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SUMMARY

Sequencing errors continue to pose algorithmic challenges to methods working
with sequencing data. One of the simplest and most prevalent techniques for
ameliorating the detrimental effects of homopolymer expansion/contraction er-
rors present in long reads is homopolymer compression. It collapses runs of
repeated nucleotides, to remove some sequencing errors and improve mapping
sensitivity. Though our intuitive understanding justifies why homopolymer
compression works, it in no way implies that it is the best transformation that
can be done. In this paper, we explore if there are transformations that can be
applied in the same pre-processing manner as homopolymer compression that
would achieve better alignment sensitivity. We introduce a more general frame-
work than homopolymer compression, called mapping-friendly sequence reduc-
tions. We transform the reference and the reads using these reductions and
then apply an alignment algorithm. We demonstrate that some mapping-friendly
sequence reductions lead to improved mapping accuracy, outperforming homo-
polymer compression.

INTRODUCTION

Sequencing errors continue to pose algorithmic challenges to methods working with read data. In short-
read technologies, these tend to be substitution errors, but in long reads, these tend to be short insertions
and deletions; most common are expansions or contractions of homopolymers (i.e. reporting 3 As instead
of 4) (Dohm et al., 2020). Many algorithmic problems, such as alignment, become trivial if not for
sequencing errors (Gusfield, 1997). Error correction can often decrease the error rate but does not elimi-
nate all errors. Most tools therefore incorporate the uncertainty caused by errors into their underlying
algorithms. The higher the error rate, the more detrimental its effect on algorithm speed, memory, and
accuracy. While the sequencing error rate of any given technology tends to decrease over time, new tech-
nologies entering the market typically have high error rates (e.g. Oxford Nanopore Technologies). Finding
better ways to cope with sequencing error therefore remains a top priority in bioinformatics.

One of the simplest and most prevalent techniques for ameliorating the detrimental effects of homopol-
ymer expansion/contraction errors is homopolymer compression (HPC). HPC simply transforms runs of
the same nucleotide within a sequence into a single occurrence of that nucleotide. For example, HPC
applied to the sequence AAAGGTTA yields the sequence AGTA. To use HPC in an alignment algorithm,
one first compresses the reads and the reference, then aligns each compressed read to the compressed
reference, and finally reports all alignment locations, converted into the coordinate system of the uncom-
pressed reference. HPC effectively removes homopolymer expansion/contraction errors from the
downstream algorithm. Though there is a trade-off with specificity of the alignment (e.g. some of the
compressed alignments may not correspond to true alignments) the improvement in mapping sensitivity
usually outweighs it (Li, 2018).

The first use of HPC that we are aware of was in 2008 as a pre-processing step for 454 pyrosequencing data
in the Celera assembler (Miller et al., 2008). It is used by a wide range of error-correction algorithms, e.g. for
454 data (Bragg et al., 2012), PacBio data (Au et al., 2012), and Oxford Nanopore data (Sahlin and Medve-
dev, 2021). HPCis used in alignment, e.g. by the widely used minimap2 aligner (Li, 2018). HPC is also used in
long-read assembly, e.g. HiCanu (Nurk et al., 2020), SMARTdenovo (Liu et al., 2021), or mdBG (Ekim et al.,
2021). HPC is also used for clustering transcriptome reads according to gene family of origin (Sahlin and
Medvedev, 2020). Overall, HPC has been widely used, with demonstrated benefits.
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Though our intuitive understanding justifies why HPC works, it in no way implies that it is the best transfor-
mation that can be done. Are there transformations that can be applied in the same pre-processing way as
HPC that would achieve better alignment sensitivity? In this work, we define a more general notion which
we call mapping-friendly sequence reductions. In order to efficiently explore the performance of all reduc-
tions, we identify two heuristics to reduce the search space of reductions. We then identify a number of
mapping-friendly sequence reductions which are likely to yield better mapping performance than HPC.
We evaluate them using two mappers (minimap2 and winnowmap2) on three simulated datasets (whole
human genome, human centromere, and whole Drosophila genome). We show that some of these func-
tions provide vastly superior performance in terms of correctly placing high mapping quality reads,
compared to either HPC or using raw reads. For example, one function decreased the mapping error
rate of minimap2 by an order of magnitude over the entire human genome, keeping an identical fraction
of reads mapped.

