦 , 𝜙𝑧 are phase shifts selected ran-

domly from (0, 2𝜋), 𝐿𝑥 , 𝐿𝑦 , 𝐿𝑧 are domain sizes in the 𝑥, 𝑦, 𝑧 direc-

tions, 𝐴𝑙𝑚𝑛 are mode amplitudes selected randomly from a Gaussian

pdf with (𝜇, 𝜎) = (0, 0.1) and 𝑁 is the total number of modes.

We then let the simulation evolve, and record the amount of cold

gas formed near a thermal scale-height (0.9𝐻 < 𝑥 < 1.1𝐻). As a

comparison, we also run simulations without CR heating and with

higher CR diffusion. Switching off CR heating allows us to isolate
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Figure 3. Same as the middle column of őg.2 but with enhanced CR diffusion

(𝜂𝐻 = 1). There is no propagation in this case even when CR heating is

present.

the effect of CR heating on thermal instability, whereas increasing

CR diffusion allows us to isolate the effect of mode propagation (see

results from ğ3.2). In particular, recall that in our setup, 𝜃H ∝ 𝜒H

(eqn.32). Thus, if thermal instability is suppressed, it is difficult to

tell if this is due to mode propagation (𝜃 > 1) or CR overheating

(𝜒 > 1). In order to break this degeneracy and isolate the effects of

mode propagation, we utilize the fact that increasing CR diffusion

can suppress mode propagation. We saw this explicitly in ğ3.2, when

𝜂H = 1. Our ‘enhanced diffusion’ tests here use the same value of

𝜂H.

In őg.4 we compare the evolution of thermal instability with (top

row) and without (second row) CR heating for streaming dominated

transport (𝜂𝐻 = 0.01), and with enhanced diffusion (third row, 𝜂𝐻 =

1), for (from left to right) 𝜃𝐻 = 0.16, 0.4, 1. The bottom row displays

the cold mass fraction taken near a thermal scale-height (0.9𝐻 < 𝑥 <

1.1𝐻) as a function of time 𝑡/𝑡cool,H. The density slices displayed are

taken roughly at times where the cold mass fraction peaks. The initial

proőle parameters for these test cases are 𝛼0 = 1, 𝛽0 = 3. Note that

𝜃𝐻 , 𝜒𝐻 , 𝑡cool,H, with the subscript𝐻, are parameters evaluated at 𝑥 =

𝐻 (where𝐻 is the thermal scale-height of the initial proőle). Note also

that the initial density, 𝑃𝑐 and 𝑃𝑔 proőles and magnetic őeld strength

of the test cases displayed in őg.4 are all the same. Thus, initial

background CR forces ∇𝑃𝑐 and heating rates 𝑣𝐴 · ∇𝑃𝑐 are identical

in all cases. This remains true even when we change the amplitude of

CR diffusion, which ordinarily would change CR proőles and heating

rates. However, the CR source terms implemented in equations 35

and 36 guarantee identical 𝑃𝑐 (𝑥) proőles. We emphasize that this is

a numerical convenience to isolate the impact of mode propagation

by enabling the background 𝑃𝑐 (𝑥) proőle to be held őxed. We do

not include source terms 𝑄(𝑥) in our study of non-linear outcomes

in ğ4.

Let us őrst compare the left (𝜒H = 0.4)) and rightmost (𝜒H =

2.5) columns in Fig 4, which correspond to the cases where CR

heating provides only a fraction of the heating rate (𝜒H = 0.4)) and

overheats the gas (𝜒H = 2.5)). As one might expect, when there

is CR heating, there is ample cold gas in the former case (broadly

comparable to the ‘no CR heating’ case), and almost no cold gas

in the latter case. The strong suppression of TI in the overheated

𝜒H = 2.5 case is still present when CR diffusion is included. This

suggests that overheating, rather than mode propagation (which is

absent once CR diffusion is included), suppresses thermal instability.

On the other hand, when CR heating marginally balances cooling,

for 𝜒H = 1, 𝜃H = 0.4, the case including CR heating has almost

no cold gas, but including CR diffusion allows ample cold gas to

form. This suggests that mode propagation, rather than overheating,

is responsible for the suppression of thermal instability. We have

veriőed this directly by examining heating rates, as well as observing

the propagation of cooling gas clouds.

Thus, suppression of TI by propagation effects can occur. However,

it only occurs in a narrow range around 𝜃 ≈ 1, as illustrated in Fig

5: for low values of 𝜃, mode propagation is too slow, while for high

values of 𝜃, overheating suppresses thermal instability. Thus, mode

propagation is unlikely to play an important role in regulating the

abundance of cold gas. In fact, overheating during the non-linear

stages is much more interesting. We turn to this next.

4 NONLINEAR OUTCOMES: WINDS AND FOUNTAIN

FLOWS

Since suppression of TI by mode propagation is at best marginally

important, thermal instability will likely develop in a system in global

thermal equilibrium, i.e. when there is no overheating. What would

be the nonlinear outcome of TI then, particularly when CR heating

plays an important thermodynamic role in the system? Note that we

started with a proőle in both hydrostatic and thermal balance,

∇𝑃𝑔 + ∇𝑃𝑐 = −𝜌𝑔, (38)

𝜌2
Λ = |𝑣𝐴 · ∇𝑃𝑐 | + H . (39)

As TI develops, it draws mass out of the atmosphere and causes the

density to decrease. It is not immediately clear, in the subsequent

evolution, that both hydrostatic and thermal balance will be main-

tained. In particular, since radiative cooling varies with density much

more sensitively than CR heating, one could imagine in the nonlinear

evolution, the energy budget is likely dominated by CR heating. This

could eventually drive the system out of both hydrostatic and thermal

balance. Indeed, we shall see that this is exactly what happens. We

shall also see that the reduced gas density also reduces gas pressure,

causing 𝛽 to decrease in the atmosphere.

4.1 Overview of simulation outcomes

There are in general three categories of outcomes for nonlinear TI

with CR heating14. Here, we analyze 3 prototypical simulations

which exemplify these outcomes: ’slow wind’ (𝛽0 = 5, 𝜂H = 0.01),

’fast wind’ (𝛽0 = 5, 𝜂H = 1), and ’fountain ŕow’ (𝛽0 = 300, 𝜂H = 1).

All simulations have 𝛿H = 1, 𝛼0 = 1. We run the simulations for

up to 60𝑡cool,H, long enough for the ŕow to settle onto a nonlinear

steady state. Although we őx CR pressure at the base, in Appendix C

14 The reader can view videos pertaining to the discussion in this sec-

tion at the following link: https://www.youtube.com/playlist?list=

PLQqhpX30dsYq2cD51L4M2pNQAlm0GSle9.
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Figure 4. Comparison of thermal instability evolution with (top row) and without (second row) CR heating for streaming dominated transport (𝜂𝐻 = 0.01), and

with higher diffusion (third row, 𝜂𝐻 = 1) for (from left to right) 𝜃𝐻 = 𝑡cool,H/𝑡cross,H = 0.16, 0.4, 1. The bottom row displays the cold mass fraction taken near

a thermal scale-height (0.9𝐻 < 𝑥 < 1.1𝐻) as a function of time 𝑡/𝑡cool,H. The density slices displayed are taken roughly at times where the cold mass fraction

peaks. Note that quantities with subscript 𝐻 are taken at the initial gas scaleheight 𝑥 = 𝑇0/𝑔0 = 1. The remaining parameters required to uniquely determine the

initial proőles for these test cases are 𝛼0 = 1, 𝛽0 = 3. The conversion from 𝜃𝐻 to 𝜒𝐻 in our setup is given by eqn.32.

we show that similar outcomes arise if we őx the CR ŕux. As men-

tioned in ğ2.2.4, with the expectation that CR heating dominates the

nonlinear evolution, we henceforth remove the temperature ceiling.

The typical evolution of these simulations are shown in őg.6,

showing the density slices at 𝑡 = 2, 10, 30𝑡cool, which mark the three

stages of TI evolution: stage I, linear growth of TI; stage II, the

transitional phase; stage III, the nonlinear steady-state. Shown at the

bottom of the őgure are the r.m.s density variations ⟨𝛿𝜌/𝜌⟩rms as a

function of time for the three displayed cases, with black dotted lines

demarcating the different stages of evolution. In stage I, seed density

perturbations grow to nonlinear amplitudes over several 𝑡cool (from

𝑡 = 0 to ∼ 2 − 3𝑡cool in our sims with 10% seed amplitude). Over

this time, ⟨𝛿𝜌/𝜌⟩rms grows exponentially. In stage II, cold, dense

gas formed from TI collapses under gravity, forming a dense mid-

plane disk. Stage II marks the transitional period where such a two-

phase medium (a cold, dense mid-plane disk bounded by hot, rareőed
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Figure 5. A color-bar illustrating the effect of mode propagation on TI for

various regimes of 𝜃 = 𝑡cool/𝑡cross.

halo gas) is formed. This is the typical end state of TI simulations

(McCourt et al. 2012; Ji et al. 2018; Butsky et al. 2020). However,

in the presence of CR heating, this two-phase hydrostatic disk-halo

medium can be globally unstable, and TI generally veers towards one

of three possible outcomes in Stage III, the non-linear steady state.

The őrst outcome is a slow wind, where the disk-halo structure

is well maintained and the interface clearly deőned. A wind with

velocity less than the local escape velocity (
√︁

2𝑔𝑥) develops. The

second outcome is a fast wind, where again the disk-halo structure

is well maintained with a distinctive interface, but the wind has a

velocity greater than the local escape velocity, so that much of the

gas in the halo are blown away, leaving the halo much more rareőed

compared to the weak-wind case. The third outcome is a fountain

ŕow, characterized by őlaments of cold, dense gas rising and falling

from the central disk. The warmer gas is generally outŕowing, leaking

through the space between the cold tendrils, occasionally entraining

several tiny cold clouds out. The halo gas ŕow is turbulent.

The transition from linear TI to these outcomes through the for-

mation of a disk-halo structure takes around 10𝑡cool, marked by high

values of ⟨𝛿𝜌/𝜌⟩rms ∼ 5. The density ŕuctuations and ŕow structure

then stabilize during stage III, the nonlinear steady-state. Surveying

parameter space, we have found that slow winds are typically associ-

ated with low 𝛽, low CR diffusivity (or streaming dominated) ŕows,

fast wind with low 𝛽, high CR diffusivity ŕows, whereas fountain

ŕows happen mostly for high 𝛽 ŕows. We will quantify these criteria

and supply theoretical explanations.

We describe the ŕow properties of these three outcome categories

in greater detail using őg.7, which shows the density, gas pressure,

CR pressure, temperature slices at 𝑡 = 30𝑡cool (top 3 rows) and the

time averaged projection plots15 of the density, outŕow velocity and

temperature (bottom row). From the slice plots, one can observe

the aforementioned disk-halo structure. The central disk, spanning

a height of ∼ 0.2𝐻 ≈ 2𝑎 (where 𝑎 is the smoothing length of the

gravitational őeld) is made up of cold gas near the temperature ŕoor.

The ŕow patterns of the slow-wind and fast-wind case appear colli-

mated, with the major differences being: 1. the outŕow velocity of

the fast-wind case can exceed the local escape speed (bottom central

panel), 2. the density is signiőcantly lower for the fast-wind case

and 3. the temperature is appreciably higher for the fast-wind case.

The gas and CR pressures of the fast wind case are also greater. 16

15 The time averaged projection plots are obtained by őrst averaging the

slices across the 𝑦-axis (projection) and then time averaging over 𝑡 = 31.8 −
63.6𝑡cool, when the ŕow is well within stage III, the nonlinear steady-state.
16 Note that the high gas pressure streak found in the slow wind case

(top row) is a transient feature associated with a sudden, large injection

of CRs from the disk, which generates higher CR heating and therefore

larger gas pressure. Note that CR injection from the disk follows the pre-

scription 𝑃𝑐 (𝑥disk , 𝑦, 𝑡 ) = 𝛼0𝑃𝑔 (𝑥disk , 𝑦, 𝑡 ) . The gas pressure at the disk

Some minor differences between the slow and fast wind case include

smaller variability for the weak-wind (as indicated by the shaded

regions in the time averaged plots). Note that once out of the central

disk, the ŕows become isothermal17 for both the slow and fast wind

cases (from 𝑥 ≈ 0.3𝐻 outwards). The density and hence pressure

is also relatively constant. The fountain ŕow is vastly different from

the other two outcomes, showing more turbulent dynamics. Despite

the relatively similar time averaged outŕow velocity proőle with the

slow-wind case, both of which are sub-escape speed, the cold gas is

far more extended in the fountain ŕow case, leading to higher average

density and lower average temperature. The cold gas extending away

from the disk is also low in gas pressure but high in CR pressure.

Due to mass drop-out in the atmosphere from TI, which produces

the cold gas disk in the mid-plane, the ending 𝛼, 𝛽, 𝜂 proőles could

be vastly different from what it started with. For example, in őg.9,

the time averaged projection plots of 𝛼, 𝛽, 𝜂 for the slow wind, fast

wind and fountain ŕow cases (denoted respectively by blue, red and

greed solid lines) are different from the initial proőles (denoted by

dotted lines) by orders of magnitude. In particular, for the slow and

fast winds, the halo 𝛼 decreases over time while the fountain ŕow

case seems to have accumulated CR pressure. The halo 𝛽 and 𝜂 can

decrease by orders of magnitude due to the substantial decrease in

halo gas density (thus increasing 𝑣𝐴) and pressure.

