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Abstract

While it is well known that cosmic rays (CRs) can gain energy from turbulence via second-order Fermi
acceleration, how this energy transfer affects the turbulent cascade remains largely unexplored. Here, we show that
damping and steepening of the compressive turbulent power spectrum are expected once the damping time

t v E Edamp
2

CR CR
1r~ µ - becomes comparable to the turbulent cascade time. Magnetohydrodynamic simulations of

stirred compressive turbulence in a gas-CR fluid with diffusive CR transport show clear imprints of CR-induced
damping, saturating at  ECR ~ ˜ , where ̃ is the turbulent energy input rate. In that case, almost all of the energy in
large-scale motions is absorbed by CRs and does not cascade down to grid scale. Through a Hodge–Helmholtz
decomposition, we confirm that purely compressive forcing can generate significant solenoidal motions, and we
find preferential CR damping of the compressive component in simulations with diffusion and streaming, rendering
small-scale turbulence largely solenoidal, with implications for thermal instability and proposed resonant scattering
of E 300 GeV CRs by fast modes. When CR transport is streaming dominated, CRs also damp large-scale
motions, with kinetic energy reduced by up to 1order of magnitude in realistic ECR∼ Eg scenarios, but turbulence
(with a reduced amplitude) still cascades down to small scales with the same power spectrum. Such large-scale
damping implies that turbulent velocities obtained from the observed velocity dispersion may significantly
underestimate turbulent forcing rates, i.e.,  v L3r˜ .

Unified Astronomy Thesaurus concepts: Cosmic rays (329); Magnetohydrodynamics (1964); Plasma astrophysics
(1261); Circumgalactic medium (1879); Interstellar medium (847)

1. Introduction

Cosmic rays (CRs) and magnetized turbulence are both
ubiquitous in the Universe, and their interplay has long been a
fascinating topic of research. Fluctuations at the small-scale end
of a turbulent cascade, on scales of the order of the CR
gyroscale, are frequently invoked to scatter individual CRs,
creating the high degree of observed CR isotropy and the long
residence times of CRs in the Milky Way disk and its
surrounding halo relative to the light-crossing time (Amato &
Blasi 2018; Becker Tjus & Merten 2020). In such a scenario,
dubbed the “extrinsic turbulence” model (Zweibel 2017), the
resulting bulk CR transport is magnetic-field-aligned diffusion,
with an energy-dependent spatial diffusion coefficient κ|| and CR
flux FCR∝ κ||∇PCR. CRs in this picture can also gain energy
from repeated scattering off gyroscale fluctuations, a second-
order Fermi mechanism called “resonant reacceleration.”

Phenomenological models of CR propagation fit to direct
and indirect CR observables (Hanasz et al. 2021) have
traditionally assumed a Kolmogorov scaling for turbulence,
appropriate for hydrodynamic turbulence; however, our under-
standing of CR scattering by turbulence has been refined over
time with new insights into magnetohydrodynamic (MHD)
turbulence. Most profoundly, MHD turbulence differs from
hydrodynamic turbulence in that MHD forces, and hence
turbulence, are no longer isotropic. The resulting anisotropy of
slow and Alfvén modes (Goldreich & Sridhar 1995) makes
them inefficient CR scatterers, as CRs interact with multiple
uncorrelated eddies during one gyro-orbit, essentially canceling

out gyroresonant contributions from each eddy (Chandran
2000).
Compressible fast modes, whose velocities are independent

of magnetic field direction, are more isotropic (Cho &
Lazarian 2003) and therefore considered the best candidate
for CR scattering (Yan & Lazarian 2004); although, the degree
of isotropy decreases with decreasing scale due to strong
collisionless and viscous damping; hence, the efficacy of CR
scattering decreases with decreasing CR energy (Kempski &
Quataert 2022). Fast mode scattering, then, is most plausible
for higher-energy CRs (E> 300 GeV).
For E< 300 GeV, where most of the CR energy resides, CRs

can largely create scattering perturbations themselves through a
resonant streaming instability (Wentzel 1968; Kulsrud &
Pearce 1969). The resulting transport is no longer purely diffusive;
instead, CRs “stream” down their field-aligned pressure gradient

at the local Alfvén speed v B 4A pr= with FCR∝ vAPCR, and
additional, energy-dependent CR diffusivity (FCR∝∇PCR) is
introduced by wave damping,3 e.g., ion-neutral damping,
nonlinear Landau damping, and turbulent damping (Skilling
1971; Farmer & Goldreich 2004; Blasi et al. 2012; Wiener
et al. 2013; Zweibel 2017; Bustard & Zweibel 2021). There is
also an important difference regarding energy transfer between
CRs and hydromagnetic waves: whereas extrinsic turbulence is
generated externally, in self-confinement, the free energy to
generate waves comes from the CRs themselves, and this
energy is subsequently dissipated into the thermal gas via wave
damping at a rate H=− dECR/dt= vA ·∇PCR. We refer to this
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collisionless energy transfer as streaming energy loss/gas
heating.

While considerable effort has been put toward exploring

resonant-scale interactions between CRs and either self-

generated (e.g., Skilling 1975; Felice & Kulsrud 2001; Bai

et al. 2019; Holcomb & Spitkovsky 2019) or externally driven

(e.g., Giacalone & Jokipii 1999; Yan & Lazarian 2002;

Reichherzer et al. 2020) waves, somewhat less focus has been

given to the interplay between CRs and turbulence on scales

much larger than a CR gyroradius (less than an astronomical

unit for a gigaelectronvolt CR proton in a ∼μG field). In

particular, we will focus on scales larger than the CR mean free

path due to pitch angle scattering,4 where the collective CR

population is well described as a fluid that experiences
compressions and rarefactions in the turbulent flow, leading
to energy transfer between the CRs and turbulence. To
distinguish this from its resonant-scale counterpart, the flow
of energy from turbulence to the bulk CR fluid is called
nonresonant reacceleration (Ptuskin 1988), and its efficiency
depends on CR transport model.

For purely diffusive CR transport, nonresonant reaccelera-

tion is maximally efficient when CRs are well trapped in the

turbulent flow (κ< vphL0, where vph is the phase speed of

compressive fluctuations, and L0 is the outer eddy scale). When

streaming is taken into account, the interaction between

perturbed CR and gas variables is fundamentally altered.

While CR diffusion introduces a π/2 phase shift between CR

and density perturbations, leading to a CR force that damps

fluctuations much like a damped harmonic oscillator, both the

change in flux (FCR∝ PCR instead of FCR∝∇PCR) and the

associated energy loss that accompany streaming transport

modify the CR force (Tsung et al. 2022). As we showed in

Bustard & Oh (2022, hereafter Paper I), CR reacceleration/

turbulent damping rates become dependent on plasma
β= Pg/PB; they remain largely unchanged in high-β plasmas
like the intracluster medium (ICM) where reacceleration is a
leading explanation for radio halos (e.g., Brunetti & Lazarian
2011; Brunetti & Jones 2014), but they are stunted significantly
in low-β plasmas.
Despite nonresonant reacceleration being a fairly inefficient

process compared to diffusive shock acceleration (a first-order
Fermi mechanism), with minimum growth times lengthened
even further by streaming transport, it was pointed out by
Thornbury & Drury (2014) and Drury & Strong (2017) that a
significant fraction of total CR power in galaxies could come
from reacceleration, consequently creating a large sink for
turbulent energy. In this paper, we present analytical estimates
and CR+MHD simulations suggesting that CRs in very
plausible astrophysical environments can divert significant
amounts of turbulent energy, essentially acting as an unsual
form of viscosity. The outcome is a CR-modified route to gas
heating, rather than the typical conversion to heat at the
dissipation scale, and a damped turbulent energy spectrum with
decreased small-scale, compressive power.
These changes are, of course, strongest in environments

where CRs are dynamically important such as the interstellar
medium (ISM; where CR energy densities are roughly in
equipartition with turbulent and magnetic energy densities;
Boulares & Cox 1990) and the Milky Way circumgalactic
medium (CGM; which may be energetically dominated by
CRs; e.g., Ji et al. 2020), but they would affect any process that
relies on compressive motions. For instance, compressions seed
thermal instability (Field 1965; McCourt et al. 2012;
Mohapatra et al. 2022), which is frequently invoked, for
instance, to explain the existence of cold CGM clouds (Putman
et al. 2012). Fluctuations that scatter CRs are not immune to
these modifications either. Low-energy, self-confined CRs
could sap energy from the turbulent fast mode cascade at large
scales, decreasing the available small-scale power needed to
scatter high-energy CRs.

Table 1

Simulation Parameters, CR Module Settings, and Other Variable Definitions

Parameter Definition/Setting/Equation Additional Notes

L Half box size k = 2 mode

L0 Outer eddy scale k = 3 mode

tdrive 2 × 10−3
(L/cs) Turbulence driven every tdrive

tcorr L/cs Autocorrelation time

̃ , ò Input turbulent energy rate, dE/dt ρv3/L, v3/L in hydro-turbulence

vm 50cs Effective maximum speed of light

κ CR diffusion coefficient Assumed to be field-aligned only (κ = κ||)

β Pg/PB Plasma beta

cs Pgg r Gas sound speed

vph P P Pg BCR CRg g r+ +( ) Compressive wave phase speed

vA B 4pr Alfvén speed

cc PCR CRg r Effective CR sound speed

s,ph,A,c v/cs, v/vph, v/vA, v/cc Mach numbers

H vA · ∇PCR “Collisionless” CR loss rate/gas heating rate

fCR, fth, fCR,heating  ECR ˜ ,  Eth ˜ , 〈H〉/̃ Fraction of ˜ CRs, thermal gas, CR heating

E(k) Kinetic energy spectrum ∝k
−5/3

(Kolmogorov), k−2
(Burgers), k−3/2

(Kraichnan)

tinject v2r ˜ Energy injection time

tcascade kE(k)/F(k) Cascade time (see Equation (11))

tgrow p
2/Dpp CR reacceleration time (Section 3 and Paper I)

tdamp 


v t tmax , max ,
t

P

2 1
c
2

grow inject
grow

CR
r~ ~( ) ( )

˜
Turbulent damping time (Equation (1))

4
This is usually around a parsec both in phenomenological models of Milky

Way CR propagation motivated by extrinsic turbulence and in self-confinement
models.

