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ABSTRACT

Understanding the survival, growth, and dynamics of cold gas is fundamental to galaxy formation. While there has been a plethora
of work on ‘wind tunnel’ simulations that study such cold gas in winds, the infall of this gas under gravity is at least equally
important, and fundamentally different since cold gas can never entrain. Instead, velocity shear increases and remains unrelenting.
If these clouds are growing, they can experience a drag force due to the accretion of low-momentum gas, which dominates
over ram pressure drag. This leads to subvirial terminal velocities, in line with observations. We develop simple analytic theory
and predictions based on turbulent radiative mixing layers. We test these scalings in 3D hydrodynamic simulations, both for an
artificial constant background and a more realistic stratified background. We find that the survival criterion for infalling gas is
more stringent than in a wind, requiring that clouds grow faster than they are destroyed (Zgrow < 4 fcc). This can be translated to a
critical pressure, which for Milky Way-like conditions is P ~ 3000 kg K cm™3. Cold gas that forms via linear thermal instability
(teoor/ts < 1) in planar geometry meets the survival threshold. In stratified environments, larger clouds need only survive infall
until cooling becomes effective. We discuss applications to high-velocity clouds and filaments in galaxy clusters.
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1 INTRODUCTION

The cycle of baryons — particularly that of cold gas, the fuel for
star formation — is absolutely fundamental to galaxy formation and
a crucial link between galactic and cosmological scales (Péroux &
Howk 2020). This cycle can take various forms. (i) Outflows due to
feedback processes (Thompson et al. 2016; Schneider, Robertson &
Thompson 2018). Observationally, cold gas is frequently seen out-
flowing at velocities comparable to virial/escape velocities (Veilleux,
Cecil & Bland-Hawthorn 2005; Steidel et al. 2010; Rubin et al. 2014;
Heckman & Thompson 2017). (ii) Inflow of cold gas that forms via
thermal instability in the halo (Joung, Bryan & Putman 2012; Sharma
et al. 2012; Fraternali et al. 2015; Voit et al. 2019; Tripp 2022),
or is supplied by direct cosmology accretion (cold streams; Kere$§
et al. 2005; Dekel & Birnboim 2006), and falls under gravity. (iii)
Fountain recycling, which is a combination of these two processes.
A useful analogy is the terrestrial water cycle, where evaporation,
condensation, and precipitation play crucial roles.

All of these motions involve velocity shear between cold gas
clouds and background hot gas. A long-standing problem has
been to understand why clouds are not shredded by hydrodynamic
instabilities, particularly the Kelvin—Helmholtz instability. The hy-
drodynamic acceleration time for a cloud of radius r, overdensity x
embedded in a wind of velocity vy iS fec ~ x7/vy, the time-scale
for the cloud to sweep up its own column density. By contrast, the
cloud destruction (‘cloud crushing’) time is fec ~ /X7 /Vw, i.€. Of
order the Kelvin-Helmholtz time, implying that tyec/fec ~ /X, i.€.
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clouds should be destroyed before they can be accelerated (Klein,
McKee & Colella 1994; Zhang et al. 2017). Numerous simulation
studies, including those with radiative cooling, concluded that cold
clouds get destroyed before they can become entrained with the wind
(e.g. Cooper et al. 2009; Scannapieco & Briiggen 2015; Schneider &
Robertson 2017); magnetic fields can ameliorate but do not solve the
problem (McCourt et al. 2015; Gronke & Oh 2020a).

In recent years, it was realized that there are regions of parameter
space where the cooling efficiency of the mixed, ‘warm’ gas is
sufficiently large to contribute new comoving cold gas that can
significantly exceed the original cold gas mass, enabling the cloud
to survive. Cloud growth is thus mediated by these turbulent mixing
layers (Begelman & Fabian 1990; Ji, Oh & McCourt 2018; Fielding
etal. 2020; Tan, Oh & Gronke 2021). The criteria for this to happen is
teool, mix/tec < 1, Where feo01, mix 1 the cooling time of the mixed warm
gas (With Tix ~ (ThotTeoia)”?) and t is the cloud crushing time
(Gronke & Oh 2018). This criterion is always satisfied for a large
enough cloud r > ¢, coldfeool, mix (Where ¢ coiq is the sound speed
of the cold gas), which grows and entrains by gaining mass and
momentum from cooling mixed hot gas. Thus, the cloud eventually
comoves with the wind, with a cold gas mass that can be many times
the original cloud mass. These conclusions have been borne out in
many subsequent studies (e.g. Li et al. 2020; Sparre, Pfrommer &
Ehlert 2020; Girichidis et al. 2021; Abruzzo, Bryan & Fielding 2022;
Farber & Gronke 2022).

However, cold gas survival and growth has only been understood
for part of the baryon cycle, galactic outflows. To date, there have
only been a handful of studies studying cold gas survival and growth
during infall, which is arguably even more fundamental to processes
such as star formation.
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An important outstanding problem in galaxy evolution is that
the observed star formation rates (SFRs) in galaxies at a range
of redshift are unsustainable — they would rapidly deplete current
existing gas reservoirs — and hence these galaxies require some
form of continuous accretion to supply the necessary fuel (Erb 2008;
Hopkins, McClure-Griffiths & Gaensler 2008; Putman et al. 2009).
For example, our Milky Way has a SFR of ~2 Mg yr~! but only
~5 x 10° Mg, of existing fuel, and would thus burn through this
supply in just 2-3 Gyr (Chomiuk & Povich 2011; Putman, Peek &
Joung 2012). Supplementary inflow must come in the form of low-
metallicity (Z < 0.1Zg) gas, so as to satisfy constraints from disc
stellar metallicities and chemical evolution models (Schonrich &
Binney 2009; Kubryk, Prantzos & Athanassoula 2013).

At the same time, we see infall in the form of ‘high-velocity’
and ‘intermediate-velocity’ clouds (HVCs and IVCs; Putman et al.
2012) with relatively low metallicities, as well as a galactic fountain
with continuous circulation of material between the disc and corona
(Shapiro & Field 1976; Fraternali & Binney 2008). Fountain-driven
accretion could supply the disc with gas for star formation, and
explain the observed kinematics of extraplanar gas (Armillotta,
Fraternali & Marinacci 2016; Fraternali 2017). It is tempting to
speculate from the results of wind tunnel simulations that star
formation in the disc exerts a form of positive feedback: cold gas
thrown up into the halo ‘comes back with interest’, by mixing with
low-metallicity halo gas that cools and increases the cold gas mass.

HVCs are also good candidates and could provide a significant
amount of the necessary fuel for star formation, provided they survive
their journey to the disc (Van Woerden et al. 2004; Putman et al. 2012;
Fox et al. 2019). First detected in HI 21-cm emission by Muller,
Oort & Raimond (1963), HVCs are gas clouds observed moving at
high velocities relative to the local standard of rest. The traditional
definition for HVCs is thus those clouds with velocities in the local
standard of rest frame |v;sg| > 90 km s~! (Wakker & van Woerden
1991; although similar clouds whose velocities significantly overlap
that of the disc may be missed; Zheng et al. 2015). They have
been observed in all regions of the sky, and come in a range
of sizes (Putman et al. 2012). Clouds are grouped into various
complexes based on spatial and kinematic clustering but because of
their proximity, precise distances to HVCs are difficult to measure.
The main method of doing so is to use halo stars of known
distances in the same sky region to bracket the cloud distance by
looking for absorption lines (or lack thereof) in the stellar spectra.
By determining if a HVC is in front of or behind each star, the
HVC’s distance can thus be effectively constrained. Most HVCs with
distances measured as such are found between 2 and 15 kpc, with
most heights above the disc <10 kpc (Thom et al. 2008; Wakker et al.
2008). The head—tail morphology observed in many HVCs (Putman,
Saul & Mets 2011), along with observations that the majority of
high-velocity absorbers kinematically and spatially lie in the vicinity
of HVCs (Putman et al. 2012), strongly suggest that the HVCs
are mixing as they travel through the ambient medium. There is
a wealth of literature on observations of HVCs — we refer the reader
to reviews such as Putman et al. (2012) for a more comprehensive
account.

As we have discussed, the survival of HVCs is inherently prob-
lematic, since they are vulnerable to hydrodynamic instabilities
while travelling through the hot background (Klein et al. 1994;
Zhang et al. 2017). Early theoretical efforts to model HVCs initially
focused on predicting their velocity trajectories, without taking into
consideration their mass evolution. These early models assumed
that these HVCs fell ballistically (Bregman 1980) or reached a
terminal velocity when eventually slowed by hydrodynamic drag
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forces (Benjamin & Danly 1997), and were used in evaluating the
contributions of HVCs in larger feedback models (Maller & Bullock
2004). However, the decoupling of the velocity and mass evolution
implied by this approach has been shown to be untenable for HVCs
with the advent of high-resolution hydrodynamical simulations,
many of which show that the mass and morphology of the clouds
evolve significantly (e.g. Kwak, Henley & Shelton 2011; Armillotta
et al. 2017; Gritton, Shelton & Galyardt 2017; Gronke & Oh
2020a). While wind tunnel set-ups are numerous, the number of
3D simulations of clouds falling under the influence of gravity and
including radiative cooling is more limited (Heitsch & Putman 2009;
Grgnnow et al. 2022; Heitsch et al. 2022). The survival criterion
for infalling clouds has not been quantified, and analytic models for
mass and velocity evolution that match simulations do not yet exist.
We will tackle these challenges in this paper.

Presumably, similar considerations apply, with a minimum cloud
SIZ€ Terit ™ Cs, coldeool, mix Tequired for survival and growth. However,
this ignores a crucial distinction between outflowing and infalling
cold gas clouds. Outflowing gas clouds gradually entrain, so destruc-
tion processes become weaker as the velocity shear is reduced. The
cloud only has to survive until it becomes comoving with the hot
gas, at which point hydrodynamic instabilities are quenched (and
mass growth peaks). Indeed, wind tunnel simulations (particularly
for clouds with sizes just above r;) often show clouds that initially
break up into small fragments, with a significant amount mixed into
the hot medium, but eventually survive as the fragments entrain
and grow. The cold fragments then coalesce — the cloud ‘rises from
the dead’ to a peaceful environment. In contrast, infalling clouds
accelerate under the action of gravity, with continually increasing
velocity shear, and consequently increasing cloud destruction rate,
which is maximized at the cloud terminal velocity. Thus, the cloud
instead is exposed to continually worsening conditions, and somehow
has to survive an unrelenting hot wind. Moreover, the properties of
the wind change with time, as the cloud falls through a background
stratified hot medium.

The survival and growth of a cold cloud under such conditions
is the focus of this paper. We develop simple analytic scalings that
we test in 3D hydrodynamic simulations. Unsurprisingly, several
important aspects, such as cloud survival criteria, are quite different
from the wind tunnel case.

What is at stake? As previously mentioned, if clouds can survive
and grow, the ultimate fuel supply for star formation could simply
be coronal gas, whose condensation is triggered by star formation
feedback and galactic fountain recycling. During this process, cold
gas also exchanges angular momentum with coronal gas, which
links fountain circulation to the observable kinematics of coronal
gas. More broadly, the physics of radiative turbulent mixing layers
is complex, and theoretical studies demand empirical tests. Unlike
clouds embedded in galactic winds, which lie at extragalactic
distances and are difficult to resolve, there is a plethora of spatially
and kinematically resolved observational data for IVCs and HVCs
in the Milky Way. There is also ample similar data for infalling
filaments in galaxy clusters (e.g. Russell et al. 2019). Such systems
can be used as laboratories for the interaction between multiphase
gas, mixing, and radiative cooling, which is also critical to galactic
winds but difficult to test there. We shall see that we predict subvirial
terminal velocities at odds with standard predictions (which balance
hydrodynamic drag with gravity) but in much better agreement with
observations. Moreover, the predicted terminal velocity from the
model is an observable that can be tested, at least on a statistical basis
(given observational uncertainties and degeneracies). Such empirical
tests have thus far been sorely lacking in cloud physics models.
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The outline of this paper is as follows. In Section 2, we outline
analytic theory and predictions for the dynamics, growth, and survival
of infalling cold clouds. In Section 3, we describe our simulation set-
up. In Sections 4 and 5, we describe simulation results, both for
an artificial constant background (which allows us to test analytic
scalings) and a more realistic stratified background. In Section 6,
we discuss applications to the Milky Way (HVCs) and galaxy
clusters (infalling filaments). Lastly, we summarize and conclude
in Section 7.