4.2 Energetics and dynamics of the nonlinear steady-state

- Slow and fast wind case. To understand the energetics and dynamics

of the nonlinear steady-state, we plot in őg.8 the time averaged pro-

jection plots of the pressures, energies and pressure gradient terms

corresponding to the three displayed outcomes. For energetics, the

gas energy equation (eqn.3) in time-steady state can be expressed as

𝛾𝑔

𝛾𝑔 − 1
∇ ·

(
𝑃𝑔v

)
= v · ∇𝑃𝑔 + |𝑣𝐴 · ∇𝑃𝑐 | − 𝜌2

Λ + H (𝑥), (40)

i.e. the gas enthalpy ŕux (LHS) is the sum of gas work done, CR heat-

ing, radiative cooling and residual feedback heating (RHS). Near the

central disk, the density and radiative cooling rate is high, cooling

some of the gas to the temperature ŕoor. The drop in density away

from the disk causes an abrupt change in the energetics. CR heating is

a much weaker function of density than radiative cooling. In a stream-

ing dominated ŕow with 𝑣𝑥 ≪ 𝑣𝐴 and 𝐵-őeld is constant (as in our

setup), CR heating 𝑣𝐴∇𝑃𝑐 ∝ 𝜌1/6 (since 𝑣𝐴 ∝ 𝜌−1/2, 𝑃𝑐 ∝ 𝜌2/3

for constant B-őelds) while cooling 𝜌2Λ ∝ 𝜌2. Thus we can rea-

sonably expect 𝑣𝐴∇𝑃𝑐 ≫ 𝜌2Λ at the halo outskirts in the nonlinear

steady state (thus, for the wind cases, the residual feedback heating

H(𝑥) = 0; however, it can be non-zero in the fountain ŕow case

we later discuss). It is clear from the őgure that this is indeed the

case, at least for the slow and fast wind case (compare the blue and

orange curves in őg.8, central column, top and middle row). Thus

the halo gas is overheated. At the transition region where CR heat-

ing starts to dominate over cooling (𝑥 ≈ 0.2𝐻), the velocity is low

and the gas is heated to high temperatures (see the abrupt rise in

temperature there, őg.7, bottom right panel). Further out, when gas

acceleration is greater, energy balance is maintained by an enthalpy

ŕux commensurate with the overheating rate.

𝑃𝑔 (𝑥disk , 𝑦, 𝑡 ) is in general time-dependent and dependent on the location

in the disk, thus so does the injected CR pressure.
17 Isothermal in the sense that the temperature proőle appears spatially con-

stant, not that the equation of state is isothermal.
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Figure 6. Typical evolution of TI with CR heating. Shown above are density slices at 𝑡 = 2, 10, 30𝑡cool for the three categories of outcomes - slow wind,

fast wind and fountain ŕow, with blue and red coloring indicating less dense and denser gas respectively. In this őgure, 𝑡cool refers to the initial cooling time

at 𝑥 = 𝐻. Shown at the bottom are ⟨𝛿𝜌/𝜌⟩rms (r.m.s. fractional density deviation from the mean) as a function of time taken at a strip near a scale height

(0.9𝐻 < 𝑥 < 1.1𝐻) for the three cases shown, with the black dotted line demarcating different stages of evolution. The case identiőer for the three cases

shown are: ‘slow wind’ - a1b5k.01d1in.67res1024c200; ‘fast wind’ - a1b5k1d1in.67res1024c200; ‘fountain ŕow’ - a1b300k1d1in.67res1024c200. 𝜌0,𝑖𝑛𝑖𝑡 with

the extra subscript 𝑖𝑛𝑖𝑡 is added for clarity and is synonymous to 𝜌0 = 1, the density at the base of the initial proőle.

We can gain intuition by noting that the steady-state gas energy

equation (equation 40) can be rewritten as:

𝑣𝑥∇ lnK =
𝛾𝑔 − 1

𝑡netheat
⇒ 𝑣𝑥∇K =

(𝛾𝑔 − 1)K
𝑡netheat

(41)

where 𝐾 ≡ 𝑃𝑔/𝜌5/3, and 𝑡netheat = 𝑃𝑔/(|𝑣A∇𝑃𝑐 | − 𝜌2Λ) =

1/(1/𝑡heat − 1/𝑡cool) (≈ 𝑡heat if CR heating dominates). This form

implies that any increase in gas entropy due to heating is balanced

by outward advection of entropy. It also implies that the velocity

of a thermal wind driven by heating is given by 𝑣𝑥 ≈ 𝐿K/𝑡heat ≈
3/2𝐿𝜌/𝑡heat where 𝐿K ≡ 𝐾/∇𝐾 , i.e. 𝑣x ∝ 𝑡−1

heat
. Alternatively, note

that the enthalpy ŕux 𝛾𝑔∇𝑃𝑔𝑣𝑥/(𝛾𝑔 − 1) consists of two terms, őrst

due to adiabatic expansion∝ 𝑃𝑔∇𝑣𝑥 and the second due to work done

on the gas by the ŕow∝ 𝑣𝑥∇𝑃𝑔). From őg.8 (central column, top and

middle row) it is apparent the enthalpy ŕux term is dominant over the
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Figure 7. Nonlinear outcomes of TI with CR heating. Density, gas pressure, CR pressure and temperature slices at 𝑡 = 30𝑡cool. 𝑡cool shown in this őgure refers

to the initial cooling time at 𝑥 = 𝐻. The black dashed contours in the gas and CR pressure slices demarcate gas with temperature below and above 0.3𝑇0,𝑖𝑛𝑖𝑡 ,

where 𝑇0,𝑖𝑛𝑖𝑡 is the temperature of the initial proőle and is synonymous to 𝑇0 = 1 (similarly for 𝜌0,𝑖𝑛𝑖𝑡 = 𝜌0 = 1 and 𝑃𝑔0,𝑖𝑛𝑖𝑡 = 𝑃𝑔0 = 1, the added subscript

𝑖𝑛𝑖𝑡 for added clarity). Shown at the bottom are the time averaged projection plots of the density, outŕow velocity and temperature for the three cases shown.

Time average projection refers to averaging from 𝑡 = 31.8𝑡cool to 63.6𝑡cool, when the ŕows have settled onto their nonlinear steady-states, and then spatial

averaging over 𝑦. 𝑡cool refers to the initial cooling time at a 𝑥 = 𝐻. The shaded regions denote 1𝜎 variations throughout the time averaging. The case identiőers

are the same as őg.6.

work done term for at least a scale height above the disk (compare

the green and red curves), thus the energetics there are controlled by

a simple balance between CR heating and adiabatic expansion, i.e.

𝑃𝑔∇𝑣𝑥 ∼ −𝑣𝐴∇𝑃𝑐 . At the escape velocity 𝑣esc ∼
√︁

2𝑔𝑥, we have

∇𝑣esc ∼ (𝑔/𝑥)1/2 ∼ 𝑡−1
ff

/
√

2. This suggests:

𝑣x ∼ 𝜁𝑣esc

(
𝑡ff

𝑡heat

)−1

(42)

where 𝜁 ∼ 0.4 is a fudge factor which we later calibrate numerically.

We investigate this scaling further in ğ4.3. In short, the energetics

of the slow and fast wind case can be described by a cool inner

disk region followed abruptly by an overheated outskirt, driving a

sharp rise in temperature and then a balance between CR heating

and adiabatic expansion, which generates the required enthalpy ŕux

carrying the heated gas parcels away.

For dynamics, we refer to the left column of őg.8. Although mag-

netic pressure dominates the the slow and fast wind case, it is unim-

portant in the overall dynamics of the ŕow due to its constancy, except

for setting the Alfven/streaming speed 𝑣𝐴 (hence the CR heating rate)

and collimating ŕows via the high magnetic tension. Since we have

set 𝛼0 = 𝑃𝑐0/𝑃𝑔0 = 1 at the base for the displayed cases (see ğ2.2),

CR and gas pressures are comparable at the disk. However, CR pres-

MNRAS 000, 1ś32 (2015)



The Impact of Cosmic Rays on Thermal and Hydrostatic Stability in Galactic Halos 15

Figure 8. Time averaged projection plots of the pressures (left column), energy terms (center column) and pressure gradients (right column) for the three

categories of outcomes. Time average projection refers to averaging from 𝑡 = 31.8𝑡cool to 63.6𝑡cool, when the ŕows have settled onto their nonlinear steady-states,

and then spatial averaging over 𝑦. 𝑡cool refers to the initial cooling time at 𝑥 = 𝐻. The cases displayed are the same as that in őg.7. In the pressure plots (left

column), the pressures are represented by: gas pressure ⟨𝑃𝑔 ⟩ - blue; CR pressure ⟨𝑃𝑐 ⟩ - orange; magnetic pressure ⟨𝐵2/2⟩ - green; ram pressure ⟨𝜌𝑣2
𝑥 ⟩ - red.

In the energy plots (center column): CR heating ⟨ |v𝑠 · ∇𝑃𝑐 | ⟩ - blue; cooling ⟨𝜌2Λ⟩ - orange; enthalpy ŕux ⟨ |𝛾𝑔∇ · 𝑃𝑔v |/𝛾𝑔 − 1⟩ - green; gas work done

⟨ |v · ∇𝑃𝑔 | ⟩ - red; There is no cooling and CR heating within the buffer zones (0 < 𝑥 < 𝑎 and 2𝐻 − 𝑎 < 𝑥 < 2𝐻). In the pressure gradient plots: ⟨−∇𝑃𝑔 ⟩
- blue; ⟨−∇𝑃𝑐 ⟩ - red; ⟨−∇𝑃𝐵 ⟩ - green; ⟨−∇𝜌𝑣2

𝑥 ⟩ - yellow. Positive values are represented by solid curves, negative by dotted lines. ⟨𝜌𝑔⟩, the gravitational

force, is denoted by a black dashed line. The angled brackets indicate the time average projection, they are omitted in the legend and in other plots to reduce

clutter.

sure varies with density differently than the gas pressure, so they

develop different proőles at the disk-halo interface, leading to differ-

ent outskirt pressures. In particular, for streaming dominated ŕows

where 𝑣𝑥 ≪ 𝑣𝐴, 𝑃𝑐 ∝ 𝜌𝛾𝑐/2. This implies a precipitous decline in

CR pressure at the disk halo interface, where there is a steep density

gradient to offset the sharp change in temperature (see bottom panels

of őg.7). By contrast, the gas pressure suffers a much smaller decline

in the disk, where the rise in temperature at the disk halo interface

compensates for the reduced density. Thus, for streaming dominated

ŕows, 𝑃𝑐 ≪ 𝑃𝑔 in the halo, resulting in a slow wind.

If, instead diffusion dominates out to at least the disk halo interface,

i.e. 𝜅∇𝑃𝑐 ∼ 𝜅𝑃𝑐/𝑎 > 𝑣𝐴𝑃𝑐 ⇒ 𝜅 > 𝑣𝐴𝑎, then for 𝐹𝑐 ∼ 𝜅∇𝑃𝑐 ∼
const (i.e., consistent with these assumptions, streaming losses 𝑣𝐴 ·
∇𝑃𝑐 are negligible), CR suffer a linear rather than exponential decline

with distance:

𝑃𝑐 ≈ 𝑃𝑐0 − (𝛾𝑐 − 1)𝐹𝑐0

𝜅
𝑥. (43)

Diffusion decouples CR pressure from the gas at the steep density

drop, avoiding the heavy ‘tax’ at the disk-halo interface. Since 𝑃𝑐 is

higher in the halo, this allows for stronger heating at the the lower

densities when radiative cooling is weak. The smaller drop in CR

pressure also means that the CR pressure gradient ∇𝑃𝑐 ≫ 𝜌𝑔 dom-

inates in the more diffusive, fast wind case, while the gas pressure

gradient ∇𝑃𝑔 ∼ 𝜌𝑔 dominates in the streaming dominated, slow

wind case (right column, Fig 8).

As the gas drops in density, heating starts to exceed cooling, and

gas is abruptly heated to high temperature. The heating of the gas

halts the rapid decline in gas pressure in the disk; the hot gas now has

a much larger scale height 𝐻gas ∝ 𝑇 . The phase transition from cool

to hot gas takes place in a very thin layer. To a rough approximation,

it takes place isobarically, so that 𝜌ℎ/𝜌𝑐 ∼ 𝑇𝑐/𝑇ℎ ≪ 1. Due to

the low gas densities in the halo, CR transport becomes streaming

dominated (𝑣A ∝ 𝜌−1/2), with 𝑃𝑐 ∝ 𝜌2/3 tracking the very gentle

density decline in the halo. This change in transport is responsible

for the sharp change in ∇𝑃𝑐 gradient at the disk-halo boundary. Note

that rapid evolution in gas and CR properties typically occurs only at

the disk halo interface, where gas is being heated and accelerated by

CRs; ŕuid gradients are much gentler in the halo, where gravitational

stratiőcation is much weaker for the hot gas. The evaporative ŕow at
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Figure 9. 𝛼, 𝛽, 𝜂 are in general functions of position and time. The őgure

show the time average projection plots of 𝛼, 𝛽, 𝜂 when steady state has

been reached (solid lines) in comparison to their initial values (dotted line).