2
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This paper is outlined as follows. In Section 2, we discuss
our simulation method and setup. In Section 3, we analytically
estimate and then quantify in simulations the fractions of
turbulent driving and gas heating that are channeled through
CRs. We then analytically derive how CR-induced damping
should affect MHD turbulence spectra (Section 4.1) and the
conditions under which damping rates can exceed cascade rates
(Section 4.2). In Section 4.3, we present exploratory simula-
tions strongly suggestive of these analytic estimates and show
sensitivities to streaming versus diffusive CR transport. We
discuss regimes of applicability and implications in Section 5
and conclude in Section 6.

2. Simulation Setup

We begin by briefly describing the simulation methodology
and setup, which is described in more detail in Paper I. Using
the Athena++ MHD code (Stone et al. 2020) coupled with an
additional CR module that models CR diffusive and streaming
transport in a fluid approximation using a two-moment method
originally developed for radiation transport (Jiang & Oh 2018),
we numerically solve the ideal MHD equations plus two
additional equations for the CR energy and energy flux. All
simulations begin with a flat background (no gradients)
consisting of CRs, gas, and magnetic fields, with a constant
net (straight) magnetic field in the x̂-direction. We stir
turbulence following an Ornstein–Uhlenbeck random process
(Uhlenbeck & Ornstein 1930; Eswaran & Pope 1988),
randomly generating velocity perturbations between modes
k= 1 and 3 in a cubic box of width 2L. For driving, we set the
autocorrelation timescale to be tcorr= L/cs and drive fluctua-
tions every tdrive= 2× 10−3

(L/cs). For the parameter scans in
Section 3, we use grids of size 1283 and 2563. We simulate
fluids with either an isothermal equation of state, where the
thermal energy is fixed, or an adiabatic equation of state. The
latter results in a gradual rise in the gas pressure due to a
combination of CR heating and grid-scale dissipation of the
cascade, which we decompose and quantify. These simulations
all use purely compressive forcing, with two turbulent driving
rates  dE dt=˜ , resulting in approximately  0.15s ~ and
 0.5s ~ turbulence with a weak dependence on plasma β
since MHD forces counteract motions. We avoid solenoidal
driving to avoid turbulent amplification of magnetic fields, so
that we can evolve simulations at approximately fixed plasma
β. To a good approximation, solenoidal driving only amplifies
magnetic fields, while compressive driving energizes CRs.

At our parameter scan resolution of 2L/256, the cascade
exhibits only a short inertial range, and in testing we find that
the spectral slope in pure MHD runs (no CRs) is intermediate
between E(k)∼ k−2 and E(k)∼ k−3/2

—a shallower slope is
expected for compressive fast modes, but the exact exponent
has been highly debated. In our analytic estimates
(Section 4.1), we will explore CR-induced deviations to
different initial spectra, but we particularly note significant
changes to Kraichnan turbulence where E(k)∼ k−3/2 initially.
For Section 4.3, where we want to test deviations from this
spectrum due to CR drag, we increase the resolution to 2L/512,
though we find that the main trends are well recovered even
with a resolution of 2L/256 (see Appendix C). Higher-
resolution simulations giving a larger inertial range would be
preferable, but to ensure an accurate treatment of CR
propagation and influence, the two-moment method has an
effective, maximum speed of light parameter vm that must be

much larger than other propagation speeds in the system and
that sets the Courant-limited time step. In Paper I, we found
that vm∼ 50cs gives seemingly converged CR heating rates and
reacceleration rates. With this choice, our MHD+CR simula-
tions are about a factor of 8 more expensive than pure hydro-
turbulence sims, prohibiting us from going to much higher
resolution.

3. Cosmic-Ray Diversion of Turbulent Energy

We’ll begin with a short review of nonresonant reaccelera-
tion (see, e.g., Ptuskin 1988; Chandran & Maron 2004; Lynn
et al. 2012; Paper I for greater detail) and its relation to the
turbulent damping rate. Variables used in our discussion are
summarized in Table 1. As discussed in Paper I, “drag” against
CRs provides a frictional force on compressive motions known
as Ptuskin damping (Ptuskin 1981). It is similar to radiative
damping of sound waves, which famously leads to Silk
damping of acoustic waves in the early Universe (Silk 1968). In
general, since Ek/tdamp∼ PCR/tgrow, we have5:


t v

t

P
t tmax ,

1
max , 1damp

2 grow

CR
c
2

grow injectr~ ~
˜

( ) ( )⎜ ⎟⎛
⎝

⎞
⎠

where  v ccc º is the Mach number in units of the CR

effective sound speed, c Pc CR r~ , and t vinject
2rº ˜ .

Equation (1) is a general expression for the damping time,

for which one can plug in the appropriate tgrow, the CR

reacceleration (or growth) time.
Working in the limit of purely diffusive spatial CR transport

with isotropic diffusion coefficient κ, the reacceleration time
can be derived in two limits depending on the ratio of diffusion
time tdiff= l2/κ to compressive wave crossing time tsc= l/vph
across an eddy of length l in a medium with compressive phase
velocity v P P P Pph tot

1 2
g B CR

1 2r r~ ~ + +( ) [ ) ] . In the fast
diffusion limit (tdiff= tsc, or equivalently, κ? vphl), deriving
the CR momentum diffusion coefficient Dpp follows the
textbook argument for second-order Fermi acceleration:
Dpp∼ (Δp)2/τscatter∼ p2v2/(c2τscatter)∼ p2v2/κ. The energy
growth time, defined as p2/Dpp is

t
v

v l; . 2grow 2 ph
k

k~ ( )

In the opposite limit of slow diffusion (tdiff? tsc, or
equivalently, κ= vphl), D p p v v lpp

2
diff

2 2
ph
2 2d t k~ ~( ) ( )( ),

and the growth time is

t
p

D

v l

v
v l; . 3

pp

grow

2
ph
2 2

2 ph
k

k~ ~ ( )

Joining the two regimes in the middle, the minimum growth

time is tgrow∼ (vphl/v
2
) when κ∼ vphl.

Strictly speaking, these scalings are appropriate if CR
diffusion is isotropic, if streaming is negligible, and if all
reacceleration comes from eddies of a single scale l. Relaxing
these assumptions introduces further modifications. In the fast
diffusion limit (κ? vphl), there are also correction factors that
decrease the growth time if anisotropic rather than isotropic
spatial diffusion is accounted for (Chandran & Maron 2004).

5
In this paper, we use the notation ̃ to denote the turbulent driving rate in

units of turbulent energy density per unit time, and we use ò to denote the
driving rate in units of v2 (velocity squared) per unit time. In hydrodynamic
turbulence,  v L3rº˜ and ò ≡ v3/L, but these equivalences do not hold in CR-
modified turbulence.

3
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Additional streaming transport, widely applicable for CRs with
energy E� 300 GeV, introduces a correction factor that

decreases reacceleration rates by f 1 2corr b= - and

f 1 2corr
1 2b= -( ) in the slow and fast diffusion regimes,

respectively (Paper I); in the slow diffusion limit (κ= vphl),
multiple eddies contribute to reacceleration, with relative
contributions dependent upon the shape of the turbulent power
spectrum (see Equation (4) in Paper I for a more general
expression). If the wave spectrum is Burgers-like (E(k)∼ k

−2
),

roughly consistent with our simulations, eddies at each
logarithmic interval in the inertial range contribute equally to
reacceleration, and tgrow has a broad minimum of
tgrow∼ (vphl/v

2
) throughout the entire range of κ||< vphl.

If we work in the limit of a single outer-scale eddy (i.e., we
only consider eddies of size L0), in the fast diffusion
(κ? vphL0) regime, where tgrow∼ κ/v2 then Equation (1)

gives t ccdamp
2k~ , in agreement with the classic (much more

detailed) calculation of this effect by Ptuskin (1981). Working
instead in the broad regime of maximal reacceleration, where
CRs are well trapped in the turbulent flow (when κ< vphL0),
the characteristic growth time is tgrow∼ (vphL0/v

2
), which

gives:

t
v L

c
tmax , . 4

c

damp
ph 0

2 inject~ ( )⎜ ⎟
⎛
⎝

⎞
⎠

Note that tdamp is velocity independent.
With these reacceleration times in mind, we can now

estimate the fraction of turbulent energy forcing ̃ that goes
toward CRs. It is given by



 
f

E E

t
. 5CR

CR CR

grow

~ ~
˜ ˜

( )

For example, for Kolmogorov turbulence, where  v L3r~˜ ,

and for the characteristic growth time tgrow∼ 9/2vphL/v
2, this

gives:

f
E t

v L

P

v
max

2

3
, 1 . 6CR

CR grow

3 ph
CR

2r r
~ ~ ( )⎜ ⎟

⎛
⎝

⎞
⎠

Note that Equation (6) is approximate and assumes  v L3r~˜ ,
which is only true in the limit where CRs do not back-react on
the flow. In general,  v L E t 03

CR growr- - ~˜ , and fCR ~
E t E t v L f1CR grow CR grow

3 1
CRr~ --˜ ( )( ) ( ). This gives

 

f
E

t v L

E

t v L

P

v

P

v

1

2

3
1

2

3
, 7

CR
CR

grow
3

CR

grow
3

1

ph
CR

2 ph
CR

2

r r

r r

~ +

~ +

-

( ) ( )

( )

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

which agrees with Equation (6) in the appropriate limits.
In both Equations (6) and (7), the maximum value of 1

reflects energy conservation: CRs cannot gain more energy

than is injected by turbulent forcing; hence, f
P

vCR
2

3 ph
CR

2
~

r
is

only valid for  ECR < ˜ . Within this regime, the fraction of
kinetic energy deposited into CRs is small if PCR= ρv2, in
which case most energy is deposited in the thermal gas;
however, for higher PCR, the fraction increases and can become
quite substantial at close to equipartition values.

Figure 1 compares this expectation to simulations and is one
of the key results of this paper. The y-axis shows the

partitioning of the input energy rate into CRs (  f ECR CR= ˜ )

and thermal energy (  f Eth th= ˜ ) for varying PCR/Pg, keeping
̃ fixed, for purely diffusive CRs. Unlike our previous
simulations, which all used an isothermal equation of state,
these simulations have an adiabatic equation of state, which
makes it easier to confirm energy conservation. Together, the
contributions to ECR and Eth sum to ∼80%–90% of the driving
rate, with the rest going toward small magnetic and kinetic
energy increases. The top and bottom panels show simulations
each without streaming and with κ= 0.15L0vph and κ= 0,
respectively. For PCR/Pg< 1, fCR follows the expectation from
Equation (6) (shown as a black dashed line) quite well, an
indication that turbulent reacceleration is diverting the driving
energy to CRs at the expense of thermal gas heating. Similar
simulations with6 κ= 0 show far lower fCR, again revealing the
dependence of reacceleration on diffusion coefficient. Note that
while we previously only tested analytic expectations for the
growth time tgrow (on which Equation (6) depends) when the
gas is isothermal in Paper I, they continue to hold when the gas
is adiabatic.