2 DYNAMICS OF INFALLING CLOUDS

2.1 Cloud evolution and terminal velocities

A falling cloud growing via accretion can be described by the
following set of differential equations:

dz

= — v, 1
a Y ()
d(mv) 1

dr =mg — EphotUZCOAcrossy (2)
dm _m @)
At tgow

where z, v, and m represent the distance fallen, velocity, and mass of
the cloud, respectively, oo, = m/ni is the growth time-scale (which
we discuss in Section 2.2), g is the gravitational acceleration, Cy
is the drag coefficient (geometry dependent; of order unity here),
Phot 18 the density of the background medium, and A, is the cross-
sectional area that the cloud presents to the background flow. We shall
see that it is important to distinguish Acess from Agjoud, the overall
surface area of the cloud. We shall also see that fey, is roughly
independent of mass growth, so that from equation (3), mass growth
is nearly exponential. Note that equation (3) assumes steady growth
and omits terms that contribute to cloud destruction. Thus, it does
not apply to clouds that are losing rather than gaining mass. In this
paper, we focus on scenarios where clouds survive and grow, which
is the novel feature in our new model (previous works, e.g. Afruni,
Fraternali & Pezzulli 2019, have looked at scenarios with significant
mass loss). In Section 2.3, we will quantify the criterion for cloud
survival. In this work, we only consider the hydrodynamic case and
leave investigation of other factors such as magnetic fields, externally
driven turbulence, and cosmic rays to future work.

The terms on the right-hand side in the momentum equation (equa-
tion 2) represent the gravitational and hydrodynamic drag forces. In
standard models, these two terms are assumed to balance one another
in steady state, giving the hydrodynamic drag terminal velocity

2mg 2xLg
rag — =~ 4
VT drug \/photCOAcross \/ CO ( )

for a falling cloud with volume ~A¢.ssL and x = pcioud/ Phot- The
hydrodynamic drag time (momentum divided by the drag force) is
given by fang ~ xL/v. In fact, this gives the terminal velocity only
if the left-hand side of equation (2) vanishes,p = mv +mv =0 =
v = 0, which is correct only if cloud mass does not evolve so ri1 = 0.
Ifm > 0,1i.e. the cloud grows by accreting mass from the background,
then from momentum conservation, since the background gas is at
rest and has zero initial momentum, this will slow down the cloud.
In the limit that the hydrodynamic drag term is small compared to
v,

v=""(g - ). 5)
m
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Figure 1. The terminal velocity (normalized by the drag terminal velocity)
as a function of the ratio of the growth time fgow and the drag time fgrag. The
dashed lines show the corresponding values for the terminal velocities when
assumed to be set by either drag or growth. As the ratio increases, there is a
smooth transition from vT, grow tO VT, drag-

Thus, if ¥ < g, there is a second terminal velocity

mg

UT,grow = 7 = 8lgrow- (6)

The two terminal velocities in equations (4) and (6) represent
regimes where the cloud acceleration under gravity is predominantly
balanced by either hydrodynamic drag or the momentum transfer
from background accretion, respectively. We can separate them by
considering the ratio fyow/farag- When this ratio is large, gravity is
balanced by drag. Conversely, when this ratio is small, gravity is
balanced by accretion. The transition between the two is marked by
where fgr0w ™~ tdrag-

We can illustrate this by solving equations (1)—(3) numerically for
a constant fy,y. The result is shown in Fig. 1, where we plot the
terminal velocity as a function of fgrow/tarag. We can see that when
torow <K tarag, the terminal velocity follows v, grow, and when fo >>
ldrag» the terminal velocity follows v, grag as expected.

Which regime is more realistic? Let us first explore this for the
idealized case of spherical clouds. For a spherical cloud, the growth
time is given by (Gronke & Oh 2020a)

Peold” 3 r

tgl'OW N m photAcloudvmix X Umix ' (7)
This seems long: if vmix ~ €5 cod (a reasonable estimate; see
section 2.2 of Gronke & Oh 2020a and sections 4.6 and 5.3.3 of
Tan et al. 2021), then tgq, ~ Xfs, Where . is the sound crossing
time across the cloud. By contrast, the hydrodynamic drag time for
a spherical cloud (as mentioned previously) is

r
tdrag ~X ;v (8)

which is much shorter, since fgrag/tgrow ~ Vmix/V ~ Cs, cold/Cs, hot ™~
x 2 « 1, if we assume the virial velocity to be a characteristic
infall speed, v ~ vy ~ ¢ not. The fact that 4, <K farow makes
physical sense. The hydrodynamic drag time is also the time-scale
for a cloud to sweep up its own mass in hot gas (PnotAcrossVidrag ~
Phot’> x ~ m). Even if all this mass is incorporated into the cloud, then
at best Zorow ™~ Idrag- In fact, only a small fraction of this gas is actually
incorporated into the cloud, so that fgow > farg. This suggests that
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hydrodynamic drag is the main drag force, which results in a terminal
velocity given by equation (4).

However, as previously mentioned, clouds in a shearing wind do
not remain spherical; they develop extended cometary tails (as seen
both in simulations and observations). This change in geometry —and
in particular the large increase in surface area —is crucial for enabling
momentum transfer via mass growth. In hydrodynamic drag, Fr,e ~
PhotV> Across, the area A qoss 2 717 is the cross-sectional area the cloud
presents to the wind. Thus, Fy,, remains roughly constant during
cloud evolution. By contrast, in 72 ~ ppoAcioudV, the area Acjoud 1S
the surface area of the cloud available for mixing. In a cometary
structure, this is dominated by the sides of the cylinder, so that A¢jouq
~ 2mnrL, where L is the length of the tail. Thus, m & Agoya X L
increases as a cloud develops a cometary tail. It is this increase in 7z,
and thus the effective momentum transfer rate Forow ™~ Pgrow ~ 11V,
compared to a constant Fyp,e, Which causes mass growth to dominate
momentum transfer: Zgow ~ X 7/Umix is roughly constant, while Z4rag
~ mv/Fyrg ~ PeiondAcross IV (ProtAcrossV?) ~ xL/v increases as the
mass of the cloud increases. In particular,

1, rov r
v L X'/ )

_—~

tdrag L Umix L

In cloud crushing simulations, the tail grows during the process of
entrainment to a length L ~ Vg, ~ xr during the ‘tail formation’
phase (Gronke & Oh 2020a), so that ferow/farag ~ x> < 1. The
continuous shear for infalling clouds can lead to even more extended
tails since the cloud does not entrain, SO fgrow/faag <K 1 is easily
satisfied.'

Finally, it is important to realize that there is a third time-scale in
the problem, the free-fall time 7 ~ v,;/g. This sets the evolutionary
lifetime available to clouds, before they fall to the halo centre. Clouds
will not grow significantly (and reach the terminal velocity vT, grow
given by equation 6), unless ooy < fir. Indeed, tgron < g is required
for a subvirial terminal velocity. We can show this by recalling that
Foray ~ mg ~ mvy/ty, while the drag force from mass growth is
Farow ~ 1V ~ M /tg0y. At the terminal velocity v, we have Fgry
~ Fgow, s0 that
Vigow | Ur o

fsubvir = ( 1 0)

Uyir Cs hot tee
This is useful because fynir — infall velocities, normalized to the
virial velocity — can be measured observationally. Indeed, fypvir <
1, subvirial infall velocities, is commonly observed in luminous red
galaxies (LRGs; Huang et al. 2016; Zahedy et al. 2019) and galaxy
clusters (Russell et al. 2016), much lower than predicted terminal
velocities from hydrodynamic drag models (Lim, Ao & Dinh-V-
Trung 2008). Our models can explain these puzzling observations,
as we describe in Section 6.2. It also allows for testable predictions.
Since fuubyir is measured and # is known from the density profile, we
can predict forow A foupviclir from kinematic observations, assuming
that clouds have reached terminal velocity. This can be compared
with predictions for fg, from equations (22) and (23), given
measured or inferred cloud and background hot gas properties. Lastly,
the mass growth that a cloud experiences is m /mg ~ exp(tit /tgrow) ~
exp(fii,). Thus, a measurement of subvirial velocities directly
constrains the degree to which mixing and cooling enhances cool
gas infall to the central galaxy. Significantly subvirial infall implies
that cold clouds grow considerably before reaching the halo centre.

IShorter entrainment times than ldrag have been observed in cloud crushing
simulations (e.g. Gronke & Oh 2020a; Farber & Gronke 2022).
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These analytical estimates can be compared to measurements of the
mass infall rate (e.g. Fraternali & Binney 2006; Fox et al. 2019).
In Section 5, we will also show the rather remarkable result that
in an isothermal atmosphere with constant gravity, fiubir 1S fixed by
geometry, specifically the scaling between cloud mass and area (« in
equation 21), independent of all other properties of the system. For
our infalling clouds, we find fypvir = 0.6.

2.2 Cloud growth

Previous models of infalling clouds have considered the interplay
between gravity and hydrodynamic drag forces, assuming a fixed
cloud mass (Benjamin & Danly 1997). However, a fixed cloud mass
is unrealistic due to various processes that trigger mixing with the hot
background gas or shred the cloud. Mass evolution therefore cannot
remain static; clouds should either be destroyed (i < 0) or grow
(m > 0) over time.

In the absence of cooling, clouds moving relative to a background
medium are destroyed by hydrodynamic instabilities on the cloud
crushing time-scale (Klein et al. 1994; Scannapieco & Briiggen
2015),

r
tccwﬁ;’ (11)

where x is the ratio of the cloud density to the background density,
r is the cloud radius, and v is the magnitude of the relative velocity
between the cloud and the background. This cloud crushing time-
scale reflects the destruction of the cloud via internal shocks induced
inside the cloud due to its velocity with respect to the medium it
is moving through (assuming that this velocity is supersonic with
respect to the sound speed within the cloud), and is roughly the
same time-scale on which surface instabilities such as the Kelvin—
Helmholtz and Rayleigh—Taylor instabilities grow to the cloud scale
(Klein et al. 1994). This destructive fate can however be counteracted
by mass growth due to cooling. In wind tunnel simulations of
‘cloud crushing’, Gronke & Oh (2018) found that in order for
cold gas to survive, cooling needs to be strong enough to satisty
the criterion

tcoo],mix < lees (12)

where f.o0 mix 15 the cooling time of the mixed gas, defined as
Tix ~ ~/ Teoua Thor (in the spirit of Begelman & Fabian 1990, see
also Hillier & Arregui 2019 for an alternative derivation). That is,
if the cooling time of the mixed gas is shorter than the initial cloud
crushing time, then cold gas survives and is eventually entrained in
the hot background wind.

However, infalling clouds have an important aspect that differen-
tiates them from clouds in a wind — gravity. Clouds encountering a
hot wind gradually entrain in the wind, so that shear eventually drops
to zero if the cloud manages to survive until entrainment. The cloud
thus encounters destructive forces for a limited period of time. By
contrast, clouds in a gravitational field will always keep falling and
shearing against the background gas. Thus, the survival criterion is
different, and more stringent; we discuss this in Section 2.3.

Assuming cloud survival, let us quantify the time-scale on which
clouds grow. We first derive some scaling relations, before deriving
numerical expressions. For now, we ignore fudge factors (due to
geometry, etc.) that can be up to an order of magnitude. As in
equation (7), the mass growth rate of a cloud can be written as

1t~ PhotAcloud Umix» (13)
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where ppo is the density of the hot background medium, Acjoug
is the effective surface area of the cloud? and vy is the velocity
corresponding to the mass flux from the hot background onto this
surface. As above, if we write m ~ pcolaAciond?, this gives

r
Torow ~ X —- (14)

Umix

Plane-parallel simulations of mixing layers (Tan et al. 2021) show

r 1/4 r 1/4
VUmix ™~ u/3/4 ( ) ~ Usl{esarvg/zo < ) , (15)
Teool Tcool

where 7.0 1S the cooling time in cold gas (the minimum cooling time
in the mixing layer, a convention we adopt henceforth) and u' is the
peak turbulent velocity in the mixing layer (usually in intermediate-
temperature gas). Note that while the first step in equation (15), i.e.
Umix(1), is generally valid, we have used the scaling u’ vflf:ar for
relating u' to the parameters of the set-up. This scaling was found
numerically in Tan et al. (2021) for plane-parallel mixing layers and
we have written it here as u’ ~ vfk{;rvé/ > to preserve dimensionality
(v simply encodes normalization). If we set Ugpear ™~ VT, grow ™ &tgrow>

this yields

X r15/32t5/312
Torow ™~ X Wg;);z; UT, grow < Cs,hot- (16)
While the above scalings focus on the subsonic and transonic cases,
large enough clouds can reach velocities exceeding the sound speed
of the hot gas. In such a case, the turbulent mixing velocity saturates
and stops scaling with the cloud velocity (Yang & Ji 2022), changing
the above scalings. In this case, from equations (14) and (15), we
obtain

X r3/4
tgrow X W . (17)
s,hottcoul

We now give numerical expressions, which are calibrated to
simulations. For cooling-dominated regimes (defined below), Tan
et al. (2021) found that vy in turbulent mixing layers follows

Umix & 9.5 kms™! u' Y L N
e 50kms—! 100 pc

feout —1/4
€O0O0! , ]8
< 0.03 Myr) (18)

where Ly, is the outer scale of the turbulence. Note that equation (18)
only applies in the ‘fast-cooling’ (Dayix = Lmrb/(u'two], mix) > 1,
where Day,x is the Damkdhler number; Tan et al. 2021) regime,
where the cooling time is much smaller than the turbulent mixing
time Ly/u . As we will discuss below, however, this is always true
for surviving clouds.

