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Abstract

Subsonic, compressive turbulence transfers energy to cosmic rays (CRs), a process known as nonresonant reac-
celeration. It is often invoked to explain the observed ratios of primary to secondary CRs at ∼GeV energies,
assuming wholly diffusive CR transport. However, such estimates ignore the impact of CR self-confinement and
streaming. We study these issues in stirring box magnetohydrodynamic (MHD) simulations using Athena++, with
field-aligned diffusive and streaming CR transport. For diffusion only, we find CR reacceleration rates in good
agreement with analytic predictions. When streaming is included, reacceleration rates depend on plasma β. Due to
streaming-modified phase shifts between CR and gas variables, they are slower than canonical reacceleration rates
in low-β environments like the interstellar medium but remain unchanged in high-β environments like the
intracluster medium. We also quantify the streaming energy-loss rate in our simulations. For sub-Alfvénic tur-
bulence, it is resolution dependent (hence unconverged in large-scale simulations) and heavily suppressed com-
pared to the isotropic loss rate vA ·∇PCR/PCR∼ vA/L0, due to misalignment between the mean field and isotropic
CR gradients. Unlike acceleration efficiencies, CR losses are almost independent of magnetic field strength over
β∼ 1–100 and are, therefore, not the primary factor behind lower acceleration rates when streaming is included.
While this paper is primarily concerned with how turbulence affects CRs, in a follow-up paper we consider how
CRs affect turbulence by diverting energy from the MHD cascade, altering the pathway to gas heating and
steepening the turbulent spectrum.

Unified Astronomy Thesaurus concepts: Plasma astrophysics (1261); Galaxies (573); Cosmic rays (329); Galactic
cosmic rays (567); Magnetohydrodynamical simulations (1966)

1. Introduction

Cosmic rays (CRs) are an important nonthermal component
of galaxies and their surroundings. In the Milky Way inter-
stellar medium (ISM), their collective energy density is com-
parable to that in thermal gas, magnetic fields, and turbulence
(Boulares & Cox 1990), and they are believed to play a sig-
nificant role in ionizing molecular clouds (e.g., Dalgarno 2006),
driving galactic outflows (Ipavich 1975; Breitschwerdt et al.
1991; Salem & Bryan 2014; Ruszkowski et al. 2017; Buck
et al. 2020; Bustard et al. 2020; Hopkins et al. 2021), and
impacting the pressure balance, stability, and fragmentation of
the ISM (Parker 1966; Heintz et al. 2020). Their long residence
times (compared to the light-crossing time) in the disk, inferred
from ratios of their spallation products, suggest that CRs are
frequently scattered by magnetic perturbations, forcing them to
undergo a random walk along magnetic field lines.

Such frequent scatterings drive the galactic CR distribution
to almost perfect isotropy, making it difficult to connect CRs
back to their sources; however, detections of their secondary
byproducts give us clues to their origins and transport
throughout the galaxy. The “standard paradigm,” implemented
in most phenomenological propagation models (e.g., Strong &
Moskalenko 1998; Evoli et al. 2017), is one in which galactic
CRs are predominantly created by diffusive shock acceleration
(DSA) at supernova remnant shock fronts, followed by energy-
dependent, diffusive propagation. This diffusive picture is
physically motivated for high-energy CRs above a few hundred

GeV, for which we believe CRs are confined by scattering off
hydromagnetic waves created by an external turbulent cascade
(Chandran 2000; Yan & Lazarian 2004).
For E� 300 GeV, however, the dominant confinement mode

appears to be self-confinement, where CRs pitch angle scatter
off Alfvén waves that the CRs generate themselves through a
resonant streaming instability (Wentzel 1968; Kulsrud &
Pearce 1969). In this energy range, the resulting transport is a
mixture of field-aligned streaming down the local CR pressure

gradient at the Alfvén speed pr=v B 4A i i, and field-aligned
diffusion that arises from wave damping (Section 2.2) and the
subsequently reduced pitch angle scattering rate (see recent
reviews by, e.g., Zweibel 2013, 2017 and Amato & Blasi
2018). Self-confinement is not only supported by a growing
number of theoretical studies but also by a break in the primary
spectrum at 300 GeV, which aligns with the theoretically
expected transition from self-confinement to extrinsic turbu-
lence (Blasi et al. 2012; Aguilar et al. 2015; Amato & Blasi
2018; Evoli et al. 2018, 2019; Kempski & Quataert 2022).
While this model is increasingly implemented in both galaxy
evolution and CR propagation models, there are still many
unknown outcomes of diffusive versus streaming transport,
both for the interpretation of observables and for our under-
standing of CR influence on galaxy evolution. The one we
concern ourselves with in this paper is turbulent reacceleration.
CRs in a turbulent background can gain energy from both

resonant and nonresonant interactions through second-order
Fermi acceleration (Brunetti & Lazarian 2007; Lynn et al.
2013). The particle mean free path, λmfp, relative to the
lengthscale, l, of the turbulent eddy it interacts with determines
the relevant regime. In the low scattering rate limit
(λmfp>> l), the key interactions are resonances between
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particles and magnetic compressions due to fast or slow mag-
netosonic waves.3 Although strong damping generally pre-
cludes the turbulent cascade from extending down to the CR
gyro-scale, CRs with parallel velocities similar to the wave
speed can extract energy from it, a process known as transit-
time damping (similar to Landau damping). Thus, weakly
scattered CRs undergo resonant acceleration.

However, we have argued that low-energy E< 300 GeV
CRs in our galaxy are self-confined, with small mean free
paths. This is particularly true of the ∼GeV CRs, which carry
most of the energy and have λmfp∼ parsec scale mean free
paths in ∼microgauss magnetic fields. Since they are strongly
scattered (λmfp<< l), the strong coupling with the gas means
that they undergo compression and rarefaction with the thermal
fluid. If the CRs were completely locked to the fluid, these
constitute adiabatic reversible processes, and CRs experience
no net energy gain. However, CR diffusion out of overdense
regions breaks this symmetry, so that there is net energy
transfer from the gas to the CRs (Ptuskin 1988). Heuristically,
the CRs gain energy during compression, but diffuse out
without giving this energy back. This nonresonant reaccelera-
tion is the focus of this paper. In galactic propagation models,
reacceleration is typically included as a default, but it is in
increasing tension with data, including both secondary-to-pri-
mary ratios as a function of energy (Strong et al. 2007; Gabici
et al. 2019), and a growing wealth of multiwavelength data,
specifically synchrotron measurements (Trotta et al. 2011; Di
Bernardo et al. 2013; Orlando & Strong 2013; Gabici
et al. 2019).

The primary goal of this paper is to evaluate the effect of
Alfvénic CR streaming, which is characteristic of all self-
confined CRs. Since CRs only stream out of local CR maxima,
CR streaming also breaks the symmetry between compression
and rarefaction, but its effects are far less known. The impact of
CR streaming on turbulent reacceleration has only recently
been discussed analytically (Hopkins et al. 2022) and never
been quantitatively studied in magnetohydrodynamic (MHD)
simulations. We find that CR streaming reduces the efficiency
of turbulent reacceleration in low-β environments, potentially
explaining why significant reacceleration appears to be dis-
favored in models. Somewhat counterintuitively, though, CR
streaming losses are not responsible for lower acceleration
rates: we do not find a correlation between CR streaming loss
rates and reacceleration rates. Interestingly, loss rates are quite
different from isotropic loss rates, vA ·∇PCR/PCR∼ vA/L0,
due to misalignment between the mean field and isotropic CR
gradients, and this effect is resolution dependent and may be
incorrectly captured in low-resolution galaxy evolution
simulations.

Our paper is outlined as follows. First, we provide back-
ground on turbulent reacceleration and present the previously
derived growth rate for purely diffusive CRs subject to long-
wavelength, subsonic, isothermal turbulence (Section 2). We
then extend this treatment to include additional self-confine-
ment (streaming) terms, and we derive a simple modification to
the canonical reacceleration rate of purely diffusive CRs. In
Section 3, we numerically validate these growth rates using a
two-fluid CR implementation in the Athena++ code, and in
Section 4 we quantify the efficiency of streaming energy loss in
turbulence with varying plasma β. In Section 5, we discuss the

implications of these results for studies of the ISM, intracluster

medium (ICM), and circumgalactic medium (CGM), aimed at

both the galaxy evolution and CR propagation communities.

We conclude in Section 6.
While in this paper we focus on how turbulence affects CRs,

in a follow-up paper (C. Bustard & S. P. Oh 2022, in prep-

aration), we study the back-reaction of CRs on turbulence. This

has largely been neglected, although it is clear that CRs are

absorbing energy from the flow. We study this both analytically

and in exploratory simulations. We find that in many physically

plausible scenarios relevant to the ISM and CGM (where CR

energy densities are expected to be significant), CRs can absorb

a large fraction or even most of the turbulent driving energy at

large scales, significantly steepening the turbulent energy

spectrum or even wiping out small-scale compressive motions.

2. Background and Analytic Arguments

Following Ptuskin (1988), let us define three scales: L0 is

the outer eddy scale set by large-scale driving motions; L1 is

some smaller “cutoff” scale, which could be a viscous or

damping scale, though here we will associate it with the width

of a shock front in the medium4; and Lturb ä [L1, L0] represents

a general eddy scale within the turbulent cascade. Ptuskin
(1988) derived the nonresonant acceleration rate from an
ensemble of random acoustic waves and weak shocks propa-
gating in compressive, subsonic5 turbulence. We will quickly
summarize those results in two illuminating limits (see also,
e.g., Lynn et al. 2013), first assuming as in Ptuskin (1988) that
CR transport is purely diffusive, before considering the effects
of streaming.