Figure 1. The average CR energy gain rate and thermal energy gain rate

relative to the turbulent driving rate (  f ECR CR= ˜ and  f Eg g= ˜ ,

respectively) for simulations without streaming, as a function of PCR/Pg.
These all are adiabatic, 0.5s ~ simulations on a 1283 grid, with β ∼ 1. Top:
κ|| ∼ 0.15L0vph, where CR energy gain is maximized. The dashed black curve
is the analytic expectation from Equation (6), showing good agreement when
PCR/Pg < 1, and the dashed–dotted curve shows Equation (7), which accounts
for CR back-reaction on the flow and subsequent saturation of fCR. Bottom:
κ|| ∼ 0. For PCR ? Pg, even κ ∼ 0 leads to significant fractions of turbulent
energy converted to CR energy, but this CR reacceleration is due to numerical
diffusion caused by finite resolution.

6
In practice, κ has a nonzero value because of numerical diffusion, but here

this has little impact up until PCR ? Pg.

4
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As PCR/Pg increases, fCR deviates from the analytic
expression in Equation (6); fCR increases more slowly toward
the asymptotic bound fCR∼ 1 than in our ansatz. Nonetheless,
for PCR/Pg 1, what immediately stands out is the large
fraction of energy diverted to CRs, with fCR as large as 0.8
when PCR/Pg> 1. These large values of fCR clearly come at the
expense of thermal heating,7 with fth decreasing from fth≈ 1
when PCR= Pg to fth< 0.2 when PCR> Pg.

In the above, purely diffusive case, turbulent energy directly
accelerates CRs. When streaming is included, energy is also
lost to collisionless heating at a rate H= vA ·∇PCR. In
Figure 2, we quantify the partitioning of turbulent kinetic
energy into direct acceleration of CRs ( fCR) and gas heating
( fth) in simulations with fixed ̃ producing undamped
 0.15s ~ . We distinguish between collisionless heating by
CRs fCR,heating (red bars), and heating due to turbulence, which
cascades down to the grid scale and dissipates fth− fCR,heating
(orange bars). Note that, in all cases (see, e.g., the adiabatic
β= 10, 100 simulations), the sum of fCR, fCR,heating, and
fth− fCR,heating can be slightly greater or slightly lower than 1;

we average each dE/dt over the final one-fourth of the
simulation snapshots, and during this time interval of fully
developed turbulence, kinetic and magnetic energy can, on
average, be slightly decreasing or slightly increasing. For that
reason, the sum of all bars shown for each simulation in
Figure 2 lands between 0.95 and 1.05 of the input driving rate.
When streaming is included, fCR is a small and weakly

increasing function of β, consistent with Paper I and evident in
Figure 2. Here, we fix the initial state to have PCR∼ Pg for each
simulation and quantify the CR energy gain rate as we did in
Figure 1. Despite the fact that a negligible fraction of energy
fCR ends up in CRs, the latter nonetheless have a strong impact
on the turbulent cascade. In MHD simulations, turbulence
cascades to grid scales where numerical diffusion dominates8

and subsequently dissipates, heating the gas. Thus, fth is a good
barometer of how much kinetic energy flux makes it to the
dissipation scale; however, that is not the case with turbulence
modified by streaming CRs. In the adiabatic streaming
simulations quantified in Figure 2, the total amount of gas
heating is a weak function of β, but actually much of that

Figure 2. Partitioning of input turbulent energy rate ̃ into three different channels: CR reacceleration fCR, dissipation via CR collisionless heating fCR,heating (i.e.,
streaming energy loss), and grid-scale heating fth − fCR,heating. Without CRs, this choice of ̃ produces  0.15s ~ turbulence. Each simulation here starts with
PCR ∼ Pg but with varying CR transport treatments, either with diffusion only (all with κ ∼ 0.15vphL0) or diffusion plus additional streaming. For each β, the first
three simulations use an isothermal equation of state, so there is no gas heating. The last two, denoted by “Adiab.,” use an adiabatic equation of state, in which case the
total thermal gas heating rate is the sum of CR heating and grid-scale heating. With diffusion only, reacceleration is very efficient: most turbulent energy is soaked up
by CRs. With streaming, both gas heating and CR energization are relatively inefficient in the low-β regime, but for β ∼ 10, 100, CR heating is the dominant energy
channel. Instead of turbulent energy cascading to small scales and eventually dissipating into thermal energy at the grid scale, CRs intercept this energy transfer at
large scales; astoundingly, even in these subsonic flows, very high fractions of turbulent energy are channeled through CRs when PCR  Pg.

7
Since we enforce purely compressive driving, magnetic field amplification

is very weak, and fCR + fth ≈ 1 for an adiabatic setup.

8
In high-resolution simulations with explicit viscosity, it would instead

cascade to the viscous scale.

5

The Astrophysical Journal, 955:64 (20pp), 2023 September 20 Bustard & Oh



heating is done by CR streaming energy loss instead of
classical small-scale dissipation. Only ∼60% (for β∼ 1) to
<10% (for β∼ 10, 100) of the driving energy makes it to the
grid scale, with the remaining energy channeled through CRs.

Note that in our estimate of tdamp (Equation (4)), we have
not included the effects of CR streaming on tgrow. If we did,
tdamp would be substantially longer in low β environments.
However, as we have seen, this is incorrect. When CR
streaming is present, the kinetic energy of compressive
motions is still absorbed by CRs at large scales. This energy
is subsequently returned to the gas in the form of heat via CR
streaming, and so streaming impedes the secular growth of
CR energy, resulting in the lower growth times explored in
Paper I. However, diversion of kinetic energy away from the
turbulent cascade and damping of compressive motions still
happens at a similar rate, even at low β (Figure 2). CR
streaming provides an avenue for gas motions to quickly
dissipate in the form of heat without going through the
turbulent cascade. In this case, CRs can be thought of as
providing an unusual form of viscosity.

To summarize: once Pc/Pg 1, and for β 10, our
simulations show that the energy input in turbulent driving
appears to be almost completely diverted to CRs, with only
∼10% remaining, which cascades down to grid scales. This is
irrespective of whether streaming is absent (in which case
CRs store the energy) or present (in which case CRs
thermalize a significant fraction via collisionless heating).
This is astonishing efficiency, considering that strong shocks
convert at best ∼10%–30% of kinetic energy to CRs. For
β∼ 1, the fraction of energy routed through CRs is slightly
lower, ∼80% in the diffusion-only case, and ∼50% with both
CR streaming and diffusion. We now turn to some
implications of this finding.

4. Cosmic-Ray Imprints on Kinetic Energy Spectra

In certain regimes, CRs are clearly an important energy sink
for fluid motions. When turbulent energy is diverted to the CR
population, it either

1. directly accelerates CRs through nonresonant reaccelera-
tion, or

2. (if CR streaming is significant) heats the gas at scales
lCR? ldiss through collisionless energy transfer by self-
confined CRs (streaming energy loss), where ldiss is the
Kolmogorov dissipation scale.

In either case, energy that originally would have cascaded to
small scales is siphoned out of the turbulent cascade, and it is
interesting to ask what imprint this might have on the kinetic
energy spectrum. In this section, we first focus on the effects of
purely diffusive CRs, leaving an initial exploration of
streaming CR transport, the effects of which are less
straightforward and deserve future follow-up, to Section 4.4.
We will first explore CR modifications to Kolmogorov and
Kraichnan spectra analytically and discuss astrophysical
regimes where spectra could be heavily modified. Of the
compressible MHD modes, it is thought that slow modes have
a Kolmogorov spectrum (E(k)∝ k−5/3

), and fast modes have a
Kraichnan spectrum (E(k)∝ k−3/2; Cho & Lazarian 2003),
though this is still debated. In our simulations, compressive
forcing gives rise to something intermediate between Kraich-
nan and Burgers turbulence (E(k)∝ k−2

), and we will see that
CR damping also has noticeable effects in this regime.

4.1. Analytic Theory

We can solve for the turbulent power spectrum by solving
the dynamic equation (Landau & Lifshitz 1987). If we consider
a turbulent energy injection rate ò injected at some outer scale
L kL

1= - (where  v tl
2

cascade~ ~ constant in the absence of
damping, and tcascade depends on the form of turbulence), then
in steady state, the combined effects of the cascade to smaller
scales and damping must balance injection:

 k k
k
F k k E k 8Ld - =

¶
¶

+ G( ) ( ) ( ) ( ) ( )

where E(k) is the power spectrum of turbulence, F(k) is the

turbulent cascade flux in k-space, and k tdamp
1G ~ -( ) is the

damping rate. While Equation (8) makes no assumption on the

turbulent spectrum or the damping rate, we now must adopt

choices for each. First, Equation (4) in Paper I describes the CR

reacceleration rate tgrow
1- from an ensemble of waves across

many scales; however, to assess the impact of CRs on

turbulence at a given scale, we need to consider just the

amount of energy that CRs sap from individual eddies of scale

l. Assuming we are in the fast-transport regime (κ> vphl),

t vlgrow
2k~ , hence, t v t P cl cdamp

2
grow CR

2r k~ ~ . kG =( )

tdamp
1- is then scale-independent. In the slow transport regime,

t v l vlgrow ph
2 2 2k~ ( ) and t v l Pdamp ph

2 2
CRr k~ ( ). Because the

latter is scale-dependent, we will make the simplifying

assumption that diffusion is fast, such that tdamp is scale-

independent. This is not unreasonable, especially at small

scales, because for a given κ||, transport across smaller and

smaller scales is increasingly in the fast regime. As we will see,

our simulations display similar behavior to our following

analytics that assume fast diffusion.
While the above Γ(k) is scale-independent and therefore

makes no assumption on cascade physics, the cascade flux F(k)
depends on the type of turbulence: for Kolmogorov turbulence,
F(k)∼ [E(k)]

3/2
k
5/2, while for isotropic Kraichnan turbulence,

F(k)∼ k3[E(k)]2/vph. In the absence of damping (Γ(k)= 0),
integrating both sides of Equation (8) with respect to k gives
E(k)∼ ò

2/3k−5/3 and E k v kph
1 2 3 2~ -( ) ( ) , the power spectra

for Kolmogorov and Kraichnan turbulence, respectively.
The first and second terms on the right-hand side (RHS) of

Equation (8) have units of v k t t,2
cascade
1

damp
1´ - -( ), respectively.