Tan et al. (2021) note that u is geometry dependent, but find for
shearing layers that

/ —1 4/5 Cs hot 4/5 teool ot
w' x50 kms MY ( ) (19)
150 kms—! 0.03 Myr

for x 2 100 and M = vgpear/Cs.not- From equation (18), we can
approximate vpmix ~ Cs cold fOr quick estimates. While Tan et al.
(2021) only considered mixing layers with subsonic to transonic
velocity shears, Yang & Ji (2022) found that beyond M = 1, u in

2The effective surface area corresponds to the (smoothed) enveloping area
of the cloud and not the (non-convergent) surface area of the cold gas. See
Gronke & Oh (2020a) for further discussion of this distinction.

Accretion braking of cold clouds 2575

the mixing region stops scaling with M and saturates. We include this
in our model by setting M — min(1, M). We find good evidence
for this in our simulations.

Equations (18) and (19) assume fully developed turbulence. When
a cloud falls from rest however, there is a transient period when
turbulence is developing. We hence set a time-dependent weight
factor wyy(¢) to account for the initial onset of turbulence. Turbulence
develops over the time-scale for the development of the Kelvin—
Helmbholtz instability; on the scale of the cloud fy, = fxntec, Where fin
is some constant of proportionality (Klein et al. 1994). We use the
simplest ansatz that

. t
Umix —> Wkn(#)Vmix; Win(f) = min <1, > s (20)
fkhtcc

which amounts to v;, growing linearly with time over the instability
growth time, until fully developed and capped at unity. We will justify
this ansatz in our simulations. Since 7. is changing over time, we
note that #/f.. o< vt ~ z, where z is distance the cloud has fallen. We
find in our simulations that fi, ~ 5 for a constant background and
~1 for a stratified background. In a more realistic setting with less
idealized initial conditions, this time-dependent weight factor might
not be necessary as the initial mixing can be already seeded from
the outflowing section (assuming v < ve), extrinsic turbulence, or
cooling-induced pulsations (Gronke & Oh 2020b, 2022).

What is an appropriate scaling relation for the effective cloud
surface area Acoua? In cloud crushing simulations, areal growth
follows two phases (Gronke & Oh 2020a; Abruzzo et al. 2022).
In the ‘tail-formation’ phase, surface area growth is dominated by
the formation of a cometary tail, with Acoug ¢ L o< m, where L is
the length of the tail. The stretching of the cloud means that the
area to mass ratio Ageuq/m = constant, rather than Aggua/m o< m="3,
as for fixed geometry. Once the tail grows to a length L ~ yr (the
hydrodynamic drag length), the cloud becomes entrained in the wind
from efficient momentum transfer, and due to lack of shear the tail
no longer grows. The cloud surface area thereafter scales roughly as
Actoud X (m/peioua)”?, as one would expect for a monolithic cloud.

However, our falling clouds do not get entrained — rather the
opposite in fact, as they start at rest and accelerate until reaching
some terminal velocity. This means they start ‘entrained’” and then
begin to shear against background gas. They never leave the ‘tail-
formation’ phase, since there is a constant velocity difference
between the cloud and background medium. The cloud sees a con-
tinuous headwind that drives turbulence, mixing, and lengthening.
Instead of Acioud X 71/ Pcioud OF Actoud X (M1 peloud)””, We assume that
Actoud X (m/peoua)®, where o is a growth scaling exponent between
2/3 and 1. Physically, this is because both mass growth onto the
surface of the cloud and a lengthening tail are concurrent processes.
We will demonstrate that this is a good assumption for the mass
growth of the falling clouds in our simulations, where we find «
A 5/6. The cloud surface area is thus

2n

o
~ m  Pcloud,0
Acloud ~ Acloud,() (7 )

mo  Pcloud

where Acioud, 0, Peloud, 0, and myg are the initial cloud surface area,
density, and mass, respectively. Note that since m o« m“ where o =
5/6 is close to 1, the growth is close to exponential.® The cloud

3Similar scalings m o« A o« m®, where o ~ 0.8, are seen in simulations of
cloud growth when clouds are embedded in a turbulent medium (Gronke
et al. 2022). This super-Euclidean scaling can be understood as the outcome
of the fractal nature of the mixing surface, where area A o mD/3, where
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2576  B. Tan, S. P. Oh and M. Gronke
density p.oua changes because the ambient pressure increases as the
cloud falls in a stratified medium, compressing the cloud.

Using equations (13), (18), (20), and (21), we can write the growth
time fgro ~ m/m as

1/4 1-
forow,0 [ Cs,150 \ /> [ leool " m oo\

tgrow = — ’ (22)
wgn(t) \ v Teool,0 Mo Phot

where ¢ 150 = 150 km s~ is the sound speed of gas at 10° K and the

initial growth time #g0y, o is given by

Lorow,0 A~ 35 Myr (Of%) (IXR)

—1/4 1/4
« <L) (Llurb) ( Tcool,0 ) i (23)
r100 Lo 0.03 Myr

where rjp0 = Ligo = 100 pc and r is the initial cloud size. We will
assume generally that Ly, ~ r (since the hydrodynamic instabilities
that drive turbulence and mixing have an outer scale set by cloud
size). We have included an unknown normalization factor f4 to ac-
count for uncertainties arising from geometrical differences between
the single mixing layers in Tan et al. (2021) and our cloud set-up
here, the use of the initial size of the sphere as a characteristic scale
(see discussion at the end of Section 6), and any other simplifying
assumptions we might have made. We find in our simulations that
fa ~ 0.23. We can simplify equations (22) and (23) by ignoring the
weak mass and hot gas density dependence, and setting Ly, ~ 7, to
obtain

o= s (a3) (%) (59)

3/4 1/4
r Teool
x (7) (7) . 24)
100 0.03 Myl'

Equations (22) and (23) should be used when evaluating tyoy if
the velocity v(#) varies with time (i.e. when solving equations 1-3).
However, a key quantity is the growth time at the terminal velocity
U = glgrow, Which we shall see determines whether the cloud can
survive (Section 2.3). Inserting v = gty into equation (22), setting
wih(f) = 1, and using f4 = 0.23, we obtain the numerical version of
equation (16):

—3/8 5/8
Torow = 40Myr (£> (L)
8fid 100

15/32 5/32
r Teool
100 0.03 Myr

where ggg = 1078 cm s™2. On the other hand, for supersonic speeds,
as we have discussed, the turbulent mixing velocity saturates and
stops scaling with the cloud velocity (Yang & Ji 2022). Setting v ~
8larow 10 U ~ ¢, por instead in equation (24), we find the numerical
version of equation (17):

e\ 7 x
forow = 35Myr [ £t (—)
grow yr (Cs,ISO) 100

r 3/4 ¢ 1/4
x <7) <7‘ ) : (26)
100 0.03 Myl'

D is the fractal dimension (Barenblatt & Monin 1983). In their mixing
layer simulations, Fielding et al. (2020) measure D ~ 2.5, which gives «
~ D/3 = 5/6, consistent with the above.
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2.3 Cloud survival

The model we have presented only accounts for mass growth of
the cloud and does not include processes that result in mass loss.
In addition, the initial onset and development of turbulence is only
very crudely incorporated. The absence of these refinements mean
that we should expect differences between model predictions and
simulations, certainly for clouds that are losing mass, and at early
times even for clouds that do survive and grow. We leave the inclusion
and refinement of these components for future work, as we find that
the model as presented works well for surviving clouds. Since the
key assumption of our model is that the cloud is growing, we now
discuss when this is a valid assumption.

As we previously discussed, clouds placed in a wind tunnel
encountering a hot wind can survive if .o mix < Zec (€quation 12).
Physically, .00, mix can be understood as the time it takes gas to cool
in the downstream-tail region of the cloud. Even if the initial pristine
cloud material does not survive, if mixed gas can cool and survive,
then the cold gas mass will increase. Since this mixed gas in the tail
is cooling from the background, it is much more entrained in the
wind than the initial cloud and hence able to survive — once the cold
gas is entrained, it is no longer subject to destruction by shear.

The ‘usual’ survival criterion fcool, mix < fec above is certainly a
necessary condition for survival. If no gas can cool before the cloud
is completely disrupted, the cloud cannot survive. However, this
criterion is not a sufficient one. This is because the physical process
associated with 7. is not simply surface evaporation. If this were so,
then the above criterion would indeed be sufficient as any mixing
would lead to a net increase in cloud mass. Instead, the entire cloud
is disrupted (i.e. the cloud is broken up into smaller fragments; Klein
et al. 1994; Schneider & Robertson 2017). Hence, as we shall see, it
is not enough that mixed gas can cool faster than the cloud crushing
time.

Compared to a wind tunnel set-up, the considerations for an
infalling cloud are different. Since the cloud’s velocity increases
instead, and there is no entrainment, f.. decreases over time. The
only way for cold gas to survive is if it is produced at a rate faster
than it is destroyed:

tgrow < fStcc:s (27)

where fs is some constant* factor of order unity, which we shall
calibrate in simulations. It encodes the fact cloud destruction takes
place over several cloud crushing times (Klein et al. 1994; Scanna-
pieco & Briiggen 2015). In evaluating .. ~ x ?r/v, the cloud radius
is evaluated at its initial value. As in wind tunnel experiments, this
turns out to be a very good approximation, since the cloud grows
mostly in the streamwise direction. If the velocity is evaluated at the
terminal velocity vt ~ glsrow, then equation (27) is equivalent to

2
gtgrow
12y

< fs- (28)

As we have seen, there are two regimes for fory, subsonic and
supersonic infall. The criterion for subsonic infall is fgow < f

4Although we find that a constant factor is sufficient for our purposes,
this coefficient has been found to vary in supersonic flows. For example,
Scannapieco & Briiggen (2015) found that in the cloud crushing set-up with a
supersonic wind, fs, scales as /1 + Mo, where My is the Mach number
of the hot medium (see also Li et al. 2020; Bustard & Gronke 2022, for
alternative scalings). However, we mostly probe the subsonic to transonic
regime.
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Figure 2. Cloud survival for subsonic and supersonic infall for different
cloud sizes and cooling times. Survival is mostly sensitive to the latter.

(equation 10). Using equation (25), and assuming fg ~ ¢s hot/g, this
can be rewritten as r < ryonic, where

~173 —4/3
Tcool
Fsonic ™ 150 pc _cool i
0.03 Myl' 8fid

X \ ¥ [ Cshot 2
- — . 29
X (100) (65’15()) ( )

Thus, clouds must be smaller than some critical radius to fall at
subvirial velocities. In this regime, (vr < ¢ hot)s ferow 1S given by
equation (25), and the survival criterion, equation (28), becomes

16/5 1/5
feool < 5 x 1073 Myr ﬁ -
2 7100

—4/5 —12/5
8 X
- — . 30
x (gﬁd> ( 100) (30)

Note that equation (30) is almost independent of cloud size. Indeed,
ferow /e gtgzmw/r o r~1/18 i e. a very weak scaling. We shall verify
this in Section 4.4.

Is it possible for clouds to survive in the supersonic regime (r
> Fsonic)? This requires #y < fgow < fstee. This in turn requires
that clouds be smaller than some critical size rss, Since fgrow/fec X

Qla /T O r'/% in the supersonic regime (using fyow o *™* from
equation 26). Thus, supersonic infall and survival requires
Fsonic < I < Tss, (31)

where rgg is given by

—1 -2
17
rss = 100 pc _ ‘eool 8
0.03 Myr Zfid
) 12/5
x (o) (=) (32)
100 Cs,150
Note that equation (31) can only be fulfilled if ryopic/rss < 1, where
Fsonic ~ 15 Teool 3
rss ' 0.03 MyI'
2/3 23 —4/15
. (i) (L) () . (33)
8fid 100 Cs.,150

Fig. 2 shows the survival criteria above (equations 30 and 32) for
&= ghid» X = 100, ¢ not = 5, 150, and fs = 2. It is clear that survival is
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mostly independent of cloud size and depends instead on the cooling
time.