2.1. Nonresonant Reacceleration of Purely Diffusive Cos-
mic Rays

Let us first consider acceleration operating on a single

scale, the turbulent outer scale L0, with turbulent velocity v

and CR diffusion coefficient κ. An important insight from

Ptuskin (1988) is that in subsonic turbulence the lifetime of a

compression in subsonic turbulence is not the eddy turnover

time, τeddy∼ L0/v, but instead the sound (or compressive

wave) crossing time τsc∼ L0/vph, which is shorter than τeddy.

Here, r r~ ~ + +( ) [ ) ]v P P P Pph tot
1 2

g B CR
1 2 is the com-

pressible wave phase velocity, and is simply given by the gas

sound speed r~ ( )c Ps gas
1 2, if Pg? PB, PCR. The two rele-

vant timescales are therefore the sound crossing time,

τsc∼ L0/vph, and the diffusion time, k~t Ldiff 0
2 , across

an eddy.
First, consider the case where tdiff= tsc, i.e., κ>> vphL0.
In this regime, quickly diffusing particles see an effectively

static velocity field, and the derivation of the momentum dif-

fusion coefficient, Dpp, for a CR with momentum p follows that

of the standard second-order Fermi argument: Dpp∼ (Δp)2/
τscatter∼ p2v2/(c2τscatter)∼ p2v2/κ. The energy growth time,

3
The strong anisotropy of the Alfvénic cascade at small scales means that

scattering is highly inefficient (Chandran & Maron 2004; Yan & Lazarian 2004).

4
Even in subsonic turbulence, nonlinear steepening will still produce weak

shocks.
5

For transonic or supersonic turbulence, strong shocks can additionally
accelerate CRs through the first-order Fermi mechanism, but then the resulting
acceleration rate and CR spectrum are qualitatively different from second-order
Fermi acceleration.

2
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accurate to within a factor of a few, is then

k
k~ ~ > >** ( )t

p

D v
v L; . 1

pp

grow

2

2 ph 0

In the opposite limit, for which κ<< vphL0, CRs advect
with the fluid and behave quasi-adiabatically during each
compression and rarefaction: δp/p∼ δPCR/PCR∼ δρ/ρ∼ v/
vph. Through successive compressions and expansions in a
turbulent eddy of size L0, the CRs undergo a random walk
in momentum space until they manage to diffuse out of the

eddy on a timescale kL0
2 . In this case, d t~ ~( )D ppp

2
diff

k( )( )p v v L2 2
ph
2

0
2 . Within a factor of a few, the growth time in

this limit is

k
k~ ~ < < ( )t

p

D

v L

v
v L; . 2

pp

grow

2
ph
2

0
2

2 ph 0

Consider κ∼ vphL0, i.e., the case of maximally efficient

acceleration. In this case, both Equations (1) and (2) reduce to6

k~ ~ ( )t
v L

v
v L; , 3grow

ph 0

2 ph 0

Consider now the contribution of multiple eddies in a tur-
bulent cascade. If we sum contributions from a variety of
scales, the general expression for the momentum diffusion
coefficient is (Ptuskin 1988)

ò
k

k
=

+

¥ ( )
( )D p dk

k W k

v k

2

9
, 4pp

2

0

2
1D

ph
2 2 2

where W1D(k) is the one-dimensional (1D) turbulent power

spectrum, normalized such that

ò=
¥

( ) ( )v dk W k . 52

0
1D

What is an appropriate expression for W1D(k)? Recall that for

hydrodynamic turbulence, a standard Hodge–Helmholtz

decomposition usually shows that the compressive component

of the velocity field is Burgers-like (W1D(k)∝ k−2
), while the

solenoidal component is Kolmogorov-like (W1D(k)∝ k−5/3
).

The Burgers-like component does not reflect a genuine cas-

cade, but rather the appearance of shocks that directly transfer

power from large to small scales. Such shocks occur even in

subsonic turbulence, due to nonlinear steepening of waves. In

this case, inserting W1D∝ k−2 into Equation (4) (see Equation

(27) of Ptuskin (1988) for the full form of the power-law

W1D(k), including pre-factors), and using tgrow∼ p2/Dpp gives,

in the regime vphL1<< κ<< vphL0 (Ptuskin 1988):

k k
~ -- -

-

⎜ ⎟ ⎜ ⎟
⎛
⎝
⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎞
⎠
⎟ ( )t

v L

v v L v L

9

2
tan tan . 6grow

ph 0

2
1

ph 1

1

ph 0

1

At scales outside of the power-law spectrum, i.e., at scales
larger than L0 or smaller than the cutoff scale L1, the reacce-
leration time reverts to Equations (1) and (2), respectively. The
minimum reacceleration time of Equation (6) is tgrow∼ (9/2)
vphL0/v

2, motivating one to write

k
~ ( )D

p v2

9
. 7pp

2 2

This is very similar to the resonant reacceleration rate in
balanced turbulence (Skilling 1975; Thornbury & Drury 2014;
Zweibel 2017), k~ ( )D p v1 9pp

2
A
2 , which is essentially what

is implemented in Galprop (Strong & Moskalenko 1998) and
other CR propagation codes. The diffusion coefficient is
commonly taken to be a power law in particle rigidity κ∝ R δ,
where the diffusion power-law index, δ, is related to the wave
spectrum power-law index. In that case, there are additional
pre-factors related to the wave energy and power-law index.
Note that for W1D(k)∝ k−2, the integrand in Equation (4) is

proportional to k+( )v k1 ph
2 2 2 , i.e., it diminishes rapidly at

high k. Unlike resonant acceleration, the smallest scales do not
dominate acceleration. This is good news, as it implies that
nonresonant acceleration can be captured in MHD simulations.
However, there is still resolution dependence in the κ= vphL0
regime (see the Appendix): as resolution increases, we find a
slow increase in acceleration rates in our simulations. In fact, as
seen for the analytic L0/L1= 1000 case in Figure 7,
Equation (6) gives a growth time which is almost constant for
κ< L0vph, i.e., it scales much more weakly with κ than
tgrow∝ 1/κ, as obtained in the single-eddy approximation
(Equation (2)). Heuristically, we can understand this as follows.
For κ< L0vph, the acceleration is maximized at some smaller
scale l, where κ∼ lvph. However, for Burgers turbulence, the
velocity at scale l is vl∝ l1/2, so that the minimum growth time

~t v l vlgrow ph
2 (when κ∼ lvph) is independent of l. In other

words, as long as there is sufficient dynamic range, acceleration
in Burgers turbulence is self-similar, with eddies at some scale
l∼ κ/vph providing the dominant contribution, and other
eddies in the κ= vphl or κ? vphl regimes providing sub-
dominant contributions, with the growth rate roughly inde-
pendent of l and hence of κ.
Another possibility is that the compressive component has a

Kraichnan spectrum W1D(k)∝ k
−3/2, as might be expected for

compressive fast modes (Cho & Lazarian 2003). The case of
resonant acceleration with a Kraichnan spectrum has been
studied analytically, and it is a leading model for explaining
giant radio halos in galaxy clusters (Brunetti & Lazarian 2007;
Miniati 2015). However, our simulations in this paper have
very limited dynamical range and do not resolve the fast-mode
cascade (which in any case is still very uncertain; see, e.g.,
Kowal & Lazarian 2010, who find a Burgers-like fast-mode
spectrum). We therefore will compare our simulations to
Equation (6), appropriate for a Burgers-like spectrum.
Equations (1)–6 are derived assuming isotropic CR diffusion,

but cross-field diffusion is much less efficient than field-aligned
diffusion. Accounting for anisotropic diffusion changes the
above equations (Chandran & Maron 2004; Lynn et al. 2013) in
the κ>> vphL0 regime (Equation (1)), because CRs undergo a
1D random walk along magnetic field lines and are likely to

6
The alert reader will notice that this minimum growth time (Equation (3))

coincides with the cascade time of compressible fast modes of scale l in MHD
turbulence, t ~ lv vcas ph l

2 (Nazarenko & Schekochihin 2011). This arises
because both Fermi II acceleration and fast-mode cascade timescales can be
understood as the outcome of stochastic random walks. In Fermi II accelera-
tion, tgrow ∼ τscatter(ΔE/E)−2

∼ τscatter(v/c)
−2

∼ vphL/v
2, assuming that

τscatter ∼ κ/c2 ∼ vphL/c
2. In fast modes, two wave packets of scale l interact on

a wave crossing time τph ∼ l/vph = τNL ∼ l/vl, where the nonlinear steepening
time τNL ∼ l/v is set by the nonlinear advection term v · ∇v in the Euler
equation. Thus, each interaction results in a small velocity change Δv/v ∼ τph/
τNL ∼ v/vph. The cascade time is then set by the number of interactions
required for Δv ∼ v, i.e., t t t~ D ~ ~-( ) ( )v v v v v L vcas ph

2
ph ph

2
ph

2.

3
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return to the same eddy multiple times before the eddy is
randomized in the turbulent flow. The characteristic timescale
for turbulence–particle interactions is no longer the diffusion
time across an eddy. Rather, it is the decorrelation time,
tcorr∼ L0/v, of the eddy, which is longer: tcorr/tdiff∼ κ∥/
(vL0)? 1, when κ∥? vphL0. Over this time period, a typical
CR can diffuse a distance k~ L tB corr , over which time it will

interact with k k~ ~ ~∣∣ ∣∣N L L t L vLB 0 corr 0 0 eddies.

