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A B S T R A C T 

Understanding the survi v al, gro wth, and dynamics of cold gas is fundamental to galaxy formation. While there has been a plethora 

of work on ‘wind tunnel’ simulations that study such cold gas in winds, the infall of this gas under gravity is at least equally 

important, and fundamentally different since cold gas can never entrain. Instead, velocity shear increases and remains unrelenting. 

If these clouds are growing, they can experience a drag force due to the accretion of low-momentum gas, which dominates 

o v er ram pressure drag. This leads to subvirial terminal velocities, in line with observations. We develop simple analytic theory 

and predictions based on turbulent radiative mixing layers. We test these scalings in 3D hydrodynamic simulations, both for an 

artificial constant background and a more realistic stratified background. We find that the survi v al criterion for infalling gas is 

more stringent than in a wind, requiring that clouds grow faster than they are destroyed ( t grow < 4 t cc ). This can be translated to a 

critical pressure, which for Milky Way-like conditions is P ∼ 3000 k B K cm 
−3 . Cold gas that forms via linear thermal instability 

( t cool / t ff < 1) in planar geometry meets the survi v al threshold. In stratified environments, larger clouds need only survive infall 

until cooling becomes ef fecti ve. We discuss applications to high-velocity clouds and filaments in galaxy clusters. 
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1  I N T RO D U C T I O N  

The cycle of baryons – particularly that of cold gas, the fuel for 

star formation – is absolutely fundamental to galaxy formation and 

a crucial link between galactic and cosmological scales (P ́eroux & 

Howk 2020 ). This cycle can take various forms. (i) Outflows due to 

feedback processes (Thompson et al. 2016 ; Schneider, Robertson & 

Thompson 2018 ). Observationally, cold gas is frequently seen out- 

flowing at velocities comparable to virial/escape velocities (Veilleux, 

Cecil & Bland-Hawthorn 2005 ; Steidel et al. 2010 ; Rubin et al. 2014 ; 

Heckman & Thompson 2017 ). (ii) Inflow of cold gas that forms via 

thermal instability in the halo (Joung, Bryan & Putman 2012 ; Sharma 

et al. 2012 ; Fraternali et al. 2015 ; Voit et al. 2019 ; Tripp 2022 ), 

or is supplied by direct cosmology accretion (cold streams; Kere ̌s 

et al. 2005 ; Dekel & Birnboim 2006 ), and falls under gravity. (iii) 

F ountain rec ycling, which is a combination of these two processes. 

A useful analogy is the terrestrial water cycle, where e v aporation, 

condensation, and precipitation play crucial roles. 

All of these motions involv e v elocity shear between cold gas 

clouds and background hot gas. A long-standing problem has 

been to understand why clouds are not shredded by hydrodynamic 

instabilities, particularly the Kelvin–Helmholtz instability. The hy- 

drodynamic acceleration time for a cloud of radius r , o v erdensity χ

embedded in a wind of velocity v w is t acc ∼ χr / v w , the time-scale 

for the cloud to sweep up its own column density. By contrast, the 

cloud destruction (‘cloud crushing’) time is t cc ∼
√ 

χr/v w , i.e. of 

order the Kelvin–Helmholtz time, implying that t acc /t cc ∼
√ 

χ , i.e. 

� E-mail: zunyibrent@physics.ucsb.edu 

clouds should be destroyed before they can be accelerated (Klein, 

McKee & Colella 1994 ; Zhang et al. 2017 ). Numerous simulation 

studies, including those with radiative cooling, concluded that cold 

clouds get destroyed before they can become entrained with the wind 

(e.g. Cooper et al. 2009 ; Scannapieco & Br ̈uggen 2015 ; Schneider & 

Robertson 2017 ); magnetic fields can ameliorate but do not solve the 

problem (McCourt et al. 2015 ; Gronke & Oh 2020a ). 

In recent years, it was realized that there are regions of parameter 

space where the cooling efficiency of the mixed, ‘warm’ gas is 

sufficiently large to contribute new comoving cold gas that can 

significantly exceed the original cold gas mass, enabling the cloud 

to survi ve. Cloud gro wth is thus mediated by these turbulent mixing 

layers (Begelman & Fabian 1990 ; Ji, Oh & McCourt 2018 ; Fielding 

et al. 2020 ; Tan, Oh & Gronke 2021 ). The criteria for this to happen is 

t cool, mix / t cc < 1, where t cool, mix is the cooling time of the mixed warm 

gas (with T mix ∼ ( T hot T cold ) 
1/2 ) and t cc is the cloud crushing time 

(Gronke & Oh 2018 ). This criterion is always satisfied for a large 

enough cloud r > c s, cold t cool, mix (where c s, cold is the sound speed 

of the cold gas), which grows and entrains by gaining mass and 

momentum from cooling mixed hot gas. Thus, the cloud eventually 

como v es with the wind, with a cold gas mass that can be many times 

the original cloud mass. These conclusions have been borne out in 

many subsequent studies (e.g. Li et al. 2020 ; Sparre, Pfrommer & 

Ehlert 2020 ; Girichidis et al. 2021 ; Abruzzo, Bryan & Fielding 2022 ; 

Farber & Gronke 2022 ). 

Ho we ver, cold gas survi v al and gro wth has only been understood 

for part of the baryon cycle, galactic outflows. To date, there have 

only been a handful of studies studying cold gas survi v al and gro wth 

during infall , which is arguably even more fundamental to processes 

such as star formation. 

© 2023 The Author(s) 
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An important outstanding problem in galaxy evolution is that 

the observed star formation rates (SFRs) in galaxies at a range 

of redshift are unsustainable – they would rapidly deplete current 

existing gas reservoirs – and hence these galaxies require some 

form of continuous accretion to supply the necessary fuel (Erb 2008 ; 

Hopkins, McClure-Griffiths & Gaensler 2008 ; Putman et al. 2009 ). 

F or e xample, our Milk y Way has a SFR of ∼2 M � yr −1 but only 

∼5 × 10 9 M � of existing fuel, and would thus burn through this 

supply in just 2–3 Gyr (Chomiuk & Povich 2011 ; Putman, Peek & 

Joung 2012 ). Supplementary inflow must come in the form of low- 

metallicity ( Z < 0 . 1 Z �) gas, so as to satisfy constraints from disc 

stellar metallicities and chemical evolution models (Sch ̈onrich & 

Binney 2009 ; Kubryk, Prantzos & Athanassoula 2013 ). 

At the same time, we see infall in the form of ‘high-velocity’ 

and ‘intermediate-velocity’ clouds (HVCs and IVCs; Putman et al. 

2012 ) with relatively low metallicities, as well as a galactic fountain 

with continuous circulation of material between the disc and corona 

(Shapiro & Field 1976 ; Fraternali & Binney 2008 ). Fountain-driven 

accretion could supply the disc with gas for star formation, and 

explain the observed kinematics of extraplanar gas (Armillotta, 

Fraternali & Marinacci 2016 ; Fraternali 2017 ). It is tempting to 

speculate from the results of wind tunnel simulations that star 

formation in the disc e x erts a form of positive feedback: cold gas 

thrown up into the halo ‘comes back with interest’, by mixing with 

low-metallicity halo gas that cools and increases the cold gas mass. 

HVCs are also good candidates and could provide a significant 

amount of the necessary fuel for star formation, provided they survive 

their journey to the disc (Van Woerden et al. 2004 ; Putman et al. 2012 ; 

Fox et al. 2019 ). First detected in H I 21-cm emission by Muller, 

Oort & Raimond ( 1963 ), HVCs are gas clouds observed moving at 

high velocities relative to the local standard of rest. The traditional 

definition for HVCs is thus those clouds with velocities in the local 

standard of rest frame | v LSR | ≥ 90 km s −1 (Wakker & van Woerden 

1991 ; although similar clouds whose velocities significantly o v erlap 

that of the disc may be missed; Zheng et al. 2015 ). They have 

been observed in all regions of the sky, and come in a range 

of sizes (Putman et al. 2012 ). Clouds are grouped into various 

comple x es based on spatial and kinematic clustering but because of 

their proximity, precise distances to HVCs are difficult to measure. 

The main method of doing so is to use halo stars of known 

distances in the same sky region to bracket the cloud distance by 

looking for absorption lines (or lack thereof) in the stellar spectra. 

By determining if a HVC is in front of or behind each star, the 

HVC’s distance can thus be ef fecti vely constrained. Most HVCs with 

distances measured as such are found between 2 and 15 kpc, with 

most heights abo v e the disc < 10 kpc (Thom et al. 2008 ; Wakker et al. 

2008 ). The head–tail morphology observed in many HVCs (Putman, 

Saul & Mets 2011 ), along with observations that the majority of 

high-velocity absorbers kinematically and spatially lie in the vicinity 

of HVCs (Putman et al. 2012 ), strongly suggest that the HVCs 

are mixing as the y trav el through the ambient medium. There is 

a wealth of literature on observations of HVCs – we refer the reader 

to re vie ws such as Putman et al. ( 2012 ) for a more comprehensi ve 

account. 

As we have discussed, the survi v al of HVCs is inherently prob- 

lematic, since they are vulnerable to hydrodynamic instabilities 

while travelling through the hot background (Klein et al. 1994 ; 

Zhang et al. 2017 ). Early theoretical efforts to model HVCs initially 

focused on predicting their velocity trajectories, without taking into 

consideration their mass evolution. These early models assumed 

that these HVCs fell ballistically (Bregman 1980 ) or reached a 

terminal velocity when eventually slowed by hydrodynamic drag 

forces (Benjamin & Danly 1997 ), and were used in e v aluating the 

contributions of HVCs in larger feedback models (Maller & Bullock 

2004 ). Ho we ver, the decoupling of the velocity and mass evolution 

implied by this approach has been shown to be untenable for HVCs 

with the advent of high-resolution hydrodynamical simulations, 

many of which show that the mass and morphology of the clouds 

evolve significantly (e.g. Kwak, Henley & Shelton 2011 ; Armillotta 

et al. 2017 ; Gritton, Shelton & Galyardt 2017 ; Gronke & Oh 

2020a ). While wind tunnel set-ups are numerous, the number of 

3D simulations of clouds falling under the influence of gravity and 

including radiative cooling is more limited (Heitsch & Putman 2009 ; 

Grønnow et al. 2022 ; Heitsch et al. 2022 ). The survi v al criterion 

for infalling clouds has not been quantified, and analytic models for 

mass and velocity evolution that match simulations do not yet exist. 

We will tackle these challenges in this paper. 

Presumably, similar considerations apply, with a minimum cloud 

size r crit ∼ c s, cold t cool, mix required for survi v al and gro wth. Ho we ver, 

this ignores a crucial distinction between outflowing and infalling 

cold gas clouds. Outflowing gas clouds gradually entrain, so destruc- 

tion processes become weaker as the velocity shear is reduced. The 

cloud only has to survive until it becomes comoving with the hot 

gas, at which point hydrodynamic instabilities are quenched (and 

mass growth peaks). Indeed, wind tunnel simulations (particularly 

for clouds with sizes just abo v e r crit ) often show clouds that initially 

break up into small fragments, with a significant amount mixed into 

the hot medium, but eventually survive as the fragments entrain 

and grow. The cold fragments then coalesce – the cloud ‘rises from 

the dead’ to a peaceful environment. In contrast, infalling clouds 

accelerate under the action of gravity, with continually increasing 

velocity shear, and consequently increasing cloud destruction rate, 

which is maximized at the cloud terminal velocity. Thus, the cloud 

instead is exposed to continually worsening conditions, and somehow 

has to survive an unrelenting hot wind. Moreover, the properties of 

the wind change with time, as the cloud falls through a background 

stratified hot medium. 

The survi v al and gro wth of a cold cloud under such conditions 

is the focus of this paper. We develop simple analytic scalings that 

we test in 3D hydrodynamic simulations. Unsurprisingly, several 

important aspects, such as cloud survi v al criteria, are quite different 

from the wind tunnel case. 

What is at stake? As previously mentioned, if clouds can survive 

and grow, the ultimate fuel supply for star formation could simply 

be coronal gas, whose condensation is triggered by star formation 

feedback and galactic fountain recycling. During this process, cold 

gas also exchanges angular momentum with coronal gas, which 

links fountain circulation to the observable kinematics of coronal 

gas. More broadly, the physics of radiative turbulent mixing layers 

is complex, and theoretical studies demand empirical tests. Unlike 

clouds embedded in galactic winds, which lie at extragalactic 

distances and are difficult to resolve, there is a plethora of spatially 

and kinematically resolved observational data for IVCs and HVCs 

in the Milky Way. There is also ample similar data for infalling 

filaments in galaxy clusters (e.g. Russell et al. 2019 ). Such systems 

can be used as laboratories for the interaction between multiphase 

gas, mixing, and radiative cooling, which is also critical to galactic 

winds but difficult to test there. We shall see that we predict subvirial 

terminal velocities at odds with standard predictions (which balance 

hydrodynamic drag with gra vity) b ut in much better agreement with 

observations. Moreo v er, the predicted terminal velocity from the 

model is an observable that can be tested, at least on a statistical basis 

(gi ven observ ational uncertainties and degeneracies). Such empirical 

tests have thus far been sorely lacking in cloud physics models. 
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The outline of this paper is as follows. In Section 2 , we outline 

analytic theory and predictions for the dynamics, growth, and survival 

of infalling cold clouds. In Section 3 , we describe our simulation set- 

up. In Sections 4 and 5 , we describe simulation results, both for 

an artificial constant background (which allows us to test analytic 

scalings) and a more realistic stratified background. In Section 6 , 

we discuss applications to the Milky Way (HVCs) and galaxy 

clusters (infalling filaments). Lastly, we summarize and conclude 

in Section 7 . 