Time average projection refers to averaging from 𝑡 = 31.8𝑡cool to 63.6𝑡cool,

when the ŕows have settled onto their nonlinear steady-states, and then spatial

averaging over 𝑦. 𝑡cool refers to the initial cooling time at 𝑥 = 𝐻. Note that

due to mass draw-out from TI, the ending 𝛼, 𝛽, 𝜂 could be very different

from their starting values.

the disk halo interface gives rise to a single-phase hot wind in the

halo, whose velocity is given by equation 42.

In summary, the slow and fast wind cases are driven by CR heating,

which causes the cold gas to evaporate at the disk-halo interface,

boosting the gas pressure and driving an enthalpy ŕux out. They

differ in strength because CR heating is weaker in one case and

stronger in the other. The intensity of CR heating at the halo depends

on the supply of CR at the base (adjusted through 𝛼0 in our sims) and

their transport. In particularly, for a given supply of CRs, streaming

dominated ŕows generally lead to sharp decrease in CR energy at

the interface, whereas higher diffusivity helps CRs to leak out. As

we will see next, fountain ŕows are instead driven by CR pressure

forces.

- fountain ŕow case. The fountain ŕow case is characterized by

cold, dense gas being ŕung out of the disk. As we shall see, this is

wholly due to CR forces, rather than CR heating. When the Alfven

speed 𝑣A is small due to weak magnetic őelds, the momentum input

of CRs, ∇𝑃𝑐 , is much more important than the heat input 𝑣A · ∇𝑃𝑐 .

Due to the high density of the gas, radiative cooling is strong and the

gas remains at the temperature ŕoor. Bounded by gravity, there is a

maximum height this cold gas can reach (around a scale height 𝐻 in

the case shown in őg.8), beyond which the gas is low in density and

warm. CR heating regains dominance and the system transitions into

a slow wind, with CR heating balanced by the enthalpy ŕux.

In terms of pressure, the disk region is well supported by both the

gas and CRs, but the ŕow becomes vastly CR dominated in the halo.

The high gas density requires a high level of pressure support, most

of which are provided by the CRs.

Given the turbulent dynamics of the fountain ŕows, it may be

Figure 10. Ratio of CR to gas pressure 𝛼 = 𝑃𝑐/𝑃𝑔 (top) and CR heating to

radiative cooling |𝑣𝐴∇𝑃𝑐 | (bottom) for the fountain ŕow case at 𝑡 = 30𝑡cool.

𝑡cool refers to the initial cooling time at 𝑥 = 𝐻. Contours demarcating cold

gas (𝑇 < 0.3𝑇0,𝑖𝑛𝑖𝑡 ) from the hotter gas are marked by black dashed lines.

more instructive to look at particular snapshots of the ŕow, so we

refer the reader back to the slice plots shown in őg.8. There is a

clear distinction in how pressure is partitioned between the gas and

CR components for the cold, fountain gas and the surrounding warm

gas. The cold gas is heavily CR dominated, whereas gas pressure is

comparable to CR pressure in warm/hot gas. Outside the cold gas,

gas pressure rises and CR pressure drops. Fig.10 shows this more

clearly: the cold gas is distinctively higher in 𝛼 = 𝑃𝑐/𝑃𝑔 than the

surrounding gas. The cold gas is also radiative cooling dominated.

Thus, in contrast to the slow and fast wind case where the outŕow is

driven by CR heating, the cold, fountain ŕows here are driven by CR

pressure. In particular, the presence of high levels of CR pressure

extending from the disk at the cold gas indicates they are peeled off

from the surface of the disk.

To supplement our discussion on the energetics and dynamics of

the three ŕow outcomes, we plot, in őg.11, the 𝑣𝑥 − 𝑇 phase plots

for the three cases. In line with our expectations and observations

above, faster outŕow gas is generally higher in temperature. Cold

gas with temperature ≲ 0.3𝑇0,𝑖𝑛𝑖𝑡 , if present, is slower and roughly

equally distributed between outŕows and inŕows - this is particularly

the case for the fountain ŕow, in which the cold gas is gravitationally

bound and continuously circulating.
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Figure 11. 𝑣𝑥 − 𝑇 (velocity vs. temperature) phase plots for the three displayed cases in őg.6: slow wind case on the left; fast wind in the middle; fountain ŕow

on the right. The 𝑣𝑥 − 𝑇 plots are constructed from binning the gas cells by their 𝑥 velocity and temperature from 21.2 − 24.7𝑡cool. 𝑡cool refers to the initial

cooling time at 𝑥 = 𝐻. 𝑇0,𝑖𝑛𝑖𝑡 refers to the initial proőle temperature, i.e. 𝑇0,𝑖𝑛𝑖𝑡 = 𝑇0 = 1, the extra subscript 𝑖𝑛𝑖𝑡 for added clarity.

4.3 Effect of CR heating

In ğ4.2 we claimed that the slow and fast wind cases are driven by

CR heating while the dynamics of the cold, fountain ŕow is driven

by CR pressure. We demonstrate these claims further by re-running

these őducial cases, but removing CR heating to the thermal gas18.

The results are shown in őg.12 and 13. We can see that switching off

CR heating has a signiőcant effect on the slow and fast wind cases,

but changes the fountain ŕow case minimally. In particular, the slice

plots in őg.12 for the slow and fast wind cases show that the density

is much higher and cold gas is more prevalent. The difference is

greatest for the ‘fast wind’ case, where removing CR heating results

in an increase in halo density by 2 orders of magnitude, a decrease

of outŕow speed to sub-escape speeds, and a drastic decrease in halo

temperature by 3 orders of magnitude, according to the time averaged

projection plots in Fig.12. The slow wind case also sees an increase

in halo density and decrease in outŕow speed and temperature, but

the magnitude of the changes are considerably smaller. This reŕects

the importance of CR heating in driving the outŕow dynamics as

shown in Fig.7. The fountain ŕow case continues to display fountain

ŕow features even without CR heating, with hardly any change to the

halo density, outŕow velocity and temperature. This further shows

that the cold, fountain ŕows are not a result of CR heating, but of CR

forces.

In terms of energetics and dynamics, Fig.13 shows that in the ab-

sence of CR heating, gas pressure support drops, making CR pressure

the dominant source of support against gravity in the halo. However,

now the much higher gas densities mean that radiative cooling is

important throughout the system. Note that excess radiative cooling

is balanced by an artiőcial heating source term (equation 21), which

is not shown in Fig.13. Looking again at the slice plots in őg.12,

the presence of nearly volume-őlling quantities of cold gas in the

fast wind case (middle row of őg.12) is striking. The morphology of

this cold gas is different from the cool clouds which typically form

during thermal instability. Similar to the cold fountain ŕows seen in

the fountain ŕow case, the cold halo gas here, which also has high

levels of CR pressure extending from the disk, is a result of cold

dense gas being ŕung off the disk by CR pressure. If one decreases

18 In these runs, we remove the 𝑣𝐴 · ∇𝑃𝑐 term from the gas energy equation,

yet keeping collisionless losses 𝑣𝐴 · ∇𝑃𝑐 in the CR energy equation.

the CR pressure at the base, e.g. by varying 𝛼0, as in őg.14, the

amount of cold gas in the halo decreases. Unlike the fountain ŕows

seen in the fountain ŕow case though, the cold gas appears to be mov-

ing outwards in a monotonic wind instead of continuously recycling.

The weak B-őelds in the fountain case allow CRs to be alternatively

trapped and released by transverse/vertical B-őelds, producing out-

ŕow/infall, whereas the B-őelds remain relatively straight when they

are stronger. The slow wind case exhibits less cold gas in the halo.

This is because the streaming-dominated CRs sustain stronger losses

in the sharp density drop at the disk halo interface. The increased

diffusion in the fast wind case allows CRs to leak out of the disk and

act on the less dense gas, which is easier to push.

To further demonstrate the role of CR heating, we perform sim-

ulations starting without it, letting the ŕow settle onto a nonlinear

steady state as shown in Fig.12, then re-activating CR heating. An

example of this is shown in Fig.15 (which corresponds to a continu-

ation of the middle row case in Fig.12). The cold, dense ŕow quickly

transitions into a hot and low density wind (in just ≈ 2𝑡cool for the

case shown in őg.15). For the case shown, the low 𝛽 and high CR

diffusivity generates intense heating at the halo, and results in a quick

transition into a fast wind (i.e. similar to the middle row of őg.7). CR

heating evaporates initially cool gas leaving the disk, transforming

it to a low density wind which is easy to accelerate. From equation

42, we see that for the ŕow to exceed the escape velocity, we require

𝑡heat/𝑡ff < 1.

In Fig.16 we plot the time averaged outŕow velocity, temper-

ature and density at a scale height 𝑥 = 𝐻 against 𝑡heat/𝑡ff (also

taken at a scaleheight). The plots shows a clear transition around

𝑡heat ∼ 0.4𝑡ff when 𝑣𝑥 ∼ 𝑣esc =
√︁

2𝑔𝑥. For 𝑡heat/𝑡ff > 0.4, the den-

sity and temperature of the ŕow is roughly independent of 𝑡heat/𝑡ff ,

while for 𝑡heat/𝑡ff < 0.4, the temperature/density of the ŕow in-

crease/decrease continuously as 𝑡heat/𝑡ff falls. By contrast, the veloc-

ity 𝑣x ∝ (𝑡heat/𝑡ff)−0.7, varies continuously with 𝑡heat/𝑡ff , in rough

accordance with equation 42. Surprisingly, the mass ŕux peaks at

𝑡heat/𝑡ff ∼ 0.4; it falls as heating becomes stronger. The scatter points

are also color-coded by their cold width Δ𝑥cold, which measures the

extent of fountain ŕows, and deőned in őg.18. Fountain ŕows will be

discussed in more detail in the next section, but for now we simply

note that while fountain ŕows are mostly slower, colder, denser, and

have a lower gas enthalpy ŕux, they account for the highest mass ŕux

among our test cases. We shall see that while the cold gas recycles in
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Figure 12. Nonlinear outcomes of TI with CR but without CR heating. Plots are the same as őg.7, except the dashed lines at the bottom are time averaged

projection quantities of runs without CR heating.

fountain ŕows, the warm/hot component moves monotonically out-

ward, and because of its higher density relative to the slow/fast wind

cases, it has a higher mass ŕux.

4.4 Transition to fountain ŕows

In previous sections, we focused a lot on the transition from slow

winds to fast winds, and discussed how it relates to 𝑡heat/𝑡ff . Here, we

also want to understand the criterion for fountain ŕow. We discussed

in previous sections that fountain ŕows are driven by CR pressure as

they are a ŕow feature that do not vanish when CR heating is turned

off. When the presence of CRs in the halo is decreased, either when

the base supply of CRs is lowered or when the diffusivity is reduced,

so too does the extent of fountain ŕows. The strength of the magnetic

őeld affects fountain ŕows too. In the discussion and őgures shown

up to this point, fountain ŕows appear only in high 𝛽 cases. In fact,

as we vary 𝛽0 as shown in őg.17, we could see a clear transition to a

fountain ŕow as it increases.

In őg.18, we show how the extent of the fountain ŕow (as measured

by the width of the cold massΔ𝑥cold (deőned by the extent in 𝑥 where

𝑇 < 0.3) depends on the Alfven Mach number M𝐴 (measured at a

scaleheight). There is a clear transition at M𝐴 ∼ 1, below which

there is generally single-phase hot gas, and above which there is cool

fountain ŕow. This is straightforward to understand: CRs do work

by direct acceleration at a rate 𝑣 · ∇𝑃𝑐 , while the CR heating rate is

𝑣𝐴 · ∇𝑃𝑐 . Thus, cool momentum driven winds arise when M𝐴 > 1,

and hot thermally driven winds arise when M𝐴 < 1.

Consistent with őg.10, the fountain cold gas is associated with CR

pressure dominance, as indicated by the high ratio of CR to gas pres-

sure 𝛼. At low 𝛽, characterized byM𝐴 ≪ 1, the magnetic őeld is stiff
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Figure 13. Same as őg.8 but without CR heating.

Figure 14. Density snapshots at 𝑡 = 30𝑡cool for cases with different base CR pressure (as measured by 𝛼0 = 𝑃𝑐0/𝑃𝑔0, which in our simulation setup, is őxed)

but the same starting 𝛽0 and 𝜂𝐻 . 𝑡cool refers to the initial cooling time at 𝑥 = 𝐻 Less cold, dense gas appears in the halo as the base CR pressure support

decreases. The identiőers for the three cases displayed are (from left to right) ‘a1b5k1d1in.67res1024c200-nocrh’, ‘a.1b5k1d1in.67res1024c200-nocrh’ and

‘a.01b5k1d1in.67res1024c200-nocrh’
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Figure 15. Transition from a cold, dense ŕow to a hot, fast wind case upon activation of CR heating at 𝑡 ≈ 32𝑡cool. 𝑡cool refers to the initial cooling time at

𝑥 = 𝐻. The case shown is a continuation of the middle row of őg.12, with identiőer ‘a1b5k1d1in.67res1024c200-nocrh’.

and CRs are transported monotonically outwards, producing winds.