In practice, the subsonic case is of most interest. There, clouds
must satisfy foo < min(f, f..), which translates into a maximum
allowed cloud size (equation 29) and a maximum allowed cooling
time in cold gas (equation 30). The latter criterion is quite stringent.
Since the dependence on size in equation (31) is weak, under isobaric
conditions f.,0 o 1/P, we can translate equation (30) into a critical
pressure. For fs = 2, and ignoring the size dependence, equation (30)
is equivalent to

4/5 12/5
P > 3000ks Kem™ (-5 (L) : (34)
8fid 100

where the right-hand side (RHS) is the critical pressure P
above which a falling cloud can survive. We can also write equa-
tion (30) in terms of the cooling time of the hot gas fcool hot ~
% 2 teool [ A (Teoia) A(Tho)] and the free-fall time g ~ Cs. hot/g to obtain

Tcool, hot 5 1 (L)—Zﬁ (A(Tcold)) ’ (35)
tif 100 A(Tho)

where we have ignored the weak dependence on g, 001/t o g'°. This
is similar to the criterion (Zcool, not/?ir < 1, Where #.0) is evaluated at one
scale height) for precipitation out of a thermally unstable background
medium in a plane-parallel atmosphere® (McCourt et al. 2012). Since
all our analytics and simulations are in the framework of plane-
parallel systems, the numerical factor in equation (35) will likely
change in spherical systems. Equation (35) has the very interesting
implication that clouds which condense via thermal instability are
able to survive subsequent infall, as long as they are below the critical
size given by equation (29). Note that the physics of stratified thermal
instability that leads to the .ol not/?sr < 1 criterion —overstable gravity
waves driven by cooling — is quite different from what we have
discussed here, so it is non-trivial (perhaps coincidental) that both
thermal instability and falling cloud survival have similar criteria.

3 METHODS

We carry out our simulations using the publicly available magne-
tohydrodynamic (MHD) code ATHENA++(Stone et al. 2020). All
simulations are run in 3D on regular Cartesian grids using the
Harten—Lax—van Leer contact (HLLC) approximate Riemann solver
and piecewise linear method (PLM) applied to primitive variables
for second-order spatial reconstruction. By default, we use the
second-order accurate van Leer predictor-corrector scheme for the
time integrator, but switch to the third-order accurate Runge—Kutta
method when the former is not stable enough, in particular for
simulations with a constant background where the cooling time is
extremely short throughout the entire simulation.

Our simulation set-ups consist of rectangular boxes with identical
x, y dimensions and an extended vertical z-axis. They are filled with
static hot Ty = 10° K gas with initial density ny = 107* cm™
at z = 0. A cold T,yq = 10* K spherical cloud, initially at rest, is
also inserted, usually a quarter box height from the bottom. This

51t is somewhat more stringent than the requirement for thermal instability
in spherical systems (fcool, hot/tit < 10; Sharma et al. 2012), where the
gravitational acceleration g and hence f varies as a function of radius.
However, it has been shown that there is no geometrical difference in cold
gas condensation in plane-parallel and spherical geometries; the apparent
difference arises from definitional differences in where f.o01/ts is evaluated
and cold gas is located (Choudhury & Sharma 2016).
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placement allows us to follow the development of a cometary tail
behind the cloud as it falls. The initial cloud density is perturbed at
the per cent level randomly throughout the cloud to reduce numerical
artefacts arising from the initial symmetry. We use outflowing
boundary conditions, except at the bottom of the box (negative z)
where the background profile is enforced in the ghost cells and the
velocity is set to be that of the frame velocity. This is valid as long as
cloud material does not interact with this bottom boundary. The frame
velocity is based on a cloud-tracking scheme we implement where
we continuously shift into the reference frame of the centre of mass
of the cold gas, defined as gas below a temperature of 7~ 2 x 10* K,
an approach widely used in similar falling cloud simulations (Heitsch
et al. 2022) and wind tunnel simulations (McCourt et al. 2015;
Gronke & Oh 2018, 2020a). This scheme allows our simulation
box to ‘track’ the cloud as it falls and hence reduces computational
costs. The fiducial resolution of the boxes are 256> x 2048 (see
Section 5.4 for a resolution test). The dimensions of the boxes are
10% X 80 rejoud. This translates to reoud being resolved by ~25 cells.

During the simulations, the clouds are allowed to fall freely under
gravity. We assume a constant gravitational acceleration g = —gZ,
with ¢ = 107® cm s72, as appropriate for the Milky Way, taken
from the fit in Benjamin & Danly (1997) for distances between 1
and 10 kpc. We discuss the impact of a more realistic gravitational
profile and apply them within the scope of our model in Section 6.

In our implementation of radiative cooling, we assume collisional
ionization equilibrium (CIE) and solar metallicity (X = 0.7, Z =
0.02).° We obtain our cooling curve by performing a piecewise
power-law fit to the cooling table given in Gnat & Sternberg (2007)
over 40 logarithmically spaced temperature bins, starting from a
temperature floor of 10* K, which we also enforce in the simulation.
We then implement the fast and robust exact cooling algorithm
described in Townsend (2009). For this cooling curve, the cooling
time in the cold gas is fcoo ~ 0.15 Myr. To emulate the effect of
heating and to prevent the background medium from cooling over
simulation time-scales, we cut off any cooling above 5 x 10° K. The
particular choice of this value is unimportant (Gronke & Oh 2018,
2020a; Abruzzo et al. 2022).

We run two different sets of simulations with different static
background profiles. The first set has gravity acting on a cloud
that is embedded in a constant background, i.e. constant hot gas
temperature, density, and pressure. This is obviously unphysical,
since there are no pressure gradients in the background to counteract
gravity. However, it is very useful for understanding the underlying
physical mechanisms that affect the cloud, without the confounding
effects of the varying background that a cloud falling through a
stratified medium experiences. To prevent the background from
falling under gravity, we introduce an artificial balancing force pnorg
upwards. The hot background thus feels a net zero force from gravity,
while the cold cloud is negligibly affected. For this set of simulations,
we also vary the cooling time by changing the normalization of the
cooling function by a constant factor A,. For example, Ay = 100
would be a case where cooling is a 100 times stronger than the fiducial
value, corresponding to cooling an environment where n,o = Agng =
1072 ecm™3, or nT = 10* Kcm™3, a relatively high pressure. For the
constant background, we adopt Ay = 100 as a default, so that cooling
is extremely strong and cloud growth is guaranteed. We emphasize

%We phrase our results in terms of cooling times, so they can easily be scaled
for different cooling curves. We note, however, that the minimum cooling time
at T~ 1.5 x 10* K, which is dominated by hydrogen cooling, is relatively
insensitive to metallicity.
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that the constant background is simply used to provide a clean test
of our analytic model, so that (for instance) the cooling time is not a
function of position, as in a stratified atmosphere.

The second, more realistic, set-up is that of a hydrostatic isothermal
halo. The density profile of the background is thus

n(z) = ngexp (— kg";“ z) , (36)
B { hot

where ny is the mid-plane density, z is the height above the disc, and
H = kgTho/gmu = 2.8 kpc is the isothermal scale height (assuming
the mean molecular weight i = 1). This is a simplified model that
is likely to break down close to the disc below 2 kpc, where it likely
underestimates the background density, since the background gas is
cooler. However, this simple model allows us to study the effects
of both a changing background profile and the resultant decrease in
cooling time as the cold gas falls inwards. Besides the initial set-up
of the background profile, since we are employing a cloud-tracking
scheme, the boundary cells are set accordingly throughout the course
of the simulation using this background profile and the current height
of the cloud, which we also track.

Our cloud chambers are somewhat artificial in that they are
arbitrarily long. Thus, for instance, in the stratified case, the cloud
can fall through an unrealistically large number of scale heights
(well beyond when the plane-parallel approximation is valid). In
practice, transition to a spherical gravitational potential with de-
clining gravitational acceleration ¢ means that even if clouds fall
ballistically, they will only accelerate to transonic velocities, rather
than fall supersonically. However, our set-up is a clean probe of the
underlying physics. In all the cases we care about, where the cloud
survives, infall is subsonic.

In order to evaluate the cold gas mass m and other related quantities
such as the mass growth rate, we use a temperature threshold of 7~
2 x 10* K below which we define the gas to be ‘cold’. No magnetic
fields are included in our simulations. We leave the exploration of
the MHD case to future work.

4 RESULTS: CONSTANT BACKGROUND

Our first objective is to test our semi-analytic model for falling clouds
(equations 1-3) against full 3D simulations. Hence, the first set of our
simulations is set up with a constant background, where the properties
of the background medium are held unchanged as the cloud falls. We
use this set-up as a simple way to explore and test our model in an
environment where the cooling time is kept constant. This allows us
to test the various components of our model by adjusting individual
parameters, ceteris paribus.

4.1 Time evolution

In order to understand the dynamical evolution of a falling cloud, we
first present the time history of various quantities of interest, both as
predicted by the model and as seen in the simulations. Note that the
model (equations 1-3) predicts m(f), v(f), and z(f) independently,
without using any input from the simulations. Fig. 3 shows the
evolution of these quantities over the course of a simulation with
an initial cloud radius » = 300 pc. These are, from left to right and
top to bottom, time-scales, cloud velocity, distance fallen, and the
total mass of cold gas. The simulation runs for over 200 Myr, which
is between 10 and 15 cloud crushing times.

The various time-scales shown in the upper left-hand panel of
Fig. 3 are as follows: the cooling time of the mixed gas tcoo1, mix, Where
mixed gas is defined as gas at Tnix ~ v/ Thot Teold ™~ 10° K, the free-fall
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Figure 3. Time evolution of various quantities for a » = 300 pc cloud falling in a constant background. From left to right, top to bottom, the panels compare the
growth time Zgrow, the velocity v, the distance fallen z, and the cold gas mass m of the cloud in the simulation versus the model. The upper panels also include
comparison with other quantities of interest. Model predictions are in good agreement with simulations results.

time fff = ¢, hot/g, the cloud crushing time 7. = /X7 /v, which uses
the initial cloud radius r and the instantaneous cloud velocity, and the
instantaneous cloud growth time f4oy = m/mi1, computed using the
mass of cold gas (defined as gas with T < 2 x 10* K). For the latter
two time-scales (¢ and fgow ), both model and simulation results are
shown for comparison. While wind tunnel set-ups define #.. using the
initial wind velocity, we use the instantaneous cloud velocity (defined
as the centre of mass velocity of cold gas) instead. This changes with
time — it is initially infinitely long since the cloud starts at rest, but
decreases as the cloud accelerates. Similarly, 7y, is initially infinite,
since there is no turbulence at the start of the simulation (any mixing
would be due to numerical diffusion, since we do not implement
physical diffusion). Mass growth then begins with the initial onset of
turbulence, which we have included in the model via the weight term
win (7). Our crude model for wy, (f) means that our analytic model for
Torow 18 less accurate at these times. However, since 7,0y is in any case
long in these stages, with mass increasing very slowly, inaccuracy
in modelling the growth of turbulence fortunately has little impact
on m(f) (and by extension v(#) and z(7)). The model performs well at
matching the simulation results for both .. and fg oy . Since fgrow ~

tir, the terminal velocity of the cloud here is roughly the sound speed
of the hot gas, as expected from equation (10). For all simulations,
feool, mix <K fec, as required to be in the fast-cooling regime.

The upper right-hand panel of Fig. 3 shows the velocity evolution
of the cloud, as measured by the centre of mass velocity of the cold
gas. We also show the velocity trajectory from the model, along with
three other characteristic velocities. These are the ballistic velocity
Upaliistic = &7 and the ‘terminal’ drag and growth velocities v, grag and
VT, grow» Te€Spectively, as given by equations (4) and (6). The terminal
velocities’” are computed using the size of the initial cloud, and we
can see that VT, grow < VT, drag> as expected. The ram pressure drag
experienced by the cloud is thus much weaker than the mixing—
cooling-induced drag due to momentum transfer as hot surrounding
gas is accreted onto the cloud (as expected from the estimates
presented in Section 2.1). The relative contribution of ram pressure
drag can be seen in the small deviation of the model (which includes

7TWhile we use the terminology of a ‘terminal’ velocity, VT, grow ~ glgrow 1S
in fact time dependent here since fgow has a mass dependence.
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Figure 4. The mass growth rate as a function of cold gas mass for clouds
of different initial sizes. Curves are labelled by the initial cloud radius and
whether they represent model solutions (M) or simulations (S), which are
shown as dashed and solid lines, respectively. Using a scaling of « = 5/6 in
the model matches the mass growth rate in the simulations well.

both effects) from v, grow- The cloud initially accelerates ballistically,
before reaching a high enough velocity where the cooling drag force
kicks in and slows the cloud down. Since the cooling drag force
operates on a time-scale fgy, the cloud remains ballistic until 7 ~
Igrow- This progression means that the cloud can experience a phase
where its velocity is decreasing as it falls. While not strongly apparent
in this set-up, this effect can be pronounced when the background is
not constant, which we discuss in the following section. The model
does an excellent job at matching the evolution of the cloud velocity
over time, and in particular the cloud reaches the asymptotic velocity
VT, grow ~ &lgrow Predicted by the mixing—cooling-induced accretion
of hot background gas.