2  DY NA M IC S  O F  INFA LLING  C L O U D S  

2.1 Cloud evolution and terminal velocities 

A falling cloud growing via accretion can be described by the 

following set of differential equations: 

d z 

d t 
= v, (1) 

d( mv) 

d t 
= mg −

1 

2 
ρhot v 

2 C 0 A cross , (2) 

d m 

d t 
= 

m 

t grow 
, (3) 

where z, v, and m represent the distance fallen, velocity, and mass of 

the cloud, respectively, t grow ≡ m/ ̇m is the growth time-scale (which 

we discuss in Section 2.2 ), g is the gravitational acceleration, C 0 

is the drag coefficient (geometry dependent; of order unity here), 

ρhot is the density of the background medium, and A cross is the cross- 

sectional area that the cloud presents to the background flow. We shall 

see that it is important to distinguish A cross from A cloud , the o v erall 

surface area of the cloud. We shall also see that t grow is roughly 

independent of mass growth, so that from equation ( 3 ), mass growth 

is nearly exponential. Note that equation ( 3 ) assumes steady growth 

and omits terms that contribute to cloud destruction. Thus, it does 

not apply to clouds that are losing rather than gaining mass. In this 

paper, we focus on scenarios where clouds survive and grow, which 

is the no v el feature in our new model (previous works, e.g. Afruni, 

Fraternali & Pezzulli 2019 , have looked at scenarios with significant 

mass loss). In Section 2.3 , we will quantify the criterion for cloud 

survi v al. In this work, we only consider the hydrodynamic case and 

leav e inv estigation of other factors such as magnetic fields, externally 

driven turbulence, and cosmic rays to future work. 

The terms on the right-hand side in the momentum equation (equa- 

tion 2 ) represent the gravitational and hydrodynamic drag forces. In 

standard models, these two terms are assumed to balance one another 

in steady state, giving the hydrodynamic drag terminal velocity 

v T , drag = 

√ 

2 mg 

ρhot C 0 A cross 
� 

√ 

2 χLg 

C 0 
(4) 

for a falling cloud with volume ∼A cross L and χ = ρcloud / ρhot . The 

hydrodynamic drag time (momentum divided by the drag force) is 

given by t drag ∼ χL / v. In fact, this gives the terminal velocity only 

if the left-hand side of equation ( 2 ) vanishes, ̇p = m ̇v + ṁ v = 0 ⇒ 

v̇ = 0, which is correct only if cloud mass does not evolve so ṁ = 0. 

If ṁ > 0, i.e. the cloud grows by accreting mass from the background, 

then from momentum conservation, since the background gas is at 

rest and has zero initial momentum, this will slo w do wn the cloud. 

In the limit that the hydrodynamic drag term is small compared to 

ṁ v, 

v = 
m 

ṁ 
( g − v̇ ) . (5) 

Figure 1. The terminal velocity (normalized by the drag terminal velocity) 

as a function of the ratio of the growth time t grow and the drag time t drag . The 

dashed lines show the corresponding values for the terminal velocities when 

assumed to be set by either drag or growth. As the ratio increases, there is a 

smooth transition from v T, grow to v T, drag . 

Thus, if v̇ 	 g, there is a second terminal velocity 

v T , grow = 
mg 

ṁ 
= gt grow . (6) 

The two terminal velocities in equations ( 4 ) and ( 6 ) represent 

regimes where the cloud acceleration under gravity is predominantly 

balanced by either hydrodynamic drag or the momentum transfer 

from background accretion, respectively. We can separate them by 

considering the ratio t grow / t drag . When this ratio is large, gravity is 

balanced by drag. Conversely, when this ratio is small, gravity is 

balanced by accretion. The transition between the two is marked by 

where t grow ∼ t drag . 

We can illustrate this by solving equations ( 1 )–( 3 ) numerically for 

a constant t grow . The result is shown in Fig. 1 , where we plot the 

terminal velocity as a function of t grow / t drag . We can see that when 

t grow 	 t drag , the terminal velocity follows v T, grow , and when t grow 

t drag , the terminal velocity follows v T, drag as expected. 

Which regime is more realistic? Let us first explore this for the 

idealized case of spherical clouds. For a spherical cloud, the growth 

time is given by (Gronke & Oh 2020a ) 

t grow ≡
m 

ṁ 
∼

ρcold r 
3 

ρhot A cloud v mix 
∼ χ

r 

v mix 
. (7) 

This seems long: if v mix ∼ c s, cold (a reasonable estimate; see 

section 2.2 of Gronke & Oh 2020a and sections 4.6 and 5.3.3 of 

Tan et al. 2021 ), then t grow ∼ χ t sc , where t sc is the sound crossing 

time across the cloud. By contrast, the hydrodynamic drag time for 

a spherical cloud (as mentioned previously) is 

t drag ∼ χ
r 

v 
, (8) 

which is much shorter, since t drag / t grow ∼ v mix / v ∼ c s, cold / c s, hot ∼
χ−1/2 	 1, if we assume the virial velocity to be a characteristic 

infall speed, v ∼ v vir ∼ c s, hot . The fact that t drag 	 t grow makes 

ph ysical sense. The h ydrodynamic drag time is also the time-scale 

for a cloud to sweep up its own mass in hot gas ( ρhot A cross vt drag ∼
ρhot r 

3 χ ∼ m ). Even if all this mass is incorporated into the cloud, then 

at best t grow ∼ t drag . In fact, only a small fraction of this gas is actually 

incorporated into the cloud, so that t grow 
 t drag . This suggests that 
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hydrodynamic drag is the main drag force, which results in a terminal 

v elocity giv en by equation ( 4 ). 

Ho we ver, as pre viously mentioned, clouds in a shearing wind do 

not remain spherical; they develop extended cometary tails (as seen 

both in simulations and observations). This change in geometry – and 

in particular the large increase in surface area – is crucial for enabling 

momentum transfer via mass growth. In hydrodynamic drag, F drag ∼
ρhot v 

2 A cross , the area A cross ≈ πr 2 is the cross-sectional area the cloud 

presents to the wind. Thus, F drag remains roughly constant during 

cloud evolution. By contrast, in ṁ ∼ ρhot A cloud v, the area A cloud is 

the surface area of the cloud available for mixing. In a cometary 

structure, this is dominated by the sides of the cylinder, so that A cloud 

∼ 2 πrL , where L is the length of the tail. Thus, ṁ ∝ A cloud ∝ L 

increases as a cloud develops a cometary tail. It is this increase in ṁ , 

and thus the ef fecti ve momentum transfer rate F grow ∼ ṗ grow ∼ ṁ v, 

compared to a constant F drag , which causes mass growth to dominate 

momentum transfer: t grow ∼ χr / v mix is roughly constant, while t drag 

∼ mv / F drag ∼ ρcloud A cross Lv /( ρhot A cross v 
2 ) ∼ χL / v increases as the 

mass of the cloud increases. In particular, 

t grow 

t drag 
∼

r 

L 

v 

v mix 
∼

r 

L 
χ1 / 2 . (9) 

In cloud crushing simulations, the tail grows during the process of 

entrainment to a length L ∼ vt drag ∼ χr during the ‘tail formation’ 

phase (Gronke & Oh 2020a ), so that t grow / t drag ∼ χ−1/2 	 1. The 

continuous shear for infalling clouds can lead to even more extended 

tails since the cloud does not entrain, so t grow / t drag 	 1 is easily 

satisfied. 1 

Finally, it is important to realize that there is a third time-scale in 

the problem, the free-fall time t ff ∼ v vir / g . This sets the evolutionary 

lifetime available to clouds, before they fall to the halo centre. Clouds 

will not grow significantly (and reach the terminal velocity v T, grow 

given by equation 6 ), unless t grow < t ff . Indeed, t grow < t ff is required 

for a subvirial terminal velocity. We can show this by recalling that 

F grav ∼ mg ∼ mv vir / t ff , while the drag force from mass growth is 

F grow ∼ ṁ v ∼ mv/t grow . At the terminal velocity v T , we have F grav 

∼ F grow , so that 

f subvir ≡
v T , grow 

v vir 
∼

v T 

c s , hot 
∼

t grow 

t ff 
. (10) 

This is useful because f subvir – infall velocities, normalized to the 

virial velocity – can be measured observationally. Indeed, f subvir < 

1, sub virial infall v elocities, is commonly observ ed in luminous red 

galaxies (LRGs; Huang et al. 2016 ; Zahedy et al. 2019 ) and galaxy 

clusters (Russell et al. 2016 ), much lower than predicted terminal 

velocities from hydrodynamic drag models (Lim, Ao & Dinh-V- 

Trung 2008 ). Our models can explain these puzzling observations, 

as we describe in Section 6.2 . It also allows for testable predictions. 

Since f subvir is measured and t ff is known from the density profile, we 

can predict t grow ≈ f subvir t ff from kinematic observations, assuming 

that clouds have reached terminal velocity. This can be compared 

with predictions for t grow from equations ( 22 ) and ( 23 ), given 

measured or inferred cloud and background hot gas properties. Lastly, 

the mass growth that a cloud experiences is m/m 0 ∼ exp ( t ff /t grow ) ∼
exp ( f −1 

subvir ). Thus, a measurement of sub virial v elocities directly 

constrains the degree to which mixing and cooling enhances cool 

gas infall to the central galaxy. Significantly subvirial infall implies 

that cold clouds grow considerably before reaching the halo centre. 

1 Shorter entrainment times than t drag have been observed in cloud crushing 

simulations (e.g. Gronke & Oh 2020a ; Farber & Gronke 2022 ). 

These analytical estimates can be compared to measurements of the 

mass infall rate (e.g. Fraternali & Binney 2006 ; Fox et al. 2019 ). 

In Section 5 , we will also show the rather remarkable result that 

in an isothermal atmosphere with constant gravity, f subvir is fixed by 

geometry, specifically the scaling between cloud mass and area ( α in 

equation 21 ), independent of all other properties of the system. For 

our infalling clouds, we find f subvir ≈ 0.6. 

2.2 Cloud growth 

Previous models of infalling clouds have considered the interplay 

between gravity and hydrodynamic drag forces, assuming a fixed 

cloud mass (Benjamin & Danly 1997 ). Ho we v er, a fix ed cloud mass 

is unrealistic due to various processes that trigger mixing with the hot 

background gas or shred the cloud. Mass evolution therefore cannot 

remain static; clouds should either be destroyed ( ̇m < 0) or grow 

( ̇m > 0) o v er time. 

In the absence of cooling, clouds moving relative to a background 

medium are destroyed by hydrodynamic instabilities on the cloud 

crushing time-scale (Klein et al. 1994 ; Scannapieco & Br ̈uggen 

2015 ), 

t cc ∼
√ 

χ
r 

v 
, (11) 

where χ is the ratio of the cloud density to the background density, 

r is the cloud radius, and v is the magnitude of the relative velocity 

between the cloud and the background. This cloud crushing time- 

scale reflects the destruction of the cloud via internal shocks induced 

inside the cloud due to its velocity with respect to the medium it 

is moving through (assuming that this velocity is supersonic with 

respect to the sound speed within the cloud), and is roughly the 

same time-scale on which surface instabilities such as the Kelvin–

Helmholtz and Rayleigh–Taylor instabilities grow to the cloud scale 

(Klein et al. 1994 ). This destructive fate can ho we ver be counteracted 

by mass growth due to cooling. In wind tunnel simulations of 

‘cloud crushing’, Gronke & Oh ( 2018 ) found that in order for 

cold gas to survive, cooling needs to be strong enough to satisfy 

the criterion 

t cool , mix < t cc , (12) 

where t cool, mix is the cooling time of the mixed gas, defined as 

T mix ∼
√ 

T cloud T hot (in the spirit of Begelman & Fabian 1990 , see 

also Hillier & Arregui 2019 for an alternative derivation). That is, 

if the cooling time of the mixed gas is shorter than the initial cloud 

crushing time, then cold gas survives and is eventually entrained in 

the hot background wind. 

Ho we ver, infalling clouds have an important aspect that differen- 

tiates them from clouds in a wind – gravity. Clouds encountering a 

hot wind gradually entrain in the wind, so that shear eventually drops 

to zero if the cloud manages to survive until entrainment. The cloud 

thus encounters destructive forces for a limited period of time. By 

contrast, clouds in a gravitational field will al w ays k eep f alling and 

shearing against the background gas. Thus, the survi v al criterion is 

different, and more stringent; we discuss this in Section 2.3 . 

Assuming cloud survi v al, let us quantify the time-scale on which 

clouds grow. We first derive some scaling relations, before deriving 

numerical e xpressions. F or now, we ignore fudge factors (due to 

geometry, etc.) that can be up to an order of magnitude. As in 

equation ( 7 ), the mass growth rate of a cloud can be written as 

ṁ ∼ ρhot A cloud v mix , (13) 
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where ρhot is the density of the hot background medium, A cloud 

is the ef fecti ve surface area of the cloud 2 and v mix is the velocity 

corresponding to the mass flux from the hot background onto this 

surface. As abo v e, if we write m ∼ ρcold A cloud r , this gives 

t grow ∼ χ
r 

v mix 
. (14) 

Plane-parallel simulations of mixing layers (Tan et al. 2021 ) show 

v mix ∼ u 
′ 3 / 4 

(

r 

t cool 

)1 / 4 

∼ v 
3 / 5 
shear v 

3 / 20 
0 

(

r 

t cool 

)1 / 4 

, (15) 

where t cool is the cooling time in cold gas (the minimum cooling time 

in the mixing layer, a convention we adopt henceforth) and u 
′ 

is the 

peak turbulent velocity in the mixing layer (usually in intermediate- 

temperature gas). Note that while the first step in equation ( 15 ), i.e. 

v mix ( u 
′ 
), is generally valid, we have used the scaling u 

′ ∝ v 
4 / 5 
shear for 

relating u 
′ 

to the parameters of the set-up. This scaling was found 

numerically in Tan et al. ( 2021 ) for plane-parallel mixing layers and 

we have written it here as u 
′ ∼ v 

4 / 5 
shear v 

1 / 5 
0 to preserve dimensionality 

( v 0 simply encodes normalization). If we set v shear ∼ v T, grow ∼ gt grow , 

this yields 

t grow ∼ χ5 / 8 r 
15 / 32 t 

5 / 32 
cool 

g 3 / 8 v 
3 / 32 
0 

; v T , grow < c s , hot . (16) 

While the abo v e scalings focus on the subsonic and transonic cases, 

large enough clouds can reach velocities exceeding the sound speed 

of the hot gas. In such a case, the turbulent mixing velocity saturates 

and stops scaling with the cloud velocity (Yang & Ji 2022 ), changing 

the abo v e scalings. In this case, from equations ( 14 ) and ( 15 ), we 

obtain 

t grow ∝ 
χr 3 / 4 

c 
3 / 5 
s , hot t 

1 / 4 
cool 

. (17) 

We no w gi v e numerical e xpressions, which are calibrated to 

simulations. F or cooling-dominated re gimes (defined below), Tan 

et al. ( 2021 ) found that v mix in turbulent mixing layers follows 

v mix ≈ 9 . 5 km s −1 

(

u 
′ 

50 km s −1 

)3 / 4 (
L turb 

100 pc 

)1 / 4 

(

t cool 

0 . 03 Myr 

)−1 / 4 

, (18) 

where L turb is the outer scale of the turbulence. Note that equation ( 18 ) 

only applies in the ‘fast-cooling’ (Da mix ≡ L turb /( u 
′ 
t cool, mix ) > 1, 

where Da mix is the Damk ̈ohler number; Tan et al. 2021 ) regime, 

where the cooling time is much smaller than the turbulent mixing 

time L turb / u 
′ 
. As we will discuss belo w, ho we ver, this is al w ays true 

for surviving clouds. 