As 𝛽 increases, and M𝐴 ≳ 1, the magnetic őeld becomes more ŕex-

ible and can wrap around cold gas, trapping CRs. The accumulated

CRs build up in pressure and loft the cold, dense gas up, creating

fountain ŕows (and signiőcantly more turbulence). The trapping of

CRs is a crucial factor in the appearance of fountain ŕows. In our

simulations where the initial őeld is vertical, this realignment only

happens with weak őelds, though realistically it could also happen

when the galactic B-őeld is aligned with the disk, i.e. horizontal.

Although the mean radiative cooling rate in fountain ŕows is sig-

niőcantly larger than the mean CR heating, this does not mean the

ŕow is exclusively a cool isothermal wind. Instead, strong gas den-

sity and CR pressure ŕuctuations ś seeded by the magnetic ‘shrink

wrap’ ś cause the gas to fragment into a multi-phase ŕow. The dense

cold gas, which is gravitationally bound, is conőned to low galactic

heights, circulating in a fountain whose width increases withMA. At

higher galactic heights, the ŕow becomes more single phase, though

some cold gas remains. Unlike the fountain ŕow cool gas, the hotter,

lower density phase moves monotonically outward. Indeed, because

the density of this phase is higher than in the hot wind case, the

outward mass ŕux is larger for fountain ŕows than for hot, thermally

driven winds (őg.16)

To further demonstrate the effect of CR pressure on fountain ŕows,

in őg.19 we re-plot the Δ𝑥cold against M𝐴 graph, including all other

cases listed in table 1 under ğ4 with CR heating. Again, there is no

fountain ŕow forM𝐴 ≪ 1. ForM𝐴 ≳ 1, greater𝛼𝐻 (i.e., greater CR

dominance) leads to greater Δ𝑥cold. Thus, both super-Alfvenic ŕows

MA > 1 and CR dominance 𝛼H > 1 are required for fountain ŕows,

although in practice the two parameters are strongly correlated, since

𝛼H increases sharply at MA > 1.

4.5 Understanding Mass Outŕow Rates; 1D Models

From our discussion above, the nonlinear outcome of TI with CR

heating can be summarized with the aid of őg.20, which shows

the variation of the Alfven Mach number M𝐴 against 𝑡heat/𝑡ff with

Δ𝑥cold/𝐻 (width of the cold gas) color-coding. As shown by the

őgure, cases with 𝑡heat/𝑡ff ≲ 0.4 result in a fast wind, as gas expan-

sion caused by intense CR heating drives a super-escape speed ŕow.

The halo structure is characterized by a hot, rareőed single phase

where cold gas is evaporated. As 𝑡heat/𝑡ff increases beyond ∼ 0.4,

the outcome bifurcates to either a slow wind or a fountain ŕow. If the

magnetic őeld is weak, such that the Alfven Mach number M𝐴 > 1

and the easily bent magnetic őeld ‘shrink-warps’ CRs (such that

𝛼 > 1), multi-phase fountain ŕows where cold, dense gas is ŕung

out of the disk ensue. Otherwise, a slow wind results.

Ideally, a predictive theory should be able to tell us what the

outcome is given input parameters such as 𝑔, 𝜅, 𝐵 and boundary con-

ditions like 𝜌0, 𝛼0, 𝐹𝑐,0. A common approach is to solve the steady-

state 1D ODEs for mass, momentum and energy conservation (i.e.

1D version of eqn.1 to 6 omitting the time derivatives) using appro-

priate boundary conditions at the base, to derive the wind solution,

similar to what has been done in the past (Mao & Ostriker (2018a);

Quataert et al. (2022c,a); Modak et al. (2023), except (i) the isother-

mal assumption has to be dropped, as in Modak et al. (2023), and (ii)

both streaming and diffusion has to be incorporated, rather than con-

sidering only streaming dominated or diffusion dominated solutions,

as in all of the cited works). In principle, one could then estimate

what 𝑡heat/𝑡ff and M𝐴 are, e.g. at a scale height, and determine using

őg.20 and the conditions discussed above what the outcome would

be.

However, in practice, 1D models will likely require substantial

modiőcation; naive application of time-steady 1D ŕuid equations do

not reproduce higher dimensional simulation results. This is obvious

for the fountain ŕow case, where the multi-phase nature of the ŕow,

and the effects of B-őeld draping which traps CRs, cannot be trivially

reproduced in 1D. Surprisingly, it is also true in the slow and fast wind

cases, where the gas appears mostly single phase at a given galactic

height 𝑥, and the B-őelds are relatively straight. If we compare the
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Figure 16. Plot of (from top to bottom) outŕow velocity 𝑣𝑥 , temperature 𝑇 ,

density 𝜌, mass ŕux 𝜌𝑣𝑥 and gas energy ŕux 𝐹gas = 𝜌𝑣3
𝑥/2+𝛾𝑔𝑃𝑔𝑣𝑥/(𝛾𝑔 −

1) at a scaleheight 𝑥 = 𝐻 against 𝑡heat/𝑡ff (also taken at a scaleheight 𝑥 = 𝐻)

for all the cases listed in table 1 under ğ4. Note that 𝑣𝑥 , 𝑇, 𝜌, 𝜌𝑣𝑥 , 𝐹gas and

𝑡heat/𝑡ff are taken from their time averaged projection proőles. Time average

projection refers to averaging from 𝑡 = 31.8𝑡cool to 63.6𝑡cool, when the ŕows

have settled onto their nonlinear steady-states, and then spatial averaging over

𝑦. 𝑡cool refers to the initial cooling time at 𝑥 = 𝐻. The scatter points are

color-coded by their cold width Δ𝑥cold/𝐻, which is a measure of the extend

of fountain ŕows. Δ𝑥cold is deőned in őg.18. The regimes for slow and fast

wind are indicated by arrows in the density plot. The dashed lines in the mass

ŕux plot are for indicating the general trend above and below 𝑡heat/𝑡ff ∼ 0.4.

simulation results to the steady-state ŕuid equations, they do not

match19.

The culprit is the disk-halo interface, where cold gas is accelerated

and heated. In Fig 23, we show that the time-averaged simulated CR

ŕux does not assume its steady state form, as given by equation 8.

There are two reasons for this. Firstly, the interface is multi-phase,

with őngers of cold gas protruding into the hot medium; accurately

capturing the multi-phase character generally requires 2D or 3D sim-

ulations. Secondly, the interface can be unstable to the CR acoustic

instability20 (Begelman & Zweibel 1994; Tsung et al. 2022), particu-

larly for low 𝛽 fast winds. As seen in Fig 21, the density perturbations

due to these effects produce CR staircases due to the bottleneck effect

(Tsung et al. 2022), which result in alternating regions of ŕat and in-

tensely dropping ∇𝑃𝑐 , producing haphazard regions of CR coupling

to gas variables (Tsung et al. 2022; ∇𝑃𝑐 ≠ 0 is required for CR to

couple with the thermal gas). The intermittent coupling causes the

steady-state equation 8, which assumes continuous coupling, to fail.

It may be possible to produce models with effective coupling which

can reproduce our simulation results (as has been done for multi-

phase turbulent mixing layers, Tan et al. 2021; Tan & Oh 2021), but

it is beyond the scope of this paper.

How can we understand the mass ŕux ¤𝑀 of the ŕows, which is key

to describing the strength of an outŕow? We note that total energy

conservation gives:

∇ ·
[
¤𝑀
(
𝜙 + 3

2
𝑐2
𝑠 +

1

2
𝑣2

)
+ 𝐹𝑐

]
= −𝜌2

Λ(𝑇). (44)

In the nonlinear regime, cooling is negligible (őg.8), thus we can

estimate the mass ŕux, assuming ¤𝑀 is constant, as

¤𝑀 ≈ − Δ𝐹𝑐

Δ

(
𝜙 + 3𝑐2

𝑠/2 + 𝑣2/2
) , (45)

whereΔ𝐹𝑐 is the net change in the CR ŕux, andΔ
(
𝜙 + 3𝑐2

𝑠/2 + 𝑣2/2
)

is the total change in the speciőc energy of the gas, including gravi-

tational, thermal, and kinetic energy components (𝜙 is approximated

by 𝑔𝑥 for this study). What eqn.45 says is that since the total energy

ŕux is conserved, any increase in the gas energy ŕux comes entirely

from CR, through the decrease of 𝐹𝑐 . For a őxedΔ𝐹𝑐 , a larger change

in the speciőc energy requires a lower mass ŕux to ensure energy

conservation.

In őg 24, we compare simulation results against equation 45. The

agreement is generally good, though eqn.45 does tend to overestimate
¤𝑀𝐻 slightly as ¤𝑀 generally is not constant near the base. Modak et al.

(2023), who arrive at similar estimates, assume that Δ𝐹𝑐 ∼ 𝐹𝑐0 and

Δ(𝜙 + 𝑣2/2 + 3𝑐2
𝑠/) ∼ 𝑣2

esc,Herquist
, where 𝑣esc,Herquist is the escape

19 To clarify, we are not implying the analytic time-steady solutions found in

the 1D works cited in the previous paragraph match with the time-averaged

proőles found from their simulations. In fact, Quataert et al. (2022d,b); Modak

et al. (2023) have all found signiőcant disagreements between the two, and

they have explored changes to their analytic models (e.g. changing the effective

adiabatic index of the CRs) to accommodate for the mismatch. We do not

develop such models in this paper.
20 The CR acoustic instability, which operates when 𝛽 ≲ 0.5, causes CRs to

amplify sound waves, which grow non-linearly into weak shocks. The growth

time 𝑡grow ∼ 𝜅𝛽/𝑐2
𝑐 , where 𝑐𝑐 = (𝛾𝑐𝑃𝑐/𝜌)1/2 is the CR sound speed, is

short compared to other timescales in our setup. For instance, for the fast

wind case (in code-unit, 𝜌 ∼ 2 × 10−4, 𝑃𝑐 ∼ 0.03, 𝜅 = 2.92, 𝛽 ∼ 0.3),

𝑡grow = 1/𝛾grow ∼ 4 × 10−3 ∼ 3 × 10−3𝑡cool ∼ 10−2𝐿/𝑣𝑥 , where 𝑡cool is the

initial cooling time, 𝐿 is the domain size and 𝑣𝑥 is the outŕow speed of the

fast wind.
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Figure 17. Density slices at 𝑡 = 30𝑡cool for various cases with different 𝛽 (the time average projection of 𝛽 at 𝑥 = 𝐻 is listed on top of each panel), showing the

transition to fountain ŕows as the magnetic őeld weakens. 𝑡cool refers to the initial cooling time at 𝑥 = 𝐻. 𝛼0 = 1 and 𝜂𝐻 = 1 for these cases (𝛼0 refers the

initial ratio of CR to gas pressure at the base, which in our simulations, is kept őxed. 𝜂𝐻 is the initial ratio of CR diffusive to streaming ŕux at 𝑥 = 𝐻). The

initial plasma 𝛽 (at 𝑥 = 0) for these cases are: 5 (top left); 10 (top second left); 30 (top second right); 50 (top right); 100 (bottom left); 300 (bottom second left);

1000 (bottom second right); 1000 (bottom right). The respective case identiőers are: ‘a1b5k1d1in.67res1024c200’ (top left); ‘a1b10k1d1in.67res1024c200’

(top second left); ‘a1b30k1d1in.67res1024c200’ (top second right); ‘a1b50k1d1in.67res1024c200’ (top right); ‘a1b100k1d1in.67res1024c200’ (bottom left);

‘a1b300k1d1in.67res1024c200’ (bottom second left); ‘a1b1000k1d1in.67res1024c200’ (bottom second right); ‘a1b10000k1d1in.67res1024c200’ (bottom right).

Note that due to reduction in gas pressure, the simulations ended up with a reduced 𝛽 compared to the initial value.

speed from the base of a Herquist model gravitational potential, giv-

ing rise to an estimated mass ŕux of ¤𝑀Modak ≈ 𝐹𝑐0/𝑣2
esc,Herquist

.

In our simulation, we can see that this estimate is justiőed for

𝑡heat/𝑡ff > 1, corresponding to slow wind cases, as Δ𝜙 does con-

tribute signiőcantly to the change in the speciőc energy (top panel

of őg.24) and Δ𝐹𝑐 is of order (but not exactly) 𝐹𝑐 (bottom panel of

őg.24). This is indeed the case that Modak et al. (2023) simulated. As

one transitions to the 𝑡heat < 𝑡ff regime, however, this estimation is no

longer valid, as the change in the speciőc energy is now dominated

by the kinetic and thermal energy terms. Accurate estimation of Δ𝑣2

and Δ𝑇 are needed. This requires knowledge of the wind solutions,

which from our discussion above, is left for future work. Observe also

that Δ𝐹𝑐/𝐹𝑐 tends to be larger for the slow wind cases (𝑡heat/𝑡ff > 1).