Since over a period tcorr∼ (κ∥/vL0)tdiff∼N2tdiff the CR
spends time in N eddies, on average it spends teddy∼Ntdiff
per eddy, i.e., it scatters with each eddy N times, so
that it acquires an rms momentum boost (δp)eddy∼
N(δp)iso. Thus, the momentum diffusion coefficient ~Dpp

d d~ ~( ) ( ) ( )p t N p Nt NDeddy
2

eddy
2

iso diffuse pp,iso, i.e., the reac-
celeration rate, increases by a factor of N compared to the
momentum diffusion coefficient, Dpp,iso, which assumes iso-
tropic spatial diffusion. Effectively, anisotropic diffusion
increases the coherence of CR-turbulent scattering (Chandran &
Maron 2004): instead of momentum changes of order (δp)iso on
a timescale tdiff, the CR makes larger momentum changes
(δp)eddy∼N(δp)iso on longer timescales teddy∼Ntdiff. This is
similar to reducing the opacity in radiative transfer, so that a
photon has a longer mean free path and mean free time. Just as
this reduces the photon escape time, the CR reacceleration time
is reduced for a longer mean path in momentum space,
tgrow∼ p2/Dpp∝N−1, i.e.,

k
k

k~ > >


⎜ ⎟
⎛
⎝

⎞
⎠

( )t
v

vL
v L

9

2
; . 8grow 2

0

1 2

ph 0

This means that acceleration can still be reasonably efficient off

the “sweet spot” κ∥∼ vphL0 for κ∥? vphL0, since kµ tgrow
1 2

instead of tgrow∝ κ. On the other hand, there is little difference

in acceleration rates between anisotropic or isotropic diffusion

in the κ<< vphL0 regime.
To summarize: in the single-eddy limit, assuming isotropic

scattering, acceleration rates have a reasonably sharp peak at
κ∼ vphL0, where tgrow∼ vphL

2/v2 is minimized and tgrow∝ κ,
tgrow∝ κ−1 in the κ/vphL0? 1, κ/vphL0= 1 regimes, respec-
tively. However, this dependence on κ is modified by two
effects. First, a hierarchy of eddies contributes to reaccelera-
tion, and for κ= vphL0 there exists a smaller eddy of scale l,
such that κ∼ vll. For Burger’s turbulence with sufficient
dynamic range, tgrow becomes almost independent7 of κ. Sec-
ond, anisotropic diffusion increases the coherence of CR

acceleration, so that kµ tgrow
1 2 increases more weakly with

κ∥ in the κ? vphL0 regime. The net result is a characteristic
minimum growth time tgrow∼ vphL0/v

2, which depends only
weakly on κ, in a range of several dex around the “sweet spot”
κ∼ vphL0.

2.2. Nonresonant Reacceleration of Streaming Cosmic Rays

While CRs in the ∼GeV energy range are close to isotropic,
even a small amount of drift anisotropy can excite magnetic

perturbations through the resonant streaming instability
(Wentzel 1968; Kulsrud & Pearce 1969; Skilling 1971). When
the instability acts, forward traveling (relative to the CR drift)
Alfvén waves are most efficiently excited, with backward
waves quickly damped. In the absence of wave damping, CRs
pitch angle scatter off these waves until they isotropize in the
wave frame, and thus advect along the magnetic field at the
local Alfvén speed. In the presence of wave damping, however,
a steady-state balance between growth and damping gives a
finite scattering rate which dictates that CRs diffuse relative to
the wave frame. Since the streaming instability growth rate
declines with increasing CR momenta, the diffusivity is also
energy dependent and generally rises with increasing CR
energy. The resulting fluid CR transport is then a mixture of
diffusion and streaming, as long as scattering by streaming-
generated waves dominates over scattering by extrinsic turbu-
lence, a cutoff predicted to occur around 300 GeV (Blasi et al.
2012; Kempski & Quataert 2022), coincident with an observed
change in the proton spectral index (Evoli et al. 2019). For
energies above 300 GeV, CR propagation is thought to be
purely diffusive.
While diffusion and streaming are similar in that they unlock

CRs from the gas, the unique behavior of streaming funda-
mentally alters CR–wave interactions and, therefore, the reac-
celeration rate for CRs of any energy E 300 GeV. Let us
consider a single compression. In the no transport case where
CRs are perfectly locked to the gas, all energy gained via
compression will be lost via rarefaction. Crucially, CR diffu-
sion introduces a π/2 phase shift between CR pressure and gas
density perturbations. This “drag” against CRs provides a
frictional force on compressive motions, giving rise to an
acceleration that damps the wave. This phenomenon, akin to a
damped simple harmonic oscillator, is known as Ptuskin
damping (Ptuskin 1981) and is responsible for the nonresonant
transfer of wave energy to CR energy (see Section 3.5 for
additional discussion).
The π/2 phase shift between CR and gas perturbations

requires a CR flux FCR∝∇PCR, such that the CR restoring
force in response to perturbations is proportional to velocity
(see, e.g., Section 2.1.1 of Tsung et al. 2022 for details), which
is the requirement for either damping or driving. On the other
hand, the CR flux with pure streaming is FCR∝ PCR, resulting
in a CR restoring force proportional to displacement and
therefore unable to create a π/2 phase shift necessary for
Ptuskin damping and reacceleration—as in a simple harmonic
oscillator, energy is conserved. With pure streaming and no
diffusion, there is then no energy transfer from waves to CRs.
Another way to understand this is in terms of phase space

transport. Spatial diffusion is tied to momentum diffusion (as
can be seen from the relationship between the spatial (κ) and
momentum (Dpp) diffusion coefficients, e.g., in Equation (4)),
while spatial advection is tied to momentum advection (as is
true, for instance, in adiabatic compression or expansion).
Since there is more phase space at higher momenta, CRs dif-
fusing in phase space inevitably diffuse to higher energy. By
contrast, in CR advection, there is no stochasticity: CR evol-
ution is adiabatic in the Alfvén wave frame. This can be seen in
the equation for the distribution function f (x, p) (Skilling
1971):

º
¶
¶
+  = 

¶
¶

⎛
⎝

⎞
⎠

· ( · ) ( )w w
Df

Dt t
f p

f

p

1

3
, 9

7
It is important to appreciate that, in our simulations, the limited dynamic

range means that this effect does not really kick in—acceleration rates are
closer to the “single-eddy” approximation, with tgrow ∝ κ−1 in the κ = vphL0
regime, and hence we often still make use of the “single-eddy” formulae when
comparing simulations with analytics. But, in reality (or in simulations with
much higher dynamic range), we expect a much milder dependence of accel-
eration rates on κ.

4

The Astrophysical Journal, 941:65 (16pp), 2022 December 10 Bustard & Oh



where w= v+ vA is the net velocity of Alfvén waves in the lab

frame. Since 〈∇ ·w〉= 0, i.e., there is no net converging or

diverging flow for Alfvén waves over a box which is homo-

geneous on large scales, 〈Df/Dt〉= 0, and a time-stationary

distribution function means no acceleration is taking place. All

energy changes are reversible, since the energy gained due to

converging Alfvén waves during compression is returned to the

plasma as CRs stream out of the overdensity, resulting in

diverging Alfvén waves. Advection only produces a net energy

change when 〈∇ ·w〉≠ 0; for instance, when there is net

compression or expansion of the fluid 〈∇ · v〉≠ 0, or there is a

net change in Alfvén speed, due to net gradients in B-field

strength or gas density 〈∇ · vA〉≠ 0. The latter happens, for

instance, when CRs stream in a stratified medium, resulting in

CR energy loss at a rate vA ·∇Pc.
So what is the role of streaming in CR–wave interactions?

Streaming introduces two additional effects. First, the advective
transport modifies the perturbed acceleration from the phase-
shifted CR force. One can derive the acceleration rate, u, in the
diffusion-only and then streaming-modified cases (Begelman &
Zweibel 1994; Tsung et al. 2022):

k
~ -


( ) ( )
u

u

c
diffusion , 10c

2

k
~ - +
 ⎜ ⎟⎛

⎝
⎞
⎠

( ) ( )
u

u

c v

c
1 diffusion streaming , 11c

s

2
A

where u is the velocity, r~ ( )c Pc CR
1 2, and G ~ u u is the

damping/growth rate of gas motions. Note that only the

streaming-dominated case allows for growth (Γ> 0). If there

was a background CR gradient much larger than the perturbed

gradients due to gas motions, growth could occur in the dif-

fusion-only case when the diffusion time is shorter than the

sound crossing time across a CR scale length, Lc (Drury &

Falle 1986); however, that is not the case for the unstratified

medium we assume here. In the streaming case, though,

unstable growth is possible, regardless of Lc, if β= 1. This

case was studied in detail in Tsung et al. (2022). For now, we

will operate in the β� 1 regime. Note also that Equation (11),

as written, assumes an isothermal equation of state where gas

heating by CRs is neglected. In nonisothermal gas,

Equation (11) is multiplied by 1± (γg− 1)vA/cs (Begelman &

Zweibel 1994).
The± in Equation (11) refers to gas motion in same (+) or

opposite (−) direction relative to the direction of CR drift.
Overdensities are created by converging gas flows, but CRs
stream out of them in the opposite direction. These opposing
flows reduce the net amount of CR compression in the Alfvén
wave frame, and hence reduce CR energization. Thus, the “-”
sign is appropriate, and CRs take energy from gas motions at a
new, reduced rate modified by the factor -1

v

cs

A . The new CR

reacceleration time relative to the pure diffusion growth time,
obtained by dividing Equation (10) by Equation (11), is then

b
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-
<( ) ( )

t

t
v L

1

1 2
. 12

grow
stream

grow
diff ph 0

Note that the growth rate now depends on plasma β, which
for an isothermal (γg= 1) gas is b = c v2 s

2
A
2. For an adiabatic

γg= 5/3 gas, the growth rate is increased by a factor of

(1+ 2vA/3cs), still resulting in a significant decrease in
reacceleration when vA∼ cs. As β increases, the rate
converges to the pure diffusion rate. Note also that
Equation (12) is only appropriate in the regime κ< vphL0. For

κ>> vphL0, kµ ∣∣tgrow
1 2 instead of tgrow∝ κ|| (Equation (8)).