Tan et al. ( 2021 ) note that u 
′ 

is geometry dependent, but find for 

shearing layers that 

u 
′ ≈ 50 km s −1 

M 
4 / 5 

( c s , hot 

150 km s −1 

)4 / 5 
(

t cool 

0 . 03 Myr 

)−0 . 1 

(19) 

for χ � 100 and M ≡ v shear /c s , hot . From equation ( 18 ), we can 

approximate v mix ∼ c s, cold for quick estimates. While Tan et al. 

( 2021 ) only considered mixing layers with subsonic to transonic 

velocity shears, Yang & Ji ( 2022 ) found that beyond M = 1, u 
′ 

in 

2 The ef fecti ve surface area corresponds to the (smoothed) enveloping area 

of the cloud and not the (non-convergent) surface area of the cold gas. See 

Gronke & Oh ( 2020a ) for further discussion of this distinction. 

the mixing region stops scaling with M and saturates. We include this 

in our model by setting M → min (1 , M ). We find good evidence 

for this in our simulations. 

Equations ( 18 ) and ( 19 ) assume fully developed turbulence. When 

a cloud falls from rest ho we ver, there is a transient period when 

turbulence is developing. We hence set a time-dependent weight 

factor w kh ( t ) to account for the initial onset of turb ulence. Turb ulence 

dev elops o v er the time-scale for the development of the Kelvin–

Helmholtz instability; on the scale of the cloud t kh = f kh t cc , where f kh 

is some constant of proportionality (Klein et al. 1994 ). We use the 

simplest ansatz that 

v mix → w kh ( t) v mix ; w kh ( t) = min 

(

1 , 
t 

f kh t cc 

)

, (20) 

which amounts to v in growing linearly with time o v er the instability 

growth time, until fully developed and capped at unity. We will justify 

this ansatz in our simulations. Since t cc is changing o v er time, we 

note that t / t cc ∝ vt ∼ z, where z is distance the cloud has fallen. We 

find in our simulations that f kh ∼ 5 for a constant background and 

∼1 for a stratified background. In a more realistic setting with less 

idealized initial conditions, this time-dependent weight factor might 

not be necessary as the initial mixing can be already seeded from 

the outflowing section (assuming v < v esc ), extrinsic turbulence, or 

cooling-induced pulsations (Gronke & Oh 2020b , 2022 ). 

What is an appropriate scaling relation for the ef fecti ve cloud 

surface area A cloud ? In cloud crushing simulations, areal growth 

follows two phases (Gronke & Oh 2020a ; Abruzzo et al. 2022 ). 

In the ‘tail-formation’ phase, surface area growth is dominated by 

the formation of a cometary tail, with A cloud ∝ L ∝ m , where L is 

the length of the tail. The stretching of the cloud means that the 

area to mass ratio A cloud / m ≈ constant, rather than A cloud / m ∝ m 
−1/3 , 

as for fixed geometry. Once the tail grows to a length L ∼ χr (the 

hydrodynamic drag length), the cloud becomes entrained in the wind 

from efficient momentum transfer, and due to lack of shear the tail 

no longer grows. The cloud surface area thereafter scales roughly as 

A cloud ∝ ( m / ρcloud ) 
2/3 , as one would expect for a monolithic cloud. 

Ho we ver, our falling clouds do not get entrained – rather the 

opposite in fact, as they start at rest and accelerate until reaching 

some terminal velocity. This means they start ‘entrained’ and then 

begin to shear against background gas. They never leave the ‘tail- 

formation’ phase, since there is a constant velocity difference 

between the cloud and background medium. The cloud sees a con- 

tinuous headwind that drives turbulence, mixing, and lengthening. 

Instead of A cloud ∝ m / ρcloud or A cloud ∝ ( m / ρcloud ) 
2/3 , we assume that 

A cloud ∝ ( m / ρcloud ) 
α , where α is a growth scaling exponent between 

2/3 and 1. Physically, this is because both mass growth onto the 

surface of the cloud and a lengthening tail are concurrent processes. 

We will demonstrate that this is a good assumption for the mass 

growth of the falling clouds in our simulations, where we find α

≈ 5/6. The cloud surface area is thus 

A cloud ≈ A cloud , 0 

(

m 

m 0 

ρcloud , 0 

ρcloud 

)α

, (21) 

where A cloud, 0 , ρcloud, 0 , and m 0 are the initial cloud surface area, 

density , and mass, respectively . Note that since ṁ ∝ m 
α where α = 

5/6 is close to 1, the growth is close to exponential. 3 The cloud 

3 Similar scalings ṁ ∝ A ∝ m α , where α ≈ 0.8, are seen in simulations of 

cloud growth when clouds are embedded in a turbulent medium (Gronke 

et al. 2022 ). This super-Euclidean scaling can be understood as the outcome 

of the fractal nature of the mixing surface, where area A ∝ m D /3 , where 
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density ρcloud changes because the ambient pressure increases as the 

cloud falls in a stratified medium, compressing the cloud. 

Using equations ( 13 ), ( 18 ), ( 20 ), and ( 21 ), we can write the growth 

time t grow ∼ m/ ̇m as 

t grow = 
t grow , 0 

w kh ( t) 

( c s , 150 

v 

)3 / 5 
(

t cool 

t cool , 0 

)1 / 4 (
m 

m 0 

ρhot, 0 

ρhot 

)1 −α

, (22) 

where c s , 150 = 150 km s −1 is the sound speed of gas at 10 6 K and the 

initial growth time t grow, 0 is given by 

t grow , 0 ≈ 35 Myr 

(

f A 

0 . 23 

)

( χ

100 

)

×
(

r 

r 100 

)(

L turb 

L 100 

)−1 / 4 (
t cool , 0 

0 . 03 Myr 

)1 / 4 

, (23) 

where r 100 = L 100 = 100 pc and r is the initial cloud size. We will 

assume generally that L turb ∼ r (since the hydrodynamic instabilities 

that drive turbulence and mixing have an outer scale set by cloud 

size). We have included an unknown normalization factor f A to ac- 

count for uncertainties arising from geometrical differences between 

the single mixing layers in Tan et al. ( 2021 ) and our cloud set-up 

here, the use of the initial size of the sphere as a characteristic scale 

(see discussion at the end of Section 6 ), and any other simplifying 

assumptions we might have made. We find in our simulations that 

f A ∼ 0.23. We can simplify equations ( 22 ) and ( 23 ) by ignoring the 

weak mass and hot gas density dependence, and setting L turb ∼ r , to 

obtain 

t grow = 
35 Myr 

w kh ( t) 

(

f A 

0 . 23 

)

( c s , 150 

v 

)3 / 5 ( χ

100 

)

×
(

r 

r 100 

)3 / 4 (
t cool 

0 . 03 Myr 

)1 / 4 

. (24) 

Equations ( 22 ) and ( 23 ) should be used when e v aluating t grow if 

the velocity v( t ) varies with time (i.e. when solving equations 1 –3 ). 

Ho we v er, a ke y quantity is the growth time at the terminal v elocity 

v = gt grow , which we shall see determines whether the cloud can 

survive (Section 2.3 ). Inserting v = gt grow into equation ( 22 ), setting 

w kh ( t ) = 1, and using f A = 0.23, we obtain the numerical version of 

equation ( 16 ): 

t grow = 40 Myr 

(

g 

g fid 

)−3 / 8 
( χ

100 

)5 / 8 

×
(

r 

r 100 

)15 / 32 (
t cool 

0 . 03 Myr 

)5 / 32 

, (25) 

where g fid = 10 −8 cm s −2 . On the other hand, for supersonic speeds, 

as we have discussed, the turbulent mixing velocity saturates and 

stops scaling with the cloud velocity (Yang & Ji 2022 ). Setting v ∼
gt grow to v ∼ c s, hot instead in equation ( 24 ), we find the numerical 

version of equation ( 17 ): 

t grow = 35 Myr 

(

c s , hot 

c s , 150 

)−3 / 5 
( χ

100 

)

×
(

r 

r 100 

)3 / 4 (
t cool 

0 . 03 Myr 

)1 / 4 

. (26) 

D is the fractal dimension (Barenblatt & Monin 1983 ). In their mixing 

layer simulations, Fielding et al. ( 2020 ) measure D ≈ 2.5, which gives α

≈ D /3 = 5/6, consistent with the abo v e. 

2.3 Cloud sur vi v al 

The model we have presented only accounts for mass growth of 

the cloud and does not include processes that result in mass loss. 

In addition, the initial onset and development of turbulence is only 

very crudely incorporated. The absence of these refinements mean 

that we should expect differences between model predictions and 

simulations, certainly for clouds that are losing mass, and at early 

times even for clouds that do survive and grow. We leave the inclusion 

and refinement of these components for future work, as we find that 

the model as presented works well for surviving clouds. Since the 

key assumption of our model is that the cloud is growing, we now 

discuss when this is a valid assumption. 

As we previously discussed, clouds placed in a wind tunnel 

encountering a hot wind can survive if t cool, mix < t cc (equation 12 ). 

Physically, t cool, mix can be understood as the time it takes gas to cool 

in the downstream-tail region of the cloud. Even if the initial pristine 

cloud material does not survive, if mixed gas can cool and survive, 

then the cold gas mass will increase. Since this mixed gas in the tail 

is cooling from the background, it is much more entrained in the 

wind than the initial cloud and hence able to survive – once the cold 

gas is entrained, it is no longer subject to destruction by shear. 

The ‘usual’ survi v al criterion t cool, mix < t cc abo v e is certainly a 

necessary condition for survi v al. If no gas can cool before the cloud 

is completely disrupted, the cloud cannot survi ve. Ho we ver, this 

criterion is not a sufficient one. This is because the physical process 

associated with t cc is not simply surface e v aporation. If this were so, 

then the abo v e criterion would indeed be sufficient as any mixing 

would lead to a net increase in cloud mass. Instead, the entire cloud 

is disrupted (i.e. the cloud is broken up into smaller fragments; Klein 

et al. 1994 ; Schneider & Robertson 2017 ). Hence, as we shall see, it 

is not enough that mixed gas can cool faster than the cloud crushing 

time. 

Compared to a wind tunnel set-up, the considerations for an 

infalling cloud are different. Since the cloud’s velocity increases 

instead, and there is no entrainment, t cc decreases o v er time. The 

only way for cold gas to survive is if it is produced at a rate faster 

than it is destroyed: 

t grow < f S t cc , (27) 

where f S is some constant 4 factor of order unity, which we shall 

calibrate in simulations. It encodes the fact cloud destruction takes 

place o v er sev eral cloud crushing times (Klein et al. 1994 ; Scanna- 

pieco & Br ̈uggen 2015 ). In e v aluating t cc ∼ χ1/2 r / v, the cloud radius 

is e v aluated at its initial value. As in wind tunnel experiments, this 

turns out to be a very good approximation, since the cloud grows 

mostly in the streamwise direction. If the velocity is e v aluated at the 

terminal velocity v T ∼ gt grow , then equation ( 27 ) is equi v alent to 

gt 2 grow 

χ1 / 2 r 
< f S . (28) 

As we have seen, there are two regimes for t grow , subsonic and 

supersonic infall. The criterion for subsonic infall is t grow < t ff 

4 Although we find that a constant factor is sufficient for our purposes, 

this coefficient has been found to vary in supersonic flows. For example, 

Scannapieco & Br ̈uggen ( 2015 ) found that in the cloud crushing set-up with a 

supersonic wind, f S , scales as 
√ 

1 + M hot , where M hot is the Mach number 

of the hot medium (see also Li et al. 2020 ; Bustard & Gronke 2022 , for 

alternati ve scalings). Ho we ver, we mostly probe the subsonic to transonic 

regime. 
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Figure 2. Cloud survi v al for subsonic and supersonic infall for different 

cloud sizes and cooling times. Survi v al is mostly sensitive to the latter. 

(equation 10 ). Using equation ( 25 ), and assuming t ff ∼ c s, hot / g , this 

can be rewritten as r < r sonic , where 

r sonic ∼ 150 pc 

(

t cool 

0 . 03 Myr 

)−1 / 3 (
g 

g fid 

)−4 / 3 

×
( χ

100 

)−4 / 3 
(

c s , hot 

c s , 150 

)32 / 15 

. (29) 

Thus, clouds must be smaller than some critical radius to fall at 

sub virial v elocities. In this re gime, ( v T � c s, hot ), t grow is giv en by 

equation ( 25 ), and the survi v al criterion, equation ( 28 ), becomes 

t cool < 5 × 10 −3 Myr 

(

f S 

2 

)16 / 5 (
r 

r 100 

)1 / 5 

×
(

g 

g fid 

)−4 / 5 
( χ

100 

)−12 / 5 
. (30) 

Note that equation ( 30 ) is almost independent of cloud size. Indeed, 

t grow /t cc ∝ gt 2 grow /r ∝ r −1 / 16 , i.e. a very weak scaling. We shall verify 

this in Section 4.4 . 