The remaining two lower panels of Fig. 3 show the distance the
cloud has fallen and the total mass of cold gas. Of course, the two
quantities are not independent from the upper panels: we expect to
predict z(#) accurately since we predict v(¢) accurately, and we expect
to predict m(f) accurately since we could predict fg,, accurately.
Overall, it is remarkable how well our simple model of ‘accretion
braking’ matches the simulations. We now explore how it performs
in different regions of parameter space.

4.2 Area growth rate

We first investigate the areal growth scaling in equation (21), where
we stated that we expect the value of « to lie between 2/3 and 1.
Equation (22) can be rewritten as

3/5 o
) G &
lgrow.O Cs,6 mg

Fig. 4 shows the mass growth rate of cold gas m as a function
of the cold gas mass m normalized by the initial cloud mass my in
three simulations with » = 100, 300, and 1000 pc. We expect from
our model that past the turbulent onset and acceleration phases, the
cloud should reach terminal velocity and its mass growth rate should
thus follow lines with slope . The dashed lines in Fig. 4 show mass
growth rate curves from our model with f4 = 0.23 and o = 5/6. These
choice of values give a good match to the mass growth rate curves
from simulations represented by the solid lines, which are obtained

m =
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by smoothing the instantaneous values of 71 represented by the grey
points. The slopes are initially steeper as the cloud accelerates. As
discussed in the Section 2, we find that & ~ 5/6 seems to be an good
fit to simulation data — supporting the idea that both processes of
cloud growth on the surface (¢ ~ 2/3) and in a lengthening tail («
~ 1) are at play (or that the effective surface area scales in a fractal
manner).

As noted above, we also observe a ‘burn-in phase’, where the
mass growth is initially low because turbulence is developing around
and behind the cloud due to instabilities, then ramps up quickly due
to both turbulent onset and a rapid increase in surface area. Small
sudden drops are associated with cold mass that exits the simulation
box due to its fixed size, which are likely to occur at late times in
our simulations. The computational cost of tracking cloud growth
over longer periods of time increases significantly as the clouds keep
growing in size and length that require increasingly larger boxes to
contain. For the large 1 kpc radius cloud, we were unable to run the
simulation for a sufficient time to see the mass growth rate reach
the same steady growth as convincingly as the smaller clouds, but
nevertheless the mass growth is in line with model predictions for all
growing clouds.

4.3 Scalings

To verify our analytic scalings for #4y in the subsonic and supersonic
regimes, equations (25) and (26), we vary each parameter to test the
scalings explicitly. However, the parameters cannot be arbitrarily
varied — they are limited to the region of parameter space where the
clouds survive. This is given by equations (30) and (31) for subsonic
and supersonic infall, respectively.

4.3.1 Scaling with cloud size

We first vary the initial cloud size r. The upper plot of Fig. 5 shows
Igrow as a function of time for the range of cloud sizes, while the
lower plot shows the scaling of f, With r, measured at the times
indicated by the black circles in the upper plot where the weight
function in the model reaches unity, or in other words, turbulence
and mixing has fully developed. In the upper plot, simulation results
are represented by the small points coloured by cloud size. Solid lines
show model predictions. In the lower plot, the orange line represents
the model predictions, while the analytic scalings of r'¥3? and ¥4
derived above (before and after saturation of turbulent velocities for
subsonic and supersonic infall, respectively) are plotted as dashed
lines. The simulation results match the model and analytic scalings.

4.3.2 Scaling with cooling

Next, we vary the cooling strength parameter A, by a factor of 3
above and below the fiducial value. Fig. 6 shows the scaling of #grow
with Ag & 1/tc001, along with the simulation and model results as
before. The simulations are in agreement with the weak 7,01 scaling.
Despite this, as we will see later, survival is sensitive to cooling
time rather than size, and hence it is difficult to probe the scaling to
weaker cooling. Unfortunately, reducing the cooling strength further
leads to cloud destruction. Higher cooling strengths require shorter
time-steps and larger boxes, and are hence numerically challenging.
While we vary the cooling strength explicitly here, strong cooling
also corresponds to denser environments where higher densities lead
to shorter cooling times.
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Figure 5. Upper panel: the growth time as a function of time for clouds of
different sizes in the effective cooling regime (Ao = 100). All clouds shown
here are growing and survive. Solid lines show model predictions, while
coloured points represent simulation results. Lower panel: the growth time
where turbulence is fully developed (wkn(#) = 1) as a function of cloud size.
Dashed lines show expected analytical scalings in the subsonic (fgrow o 1532y
and supersonic (fgrow O 4y regimes, while the solid orange line shows the
model predictions. Both are in agreement.

4.3.3 Scaling with gravity

We also vary the gravitational strength g from 0.1 to 3 times the
fiducial value. Fig. 7 shows the scaling of 74, with g. As before,
we also plot the model and the expected g~*® and g° scalings for
subsonic and supersonic infall, respectively. Simulation results are
consistent with the model in both cases.

4.3.4 Scaling with density contrast/hot gas temperature

Lastly, we vary x by changing the background temperature. Fig. 8
shows the scaling of #g, with x. Unlike the previous sections, we
do not see the expected x*® scaling. This can be understood by
the scaling of the turbulent velocity # with x; in our derivation, we
assumed ' is independent of x. As seen in the middle panel of fig. 12
of Tan et al. (2021), this is true for x 2 100, but for x < 100, then u’
/% - If we put in this scaling u" oc \/x, we see that the x dependence
of tgow becomes weaker and better matches the simulation results.
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Figure 6. The growth time for different cooling strengths A, which modify
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Figure 7. The growth time for different gravitational fields. Dashed lines
show expected analytical scalings fgrow g‘3/8, go for subsonic and
supersonic infall, respectively, while the solid orange line shows the model
predictions.

We expect our predicted fgow o x> scaling to hold at higher y,
but the simulations required to probe this regime in detail require
very long boxes and are beyond the numerical scope of this work.
We also plot a single simulation, along with the model expectation,
where multiple parameters were varied, not just x, so as to sample a
different region of parameter space with higher x. These are plotted
as stand-alone points. For this particular simulation, the parameters
we have used are r = 300 pc, x = 1000, g =4 x 10~% cm s~2, and
n=1cm™3. Cooling here is not boosted since we use a high density
instead (i.e. Ag = 1). We find that the growth time for this simulation
remains in line with the model.

4.4 Survival

Since we are primarily interested in modelling clouds that are
growing, it is useful to determine when we are in such a growth
regime. In Section 2.3, we argued that this criterion is given by fgow
< fstee, Where fs is some constant factor of order unity. We now test
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Figure 9. Overview of the fate of cold gas in the ‘constant background’
case as a function of cloud size and different cooling strengths. Points denote
whether clouds in the corresponding simulations are growing in mass or
losing mass; question marks denote cases where the fate is uncertain. The
breaks correspond to where the turbulent velocity u saturates when the cloud
velocity reaches the sound speed of the hot background cg po. This causes
tgrow/lec to increase with cloud size instead. In the simulations marked with
‘7, the final fate of the cold gas is unclear.

this by running a number of simulations to explore the parameter
space, varying the initial cloud radius between 3 pc and 3 kpc, and
the cooling time between the fiducial value and 100 times shorter.
Fig. 9 shows?® the fate of simulated clouds for various cloud sizes

8Question marks denote simulations where it is unclear what the fate of the
cloud is. For example, the cloud might break up, with one portion accelerating
and getting destroyed, while leaving some much slower falling material
behind it that possibly survives and grows. The cold material then hits the
boundary of the box at the top or bottom and we cannot track further evolution.
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Figure 10. Comparison of various survival criteria (dashed lines) to the
simulation results as a function of cloud radius and cooling strength. The
criteria are satisfied above the respective lines. The symbols indicate whether
a cloud grows or gets destroyed (as in Fig. 9).

and cooling times. Solid lines denote a contour of constant cooling
strength, while the vertical axis shows the ratio of the growth time to
the cloud crushing time Zgrow/fcc. These time-scales are calculated by
evaluating the model where our weight factor wy,(f) = 1. Physically,
this is where turbulence has fully developed and 4y stabilizes.
Alternatively, evaluating fyrow/fcc at some time o, yields the same
result, but can change the normalization of fyy/fcc (this ratio gets
larger as « gets smaller since wy, (f) < 1). The implication here is that
the threshold value of fs is depends on when fg0y /1. is evaluated.

In general, the results are in line with criterion fgon/tee S fs ~
4 for survival, and the discussion in Section 2.3. Rather than being
sensitive to cloud size, clouds get destroyed when cooling is weak,
and only survive when cooling is strong enough. Cloud size does
begin to play a role when 40w > ff, SO that infall velocities become
supersonic, and fyow/fee ¢ 2. As discussed in Section 2.3, this
happens when 7 > ryonic (equation 29), ronic ~ 200 pc in our models,
where we see the change to a fgrow/fec o '/ scaling. The low mass
growth rates at high Mach number means that it is harder for clouds
to fall supersonically and still survive; it is only possible in a limited
size range rsonic < ¥ < rss (Where rgg is given by equation 32).

To reinforce the point that g0y /fcc < fs is a more stringent survival
criteria than others, in Fig. 10, we show the boundaries in the r—A
plane for two other possible criteria: (i) fcool, mix < fec» Which is the
criterion for cloud survival in a wind; (ii) Da,,;x = L/(u' Teool, mix) >
1, which is the criterion for a multiphase medium in the presence of
turbulence and radiative cooling (Tan et al. 2021). The two criterion
are closely related. In Fig. 10, we see that clouds that satisfy these
criterion are none the less destroyed, while the more restrictive
criterion fgow/tee < fs straddles the boundary between destruction
and survival. Note that for sufficiently small clouds, fgrow < fcool, mix
(blue dashed line) instead of the other way round. However, this lies
in the cloud destruction regime and thus is irrelevant.

This seems to happen near our survival boundary, where the long-term fate of
the cloud can be sensitive to cloud dynamics. It also happens for the largest
clouds.

€20z Jequieldag /z uo Jasn eleqieg ejues ‘eiulojiied 1o Ausiaaiun Aq G/68669/1 2S2/2/0ZS/3101e/Seluw/wod dno olwapeoe//:sdny woJj papeojumoq



. r (pc) e Sim
107 4 10— 300 —— Model
] — 30 1000
1 100
S 100 - - o
101 o .N T
10-1 10° 10!

tg row/ tff

Figure 11. Evolution of the falling velocity of the cloud as a function of
(evolving) fgrow/tyr for different cloud sizes. Black triangles indicate the
direction of evolution at # = f. As the cloud accelerates, the growth time is
decreasing until it stabilizes at the growth terminal velocity vT, grow/Cs, hot ™~
torow/tit-

4.5 Growth and free-fall time-scales

In Section 2, we saw that if the drag force from mass accretion
balances gravity such that Fyr.y ~ Fgrow, then we expect that fgroy /i
~ VT, grow/Cs, hot- We show that we do indeed see this in our simulations
in Fig. 11. The blue dotted line shows the equality, while the
coloured points are simulation results for various cloud sizes over
time. Solid lines show the model values for the same time range as
the corresponding simulations. Initially, 74 is large as turbulence
develops, but once they reach the terminal velocity vT, grow ™~ &fgrows
falling clouds indeed obey the scaling vgrow ~ Cs, hot (farow/tir> as seen
from the fact that the clouds evolve to the blue dotted line and stay
there.

5 RESULTS: STRATIFIED BACKGROUND

In our second set of simulations, we consider a more realistic set-
up of a cloud falling through an isothermal hydrostatic background.
This means that P, p o exp (ﬁ), where z is the vertical height the
cloud has fallen and H is the scale height of the background medium.
As mentioned in Section 3, the density profile of the background is
thus
Z

n@ =noexp (1) - (38)
where ny = 107 cm™ is the initial background density, z is the
height the cloud has fallen, and H = kgTho/gmu = 2.8 kpc is the
isothermal scale height (assuming the mean molecular weight u =
1). We define our origin where the cloud begins to fall, hence density
increases rather than decreases exponentially with z. While the use
of a constant gravitational acceleration g is not in general a realistic
assumption, this simplification helps in isolating the relevant physics.