With our streaming modification included, we can write

k k b -( )1 2eff , and the new tgrow
stream should be

bµ -( )1 1 2 1 2 instead of bµ -( )1 1 2 :

b
k~

-
> >⎛

⎝
⎜

⎞
⎠
⎟ ( ) ( )

t

t
v L

1

1 2
. 13

grow
stream

grow
diff

1 2

ph 0

Second, wave excitation by the streaming instability drains
energy from the CR population at a rate H = vA ·∇PCR

(Zweibel 2017). This energy is subsequently transferred to the
gas by wave damping. For an isothermal equation of state, the
gas does not gain energy, but the energy sink for the CRs
remains and competes with compressional heating to decrease
the CR reacceleration rate. As we will see in Section 4, how-
ever, reacceleration rates are not predominantly stunted by
streaming energy loss; instead, when reacceleration rates are
slowest (the low-β regime), CR energy-loss rates are also
slowest. The major correction to growth rates appears to come
from the modified phase-shifted CR force.

3. Magnetohydrodynamics Simulations

Motivated by the above considerations, the agenda for
numerical simulations is straightforward:

1. Study growth times in the pure diffusion case as a
function of κ, and compare to Ptuskin’s predictions
(Equations (1)–(3), (6)).

2. Study the effect of anisotropic diffusion, which is

expected to reduce k ( )t t vLgrow grow 0 in the
κ? vphL0 regime.

3. Study the combined effect of CR streaming and diffusion
on turbulent reacceleration, and check our new analytic
expectations (Equations (12), (13)), particularly as a
function of plasma β. When streaming is important, we
expect acceleration to be inefficient at low β.

4. Quantify the fractional turbulent dissipation going into
CRs and the nonlinear saturation of CR reacceleration.

5. Study the resolution dependence of both CR reaccelera-
tion and streaming energy loss. Are these well captured in
zoom-in cosmological or even fully cosmological simu-
lations of galaxy formation? We show additional conv-
ergence tests and discuss implications in the Appendix.

3.1. Computational Methods

We ran a suite of simulations using a version of the MHD
code Athena++ (Stone et al. 2020) modified to include CRs
(Jiang & Oh 2018). CR transport via diffusion and streaming is
implemented via a two-moment method developed originally
for radiative transfer, and the efficiency and accuracy of
this implementation have been extensively tested (Jiang &
Oh 2018).
The equations solved are a combination of the ideal MHD

equations and CR evolution equations for a mixture of
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streaming and diffusive transport:

r
r

¶
¶
+  =

¶
¶

-  ´ ´ =· ( ) ( )v
B

v B
t t

0 0,g g

r
r

s

¶

¶
+  - + +

= - +

· ( ( )

· [ · ( )]

v
v v BB I

F v I P

t
P P

E ,

g
g g

g

B

c

g

CR CR CR

s

¶
¶
+  + + -

= + - +

· [( ) ( · )]

( ) · ( · [ · ( )])

v B B v

v v F v I P

E

t
E P P

E ,

g g

g g

B

c

g

st CR CR CR

s

¶
¶

+  = - +

- +

· ( )·

( · [ · ( )])

F v v

F v I P

E

t

E

g

c g

CR
CR st

CR CR CR

s¶
¶

+  = - - +· · [ · ( )]P F v I P
v

F

t
E

1
,g

m

c2

CR
CR CR CR CR

where ρ is the gas density, vg is the gas velocity,

vst=− vA(B ·∇PCR)/|B ·∇PCR| is the CR streaming velocity,

B is the magnetic field, E is the thermal energy, ECR is the CR

energy, FCR is the CR energy flux, and PB= B2/8π,
PCR= (γCR− 1)ECR are the magnetic and CR pressures.

Note that the CR adiabatic index is γCR= 4/3, and we use
an isothermal equation of state, for which the gas adiabatic
index is γg= 1. While gas can be effectively isothermal when
radiative cooling is strong, this isothermality assumption is not
rigorously appropriate. However, since the reacceleration time
for a fixed κ depends on the phase velocity of compressible
waves, i.e., the sound speed, we enforce γg= 1 to keep a
constant phase velocity and facilitate an easier comparison to
analytic expectations. Our conclusions and applicability to the
ISM, CGM, and ICM are quite insensitive to this choice: note
that the minimum growth time from Equation (6) scales as

gµv gph and, hence, changes by the small factor of 5 3

modulating between an isothermal and adiabatic equation of
state. An alternative implementation, with γg= 5/3 and
including radiative cooling, requires an additional heating term
tuned to enforce global thermal balance (rather than allowing
for a cooling runaway), but this heating term is often invoked
as a substitute or rough parameterization of CR heating itself.
As a natural starting place for our study of CR–turbulence
interplay, the isothermality assumption is cleaner.

The two-moment method presents itself through the inclu-
sion of a maximum speed of light parameter, vm, and an
interaction coefficient (Equation (10) of Jiang & Oh 2018),
s k= + +- · ( )v I PEc

1
st CR CR . κ is the CR diffusivity. Source

terms in the momentum and energy equations depend on this
interaction coefficient and encapsulate how CRs exchange
momentum and energy with the gas. In the gas thermal energy
and CR energy equations, these source/sink terms account for
collisionless energy transfer from the CRs to the thermal gas
due to wave damping. We will sometimes refer to this colli-
sionless energy transfer as “streaming energy loss.” Time-
dependent hydromagnetic wave energy is not explicitly tracked
here, as streaming instability growth times are generally much
shorter than other timescales of interest; waves are assumed to
couple CRs to gas unless ∇PCR→ 0 (see Thomas & Pfrommer
2019 for an implementation which tracks wave energy).

3.2. Generating Turbulence

To generate turbulence, we take advantage of the turbulent
stirring module in Athena++, which uses an Ornstein–
Uhlenbeck process (Uhlenbeck & Ornstein 1930) to smoothly
generate a prescribed mixture of compressive and solenoidal
velocity perturbations = + -ˆ ˆ ( ) ˆv f v f v1shear shear shear compressive

over a correlation time (similar methods are employed in, e.g.,
Eswaran & Pope 1988, Federrath et al. 2008, 2010, and Lynn
et al. 2012). The turbulent reacceleration rate of CRs depends
only on the compressive component of turbulence. For this
paper, we will focus on purely compressive forcing ( fshear= 0);
increasingly solenoidal forcing leads to weaker compressions
and rarefactions for a given Mach number, therefore decreasing
the turbulent reacceleration rate further until it becomes zero
with purely solenoidal perturbations. The advantage of purely
compressive driving is that the turbulent dynamo (which
depends on solenoidal driving) does not operate, so our
simulations have roughly constant plasma β. Otherwise, since
we need to drive the simulations for many eddy turnover times
to see CR turbulent reacceleration, turbulent magnetic field
amplification would obscure the plasma β dependence of CR
reacceleration that we wish to study. Instead of enforcing a
specific turbulent power law over many scales, we use para-
bolic driving between modes 1< k< 3, and the resulting tur-
bulent cascade to higher wavenumbers is created organically.
For driving, we set the autocorrelation timescale to be tcorr=
L/cs and drive fluctuations every tdrive= 2× 10−3

(L/cs). Our
results are not sensitive to these assumptions.
To check simulated growth times versus analytic predictions,

we use grids with 643–2563 cells in a square domain of length
2L, and we measure the outer-scale turbulent eddy (the one
with the most power) to be of size ∼2L/3. This low resolution
gives us only a short turbulence inertial range—dissipation sets
in at a scale ≈30 cell widths (Federrath et al. 2010, 2021)—but,
in practice, we find that even our lowest-resolution runs with a
643 box give reasonably converged reacceleration rates
matching analytic expectations.8 This allows us to run a large
parameter study to verify the scalings of Section 2.
In Section 3.4, we find that we must be a bit more careful

with our resolution and simulation box sizes. While reacce-
leration rates are again converged even at our lowest resolution
of 2L/64, streaming energy-loss rates in low-β plasmas are
sensitive to the amount of magnetic field tangling captured in
the simulation; to show this, we vary some of our simulations
to have resolutions of 2L/128, 2L/256, and 2L/512. For each
simulation, we choose a fiducial maximum speed of light
vm= 50cs, and we show convergence with respect to this
choice in the Appendix. Table 1 compiles our fiducial para-
meters. In Section 3.4, all parameters are the same, except we
vary the initial β between 2 and 200.

3.3. Results: Pure Diffusion

We begin with simulations without streaming, i.e., solely
anisotropic diffusion along the local magnetic field direction.

8
Note that these CR hydrodynamics simulations, with our fiducial choice of

vm, are about 8 times more expensive than MHD simulations, which are ∼2×
more expensive than pure hydro simulations. This is due partially to additional
overhead from the CR module but primarily due to the maximum speed of
light, vm, which should be much faster than other MHD propagation speeds in
the system and sets the time step. Our 2563 and 5123 simulations, then, are
about as expensive as 5123 and 10243 hydro runs, typical for parameter scans
and production runs in the turbulence literature.
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Each simulation has β= 2 and low initial CR pressure (Pg/
PCR= 100) so the phase velocity is approximately the iso-
thermal sound speed, cs. We choose three different forcing
amplitudes to give turbulent Mach numbers of  ~ 0.25,
0.35, and 0.5 (measured at late times when the rms velocity has
saturated), and we vary the diffusion coefficient over more than
three orders of magnitude to test whether we recover the
growth time prediction of Equation (6).

The results are plotted in Figure 1. The simulation growth
times are calculated by summing the total CR energy in the
box, ECR

tot , and fitting a line to the ( )Elog10 CR
tot curve in the

exponential growth phase between 3 and 6 eddy turnover
times. This time interval was chosen because it spans many
time outputs and occurs after the kinetic energy has saturated
but before the CR energy rises past equipartition with the
thermal energy, at which point changes to the gas compressi-
bility (changes to vph) decrease the growth rate and affect the
normalization of κ relative to L0vph. A rolling derivative con-
firms that these growth times are representative of the expo-
nential growth phase.