Is it possible for clouds to survive in the supersonic regime ( r 

> r sonic )? This requires t ff < t grow < f S t cc . This in turn requires 

that clouds be smaller than some critical size r SS , since t grow /t cc ∝ 

gt 2 grow /r ∝ r 1 / 2 in the supersonic regime (using t grow ∝ r 3/4 from 

equation 26 ). Thus, supersonic infall and survi v al requires 

r sonic < r < r SS , (31) 

where r SS is given by 

r SS = 100 pc 

(

t cool 

0 . 03 Myr 

)−1 (
g 

g fid 

)−2 

×
( χ

100 

)−2 
(

c s , hot 

c s , 150 

)12 / 5 

. (32) 

Note that equation ( 31 ) can only be fulfilled if r sonic / r SS < 1, where 

r sonic 

r SS 
∼ 1 . 5 

(

t cool 

0 . 03 Myr 

)2 / 3 

×
(

g 

g fid 

)2 / 3 
( χ

100 

)2 / 3 
(

c s , hot 

c s , 150 

)−4 / 15 

. (33) 

Fig. 2 shows the survival criteria abo v e (equations 30 and 32 ) for 

g = g fid , χ = 100, c s, hot = c s, 150 , and f S = 2. It is clear that survi v al is 

mostly independent of cloud size and depends instead on the cooling 

time. 

In practice, the subsonic case is of most interest. There, clouds 

must satisfy t grow < min( t ff , t cc ), which translates into a maximum 

allowed cloud size (equation 29 ) and a maximum allowed cooling 

time in cold gas (equation 30 ). The latter criterion is quite stringent. 

Since the dependence on size in equation ( 31 ) is weak, under isobaric 

conditions t cool ∝ 1/ P , we can translate equation ( 30 ) into a critical 

pressure. For f S = 2, and ignoring the size dependence, equation ( 30 ) 

is equi v alent to 

P > 3000 k B K cm 
−3 

(

g 

g fid 

)4 / 5 
( χ

100 

)12 / 5 
, (34) 

where the right-hand side (RHS) is the critical pressure P crit 

abo v e which a falling cloud can survive. We can also write equa- 

tion ( 30 ) in terms of the cooling time of the hot gas t cool, hot ∼
χ2 t cool [ � ( T cold )/ � ( T hot )] and the free-fall time t ff ∼ c s, hot / g to obtain 

t cool , hot 

t ff 
� 1 

( χ

100 

)−2 / 5 
(

� ( T cold ) 

� ( T hot ) 

)

, (35) 

where we have ignored the weak dependence on g , t cool / t ff ∝ g 1/5 . This 

is similar to the criterion ( t cool, hot / t ff < 1, where t cool is e v aluated at one 

scale height) for precipitation out of a thermally unstable background 

medium in a plane-parallel atmosphere 5 (McCourt et al. 2012 ). Since 

all our analytics and simulations are in the framework of plane- 

parallel systems, the numerical factor in equation ( 35 ) will likely 

change in spherical systems. Equation ( 35 ) has the very interesting 

implication that clouds which condense via thermal instability are 

able to survive subsequent infall, as long as they are below the critical 

size given by equation ( 29 ). Note that the physics of stratified thermal 

instability that leads to the t cool, hot / t ff < 1 criterion – o v erstable gravity 

wav es driv en by cooling – is quite different from what we have 

discussed here, so it is non-trivial (perhaps coincidental) that both 

thermal instability and falling cloud survi v al have similar criteria. 

3  M E T H O D S  

We carry out our simulations using the publicly available magne- 

tohydrodynamic (MHD) code ATHENA ++ (Stone et al. 2020 ). All 

simulations are run in 3D on regular Cartesian grids using the 

Harten–Lax–van Leer contact (HLLC) approximate Riemann solver 

and piecewise linear method (PLM) applied to primitive variables 

for second-order spatial reconstruction. By default, we use the 

second-order accurate van Leer predictor-corrector scheme for the 

time integrator, but switch to the third-order accurate Runge–Kutta 

method when the former is not stable enough, in particular for 

simulations with a constant background where the cooling time is 

extremely short throughout the entire simulation. 

Our simulation set-ups consist of rectangular boxes with identical 

x , y dimensions and an extended vertical z-axis. They are filled with 

static hot T hot = 10 6 K gas with initial density n 0 = 10 −4 cm 
−3 

at z = 0. A cold T cold = 10 4 K spherical cloud, initially at rest, is 

also inserted, usually a quarter box height from the bottom. This 

5 It is somewhat more stringent than the requirement for thermal instability 

in spherical systems ( t cool, hot / t ff < 10; Sharma et al. 2012 ), where the 

gravitational acceleration g and hence t ff varies as a function of radius. 

Ho we ver, it has been shown that there is no geometrical difference in cold 

gas condensation in plane-parallel and spherical geometries; the apparent 

difference arises from definitional differences in where t cool / t ff is e v aluated 

and cold gas is located (Choudhury & Sharma 2016 ). 
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placement allows us to follow the development of a cometary tail 

behind the cloud as it falls. The initial cloud density is perturbed at 

the per cent level randomly throughout the cloud to reduce numerical 

artefacts arising from the initial symmetry. We use outflowing 

boundary conditions, except at the bottom of the box (ne gativ e z) 

where the background profile is enforced in the ghost cells and the 

velocity is set to be that of the frame velocity. This is valid as long as 

cloud material does not interact with this bottom boundary. The frame 

velocity is based on a cloud-tracking scheme we implement where 

we continuously shift into the reference frame of the centre of mass 

of the cold gas, defined as gas below a temperature of T ∼ 2 × 10 4 K, 

an approach widely used in similar falling cloud simulations (Heitsch 

et al. 2022 ) and wind tunnel simulations (McCourt et al. 2015 ; 

Gronke & Oh 2018 , 2020a ). This scheme allows our simulation 

box to ‘track’ the cloud as it falls and hence reduces computational 

costs. The fiducial resolution of the boxes are 256 2 × 2048 (see 

Section 5.4 for a resolution test). The dimensions of the boxes are 

10 2 × 80 r cloud . This translates to r cloud being resolved by ∼25 cells. 

During the simulations, the clouds are allowed to fall freely under 

gravity. We assume a constant gravitational acceleration g ≡ −g ̂ z , 

with g = 10 −8 cm s −2 , as appropriate for the Milky Way, taken 

from the fit in Benjamin & Danly ( 1997 ) for distances between 1 

and 10 kpc. We discuss the impact of a more realistic gravitational 

profile and apply them within the scope of our model in Section 6 . 

In our implementation of radiative cooling, we assume collisional 

ionization equilibrium (CIE) and solar metallicity ( X = 0.7, Z = 

0.02). 6 We obtain our cooling curve by performing a piecewise 

power-law fit to the cooling table given in Gnat & Sternberg ( 2007 ) 

o v er 40 logarithmically spaced temperature bins, starting from a 

temperature floor of 10 4 K, which we also enforce in the simulation. 

We then implement the fast and robust exact cooling algorithm 

described in Townsend ( 2009 ). For this cooling curve, the cooling 

time in the cold gas is t cool ∼ 0.15 Myr. To emulate the effect of 

heating and to prevent the background medium from cooling o v er 

simulation time-scales, we cut off any cooling above 5 × 10 5 K. The 

particular choice of this value is unimportant (Gronke & Oh 2018 , 

2020a ; Abruzzo et al. 2022 ). 

We run two different sets of simulations with different static 

background profiles. The first set has gravity acting on a cloud 

that is embedded in a constant background, i.e. constant hot gas 

temperature, density, and pressure. This is obviously unphysical, 

since there are no pressure gradients in the background to counteract 

gravity. Ho we ver, it is very useful for understanding the underlying 

physical mechanisms that affect the cloud, without the confounding 

effects of the varying background that a cloud falling through a 

stratified medium experiences. To prevent the background from 

falling under gravity, we introduce an artificial balancing force ρhot g 

upwards. The hot background thus feels a net zero force from gravity, 

while the cold cloud is negligibly affected. For this set of simulations, 

we also vary the cooling time by changing the normalization of the 

cooling function by a constant factor � 0 . F or e xample, � 0 = 100 

would be a case where cooling is a 100 times stronger than the fiducial 

value, corresponding to cooling an environment where n hot = � 0 n 0 = 

10 −2 cm 
−3 , or nT = 10 4 K cm 

−3 , a relativ ely high pressure. F or the 

constant background, we adopt � 0 = 100 as a default, so that cooling 

is extremely strong and cloud growth is guaranteed. We emphasize 

6 We phrase our results in terms of cooling times, so they can easily be scaled 

for different cooling curves. We note, ho we ver, that the minimum cooling time 

at T ∼ 1.5 × 10 4 K, which is dominated by hydrogen cooling, is relatively 

insensitive to metallicity. 

that the constant background is simply used to provide a clean test 

of our analytic model, so that (for instance) the cooling time is not a 

function of position, as in a stratified atmosphere. 

The second, more realistic, set-up is that of a hydrostatic isothermal 

halo. The density profile of the background is thus 

n ( z) = n 0 exp 

(

−
gm H 

k B T hot 
z 

)

, (36) 

where n 0 is the mid-plane density, z is the height abo v e the disc, and 

H ≡ k B T hot / gm H = 2.8 kpc is the isothermal scale height (assuming 

the mean molecular weight μ = 1). This is a simplified model that 

is likely to break down close to the disc below 2 kpc, where it likely 

underestimates the background density, since the background gas is 

cooler. Ho we ver, this simple model allows us to study the effects 

of both a changing background profile and the resultant decrease in 

cooling time as the cold gas falls inwards. Besides the initial set-up 

of the background profile, since we are employing a cloud-tracking 

scheme, the boundary cells are set accordingly throughout the course 

of the simulation using this background profile and the current height 

of the cloud, which we also track. 

Our cloud chambers are somewhat artificial in that they are 

arbitrarily long. Thus, for instance, in the stratified case, the cloud 

can fall through an unrealistically large number of scale heights 

(well beyond when the plane-parallel approximation is valid). In 

practice, transition to a spherical gravitational potential with de- 

clining gravitational acceleration g means that even if clouds fall 

ballistically, they will only accelerate to transonic velocities, rather 

than fall supersonically. Ho we ver, our set-up is a clean probe of the 

underlying physics. In all the cases we care about, where the cloud 

survives, infall is subsonic. 

In order to e v aluate the cold gas mass m and other related quantities 

such as the mass growth rate, we use a temperature threshold of T ∼
2 × 10 4 K below which we define the gas to be ‘cold’. No magnetic 

fields are included in our simulations. We leave the exploration of 

the MHD case to future work. 

4  RESULTS:  C O N S TA N T  B  AC K G R  O U N D  

Our first objective is to test our semi-analytic model for falling clouds 

(equations 1 –3 ) against full 3D simulations. Hence, the first set of our 

simulations is set up with a constant background, where the properties 

of the background medium are held unchanged as the cloud falls. We 

use this set-up as a simple way to explore and test our model in an 

environment where the cooling time is kept constant. This allows us 

to test the various components of our model by adjusting individual 

parameters, ceteris paribus. 

4.1 Time evolution 

In order to understand the dynamical evolution of a falling cloud, we 

first present the time history of various quantities of interest, both as 

predicted by the model and as seen in the simulations. Note that the 

model (equations 1 –3 ) predicts m ( t ), v( t ), and z( t ) independently, 

without using any input from the simulations. Fig. 3 shows the 

evolution of these quantities o v er the course of a simulation with 

an initial cloud radius r = 300 pc. These are, from left to right and 

top to bottom, time-scales, cloud velocity, distance fallen, and the 

total mass of cold gas. The simulation runs for o v er 200 Myr, which 

is between 10 and 15 cloud crushing times. 

The various time-scales shown in the upper left-hand panel of 

Fig. 3 are as follows: the cooling time of the mixed gas t cool, mix , where 

mixed gas is defined as gas at T mix ∼
√ 

T hot T cold ∼ 10 5 K, the free-fall 
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Figure 3. Time evolution of various quantities for a r = 300 pc cloud falling in a constant background. From left to right, top to bottom, the panels compare the 

growth time t grow , the velocity v, the distance fallen z, and the cold gas mass m of the cloud in the simulation versus the model. The upper panels also include 

comparison with other quantities of interest. Model predictions are in good agreement with simulations results. 

time t ff = c s, hot / g , the cloud crushing time t cc = 
√ 

χr/v, which uses 

the initial cloud radius r and the instantaneous cloud velocity, and the 

instantaneous cloud growth time t grow = m/ ̇m , computed using the 

mass of cold gas (defined as gas with T < 2 × 10 4 K). For the latter 

two time-scales ( t cc and t grow ), both model and simulation results are 

shown for comparison. While wind tunnel set-ups define t cc using the 

initial wind velocity, we use the instantaneous cloud velocity (defined 

as the centre of mass velocity of cold gas) instead. This changes with 

time – it is initially infinitely long since the cloud starts at rest, but 

decreases as the cloud accelerates. Similarly, t grow is initially infinite, 

since there is no turbulence at the start of the simulation (any mixing 

would be due to numerical diffusion, since we do not implement 

physical diffusion). Mass growth then begins with the initial onset of 

turb ulence, which we ha ve included in the model via the weight term 

w kh ( t ). Our crude model for w kh ( t ) means that our analytic model for 

t grow is less accurate at these times. Ho we ver, since t grow is in any case 

long in these stages, with mass increasing very slowly, inaccuracy 

in modelling the growth of turbulence fortunately has little impact 

on m ( t ) (and by extension v( t ) and z( t )). The model performs well at 

matching the simulation results for both t cc and t grow . Since t grow ∼

t ff , the terminal velocity of the cloud here is roughly the sound speed 

of the hot gas, as expected from equation ( 10 ). For all simulations, 

t cool, mix 	 t cc , as required to be in the fast-cooling regime. 