5.1 Time evolution

We now present the time evolution of a simulation where the
cloud comfortably survives, along with the model predictions for
various quantities. Unlike the constant background set-ups, we do
not artificially boost the cooling function in these simulations.
Instead, the cooling time naturally varies with density and hence
height. Fig. 12 shows the evolution of these quantities over the
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course of a simulation with an initial cloud radius » = 1 kpc and
g = gra = 1078 cms™2. As before, these are, from left to right and
top to bottom, time-scales, cloud velocity, distance fallen, and the
total mass of cold gas.

The upper left-hand panel of Fig. 12 shows the same time-scales as
in Fig. 3: the cooling time of the mixed gas t .01, mix» Which decreases
as the clouds falls, the free-fall time #¢ = ¢, nhot/g, the cloud crushing
time .. = /X7 /v, which uses the initial cloud radius r and the
instantaneous cloud velocity, and the instantaneous cloud growth
time tg0y = m /mi1, computed using the mass of cold gas. For the latter
two time-scales (7. and fgy ), both model and simulation results are
shown for comparison. We have adjusted the value of fi}, in the weight
term wyy(7) to be 1 for the stratified background as that is more
in line with simulation results. This suggests a more rapid onset
of turbulence for clouds that are falling into a denser background
(this parameter is of course, only a crude approximation of the
relevant processes involved). The model performs well at matching
the simulation results for both .. and 4y, although marginally
less so than for the constant background. This can be attributed to
the cloud initially travelling through a region of parameter space
where it is not in the growth regime. Since our model does not
include cloud destruction, this leads to a deviation of the simulation
from the model. The velocity evolution of the cloud is shown in the
upper right-hand panel. The cloud initially accelerates ballistically,
before the cooling drag force kicks in and slows the cloud down.
Since the cooling drag force operates on a time-scale Zgy, the cloud
remains ballistic until # ~ 4, . During this time, the cloud can reach
velocities greater than the eventual terminal velocity vT, grow = &Zgrow-
The subsequent deceleration due to cooling slows the cloud down
such that the velocity turns around and starts to decrease. This has
implications for cloud survival that we discuss further on. At late
times the cloud velocity approaches a roughly constant value. We
now delve into this further.

5.2 Terminal velocity

Previously, we argued that the terminal velocity should approach
a value vt gow & glgow (equation 6). Indeed, it does so, after
some ‘overshoot’ as described above. However, as apparent from
equation (22), tyy itself is a function of parameters such as oo (2),
m(t), pn(?) that change with time as the cloud falls through a stratified
atmosphere. Thus, one might expect tg,, and consequently v, grow
to vary with time as the hot plasma surrounding the cloud increases
in density. Instead, what is surprising from Fig. 12 is that fgoy
asymptotes to a constant value. Indeed, it does so quite early, before
U —> U7, grow- HOW can we understand this?

From equation (22), and using feoo o 1/n o¢ exp (7£), we can
write

|
faron (1) O (1) (%’))) exp (— G = a) %) (39)

as a time-dependent quantity. The rate at which 74, changes is

iv+(1_°l)—(§—oz>1. (40)

dlntgrow _ igrow __2>Y
S5v Terow 4 H

dt 12 grow

From equation (6), this can be contrasted with the rate at which v
evolves:

dlnv 1
s 1)

dr v Vo lerow
We can make two observations. First, equation (40) has terms of
opposing sign. Thus, it is possible that iy —> 0, i.€. fgrow A const,
rather than evolving with background quantities. Physically, this is
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Figure 12. Time evolution of various quantities for a r = 300 pc cloud falling in a stratified background. From left to right, top to bottom, the panels compare
the growth time Zgr0w, the velocity v, the distance fallen z, and the cold gas mass m of the cloud in the simulation versus the model. The upper panels also include
comparison with other quantities of interest. Model predictions are in good agreement with simulations results.

because of a negative feedback loop. Suppose fy, decreases as a
cloud falls into denser surroundings. The subsequent increase in mass
causes fyow to increase (from equation 39). The opposite is also true:
if 410w 18 large, the cloud will fall faster (due to weaker accretion drag)
into denser regions, reducing 7oy . Secondly, by comparing terms on
the right-hand side of equations (40) and (41), the time-scale on
which 4y equilibrates to its steady-state value is comparable to
the time-scale on which v equilibrates to its steady-state value®,
VT, grow = &lgrow- THus, v, t'gmw — 0 on similar time-scales. From
setting equations (40) and (41) to zero, the steady-state value of 7oy,
and hence v, grow, i given by

l -« 2
UT, grow = &lgrow ~ gng ~ gcs,hol, (42)
"

where in the last step we use o« = 5/6 and g ~ ¢2/H for an isothermal
atmosphere. This velocity is shown by the grey line in Fig. 12.

This then has the remarkable implication that in an isothermal
atmosphere with constant gravity, fauwvir = VT/Cohot = ILerow/lit
(equation 10) of a cloud where accretion-induced drag dominates

9Indeed, because of ‘velocity overshoot’, fgrow €quilibrates first.
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is independent of all properties of the system except cloud geometry,
specifically «. For our measured value of @ = 5/6 from infalling
clouds with cometary tails, we predict fupir = [(1 — @)/(5/4 —
a)]'? ~ 0.6. In Fig. 13, we compare velocity evolution in our model
(equations 1-3) to the asymptotic velocities from equation (42),
for different cloud sizes and gravitational fields. Equation (42),
which only depends on «, correctly predicts the asymptotic velocity.
Note, however, that reaching the asymptotic velocity requires falling
through many scale heights, and a planar g ~ const isothermal
atmosphere may not be realistic over such length scales. ‘Velocity
overshoot’ also implies that large clouds (which exhibit stronger
overshoot) might be seen to fall faster than predicted. In systems
with varying g(r) and 7(r) (and thus non-constant scale heights),
the result can be more complex, and the most straightforward way
to arrive at predictions is to simply integrate the set of ordinary
differential equations (ODEs), equations (1)—(3). We will show an
example in Section 6.2.

5.3 Scaling with cloud size and gravity

In Fig. 14, we compare the mass growth rates as a function of mass
for simulations with varying initial cloud sizes and gravitational
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Figure 14. The mass growth rate as a function of cold gas mass for clouds of
different initial sizes and different gravitational strengths. Curves are labelled
by the initial parameters and whether they represent model solutions (M) or
simulations (S), which are shown as dashed and solid lines respectively.

strengths to model predictions. Varying g allow us to test the model
for different scale heights. We can see that the model predictions
are in good agreement with simulations results. In all cases, the
simulations converge to the 1/t slope predicted by the model. The
divergence at early time is due to the fact that for this set-up, the
clouds start in a destruction regime since cooling is relatively weak.

5.4 Resolution convergence

To test if our results for mass growth rates are converged. we run
a r = 300 pc cloud with g = ggq at various resolutions, varying
the fiducial resolution by a factor of 2. Fig. 15 shows that the three
resolutions show little difference in mass growth rates and that the
simulation appears to be converged, although the higher resolution
simulation matches the model slightly better — the cloud is disrupted
less initially and reaches the model growth rate more rapidly.
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Figure 15. The mass growth rate as a function of cold gas mass for a r =
300 pc cloud with g = gng at different resolutions (eight times higher and
lower mass resolution than in the fiducial run, respectively). The simulations
are relatively well converged.

5.5 Survival in a stratified background

For a cloud falling in a constant background we found that the
survival criterion was given by a competition between the growth
and destruction time-scales of the cloud: fgow < fstcc, Where fs is a
constant factor. We wish to ascertain if the same condition applies to
clouds falling in a stratified background.

In the case of a constant background, 7, changes very little over
time (once turbulence has developed), with only a very weak scaling
with mass, and cooling is strong enough so v approaches gfgrow
without ‘overshooting’, something we noted in Fig. 12 above. For
a stratified background, both these assumptions do not hold — fqy
changes continuously with background density, and an overshoot is
often observed. Since our initial conditions are in the regime where
clouds do not survive, surviving clouds are those that are able to
survive long enough to enter the growth zone.

One ansatz would be to use the asymptotic value of 74, and v that
we derived above in equation (42) and evaluate the survival criteria
there. This gives

2

v
Fo> LEw (43)

&fs/x

This condition is given by the blue dashed line in Fig. 16. Note that
it is a lower bound on r, since vr, grow 1s independent of r. It has the
right qualitative behaviour as a survival criterion, but does not seem
to match the survival thresholds seen in the simulations. Clouds have
to fall many scale heights to reach the asymptotic velocity given by
equation (42) — often survival is determined much earlier. Indeed,
the falling clouds often overshoot this asymptotic velocity as they
initially fall ballistically, as seen in Fig. 16. We can estimate the time
where gravity and cooling balance:

m t
mv~ —uv~mg—, (44)
grow tgmw
assuming the cloud is falling ballistically in this initial phase. Hence,
I~ torow 18 the time where the cloud is slowed from its ballistic free
falling trajectory. If we evaluate equation (27) at this time in the
simulation, we can solve numerically for some 7. Of course, this
only makes sense if v(f = fgrow) > VT, grow, 1.€. there is an overshoot
S0 1, is shorter. The larger the difference in the two velocities, the
more likely the cloud is to be destroyed in this overshooting phase. In
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Figure 16. The fate of clouds of different size falling in stratified back-
grounds with different gravitational strengths. Survival criterion evaluated at
different times is shown. The best survival criterion is given by the teal curve,
i.e. equation (27) evaluated at the maximum velocity, for fg = 3.

Fig. 16, we show this limit in the orange dashed line. We see that this
matches the simulation results more closely for larger values of g,
where the clouds accelerate to higher velocities. Ultimately, it is the
maximum velocity that determines if a cloud survives. We thus show
in the red and teal curves in Fig. 16 the survival criterion evaluated
at v = Uy, from the model. The red curve use fs = 4 as in the
previous section, while the teal curve has fs = 3, which seems to be a
better match to the simulation results. It is unsurprising that we find
a different value of fg here, since we are evaluating our quantities at
a different time.

In Fig. 17, we show the evolution of the 100 and 300 pc cloud
for g = gpq. The 100 pc cloud does not survive and is disrupted
completely, while the 300 pc starts to get disrupted but survives long
enough to reach the zone of growth and then grows. Note the tail
growth in the surviving case. To summarize, we have looked at clouds
that start outside the growth zone in a stratified medium, and find
that in order to survive, the cloud has to make it to the growth zone.
Since the cloud is accelerating ballistically before it reaches high
enough pressures where cooling is efficient enough for it to grow
and slow down, only large clouds can survive this infall. We explore
the implications of the survival conditions in this and the previous
section on astrophysical systems of interest in the following section.

6 DISCUSSION

6.1 High-velocity clouds

3D simulations of clouds falling under gravity with mixing and
cooling processes included have only been studied to a limited extent
previously. Heitsch & Putman (2009) concluded that clouds below
10*° Mg are disrupted within 10 kpc. Notable differences in set-
up include a smaller box length along the tail direction and starting
initially with colder clouds, as their temperature range extended down
to 100 K. Heitsch et al. (2022) focused on metallicity measurements,
tracing original versus accreted cloud material. They found that most
of the original cloud material does not survive and is instead replaced
by accreted gas that mostly happens in the tail. Grgnnow et al. (2022)
observed cloud growth in MHD simulations but did not follow the
clouds for many cloud crushing times. We have followed up by
providing a model for the mass growth of such clouds based on the
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underlying process of turbulent mixing and cooling, so as to tackle
the key questions of when high-velocity clouds (HVCs) can survive,
how much mass they accrete, and how fast they travel. We then tested
the model against a suite of numerical simulations. What then are
the implications for HVCs?

In Fig. 18, we show our estimates for cloud survival in a Milky
Way-like profile in the cloud size—initial height parameter space.
Specifically, we employ the profiles from Salem et al. (2015) who
combine the density profile of Miller & Bregman (2015) with a
temperature profile mapped from a Navarro—Frenk—White (NFW)
halo (Navarro, Frenk & White 1997), which we also use to set the
gravitational profile. In the region of interest, T ~ 10° K. Fig. 18
shows the ratio of the growth time and the cloud crushing time
Igrow/ee €valuated at the maximum velocity the cloud reaches along
its trajectory. We also show the threshold of survival (equation 27) at
~4 from the previous section. The analytic expectation (equation 34)
for where cooling is strong enough for clouds to survive regardless
is demarcated by the white dashed line. Outside this region, larger
clouds can survive falling from further out, simply from the fact that
fec X Il

More generally however, Fig. 18 shows that except for these larger
(2100 pc) clouds, HVCs in the Milky Way should only survive if
they start at an initial height of dy < 10 kpc. Most HVC complexes
detected do indeed fall within this regime — with the notable detection
of the ones associated with the Large Magellanic Cloud (LMC) and
its leading arm located at 20 kpc (Richter et al. 2017).