Our simulations match analytic expectations (Equation (6))
very well, not only reproducing the correct scaling with Mach
number ( t µt 1grow eddy ) but also the correct growth curve
shape in the κ� vphL0 regime if one sets L0/L1≈ 20. The
appropriate value of L0/L1 is determined, in reality, by the
characteristic width of a shock front, L1, relative to the outer
driving scale, L0. In simulations, however, L1 is limited by
resolution; our choice of L0/L1≈ 20 is motivated by L1 span-
ning roughly one cell width in our 643 grid. In the Appendix,
we show how other choices of L0/L1, which should correspond
to other spatial resolutions, change the growth curves.

In the κ> vphL0 limit, we also recover the expected decrease
in growth time due to anisotropic rather than isotropic diffusion

(Chandran & Maron 2004): k ( )t t vLgrow grow 0 . The
dashed line in Figure 1 shows tgrow/τeddy in the κ>> vphL0
regime when correcting for anisotropic diffusion, and our
simulated growth times match this trend very well.

3.4. Results: With Streaming

We now include streaming transport and a variety of initial
plasma β ä [2, 200] to test Equation (12) in the streaming-
dominated regime, as well as the predicted collapse of

t tgrow
stream

grow
diff in the κ>> csL0 regime. We vary the diffusion

coefficient between κ= 0.15L0cs (the maximal growth case
without streaming) and κ= 15L0cs.
An important note is that we use the same forcing for each

simulation, i.e., ò= ρv3/L0 is held constant; therefore, for
increasing plasma β, the magnetic field back-reacts on the flow
less, leading to a slightly higher turbulent Mach number and
average velocity divergence. This is a mild effect. Nonetheless,
to make consistent comparisons, we run each simulation with
and without streaming for each plasma β and focus our analysis
on the ratio of growth rates. As in Section 3.3, the initial CR
pressure is 1% of the thermal pressure, so CRs do not sig-
nificantly affect the properties of turbulence.
Our results are shown in Figure 2. The left panel shows

growth times for streaming and nonstreaming simulations.
These are normalized by the outer-scale eddy turnover time,
which assumes  ~ 0.5 for each run, but decreased growth
times for pure diffusion at higher β reflect the reduced MHD
forces on the flow, leading to > 0.5. The x-axis denotes the
evolved plasma β of the simulation; because our forcing has no
solenoidal component, magnetic field amplification is relatively
inefficient, and plasma β decreases by a factor less than 2
during the time interval of our analysis.
The right panel shows the ratio of reacceleration times for

anisotropically diffusing CRs, with and without additional
streaming. At low β, typical of the ISM, the growth time is an
order of magnitude longer than the growth time with pure
diffusion. The discrepancy decreases at higher β but is still a
factor of ∼2 even at β∼ 10. The dashed blue line shows the
expected ratio in the κ< vphL0 regime (Equation (12)). Indeed,
our results broadly fit with expectations. When streaming is
important (κ= 0.15L0cs), energy gains are largely reversible,
and growth times are much longer at low β. At higher β, the
discrepancy drops, following the predicted scaling of
Equation (12) fairly well. For κ= 15L0cs, the effects of
streaming are lower, following the expectation from
Equation (13) for the κ>> vphL0 regime (the blue dotted–
dashed line). Note that growth times in this regime, even
without additional streaming modifications, are already much
longer than the minimum growth time when κ< L0cs. Overall,
the main point is clear: CR streaming alters CR–turbulence
interactions and significantly decreases reacceleration rates in
low-β, ISM-like environments compared to the pure diffusion
growth rates first derived in Ptuskin (1988) and frequently
assumed in CR propagation models.

3.5. Saturation

Now that we have analyzed the linear regime when
PCR<< Pg and compared to analytic growth rates, we move to
the nonlinear regime when CRs become dynamically sig-
nificant. In principle, CRs can back-react on the turbulent flow,
changing its energy spectrum and cascade rates, much as, for
instance, magnetic fields alter hydrodynamic turbulence,
resulting in MHD turbulence. A fuller exploration of this
interesting issue requires higher-resolution simulations and is
the subject of our follow-up paper (C. Bustard & S. P. Oh
2022, in preparation). Given our focus on energetics, however,
we can at least study in this work how turbulent kinetic energy
is dissipated. In hydrodynamics, the turbulent energy forcing
rate  r» »˜ v l3 constant (independent of scale l) is equal to
the gas-heating rate. In MHD, some fraction of the kinetic
energy is used to amplify magnetic fields via the turbulent
dynamo. Similarly, in a two-fluid CR–gas system, some

Table 1

Range of Simulation Parameters Used in Sections 3.3, 3.4

Box Size (2L)3

Resolution 2L/64–2L/512

Outer driving scale, L0 ∼2L/3

β = Pg/PB 2.0–200

Pg/PCR 100

tdrive 2 × 10−3
(L/cs)

tcorr L/cs
s,turb 0.25, 0.35, 0.5

vm/cs 50–400

Notes. In Section 3.3, to check analytic growth predictions, we fix β = 2, the

initial PCR/Pg = 100, and the grid size to 643. We test convergence with

respect to grid size and maximum speed of light, vm, in the Appendix. In

Section 3.4, all parameters are the same, but we vary β between 2 and 200, and

we run a set of higher-resolution simulations with grid sizes of 1283–5123.
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fraction of the kinetic energy does not dissipate into heat at
small scales, but is instead diverted through the CR population.

Since µP P tCR CR grow, where tgrow is initially independent
of PCR, we expect exponential growth in PCR(t), similar to the
magnetic turbulent dynamo where wµP PB B (where ω is the
fluid vorticity), and magnetic fields initially grow exponen-
tially. For the turbulent dynamo, the fluid vorticity decreases
due to magnetic tension from the growing magnetic field, and
the dynamo transitions from exponential to linear growth, and
finally saturation at roughly equipartition values.

The nonlinear saturation of CR turbulent reacceleration is
also interesting. Presumably, for fixed driving, as Ptot increases,
the fluid becomes less compressible due to an increase in vph,
which decreases Mph and increases tgrow. While saturation in
the turbulent dynamo is due to a decrease in ω=∇× v, it is
related to a decrease in ∇ · v for CR reacceleration. This holds
true in our simulations. In Figure 3, we compare simulated
growth times for diffusion-only simulations with κ= 0.15L0cs
and varying PCR/Pg> 1. We find, as expected given
Equation (2), that due to the rise in vph because of the increase
in CR energy density, the growth time increases secularly:

µ µt v P Pggrow ph
2

CR . Thus, µ P P tCR CR grow constant, and
growth transitions from exponential to linear, just as for the
magnetic turbulent dynamo. Note that this saturation only
occurs in the κ< vphL regime and once PCR� Pg. Otherwise,
there is little change in tgrow.

4. Suppression of Streaming Energy Loss

We additionally quantify how magnetic field strength affects
the streaming energy-loss rate. This can be thought of inter-
changeably as the gas-heating rate due to CR streaming, if the

gas equation of state is adiabatic, but here no heating occurs
because the gas is isothermal. Figure 4 shows the collisionless
energy-loss time, calculated as tCR,loss= PCR/|vA ·∇PCR| for
simulations with varying plasma β. It also shows the naive
expectation that, if the CR scale height is approximately the
outer eddy scale L0, the relative loss time should be L0/vA, so
that loss times decrease monotonically for stronger B fields. In
fact, that is far from the case. At low β, the loss time is orders
of magnitude longer, rising with increasing resolution at low β
but seemingly converged with resolution for β> 10. The loss
time reaches a minimum near β∼ 10, which corresponds to an
Alfvén Mach number MA= v/vA∼ 1. Note also that streaming
energy-loss time is not inversely correlated with the reacce-
leration time, as it would be if streaming energy loss was the
main factor stunting reacceleration. Instead, slow reacceleration
in the low-β regime is also accompanied by slow energy loss,
pointing to the modified phase-shifted CR force as the domi-
nant correction to reacceleration rates (Equations (11)–(13)).
Why does CR energy loss have this MA dependence? This

largely arises due to misalignment between the magnetic field
and CR pressure gradient. The streaming loss rate, vA ·∇PCR,
is sensitive to the angle between the magnetic field B and CR
pressure gradient ∇PCR. In MA< 1 turbulence, magnetic ten-
sion is strong, and field line tangling is suppressed. While
compressions (and hence ∇PCR) can occur in all directions, the
mean magnetic field maintains its initial orientation, so that
vA ·∇PCR is suppressed. This effect is apparent in Figure 5,
which shows slice plots of three 2563 simulations along the
z= 0 axis after 5.8 eddy turnover times, when the turbulence is
developed. Each column corresponds to different evolved
plasma β, going from strong field (left) to weak field (right).
The top row shows density with magnetic field lines