In Figure 3, we solve Equation (8) for various values of
tdamp/tcascade. It is easy to understand the asymptotic behavior.
When tcascade= tdamp, the first term on the RHS dominates:
injected energy cascades before it can damp, and we obtain the
usual Kolmogorov/Kraichnan power spectra. On the other
hand, if tdamp= tcascade, then the second term on the RHS
dominates, which gives ò∼ Γ∫E(k)dk∼ Γv2, or

v t v
t

t
92

damp 0
2 damp

cascade

~ ~ ( )⎜ ⎟⎛
⎝

⎞
⎠

where v0
2 and tcascade are the velocity and cascade time at the

outer scale in the absence of damping; for a given energy

forcing ò, the velocity at the outer scale is reduced. However,

since tdamp tinject, the damping time cannot be made

arbitrarily small. We discuss this further in Section 4.2.
To understand the behavior at smaller scales, note that the

cascade time is scale-dependent, while for nonresonant CR
acceleration, tdamp is independent of scale. We are accustomed
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to thinking of the cascade time decreasing toward small scales
(for instance, tcascade∝ l2/3, l1/2 for undamped Kolmogorov,
Kraichnan turbulence, respectively). However, damping
changes the scale dependence of velocity, further reducing
velocities at small scales, and thus increasing cascade times at
these scales. If tcascade/tdamp still decreases toward small scales,
then the cascade eventually takes over, and the spectrum
rebounds from damping. However, if tcascade/tdamp instead
increases toward small scales, then damping becomes increas-
ingly dominant, and the spectrum will cut off precipitously.
Since tdamp is independent of k, what matters is the scale
dependence of tcascade.

From Equation (8), the cascade time can be written as:

t
kE k

F k k E k

1
Kolmogorov 10cascade 3 1 2

~ ~
( )

( ) [ ( )]
( ) ( )

v

k E k
Kraichnan 11

ph

2
~

( )
( ) ( )

where we have used F(k)∼ [E(k)]3/2k5/2, F(k)∼ k3[E(k)]2/vph
for Kolmogorov and Kraichnan turbulence, respectively. When

damping operates, E(k) will steepen from standard Kolmo-

gorov/Kraichnan spectra. From Equation (11), we see that for a

power spectrum E(k)∝ k−α, tcascade increases with k for α 3

(Kolmogorov), α 2 (Kraichnan). The steepening of the

power spectrum slope is controlled by the relative strength of

damping, i.e., tcascade/tdamp at large scales. If this is sufficiently

large, it produces a power spectrum with a slope steeper than

the critical value, and we have a runaway: tcascade/tdamp

continually increases toward small scales, producing a rapid

cutoff in the velocity power spectrum. However, if the initial

value of tcascade/tdamp produces a power spectrum with an index

shallower than the critical slope, then damping initially “takes a

bite” out of the turbulent cascade, but tcascade/tdamp decreases

toward small scales, until damping becomes negligible, the

original cascade dominates and the spectrum recovers its

original undamped power-law slope.
We clearly see confirmation of this bifurcation in small-scale

damping in Figure 3. We see that we require tcascade/tdamp 1.5
at the outer scale for critical damping in a Kolmogorov cascade
(so that the power spectrum steepens beyond E(k)∝ k−3

), or

tcascade/tdamp 1 at the outer scale for critical damping in a
Kraichnan cascade (so that the power spectrum steepens
beyond E(k)∝ k−2

). Indeed, tcascade/tdamp∼ 1 causes a perfect
transformation of the Kraichnan spectrum from a E(k)∝ k−3/2

spectrum to a Burgers-like E(k)∝ k−2 spectrum.
This bifurcation in the existence of small-scale turbulence is

important, so we restate it in simpler terms. Damping can
change the slope of the velocity power spectrum E(k)∝ k−α,
and hence the scale dependence of velocity v(k)∝ k(1−α)/2

(using v2∼ kE(k)), but it does not change the physics of the
turbulent cascade. The latter can be encapsulated in the form of
cascade times tcascade∼ l/vl (Kolmogorov), t lv vcascade ph l

2~
(Kraichnan). Using v(k)∝ k(1−α)/2, these relations imply
tcascade∝ k(α−3)/2

(Kolmogorov), and tcascade∝ kα−2
(Kraich-

nan), which gives critical slopes α= 3, 2, respectively, in line
with our previous arguments. The scale dependence of tcascade
determines if turbulence is completely damped at small scales,
or recovers with the original (undamped) power-law scaling.
The right panel of Figure 3 shows modified “Burgers”

spectra where we have solved Equation (8) with F(k)∼ k2E(k).
In this case, even when tcascade/tdamp> 1, the modified kinetic
energy spectra never show cutoffs, instead always converging
to a k−2 spectrum at high k, but there is a substantial decrease in
small-scale power compared to the undamped case. We briefly
note that Equation (8) does not really apply to Burgers
turbulence E(k)∝ k−2, which is not a genuine turbulent
cascade, but rather an instantaneous jump from large to small
scales via shocks that arise from nonlinear steepening.
However, Ptuskin damping creates friction, which can balance
nonlinear steepening and prevent shock formation. We can see
this by examining Burgers’ equation in the presence of Ptuskin
damping:

v

t
v v v. 12

¶
¶
+  = -G· ( )

For Γ>∇v, the damping term exceeds the nonlinear term, so

that damping exceeds nonlinear steepening when the nonlinear

time tNL∼ L/v> tdamp. The outcome of this is uncertain.

Figure 3 suggests that wave amplitudes will be most

significantly damped at low k, after which steepening still

occurs but with reduced amplitude. In any case, tNL/tdamp

Figure 3. Modified kinetic energy spectra for a Kolmogorov (left), Kraichnan (middle), and Burgers (right) cascade with varying levels of CR damping, all with
vph = 2v0. E(k) is in units of the outer-scale, undamped kinetic energy, where k denotes the wavenumber. Different line colors denote different ratios of the cascade
time to the damping time, showing that if damping becomes competitive, the outer-scale velocity decreases, and the slope of the spectrum steepens. Dashed lines show
E(k) = k−2 and E(k) = k−3 for comparison. For tcascade/tdamp � 1.5, 1 for Kolmogorov and Kraichnan, respectively, the cascade sharply cuts off at progressively
smaller k. For smaller tcascade/tdamp, CRs damp fluctuations, but the cascade returns to its normal scaling at large k. For Burgers turbulence, which is not a genuine
cascade, there can be an appreciable decrease in power at small k, but at high k, the spectrum recovers a k

−2 slope.
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potentially plays a similar role to tcascade/tdamp, and as such, we

will use tNL as a proxy for tcascade in our simulation analysis

(Section 4.3).

4.2. What Is tcascade/tdamp?

The results of the previous section show that the ratio
tcascade/tdamp is the critical parameter determining the efficacy
of small-scale damping, and that there is a critical value
(tcascade/tdamp 1.5, 1 for Kolmogorov and Kraichnan turbu-
lence, respectively) such that the turbulence spectrum will
show a cutoff. Here, we investigate the conditions under which
these thresholds may be crossed.

We have previously argued from energy conservation that
  ECR ˜ in steady state; hence,  t t v L vdamp inject

2r~ ~˜ ,
the timescale on which kinetic energy is injected. In
Appendix A, we confirm this expectation and also show how
various scalings, such as δρ/ρ, δv/v, can be understood as a
function of PCR/Pg, or v/cs, v/vph.

When does tdamp reach the minimal value of tinject∼ L/v, so
that almost all of the injected kinetic energy is directly
dissipated in cosmic rays? Equating the first and second terms
in brackets in Equation (4), tdamp∼ tinject when:


P

P
. 13

c
ph

tot

( )⎜ ⎟⎛
⎝

⎞
⎠

Equation (13) is only anorder of magnitude estimate; the exact

threshold must come from numerical simulations. Nonetheless,

it illustrates the relevant physics: damping saturates when the

turbulent Mach number is small and the CR energy density

is high.
If tdamp reaches its minimal value of tinject∼ L/v, then:



t

t
1 Kolmogorov

1
Kraichnan . 14

cascade

damp

ph

~

~

( )

( ) ( )

From Figure 3, we see that it is unclear whether damping will

be strong enough to enforce a small-scale cutoff in a

Kolmogorov cascade (which requires tcascade/tdamp 1.5), but

any subsonic turbulence in a Kraichnan cascade that satisfies

Equation (13) will automatically have tcascade/tdamp 1), the

threshold for critical damping there. The increase in

tcascade/tdamp is not due to a decrease in the damping time

(which has a floor at tinject), but rather the increased cascade

time in MHD turbulence. Longer cascade times are associated

with wave turbulence, where wave–wave interactions produce

nonlinearities that eventually cause turbulence to cascade

(Nazarenko 2011). Other forms of wave turbulence can be

present, for instance, in systems with strong stratification

(Wang et al. 2023) or rotation.
Note that even if the threshold for critical damping (i.e.,

exponential suppression of small-scale power) is not met,
Figure 3 shows that the damping of gas motions can still be
significant.