We also evaluate whether HPC sensitivity gains continue to outweigh the specificity cost with the advent of
telomere-to-telomere assemblies (Nurk et al., 2022). These contain many more low-complexity and/or
repeated regions such as centromeres and telomeres. HPC may increase mapping ambiguity in these re-
gions by removing small, distinguishing, differences between repeat instances. Indeed, we find that neither
HPC nor our mapping-friendly sequence reductions perform better than mapping raw reads on centro-
meres, hinting at the importance of preserving all sequence information in repeated regions.

RESULTS

Streaming sequence reductions

We wish to extend the notion of homopolymer compression to a more general function while maintaining
its simplicity. What makes HPC simple is that it can be done in a streaming fashion over the sequence while
maintaining only a local context. The algorithm can be viewed simply as scanning a string from left to right
and, at each new character, outputting that character if and only if it is different from the previous character.
In order to prepare for generalizing this algorithm, let us define a function g"'"¢: 323U {e} where S is the
DNA alphabet, ¢ is the empty character, and

HPC xp i X #Ex
X1+ Xp) = . .
g x) {e if X1 =x
Now, we can view HPC as sliding a window of size 2 over the sequence and at each new window, applying
g""C to the window and concatenating the output to the growing compressed string. Formally, let x be a
string, which we index starting from 1. Then, the HPC transformation is defined as

f(x) = x[1,£ = 1]-g(x[1,£])+g(x[2,£ + 1])---g(x[|x| — € + 1,|x]]) (Equation 1)

where ¢ = 2and g = g""C. In other words, fis the concatenation of the first ¢ — 1 characters of x and the
sequence of outputs of g applied to a sliding window of length 2 over x. The core of the transformation is
given by g and the size of the context £, and fis simply the wrapper for g so that the transformation can be
applied to arbitrary length strings.

With this view in mind, we can generalize HPC while keeping its simplicity by 1) considering different func-
tions g that can be plugged into Equations 1 and 2) increasing the context that g uses (i.e. setting 2> 2).
Formally, for a given alphabet = and a context size ¢, a function T mapping strings to strings is said to
be an order- streaming sequence reduction (SSR) if there exists some g: S*—>2U{e} such that T = f.

Figure 1A shows how an SSR can be visualized as a directed graph. Observe that an order-2 SSR is defined
by a mapping between |Z|* inputs and |2+ 1 outputs. For example, for & = 2, there are n = 16 inputs and
k = 5 outputs. Figure 1B visualizes HPC in this way

Since we aim to use SSRs in the context of sequencing data, we need to place additional restrictions on how
they handle reverse complements. For example, given two strings x (e.g. a read) and y (e.g. a substring of
the reference), a mapper might check if x = RC(y). When strings are pre-processed using an SSR f, it will
end up checkingif f(x) = RC(f(y)). However, x = RC(y) only implies that f(x) = f(RC(y)). In order to have
italsoimply that f(x) = RC(f(y)), we need fto be commutative with RC, i.e. applying SSR then RC needs to
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Figure 1. Representing and counting streaming sequence reductions

(A) General representation of an order-2 streaming sequence reduction as a mapping of 16 input dinucleotides, to the 4 nucleotide outputs and the empty
character ¢.

(
pair. The 4 dinucleotides that are the two same nucleotides map to the empty character e.

(C) Our RC-core-insensitive order-2 SSRs are mappings of the 6 representative dinucleotide inputs to the 4 nucleotide outputs and the empty character e.
The 4 dinucleotides that are their own reverse complement are always mapped to e. The remaining 6 dinucleotides are mapped to the complement of the

@

) Homopolymer compression is an order-2 SSR. All dinucleotides except those that contain the same nucleotide twice map to the second nucleotide of the

@)

mapped output of the reverse complement dinucleotide input. For example, if AA is mapped to C, then TT (the reverse complement of AA) will be mapped
to G (the complement of C).

(D) Number of possible SSR mappings under the different restrictions presented in the main text. All mappings from 16 dinucleotide inputs to 5 outputs (as in
panel A) are represented by the outermost circle. All RC-core-insensitive mappings (as in panel C) are represented by the medium circle. All RC-core-

)

insensitive mappings with only one representative of each equivalence class are represented by the innermost circle.

be equivalent to applying RC then SSR. We say that fis RC insensitive if for all x, f(RC(x)) = RC(f(x)).
Observe that HPC is RC insensitive.