Figure 1. CR energy growth times, normalized by the outer scale eddy turnover time (τeddy) for simulations each with β = 1 but varying (different colors).
Simulations were run using either vm/cs = 50 (dots) or vm/cs = 100 (x’s); see the Appendix for a full comparison of different vm and different resolutions. Lines show
analytic expectations assuming isotropic diffusion (solid lines; Ptuskin 1988) and including a correction for anisotropic diffusion (dashed line; Chandran &
Maron 2004) for κ > vphL0. Simulations match expectations remarkably well for κ < vphL0 if one sets L0/L1 = 20, i.e., if L1 represents one cell width. Simulations
also reflect the expected decrease in growth time due to anisotropic diffusion.
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overplotted; peaks and troughs are most apparent in the weak-
field case since magnetic tension is weakest, also allowing the
field to tangle more easily. The middle row shows the colli-
sionless energy-loss rate, calculated as |vA ·∇PCR|, divided by
|vA∇PCR|. This effectively quantifies the misalignment
between the magnetic field and CR pressure gradient. Clearly,
the β∼ 1 simulation shows large regions of misalignment,
while the β∼ 100 simulation has a more isotropic magnetic
field and, hence, better alignment between B and ∇PCR.
Eventually, one would like a fitting formula for this loss rate

for use in, for example, subgrid models of CR transport for
galaxy evolution simulations; however, that is premature at this
stage. Clearly, the degree of misalignment depends on resolu-
tion at low β. For β= 2, our lowest-resolution 643 simulation
has energy loss suppressed by a factor of ∼50, while in our
highest-resolution 5123 simulation, the loss is suppressed by a
factor of ∼10. Higher resolution allows for a more accurate
capture of field line tangling. Future higher-resolution simula-
tions are needed to probe convergence and facilitate the
development of a subgrid CR heating model, but we can clearly
conclude that low-resolution galaxy evolution simulations,
while possibly capturing reacceleration (which is dominated by
the outer scale eddies), likely cannot capture true loss rates.
However, at higher β, the suppression is weaker (approaching a
few tenths) for all resolutions we tried, consistent with the field
becoming more isotropic, and tCR,loss∼ L0/vA is approximately
realized.
An additional interesting effect is that streaming CRs create

“bottlenecks” on a timescale of order the Alfvén crossing time.
In the streaming-dominated regime, µ + g-( )P v vCR A CR along
a flux tube. A minimum in (vA+ v) (e.g., due to a density
spike) creates a situation where CRs would have to stream up
their pressure gradient, which is not possible. Instead, CRs
form a flat pressure profile where no momentum or energy are
transferred to the gas (Skilling 1971; Wiener et al. 2017, 2019;
Bustard & Zweibel 2021); multiple regions can take the form of
a “staircase” structure (Tsung et al. 2022). In sub-Alfvénic
turbulence, these bottlenecks, which form after an Alfvén
crossing time, can form before the flow randomizes during an

Figure 2. Left: growth times as a function of plasma β for CRs with (dashed lines) and without (solid lines) streaming, both with parallel diffusion coefficients of
κ|| = 0.15csL0 such that the growth time is near the minimum. Different colors correspond to different grid sizes. With only diffusion, growth times are near the
minimum value (see Figure 1), but streaming losses significantly offset the energy gain when β is low. Right: ratio of growth times with and without streaming. The
dashed blue line shows the analytic estimate for the κ < vphL0 regime (Equation (12)), and the blue dotted–dashed line shows the analytic estimate for the κ > > vphL0
regime (Equation (13)). Compared to canonical rates assuming pure diffusion, reacceleration is less efficient in low-β environments when streaming is included.

Figure 3. Top: two representative simulations starting from PCR/Pg=1/100
and 1, run out to hundreds of eddy turnover times. Growth is exponential, with
increasing growth times and a transition to quasi-linear growth once PCR >

Pg. Bottom: simulated growth time vs. PCR/Pg for simulations with
constant κ < vphL0 and varying PCR > Pg. We expect (and find) that µtgrow
µv P Pgph

2
CR , consistent with Equation (2).
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eddy turnover time, potentially creating ∇PCR≈ 0
regions where streaming energy loss is suppressed. We see this
in the bottom row of Figure 5, which shows the parallel
(magnetic-field-aligned) CR scale length =  =∣∣L P PCR CR CR

( ˆ · )P b PCR CR relative to the outer eddy scale. In large por-
tions of the simulation box, LCR>> L0 for β∼ 1. At higher β,
due to the combined effects of greater field line tangling and
slower development of bottlenecks, LCR∼ L0 for much more of
the volume. In 1D stratified media, bottlenecks have only weak
effects on the net loss rate, though they greatly increase the
spatial and temporal intermittency of energy loss (Tsung et al.
2022). In C. Bustard & S. P. Oh (2022, in preparation), we
probe CR energy loss/gas heating in greater detail and at
higher spatial resolution, specifically how much gas
heating occurs via grid-scale dissipation or via streaming
energy loss.

4.1. Varying the Diffusion Coefficient

As a sanity check, we briefly explore sensitivities of the
streaming energy-loss time to varying κ, with each simulation
run on a 643 grid and with initial plasma β varying from 2 to
200. As κ increases, both the magnitude of energy loss and the
discrepancy between simulated loss and expectation should
decrease. In the top panel of Figure 6, the solid lines show the
expected loss times, either L0/vA for the streaming-dominated
runs or (κ/v)/vA for the diffusion-dominated runs, the differ-
ence owing to the appropriate guess for the CR scale height.
Indeed, we see that, as the scale height increases with
increasing diffusivity, the loss rate goes down for all β. Energy
loss suppression due to misalignment of B and ∇PCR also
decreases, since ∇PCR is no longer set by compression but by
the speed of field-aligned diffusion.

4.2. Solenoidal versus Compressive Driving

In hydrodynamic three-dimensional turbulence, the fraction
of power in compressive modes is given by Federrath et al.
(2010):

=
-

- +

( )
( )

F

F

f

f f

1

1 2 3
, 14

long

tot

shear
2

shear shear
2

where fshear is a stirring parameter we can vary between 0

(purely compressive forcing) and 1 (purely solenoidal forcing).

A natural mixture of fshear= 0.5 yields Flong/Ftot= 1/3. Since
CR pressure gradients, which lead to collisionless energy loss,

are developed by compressive fluctuations, we expect the loss

rate to be a declining function of fshear. The bottom panel of

Figure 6 shows a set of simulations, each on a 2563 grid and

with initial plasma β varying from 2 to 200, with the same total

driving rate ò split into different mixtures of compressive and

solenoidal driving. Note that because solenoidal motions more

easily amplify magnetic fields than compressive motions, the

saturated plasma β shown on the x-axis differs greatly from the

initial plasma β, saturating, for example, near β∼ 10

( ~ 1A ) for initially super-Alfvenic turbulence. As expected,

fshear= 0, corresponding to our purely compressive driving

simulations shown in the top panel of Figure 4, gives the lar-

gest CR reacceleration rates (∼72teddy for fshear= 0 versus

∼170teddy for fshear= 0.5) and the largest energy-loss rates.

Going from purely compressive forcing ( fshear= 0) to a natural

mixture ( fshear= 0.5) decreases the energy-loss rate by a factor

of 5 or more. That this decrease is greater than a factor of 3,

assuming Flong/Ftot= 1/3, can be understood if δPCR/PCR and

δv/v are not well coupled. We speculate that solenoidal

Figure 4. Top: CR streaming energy-loss time (in units of the eddy turnover time) compared to the approximation L0/vA (dashed line). Each simulation has Ms ≈ 0.5

and streaming-dominated transport, with κ ∼ 0.15L0cs, hence t k t= < =L v L0 A stream 0
2

diff for β � 100. At high β, turbulence easily tangles field lines, and the
energy-loss time approaches L0/vA. At low β, when there is a strong guide field, field line tangling is more difficult, and misalignment between the magnetic field and
the CR pressure gradient suppresses energy loss by a factor ∼0.1. The amount of energy loss is resolution dependent for low β.
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motions lead to longer CR scale lengths due to the aforemen-

tioned bottleneck effect for streaming CRs; this decreases

δPCR/PCR and ∇PCR. This is worth studying in simulations

where CRs are dynamically important, but for now we just

emphasize that solenoidal driving decreases both CR reacce-

leration rates and CR energy-loss rates for a given driving

rate ò.

5. Discussion

5.1. Issues with Reacceleration in the Interstellar Medium

In propagation models, reacceleration is typically included as
a default, and it is an attractive alternative to otherwise “leaky
box” models in that it provides a natural fit to low-energy
(R≈ 1 GV) boron-to-carbon data while maintaining the stan-
dard paradigm of diffusive propagation, i.e., a single power-law
dependence of the diffusion coefficient D(E) or, inversely, the
escape path length λesc∼ 1/D(E) (Heinbach & Simon 1995).
At the same time, canonical reacceleration rates are energeti-
cally troubling, as surprisingly high fractions of total CR

energization (up to ∼50%, comparable to the contribution
from DSA) have been attributed to turbulent reacceleration
(Thornbury & Drury 2014; Drury & Strong 2017), and they are
increasingly in tension with data. If reacceleration was the
dominant acceleration mechanism in the ∼1–100 GeV range in
our galaxy, we would then see a progressive increase in sec-
ondary-to-primary ratio as a function of energy; instead, we see
otherwise (Strong et al. 2007; Gabici et al. 2019). Additionally,
at this low-energy end, a growing wealth of multiwavelength
data, specifically synchrotron measurements, are best fit in
models with little or no reacceleration (Trotta et al. 2011; Di
Bernardo et al. 2013; Orlando & Strong 2013; Gabici et al.
2019), in tension with canonical reacceleration rates assuming
purely diffusive CR transport. These low-energy CRs, how-
ever, are precisely those which are self-confined, and where the
impact of CR streaming must be considered.
Hopkins et al. (2022) argues analytically that timescales for

CR reacceleration, energy loss, and convection obey the
ordering τconv< τloss< τreacc, in which case reacceleration is
negligible and convection in a large-scale wind presents a
compelling alternative to explain the bump in B/C at low