4.3. Simulations

The results of Sections 4.1 and4.2 are useful for guiding
expectations and driving intuition. Nonetheless, given the

complex nonlinearities, they require validation by numerical
simulation—a difficult task, given the limited inertial range of
standard resolution simulations. We now present a set of
simulations that, to our knowledge, are the first CR
hydrodynamics simulations specifically probing CR influence
on turbulent kinetic energy spectra. While a more complete set
of simulations with different driving modes and higher
resolution awaits, we already see that CRs suppress small-
scale fluctuations.
We focus first on the case where Ptuskin damping is

maximized, running a series of diffusion-only simulations near
the CR energy gain “sweet spot” κ∼ 0.15L0vph, where

v P P Pc g Bph
2 r~ + +( ) . We vary the input driving rate ̃ by

1order of magnitude to create turbulence with undamped
 0.5s ~ and 0.15s ~ , where v css = and c Ps g r~
is the gas sound speed (thus, v vph ph= decreases as Pc/Pg

increases). Plasma beta, β= Pg/PB, are denoted in each figure
and represent rough values for the presented suite of
simulations; while each simulation starts with the same β, the
saturated value of β changes by a small amount depending on
whether CRs are present, what CR transport model is assumed,
etc.
Figure 4 shows simulation kinetic energy spectra for both

 0.5s ~ and 0.15s ~ simulation sets, each normalized by
the k= 3 mode power for the  0.5s ~ MHD-only simula-
tion. Different colors denote different initial PCR/Pg, ranging
from 0–1.5. Points denote average kinetic energies, and the
shaded regions denote the minimum and maximum kinetic
energies taken over 10 snapshots at late times when we see
converged spectra, typically between 8 and 10 eddy turnover
times after the simulation starts (see Appendix B for more
about time convergence). Importantly, we note that the inertial
ranges in our MHD-only simulations display something
between a Kraichnan (k

−3/2
) and a Burgers-like (k

−2
)

spectrum, with significant power at high k due to the generation
of solenoidal modes rather than fast modes despite our purely
compressive forcing (see Section 4.5). The k−2 compressive
component we find is frequently seen in hydrodynamic
simulations with compressive driving, due to nonlinear
steepening (e.g., Miniati 2015). Thus, the analytic models of
Sections 4.1and4.2 where we assume a Kraichnan spectrum
do not exactly apply. Nonetheless, we can look for qualitative
agreement.
We can use the nonlinear steepening time as a proxy for the

cascade time: tcasc∼ tNL∼ L0/vL, where vL is the outer-scale
velocity. Ratios of cascade time to damping time, calculated
with t v Pdamp

2
CRr= á ñ, are noted in the legend. The trend

agrees at least qualitatively with Figure 3. Power both at large
and small scales is decreased when PCR� Pg, consistent with
mild Ptuskin damping when tcascade∼ tdamp. As tcascade/tdamp

increases, the spectrum deviates ever further from the MHD
case. For example, the tcascade/tdamp∼ 0.62,  0.15s ~
simulation has between 10 and 100 times less power in high-
k modes than the MHD run. Projections of density, kinetic
energy, and magnetic energy for these  0.15s ~ , β∼ 10
simulations vary quite obviously, as seen in Figure 5, with
fluctuations clearly damped in the PCR∼ Pg case (bottom row)
compared to the MHD case (top row). Higher Mach number
simulations appear to show damping, as well, but the effect is
less obvious. This is in line with expectations from our
previous discussion that tcascade/tdamp is maximized for smaller
values of stirring velocity.
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While our analytic predictions and preliminary simulations
suggest that Ptuskin damping could play a role in suppressing
the compressible turbulent cascade at small scales, it may
appear hazardous to draw conclusions based on moderate-
resolution simulations with limited inertial range. We therefore
refer the reader to Figure 6, which shows kinetic energy spectra
for simulations on a 5123 grid, each with initial β∼ 10 but
diffusion coefficients varying from κ||∼ (0− 15)L0cs. Clearly,
the strongest damping effect occurs when κ|| is near the sweet
spot (κ||∼ (0.15− 1.5)L0cs), and the effect diminishes as κ||
increases. Maybe most importantly, significant spectral
changes do not occur in the absence of CR transport
(κ||∼ 0), suggesting that numerical diffusion plays a negligible
role.

We also refer the reader back to Section 3 and Figure 1,
where we presented a separate, more robust diagnostic of the
suppression of the turbulent cascade by Ptuskin damping: via
the heating of adiabatic gas. In hydrodynamic simulations of
adiabatic gas, we have found that  Egas  ˜ , as it should.
However, in adiabatic simulations with CRs, we have found
E 0gas  , while  ECR  ˜ , i.e., almost all of the turbulent
energy is absorbed by the CRs (see Figure 1). Furthermore, all
of this energy is absorbed at large scales, which are well
resolved. The shift to CRs receiving almost all of the energy of
the turbulent cascade is genuine turbulent acceleration, not due
to numerical diffusion in the CR module. We infer this from
numerical convergence in our CR acceleration rates, as well as
the close conformance to analytic expectations. Nonetheless,
we have tested this explicitly by checking energy absorption

for the two-fluid case when κ= 0 (bottom panel of Figure 1);

in this case,  E 0.8gas ˜ when PCR/Pg∼ 1, i.e., gas heating

is once again large.
If Ptuskin damping does not allow gas motions to cascade

the ∼2 decades to grid scale in our simulations to enable

dissipation, this strongly suggests that real turbulence should

not be able to cascade down the many more decades to, e.g.,

the gyroscale of CRs, where fast modes are frequently invoked

to scatter CRs with E� 300 GeV. Of course, it is still

imperative to test these ideas in much higher-resolution

simulations, preferably with a spectral code that can better

resolve an MHD Kraichnan cascade.
While we have focused on the kinetic energy spectra so far,

we have yet to show that the magnetic energy spectra, which is

most important for CR scattering, shows the same damping

trends. Figure 7 shows the kinetic energy spectra (left panel),

magnetic energy spectra (middle), and CR energy spectra

(right) for our set of 5123, β∼ 10 simulations with varying CR

diffusivities. The kinetic energy spectra are identical to those in

Figure 6, and they show considerable damping when

κ∼ 0.15L0cs, i.e., at the sweet-spot diffusivity where damping

is most efficient. Similarly, for that same simulation, the

magnetic energy spectrum is clearly damped, but as κ varies off

the sweet spot, more small-scale power remains. The CR

energy spectra are quite different: the amplitude of small-scale

CR pressure fluctuations monotonically decreases with increas-

ing κ, because strong diffusion damps small-scale CR

perturbations.

Figure 4. The turbulent kinetic energy spectrum, multiplied by k
2 for a set of 0.5s ~ and 0.15s ~ diffusion-only simulations, keeping κ = 0.15L0vph and

β ∼ 1, as we vary PCR/Pg. Spectra are normalized to the k = 3 mode for the 0.5s ~ MHD run. Ratios of the outer-scale nonlinear time to damping time, calculated

with t v Pdamp
2

CRr= á ñ and tNL = L0/v, are also denoted. Points show the energy in each k-bin averaged over 10 outputs at late times, when turbulence is fully

developed, while shaded regions show the minima and maxima during those time periods. Each simulation was run on a 5123 grid. While MHD runs produce overall
spectra shallower than k

−2, CRs damp fluctuations, slightly decreasing the power in low k modes while steepening the spectra at high k.
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4.4. Streaming versus Diffusion

In the pure diffusion limit, Γ(k) is well known, and as we
have shown analytically and numerically, the resulting CR drag
damps turbulence at large scales, changing kinetic energy
spectral slopes and even introducing cutoffs. The functional
form for Γ(k) is more uncertain when streaming transport is
introduced. Since we found in Paper I that streaming stunts
reacceleration rates due to fundamental changes to CR-
turbulent interactions, it is tempting to append the plasma β-
dependent correction factors from Paper I to Γ(k). If this were
true, weak CR reacceleration should imply very weak changes
to the kinetic energy spectrum; however, we have run a number
of simulations with CR streaming, including some with no

diffusive transport where reacceleration is absolutely negligi-
ble, that clearly modify the kinetic energy spectra. We present
some simple scalings that match our simulations, but defer a
detailed study to future work.

All simulations in this section start with PCR∼ Pg and
assume an isothermal equation of state. Figure 8 shows the
kinetic energy spectra for 2563 simulations of varying β∼ 1,
10, and 100, each with different CR transport models but the
same turbulent driving rate, which for simulations without CRs
(MHD only) give a sonic Mach number 0.15s ~ . A partial
version of Figure 8, using a 5123 domain, is included in
Appendix Cand shows similar behavior. The left column
shows each spectrum multiplied by k2, normalized to the peak
value of the MHD spectrum at k= 3. The right column, in
order to more clearly show differences in the spectral shape and
overall kinetic energy, shows each spectrum divided by the

MHD spectrum. Note the similarity of the pure streaming
power spectra to the streaming + diffusion power spectra; in

this parameter range, streaming dominates over diffusion. We

seek to answer two main questions about these results:
How does streaming versus diffusive transport affect the

overall kinetic energy in the gas?The top panel of Figure 9

quantifies the partitioning of turbulent forcing that ends up in
CRs (  f ECR CR= ˜ ), as well as f v LE

3r= ( ) ˜ versus the

steady-state plasma beta, βf. Filled circles denote simulations

with streaming and diffusion, while empty circles have just

streaming. The streaming plus diffusion results quantify what

we see by eye in the kinetic energy spectra: increasing β leads

to smaller turbulent velocities; in each case, CRs take only a

very small amount of the total energy forcing, with most energy

input instead removed from the system by streaming

energy loss.
The bottom panel of Figure 9 shows the same simulations

but with the y-axis showing the damped kinetic energy versus

the undamped case. Overplotted is a line showing a β−1/2

scaling, which appears to fit the data quite well. At face value,

it is counterintuitive that in the streaming-dominated case, CR

damping is stronger at higher β, i.e., when vA is smaller. To

interpret this, it is important to note that Alfvén Mach numbers

for each run saturate at 1A < , meaning that Alfvén crossing

times are faster than eddy turnover times; hence, streaming

transport is relatively fast. Fast streaming transport leads to

small field-aligned CR pressure gradients/large field-aligned

CR scale lengths l P b PCR CR CR= ( ˆ · ). Compared to CRs

with slow diffusive transport, streaming CRs have

Figure 5. Projections perpendicular to the initial magnetic field direction of density (left column), kinetic energy (middle column), and magnetic energy (right column)
after ∼10 eddy turnover times, normalized by their average values in the MHD-only case. Top: MHD-only simulations with β ∼ 10 and  0.15s ~ . Bottom:
simulations with the same β and forcing rate, but with PCR ∼ Pg and diffusive CR transport. Density, velocity, and magnetic fluctuations are all suppressed compared
to the MHD case.
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comparatively small pressure gradients and absorb less energy