Restricting the space of streaming sequence reductions

To discover SSRs that improve mapping performance, our strategy is to put them all to the test by evalu-
ating the results of an actual mapping software over a simulated test dataset reduced by each SSR. How-
ever, even with only 16 inputs and 5 outputs, the number of possible g mappings for order-2 SSRs is 50 =
1.5+10"", which is prohibitive to enumerate. In this section, we describe two ideas for reducing the space of
SSRs that we will test. In subsection reverse complement-core-insensitive streaming sequence reductions,
we show how the restriction to RC-insensitive mappings can be used to reduce the search space. In sub-
section equivalence classes of SSRs, we exploit the natural symmetry that arises due to Watson-Crick com-
plements to further restrict the search space.

These restrictions reduce the number of order-2 SSRs to only 2135, making it feasible to test all of them.
Figure 1D shows an overview of our restriction process.

Reverse complement-core-insensitive streaming sequence reductions

Consider an SSR defined by a function g, as in Equation 1. Throughout this paper, we will consider SSRs that
have a related but weaker property than RC-insensitive. We say that an SSR is RC-core-insensitive if the
function g that defines it has the property that for every -mer x and its reverse complement y, we have
that either g(x) is the reverse complement of g(y) or g(x) = g(y) = e. We will restrict our SSR search space
to RC-core-insensitive reductions in order to reduce the number of SSRs we will need to test.

Let us consider what this means for the case of & = 2, which will be the focal point of our experimental anal-
ysis. There are 16 &-mers (i.e. dinucleotides) in total. Four of them are their own reverse complement: AT,
TA, GC, and CG. The RC-core-insensitive restriction forces g to map each of these to ¢, since a single nucle-
otide output cannot be its own reverse complement. This leaves 12 2-mers, which can be broken down into
6 pairs of reverse complements. For each pair, we can order them in lexicographical order and write them
as (AA,TT),(AC,GT),(AG,CT),(CA,TG),(CC,GG), and (GA,TC). Defining g can then be done by
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assigning an output nucleotide to the first &-mer in each of these pairs and then assigning the complemen-
tary output nucleotide to the second 2-mer of each pair (Figure 1C). For example, we can define an SSR by
assigning g(AA) = C, g(AC) = C, g(AG) = A g(CA) = A g(CC) = T, and g(GA) = G (implying that
g(TT) = G,g(GT) = G, g(CT) = T,...). Asan example, let us apply the corresponding SSR to an example
read r:

r = TAAGTTGA  f(RC(r)) TCACCTG
f(ry = TCAGGTG  RC(f(r)) = CACCTGA
RC(r) = TCAACTTA

Observe that the first — 1 nucleotides of r (shown in red) are copied as-is, since we do not apply g on them
(as per Equation 1). As we see in this example, this implies that f(RC(r)) is not necessarily equal to RC(f(r));
thus an RC-core-insensitive SSR is not necessarily an RC-insensitive SSR. However, an RC-core-insensitive
SSR has the property that for all strings r, we have f(RC(r))[%,|r]]) = RC(f(r))[1,]r] — 2 +1]. In other words,
if we drop the £ — 1 prefix of f(RC(r)) and the & — 1 suffix of RC(f(r)), then the two strings are equal.
Though we no longer have the strict RC-insensitive property, this new property suffices for the purpose
of mapping long reads. Since the length of the read sequences will be much greater than ¢ (in our results
we will only use = 2), having a mismatch in the first or last nucleotide will be practically inconsequential.

It is important to note though that there may be other RC-insensitive functions not generated by this con-
struction. For instance, HPC cannot be derived using this method (as it does not map the dinucleotides AT,
TA, GC, and CG to ¢), and yet it is RC insensitive.

We can count the number of RC-core-insensitive SSR. Let us define i(2) the number of input assignments
necessary to fully determine the RC-core-insensitive SSR; one can think of this as the degrees-of-freedom
in choosing g. As we showed, for 2 = 2, we have i(2) = 6. The number of RC-core-insensitive SSR is then
519, Therefore, for @ = 2, instead of 5'® possible mappings, we have at most 5¢=1.5-10% RC-core-insen-
sitive mappings (Figure 1D). For an odd 2 > 2, there are no 2-mers that are their own reverse complements,
hence i(R) = 4%/2.1fQis even, then there are 4¥2 inputs that are their own reverse complements (i.e. we take
all possible sequences of length /2 and reconstruct the other half with reverse complements). Thus, i(2) =
(4% — 4Y2)/2.