Figure 5. Slice plots for three 2563 simulations, each with initial Pg/PCR ∼ 100 but with β ∼ 1,MA ∼ 0.35 (left), β ∼ 10,MA ∼ 1.1 (middle), and β ∼ 100,MA ∼ 3.5
. The top row shows gas density with magnetic field streamlines overlaid. The middle row shows the misalignment between B and ∇PCR. The bottom row shows the
field-aligned CR scale length relative to the outer eddy scale. Notably, the higher β simulations result in more field line tangling, generally greater alignment between
B and ∇PCR (leading to more CR energy loss), and shorter CR scale lengths.
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energies. Our simulations specifically demonstrate that non-
resonant reacceleration from subsonic, compressive turbulence
is ineffective in typical ISM environments with low β, although
here we find the suppression is due to phase-shifted CR forces
rather than CR streaming losses. Streaming stunts energy gain
due to large-scale compressive motions, even when CRs dif-
fuse slowly and would otherwise gain energy from turbulence
at the maximal rate. Even if typical ISM CR diffusivities lie in
the κ>> vphL0 regime,9 where streaming corrections are
smaller, reacceleration is, in any case, less efficient than in the
well-trapped (κ< vphL0) regime. That turbulence is not purely

compressive further decreases the efficiency of nonresonant
reacceleration since solenoidal motions do not energize CRs.
All considered, the neglect of streaming in galactic transport
codes (see Hanasz et al. 2021 for a recent review) overestimates
CR energization by second-order Fermi acceleration by a large
factor in β∼ 1 plasmas like the warm ISM.
What about other reacceleration mechanisms? Resonant

second-order Fermi acceleration, which relies on the presence
of both forward and backward propagating waves, is not pos-
sible for self-confined CRs, for which the only waves that are
excited are those that comove with the CRs (Zweibel 2017).
Reacceleration by transit-time damping (TTD), essentially the
magnetized version of Landau damping, is similarly inefficient
at these energies: scattering rates from TTD are orders of
magnitude lower than the rate of gyroresonant scattering by
self-confinement (e.g., Figure 2 of Yan & Lazarian 2004).
While we here consider only second-order Fermi mechan-

isms, first-order Fermi mechanisms, such as DSA or turbulent
reconnection (Lazarian et al. 2020), may be efficient in regions
of the ISM such as molecular clouds (Gaches et al. 2021) or
superbubbles (Vieu et al. 2022) where turbulence is supersonic
and therefore cascades into shocks. These first-order processes
imprint distinctly different spectral signatures than second-
order Fermi acceleration.

5.2. Reacceleration in the Circumgalactic Medium and
Intracluster Medium

While streaming considerably stunts reacceleration in low-β
galactic environments, nonresonant reacceleration in other
environments is still quite plausible. Table 2 lists reasonable
values for the phase velocity, outer driving scale, and plasma β
in the warm ISM (WIM), CGM, and ICM.
The CGM is a plausible candidate for efficient nonresonant

reacceleration. Collisional loss rates are long in these diffuse
galaxy halos, and for typically assumed CR diffusion coeffi-
cients of κ∼ few × 1028 cm2 s−1, κ< L0vph and CRs may be
well trapped in turbulent eddies of the CGM, prolonging their
residence time in the CGM and boosting their energy density.
The effect of streaming is tied to the local plasma β and is
therefore location dependent. Observational constraints on
plasma β in the CGM are sparse, but observations of a fast
radio burst passing through a foreground galaxy halo suggest
β> 1 (Prochaska et al. 2019). In simulations, CGM plasma β is
often large (e.g., β∼ 10–100 in FIRE simulations; Hopkins
et al. 2020), though it can significantly fall in regions affected
by galactic winds (van de Voort et al. 2021), with β∼ 1 most
favorable in large-scale galactic winds. The efficacy of

Figure 6. Top: streaming energy-loss time as a function of additional diffu-
sivity; all simulations here were run on a 643 grid. The solid lines now show
vA/LCR, where LCR ∼ κ/v when diffusion dominates and LCR = L0 for the
streaming-dominated simulation. At high β, these approximations are well
reproduced. Bottom: streaming loss time as a function of β for a mixture of
solenoidal and compressive driving, controlled by the parameter fshear. All
simulations were run on a 2563 grid. For increasingly solenoidal driving
(increasing fshear), loss times and reacceleration times both increase.

Table 2

Typical Values for the WIM, CGM, and ICM

WIM CGM ICM

vph (cm s−1
) 106 107 107

L0 100 pc 1–10 kpc 100 kpc

κcrit = vphL0 (cm
2 s−1

) 3 × 1026 3 × 1028−29 3 × 1030

β 1 1–10? 100

Note. Note that β appears to vary quite widely in simulations of the CGM, e.g.,

van de Voort et al. (2021), where β ∼ 0.01 in localized regions coincident with

galactic outflows, but β ∼ 10–100 in quiescent regions. Recent observations of

a fast radio burst passing through a foreground galaxy halo suggest β > 1

(Prochaska et al. 2019).

9
Note, however, that this presumes a constant diffusion coefficient. The

empirical diffusion coefficients which are used in galactic propagation models
more likely reflect conditions in the halo, where diffusing particles spend most
of their time. In quasi-linear theory of self-confinement, where diffusion
expresses transport relative to the Alfvén frame, the diffusion coefficient adapts
to local conditions (e.g., see Wiener et al. 2017):
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where ~ ( )v vD A is the net drift velocity. This can in fact result in
κ/csL0  1, rather than κ/csL0 ? 1.
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reacceleration could thus vary spatially, being most efficient in
high-β regions, while being stunted in others. Overall, turbulent
reacceleration could play a much more significant role in reg-
ulating the CR content of the CGM compared to the ISM.

Reacceleration rates are largely unchanged by streaming
losses in the high-β environment typical of the ICM, where
reacceleration is frequently invoked to explain radio emission
in merging galaxy clusters. CR energy densities in the ICM are
constrained to be quite low but are still consistent with models
of (efficient) turbulent reacceleration (Brunetti & Lazarian
2007, 2011). While most theoretical analyses to date of reac-
celeration in merging clusters have focused on reacceleration
from TTD, we simply remind the reader that nonresonant
reacceleration will, at some level, always be present and can
have a competitive growth time compared to resonant reacce-
leration in high-β environments (e.g., see Figure 6 of Brunetti
& Lazarian 2007). This is useful to keep in mind due to the
universality and simplicity of nonresonant reacceleration. The
resonant case, on the other hand, relies on turbulence cascading
down to gyroresonant scales and highly uncertain details of the
spectra and damping scales in compressible MHD turbulence
(Brunetti & Lazarian 2011; Miniati 2015; Pinzke et al. 2017).
For instance, if compressible modes dissipate in weak shocks
(Burgers turbulence), as is quite plausible, then particle accel-
eration rates are too low to explain observed giant radio halos.
Even if compressible turbulence is Kraichnan, standard TTD
on thermal particles gives problematic damping scales for
turbulence, and a reduction of particle mean free path by
plasma instabilities (mirror, firehose) might be necessary
(Brunetti & Lazarian 2011). By constrast, nonresonant turbu-
lent reacceleration is a comparatively robust, well-understand
mechanism further validated by our numerical simulations.

5.3. Do Galaxy Evolution Simulations Accurately Capture
Cosmic Ray Energy Transfer?

In Appendix, we briefly review the impact of spatial reso-
lution. We find that turbulent reacceleration is adequately
resolved as long as the outer scale of turbulence is sufficiently
well resolved (by ∼20 cells). Most galaxy evolution simula-
tions refine based on density, meaning they decrease spatial
resolution going from the dense ISM to the diffuse halo. For-
tunately, outer eddy scales similarly increase going from the
ISM to the halo, meaning that simulations likely resolve at least
the outer driving scale and, in fact, have a good chance of
capturing accurate reacceleration rates. One caveat is turbulent
reacceleration in the κ= vphL0 regime. As the dynamic range
of the simulation increases, the acceleration time decreases, due
to acceleration by smaller eddies, particularly those of size l
where κ∼ vphl.

Unfortunately, spatial resolution does affect the influence of
CRs on the background gas. When small-scale field line tan-
gling is not well resolved, streaming energy loss is artificially
reduced (Figure 4), especially in our low-β simulations. This
has abundant implications for large-scale simulations. For
instance, one effect of CRs that has garnered significant
attention is their ability to drive multiphase galactic winds
(Ipavich 1975; Breitschwerdt et al. 1991; Salem & Bryan 2014;
Ruszkowski et al. 2017; Buck et al. 2020; Bustard et al. 2020;
Hopkins et al. 2020; Bustard & Zweibel 2021; Huang & Davis
2022; Quataert et al. 2022). Indeed, turbulent reacceleration
could affect CR wind driving; for instance, by reenergizing
CRs in the halo despite strong energy losses in streaming

scenarios arising from streaming down steep density gradients
(Quataert et al. 2022). An unsolved issue with CR acceleration
of multiphase gas is how CRs accelerate cold (T∼ 104K) dense
gas clouds. Do they provide direct acceleration by exerting CR
forces on the cold gas, due to steep CR gradients which
develop at the cold–hot gas interface (Wiener et al. 2017, 2019;
Brüggen & Scannapieco 2020; Bustard & Zweibel 2021)? Or is
direct acceleration inefficient (as might be expected if field
lines wrap around the cloud), and CRs first accelerate the
background hot gas, which then accelerates the cold gas via
mixing-induced momentum transfer (Gronke & Oh 2018,
2020)? There are hints of the latter process in Bustard &
Zweibel (2021) and Huang et al. (2022). The relative impor-
tance of indirect versus direct acceleration depends on the
relative efficacy of CR thermal versus momentum driving,
particularly in the background hot medium.
Figure 4 suggests that, forMA< 1, the CR energy-loss rate is

a relatively flat or even rising function of β; a tangled field
overcompensates for a lower magnetic field strength, at least
until the field is isotropic (MA∼ 1), at which point energy loss
scales inversely with β. Hints of this behavior were recently
seen in Huang et al. (2022), where CR heating and, in turn,
indirect cloud acceleration were actually more efficient in runs
with decreased field strength. A goal of future work, currently
premature given the incomplete parameter space we have so far
explored, should be to develop a subgrid model for energy
loss/gas heating as a function of resolution, MA, and different
turbulent driving modes. If convergence (not clearly seen in
Figure 4) can be achieved with higher-resolution runs, this may
not be far off.