The upper right-hand panel of Fig. 3 shows the velocity evolution 

of the cloud, as measured by the centre of mass velocity of the cold 

gas. We also show the velocity trajectory from the model, along with 

three other characteristic velocities. These are the ballistic velocity 

v ballistic = gt and the ‘terminal’ drag and growth velocities v T, drag and 

v T, grow , respecti vely, as gi ven by equations ( 4 ) and ( 6 ). The terminal 

velocities 7 are computed using the size of the initial cloud, and we 

can see that v T, grow < v T, drag , as expected. The ram pressure drag 

experienced by the cloud is thus much weaker than the mixing–

cooling-induced drag due to momentum transfer as hot surrounding 

gas is accreted onto the cloud (as expected from the estimates 

presented in Section 2.1 ). The relative contribution of ram pressure 

drag can be seen in the small deviation of the model (which includes 

7 While we use the terminology of a ‘terminal’ velocity, v T, grow ≈ gt grow is 

in fact time dependent here since t grow has a mass dependence. 
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Figure 4. The mass growth rate as a function of cold gas mass for clouds 

of different initial sizes. Curves are labelled by the initial cloud radius and 

whether they represent model solutions (M) or simulations (S), which are 

shown as dashed and solid lines, respectively. Using a scaling of α = 5/6 in 

the model matches the mass growth rate in the simulations well. 

both effects) from v T, grow . The cloud initially accelerates ballistically, 

before reaching a high enough velocity where the cooling drag force 

kicks in and slows the cloud down. Since the cooling drag force 

operates on a time-scale t grow , the cloud remains ballistic until t ∼
t grow . This progression means that the cloud can experience a phase 

where its velocity is decreasing as it falls. While not strongly apparent 

in this set-up, this effect can be pronounced when the background is 

not constant, which we discuss in the following section. The model 

does an excellent job at matching the evolution of the cloud velocity 

o v er time, and in particular the cloud reaches the asymptotic velocity 

v T, grow ≈ gt grow predicted by the mixing–cooling-induced accretion 

of hot background gas. 

The remaining two lower panels of Fig. 3 show the distance the 

cloud has fallen and the total mass of cold gas. Of course, the two 

quantities are not independent from the upper panels: we expect to 

predict z( t ) accurately since we predict v( t ) accurately, and we expect 

to predict m ( t ) accurately since we could predict t grow accurately. 

Overall, it is remarkable how well our simple model of ‘accretion 

braking’ matches the simulations. We now explore how it performs 

in different regions of parameter space. 

4.2 Ar ea gr owth rate 

We first investigate the areal growth scaling in equation ( 21 ), where 

we stated that we expect the value of α to lie between 2/3 and 1. 

Equation ( 22 ) can be rewritten as 

ṁ = 
m 0 

t grow , 0 

(

v 

c s , 6 

)3 / 5 (
m 

m 0 

)α

. (37) 

Fig. 4 shows the mass growth rate of cold gas ṁ as a function 

of the cold gas mass m normalized by the initial cloud mass m 0 in 

three simulations with r = 100, 300, and 1000 pc. We expect from 

our model that past the turbulent onset and acceleration phases, the 

cloud should reach terminal velocity and its mass growth rate should 

thus follow lines with slope α. The dashed lines in Fig. 4 show mass 

growth rate curves from our model with f A = 0.23 and α = 5/6. These 

choice of values give a good match to the mass growth rate curves 

from simulations represented by the solid lines, which are obtained 

by smoothing the instantaneous values of ṁ represented by the grey 

points. The slopes are initially steeper as the cloud accelerates. As 

discussed in the Section 2 , we find that α ∼ 5/6 seems to be an good 

fit to simulation data – supporting the idea that both processes of 

cloud growth on the surface ( α ∼ 2/3) and in a lengthening tail ( α

∼ 1) are at play (or that the ef fecti ve surface area scales in a fractal 

manner). 

As noted abo v e, we also observe a ‘burn-in phase’, where the 

mass growth is initially low because turbulence is developing around 

and behind the cloud due to instabilities, then ramps up quickly due 

to both turbulent onset and a rapid increase in surface area. Small 

sudden drops are associated with cold mass that exits the simulation 

box due to its fixed size, which are likely to occur at late times in 

our simulations. The computational cost of tracking cloud growth 

o v er longer periods of time increases significantly as the clouds keep 

growing in size and length that require increasingly larger boxes to 

contain. For the large 1 kpc radius cloud, we were unable to run the 

simulation for a sufficient time to see the mass growth rate reach 

the same steady growth as convincingly as the smaller clouds, but 

nevertheless the mass growth is in line with model predictions for all 

growing clouds. 

4.3 Scalings 

To verify our analytic scalings for t grow in the subsonic and supersonic 

regimes, equations ( 25 ) and ( 26 ), we vary each parameter to test the 

scalings explicitly. Ho we ver, the parameters cannot be arbitrarily 

varied – they are limited to the region of parameter space where the 

clouds survive. This is given by equations ( 30 ) and ( 31 ) for subsonic 

and supersonic infall, respectively. 

4.3.1 Scaling with cloud size 

We first vary the initial cloud size r . The upper plot of Fig. 5 shows 

t grow as a function of time for the range of cloud sizes, while the 

lo wer plot sho ws the scaling of t grow with r , measured at the times 

indicated by the black circles in the upper plot where the weight 

function in the model reaches unity, or in other words, turbulence 

and mixing has fully developed. In the upper plot, simulation results 

are represented by the small points coloured by cloud size. Solid lines 

show model predictions. In the lower plot, the orange line represents 

the model predictions, while the analytic scalings of r 15/32 and r 3/4 

deriv ed abo v e (before and after saturation of turbulent velocities for 

subsonic and supersonic infall, respectively) are plotted as dashed 

lines. The simulation results match the model and analytic scalings. 

4.3.2 Scaling with cooling 

Next, we vary the cooling strength parameter � 0 by a factor of 3 

abo v e and below the fiducial value. Fig. 6 shows the scaling of t grow 

with � 0 ∝ 1/ t cool , along with the simulation and model results as 

before. The simulations are in agreement with the weak t cool scaling. 

Despite this, as we will see later, survi v al is sensiti ve to cooling 

time rather than size, and hence it is difficult to probe the scaling to 

weaker cooling. Unfortunately, reducing the cooling strength further 

leads to cloud destruction. Higher cooling strengths require shorter 

time-steps and larger boxes, and are hence numerically challenging. 

While we vary the cooling strength explicitly here, strong cooling 

also corresponds to denser environments where higher densities lead 

to shorter cooling times. 
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Figure 5. Upper panel: the growth time as a function of time for clouds of 

different sizes in the effective cooling regime ( � 0 = 100). All clouds shown 

here are growing and survive. Solid lines show model predictions, while 

coloured points represent simulation results. Lower panel: the growth time 

where turbulence is fully developed ( w kh ( t ) = 1) as a function of cloud size. 

Dashed lines show expected analytical scalings in the subsonic ( t grow ∝ r 15/32 ) 

and supersonic ( t grow ∝ r 3/4 ) regimes, while the solid orange line shows the 

model predictions. Both are in agreement. 

4.3.3 Scaling with gravity 

We also vary the gravitational strength g from 0.1 to 3 times the 

fiducial value. Fig. 7 shows the scaling of t grow with g . As before, 

we also plot the model and the expected g −3/8 and g 0 scalings for 

subsonic and supersonic infall, respectively. Simulation results are 

consistent with the model in both cases. 

4.3.4 Scaling with density contrast/hot gas temperature 

Lastly, we vary χ by changing the background temperature. Fig. 8 

shows the scaling of t grow with χ . Unlike the previous sections, we 

do not see the expected χ5/8 scaling. This can be understood by 

the scaling of the turbulent velocity u 
′ 

with χ ; in our deri v ation, we 

assumed u 
′ 
is independent of χ . As seen in the middle panel of fig. 12 

of Tan et al. ( 2021 ), this is true for χ � 100, but for χ � 100, then u 
′ ∝ √ 

χ . If we put in this scaling u 
′ ∝ 

√ 
χ , we see that the χ dependence 

of t grow becomes weaker and better matches the simulation results. 

Figure 6. The growth time for different cooling strengths � 0 , which modify 

the cooling time t cool ∝ � 
−1 
0 . Dashed lines show expected analytical scalings, 

while the solid orange line shows the model predictions. As expected, the 

dependence of t grow on t cool is weak. 

Figure 7. The growth time for different gravitational fields. Dashed lines 

show expected analytical scalings t grow ∝ g −3/8 , g 0 for subsonic and 

supersonic infall, respectively, while the solid orange line shows the model 

predictions. 

We expect our predicted t grow ∝ χ5/8 scaling to hold at higher χ , 

but the simulations required to probe this regime in detail require 

v ery long box es and are be yond the numerical scope of this work. 

We also plot a single simulation, along with the model expectation, 

where multiple parameters were varied, not just χ , so as to sample a 

different region of parameter space with higher χ . These are plotted 

as stand-alone points. For this particular simulation, the parameters 

we have used are r = 300 pc, χ = 1000, g = 4 × 10 −8 cm s −2 , and 

n = 1 cm 
−3 . Cooling here is not boosted since we use a high density 

instead (i.e. � 0 = 1). We find that the growth time for this simulation 

remains in line with the model. 

4.4 Sur vi v al 

Since we are primarily interested in modelling clouds that are 

growing, it is useful to determine when we are in such a growth 

regime. In Section 2.3 , we argued that this criterion is given by t grow 

< f S t cc , where f S is some constant factor of order unity. We now test 
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Figure 8. The growth time for different o v erdensities. Dashed lines show 

analytical scalings t grow ∝ χ5/8 , χ for subsonic and supersonic infall, 

respecti vely. At lo w o v erdensities ( χ � 100), the simulations differ from 

the expected scalings, which we attribute to lower turbulent velocities in 

mixing layers. If this is taken into account, simulations and models (dotted 

green line) match. We also test one case at high o v erdensity χ ∼ 1000 for 

cluster-like parameters, where multiple parameters were varied. The model 

and simulations match well. 

Figure 9. Overview of the fate of cold gas in the ‘constant background’ 

case as a function of cloud size and different cooling strengths. Points denote 

whether clouds in the corresponding simulations are growing in mass or 

losing mass; question marks denote cases where the fate is uncertain. The 

breaks correspond to where the turbulent velocity u 
′ 

saturates when the cloud 

velocity reaches the sound speed of the hot background c s, hot . This causes 

t grow / t cc to increase with cloud size instead. In the simulations marked with 

‘?’, the final fate of the cold gas is unclear. 

this by running a number of simulations to explore the parameter 

space, varying the initial cloud radius between 3 pc and 3 kpc, and 

the cooling time between the fiducial value and 100 times shorter. 

Fig. 9 shows 8 the fate of simulated clouds for various cloud sizes 

8 Question marks denote simulations where it is unclear what the fate of the 

cloud is. For example, the cloud might break up, with one portion accelerating 

and getting destroyed, while leaving some much slower falling material 

behind it that possibly survives and grows. The cold material then hits the 

boundary of the box at the top or bottom and we cannot track further evolution. 

Figure 10. Comparison of various survival criteria (dashed lines) to the 

simulation results as a function of cloud radius and cooling strength. The 

criteria are satisfied abo v e the respectiv e lines. The symbols indicate whether 

a cloud grows or gets destroyed (as in Fig. 9 ). 

and cooling times. Solid lines denote a contour of constant cooling 

strength, while the vertical axis shows the ratio of the growth time to 

the cloud crushing time t grow / t cc . These time-scales are calculated by 

e v aluating the model where our weight factor w kh ( t ) = 1. Physically, 

this is where turbulence has fully developed and t grow stabilizes. 

Alternati vely, e v aluating t grow / t cc at some time αt cc yields the same 

result, but can change the normalization of t grow / t cc (this ratio gets 

larger as α gets smaller since w kh ( t ) < 1). The implication here is that 

the threshold value of f S is depends on when t grow / t cc is evaluated. 

In general, the results are in line with criterion t grow / t cc � f S ∼
4 for survi v al, and the discussion in Section 2.3 . Rather than being 

sensitive to cloud size, clouds get destroyed when cooling is weak, 

and only survive when cooling is strong enough. Cloud size does 

begin to play a role when t grow > t ff , so that infall velocities become 

supersonic, and t grow / t cc ∝ r 1/2 . As discussed in Section 2.3 , this 

happens when r > r sonic (equation 29 ), r sonic ∼ 200 pc in our models, 

where we see the change to a t grow / t cc ∝ r 1/2 scaling. The low mass 

growth rates at high Mach number means that it is harder for clouds 

to fall supersonically and still survive; it is only possible in a limited 

size range r sonic < r < r SS (where r SS is given by equation 32 ). 

To reinforce the point that t grow / t cc < f S is a more stringent survi v al 

criteria than others, in Fig. 10 , we show the boundaries in the r –� 0 

plane for two other possible criteria: (i) t cool, mix < t cc , which is the 

criterion for cloud survi v al in a wind; (ii) Da mix ≡ L /( u 
′ 
t cool, mix ) > 

1, which is the criterion for a multiphase medium in the presence of 

turbulence and radiative cooling (Tan et al. 2021 ). The two criterion 

are closely related. In Fig. 10 , we see that clouds that satisfy these 

criterion are none the less destroyed, while the more restrictive 

criterion t grow / t cc < f S straddles the boundary between destruction 

and survi v al. Note that for suf ficiently small clouds, t grow < t cool, mix 

(blue dashed line) instead of the other way round. Ho we ver, this lies 

in the cloud destruction regime and thus is irrele v ant. 

This seems to happen near our survi v al boundary, where the long-term fate of 

the cloud can be sensitive to cloud dynamics. It also happens for the largest 

clouds. 
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Figure 11. Evolution of the falling velocity of the cloud as a function of 

(evolving) t grow / t ff for different cloud sizes. Black triangles indicate the 

direction of evolution at t = t ff . As the cloud accelerates, the growth time is 

decreasing until it stabilizes at the growth terminal velocity v T, grow / c s, hot ∼
t grow / t ff . 

4.5 Growth and free-fall time-scales 

In Section 2 , we saw that if the drag force from mass accretion 

balances gravity such that F grav ∼ F grow , then we expect that t grow / t ff 
∼ v T, grow / c s, hot . We show that we do indeed see this in our simulations 

in Fig. 11 . The blue dotted line shows the equality, while the 

coloured points are simulation results for various cloud sizes o v er 

time. Solid lines show the model values for the same time range as 

the corresponding simulations. Initially, t grow is large as turbulence 

dev elops, but once the y reach the terminal v elocity v T, grow ∼ gt grow , 

falling clouds indeed obey the scaling v grow ∼ c s, hot ( t grow / t ff , as seen 

from the fact that the clouds evolve to the blue dotted line and stay 

there. 