Equivalence classes of SSRs

Non-mapping-related preliminary tests led us to hypothesize that swapping A«<> T and/or C+ G, as well as
swapping the whole A/T pair with the C/G pair in the SSR outputs would have a negligible effect on
performance. In other words, we could exchange the letters of the output in a way that preserves the
Watson-Crick complementary relation. Intuitively, this can be due to the symmetry induced by reverse com-
plements in nucleic acid strands, though we do not have a more rigorous explanation for this effect. In this
section, we will formalize this observation by defining the notion of SSR equivalence. This will reduce the
space of SSRs that we will need to consider by allowing us to evaluate only one SSR from each equivalence
class.

Consider an RC-core-insensitive SSR defined by a function g, as in Equation 1. An 2-mer is canonical if it is
not lexicographically larger than its reverse complement. Let | be the set of all &-mers that are canonical.
Such an SSR's dimension k is the number of distinct nucleotides that can be output by g on inputs from |
(not counting ¢€). The dimension can range from 1 to 4. Next, observe that g maps all elements of | to
one of k+1 values (i.e. ZU¢). The output of g on &-mers not in | is determined by its output on 2-mers in
I, since we assume the SSR is RC-core-insensitive. We can therefore view it as a partition of [ into k+ 1
sets Sp, ..., Sk, and then having a function t that is an injection from {1, ..., k} to = that assigns an output
letter to each partition. Furthermore, we permanently assign the output letter for Sp to be e. Note that while
So could be empty, Sy, ..., S¢ cannot be empty by definition of dimension. For example, the SSR used in Sec-
tion reverse complement-core-insensitive streaming sequence reductions has dimension four and corre-
sponds to the partition So = {},S1 = {AG,CA}, S; = {CC}, S3 = {AA AC}, and Sy = {GA}, and to
the injection t(1) = A, t(2) = T,t(3) = C,and t(4) = G.

Let ISCOMP(x, y) be a function that returns true if two nucleotides x,y € SU{e} are Watson-Crick comple-

ments, and false otherwise. Consider two SSRs of dimension k defined by So, ..., S, tand Sp,...,S,,t’, respec-
tively. We say that they are equivalent if all the following conditions are met:
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Figure 2. SSR equivalence classes for a fixed partition of the inputs

ISCOMP(t(i), t(j)) = true. The equivalence classes are determined by the Watson-Crick complementary relationships
between the rest of the parts, i.e. by all the possible ways to draw the blue links.

e S5y = S,
e there exists a permutation 7 of {1,...,k} such that forall 1 <i<k,we have §; = & ()

e forall 1 <i<j<k, we have ISCOMP(t(i),t(j)) = ISCOMP(t'(w(i)),t (x(j))).

One can verify that this definition is indeed an equivalence relation, i.e. it is reflexive, symmetric, and tran-
sitive. Therefore, we can partition the set of all SSRs into equivalence classes based on this equivalence
relation. One caveat is that a single SSR defined by a function g may correspond to multiple SSRs of the
form So, ..., S, t. However, these multiple SSRs are equivalent; hence, the resulting equivalence classes
are not affected. Furthermore, we can assume that there is some rule to pick one representative SSR for
its equivalence class; the rule itself does not matter in our case.

Figure 2 shows the equivalence classes for & = 2, for a fixed partition. An equivalence class can be defined
by which pair of classes S; and S; have complementary outputs under tand t'. Let us define o(k) as the num-
ber of equivalence classes for a given partition and a given k. Then Figure 2 shows thato(1) = 1,0(2) = 2,
and o(3) = o(4) = 3. There are thus only 9 equivalence classes for a given partition.

Counting the number of restricted SSRs

In this section, we derive a formula for the number of restricted SSRs, i.e. SSRs that are RC-core-insensitive
and that are representative for their equivalence class. Consider the class of RC-core-insensitive SSRs with
dimension k. In subsection reverse complement-core-insensitive streaming sequence reductions, we
derived that the degrees-of-freedom in assigning 2-mers to an output is i(2) = 4*/2 if ¢ is odd and i(?) =
(4% —4%2)/2 if L is even. Let C(2, k) be the number of ways that i(2) &-mers can be partitioned into k + 1
sets So, ..., Sk, with Sy, ..., S, required to be non-empty. Then, in subsection equivalence classes of SSRs,
we have derived o(k), the number of SSR equivalence classes for each such partition. The number of
restricted SSRs can then be written as