6. Conclusions

In this paper, we reviewed the nonresonant reacceleration of
CRs in subsonic, compressive turbulence and derived heuristic
modifications to reacceleration rates when CRs are self-con-
fined or “streaming.” As CRs are believed to be self-confined
up to E 300 GeV, CR reacceleration rates are modified
throughout this entire energy range. After describing our ana-
lytic expectations, we ran a suite of MHD simulations to verify
previously derived reacceleration rates for purely diffusive CRs
(Ptuskin 1988; Chandran & Maron 2004), test the effects of
streaming, and probe the nonlinear regime. Our main findings
are as follows:

1. Our simulations, which show a Burgers-like power
spectrum, verify the analytic reacceleration rates derived
for a k−2 spectrum (Ptuskin 1988; Equations (1), (2)),
including the expected modifications due to anisotropic
field-aligned transport at large κ (Chandran & Maron
2004; Equation (8)). In particular, reacceleration rates
peak for diffusion coefficients κ∼ 0.1L0vph, and have
scalings consistent with analytic expectations. To our
knowledge, this is the first time CR turbulent reacce-
leration has been shown in MHD simulations with a fluid
CR treatment and is an encouraging test of the Athena++

CR module implemented in Jiang & Oh (2018).
2. When CR streaming is introduced, the rate of net energy

gain can be substantially suppressed compared to the
diffusion-only case, due to modified phase shifts between
CR and gas variables. For κ L0vph, the regime where
reacceleration is canonically most efficient, growth times
in low-β plasmas typical of the ISM are significantly
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longer than canonical expectations (Equation (12); right

panel of Figure 2). By contrast, in high-β environments

like the CGM and ICM, streaming does not have a sig-

nificant impact on turbulent reacceleration. In diffusion-

dominated regimes (κ> L0vph), the impact of streaming

is milder, but reacceleration is in any case already inef-

ficient. New reacceleration times ~t
p

Dgrow
pp

2

in κ< vphL0

and κ> vphL0 regimes, respectively, are given below,

assuming a k−2 kinetic energy spectrum (see

Equation (4), and the ensuing discussion for how to

calculate reacceleration rates with alternative power

spectra):
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L0 is the outer eddy scale, L1 is the smaller characteristic

scale of shocks in the medium, and fcorr encodes correc-

tions due to anisotropic diffusion (Chandran & Maron

2004) and streaming transport assuming an isothermal

gas (this work):

The β-dependent terms are relevant for self-confined CRs with
energy E� 300 GeV; at higher energies, CRs are no longer
self-confined and these can be dropped.

To diagnose the limitations of lower-resolution galaxy evol-
ution simulations and as a step toward subgrid modeling of CR
energetics and influence, we also determine some sensitivities
to resolution.

1. Reacceleration rates with pure diffusion are largely

insensitive to resolution (the minimum growth time is

well-captured even when the outer eddy scale is only

resolved by 20 cells), but higher resolution more accu-

rately captures power at small scales, boosting simulated

reacceleration rates. This is important in the κ= vphL0
regime.

2. Streaming energy loss, vA ·∇PCR, is more strongly

dependent on Alfvén Mach number, MA, and simulation

resolution. Because streaming energy loss only occurs

when the CR pressure gradient is aligned with the

magnetic field, not every compression induces streaming

energy loss. This misalignment between the magnetic

field and ∇PCR is a function of plasma β since it is more

difficult for turbulence to tangle magnetic field lines in

highly magnetized plasmas. The net result is that relative

CR loss rates are much lower than vA/L0 in low-β
plasmas (Figures 4 and 5) and are clearly sensitive to

resolution. When field line tangling is resolved, the

average misalignment between ∇PCR and the magnetic

field decreases. Counterintuitively, due to the counter-
vailing effects of increased CR streaming speeds and
decreased field alignment at lower β, our highest-reso-
lution results over β∼ 1–100 show that CR energy loss
is insensitive to plasma β. This also shows that the
reduced acceleration rates at low β are not due to
increased CR losses.

An important issue we have not considered in this paper is
the effect of density stratification, which results in a back-
ground CR gradient. This provides constant CR coupling,
pressure support and heating, and, if sufficiently strong, can
drive a wind. How does CR reacceleration proceed in such a
background? One issue is that the density fluctuations created
by turbulence can create CR “bottlenecks” (Skilling 1971;
Wiener et al. 2017): small decreases in the Alfvén speed along
a magnetic flux tube cause CRs to pile up or “bottleneck.” For
purely streaming CRs, they readjust to these conditions and
create a flat CR pressure upstream of the dip in Alfvén speed.
As ∇PCR→ 0, CRs no longer excite confining Alfvén waves
and instead free-stream at close to the speed of light, no longer
transferring energy or momentum to the gas. It is as yet unclear
how this stochastic coupling affects CR energization and
escape rates from stratified, turbulent media. We have also not
considered the case where CR phase shifts and/or heating
conspire to reverse the sign of energy transfer, such that CRs
give energy to gas motions, rather than vice versa (Begelman &

Zweibel 1994; Tsung et al. 2022). This would occur when

β� 0.25, a regime we plan to study in future work.
Finally, although it is clear that CRs can damp compressive

turbulence, their back-reaction on the turbulent cascade is

relatively unexplored but possibly significant, for instance in

CR-dominated galaxy halos (Ji et al. 2020). We explore this in

a series of higher-resolution follow-up simulations (C. Bustard

& S. P. Oh 2022, in preparation), where we find that CRs, even

with very low reacceleration rates, can absorb a significant

fraction of large-scale turbulent energy, subsequently modify-

ing the compressive cascade.
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Software: Athena++ (Stone et al. 2020), yt (Turk et al.
2011), Matplotlib (Hunter 2007), Mathematica (Wolfram
Research, Inc. 2022).

Appendix
Convergence of Reacceleration Rates

We now study simulation convergence, with respect to both
spatial resolution and choice of the maximum speed of light in
the two-moment method. The time-dependent CR flux term

¶ ¶v F t1 m
2

CR in the two-moment equations allows CRs to free-
stream at the speed of light when the CR pressure gradient
vanishes: ∇PCR→ 0 and σc→ 0. If the flux term is sufficiently
small, CRs are well coupled to waves, and the two-moment
equations of CR hydrodynamics collapse to the usual one-
moment equations (Breitschwerdt et al. 1991). To accurately
describe coupling versus decoupling, some care must be taken
with the flux term, specifically the value of vm, which must be
greater than all other speeds in the system (including the CR
propagation speed). We fiducially set vm= 50cs, which gives
converged reacceleration rates at not only our fiducial resolu-
tion of 2L/Δx= 64 but also at higher resolutions 2L/
Δx= 128, 256. While not shown here, we also find that
vm= 50cs is necessary to get converged CR loss rates, with
lower vm artificially boosting loss rates. Figure 7 shows simu-
lation data with maximum speed of light in the range vm/
cs= 10–400, each for purely compressive turbulence with
turbulent Mach number ~ 0.5. Simulated growth times are
well converged with respect to vm and show an excellent match
to the analytic derivation from Ptuskin (1988), assuming
L0/L1= 20.

This convergence may seem a bit surprising at first since
the time-dependent flux term ¶ ¶v F t1 m

2
CR is only small when

vA/vm<Δx/L; however, this is only the criterion for the two-
moment equations to effectively collapse to the one-moment
equations. Many of the test problems in, for example, Jiang &
Oh (2018) and Tsung et al. (2021) violate this criteria but show
convergence to analytic results. Indeed, one of the most pow-
erful components of the two-moment method is the ability to
unlock stability and convergence from the quadratic time-
stepping requirement needed for one-moment implementations.
Convergence with respect to spatial resolution proves a bit

trickier in our simulations. For instance, in Figure 2, one can
see that the growth times for pure diffusion continue to
decrease with increasing resolution. The value of L1, which we
associate with the width of a shock front in the medium, should
be set by the spatial resolution. For our 643 simulations, the
outer scale is resolved by ∼20 cells in each direction, making
L0/L1∼ 20. In real astrophysical plasmas, though, the scale
separation is much larger, and the velocity divergence, which
ultimately energizes CRs, gets additional contributions from
smaller scales. Lines in Figure 7 denote different L0/L1.
Notably, the growth times in the κ< vphL0 regime are much
shorter; presumably, simulations of higher resolution would
match these curves. To test this, we ran a few 1283 and 2563

simulations, again using vm/cs= 50. Growth times in the
κ< vphL0 regime do decrease: the 1283 runs match the analytic
curve with L0/L1= 40 quite well; the 2563 runs, for which we
have a smaller set of data points, show somewhat shorter
growth times than the minimum of the L0/L1= 80 curve, but
the growth time near κ/vphL0∼ 0.01 returns to the L0/L1= 80
curve. Overall, we recover the expected trend that higher
resolution in the κ< vphL0 regime should lead to shorter
growth times. Since CRs with κ> vphL0 diffuse quickly over
small-scale structures, higher resolution makes very little dif-
ference in this regime.

Figure 7. Testing growth time convergence with respect to the reduced speed of light, vm (relative to the fastest propagation speed, cs), and numerical resolution.
Simulations with vm/cs = 50 appear well converged. Magenta and green points denote simulations with 1283 and 2563 resolution, respectively, for which the velocity
divergence and hence compressional heating is slightly larger and decreases the reacceleration time in the well-trapped κ < vphL0 regime. For large κ, CRs diffuse
quickly over small-scale structures, which then do not need to be well resolved to get converged reacceleration rates.
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