(via the v ·∇PCR term) in sub-Alfvénic flows. This may

partially explain the behavior seen in Figure 8, where, for

instance, β∼ 1 leads to fast streaming transport, hence small

CR pressure gradients, and little to no change in the kinetic

energy spectrum.
At the same time, it is important to realize that CR transport

timescales are not simply ∼L/vA, since CR pressure gradients

and magnetic fields are often misaligned. Thus, for instance,

CR heating rates (which naively scale as ∼vA/L) somewhat

counterintuitively decrease as magnetic field strengths and

hence vA increase. This is because increased magnetic tension

in sub-Alfvenic turbulence results in poorer alignment between

magnetic fields and CR pressure gradients, reducing vA ·∇Pc

(see Figure 4 in Paper I). This qualitatively fits with the bottom

panel of Figure 9, assuming collisionless energy loss drives the

damping.
While we do not have a rigorous argument for the

v v2
0
2 1 2bµ - scaling, which we present as an outcome of

our simulations, we can give the following heuristic argument:

v2∝ òtdamp (from Equation (9)), where naively tdamp∝ L/vA.
However, since CR heating rates (and hence turbulent damping

rates) scale as vA ·∇Pc, we know that tdamp also depends on Pc,

PB, where in sub-Alfvenic turbulence PB controls the relative

alignment between vA and ∇Pc via magnetic tension. From

dimensional analysis, we must have t L v P PB cdamp A~ a( ) ,

where α= 1 since t t Pcdamp heat
1µ µ - . If so, v2∝ tdamp∝

PB/vA∝ vA∝ β−1/2. Future work will have to test

more carefully the scalings in the ansatz tdamp µ
/L v P P v L ccA B A c

2~( ) for the streaming-dominated case,

which closely resembles the expression t v L ccdamp ph
2~ in

the sweet spot for the diffusion-dominated case. What is

striking in our simulations is that CR “drag” in the streaming-

dominated case consistently seems to render undamped super-

Alfvenic turbulence sub-Alfvenic, even though the rise in

magnetic energy density (and hence rise in vA) is very mild;
most of the change in MA is due to reduced gas velocities.
Does streaming change the shape of kinetic energy spectra,

as diffusion does? Streaming CRs, which do not themselves
take an appreciable amount of turbulent energy input, still
nonetheless sap kinetic energy from the system. How the
kinetic energy spectra change, however, is fundamentally
different between streaming and diffusive transport. Changing
β (changing A) in streaming-dominated simulations effec-
tively changes the ratio of transport time to eddy turnover time.
To glean further insight, it is interesting to compare to
simulations with purely diffusive transport but varying
diffusion coefficients.
Figure 6 shows kinetic energy spectra for simulations on a

5123 grid, each with initial β∼ 10 but diffusion coefficients
varying from κ||∼ (0.15− 15)vphL0. Our fiducial case of
κ||∼ 0.15vphL0 shows that damping, in the slow diffusion
regime, exerts meaningful drag on an entire hierarchy of scales,
beginning at the outer scale; in other words, damping and
cascade rates are competitive over a large range of k. Moving to
the fast diffusion regime (κ||∼ 15vphL0), this is clearly not the
case: the diffusion length scale is larger than the outer eddy
scale, and the damping rate is only competitive with the
cascade time at large scales, leaving the cascade to operate
uninterrupted after CRs have reduced the outer-scale kinetic
energy.
Following similar logic, we infer that, for streaming-

dominated transport in sub-Alfvénic turbulence, Γ(k) must be
weighted heavily toward small k, causing an initial reduction in
outer-scale kinetic energy but an unimpeded cascade at larger k.
Thus, we see that the power spectrum when streaming is
included has the same shape over the effective inertial range of
the simulations k 30, albeit with a lower normalization (in the
β∼ 10, 100 cases, when damping is effective). In the
dissipation range, k 30, there is additional steepening
compared to the MHD case, though whether this is numerical
or physical is as yet unclear.

Figure 6. Kinetic energy spectra of 5123 simulations when PCR ∼ Pg but varying the diffusion coefficient from κ|| ∼ 0 (where the only diffusivity is numerical) to the
most efficient reacceleration regime (κ|| ∼ 0.15vphL0 and κ|| ∼ 1.5vphL0) to the fast diffusion regime (κ|| ∼ 15vphL0). Note how the power spectrum is somewhat
different for the two-fluid system even in the absence of CR transport, presumably because of changes to the phase velocity and other adiabatic properties, but
deviations from the MHD spectrum are mild compared to simulations with added diffusion. Left: k2E(k)dk normalized by the k = 3 MHD value. Right: ratio of each
spectrum to the MHD spectrum. Note how diffusion introduces a characteristic scale lCR where the kinetic energy is reduced: in the fast diffusion limit, lCR > L0, and
the outer-scale kinetic energy drops significantly while the rest of the spectrum retains the same shape as the MHD case. Going to smaller κ||, overall changes are more
drastic because reacceleration is more efficient but also the scale where the spectrum cuts off most dramatically shifts to lCR < L0.
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4.5. Compressive versus Solenoidal Components

While we intend to follow this manuscript with a larger

simulation suite and more detailed analysis of CR-modified

turbulence, we include a preliminary analysis here of

compressive versus solenoidal motions to display some

characteristics we anticipate from an expanded simulation

suite. Our arguments so far have focused on CR damping of

compressive fluctuations, but our kinetic energy spectra contain

both compressive and solenoidal motions despite being seeded

with purely compressive forcing. In hydrodynamic turbulence,

compressive motions completely dominate in subsonic turbu-

lence driven with purely compressive forcing (Federrath et al.

2010), but in MHD turbulence, magnetic fields affect this

balance. Namely, for the sub-Alfvenic, β∼ 10, Ms∼ 0.15

simulations we have focused on, we expect from previous work

(Lim et al. 2020) that the combination of compressive

fluctuations and magnetic tension will generate solenoidal

power, even at a level comparable to the compressive power.

This holds true in our simulations.
We use a standard Hodge–Helmholtz decomposition to

separate compressive and solenoidal components as a function

of scale, and we plot their power spectra, multiplied by k2 and

normalized by the corresponding power of the MHD simula-

tion’s k= 3 mode, for a subset of our β∼ 10 and β∼ 100

simulations with and without CRs in Figure 10. For the MHD

simulations, the integrated fractions of solenoidal power to total

power are Esol/Etot∼ 0.42 for β∼ 10 and Esol/Etot∼ 0.11 for

β∼ 100. These values are in line with those in Lim et al.

(2020), with magnetic tension playing a small role in solenoidal

generation at higher β. Interestingly, the solenoidal component

is comparable to the compressive component or even

dominates at small scales. That our kinetic energy spectra are

shallower than k−2 at large k, then, seems to be due to Alfvén

modes rather than fast modes, consistent with recent literature

suggesting that, even with primarily compressive driving,

significant turbulent energy lies instead in Alfvén modes (see,

e.g., Figure 2 in Makwana & Yan 2020, or Gan et al. 2022 for a

full spatiotemporal decomposition of fast, slow, and Alfvén

modes).

When CRs are present, compressive (and in some cases,
solenoidal power) decreases. For the β∼ 10 case with CR
diffusion, we measure Esol/Etot= 0.36, very comparable to the
MHD case with Esol/Etot= 0.42. When streaming is present,
we measure Esol/Etot= 0.67 for the β∼ 10 simulation
(compare to Esol/Etot= 0.42 for MHD), and we measure
Esol/Etot= 0.35 for the β∼ 100 simulation (compare to
Esol/Etot= 0.11 for MHD).
Our interpretation, barring further work that we save for a

future paper, is that CRs preferentially damp compressive
motions consistent with the analytic derivations of this paper,
but since compressive motions combine with magnetic tension
to drive solenoidal motions in sub-Alfvenic turbulence, both
compressive and solenoidal components are suppressed. That
CRs preferentially damp compressive rather than solenoidal
motions is evidenced by our two simulations with CR
streaming, which show a “divergence-cleaning” effect where
the ratio of solenoidal to compressive power increases.
However, this divergence cleaning is less apparent in the
diffusion-only run. We defer a fuller discussion of the
difference between diffusion and streaming effects to later
work where we will drive both compressive and solenoidal
modes, rather than relying on solenoidal motions generated by
compressive forcing, since in this case damping of compressive
motions can easily damp solenoidal power as well.
For brevity, we defer most other analyses of the cascade to

future work, but we do point out one additional outcome of
damping: CRs can change the anisotropy of the cascade. In the
bottom row of Figure 10, we plot the power in velocity
fluctuations along the initial magnetic field direction (x̂) over
the power in all directions. This quick diagnostic of anisotropy
follows our intuition from above: in the simulations with CR
streaming, as CRs damp isotropic compressive motions, and
turbulence is dominated by anisotropic solenoidal motions,
eddies become more elongated along the mean field direction,
with the fractional power in vx fluctuations increasing from the
MHD values, especially in the k= 5–20 range. There is no
such increase in anisotropy in the diffusion-only run, consistent
with the lack of divergence cleaning. Indeed, there is an
apparent downturn toward isotropy at high k, albeit in a range
where results may not be numerically reliable.

Figure 7. Kinetic energy spectra (left), magnetic energy spectra (middle), and CR energy spectra (right) multiplied by k
2 for 5123, β ∼ 10 simulations with varying κ.

Note that the left panel is the same as in Figure 6 and that the y-axis of the right panel extends down to 10−3 rather than 10−2 for the other panels. Overall, magnetic
energy spectra follow the same trend as kinetic energy spectra, showing damped small-scale power when the diffusivity is near the sweet spot κ ∼ 0.15L0cs. CR
energy spectra instead show an approximately monotonic decrease in small-scale power with increasing diffusivity, as strong diffusion damps small-scale CR
perturbations.
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5. Discussion

5.1. Regimes of CR-modified Turbulence

In Section 4, we showed both analytically and numerically
that CRs can have a significant impact on the power spectrum

of turbulence. In particular, we showed that as the damping
time decreases relative to the turbulent cascade time, the
turbulent power spectra will be steepen and then cut off
abruptly at small scales (for tcascade/tdamp 1). These results
should eventually be carefully checked by higher-resolution

Figure 8. Kinetic energy spectra for 0.15s ~ , 2563 simulations each with PCR/Pg ∼ 1 but varying CR transport and varying the initial plasma β from 1 (top) to 10
(middle) to 100 (bottom). The magenta-colored lines show the resulting MHD (no CR) spectra as a reference. The left column shows k2E(k)dk normalized by the
MHD value at k = 3, while, to more clearly show the changes in spectral shape, the right column shows the ratio of each spectrum to the MHD spectrum. For diffusion
only, efficient reacceleration damps the kinetic energy spectrum, resulting in less power at small scales compared to the MHD case. However, with streaming included,
both reacceleration rates and field-aligned CR pressure gradients depend on β. At low β (low Alfvén Mach number v vA A= ), streaming negates reacceleration,
and the kinetic energy spectra revert to the MHD case. For larger β, however, reacceleration becomes somewhat more efficient, causing damping, and a more
significant fraction of turbulent energy is channeled through CRs and lost via streaming energy transfer. This latter effect, most clearly evident in the streaming-only
simulations (red curves), decreases the overall kinetic energy in the system but does not appear to induce cutoffs like the diffusion-only runs.
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numerical simulations. Nonetheless, we clearly already have
seen in Section 3 and Figure 1 a situation where CR damping
of motions is stronger than the rate at which energy cascades to
smaller scales, so that little energy reaches the grid scale. Our
analytic estimates can guide expectations as to which
environments these effects might be important.