4
N(e) = > C(e,k)-o(k) (Equation 2)
k=1
To derive the formula for C(, k), we first recall that the number of ways to partition n elements into k non-

empty sets is known as the Stirling number of the second kind and is denoted by { z } (Graham et al., 1994,

p.265). It can be computed using the formula

{Z} - %é(—ﬂ’(ff)(k_ i’

Let jbe the number of the i(2) &-mers that are assigned to So. Note, this does not include the 2-mers that are
self-complementary that are forced to be in So. Let C(&, k, j) be the number of ways that i(2) 2-mers can be
partitioned into k+ 1 sets Sp,..., Sk, such that j of the &-mers go into |Sp| and S, ..., S¢ to are non-empty. We
need to consider several cases depending on the value of j:

e In the case that j = 0, we are partitioning the i(2) inputs among non-empty sets S, ..., S¢. Then

C@kj) = {L(’Z)}.
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Figure 3. lllustration of how a respective mapq threshold is chosen for each of our evaluated SSRs

The orange dot labeled "mapq = 60” shows the mapping error rate and fraction of reads mapped for HPC at mapq
threshold 60. Anything below and to the right of this point is strictly better than HPC at mapg = 60, i.e. it has both a lower
mapping error rate and higher fraction of reads mapped. If an evaluated SSR does not pass through this region, then it is
discarded from further consideration. In the figure, the blue SSR does pass through this region, indicating that it is better
than HPC at mapgq = 60. We identify the leftmost point (marked as a blue dot) and use the mapq threshold at that point as
the respective threshold.

® In the case that 1 <j<i() — k, there are (]I(Q)> ways to choose which j &-mers are in Sy, and

{L(Q)_j} ways to partition the remaining fmers into Si, ..., S. Hence, C(&k,j) =
i Ji©) —j
j k '
e Inthecasethatj>i(R) — k, itisimpossible to partition the remaining k (or fewer) &-mersinto Sy, ..., S¢

such that the sets are non-empty. Recall that as we assume the dimension is k, each set must contain
at least one element. Hence, C(¢,k,j) = 0.

Putting this together into Equation 2, we get

NGE) = éo(k)({;}f)}Jr f<wz1k<]g<e>){ﬁf> - f})

iz
For® = 2, we have N(2) = 2135restricted SSRs, which is several orders of magnitude smaller than the initial
5'¢ possible SSRs and allows us to test the performance of all of them. For order-3 SSRs, we get N(3) = 2.9+
10%" which is much smaller than the full search space of 54 =5.4.10%; for order-4 SSRs, we get a similar
reduction in search space with N(4) = 9.4-108 as opposed to the full search space of 5% =8.6+10'78. For
these higher order SSRs, although the restricted search space is much smaller than the full original one,
it is still too large to exhaustively search.

Selection of mapping-friendly sequence reductions

We selected a set of “promising” SSRs starting from all of the 2135 SSRs enumerated in Section restricting
the space of streaming sequence reductions, that we call mapping-friendly sequence reductions (MSR).
The selection was performed on a 0.5x coverage read set, simulated from a whole human genome assem-
bly (Nurk et al., 2022). The transformed reads were mapped to the transformed reference using minimap2
andpaftoolsmapeval (Li, 2018) was used to compute a mapping error rate. Note that overfitting SSRs to
a particular genome is acceptable in applications where a custom SSR can be used for each genome. Yet in
this work, the same set of selected SSR will be used across all genomes.

6 iScience 25, 105305, November 18, 2022
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Figure 4. Graph representations of our highlighted MSRs: MSRg, MSRg, and MSRp
MSRE has the lowest mapping error rate of among MSRs at the highest mapgq threshold for which it performs better than
HPC at mapq 60, MSRE has the highest fraction of reads mapped at mapqg 60 and MSRp has the highest percentage of

mapq thresholds for which it outperforms HPC at mapq 60. The grayed out nodes represent the reverse complement of
input dinucleotides and outputs, as in Figure 1C. For example for MSRg, AA is mapped to T, so TT is mapped to A.