5  RESULTS:  STRATIFIED  B  AC K G R  O U N D  

In our second set of simulations, we consider a more realistic set- 

up of a cloud falling through an isothermal hydrostatic background. 

This means that P , ρ ∝ exp 
(

z 
H 

)

, where z is the vertical height the 

cloud has fallen and H is the scale height of the background medium. 

As mentioned in Section 3 , the density profile of the background is 

thus 

n ( z) = n 0 exp 
( z 

H 

)

, (38) 

where n 0 = 10 −4 cm 
−3 is the initial background density, z is the 

height the cloud has fallen, and H ≡ k B T hot / gm H = 2.8 kpc is the 

isothermal scale height (assuming the mean molecular weight μ = 

1). We define our origin where the cloud begins to fall, hence density 

increases rather than decreases exponentially with z. While the use 

of a constant gravitational acceleration g is not in general a realistic 

assumption, this simplification helps in isolating the rele v ant physics. 

5.1 Time evolution 

We now present the time evolution of a simulation where the 

cloud comfortably survives, along with the model predictions for 

various quantities. Unlike the constant background set-ups, we do 

not artificially boost the cooling function in these simulations. 

Instead, the cooling time naturally varies with density and hence 

height. Fig. 12 shows the evolution of these quantities o v er the 

course of a simulation with an initial cloud radius r = 1 kpc and 

g = g fid = 10 −8 cm s −2 . As before, these are, from left to right and 

top to bottom, time-scales, cloud velocity, distance fallen, and the 

total mass of cold gas. 

The upper left-hand panel of Fig. 12 shows the same time-scales as 

in Fig. 3 : the cooling time of the mixed gas t cool, mix , which decreases 

as the clouds falls, the free-fall time t ff = c s, hot / g , the cloud crushing 

time t cc = 
√ 

χr/v, which uses the initial cloud radius r and the 

instantaneous cloud velocity, and the instantaneous cloud growth 

time t grow = m/ ̇m , computed using the mass of cold gas. For the latter 

two time-scales ( t cc and t grow ), both model and simulation results are 

shown for comparison. We have adjusted the value of f kh in the weight 

term w kh ( t ) to be 1 for the stratified background as that is more 

in line with simulation results. This suggests a more rapid onset 

of turbulence for clouds that are falling into a denser background 

(this parameter is of course, only a crude approximation of the 

rele v ant processes involved). The model performs well at matching 

the simulation results for both t cc and t grow , although marginally 

less so than for the constant background. This can be attributed to 

the cloud initially travelling through a region of parameter space 

where it is not in the growth regime. Since our model does not 

include cloud destruction, this leads to a deviation of the simulation 

from the model. The velocity evolution of the cloud is shown in the 

upper right-hand panel. The cloud initially accelerates ballistically, 

before the cooling drag force kicks in and slows the cloud down. 

Since the cooling drag force operates on a time-scale t grow , the cloud 

remains ballistic until t ∼ t grow . During this time, the cloud can reach 

velocities greater than the eventual terminal velocity v T, grow = gt grow . 

The subsequent deceleration due to cooling slows the cloud down 

such that the velocity turns around and starts to decrease . This has 

implications for cloud survi v al that we discuss further on. At late 

times the cloud velocity approaches a roughly constant value. We 

now delve into this further. 

5.2 Terminal velocity 

Previously, we argued that the terminal velocity should approach 

a value v T, grow ≈ gt grow (equation 6 ). Indeed, it does so, after 

some ‘o v ershoot’ as described abo v e. Ho we ver, as apparent from 

equation ( 22 ), t grow itself is a function of parameters such as t cool ( t ), 

m ( t ), ρh ( t ) that change with time as the cloud falls through a stratified 

atmosphere. Thus, one might expect t grow and consequently v T, grow 

to vary with time as the hot plasma surrounding the cloud increases 

in density. Instead, what is surprising from Fig. 12 is that t grow 

asymptotes to a constant value. Indeed, it does so quite early, before 

v → v T, grow . How can we understand this? 

From equation ( 22 ), and using t cool ∝ 1 /n ∝ exp 
(−z 

H 

)

, we can 

write 

t grow ( t) ∝ v ( t) −3 / 5 

(

m ( t) 

m 0 

)1 −α

exp 

(

−
(

5 

4 
− α

)

z( t) 

H 

)

(39) 

as a time-dependent quantity. The rate at which t grow changes is 

d ln t grow 

d t 
= 

ṫ grow 

t grow 
= −

3 

5 

v̇ 

v 
+ 

(1 − α) 

t grow 
−

(

5 

4 
− α

)

v 

H 
. (40) 

From equation ( 6 ), this can be contrasted with the rate at which v 

evolves: 

d ln v 

d t 
= 

v̇ 

v 
= 

g 

v 
−

1 

t grow 
. (41) 

We can make two observations. First, equation ( 40 ) has terms of 

opposing sign. Thus, it is possible that ṫ grow → 0, i.e. t grow ≈ const, 

rather than evolving with background quantities. Physically, this is 
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Figure 12. Time evolution of various quantities for a r = 300 pc cloud falling in a stratified background. From left to right, top to bottom, the panels compare 

the growth time t grow , the velocity v, the distance fallen z, and the cold gas mass m of the cloud in the simulation versus the model. The upper panels also include 

comparison with other quantities of interest. Model predictions are in good agreement with simulations results. 

because of a ne gativ e feedback loop. Suppose t grow decreases as a 

cloud falls into denser surroundings. The subsequent increase in mass 

causes t grow to increase (from equation 39 ). The opposite is also true: 

if t grow is large, the cloud will f all f aster (due to weaker accretion drag) 

into denser regions, reducing t grow . Secondly, by comparing terms on 

the right-hand side of equations ( 40 ) and ( 41 ), the time-scale on 

which t grow equilibrates to its steady-state value is comparable to 

the time-scale on which v equilibrates to its steady-state value 9 , 

v T, grow = gt grow . Thus, v̇ , ̇t grow → 0 on similar time-scales. From 

setting equations ( 40 ) and ( 41 ) to zero, the steady-state value of t grow , 

and hence v T, grow , is given by 

v T , grow = gt grow ≈

√ 

1 − α
5 
4 − α

Hg ≈
√ 

2 

5 
c s , hot , (42) 

where in the last step we use α = 5/6 and g ≈ c 2 s /H for an isothermal 

atmosphere. This velocity is shown by the grey line in Fig. 12 . 

This then has the remarkable implication that in an isothermal 

atmosphere with constant gravity, f subvir = v T / c s, hot = t grow / t ff 
(equation 10 ) of a cloud where accretion-induced drag dominates 

9 Indeed, because of ‘velocity overshoot’, t grow equilibrates first. 

is independent of all properties of the system except cloud geometry, 

specifically α. For our measured value of α = 5/6 from infalling 

clouds with cometary tails, we predict f subvir = [(1 − α)/(5/4 −
α)] 1/2 ≈ 0.6. In Fig. 13 , we compare velocity evolution in our model 

(equations 1 –3 ) to the asymptotic velocities from equation ( 42 ), 

for different cloud sizes and gravitational fields. Equation ( 42 ), 

which only depends on α, correctly predicts the asymptotic velocity. 

Note, ho we ver, that reaching the asymptotic velocity requires falling 

through many scale heights, and a planar g ≈ const isothermal 

atmosphere may not be realistic o v er such length scales. ‘Velocity 

o v ershoot’ also implies that large clouds (which exhibit stronger 

o v ershoot) might be seen to fall faster than predicted. In systems 

with varying g ( r ) and T ( r ) (and thus non-constant scale heights), 

the result can be more complex, and the most straightforward way 

to arrive at predictions is to simply integrate the set of ordinary 

differential equations (ODEs), equations ( 1 )–( 3 ). We will show an 

example in Section 6.2 . 

5.3 Scaling with cloud size and gravity 

In Fig. 14 , we compare the mass growth rates as a function of mass 

for simulations with varying initial cloud sizes and gravitational 
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Figure 13. Velocities in a stratified environment converge to a constant 

value that only depends on α (where area A ∝ M α), independent of all other 

properties such as cloud size, or gravity. Curves show velocity evolution in 

our model (equations 1 –3 ), while solid lines give the asymptotic velocities 

from equation ( 42 ). 

Figure 14. The mass growth rate as a function of cold gas mass for clouds of 

different initial sizes and different gravitational strengths. Curves are labelled 

by the initial parameters and whether they represent model solutions (M) or 

simulations (S), which are shown as dashed and solid lines respectively. 

strengths to model predictions. Varying g allow us to test the model 

for different scale heights. We can see that the model predictions 

are in good agreement with simulations results. In all cases, the 

simulations converge to the 1/ t grow slope predicted by the model. The 

divergence at early time is due to the fact that for this set-up, the 

clouds start in a destruction regime since cooling is relatively weak. 

5.4 Resolution conv er gence 

To test if our results for mass growth rates are converged. we run 

a r = 300 pc cloud with g = g fid at v arious resolutions, v arying 

the fiducial resolution by a factor of 2. Fig. 15 shows that the three 

resolutions show little difference in mass growth rates and that the 

simulation appears to be converged, although the higher resolution 

simulation matches the model slightly better – the cloud is disrupted 

less initially and reaches the model growth rate more rapidly. 

Figure 15. The mass growth rate as a function of cold gas mass for a r = 

300 pc cloud with g = g fid at different resolutions (eight times higher and 

lower mass resolution than in the fiducial run, respectively). The simulations 

are relatively well converged. 

5.5 Sur vi v al in a stratified background 

For a cloud falling in a constant background we found that the 

survi v al criterion was given by a competition between the growth 

and destruction time-scales of the cloud: t grow < f S t cc , where f S is a 

constant factor. We wish to ascertain if the same condition applies to 

clouds falling in a stratified background. 

In the case of a constant background, t grow changes very little o v er 

time (once turbulence has developed), with only a very weak scaling 

with mass, and cooling is strong enough so v approaches gt grow 

without ‘o v ershooting’, something we noted in Fig. 12 abo v e. F or 

a stratified background, both these assumptions do not hold – t grow 

changes continuously with background density, and an o v ershoot is 

often observed. Since our initial conditions are in the regime where 

clouds do not survi ve, survi ving clouds are those that are able to 

survive long enough to enter the growth zone. 

One ansatz would be to use the asymptotic value of t grow and v that 

we derived above in equation ( 42 ) and e v aluate the survi v al criteria 

there. This gives 

r > 
v 2 T , grow 

gf S 
√ 

χ
. (43) 

This condition is given by the blue dashed line in Fig. 16 . Note that 

it is a lower bound on r , since v T, grow is independent of r . It has the 

right qualitative behaviour as a survival criterion, but does not seem 

to match the survi v al thresholds seen in the simulations. Clouds have 

to fall many scale heights to reach the asymptotic velocity given by 

equation ( 42 ) – often survi v al is determined much earlier. Indeed, 

the falling clouds often o v ershoot this asymptotic velocity as they 

initially fall ballistically, as seen in Fig. 16 . We can estimate the time 

where gravity and cooling balance: 

ṁ v ∼
m 

t grow 
v ∼ mg 

t 

t grow 
, (44) 

assuming the cloud is falling ballistically in this initial phase. Hence, 

t ∼ t grow is the time where the cloud is slowed from its ballistic free 

falling trajectory. If we e v aluate equation ( 27 ) at this time in the 

simulation, we can solve numerically for some r crit . Of course, this 

only makes sense if v( t = t grow ) > v T, grow , i.e. there is an o v ershoot 

so t cc is shorter. The larger the difference in the two velocities, the 

more likely the cloud is to be destroyed in this o v ershooting phase. In 
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Figure 16. The fate of clouds of different size falling in stratified back- 

grounds with different gravitational strengths. Survi v al criterion e v aluated at 

different times is shown. The best survival criterion is given by the teal curve, 

i.e. equation ( 27 ) e v aluated at the maximum velocity, for f S = 3. 

Fig. 16 , we show this limit in the orange dashed line. We see that this 

matches the simulation results more closely for larger values of g , 

where the clouds accelerate to higher velocities. Ultimately, it is the 

maximum velocity that determines if a cloud survives. We thus show 

in the red and teal curves in Fig. 16 the survi v al criterion e v aluated 

at v = v max from the model. The red curve use f S = 4 as in the 

previous section, while the teal curve has f S = 3, which seems to be a 

better match to the simulation results. It is unsurprising that we find 

a different value of f S here, since we are evaluating our quantities at 

a different time. 

In Fig. 17 , we show the evolution of the 100 and 300 pc cloud 

for g = g fid . The 100 pc cloud does not survive and is disrupted 

completely, while the 300 pc starts to get disrupted but survives long 

enough to reach the zone of growth and then grows. Note the tail 

growth in the surviving case. To summarize, we have looked at clouds 

that start outside the growth zone in a stratified medium, and find 

that in order to survive, the cloud has to make it to the growth zone. 

Since the cloud is accelerating ballistically before it reaches high 

enough pressures where cooling is efficient enough for it to grow 

and slo w do wn, only large clouds can survi v e this infall. We e xplore 

the implications of the survi v al conditions in this and the previous 

section on astrophysical systems of interest in the following section. 

6  DISCUSSION  

6.1 High-velocity clouds 

3D simulations of clouds falling under gravity with mixing and 

cooling processes included have only been studied to a limited extent 

previously. Heitsch & Putman ( 2009 ) concluded that clouds below 

10 4.5 M � are disrupted within 10 kpc. Notable differences in set- 

up include a smaller box length along the tail direction and starting 

initially with colder clouds, as their temperature range extended down 

to 100 K. Heitsch et al. ( 2022 ) focused on metallicity measurements, 

tracing original versus accreted cloud material. They found that most 

of the original cloud material does not survive and is instead replaced 

by accreted gas that mostly happens in the tail. Grønnow et al. ( 2022 ) 

observed cloud growth in MHD simulations but did not follow the 

clouds for many cloud crushing times. We have followed up by 

providing a model for the mass growth of such clouds based on the 

underlying process of turbulent mixing and cooling, so as to tackle 

the key questions of when high-velocity clouds (HVCs) can survive, 

how much mass they accrete, and how fast the y trav el. We then tested 

the model against a suite of numerical simulations. What then are 

the implications for HVCs? 