While this prediction seems to explain the observed survival of
most HVCs, we want to highlight that due to the mass transfer from
the hot to the cold medium, most surviving clouds in the Milky Way
in our model would fall at vgsg ~ 70 km s~ (equation 42) and
might thus have velocities vy sr that are too low to be classified as
HVCs. Such a population of intermediate- to low-velocity clouds
is of course to be expected even from simply studying the velocity
distribution of HVCs and ‘filling in’ the gap at v sg ~ 0, and has been
the subject of several theoretical studies (e.g. Peek et al. 2007; Zheng
et al. 2020) — as well as observational attempts to locate them (e.g.
Peek et al. 2009; Bish et al. 2021). Thus far, there does not seem to be
a firm conclusion on the existence of such a low-velocity population.
Our work provides a theoretical foundation for the existence of such
clouds and predicts an overabundance of them in the Milky Way halo
at lower heights (<10 kpe).

An interesting example of a nearby HVC is the Smith Cloud
(Smith 1963), lying only 3 kpc below the Galactic plane with a
metallicity of ~0.5 Mg, and which is falling towards the Galactic
plane at velocity v, ~ 70 km s~! (Fox et al. 2016). A long-standing
mystery has been explaining the survival of the Smith Cloud at
its current location. A simple ballistic analysis suggests that the
cloud might have already passed through the disc (Lockman et al.
2008) and should hence have been disrupted, in which case some
mechanism is needed to explain its survival, such as the cloud
being embedded in a dark matter subhalo, which would shield the
gas and extend its lifetime (Nichols & Bland-Hawthorn 2009). It
is possible that the relative high metallicity and survival of the
Smith Cloud can be potentially explained instead by accretion of
ambient material driven by turbulent mixing and cooling. Henley,
Gritton & Shelton (2017) ran a wind tunnel simulation with the aim
of reproducing a Smith’s Cloud like set-up, and found entrainment
of the background gas largely in the tail of the cloud. Galyardt &
Shelton (2016) ran simulations of the Smith Cloud with gravity
and in a stratified background. They concluded that if the Smith
Cloud was in a dark matter subhalo, it would comprise gas accreted
only after the subhalo passed through the disc. Alternatively, if the
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Figure 17. Snapshots of the projected density-weighted temperature through the box (temperature here is hence just an indication of the amount of cold gas
when projected along the y-axis) for a 100 and 300 pc cloud at various points in their evolution. The former is disrupted completely, while the latter reaches the
survival zone and grows. x and z here simply reflect the size of the box along the respective axes normalized by cloud size.

Smith Cloud was not accompanied by such a subhalo, then it must
be on first approach, since the cloud would not survive its journey
through the Galactic disc. Our model could naturally explain the
survival of a Smith’s Cloud that was on first approach, as it fulfils the
survival criterion equation (27), i.e. it falls within the ‘survival zone’
of the Milky Way’s halo. The trajectory in this case would be very
different from the ballistic one since the accretion dynamically affects
the cloud.

Since the terminal velocity is independent of the cloud size, one
would expect no observable relationship between, for instance, cloud
column density and infall velocity, although there may be significant
scatter since this requires the cloud velocity to ‘turn around’ and reach
asymptotic terminal velocity. This is consistent with observations
(Westmeier 2018).

We have thus far considered clouds that are infalling from large
distances and potentially feed the disc. In our model, HVCs and
IVCs can continually grow in mass once they are near enough to
the disc. It therefore also gives credence to the notion that fountain-
driven accretion can supply the disc with fuel for star formation: cold
gas thrown up into the halo ‘comes back with interest’, by mixing

with low-metallicity halo gas that cools and increases the cold gas
mass (Armillotta et al. 2016; Fraternali 2017). Such low-metallicity
gas is required to satisfy constraints from disc stellar metallicities
and chemical evolution models (Schonrich & Binney 2009; Kubryk
et al. 2013). The equations for mass transfer and velocity derived in
this work can also be incorporated into semi-analytic ‘fountain flow’
models and checked against observations.

6.2 Clusters

Galaxy clusters are amongst the largest virial systems in the Universe
and thus present opportune test beds for the comparison of observa-
tions and theoretical models of galactic properties and evolution. The
hot intracluster medium (ICM) in such environments reaches temper-
atures in the range of 10’—10° K that can be probed observationally
via X-ray emission originating from the thermal bremsstrahlung
radiation of this hot diffuse plasma (Sarazin 1986). However, the
ICM does not exist simply in a single phase. Observations from
measurements of carbon monoxide (CO) that traces cold molecular
gas find an abundance in these central cluster galaxies, with molecular
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Figure 18. Survivability of HVCs in Milky Way conditions with a size r¢
and dropping height dy. For clouds outside the survival region given by
equation (34), the colour coding corresponds to the ratio fgrow/fcc evaluated
at the maximum velocity along the cloud trajectory. The horizontal white
dashed line shows where the survival criterion equation (27) is satisfied for
fs = 4. Large clouds that fall in from large distances can still survive as they
are not destroyed before reaching the survival region.

gas mass correlating with X-ray gas mass (Pulido et al. 2018). One
theory for the origin of the cold molecular gas is that they develop
from thermal instabilities triggered in the wakes of cooling updrafts
of radio bubbles that rise and lift low-entropy X-ray gas (McNamara
et al. 2016). These form the cold filaments observed to trace the
streamlines around and behind the bubbles, which should eventually
decouple from the velocity structure of the hot flow and fall back
towards the galaxy centre (Russell et al. 2019).

A particularly interesting conundrum is the low observed velocities
of the molecular gas measured by CO line emission in the Ata-
cama Large Millimeter/submillimeter Array (ALMA) target systems
(McNamara et al. 2014; Russell et al. 2016, 2019; Pulido et al.
2018). They are significantly smaller (<100 km s~!) than both stellar
velocity dispersions (200-300 km s~') and galaxy escape velocities
(~1000 km s~1), implying that the molecular gas is tightly bound
to the galaxy and should be expected to be infalling. Even initially
outflowing gas should at some point stall and fall back inwards.
These low velocities are puzzling as models of free-falling clouds
in cluster potentials have estimated that they can be accelerated to
hundreds of kilometres per second after falling just a few kpc (Lim
et al. 2008; Russell et al. 2016). The large density contrast between
the molecular gas and the hot background in the ICM means that ram
pressure should do little to slow down these falling clouds, which
would rapidly accelerate to high velocities. Small velocities would
require the observed cold gas to have been falling gravitationally
for only a short amount of time. While this could be explained if
the infalling cold gas observed was mostly recently decoupled from
the hot gas, there is no reason to suggest that this should be the
case. Furthermore, the rapid acceleration means we should see steep
velocity gradients in these filaments. However, we observe shallower
velocity gradients that are inconsistent with free-fall (Russell et al.
2016, 2017). Some observations find that free-fall models can match
observations in outer filaments, but break down for inner regions
(Lim et al. 2008; Vantyghem et al. 2016). One caveat here is that
increasing the spatial resolution of observations can reveal more
complex spatial and velocity structures (Lim et al. 2008). Lastly, if
the molecular gas was free-falling, we would expect to generally
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detect higher velocities at smaller radii, but there is no evidence
for this. A large influx of cold gas implies that circumnuclear discs
should be more common in comparison with filaments, while the
opposite is observed (Russell et al. 2019).

The conclusion then is that the picture of free-falling clouds fails to
explain a large number of observations with regard to these filaments,
which suggest that the infalling cold gas has to be slowed by some
alternative process other than ram pressure drag. One possibility
that has been previously proposed is that magnetic stresses slow the
clouds’ descent, since it has been suggested that the cold filaments are
significantly magnetically supported (Fabian et al. 2008). However,
the magnetic pressure that would be required to slow such a filament’s
infall along its length requires a strong non-radial magnetic field
component with g ~ 0.1 (Russell et al. 2016).

Our results suggest an alternative explanation that naturally
addresses the above issues. As noted above, observations of the
prevalence of molecular gas are closely tied to systems with shorter
cooling times. As shown in the previous section, the filamentary mass
growth driven by turbulent mixing and cooling of these infalling cold
filaments serve as a braking mechanism via accretion-induced drag.
This can significantly reduce the acceleration of the cold gas when
the cooling time of mixed gas is short. To illustrate this point, we
compare our model to the free-fall model used in Lim et al. (2008)
in their analysis of observed filaments in the cD galaxy NGC 1275
(Perseus A — Per A) located in the Perseus cluster. For simplicity,
we follow the approach of Lim et al. (2008) and adopt an analytic
model of the mass density and gravitational potential of the form
from Hernquist (1990). The mass density and gravitational potential
as a function of radial distance are thus given by

_Ma_ 1 45)
pir) = 2t r (r +a)®’ (
GM
¢(r):_r+a’ (46)

where M is the total galactic mass, r is the radial distance, and a
is a scale length. We also use the same values they deduce from
luminosity observations of Smith, Heckman & Illingworth (1990)
and an estimated mass to light ratio, with M = 8.3 x 10'! Mg and
a = 6.8 kpc. We use the number density profile given in Churazov
et al. (2003) for the Perseus cluster, which is mostly a constant n =
4 x 1072 cm™ below 30 kpc and adopt a constant temperature profile
of T=10" K.

Fig. 19 shows the observational contours of velocity as a function
of radial distance from the centre of Per A for the outer western
filament as shown in fig. 10 of Lim et al. (2008). In Fig. 19,
we have also reproduced the free-fall trajectories used in Lim
et al. (2008), where they include one for galactic masses of M =
8.3 x 10" M,(M8b) and M = 3.4 x 10'"" My (M3b), both starting
from a radius of 8.5 kpc. The free-fall model that assumes the
M = 8.3 x 10" My mass deduced from luminosity observations
is unable to produce a good fit to observations, and hence the mass
needs to be tuned to M = 3.4 x 10'" My, to fit a free-fall model
to the observed contours. This tuning of mass and drop height is
sensitive to both these factors, mainly due to the rapid acceleration
by gravity in free-fall. In comparison, we show the same curve for
M = 8.3 x 10'' Mg, but using our model(M8c) (equations 1-3) that
includes the braking effect due to growth from mixing and cooling.
This shows the trajectory for a cloud where r; = 50 pc, assuming
that L/r ~ 100. We see that if the cloud initially falls from even a
radial distance of 15 kpc, it matches the observations well without
changing the galaxy mass. Clouds can thus fall from a further distance
out than observed. It should be noted that the conditions here are on
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Figure 19. Observed velocity contours of the outer western filament in Per A
from Lim et al. (2008) are shown in purple. Ballistic trajectories are shown
by the blue and orange lines for galactic masses of M = 8.3 x 10'! Mg
(as observed) and M = 3.4 x 10'! Mg (tuned to obtain the correct infall
velocities), respectively. The red line shows the trajectory of a cloud in our
model with a galactic mass of M = 8.3 x 10'! M, but which is experiencing
accretion drag. In the latter case, tuning of galactic mass is not necessary to
explain observations.
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Figure 20. Observed velocity contours of the outer western filament in Per A
from Lim et al. (2008) are shown in purple. Trajectories starting from different
initial heights in our model are shown by the solid lines. Dashes lines show
ballistic trajectories with the same starting point. The velocities we predict
are much less sensitive to the initial drop height compared to the ballistic
model.

the boundary of the survival criterion from equation (30), due to its
strong scaling with x.

In Fig. 20, we show velocity trajectories for clouds dropped from
various heights given by solid lines, with the 8 kpc distance used
as a lower bound. We find that even clouds that are dropped much
further away do not accelerate as rapidly to high velocities as in
the ballistic case. Ballistic trajectories for clouds dropped from the
same heights are shown for comparison by the dashed lines, and can
be seen to rapidly accelerate past observed velocities. On the other
hand, the clouds in our model are slowed and stay within the range of
observed velocities for much longer times. Hence, we are much less
sensitive to the exact distance at which the cold gas first begins to
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fall. Our results are consistent with the lower velocities and shallower
velocity gradients observed relative to what would be expected from
free-fall without requiring that the observed cold gas had only just
recently cooled, or that magnetic drag from a strongly magnetized
background must be present. In addition, the survival of cold gas
and the filamentary morphology can also be naturally explained by
cooling tails.