One reason for this is that the slow wind cases generally have smaller

𝜂 (CR diffusivity). The CRs are therefore more strongly coupled to

the gas, and lose most of their energy. Overall, Δ𝐹𝑐/𝐹𝑐 ∼ 0.1 − 0.6,

i.e. the halo is at best marginally optically thick. Echoing our discus-

sion in ğ4.3, the trends in ¤𝑀𝐻 as shown in őg.16 (and in the middle

panel őg.24) can be explained as follows: For 𝑡heat/𝑡ff > 1, the tight

coupling between CRs and the thermal gas implies greater CR losses

by proportion, with Δ𝐹𝑐 ∼ 0.6𝐹𝑐 . The change in the speciőc energy

is of order Δ𝜙, which in our simulations is őxed. Reducing 𝑡heat/𝑡ff ,

for example by increasing the CR supply at the base, increases Δ𝐹𝑐
and therefore ¤𝑀 . As 𝑡heat/𝑡ff is reduced below 0.4, the opposite trend

occurs. Due to increased 𝜂 (CR diffusivity) for the fast wind cases,

CR losses decrease by proportion (Δ𝐹𝑐/𝐹𝑐 decreases). Furthermore,

the gas speciőc energy is no longer őxed by Δ𝜙, but is dominated by

the (much larger) kinetic and thermal energy, which leads to a drop in
¤𝑀 . Thus, the maximum ¤𝑀 occurs at the transition 𝑡heat/𝑡ff ∼ 0.4−1.

5 DISCUSSION

5.1 Translating from Code to Physical Units

The ŕuid equations we solve are scale-free, and our results are char-

acterized essentially by dimensionless ratios. The only constraint is

that the cooling index we used,−2/3, necessarily requires the initially

condensing gas to be between 105 − 106 K. With this constraint, our

results can be dimensionalized if the reference quantities 𝜌0, 𝑇0, 𝑔0

in physical units are given (they are all set to 1 in our simulations).

If we set the reference gravitational acceleration, temperature and

density to be 𝑔0 = 10−8 cm s−2 (as appropriate for the Milky Way

disk; Benjamin & Danly 1997), 𝑇0 = 106 K and 𝜌0 = 10−26 g cm−1

(𝑛0 ∼ 10−2cm−3) respectively, the other reference quantities would

then scale as: length 𝐻 = 𝑘𝐵𝑇0/𝑚𝑢𝑔0 = 2.7 kpc, pressure 𝑃0 =

𝜌0𝑘𝐵𝑇0/𝑚𝑢 = 8.3×10−13 erg cm−3, velocity 𝑣0 = (𝑘𝐵𝑇0/𝑚𝑢)1/2 =

91 km s−1, and the ŕux 𝐹0 = 𝑃0𝑣0 = 7.5×10−6 erg s−1 cm−2, where

𝑘𝐵 and 𝑚𝑢 are the Boltzmann constant and the atomic mass unit21.

From őg.7 we can see that at 𝑥 = 𝐻 the fast wind can acquire velocity

∼ 600 km s−1 (or generally hundreds of km s−1) whereas the slow

wind is around ∼ 60 km s−1 (or generally tens of km s−1). The halo

21 Note that all of these quantities are equal to 1 in code-units. By expressing

the ideal gas law as 𝑃𝑔 = 𝜌𝑇 in the code, we have absorbed factors of 𝑘𝐵
into 𝑇 and 𝑚𝑢 into 𝜌.
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Figure 18. Bottom panel: With of cold mass Δ𝑥cold against the Alfven Mach

number M𝐴,𝐻 = 𝑣𝐻/𝑣𝐴,𝐻 . 𝑣𝐻 and 𝑣𝐴,𝐻 are taken at a scaleheight from

the time-averaged projection proőles of 𝑣 and 𝑣𝐴. The ratio of CR to gas

pressure at a scaleheight 𝛼𝐻 is color-coded into the scatter points. 𝛼𝐻 is

also taken from the time averaged projection proőle of 𝛼. The top panel is a

diagram showing how the width of the cold mass is deőned: from the time-

averaged projection temperature proőle, measure the width from the base for

which the temperature is ≤ 0.3𝑇0,𝑖𝑛𝑖𝑡 .

density can get to as low as 10−30 g cm−3 (𝑛0 ∼ 10−6cm−3) and

10−28 g cm−3 (𝑛0 ∼ 10−4cm−3) for the fast and slow wind respec-

tively while the temperature remains 𝑇 ∼ 106 K for the slow wind

but can reach up to 𝑇 ∼ 108 K for the fast wind. Scaling the CR

diffusivity by 𝜅ref = 𝐻𝑣0 = 7.6 × 1028 cm2 s−1, the slow, fast wind

and fountain case diffusion coefficients 𝜅 are 2.2 × 1027 cm2 s−1,

2.2 × 1029 cm2 s−1 and 2.9 × 1028 cm2 s−1 respectively.

A key physical quantity for winds is the mass loading factor, which

expresses the mass outŕow rate per unit star formation rate (SFR)

( ¤𝑀wind/ ¤𝑀∗). In physical units, the mass loss rate ¤𝑀wind can be ex-

pressed as 𝜌𝑣𝐴, where 𝐴 is the cross-sectional area the wind passes

through. To get the SFR, we make several simplifying assumptions

to connect the CR ŕux at the base 𝐹𝑐0 to ¤𝑀∗. First, assuming all

of the CRs originate from supernovae (SN), we can express 𝐹𝑐0 ≈
𝜖SN𝐸SN

¤𝑁SN/𝐴, where 𝜖SN ≈ 0.1 is the CR acceleration efficiency

by SN, 𝐸SN ∼ 1051 erg is the energy released from each SN event,
¤𝑁SN is the SN rate. If we make the further assumption that a fraction

𝑓SN of the stars formed becomes SN, i.e. ¤𝑁SN = 𝑓SN ( ¤𝑀∗/𝑀̄), where

𝑀̄ is the mean stellar mass, then ¤𝑀∗ ≈ 𝐹𝑐0𝐴𝑀̄/𝜖SN 𝑓SN𝐸SN and

the mass loading factor ¤𝑀wind/ ¤𝑀∗ = (𝜌𝑣/𝐹𝑐0) (𝜖SN 𝑓SN𝐸SN/𝑀̄).
Again, crudely estimating 𝑓SN and 𝑀̄ using the initial-mass-

function 𝜙 (IMF): 𝑓SN ≈
∫ 20𝑀⊙
8𝑀⊙

𝜙 d𝑀 /
∫ 20𝑀⊙
0.1𝑀⊙

𝜙 d𝑀 and 𝑀̄ ≈
∫ 20𝑀⊙
0.1𝑀⊙

𝑀𝜙 d𝑀 /
∫ 20𝑀⊙
0.1𝑀⊙

𝜙 d𝑀 , we get, if we adopt a power law IMF

with index −2.35 (Salpeter 1955), 𝑓SN ≈ 0.002, 𝑀̄ ≈ 0.33𝑀⊙ . At

the top of őg.25 we plot the mass loading factor against 𝑡heat/𝑡ff

Figure 19. Same as the bottom panel of őg.18, including all cases listed under

ğ4 in table 1 with CR heating. The width of the cold region, which is a marker

of fountain ŕows vs winds, decreases as 𝛼H is smaller. Both MA,H > 1 and

𝛼H > 1 are generally required for fountain ŕows, though the two parameters

are correlated ś 𝛼H typically jumps once 𝑀A > 1.

Figure 20. Alfven Mach number M𝐴,𝐻 against 𝑡heat/𝑡ff with Δ𝑥cold/𝐻
color-coding. M𝐴, 𝑡heat/𝑡ff and Δ𝑥cold/𝐻 are taken at a scaleheight 𝑥 = 𝐻

from the time averaged projection proőles of M𝐴, 𝑡heat/𝑡ff , 𝛼. Time average

projection refers to averaging from 𝑡 = 31.8𝑡cool to 63.6𝑡cool, when the ŕows

have settled onto their nonlinear steady-states, and then spatial averaging over

𝑦. 𝑡cool refers to the initial cooling time at 𝑥 = 𝐻. The region of parameter

space typical for each nonlinear TI outcome is indicated by arrows.

using these conversion and scaling factors22. As discussed in ğ4.3,

despite the high outŕow velocity of fast winds (𝑡heat/𝑡ff ≲ 0.4), they

are inefficient in carrying mass out. Slow winds (𝑡heat/𝑡ff ≳ 0.4) ap-

22 It has been know that the mass loading factor is dependent on the height

at which the measurement is taken. A reason for this is that wind typically

have an open geometry with cross section that varies with height. There could

also be mass injection. These, among other factors, causes the mass ŕux to

be height dependent as ∇ · (𝜌𝑣𝐴) = 𝑄inj, and therefore so does the mass

loading. However, in our planar simulations without mass injection, 𝜌𝑣𝐴 is,

in the time-averaged projection sense, constant with height once you are out

of the disk. Thus there is no height dependence to our mass loading. That

said, in this study, we are interested in how CR heating could launch a wind in

an initially momentum and thermal-balanced system. Our focus is therefore

more on how the mass-loading factor depends on CR heating than on height.

Even so, given that the base of winds are typically planar for a couple of kpc

before they open up, we think the mass ŕux we calculate in our work may be

meaningful up to a couple kpc above the disk.
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Figure 21. Zoom-in on a part of the interface region of the fast wind case,

showing the multiphase structure of the interface region. The color scale

shows the temperature, with blue representing cold gas and red representing

hot gas.

Figure 22. Top: Plot of 𝑃𝑐 at 𝑡 = 30𝑡cool for the slow wind case with an inset

box indicating the 𝑃𝑐 proőle through the dotted line. CR staircases can be

clearly seen.

pear more efficient, and the mass loading factor seems to be roughly

independent of 𝑡heat/𝑡ff . The result for slow winds is in agreement

with the literature that shows that the mass loading factor depends

generally on the escape velocity, which is held őxed in our study. We

note that one should take the numerical values for the mass loading

in őg.25 with a grain of salt, as it involved some simplifying assump-

tions and depends quite heavily on the reference values we used to

map our code-units to physical units (e.g. if the reference temperature

𝑇0 is decreased by a factor of 10 to 105 K, as one might imagine for

less massive galaxies with lower virial temperature, the mass loading

would be boosted by a factor of 10). Also, the mass loading calcu-

lated here takes into account only the effect of CRs; the total mass

loading is likely a culmination of many factors (direct mechanical in-

jection from SNe, radiation, and from multiphase clouds). With just

CRs alone, the mass loading factor of fast winds is low compared

to that observed (e.g. ¤𝑀wind/ ¤𝑀∗ ∼ 0.3 for 𝑀∗ ≈ 1011𝑀⊙ galaxies

Figure 23. Comparison of the time averaged projection proőle of 𝐹𝑐 and the

steady state form of 𝐹𝑐 (eqn.8), showing there is a mismatch between the two.

Time averaged projection refers to averaging from 𝑡 = 31.8𝑡cool to 63.6𝑡cool,

when the ŕows have settled into their nonlinear steady-state, and then spatial

averaging over 𝑦. 𝑡cool refers to the initial cooling time at 𝑥 = 𝐻.

and ¤𝑀wind/ ¤𝑀∗ ∼ 3 for 𝑀∗ ≈ 109𝑀⊙ galaxies, see Chisholm et al.

(2017)), whereas the slow wind regime mass loading appears higher

and more consistent. In any case, the trend shows that fast winds have

appreciably lower mass loading than the slow wind.

Similarly, the energy loading factor ¤𝐸wind/ ¤𝐸∗, compares thermal

and kinetic power in the wind to the rate of energy input from stellar

feedback. Here, we only consider CR feedback, and write ¤𝐸wind =

𝐹wind𝐴 and 𝐹c0 = 𝜖SN
¤𝐸∗/𝐴 to obtain ¤𝐸gas/ ¤𝐸∗ = 𝜖SN𝐹wind/𝐹𝑐0.