In Fig. 18 , we show our estimates for cloud survival in a Milky 

Way-like profile in the cloud size–initial height parameter space. 

Specifically, we employ the profiles from Salem et al. ( 2015 ) who 

combine the density profile of Miller & Bregman ( 2015 ) with a 

temperature profile mapped from a Navarro–Frenk–White (NFW) 

halo (Navarro, Frenk & White 1997 ), which we also use to set the 

gravitational profile. In the region of interest, T ∼ 10 6 K. Fig. 18 

shows the ratio of the growth time and the cloud crushing time 

t grow / t cc e v aluated at the maximum velocity the cloud reaches along 

its trajectory. We also show the threshold of survival (equation 27 ) at 

∼4 from the previous section. The analytic expectation (equation 34 ) 

for where cooling is strong enough for clouds to survive regardless 

is demarcated by the white dashed line. Outside this region, larger 

clouds can survive falling from further out, simply from the fact that 

t cc ∝ r cl . 

More generally ho we ver, Fig. 18 sho ws that except for these larger 

( � 100 pc) clouds, HVCs in the Milky Way should only survive if 

they start at an initial height of d 0 � 10 kpc. Most HVC complexes 

detected do indeed fall within this regime – with the notable detection 

of the ones associated with the Large Magellanic Cloud (LMC) and 

its leading arm located at � 20 kpc (Richter et al. 2017 ). 

While this prediction seems to explain the observed survi v al of 

most HVCs, we want to highlight that due to the mass transfer from 

the hot to the cold medium, most surviving clouds in the Milky Way 

in our model would fall at v GSR ∼ 70 km s −1 (equation 42 ) and 

might thus have velocities v LSR that are too low to be classified as 

HVCs. Such a population of intermediate- to low-velocity clouds 

is of course to be e xpected ev en from simply studying the velocity 

distribution of HVCs and ‘filling in’ the gap at v LSR ∼ 0, and has been 

the subject of several theoretical studies (e.g. Peek et al. 2007 ; Zheng 

et al. 2020 ) – as well as observational attempts to locate them (e.g. 

Peek et al. 2009 ; Bish et al. 2021 ). Thus far, there does not seem to be 

a firm conclusion on the existence of such a low-velocity population. 

Our work provides a theoretical foundation for the existence of such 

clouds and predicts an o v erabundance of them in the Milky Way halo 

at lower heights ( � 10 kpc). 

An interesting example of a nearby HVC is the Smith Cloud 

(Smith 1963 ), lying only 3 kpc below the Galactic plane with a 

metallicity of ∼0.5 M �, and which is f alling tow ards the G alactic 

plane at velocity v z ∼ 70 km s −1 (Fox et al. 2016 ). A long-standing 

mystery has been explaining the survi v al of the Smith Cloud at 

its current location. A simple ballistic analysis suggests that the 

cloud might have already passed through the disc (Lockman et al. 

2008 ) and should hence have been disrupted, in which case some 

mechanism is needed to explain its survi v al, such as the cloud 

being embedded in a dark matter subhalo, which would shield the 

gas and extend its lifetime (Nichols & Bland-Hawthorn 2009 ). It 

is possible that the relative high metallicity and survi v al of the 

Smith Cloud can be potentially explained instead by accretion of 

ambient material driven by turbulent mixing and cooling. Henley, 

Gritton & Shelton ( 2017 ) ran a wind tunnel simulation with the aim 

of reproducing a Smith’s Cloud like set-up, and found entrainment 

of the background gas largely in the tail of the cloud. Galyardt & 

Shelton ( 2016 ) ran simulations of the Smith Cloud with gravity 

and in a stratified background. They concluded that if the Smith 

Cloud was in a dark matter subhalo, it would comprise gas accreted 

only after the subhalo passed through the disc. Alternatively, if the 
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Figure 17. Snapshots of the projected density-weighted temperature through the box (temperature here is hence just an indication of the amount of cold gas 

when projected along the y -axis) for a 100 and 300 pc cloud at various points in their evolution. The former is disrupted completely, while the latter reaches the 

survi v al zone and grows. x and z here simply reflect the size of the box along the respective axes normalized by cloud size. 

Smith Cloud was not accompanied by such a subhalo, then it must 

be on first approach, since the cloud would not survive its journey 

through the Galactic disc. Our model could naturally explain the 

survi v al of a Smith’s Cloud that was on first approach, as it fulfils the 

survi v al criterion equation ( 27 ), i.e. it falls within the ‘survi v al zone’ 

of the Milky Way’s halo. The trajectory in this case would be very 

different from the ballistic one since the accretion dynamically affects 

the cloud. 

Since the terminal velocity is independent of the cloud size, one 

would expect no observable relationship between, for instance, cloud 

column density and infall velocity, although there may be significant 

scatter since this requires the cloud velocity to ‘turn around’ and reach 

asymptotic terminal velocity. This is consistent with observations 

(Westmeier 2018 ). 

We have thus far considered clouds that are infalling from large 

distances and potentially feed the disc. In our model, HVCs and 

IVCs can continually grow in mass once they are near enough to 

the disc. It therefore also gives credence to the notion that fountain- 

driven accretion can supply the disc with fuel for star formation: cold 

gas thrown up into the halo ‘comes back with interest’, by mixing 

with low-metallicity halo gas that cools and increases the cold gas 

mass (Armillotta et al. 2016 ; Fraternali 2017 ). Such low-metallicity 

gas is required to satisfy constraints from disc stellar metallicities 

and chemical evolution models (Sch ̈onrich & Binney 2009 ; Kubryk 

et al. 2013 ). The equations for mass transfer and v elocity deriv ed in 

this work can also be incorporated into semi-analytic ‘fountain flow’ 

models and checked against observations. 

6.2 Clusters 

Galaxy clusters are amongst the largest virial systems in the Universe 

and thus present opportune test beds for the comparison of observa- 

tions and theoretical models of galactic properties and evolution. The 

hot intracluster medium (ICM) in such environments reaches temper- 

atures in the range of 10 7 –10 9 K that can be probed observationally 

via X-ray emission originating from the thermal bremsstrahlung 

radiation of this hot diffuse plasma (Sarazin 1986 ). However, the 

ICM does not exist simply in a single phase. Observations from 

measurements of carbon monoxide (CO) that traces cold molecular 

gas find an abundance in these central cluster galaxies, with molecular 
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Figure 18. Survi v ability of HVCs in Milky Way conditions with a size r cl 

and dropping height d 0 . For clouds outside the survi v al region given by 

equation ( 34 ), the colour coding corresponds to the ratio t grow / t cc e v aluated 

at the maximum velocity along the cloud trajectory. The horizontal white 

dashed line shows where the survi v al criterion equation ( 27 ) is satisfied for 

f S = 4. Large clouds that fall in from large distances can still survive as they 

are not destroyed before reaching the survi v al region. 

gas mass correlating with X-ray gas mass (Pulido et al. 2018 ). One 

theory for the origin of the cold molecular gas is that the y dev elop 

from thermal instabilities triggered in the w ak es of cooling updrafts 

of radio bubbles that rise and lift low-entropy X-ray gas (McNamara 

et al. 2016 ). These form the cold filaments observed to trace the 

streamlines around and behind the bubbles, which should eventually 

decouple from the velocity structure of the hot flow and fall back 

towards the galaxy centre (Russell et al. 2019 ). 

A particularly interesting conundrum is the low observed velocities 

of the molecular gas measured by CO line emission in the Ata- 

cama Large Millimeter/submillimeter Array (ALMA) target systems 

(McNamara et al. 2014 ; Russell et al. 2016 , 2019 ; Pulido et al. 

2018 ). They are significantly smaller ( < 100 km s −1 ) than both stellar 

velocity dispersions (200–300 km s −1 ) and galaxy escape velocities 

( ∼1000 km s −1 ), implying that the molecular gas is tightly bound 

to the galaxy and should be expected to be infalling. Even initially 

outflowing gas should at some point stall and fall back inwards. 

These low velocities are puzzling as models of free-falling clouds 

in cluster potentials have estimated that they can be accelerated to 

hundreds of kilometres per second after falling just a few kpc (Lim 

et al. 2008 ; Russell et al. 2016 ). The large density contrast between 

the molecular gas and the hot background in the ICM means that ram 

pressure should do little to slow down these falling clouds, which 

would rapidly accelerate to high velocities. Small velocities would 

require the observed cold gas to have been falling gravitationally 

for only a short amount of time. While this could be explained if 

the infalling cold gas observed was mostly recently decoupled from 

the hot gas, there is no reason to suggest that this should be the 

case. Furthermore, the rapid acceleration means we should see steep 

velocity gradients in these filaments. Ho we v er, we observ e shallower 

velocity gradients that are inconsistent with free-fall (Russell et al. 

2016 , 2017 ). Some observations find that free-fall models can match 

observations in outer filaments, but break down for inner regions 

(Lim et al. 2008 ; Vantyghem et al. 2016 ). One caveat here is that 

increasing the spatial resolution of observations can reveal more 

complex spatial and velocity structures (Lim et al. 2008 ). Lastly, if 

the molecular gas was free-falling, we would expect to generally 

detect higher velocities at smaller radii, but there is no evidence 

for this. A large influx of cold gas implies that circumnuclear discs 

should be more common in comparison with filaments, while the 

opposite is observed (Russell et al. 2019 ). 

The conclusion then is that the picture of free-falling clouds fails to 

explain a large number of observations with regard to these filaments, 

which suggest that the infalling cold gas has to be slowed by some 

alternative process other than ram pressure drag. One possibility 

that has been previously proposed is that magnetic stresses slow the 

clouds’ descent, since it has been suggested that the cold filaments are 

significantly magnetically supported (Fabian et al. 2008 ). Ho we ver, 

the magnetic pressure that would be required to slow such a filament’s 

infall along its length requires a strong non-radial magnetic field 

component with β ∼ 0.1 (Russell et al. 2016 ). 

Our results suggest an alternative explanation that naturally 

addresses the abo v e issues. As noted abo v e, observations of the 

pre v alence of molecular gas are closely tied to systems with shorter 

cooling times. As shown in the previous section, the filamentary mass 

gro wth dri ven by turbulent mixing and cooling of these infalling cold 

filaments serve as a braking mechanism via accretion-induced drag. 

This can significantly reduce the acceleration of the cold gas when 

the cooling time of mixed gas is short. To illustrate this point, we 

compare our model to the free-fall model used in Lim et al. ( 2008 ) 

in their analysis of observed filaments in the cD galaxy NGC 1275 

(Perseus A – Per A) located in the Perseus cluster. For simplicity, 

we follow the approach of Lim et al. ( 2008 ) and adopt an analytic 

model of the mass density and gravitational potential of the form 

from Hernquist ( 1990 ). The mass density and gravitational potential 

as a function of radial distance are thus given by 

ρ( r) = 
M 

2 π

a 

r 

1 

( r + a) 3 
, (45) 

φ( r) = −
GM 

r + a 
, (46) 

where M is the total galactic mass, r is the radial distance, and a 

is a scale length. We also use the same values they deduce from 

luminosity observations of Smith, Heckman & Illingworth ( 1990 ) 

and an estimated mass to light ratio, with M = 8.3 × 10 11 M � and 

a = 6.8 kpc. We use the number density profile given in Churazov 

et al. ( 2003 ) for the Perseus cluster, which is mostly a constant n = 

4 × 10 −2 cm 
−3 below 30 kpc and adopt a constant temperature profile 

of T = 10 7 K. 

Fig. 19 shows the observational contours of velocity as a function 

of radial distance from the centre of Per A for the outer western 

filament as shown in fig. 10 of Lim et al. ( 2008 ). In Fig. 19 , 

we have also reproduced the free-fall trajectories used in Lim 

et al. ( 2008 ), where they include one for galactic masses of M = 

8.3 × 10 11 M �(M8b) and M = 3.4 × 10 11 M �(M3b), both starting 

from a radius of 8.5 kpc. The free-fall model that assumes the 

M = 8.3 × 10 11 M � mass deduced from luminosity observations 

is unable to produce a good fit to observations, and hence the mass 

needs to be tuned to M = 3.4 × 10 11 M � to fit a free-fall model 

to the observed contours. This tuning of mass and drop height is 

sensitive to both these factors, mainly due to the rapid acceleration 

by gravity in free-fall. In comparison, we show the same curve for 

M = 8.3 × 10 11 M � but using our model(M8c) (equations 1 –3 ) that 

includes the braking effect due to growth from mixing and cooling. 

This shows the trajectory for a cloud where r cl = 50 pc, assuming 

that L / r ∼ 100. We see that if the cloud initially falls from even a 

radial distance of 15 kpc, it matches the observations well without 

changing the galaxy mass. Clouds can thus fall from a further distance 

out than observed. It should be noted that the conditions here are on 
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Figure 19. Observed velocity contours of the outer western filament in Per A 

from Lim et al. ( 2008 ) are shown in purple. Ballistic trajectories are shown 

by the blue and orange lines for galactic masses of M = 8.3 × 10 11 M �
(as observed) and M = 3.4 × 10 11 M � (tuned to obtain the correct infall 

v elocities), respectiv ely. The red line shows the trajectory of a cloud in our 

model with a galactic mass of M = 8.3 × 10 11 M � but which is experiencing 

accretion drag. In the latter case, tuning of galactic mass is not necessary to 

explain observations. 

Figure 20. Observed velocity contours of the outer western filament in Per A 

from Lim et al. ( 2008 ) are shown in purple. Trajectories starting from different 

initial heights in our model are shown by the solid lines. Dashes lines show 

ballistic trajectories with the same starting point. The velocities we predict 

are much less sensitive to the initial drop height compared to the ballistic 

model. 

the boundary of the survi v al criterion from equation ( 30 ), due to its 

strong scaling with χ . 