ICM—In the ICM, although sonic Mach numbers are
typically low ( 0.1 0.3s ~ – ), the absence of hadronic γ-ray
emission gives an upper bound on Pc/Ptot= 1 (typically less
than a few percent; Ackermann et al. 2014), so that
Equation (13) is not satisfied there. The CR energy density is
too small to appreciably affect gas motions, and it is unlikely
that CR reacceleration appreciably damps the turbulent
cascade.

ISM—In the ISM, CR damping could be potentially
important: P P 1c tot ~ ( ) is relatively large. In the diffusion-
only case, the main uncertainty lies in the CR acceleration rate.
The most efficient reacceleration occurs for diffusivities in the
range κ||< vphL0∼ 3× 1026 cm2 s−1 for ISM-like parameters
(see Table 2 in Paper I). Canonical values of
κ∼ 1028–1029 cm2 s−1 used in galactic propagation models
are much larger, i.e., we are sufficiently far away from the
“sweet spot” that acceleration and hence damping times could
be long. On the other hand, if CR streaming dominates
transport, then since the ISM has β∼ 1, damping is small, as
we have seen.
CGM—Finally, the galactic halo and CGM are strong

candidates for significant CR damping. For the diffusion-only
case, these regions occupy a sweet spot where κ∼ vphL0,
 1ph < , and if, as suggested by simulations of Milky Way–
mass galaxies (e.g., Butsky & Quinn 2018; Ji et al. 2020),
Pc/Pg 1, then Pc/Ptot is order unity. For these conditions,
Equation (13) is satisfied, so that tdamp∼ tinject. Thus, for

instance, from Equation (14), t t 2cascade damp ph
1~ ~- for a

compressive Kraichnan cascade with  0.5ph ~ : the com-
pressive cascade will be steepened beyond the critical threshold
of E(k)∝ k−2 and abruptly cut off, so there is no small-scale
turbulence. We see hints of this in Figure 4 for the 0.5s ~
case, but given our limited dynamic range, spectral changes are
more obvious for 0.15s ~ , when tNL/tdamp is even larger.
Once streaming is included, we have also seen that there can

be considerable damping in the β∼ 10–100 cases, with a weak
trend toward larger damping with increasing driving rate at

fixed β (see how v v2
0
2 is smaller for largers), potentially

because CRs are more efficiently trapped in turbulent eddies as
the Alfvén Mach number approaches unity. This differs from
the diffusion-only case, where stronger turbulence implies
smaller tNL/tdamp and weaker damping. For a fixed driving rate
that produces transonic MHD turbulence in a β∼ 10 environ-
ment (reasonable CGM parameters), adding streaming-domi-
nated CRs up to equipartition PCR∼ Pg damps turbulent kinetic
energy by a factor of ∼5 or greater (bottom panel of Figure 9).
For each of these regimes, there is also a question of the

turbulent driving scale relative to the CR mean free path, i.e.,
whether our fluid assumption of CR transport is valid. For both
self-confinement and extrinsic turbulence models of CR
scattering, the typical mean free path for a gigaelectronvolt
CR in the ISM is ∼1 pc, which is not too far below the typical
driving scale of turbulence (∼100 pc). However, if self-
confinement is stronger, then the mean free path is shorter, and
the separation between driving scale and mean free path is
larger. Similarly, in the CGM and ICM, the driving scale is
much larger, so this scale separation is not an issue.
Finally, given the possibilities for CR-modified turbulence in

ISM and CGM environments described above, how do these
results compare to observations of electron density fluctuations
measured through interstellar scintillation (Armstrong et al.
1995), which show density fluctuations on a wide range of
scales, i.e., the “Big Power Law” in the sky? We believe our
results are consistent with these observations for two reasons:
(i) The observed spectrum ∝k−5/3 is consistent with Kolmo-
gorov turbulence and is, therefore, unlikely to be generated by
a purely compressive fast mode cascade. From our findings,
CRs preferentially damp compressive fluctuations
(Section 4.5), allowing solenoidal motions to extend over a
wide range of scales consistent with the “Big Power Law.” (ii)

Figure 9. Isothermal, 2563 (circle symbols) and 5123 (diamond symbols,
bottom panel only) simulations with streaming and PCR ∼ Pg. The MHD
(undamped) version of these simulations give v css 0= ~ 0.15 (black), 0.5
(green), and 0.75 (cyan). The top panel shows only the 0.15s ~ points and

shows the partitioning of turbulent forcing that ends up in CRs (  f E ;CR CR= ˜

green points and right y-axis), as well as f v LE
3r= ( ) ˜ (black points and left

y-axis) vs. the steady-state plasma beta βf. While for diffusion there was a clear
correlation between fCR and fE, now, fCR is small, and fE correlates inversely
with β, at least in this sub-Alfvénic regime studied. The bottom panel shows

the turbulent kinetic energy relative to the undamped case, where v L0
3r ~ ˜ .

With CRs, even with streaming-only transport where there is no reacceleration,

v v2
0
2 1 2bµ - , at least roughly, in this sub-Alfvénic or “fast-transport”

regime. There is also a weak trend toward larger overall damping with

increasing driving rate (largers has smaller v v2
0
2), at fixed β.
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In any case, in the β∼ 1 ISM, if streaming is dominant, CRs do

not significantly modify the power spectrum (Figure 8).

Signatures of small-scale damping are more likely to be seen

in the β> 1 CGM, if the CR energy density is significant (as is

suggested by simulations; Ji et al. 2020).

5.2. Implications of CR-modified Turbulence

The implications of such CR-modified spectra are possibly

quite intriguing. For instance, a CR-induced cutoff could

significantly affect the spatial scale of thermal instability, since

there are no small-scale compressive motions, unless there is

direct driving at those scales. Also, since Ptuskin damping only

affects compressive motions, not solenoidal motions, Ptuskin

damping can potentially make turbulence less Burgers-like and

more Kolmogorov-like. It would be interesting to explore this

“divergence-cleaning” effect in simulations with a mixture of

driving modes.

Perhaps the most interesting consequence of CR damping of
turbulence is its implication for scattering of high-energy CRs
by fast modes in an extrinsically driven turbulent cascade. This
is frequently invoked to explain the scattering of CRs with
E 300 GeV (Yan & Lazarian 2004), since self-confinement is
too weak to explain observed isotropy and confinement times.
However, the resonant scattering invoked (transit time damp-
ing) requires the turbulence to cascade many orders of
magnitude, to the ∼300 au gyroscale of such CRs. Figure 3
shows that for tcasc/tdamp= 1, a Kraichnan (E(k)∝ k

−3/2
) fast

mode spectrum will steepen to a Burgers (E(k)∝ k−2
)

spectrum, which already has too little small-scale power to
efficiently scatter CRs via transit time damping (Miniati 2015;
Pinzke et al. 2017), and even higher values of

t tcasc damp ph
1~ - will completely eliminate turbulence at

small scales. While this requires further study, low-energy
CRs, by damping turbulent fluctuations at large scales, could
divert turbulent energy that would otherwise scatter high-
energy CRs. This potentially adds to the long list of problems

Figure 10. Top row: kinetic energy spectra, multiplied by k2 and normalized to the k = 3 MHD value, decomposed into compressive (solid lines) and solenoidal
(dashed lines) components. Each simulation was run on a 5123 grid. The left panel shows β ∼ 10 simulations, where solenoidal power is a significant fraction of the
total power and dominates at small scales, leading to a shallower than k−2 spectrum. The right panel shows β ∼ 100 simulations, where compressive modes are
dominant at almost all scales in the MHD case. CRs considerably damp the compressive fluctuations, though, which in turn decreases the power in solenoidal motions
that are generated by a combination of compressions and magnetic tension. In both the β ∼ 10 and β ∼ 100 cases with streaming, compressive damping leads to an
increased ratio of solenoidal to compressive power. However, this “divergence cleaning” is not pronounced in the pure diffusion run, where solenoidal and
compressive power decrease by about the same amount. Bottom row: power in velocity fluctuations vx along the initial mean magnetic field divided by the power in
total velocity fluctuations. This quick measure of anisotropy roughly tracks the compressive vs. solenoidal motions seen above: with CR streaming present, CR
damping leads to more anisotropy (higher fraction of vx power), consistent with a larger fraction of anisotropic solenoidal modes rather than isotropic compressive
modes. The diffusion-only case, which shows a kink at high-k, is an outlier whose analysis we leave for future work.
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with “standard” theories of CR scattering in the Milky Way,
which have been recently pointed out (Hopkins et al. 2022;
Kempski & Quataert 2022).

Regardless of whether CR drag introduces a cutoff to kinetic
energy spectra, it is clear from our simulations that CRs in both
diffusion-dominated and streaming-dominated transport
regimes can sap a significant fraction of the turbulent forcing
rate. This breaks the usual correspondence between turbulent
velocity and turbulent driving rate, i.e., for hydrodynamic
turbulence, v L0

3r ~ ˜ . Now, v L fE
3r ~ ˜ , where the new

correction factor fE can be =1. As derived in Equation (9),
v v t t2

0
2

damp cascadeµ , which for streaming-dominated trans-

port in sub-Alfvénic turbulence gives v v2
0
2 1 2bµ -

(Figure 9). In the CGM, where we expect damping to be most
significant, turbulent velocities obtained from the observed
velocity dispersion may significantly underestimate the turbu-
lent forcing rate, i.e.,  v L3r˜ .

6. Conclusions

In this paper, we present analytical estimates and accom-
panying MHD+CR simulations probing CR effects on
turbulence, namely the damping of turbulence by large-scale,
CR-induced drag on compressive gas motions. Our main
findings are as follows:

1. Despite long CR reacceleration times, the damping time
due to CR reacceleration can be very competitive with the
turbulent cascade time.

 
t v

t

P
t

v
max ,

1
max , 15damp

2 grow

CR
c
2

grow

2

r
r

~ ~
˜ ˜

( )⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

where Mc= v/cc is the Mach number with respect to the

CR sound speed c Pc c r~ , and  v L3r=˜ is the
turbulent energy injection rate. Our key figures are
Figures 1 and 2, where we confirm that CRs can divert a
significant fraction of turbulent energy that would
otherwise dissipate as heat at small scales. Conditions
for strong damping are met under quite reasonable
conditions (Equation (13)); the CGM is an especially
strong candidate for this damping.