We plot the energy loading factor ¤𝐸gas/ ¤𝐸∗ = 𝜖SN𝐹wind/𝐹𝑐0 at the

bottom panel of őg.25 (the numerator 𝐹wind, which varies in the

ŕow, is evaluated at 𝑥 = 𝐻). We again caution the reader to take

the numerical values with a grain of salt, but the trend is clear: the

energy loading increases gently from slow to fast winds, while the

fountain ŕow cases (circled in the plot) show distinctively low energy

loading. This echos existing studies showing that hot, fast outŕows

are generally more efficient in energy loading but less so in mass

loading, while the opposite is true for colder ŕows (Li & Bryan

2020; Fielding & Bryan 2022). Given the drastic change in ŕuid

properties of the fast wind cases from the slow wind case, it might
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Figure 24. Top: Breaking up of the different terms in the RHS of eqn.45. Blue

- Δ𝑣2/2; green - Δ𝜙, where 𝜙 is estimated as 𝑔𝑥; red - Δ𝛾𝑔𝑃𝑔/(𝛾𝑔 − 1)𝜌;

magenta -Δ𝐹𝑐 . Note thatΔ𝐹𝑐 , which is the numerator of eqn.45, has different

units form the rest. Δ𝑄 of a generic quantity 𝑄 is estimated roughly from

the difference 𝑄 (𝑥 = 𝑎) − 𝑄 (𝑥 = 2𝐻 ) whereas 𝑡heat/𝑡ff is measured at a

scaleheight 𝑥 = 𝐻 of the time averaged projection proőles. Time average

projection refers to averaging from 𝑡 = 31.8𝑡cool to 63.6𝑡cool, when the ŕows

have settled onto their nonlinear steady-states, and then spatial averaging

over 𝑦. 𝑡cool refers to the initial cooling time at 𝑥 = 𝐻. Middle: Mass ŕux
¤𝑀𝐻 = 𝜌𝐻𝑣𝑥,𝐻 measured at a scaleheight 𝑥 = 𝐻 against 𝑡heat/𝑡ff for all

the cases listed in table 1 under ğ4. Scatter points marked with ‘X’ and

color-coded by Δ𝑥cold/𝐻 are the true mass ŕux taken from the time averaged

projection proőles while the green triangles are estimates of ¤𝑀𝐻 using eqn.45

and the Δ estimates in the top panel. Bottom: Fractional change in the CR

ŕux, Δ𝐹𝑐/𝐹𝑐 , against 𝑡heat/𝑡ff with Δ𝑥cold/𝐻 color-coding. Note that we

calculate the Δ’s by taking the difference between 𝑥 = 𝑎 = 0.1𝐻 and 𝑥 = 2𝐻

(the outer boundary) rather than at 𝑥 = 0 because CR heating is not added to

the thermal gas in the buffer region 𝑥 = −𝑎 to 𝑎 (see ğ2.2)

seem surprising that the rise in energy loading is so gentle across the

two regimes. The energy loading factor is given by

¤𝐸wind

¤𝐸∗
= 𝜖SN

𝐹gas

𝐹c0
≈ 𝜖SN

Δ
(
𝐹gas + 𝐹grav

)

𝐹c0

Δ𝐹gas

Δ
(
𝐹gas + 𝐹grav

)

≈ 𝜖SN
Δ𝐹𝑐

𝐹c0

Δ

(
𝑣2/2 + 𝑐2

𝑠/(𝛾𝑔 − 1)
)

Δ

(
𝜙 + 𝑣2/2 + 𝑐2

𝑠/(𝛾𝑔 − 1)
) , (46)

where we have approximated 𝐹gas by Δ𝐹gas in the őrst step as the

gas energy ŕux near the base is negligible, and used the fact that

Δ(𝐹gas + 𝐹cr + 𝐹grav) = 0 (for negligible radiative cooling) in the

second step, where Δ𝐹grav is the work done against gravity. In the

slow wind regime, the change in gravitational potential dominates

(őg.24), so the last term in eqn.46 can be approximated by Δ(𝑣2/2 +
𝑐2
𝑠/(𝛾𝑔 − 1))/Δ𝜙; it decreases as 𝑡heat/𝑡ff increases. However, this

term approaches 1 in the fast wind regime, when the ŕow is dominated

by kinetic and thermal energy. On the other hand, faster winds are

usually associated with higher CR diffusivity in our study (since we

őx the base CR pressure, greater CR heating in the halo is brought

on by either increasing the magnetic őeld or allowing CRs to diffuse

faster out of the disk by increasing 𝜅), thus the coupling between the

thermal gas and CR is generally weaker for fast wind in our study,

leading to a smaller Δ𝐹𝑐/𝐹𝑐0. The overall increase in the energy

loading factor across the slow wind regime to the fast wind regime

is thus gentle. We note that 𝑡heat/𝑡ff can be changed in a number of

ways, so the steepness of this scaling may change in other scenarios

with different boundary conditions (for instance, őxing 𝐹c rather than

𝑃c in the central disk).

One of the most interesting outcomes of this study is the presence

of fountain ŕows when M𝐴 > 1, characterized by circulation of

cold gas. The extent of the cold gas, from őg.18, can reach up to

𝐻 (or more). From the right-most panel of őg.11, we can see that

cold gas with 𝑇 < 0.1𝑇0,init is distributed roughly equally between

outŕows and inŕows, indicative of a circulation, with velocity of

order±1 (in code-units). Using the scaling factors as discussed above,

𝐻 ∼ 2.7 kpc and the cold gas circulation speed ∼ 90 km s−1. These

values are consistent with the observed intermediate-velocity-clouds

(IVC, Marasco et al. 2022), which appear also to be circulating above

the galactic disk at a height of ∼ kpc with velocity ≲ 90 km s−1.

5.2 Comparisons against larger scale simulations

An obvious question is whether any of the phenomenon we discuss

can be seen in existing CR wind simulations, particularly those which

are larger scale and less idealized. We have already discussed how

the slow heated wind has been studied in 1D by Modak et al. (2023).

We mention two potential cases where previous simulations are in

the right parameter regime for CR fountain ŕows and heated winds.

Of course, a positive identiőcation requires further detailed analysis.

We merely show that existing simulation runs often lie in the param-

eter regimes we describe, and show similar behavior. They can be

reanalysed with these considerations in mind.

A number of FIRE simulations, with CR physics incorporated in

a two-moment formalism (Chan et al. 2019b; Ji et al. 2020; Hop-

kins et al. 2021b), are potentially in the fountain ŕow regime. Their

simulated CGM has high plasma 𝛽 ≫ 1 and therefore has a low CR

heating rate and high Alfven Mach number, as required for fountain

ŕows. Indeed, cold gas which circulates in a fountain is seen (Chan

et al. 2022; Ji et al. 2021). Their disk-halo interface has signiőcant gas

motions near the disk, and is more hydrostatic further out (with grav-

ity balanced primarily by CR pressure), as in our fountain ŕow picture

(see őg.8). They found that CR feedback causes a greater uplift of

gas, with gas of all phases (both cold and hot) more abundant above

the disk. The hot gas moves further out, while the cold, 𝑇 ∼ 104 K

gas is generally more conőned. Our simulation set-ups are of course

very different, but this broad-brush agreement is encouraging.

MNRAS 000, 1ś32 (2015)



26 Tsung et al.

Figure 25. Top: Mass loading factor ¤𝑀wind/ ¤𝑀∗ against 𝑡heat/𝑡ff with

Δ𝑥cold/𝐻 color-coding. Bottom: Energy loading factor ¤𝐸wind/ ¤𝐸∗ against

𝑡heat/𝑡ff with Δ𝑥cold/𝐻 color-coding. In both plots, the dotted lines are there

to highlight the general trend. In the bottom plot (energy loading), fountain

ŕow cases are circled and the trend for energy loading to increase with stronger

heating (indicated by the dashed line) applies only for the wind cases.

AREP0 simulations also include CR physics in a two-moment

formalism (Thomas et al. 2022). In contrast to the FIRE simulations,

their CR-driven wind is strongly magnetized (𝛽 < 1), with magnetic

őelds relatively collimated and vertical in the inner parts of the wind,

and low in Alfven Mach number. In the innermost CGM, B-őeld lines

are vertical, as in our setup. The authors describe a wind launched

by CR pressure at the disk-halo interface. However, their wind also

exhibits properties consistent with a CR-heated wind. From their Fig

3, we can see that 𝑡heat/𝑡cool ≪ 1 at the wind launch region at 𝑧 ≳ 0.6

kpc, where (from the slice plots in their Fig 1) it is heated to high

temperatures and low densities. Thus, a phase transition mediated

by CR heating, similar to what we see, seems plausible. The heating

of the disk gas is crucial: it reduces its density so that ∇𝑃𝑐 ≫ 𝜌𝑔;

without CR heating, the wind is much weaker (ğ4.3). The inner

disk wind (𝑅disk < 1 kpc) shows wind velocities comparable to the

escape velocity 𝑣 ∼ 200 km s−1, and indeed crude estimates23 from

their őgures show that 𝑡heat/𝑡ff ∼ 0.2. This is consistent with our

‘fast wind regime’ where 𝑣 ∼ 𝑣esc for 𝑡heat/𝑡ff ∼ 0.2 in Fig 16.

Similar to our fast wind simulations (Fig 8), in their simulations CR

pressure gradients dominate in the hot wind above the disk. Regions

of weak coupling between the CRs and the thermal gas (which the

authors called ‘dark Alfven regions’) are found within the wind, and

23 We estimate 𝑡heat ∼ 𝑃𝑔/Γ ∼ 0.5 Myr, from 𝑃𝑔 ∼ 10−2 eV cm−3, Γ ∼
10−27 erg s−1 cm−3, while 𝑡ff ∼ 𝑟/𝑣esc ∼ 3 Myr.

the transport speed of the CRs is frequently found to lag the Alfven

speed. This echos our claim that the CR ŕux is, for the most part, not

given by the steady-state form (eqn.8, and see őg.23). The authors

attribute the ‘dark Alfven regions’ to őeld lines perpendicular to the

CR gradient, so that there is no streaming instability. We note that

the low plasma 𝛽 of the gas implies that the CR acoustic instability

(Tsung et al. 2022) can potentially also play a role, particularly further

out in the CGM. This can also cause regions of ŕat CR pressure

where the CR streaming instability does not develop, and subsequent

onset of the bottleneck effect causes a slowing of the CRs transport

speed (Tsung et al. 2022), which is limited by the Alfven speed at

bottlenecks.

6 CONCLUSIONS

In this study we explored the effect of CR heating on TI, both in

the linear and nonlinear phase, using a gravitationally stratiőed setup

with vertical magnetic őelds and streaming CRs. In the linear phase,

we found that in accordance to linear theory (Kempski & Quataert

2020), CR heating can cause gas entropy modes to propagate at

some velocity proportional the Alfven velocity up the 𝑃𝑐 gradient.

The propagation of the modes is a result of differential CR heating

on different parts of the gas perturbation, resulting in a net phase

velocity. We veriőed with simulations that the modes propagate at the

expected velocity (see ğ3.2 and őg.2). This propagation is subdued

when we increase CR diffusivity (őg.3), as CRs diffuse out of the

perturbation before they have time to heat it.

Mode propagation, under the action of CR heating, in a streaming

dominated ŕow could in principle suppress TI. The idea is that if the

time it takes for the modes to propagate across a cooling radius 𝑡cross

is less than the time it takes the modes to grow, which scales as 𝑡cool,

the perturbations would not reach nonlinear amplitudes and become

cold clouds. However, since both the crossing time 𝑡cross ∼ 𝐿/𝑣A

and the heating time 𝑡heat ∼ 𝐿/𝑣A are closely related, there is only

a small range of 𝜃 = 𝑡cool/𝑡cross near unity where suppression by

propagation effects operates, before the gas becomes over-heated.

Our most interesting results do not relate to the linear thermal insta-

bility, but rather the non-linear outcome of our simulations. There are

two important things to note. Firstly, thermal instability causes sub-

stantial mass dropout and evolution in CGM properties. A cold disk

containing most of the mass forms in the mid-plane, while the density

and pressure of extraplanar gas is signiőcantly reduced. Thus, initial

values of 𝛼 = 𝑃𝑐/𝑃𝑔, 𝛽 = 𝑃𝑔/𝑃𝐵 evolve substantially during the

non-linear stage24. The strong phase transition from cool disk gas to

hot atmosphere has important consequences for CR wind properties,

different from calculations which assume single-phase isothermal

winds. Secondly, the dual role of CRs in pushing (∇𝑃𝑐) and heating

(𝑣𝐴 · ∇𝑃𝑐) the gas implies that global thermal and hydrostatic equi-

librium is not possible without őne-tuning. Indeed, the gas generally

loses force and/or thermal balance at the disk halo interface, leading

to the development of winds. The sharp reduction in gas density at

the disk halo interface 𝜌h ∼ 𝜌𝑐 (𝑇𝑐/𝑇ℎ) reduces radiative cooling

(∝ 𝜌2) and gravitational forces (−𝜌𝑔). The resulting loss of dynami-

cal and thermal equilibrium can cause gas to accelerate outwards and

heat up. CR winds and fountain ŕows are most efficient if diffusion

is sufficiently strong such that transport is diffusion dominated until

the ŕow reaches low densities (i.e., in the halo). Otherwise, since

24 For instance, in our ‘fountain ŕow’ simulations, 𝛽𝐻,𝑖 = 300 becomes

𝛽H,f ≈ 1, due to the reduction in gas pressure. See Fig 17 for other examples.
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𝑃c ∝ 𝜌2/3 for streaming dominated ŕows (assuming 𝐵 ≈const), the

sharp density gradient means that CRs suffer strong losses at high

densities, when radiative cooling is still efficient. Since 𝑣A increases

strongly as the atmosphere thins due to mass dropout, in our simu-

lations ŕows are typically streaming dominated in the halo, even if

they are diffusion dominated near the disk.

We őnd two general classes of solutions, depending on whether

the momentum or heat imparted by CRs dominates. CRs do work

by direct acceleration at a rate 𝑣 · ∇𝑃𝑐 , while the CR heating rate is

𝑣𝐴 · ∇𝑃𝑐 . Thus, momentum driven winds arise when 𝑀𝐴 > 1, and

thermally driven winds arise when 𝑀𝐴 < 1. This typically means

that momentum or energy driven winds arise for high and low 𝛽

atmospheres respectively.