In Fig. 20 , we show velocity trajectories for clouds dropped from 

v arious heights gi ven by solid lines, with the 8 kpc distance used 

as a lower bound. We find that even clouds that are dropped much 

further away do not accelerate as rapidly to high velocities as in 

the ballistic case. Ballistic trajectories for clouds dropped from the 

same heights are shown for comparison by the dashed lines, and can 

be seen to rapidly accelerate past observed velocities. On the other 

hand, the clouds in our model are slowed and stay within the range of 

observ ed v elocities for much longer times. Hence, we are much less 

sensitive to the exact distance at which the cold gas first begins to 

fall. Our results are consistent with the lower velocities and shallower 

velocity gradients observed relative to what would be expected from 

free-fall without requiring that the observed cold gas had only just 

recently cooled, or that magnetic drag from a strongly magnetized 

background must be present. In addition, the survi v al of cold gas 

and the filamentary morphology can also be naturally explained by 

cooling tails. 

6.3 Other implications 

We have found that it is more difficult for infalling cold material 

to survive, compared to their outflowing counterparts, which are 

eventually entrained and do not experience further shear forces 

thereafter. This conclusion has a range of wider implications that 

we will now touch on. 

Assuming isobaric conditions, our survi v al criterion is equi v alent 

to t cool, hot / t ff � 1 (equation 35 ), which is equi v alent to the criterion 

for linear thermal instability in a plane-parallel atmosphere. As 

previously remarked, this has the interesting implication that cold 

gas that forms via thermal instability should be able to survive infall, 

though this should be re-examined in a spherical potential, where the 

threshold for cold gas condensation changes, and t ff (and gravitational 

acceleration) vary with radius. This is an interesting avenue for future 

work. 

Our results imply that clouds that grow in mass when they fall 

should undergo accretion-induced braking, a prediction that can be 

tested in larger scale simulations with more realistic set-ups. Nelson 

et al. ( 2020 ) find an abundance of cold clouds of sizes 1 kpc and 

smaller around the circumgalactic medium (CGM) of ‘red and dead’ 

intermediate-redshift elliptical galaxies in the TNG50 simulation. 

These clouds are mostly infalling, with the radial velocity distribution 

peaking at just one-third of the virial v elocity. The y also find that 

the clouds are accreting and growing. They are long-li ved, survi ving 

for cosmological time-scales. This appears to be consistent with 

predictions from our model – that infalling cold clouds are growing 

and thus slowed to subvirial velocities. It would be interesting to 

directly compare growth times, t grow , and infall velocities, to see if 

the expectation v T ∼ gt grow is fulfilled. 

Similarly, our results will affect the dynamics of cosmic cold 

streams feeding galaxies at high- z (Kere ̌s et al. 2005 ; Dekel & 

Birnboim 2006 ). Thus f ar, Mandelk er et al. ( 2020 ) have found that 

the survi v al criterion for cold clouds seems to be able to translate 

relatively well to stream survi v al. 10 Ho we v er, in their studies the y 

used a constant hot gas velocity – similar to the outflowing cloud 

simulations – which implies that their shear declines rapidly in the 

simulation. Since in reality cosmic streams are also accelerated by 

gravity, the situation for streams is likely closer to the set-up studied 

here. This would imply that (a) an equi v alently more stringent 

survi v al criterion would apply to streams, and (b) their terminal 

v elocity is giv en by ∼gt grow . Indeed, unlike idealized simulations, 

cosmological simulations find that streams reach a roughly constant 

terminal velocity (Dekel et al. 2009 ; Goerdt & Ceverino 2015 ); a 

result that has not been quantitatively explained. These implications 

directly affect the cold gas mass supplied towards the inner galaxies 

in dark matter haloes 

Interestingly, coronal rain in our Sun is also observed to fall below 

free-fall velocities – on average falling with only ∼1/3–1/2 of the 

10 There is some contro v ersy re garding the destruction time-scale but for the 

rele v ant χ ∼ 100–1000 the different possibilities agree (cf. discussion in 

Bustard & Gronke 2022 ). 
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ballistic value (see review by Antolin & Froment 2022 ). While the 

temperatures and resulting o v erdensities are for coronal rain similar 

to what has mostly been considered here, the main difference is the 

strong magnetic field. Thus, most studies within the solar community 

have focused on magnetic fields as explanation of the slo wdo wn and 

it has in fact been shown (using mostly one- and two-dimensional 

simulations) that coronal rain can be efficiently decelerated due to 

a build-up of pressure in front of the cold cloud (Oliver et al. 2014 ; 

Mart ́ınez-G ́omez et al. 2020 ). Clearly, the magnetic fields do play a 

major role here and affect the dynamics. Ho we ver, it is note worthy 

that mass transfer can also lead to significant slo wdo wn. Plugging 

typical values found observationally ( n ∼ 10 11 cm 
−3 , T ∼ 2 × 10 4 , 

r ∼ 1 Mm, χ ∼ 100, g = 274 m s −2 ; Antolin & Froment 2022 ) into 

equation ( 25 ) yields v term, drag / v term, grow ∼ 0.45. Thus, the ‘accretion 

braking’ process described in this work might be another important 

drag force at play; an interesting avenue for future work. 

6.4 Further considerations 

While the model we have presented explores and captures the core 

physics at play, simplifications and assumptions have been made 

along the way. We discuss several considerations that could provide 

interesting avenues in order to expand and build on this model. 

6.4.1 Additional physics 

There are a number of physical processes whose impact and impor- 

tance we have not touched on in this work, but which could lead 

to complications and should be studied in future work. One such 

component is magnetic fields. Magnetic fields have been shown to 

significantly affect the morphology of clouds in both the wind tunnel 

and falling cloud set-ups, while their effect on mass growth is still 

uncertain (Grønnow et al. 2017 , 2022 ; Grønnow, Tepper-Garc ́ıa & 

Bland-Hawthorn 2018 ; Gronke & Oh 2020a ; Abruzzo et al. 2022 ). 

F or e xample, magnetic fields can suppress the Kelvin–Helmholtz 

instability, reducing mass entrainment rates (Ji, Oh & Masterson 

2019 ; Grønnow et al. 2022 ), although mass growth rates in some full 

cloud simulations appear minimally impacted (Gronke & Oh 2020a ). 

Another source of non-thermal physics that could be important to 

study in this context is cosmic rays (Armillotta, Ostriker & Jiang 

2022 ; Huang, Jiang & Davis 2022 ). Self-gravity has been found to 

matter for compact HVCs (Sander & Hensler 2021 ). We have also 

not included explicit viscosity and thermal conduction (although 

we point out that for turbulent mixing layers the mass transfer is 

generally dominated by turbulent diffusion; Tan et al. 2021 ). 

6.4.2 Initial cloud morphology 

There is some uncertainty regarding an appropriate choice for the 

initial structure of the cloud. A spherical cloud is clearly an idealized 

choice. Instead of a uniform density sphere, smoothly varying density 

and temperature profiles connecting the two phases have been used 

for more realism (Heitsch & Putman 2009 ; Kwak et al. 2011 ; Gritton, 

Shelton & Kwak 2014 ; Sander & Hensler 2021 ). Furthermore, 

Cooper et al. ( 2009 ) found that fractal clouds were destroyed faster 

as compared to uniform spheres due to more rapid cloud break- 

up. Schneider & Robertson ( 2017 ) similarly found that an initially 

turbulent structure within the cloud would enhance fragmentation 

and ultimately facilitate cloud destruction. Ho we v er, the abo v e are 

all concerned with cloud destruction, where the clouds are in a regime 

where the cloud is ultimately destroyed o v er time ( t cool, mix > t cc for 

wind tunnel set-ups). The importance of the initial cloud structure 

can thus be understood in the context that it determines how the cloud 

is destroyed as it fragments and breaks up. Ho we ver, if we are in the 

regime where one is concerned about cloud growth instead, then this 

dependence on the initial set-up seems to matter less. Gronke & Oh 

( 2020a ) found that in the regime of cloud growth, there was little 

difference in either the mass growth or velocity evolution between 

an initially turbulent or uniform cloud. In fact, the turbulent case 

actually grew slightly faster, since it had a larger surface area at the 

start. Still, this suggests that the initial morphological evolution of 

the sphere does have some dependence on the choice of the initial 

structure of the cold gas cloud. In terms of numerical values, this 

creates some amount of uncertainty in our model, in particular with 

regards to the initial values of the cloud surface area and its initial 

evolution, which Heitsch et al. ( 2022 ) refer to as the ‘burn-in’ phase. 

In our model, this uncertainty is folded in by calibrating a constant 

prefactor of order unity to the results from our simulations. It is 

possible that the precise value of this factor might vary depending 

on set-up and initial cloud structure. 

6.4.3 Temperature floor and self-shielding 

In our simulations, we have assumed a temperature floor of T ∼ 10 4 K. 

Ho we ver, it would be useful to understand the phase structure of cold 

neutral gas that provides an additional layer of structure to the clouds 

(Girichidis et al. 2021 ; Farber & Gronke 2022 ) and how this might 

impact cloud growth and dynamics. This is especially for comparison 

with observations, which often detect warm gas surrounding cold 

cores. On a related note, we have assumed that all our clouds are 

optically thin. Ho we ver, self-shielding could be important for the 

more massive clouds. 

6.4.4 Infall conditions 

We have assumed our clouds fall directly towards the disc. Ho we ver 

it is likely that most clouds will have some sort of rotational velocity 

component and hence fall inwards on some orbit trajectory. As 

mentioned in Heitsch & Putman ( 2009 ), this component is more 

akin to the wind tunnel set-ups since net acceleration is reduced. We 

have also assumed a quiescent background – realistic environments 

are likely subject to large-scale turbulence (Gronke et al. 2022 ). This 

could affect mixing rates or significantly lengthen infall times and 

introduce a large stochastic variability in the infall velocity, much 

the same way a leaf falling to the ground in a windy environment 

follows a much longer trajectory. How this might affect cloud growth 

and dynamics is a natural follow-up to this work. 

6.4.5 Metallicity 

We have assumed solar metallicity everywhere in both phases. 

Depending on the origin of the cold cloud, it is possible that 

the metallicity of the original cloud and the background differ 

significantly. Gritton et al. ( 2014 ) and Heitsch et al. ( 2022 ) have 

showed that there is significant mixing of metals in such a case, with 

important implications for observables. 

7  C O N C L U S I O N S  

The growth and survival of infalling cold clouds has received con- 

siderably less attention compared to their outflowing counterparts. 

While the two appear to be similar problems at first glance, they 
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have in fact a crucial difference between them, which is that infalling 

clouds continuously feel the force of gravity. This leads to very 

different dynamical evolution of the infalling clouds, and also a 

more stringent criterion for survi v al. Using 3D hydrodynamical 

simulations, we have studied the growth and survival of such clouds, 

considering both a constant background and a more realistic stratified 

background. We have also developed a model for the dynamical 

evolution of these clouds based on turbulent mixing layer theory, 

and shown that they are able to predict the results of the simulations. 

These also agree well with analytical estimates. Our main findings 

are as follows. 

(i) Not a wind tunnel . Infalling clouds do not correspond to wind 

tunnel set-ups, where the velocity shear is initially large and decreases 

as the cloud gets entrained. Instead, the velocity shear is initially 

small but increases as the cloud accelerates. This means that criteria 

such as t cool, mix < t cc for survi v al are not applicable. 

(ii) Modelling cloud growth . An important component determin- 

ing how fast the cloud grows is the surface area of the cloud. We find 

that A ∝ m 
5/6 . This is consistent with either a mix between surface 

and tail growth or a fractal surface area. Combining this with models 

of the inflow velocity allows us to model the growth time of the 

clouds, as given in equations ( 22 ) and ( 23 ). We can hence evolve 

equations ( 1 )–( 3 ) to model the evolution of cloud properties. 

(iii) Accretion drag . Clouds falling due to gravity can experience 

an alternative form of drag if they are growing via turbulent radiative 

mixing layers, since they are ef fecti vely accreting lo w-momentum 

gas. This drag is dominant o v er the usual ram pressure drag as the 

clouds develop long tails along the direction of infall. This leads to 

much lower predicted infall velocities compared to models that only 

consider ballistic trajectories or ram pressure drag. In particular, 

the terminal velocity v T ≈ gt grow , where t grow = m/ ̇m is given by 

equation ( 25 ) for subsonic infall. 

(iv) Relationship between speed and growth rates . The balance 

between gravity and growth results in v T / c s, hot ∼ t grow / t ff . That is, 

the ratio of the terminal velocity and the virial velocity is also the 

ratio of the growth time to the free-fall time. This is useful since 

infall velocities are measured observationally. The growth rate of 

the cloud can then be deduced. We expect subvirial velocities ( v T 
< c s, hot ) to be indicative of considerable mass growth ( t grow < t ff ) 

in clouds. Observed subvirial infall velocities are otherwise difficult 

to explain with existing models. In an isothermal atmosphere with 

constant gravity, we predict v T ≈ 0.6 c s, hot , independent of all other 

properties of the system, although convergence to this asymptotic 

velocity can be slow. 

(v) Criterion for cloud survival . The criterion for clouds to survive 

and grow is t grow < 4 t cc (equation 27 ). The most important factor in 

determining cloud survi v al is the cooling time. We find that the 

ratio of t grow / t cc is almost independent of cloud size (within a large 

practical range of parameter space). Hence, in order to survive and 

grow, clouds need only be within regions where densities/pressure 

are high enough such that cooling times are sufficiently short. For 

χ = 100, this criterion can be written as 

P > 3000 k B K cm 
−3 

( g 

10 −8 cm s −2 

)4 / 5 

. (47) 

(vi) Stratified backgrounds and cloud size . In stratified environ- 

ments, clouds that start their infall beyond such survi v al ‘zones’ 

can still survive provided they are not completely destroyed before 

reaching these zones. This fa v ours larger clouds that have longer 

cloud crushing times. Larger clouds are hence more likely to be 

observed at distances where the above criterion is not satisfied. 

In summary, we have identified a new mechanism for the deceler- 

ation of clouds that has not been considered in existing models, with 

important bearings on cloud survi v al, gro wth, and dynamics. We 

have presented a model for cloud growth (equations 1 –3 ), evolution 

(equations 22 and 23 ), and survi v al (equation 27 ) that agree well 

with simulations. These results can be applied to range of systems 

with infalling cold gas such as HVCs and clusters, and addresses 

important questions of survi v al, gro wth, and sub virial v elocities that 

have been highlighted by observations. Future work will refine this 

model with additional physics such as magnetic fields, cosmic rays, 

and self-shielding, as well as allowing the gas to cool down to lower 

temperatures. 
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