For each evaluated SSR, we selected, if it exists, the highest mapq threshold for which the mapped read
fraction is higher and the mapping error rate is lower than HPC at mapq 60 (0.93 and 2.1-10~ 3, respectively),
Figure 3illustrates the idea. Then, we identified the 20 SSRs that have the highest fraction of reads mapped
at their respective thresholds. Similarly, we identified the 20 SSRs with the lowest mapping error rate.
Finally, we select the 20 SSRs that have the highest percentage of thresholds “better” than HPC at
mapq é0; i.e. the number of mapq thresholds for which the SSR has both a higher fraction of reads mapped
and lower mapping error rate than HPC at a mapq threshold of 60, divided by the total number of thresh-
olds (=60).

The union of these 3 sets of 20 SSRs resulted in a set of 58 “promising” MSRs. Furthermore, we will highlight
three MSRs that are “best in their category”, i.e.

® MSRg: The MSR with the highest fraction of mapped reads at a mapq threshold of 0.
® MSRg: The MSR with the lowest mapping error rate at its respective mapgq threshold.

e MSRp: The MSR with the highest percentage of mapq thresholds for which it is “better” than HPC at
mapq 60.

Figure 4 shows the actual functions MSRg, MSRg, and MSRp. An intriguing property is that they output pre-
dominantly As and Ts, with MSRp assigning only 2 input pairs to the G/C output whereas MSRg and MSRg
assign only one. Additionally, MSRe and MSRp both assign the {CC,GG} input pair to the deletion output €
removing any information corresponding to repetitions of either G or C from the reduced sequence. Over-
all, this means the reduced sequences are much more AT-rich than their raw counterparts, but somehow
information pertinent to mapping is retained.

The 58 selected MSRs, as well as HPC and the identity transformation (denoted as raw), were then evalu-
ated on larger read-sets simulated from 3 whole genome references: a whole human genome assembly
(Nurk et al., 2022), awhole Drosophila melanogaster genome assembly (Adams et al., 2000), and a synthetic
centromeric sequence (Mikheenko et al., 2020) (see STAR methods for more details).

Mapping-friendly sequence reductions lead to lower mapping errors on whole genomes

Across the entire human genome, at high mapping quality thresholds (above 50), our selected 58 MSRs
generally have lower mapping error rate than HPC and raw (Figure 5A and Table 1). This is not surprising,

iScience 25, 105305, November 18, 2022 7
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(repeated regions) sequence
1e-01+ 1e-011 1e-01+
i b Function
= type:
2 g 1e-02+ yp
- b 1e-02+ —o= HPC
% 1e-03F  MSR: ' MSRe o raw
o MSR, Te-03 ¢ MSR: MSR
= = 1 MS
g : MSRe . 1e-031 >~ MSRE
04+ MSR 3 -~ MSRF
2 je05t le-041 ysr, MSRe
3 MSR P
a 1e-051 1e-041
0.900 0.925 0.950 0.975 1.000 05 06 07 08 09 1.0 0.900 0.925 0.950 0.975 1.000

Fraction of reads mapped

Figure 5. Performance of our 58 selected mapping-friendly sequence reductions across genomes on reads simulated by nanosim

(Panel A) shows the whole human genome assembly,

(B and C) the subset of mapped reads from panel B that originate from repetitive regions, and C) the “TandemTools" synthetic centromeric reference
sequence. We highlighted the best-performing mapping-friendly sequence reductions as MSR E, F, and P, respectively, in terms of cumulative mapeval
mapping error rate, fraction of reads mapped, and percentage of better thresholds than HPC. Each point on a line represents, from left to right, the

mapping quality thresholds 60, 50, 40, 30, 20, 10, and 0. For the first point of each line, only reads of mapping quality 60 are considered, and the y value
represents the rate of these reads that are not correctly mapped, the x value represents the fraction of reads that are mapped at this threshold. The next
point is computed for all reads of mapping quality > 50, etc. The rightmost point on any curve represents the mapping error rate and the fraction of
mapped reads for all primary alignments. The x-axes are clipped for lower mapped read fractions to better differentiate HPC, raw and MSRs E, F, and P.
See Also Figure S7.

as we selected those MSRs partly on the criteria of outperforming HPC at mapq 60; however, it does
demonstrate that we did not overfit to the simulated reads used to select the MSRs.

Mapping quality is only an indication from the aligner to estimate whether a read mapping is correct, and
according to Figure 5A, the mapping error rate of most MSRs is low even for mapping qualities lower than
60. Therefore, we choose to compare MSR-mapped reads with lower mapping qualities against raw or
HPC-mapped reads with the highest (60) mapping quality (which is the mapping quality thresholds most
practitioners would use by default).