• Momentum-Driven Winds; Fountain Flows (𝑀𝐴 > 1; high 𝛽;

typically 𝛼 = 𝑃𝑐/𝑃𝑔 > 1). Cool disk gas is accelerated directly via

CR forces ś indeed, winds with almost unchanged characteristics

are launched if CR heating is turned off. Since the ŕow is super-

Alfvenic, magnetic őelds are easily warped; as they wrap around

rising gas they can trap CRs, with a consequent strong jump in CR

dominance 𝛼 = 𝑃𝑐/𝑃𝑔 once 𝑀A > 1. Density ŕuctuations result in a

multi-phase fountain ŕow at low galactic heights, with the cold dense

gas being lifted off the disk and falling back, while hotter gas ŕows

outwards. At larger distances, when CR heating exceeds radiative

cooling, the gas becomes hotter and mostly single phase. The extent

of the fountain region increases with MA and CR dominance 𝛼H.

• Energy-Driven Winds (𝑀𝐴 < 1; low 𝛽; typically 𝛼 = 𝑃𝑐/𝑃𝑔 <
1). Cool disk gas is strongly heated and evaporated at the disk halo

interface, resulting in a hot wind powered by CR heating. In steady

state, the divergence of the enthalpy ŕux of the hot gas balances CR

heating. The sharp transition to a hot phase leads to a strong drop

in gas density at the disk halo interface, with 𝜌h ∼ 𝜌c (𝑇c/𝑇h). This

low wind gas density means that the mass ŕux of CR heated winds is

relatively low; they are an inefficient form of feedback compared to

cool, denser momentum-driven winds, even though a large fraction

of the latter circulates in a fountain ŕow. The velocity of the wind

is 𝑣 ∼ 0.4𝑣esc (𝑡heat/𝑡ff)−1, i.e. the ŕow exceeds the escape velocity

once 𝑡heat ∼ 𝑡ff . The ŕow becomes even hotter and lower density for

these fast winds, leading to very low mass ŕuxes. The strong magnetic

tension in these sub-Alfvenic ŕows means there is little warping of

őeld lines, and the single-phase wind ŕows monotonically outward.

There are numerous potential avenues for future work. A key is-

sue is geometry. We have simulated a plane parallel Cartesian setup.

This is appropriate close to the disk; thus, our simulation domain of

∼ 2𝐻 is relatively small. As the ŕow opens up, a spherical geometry

becomes appropriate further away. The ŕow properties become quite

different, as do the density, velocity, B-őeld and hence Alfven speed

proőles. Thus, our simulations do not address the asymptotic proper-

ties of the ŕow far out in the CGM; also, Parker-type sonic points do

not develop in plane-parallel ŕows. Our work is complementary to 1D

models which use spherical geometry (Ipavich 1975; Mao & Ostriker

2018b; Quataert et al. 2021a,b; Modak et al. 2023), but make other

idealizations which we relax. Other possible extensions include: (i)

using more physically motivated diffusion coefficients which depend

on plasma conditions ś e.g., from quasi-linear self-conőnement the-

ory (Wiener et al. 2013a), or using a model for őeld-line wandering

(Sampson et al. 2022); (ii) incorporating other sources of thermal

and momentum driving besides CRs, and understanding their mu-

tual interaction; (iii) considering more complex B-őeld geometry

(e.g., tangled őelds due to turbulence). One interesting avenue for

future work include formulating an ‘effective’ 1D model which takes

the effect of multi-phase structure and CR bottlenecks into account,

to match our time-averaged multi-dimensional ŕows (similar to ef-

fective 1D models for turbulent mixing layers; Tan et al. 2021; Tan

& Oh 2021; Chen et al. 2022). Another would be to make predic-

tions for the nature of CR outŕows for different galaxies lying on

the SFR-𝑀∗ relation (which, in our language, correspond to different

values of 𝐹c0 and gravity 𝑔 respectively, leading to different values of

𝑡heat/𝑡ff). It would also be interesting to make observational predic-

tions (e.g., in gamma-ray emission) for CR dominated fountain ŕows.

Of course, the biggest unknowns are still the strength of magnetic

őelds in the CGM, and the nature of CR transport, particularly the

relative importance of streaming and diffusive transport.
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APPENDIX A: 1D LINEARIZED EQUATIONS IN

UNIFORM MEDIUM

Kempski & Quataert (2020) showed that 1D calculations can approx-

imately capture the behavior of CR-modiőed thermal modes in the

linear regime as perturbations perpendicular to the magnetic őeld is

usually small. In the 1D, fully-coupled limit, eqn.1-6 reduces to

𝜕𝜌

𝜕𝑡
+ 𝑣 𝜕𝜌

𝜕𝑥
+ 𝜌 𝜕𝑣

𝜕𝑥
= 0, (A1)

𝜕𝑣

𝜕𝑡
+ 𝑣 𝜕𝑣

𝜕𝑥
= − 1

𝜌

𝜕𝑃𝑔

𝜕𝑥
− 1

𝜌

𝜕𝑃𝑐

𝜕𝑥
− 𝑔, (A2)

𝜕𝑃𝑔

𝜕𝑡
+ 𝑣

𝜕𝑃𝑔

𝜕𝑥
+ 𝛾𝑔𝑃𝑔

𝜕𝑣

𝜕𝑥
= −

(
𝛾𝑔 − 1

)
𝑣𝑠
𝜕𝑃𝑐

𝜕𝑥
+
(
𝛾𝑔 − 1

)
L, (A3)

𝜕𝑃𝑐

𝜕𝑡
(𝛾𝑐 − 1) 𝜕𝐹𝑐

𝜕𝑥
= (𝛾𝑐 − 1) (𝑣 + 𝑣𝑠)

𝜕𝑃𝑐

𝜕𝑥
+ (𝛾𝑐 − 1)Q, (A4)

𝐹𝑐 =
𝛾𝑐

𝛾𝑐 − 1
𝑃𝑐 (𝑣 + 𝑣𝑠) −

𝜅∥
𝛾𝑐 − 1

𝜕𝑃𝑐

𝜕𝑥
, (A5)

where we have used the fact that the magnetic őeld B is constant

in 1D. The streaming velocity 𝑣𝑠 = −𝑣𝐴sgn( 𝜕𝑃𝑐/𝜕𝑥 ). Ignoring

contributions from CR sources Q and assuming the background is

nearly uniform such that we can ignore derivatives of the background

but CRs remain coupled to gas, the linearized equations are

− 𝜔

𝜔𝑠

𝛿𝜌

𝜌
+ 𝛿𝑣
𝑐𝑠

= 0, (A6)

− 𝜔
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𝑐𝑠
+ 1
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𝑃𝑔
= 0, (A7)
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𝜔𝑠
Λ𝑇 − 𝜔

𝜔𝑠

]
𝛿𝑃𝑔
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(
𝛾𝑔 − 1
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(2 − Λ𝑇 )
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(
𝛾𝑔 − 1
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= 0, (A8)

𝛾𝑐𝛼
𝛿𝑣

𝑐𝑠
− 𝛾𝑐𝛼𝜔𝐴

2𝜔𝑠

𝛿𝜌

𝜌
+
(
𝜔𝐴
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− 𝜔

𝜔𝑠

)
𝛿𝑃𝑐

𝑃𝑔
= 0, (A9)

where 𝑐𝑠 =
√︁
𝛾𝑔𝑃𝑔/𝜌 is the adiabatic sound speed, 𝜔𝑠 = 𝑘𝑐𝑠 ,
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𝜔𝐴 = 𝑘𝑣𝐴, 𝜔𝑑 = 𝑘2𝜅∥ , 𝜔𝑐 = 𝜌2Λ/𝑃𝑔, 𝛼 = 𝑃𝑐/𝑃𝑔 and we have

assumed the background ŕow is static. Substituting 𝛿𝑣 in eqn.A6 into

eqn.A7-A9, the equations simplify to

𝛿𝑃𝑔

𝑃𝑔
+ 𝛿𝑃𝑐
𝑃𝑐

= 𝛾𝑔

(
𝜔

𝜔𝑠

)2
𝛿𝜌

𝜌
, (A10)

𝑖𝜔

(
𝛾𝑔
𝛿𝜌

𝜌
−
𝛿𝑃𝑔

𝑃𝑔

)
= −

(
𝛾𝑔 − 1

)
𝜔𝑐

[
(2 − Λ𝑇 )

𝛿𝜌

𝜌
+ Λ𝑇

𝛿𝑃𝑔

𝑃𝑔

]

−𝑖
(
𝛾𝑔 − 1

)
𝜔𝐴

𝛿𝑃𝑐

𝑃𝑔
, (A11)

𝛿𝑃𝑐

𝑃𝑔
(𝜔 − 𝜔𝐴 + 𝑖𝜔𝑑) = 𝛾𝑐𝛼

(
𝜔 − 𝜔𝐴

2

) 𝛿𝜌
𝜌
. (A12)

For thermally unstable modes, we expect 𝜔 ∼ 𝜔𝑐 . If 𝜔𝑐 ≫ 𝜔𝑠 , i.e.

the cooling time is shorter than the sound crossing time, 𝛿𝜌/𝜌 ≪
𝛿𝑃𝑔/𝑃𝑔 from eqn.A10, i.e. the mode is isochoric. If 𝜔𝑐 ≪ 𝜔𝑠 , the

otherwise is true and the mode is pressure balanced.

The ratio of perturbed CR heating to cooling is

𝛿(CRHeating)
𝛿(Cooling) =

𝑖𝜔𝐴

(
𝛿𝑃𝑐/𝑃𝑔

)

𝜔𝑐

[
(2 − Λ𝑇 ) (𝛿𝜌/𝜌) + Λ𝑇

(
𝛿𝑃𝑔/𝑃𝑔

) ] . (A13)

Eqn.A13 reduces to eqn.28 in the isochoric and isobaric limits. The

ratio (𝛿𝑃𝑐/𝑃𝑔)/(𝛿𝜌/𝜌) is given directly by eqn.A12

(
𝛿𝑃𝑐/𝑃𝑔

)

(𝛿𝜌/𝜌) = 𝛾𝑐𝛼
𝜔 − 𝜔𝐴/2

𝜔 − 𝜔𝐴 + 𝑖𝜔𝑑
. (A14)

For 𝜔𝑐 ≪ 𝜔𝐴 (small scale modes) and 𝜔𝑑 ≫ 𝜔𝐴, the RHS is

purely imaginary, i.e. 𝛿𝑃𝑐 is 𝜋/2 out of phase with 𝛿𝜌. This phase

shift allows CR heating to counteract cooling.

APPENDIX B: HYDROSTATIC BOUNDARY CONDITIONS

FOR EULERIAN GRID CODES

We employ hydrostatic boundary conditions in the 𝑥-direction, which

requires eqn.23 to be satisőed at the boundaries. In a grid code, cell-

center values are indicated with subscripts 𝑖, 𝑗 , 𝑘 , all of them integers,

representing cells in the 𝑥, 𝑦, 𝑧-directions respectively. Below we will

shorten the notation to 𝑖 to reduce clutter, the relations derived in the

following are implied for all 𝑗 , 𝑘 . We shall use 𝑖𝑠 and 𝑖𝑒 to denote

the őrst and last active zones in the 𝑥-directions. The cell-center

ghost zones are expressed by 𝑖𝑠 − 𝑛 and 𝑖𝑒 + 𝑛, where 𝑛 = 1, . . . , 𝑛𝑔,

𝑛𝑔 is the number of ghost zones (typically 2 for piecewise linear

method (PLM)). We want eqn.23 to hold at the boundary cell face,

for example at the outer-𝑥 boundary

d𝑃𝑔

d𝑥

����
𝑖𝑒+𝑛−1/2

+ d𝑃𝑐

d𝑥

����
𝑖𝑒+𝑛−1/2

= − 𝜌

����
𝑖𝑒+𝑛−1/2

𝑔

����
𝑖𝑒+𝑛−1/2

, (B1)

where the fractional index indicates cell faces. The cell-faced values

are approximated linearly as

𝑃𝑔,𝑖𝑒+𝑛 − 𝑃𝑔,𝑖𝑒+𝑛−1

Δ𝑥
+
𝑃𝑐,𝑖𝑒+𝑛 − 𝑃𝑐,𝑖𝑒+𝑛−1

Δ𝑥

= −1

2
(𝜌𝑖𝑒+𝑛 + 𝜌𝑖𝑒+𝑛−1)𝑔𝑖𝑒+𝑛−1/2, (B2)

we do not need to approximate 𝑔 because it is a given function. Using

the ideal gas law 𝑃𝑔 = 𝜌𝑇 and since our initial proőles are isothermal

and 𝑃𝑐 ∝ 𝜌𝛾𝑐/2 for streaming dominated ŕows,

𝑟 − 1 + 𝛼
(
𝑟𝛾𝑐/2 − 1

)
= −𝜉 (𝑟 + 1), (B3)

where 𝛼, 𝜉, 𝑟 are deőned by

𝛼 =
𝑃𝑐,𝑖𝑒+𝑛−1

𝑃𝑔,𝑖𝑒+𝑛−1
, 𝜉 =

𝜌𝑖𝑒+𝑛−1𝑔𝑖𝑒+𝑛−1/2Δ𝑥

2𝑃𝑔,𝑖𝑒+𝑛−1
, 𝑟 =

𝜌𝑖𝑒+𝑛
𝜌𝑖𝑒+𝑛−1

.