6.3 Other implications

We have found that it is more difficult for infalling cold material
to survive, compared to their outflowing counterparts, which are
eventually entrained and do not experience further shear forces
thereafter. This conclusion has a range of wider implications that
we will now touch on.

Assuming isobaric conditions, our survival criterion is equivalent
tO feool, hot/tr S 1 (equation 35), which is equivalent to the criterion
for linear thermal instability in a plane-parallel atmosphere. As
previously remarked, this has the interesting implication that cold
gas that forms via thermal instability should be able to survive infall,
though this should be re-examined in a spherical potential, where the
threshold for cold gas condensation changes, and 7 (and gravitational
acceleration) vary with radius. This is an interesting avenue for future
work.

Our results imply that clouds that grow in mass when they fall
should undergo accretion-induced braking, a prediction that can be
tested in larger scale simulations with more realistic set-ups. Nelson
et al. (2020) find an abundance of cold clouds of sizes 1 kpc and
smaller around the circumgalactic medium (CGM) of ‘red and dead’
intermediate-redshift elliptical galaxies in the TNG50 simulation.
These clouds are mostly infalling, with the radial velocity distribution
peaking at just one-third of the virial velocity. They also find that
the clouds are accreting and growing. They are long-lived, surviving
for cosmological time-scales. This appears to be consistent with
predictions from our model — that infalling cold clouds are growing
and thus slowed to subvirial velocities. It would be interesting to
directly compare growth times, #g0y, and infall velocities, to see if
the expectation vt ~ gl is fulfilled.

Similarly, our results will affect the dynamics of cosmic cold
streams feeding galaxies at high-z (Kere$ et al. 2005; Dekel &
Birnboim 2006). Thus far, Mandelker et al. (2020) have found that
the survival criterion for cold clouds seems to be able to translate
relatively well to stream survival.'” However, in their studies they
used a constant hot gas velocity — similar to the outflowing cloud
simulations — which implies that their shear declines rapidly in the
simulation. Since in reality cosmic streams are also accelerated by
gravity, the situation for streams is likely closer to the set-up studied
here. This would imply that (a) an equivalently more stringent
survival criterion would apply to streams, and (b) their terminal
velocity is given by ~gfg0y. Indeed, unlike idealized simulations,
cosmological simulations find that streams reach a roughly constant
terminal velocity (Dekel et al. 2009; Goerdt & Ceverino 2015); a
result that has not been quantitatively explained. These implications
directly affect the cold gas mass supplied towards the inner galaxies
in dark matter haloes

Interestingly, coronal rain in our Sun is also observed to fall below
free-fall velocities — on average falling with only ~1/3—1/2 of the

10There is some controversy regarding the destruction time-scale but for the
relevant x ~ 100-1000 the different possibilities agree (cf. discussion in
Bustard & Gronke 2022).
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ballistic value (see review by Antolin & Froment 2022). While the
temperatures and resulting overdensities are for coronal rain similar
to what has mostly been considered here, the main difference is the
strong magnetic field. Thus, most studies within the solar community
have focused on magnetic fields as explanation of the slowdown and
it has in fact been shown (using mostly one- and two-dimensional
simulations) that coronal rain can be efficiently decelerated due to
a build-up of pressure in front of the cold cloud (Oliver et al. 2014;
Martinez-Goémez et al. 2020). Clearly, the magnetic fields do play a
major role here and affect the dynamics. However, it is noteworthy
that mass transfer can also lead to significant slowdown. Plugging
typical values found observationally (n ~ 10" cm™3, T~ 2 x 10%,
r ~1Mm, x ~ 100, g = 274 ms~2; Antolin & Froment 2022) into
equation (25) yields Vierm, drag/Vierm, grow ~ 0.45. Thus, the ‘accretion
braking’ process described in this work might be another important
drag force at play; an interesting avenue for future work.

6.4 Further considerations

While the model we have presented explores and captures the core
physics at play, simplifications and assumptions have been made
along the way. We discuss several considerations that could provide
interesting avenues in order to expand and build on this model.

6.4.1 Additional physics

There are a number of physical processes whose impact and impor-
tance we have not touched on in this work, but which could lead
to complications and should be studied in future work. One such
component is magnetic fields. Magnetic fields have been shown to
significantly affect the morphology of clouds in both the wind tunnel
and falling cloud set-ups, while their effect on mass growth is still
uncertain (Grgnnow et al. 2017, 2022; Grgnnow, Tepper-Garcia &
Bland-Hawthorn 2018; Gronke & Oh 2020a; Abruzzo et al. 2022).
For example, magnetic fields can suppress the Kelvin—-Helmholtz
instability, reducing mass entrainment rates (Ji, Oh & Masterson
2019; Grgnnow et al. 2022), although mass growth rates in some full
cloud simulations appear minimally impacted (Gronke & Oh 2020a).
Another source of non-thermal physics that could be important to
study in this context is cosmic rays (Armillotta, Ostriker & Jiang
2022; Huang, Jiang & Davis 2022). Self-gravity has been found to
matter for compact HVCs (Sander & Hensler 2021). We have also
not included explicit viscosity and thermal conduction (although
we point out that for turbulent mixing layers the mass transfer is
generally dominated by turbulent diffusion; Tan et al. 2021).

6.4.2 Initial cloud morphology

There is some uncertainty regarding an appropriate choice for the
initial structure of the cloud. A spherical cloud is clearly an idealized
choice. Instead of a uniform density sphere, smoothly varying density
and temperature profiles connecting the two phases have been used
for more realism (Heitsch & Putman 2009; Kwak et al. 201 1; Gritton,
Shelton & Kwak 2014; Sander & Hensler 2021). Furthermore,
Cooper et al. (2009) found that fractal clouds were destroyed faster
as compared to uniform spheres due to more rapid cloud break-
up. Schneider & Robertson (2017) similarly found that an initially
turbulent structure within the cloud would enhance fragmentation
and ultimately facilitate cloud destruction. However, the above are
all concerned with cloud destruction, where the clouds are in a regime
where the cloud is ultimately destroyed over time (fcool, mix > fec fOr
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wind tunnel set-ups). The importance of the initial cloud structure
can thus be understood in the context that it determines how the cloud
is destroyed as it fragments and breaks up. However, if we are in the
regime where one is concerned about cloud growth instead, then this
dependence on the initial set-up seems to matter less. Gronke & Oh
(2020a) found that in the regime of cloud growth, there was little
difference in either the mass growth or velocity evolution between
an initially turbulent or uniform cloud. In fact, the turbulent case
actually grew slightly faster, since it had a larger surface area at the
start. Still, this suggests that the initial morphological evolution of
the sphere does have some dependence on the choice of the initial
structure of the cold gas cloud. In terms of numerical values, this
creates some amount of uncertainty in our model, in particular with
regards to the initial values of the cloud surface area and its initial
evolution, which Heitsch et al. (2022) refer to as the ‘burn-in’ phase.
In our model, this uncertainty is folded in by calibrating a constant
prefactor of order unity to the results from our simulations. It is
possible that the precise value of this factor might vary depending
on set-up and initial cloud structure.

6.4.3 Temperature floor and self-shielding

In our simulations, we have assumed a temperature floor of 7~ 10* K.
However, it would be useful to understand the phase structure of cold
neutral gas that provides an additional layer of structure to the clouds
(Girichidis et al. 2021; Farber & Gronke 2022) and how this might
impact cloud growth and dynamics. This is especially for comparison
with observations, which often detect warm gas surrounding cold
cores. On a related note, we have assumed that all our clouds are
optically thin. However, self-shielding could be important for the
more massive clouds.

6.4.4 Infall conditions

We have assumed our clouds fall directly towards the disc. However
it is likely that most clouds will have some sort of rotational velocity
component and hence fall inwards on some orbit trajectory. As
mentioned in Heitsch & Putman (2009), this component is more
akin to the wind tunnel set-ups since net acceleration is reduced. We
have also assumed a quiescent background — realistic environments
are likely subject to large-scale turbulence (Gronke et al. 2022). This
could affect mixing rates or significantly lengthen infall times and
introduce a large stochastic variability in the infall velocity, much
the same way a leaf falling to the ground in a windy environment
follows a much longer trajectory. How this might affect cloud growth
and dynamics is a natural follow-up to this work.

6.4.5 Metallicity

We have assumed solar metallicity everywhere in both phases.
Depending on the origin of the cold cloud, it is possible that
the metallicity of the original cloud and the background differ
significantly. Gritton et al. (2014) and Heitsch et al. (2022) have
showed that there is significant mixing of metals in such a case, with
important implications for observables.

7 CONCLUSIONS

The growth and survival of infalling cold clouds has received con-
siderably less attention compared to their outflowing counterparts.
While the two appear to be similar problems at first glance, they
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have in fact a crucial difference between them, which is that infalling
clouds continuously feel the force of gravity. This leads to very
different dynamical evolution of the infalling clouds, and also a
more stringent criterion for survival. Using 3D hydrodynamical
simulations, we have studied the growth and survival of such clouds,
considering both a constant background and a more realistic stratified
background. We have also developed a model for the dynamical
evolution of these clouds based on turbulent mixing layer theory,
and shown that they are able to predict the results of the simulations.
These also agree well with analytical estimates. Our main findings
are as follows.

(i) Not a wind tunnel. Infalling clouds do not correspond to wind
tunnel set-ups, where the velocity shearis initially large and decreases
as the cloud gets entrained. Instead, the velocity shear is initially
small but increases as the cloud accelerates. This means that criteria
such as feoo1, mix < fcc for survival are not applicable.

(i) Modelling cloud growth. An important component determin-
ing how fast the cloud grows is the surface area of the cloud. We find
that A oc m¥5. This is consistent with either a mix between surface
and tail growth or a fractal surface area. Combining this with models
of the inflow velocity allows us to model the growth time of the
clouds, as given in equations (22) and (23). We can hence evolve
equations (1)—(3) to model the evolution of cloud properties.

(iil) Accretion drag. Clouds falling due to gravity can experience
an alternative form of drag if they are growing via turbulent radiative
mixing layers, since they are effectively accreting low-momentum
gas. This drag is dominant over the usual ram pressure drag as the
clouds develop long tails along the direction of infall. This leads to
much lower predicted infall velocities compared to models that only
consider ballistic trajectories or ram pressure drag. In particular,
the terminal velocity vr & glerow, Where forow = m/mt is given by
equation (25) for subsonic infall.

(iv) Relationship between speed and growth rates. The balance
between gravity and growth results in v/cg not ™~ ferow/tsr. That is,
the ratio of the terminal velocity and the virial velocity is also the
ratio of the growth time to the free-fall time. This is useful since
infall velocities are measured observationally. The growth rate of
the cloud can then be deduced. We expect subvirial velocities (vt
< g, hot) to be indicative of considerable mass growth (fgrow < ffr)
in clouds. Observed subvirial infall velocities are otherwise difficult
to explain with existing models. In an isothermal atmosphere with
constant gravity, we predict vt & 0.6¢; hor, independent of all other
properties of the system, although convergence to this asymptotic
velocity can be slow.

(v) Criterion for cloud survival. The criterion for clouds to survive
and grow is fgrow < 4t (equation 27). The most important factor in
determining cloud survival is the cooling time. We find that the
ratio of fgrow/tec is almost independent of cloud size (within a large
practical range of parameter space). Hence, in order to survive and
grow, clouds need only be within regions where densities/pressure
are high enough such that cooling times are sufficiently short. For
x = 100, this criterion can be written as

(47)

4/5
P > 3000 ks Kcm™ ( g ) .

108 cms—2
(vi) Stratified backgrounds and cloud size. In stratified environ-
ments, clouds that start their infall beyond such survival ‘zones’
can still survive provided they are not completely destroyed before
reaching these zones. This favours larger clouds that have longer
cloud crushing times. Larger clouds are hence more likely to be
observed at distances where the above criterion is not satisfied.
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In summary, we have identified a new mechanism for the deceler-
ation of clouds that has not been considered in existing models, with
important bearings on cloud survival, growth, and dynamics. We
have presented a model for cloud growth (equations 1-3), evolution
(equations 22 and 23), and survival (equation 27) that agree well
with simulations. These results can be applied to range of systems
with infalling cold gas such as HVCs and clusters, and addresses
important questions of survival, growth, and subvirial velocities that
have been highlighted by observations. Future work will refine this
model with additional physics such as magnetic fields, cosmic rays,
and self-shielding, as well as allowing the gas to cool down to lower
temperatures.
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