2. If CR diffusion dominates transport, and if the ratio of the
damping time to the cascade time is sufficiently short,
small-scale compressive turbulence should be exponen-
tially suppressed (see Figure 3). This suppression of
small-scale turbulence has abundant implications for,
e.g., thermal instability, “divergence cleaning” of turbu-
lence spectra (e.g., Figure 10), and suppression of fast
modes at small scales, which have been invoked to scatter
high-energy CRs (see Section 4.1). We see compelling
signatures of damping in our simulation spectra
(Section 4.3; Figure 4), but these effects deserve future
study with higher-resolution simulations that capture a
larger turbulent inertial range.

3. The effects of streaming transport are more complex and
deserve follow-up. Importantly, tgrow in Equation (15)
does not include the suppression of CR reacceleration by
streaming (the β dependent factors identified in Bustard
& Oh 2022), which would substantially increase damping
times. Instead, from Figure 2, diversion of turbulent
energy through CRs remains strong even in the presence
of CR streaming, for our simulations where MA 1.
Instead of introducing spectral cutoffs, streaming

uniformly decreases the normalization of the turbulent
power spectrum, but not its shape, with the turbulent
kinetic energy scaling as v2∝ vA∝ β−1/2

(Figures 8and
9). This is possibly because damping operates predomi-
nantly at the largest scales in the “fast-transport” regime
(here, the sub-Alfvénic regime). Such large-scale damp-
ing implies that energetic input and turbulent heating
rates (much of which gets channeled into CR collisionless
heating) can be much larger than standard estimates for
Kolmogorov turbulence,  v L3r˜ .
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Appendix A
Turbulent Properties and Damping in a Cosmic-Ray-

dominated Medium

CRs can influence velocity and density perturbations in a
turbulent medium, but the extent depends on the relative
partition of CR versus thermal energy, as well as the CR
diffusivity/transport speed. Commerçon et al. (2019) simulated
CRs in a turbulent box with purely diffusive transport and a bi-
stable ISM (with radiative cooling). They found that trapped
CRs modify the gas flow, change the density PDF, and provide
support against thermal instability, maintaining the gas in an
intermediate-temperature state that is classically thermally
unstable. It remains to be seen how these simulations would
change when streaming is included. The perturbative heating
term from CR streaming affects thermal instability (Kempski &
Quataert 2020), and in low-β plasmas where this heating is
most significant, CR streaming can also drive acoustic waves
unstable, generating a “staircase” cosmic-ray pressure profile
and additional multiphase gas (Quataert et al. 2022; Tsung
et al. 2022).
Our simulation setup is quite different from that of

Commerçon et al. (2019), most notably because we do not
include radiative cooling, so we do not attempt a detailed
comparison, but we do find some qualitatively similar behavior.
Figure 11 shows δρ/ρ, δv/v, and δPCR/PCR for diffusion-only
simulations with varying PCR/Pg and either κ= 0 or
κ= 0.15L0vph (where vph depends on PCR/Pg). When CRs
are dynamically unimportant (PCR/Pg= 1), we recover the
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MHD expectation that v v 0.5sdr r d~ ~ = . Deviations
from this relation start when PCR/Pg� 1. Interestingly, we find

that δρ/ρ is independent of Pc/Pg, while δPc/Pc∝ 1/Pc (i.e.,
δPc∼ constant is independent of Pc/Pg). At the same time, we

find that the velocity divergence v Pc
1 2 µ -· (not shown),

i.e., it does depend on Pc. This might appear puzzling, since
one expects density fluctuations and velocity divergence to be

directly related, yet the former is independent of Pc, while the
latter shows dependence.

A key to understanding these results is to realize that the
“sweet spot” κ∼ Lvph is really still in the “fast diffusion

regime.” The ratio tdiffuse/tsc∼ lvph/κ is only unity at the outer
scale l∼ L; at smaller scales, tdiffuse/tsc< 1 and diffusion
dominates. In this diffusion-dominated regime, CRs diffuse

out of eddies before they contribute significantly to resisting
compression—i.e., they do not provide a significant restoring
force (instead, they provide drag). In particular, they do not
contribute to the phase velocity vph. Thus, δρ/ρ∼ δPg/
Pg∼ v/cs, where cs is the gas sound speed, independent of
PCR. This is roughly consistent with Commerçon et al. (2019;
see their Figures 5 and 6), which finds a similar dependence on
κ and a clear decrease in δPCR/PCR as PCR/Pg increases.

Using this information, we can better interpret the lower
bound on damping time that we infer from our simulations.
Importantly, as Ptuskin damping saturates (PCR/Pg→∞ ,

fCR→ 1), the maximum rms CR pressure perturbation is
〈ΔPCR〉rms∼ ρv2. This is a strict upper bound, since the free
energy to create CR pressure perturbations is derived from
kinetic energy (similarly, ΔPCR, ΔPg at a shock cannot exceed

the ram pressure ρv2). In this limit, ΔPCR/PCR∼
ρv2/PCR∝ 1/PCR. Finally, in the diffusion-dominated limit,
CR compression is balanced by diffusion, PCR,0(∇ · v)∼
−∇ · (κ∇PCR,1)∼ κρv2/L2, which implies that

v
P

, 16
CR,0

k
 µ· ( )

where PCR,0, PCR,1 refer to the unperturbed and perturbed CR

pressure, respectively. Thus, in the regime where we fix the

sweet-spot diffusion coefficient κ∼ vphL0 and PCR/Pg 1 (so

that v Pph CR
1 2µ ), then PCR

1 2k µ , and v PCR
1 2 µ -· . We have

also verified in our simulations that ∇ · v∝ κ for constant PCR,

and ∇ · v∝ 1/PCR for constant κ.
These results thus indicate that the damping time cannot

become arbitrarily small. If drag forces are given by:

 v P
v

L

1
17CR,1

2

r
~  ( )

(where PCR,1 ρv2), this gives a damping time

 t v v L v tdamp eddy~ ~ . Thus, δPCR ρv2 implies that

tdamp teddy. This is equivalent to the statement that the work

done by CR forces in opposing gas motions cannot exceed the

energy input rate:  v P v LCR,1
3r ~· ˜ , which implies

∇PCR,1 ρv2/L, consistent with Equation (17). Thus, for

Kolmogorov turbulence, we expect tcascade/tdamp∼ 1 for

maximally efficient Ptuskin damping. In the Kraichnan case,

however, tcascade/tdamp can be greater than 1 if the Mach

number, relative to the velocity of compressible fluctuations, is

small. This is not due to any decrease in the damping time;

instead, it is due to cascade times being lengthened when vph is

large.

Appendix B
Time Convergence

Figure 12 shows the average kinetic energy spectra for 2563

simulations with varying CR transport model, measured at
different time intervals. Most importantly, the diffusion-only
simulations show converged, clearly damped spectra even at
early times. Spectra for simulations with CR streaming are also
well converged but at somewhat later times. Note that these
time intervals over which we pull out kinetic energy spectra are

Figure 11. Fluctuating density (blue symbols), velocity (black symbols), and CR pressure (green symbols) as a function of PCR/Pg. Open circles denote simulations
with nonzero diffusion coefficient κ|| ∼ 0.15L0vph, and open diamonds denote purely advective CR transport (κ = 0). None of these simulations include additional
streaming transport.
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much later than the saturation of bulk turbulent quantities (e.g.,
kinetic energy, magnetic energy), which occurs after only a few
eddy turnover times.

Appendix C
Resolution Convergence

A good test of how inherently diffusive our CR module is, and
whether that accounts for some observed spectral changes, is to
run simulations with no explicit CR diffusion at various
resolutions. Figure 13 compares spectra for our β= 10 MHD
simulations to simulations with PCR∼Pg and purely advective
CR transport (no streaming and κ||= 0). For grid sizes of 2563

and 5123, we see in both cases that, in the inertial range up until
k∼ 20, there is no appreciable damping due to the presence of
CRs, confirming again that CR transport is the cause for clear and
obvious damping seen in Figures 4, 8, and6 beginning at small k.

Figure 14 shows kinetic energy spectra for 5123 simulations
when transport is included. These simulations only comprise

part of those on a 2563 grid (compare to Figure 8 in

Section 4.4) because computer resource limits prohibit us from

running the streaming-only (κ∼ 0 + streaming) simulations. In

any case, the streaming-only simulations and the streaming +

diffusion simulations are both streaming dominated in this sub-

Alfvénic regime, so we expect their spectra to look very

similar, as we saw in Figure 8.
The MHD and diffusion-only spectra look qualitatively

similar to those on a 2563 grid. Most importantly, diffusive

transport leads to significant damping compared to the MHD

case at all β tested (β= 1 and 10). As in Section 4.4, streaming

transport instead appears to uniformly decrease kinetic energy

at all scales, and this is β dependent, with β∼ 1 showing

almost no difference between the MHD and CR cases. There is

some resolution dependence for β= 10, with 5123 showing

less damping compared to the 2563 run, but the difference is

mild, especially compared to the heavily damped diffusion-

only simulations.

Figure 12. Time convergence of select spectra, each run on a 2563 grid. The diffusion-only simulations, which show the most damping, converge very early. Note that
5123 simulations (not shown) are similarly converged with respect to time.

Figure 13. Comparison of kinetic energy without CRs (MHD) and with CRs but no transport (κ|| ∼ 0), simulated on grids with 2563 and 5123 cells. Note that 5123

simulation results are divided by a factor of 10 to separate those curves from the 2563 results.
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Figure 14. Kinetic energy spectra for a partial simulation suite run on a 5123 grid instead of a 2563 grid (compare to Figure 8 in Section 4.4). Computer resource limits
prohibit us from running the streaming-only (κ ∼ 0 + streaming) simulations of Section 4.4 on a 5123 domain, but all other spectra look qualitatively similar to those
on a 2563 grid; namely, diffusion-only transport shows clear differences in spectral slope at both β = 1 and 10. Streaming simulations instead appear to uniformly
decrease kinetic energy at all scales as β increases. Note there is some resolution dependence for β = 10, with 5123 showing less damping compared to the 2563, but
the difference is mild, especially in comparison to the diffusion-only simulations.
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