(B4)

Rearranging,

𝛼𝑟𝛾𝑐/2 + (1 + 𝜉)𝑟 − (1 + 𝛼 − 𝜉) = 0. (B5)

Solving for 𝑟 (e.g. using a non-linear root őnder) gives us the value

for 𝜌𝑖𝑒+𝑛 in terms of quantities in the 𝑖𝑒+𝑛−1 cell-centers, which we

can use to determine 𝑃𝑔,𝑖𝑒+𝑛 and 𝑃𝑐,𝑖𝑒+𝑛. 𝐹𝑐,𝑖𝑒+𝑛 can be obtained

from the CR equation by imposing time steadiness, i.e.

d𝐹𝑐

d𝑥

����
bond

= 𝑣𝐴

����
bond

d𝑃𝑐

d𝑥

����
bond

(B6)

Performing a linear approximation,

𝐹𝑐,𝑖𝑒+𝑛 = 𝐹𝑐,𝑖𝑒+𝑛−1

+ 1

2

(
𝑣𝐴,𝑖𝑒+𝑛 + 𝑣𝐴,𝑖𝑒+𝑛−1

) (
𝑃𝑐,𝑖𝑒+𝑛 − 𝑃𝑐,𝑖𝑒+𝑛−1

)
. (B7)

We copy the velocity of the last active zone to the ghost zones if the

ŕow is outbound and set them to zero otherwise.

The same can be performed for the inner-𝑥 boundary, an equation

similar to B5 arises,

𝛼𝑟𝛾𝑐/2 + (1 − 𝜉)𝑟 − (1 + 𝛼 + 𝜉) = 0, (B8)

where now 𝛼, 𝜉, 𝑟 are deőned by

𝛼 =
𝑃𝑐,𝑖𝑠−𝑛+1

𝑃𝑔,𝑖𝑠−𝑛+1
, 𝜉 =

𝜌𝑖𝑠−𝑛+1𝑔𝑖𝑠−𝑛+1/2Δ𝑥

2𝑃𝑔,𝑖𝑠−𝑛+1
, 𝑟 =

𝜌𝑖𝑠−𝑛
𝜌𝑖𝑠−𝑛+1

. (B9)

𝐹𝑐,𝑖𝑠−𝑛 is given by

𝐹𝑐,𝑖𝑠−𝑛 = 𝐹𝑐,𝑖𝑠−𝑛+1

+ 1

2

(
𝑣𝐴,𝑖𝑠−𝑛 + 𝑣𝐴,𝑖𝑠−𝑛+1

) (
𝑃𝑐,𝑖𝑠−𝑛 − 𝑃𝑐,𝑖𝑠−𝑛+1

)
. (B10)

The magnetic őeld is set to the value of the nearest 𝑥-layer. Note that

we assume an isothermal background. If this assumption is relaxed,

the energy eqn.3 will have to be invoked.

In ğ4 we see that the nonlinear evolution of thermal instability with

CR heating can lead to winds, bringing the system out of hydrostatic

equilibrium. Using the fast wind case as an example, in őg.B1 we

show that there is no signiőcant difference when one uses an outŕow

type condition along the 𝑥-boundaries. We copy the density and

gas pressure of the last active zone to the ghost zones and adopted

a diode condition for the 𝑥-velocity (i.e. the 𝑥-velocity of the last

active zone is copied to the ghost zone if the gas is outŕowing, and

zero otherwise). The 𝑦-velocity at the last active zone is copied to

the ghost zones. As for the CR pressure and 𝑥-ŕux, we set the ghost

zone values to be 0.99 times the value at the previous cell. We note

that simply copying the CR pressure and 𝑥-ŕux at the last active zone

to the ghost zones would lead to unphysical conőnement of CRs as

there would be no CR gradient to transport the CRs out. The CR

𝑦-ŕux at the last active zone is copied to the ghost zones.

There are other, more sophisticated methods of implementing hy-

drostatic boundary conditions (e.g. Krause (2019), which utilizes a

physically motivated reconstruction method to preserve hydrostatic

equilibrium). Given the outŕow nature of our nonlinear ŕows, we

deem it unnecessary, for our purpose, to pursue this further.
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Figure B1. Comparison of the fast wind case using different boundary condi-

tions: hydrostatic (blue) and outŕowing (red), as described in the text, showing

no signiőcant difference is found.

APPENDIX C: SIMULATIONS FIXING THE BASE CR

FLUX INSTEAD OF PRESSURE

As discussed in ğ4, the nonlinear outcome of TI depends heavily on

the CR heating time 𝑡heat at the halo, which depends on the halo gas,

CR pressure and Alfven speed. In our simulations, we control these

quantities through specifying 𝛼0, which sets the CR pressure at the

base, 𝛽0, which sets the magnetic őeld, and 𝜂𝐻 , which sets the CR

diffusion coefficient and therefore how much of the base CRs will

leak into the halo. Moreover, these quantities evolve as mass dropout

proceeds in the halo, and the gas pressure 𝑃𝑔 and Alfven speed

evolve. Nonetheless, it is important to understand the sensitivity of

our results to boundary conditions at the disk. Instead of specifying

𝛼0, which sets 𝑃𝑐 at the base, we could alternatively specify 𝐹𝑐0, the

base CR ŕux. The combination of 𝐹𝑐0, 𝛽0, 𝜂𝐻 will self-consistently

determine what the base 𝑃𝑐 will be, and is therefore just a different

way of specifying 𝛼0, 𝛽0, 𝜂𝐻 . The advantage of setting 𝛼0, 𝛽0, 𝜂𝐻
instead of 𝐹𝑐0, 𝛽0, 𝜂𝐻 is that the former involves only dimensionless

parameters whereas the latter requires physical units25. As we shall

demonstrate, our conclusions remain unchanged whether you choose

to őx 𝐹𝑐0 or 𝛼0. For example, increasing 𝐹𝑐0 for a őxed CR transport

model will result in greater presence of CRs in the halo, and is

equivalent to increasing 𝛼0.

What value of 𝐹𝑐0 should we set? Let’s assume, in galaxies, all

of the CRs are generated from supernovae. Each supernova releases

about 1051 ergs of energy, for which around 10% goes into acceler-

ating CRs (Caprioli & Spitkovsky 2014). Supernovae occur around

once per 100 years, so if we assume all of the CRs produced eventually

make it out of the disk, the rate of CRs released into the halo, would

on averaged be ¤𝐸𝑐 ∼ 1051 ergs ∗ 0.1/(100 yr) ∼ 3 × 1040 ergs s−1.

Assuming CRs escape mostly perpendicular to the disk, we can re-

late the CR ŕux 𝐹𝑐 with ¤𝐸𝑐 through 𝐹𝑐𝐴 ≈ ¤𝐸𝑐 , where 𝐴 is the

galactic disk face area. For a disk with radius 10 kpc, the CR ŕux

would then be 𝐹𝑐 ∼ 10−5 ergs s−1 cm−2. Let’s convert this to

code units. In our simulations we set 𝑔0, 𝑇0, 𝜌0 all to unity (see

ğ2.2.1). If these variables scale, in real units as 𝑔0 = 10−8 cm s−2,

𝑇0 = 106 K and 𝜌0 = 10−26 g cm−3, as typically in galactic en-

vironments, then the scale-height 𝐻 = 𝑘𝐵𝑇0/𝑚𝑢𝑔0 = 2.7 kpc,

pressure 𝑃0 = 𝜌0𝑘𝐵𝑇0/𝑚𝑢 = 8.3 × 10−13 erg cm−3, velocity

𝑣0 = (𝑘𝐵𝑇0/𝑚𝑢) = 1 = 91 km s−1, and the CR ŕux 𝐹𝑐0 =

𝑃0𝑣0 = 1 = 7.5 × 10−6 ergs cm−2 s−1. In code units, the CR ŕux

𝐹𝑐 ∼ 10−5 ergs s−1 cm−2 would then be ∼ 1.3. In reality galaxies

could, depending on e.g. the star formation rate, size and structure,

be supplying CRs at different rates, thus we also explore different

values of 𝐹𝑐0.

In őg.C1 we display the nonlinear outcome of TI for various com-

binations of 𝐹𝑐0, 𝛽0, 𝜂𝐻 . Once again we observe the three outcomes

discussed in ğ4: slow wind, fast wind and fountain ŕows. The fast

wind is again marked by a single phase, rareőed halo (e.g. middle

and right panels of the second row) while fountain ŕows are marked

by őlamentary cold ŕows (e.g. right panel of the third row and the

middle and right panels of the bottom row). By varying 𝐹𝑐0, we can

observe the transition into different outcomes clearly. For example,

from a slow wind to a fast wind in the second row and into a fountain

ŕow in the third and bottom row. All these are the result of greater

supply of CRs to the halo, which increases both CR pressure support

and heating.

In őg.C2 we again plot the outŕow velocity 𝑣𝑥 against 𝑡heat/𝑡ff
(taken at a scale height), recovering the same trend as in őg.16 that

the ŕow transitions to a fast wind when 𝑡heat ≪ 𝑡ff . In short, there is

no fundamental difference whether one őxes 𝐹𝑐0 or 𝛼0 at the base.

All that matters is 𝑡heat in the halo.

APPENDIX D: RESOLUTION AND 3D

We rerun the ‘slow wind’, ‘fast wind’ and ‘fountain ŕow’ cases in

ğ4 with higher resolution and in 3D to check that our results hold.

25 One could specify a parameter like 𝑃c,0/(𝑃g,0𝑣esc ) , but this is similar to

our deőnition of 𝛼0.
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Figure C1. Density slice plots at 𝑡 = 20𝑡cool for a variety of test cases őxing the base CR ŕux 𝐹𝑐0. 𝐹𝑐0 is given in code-units, but conversion to real units for

scenario speciőc ŕows can be found in Appendix C. The nonlinear outcomes of TI are explored for varying 𝐹𝑐0, 𝛽0, 𝜂𝐻 . Speciőcally, the őrst row displays

ŕows that are low in 𝛽 and streaming dominated, the second row for low 𝛽 and higher diffusivity. The third and forth row are replica of the őrst and second row

at higher 𝛽.

For increased resolution, we resolve the simulation domain (−2𝐻 <

𝑥 < 2𝐻) by 2048 × 512 grids (doubling the 𝑥-resolution) whereas

for 3D simulations, the grid resolution is reduced to 256× 128× 128

(again higher resolution along the 𝑥-axis) to save computational time.

Further details regarding the setup are listed in table 1. As shown in

őg.D1, the ŕuid properties of the higher resolution and 3D runs are all

in line with the trends given by simulations with őducial resolution.

Our conclusions remain unchanged. While there is some scatter as

resolution and dimensionality change, the scatter lies along the trends

we have already found. In őg.D2 we compare the time averaged

projection plots of the density, velocity and temperature for all three

solution outcomes. The őducial and the high resolution 2D proőles

are very similar. The 3D proőles also give very similar outcomes.

The time-averaged proőles do deviate somewhat more: for instance,
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Figure C2. 𝑣𝑥 against 𝑡heat/𝑡ff at a scaleheight for the cases shown in őg.C1,

which the base CR ŕux is őxed instead of CR pressure.

up to a factor of ∼ 2 in asymptotic temperatures or densities, though

at least part of this is due to the much lower resolution in our 3D

sims.

APPENDIX E: INTUITIVE EXPLANATION FOR WHY

THERMAL MODES (GAS ENTROPY MODES)

PROPAGATE UP THE CR PRESSURE GRADIENT

An intuitive explanation for why the gas entropy mode propagates up

the gradient is as follows (P. Kempski, private communication): when

the gas is in total pressure balance, 𝛿𝑃𝑐 +𝛿𝑃𝑔 = 0. Depending on the

part of the perturbation one is viewing, the 𝛿𝑃𝑐 either enhances or

reduces the background CR heating, leading to cooling and heating of

the gas pressure perturbation. The net result, as shown in the őg.E1,

is a wave propagation up the 𝑃𝑐 gradient.

This paper has been typeset from a TEX/LATEX őle prepared by the author.

Figure D1. Same as őg.16 including cases 2D standard resolution (blue)

with 2D higher resolution (red) and lower-resolution 3D (green markings).

The markers indicate ‘slow wind’ (crosses) ‘fast wind’ (diamond) and ‘foun-

tain ŕow’ (triangular) proőle parameters respectively. Test cases with ŕow

parameters other than the three mentioned are indicated by grey circles and

are shown for reference.
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Figure D2. Time averaged projection plots of the density, velocity and temperature for the ‘slow wind’, ‘fast wind’ and ‘fountain ŕow’ cases. In each case, the

őducial proőle (blue) is compared against the higher resolution proőle (red) and the 3D proőle (green).
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Figure E1. Intuitive picture for why the gas entropy mode propagates up the

gradient.
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