Table 1 shows that the three selected MSRs outperform both HPC and raw in terms of mapping error rate,
with similar fractions of mapped reads overall. For example, on the human genome, at mapg > 50, MSRg,
MSRp, and MSRg all map more reads than either HPC or raw at mapq = 60, and MSRp and MSR¢ also have
mapping error rates an order of magnitude lower than either HPC or raw.

Table 1. Performance of MSRs, HPC, and raw mappings across different mappers and reference sequences

Whole human genome Whole human genome Whole Drosophila genome
minimap2 winnowmap2 minimap2
mapq Fraction error fraction error fraction error
HPC 60 0.935 +0% 1.85e-03 +0% 0.894 +0% 1.43e-03 +0% 0.957 +0% 2.27e-03 +0%
raw 60 0.921 —1% 1.86e-03 +0% 0.932 +4% 1.75e-03 +23% 0.958 +0% 2.27e-03 —0%
MSRE 50 0.938 +0% 1.29e-03 —30% 0.886 —-1% 3.82e-04 —73% 0.960 +0% 1.37e-03 —39%
MSRe 50 0.936 +0% 1.17e-04 —94% 0.820 —8% 8.93e-05 —94% 0.954 —0% 0 —100%
MSRp 50 0.938 +0% 4.15e-04 —78% 0.845 —6% 1.14e-04 —-92% 0.957 +0% 8.11e-04 —64%

For each reference sequence and mapper pair, we report the fraction of reads mapped (“fraction” columns) and the mapping error rate (“error” columns) re-
ported by paftools mapeval. The percentage differences are computed w.r.t the respective HPC value. The second column indicates that for HPC and
raw these metrics were obtained for alignments of mapping quality of 60; for MSRs E, F, and P, these metrics were obtained for alignments of mapping quality
> 50. See also Table ST.
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To evaluate the robustness of MSRs E, F, and P, we investigated the impact of mapping to a different or-
ganism or using another mapper. To this effect, we repeated the evaluation pipeline in these different
settings:

e Using the Drosophila melanogaster whole genome assembly as reference and mapping withmini-
map2.

e Using the whole human genome assembly as reference but mapping with winnowmap2 (version
2.02) (Jain et al., 2020). The same options as minimap?2 were used, and k-mers were counted using
meryl (Rhie et al., 2020), considering the top 0.02% as repetitive (as suggested by the winnowmap2
usage guide).

MSRs E, F, and P behave very similarly in both of these contexts compared to HPC/raw: by selecting map-
ped reads with mapg > 50 for the three MSRs, we obtain a similar fraction of mapped reads with much
lower mapping error rates (Table 1). A noticeable exception is the winnowmap2 experiment, where a larger
fraction of raw reads are mapped than any other MSR and even HPC. A more detailed result table can be
foundin Table S1, and a graph of MSR performance on the whole Drosophila genome in Figure S7. As Fig-
ure S7 shows, we also evaluated these MSRs on a whole Escherichia coli (GenBank: U00096.2 (Blattner et al.,
1997)) genome, where we observed similar results, albeit the best MSRs do not seem to be one of our three
candidates. This might mean that specific MSRs are more suited to particular types of genomes.

Mapping-friendly sequence reductions increase mapping quality on repeated regions of the
human genome

To evaluate the performance of our MSRs specifically on repeats, we extracted the reads for which the
generating region overlapped with the repeated region of the whole human genome by more than 50%
of the read length. We then evaluated the MSRs on these reads only. Repeated regions were obtained
from https://t2t.gi.ucsc.edu/chm13/hub/t2t-chm13-v1.1/rmsk/rmsk.bigBed.

We obtained similar results as on the whole human genome, with MSRs E, F, and P performing better than
HPC at mapq 50 (Figure 5B). At a mapq threshold of 50, the mapping error rate is 53%, 31%, and 39% lower
than HPC at mapq 60 for MSRs E, F, and P, respectively, while the fraction of mapped reads remains slightly
higher. At mapq = 60, raw has a mapping error rate 40% lower than HPC but the mapped fraction is also
17% lower.

Raw mapping improves upon HPC on centromeric regions

On the "TandemTools"” centromeric reference, HPC consistently maps a smaller fraction of reads than raw,
across all mapping quality thresholds (Figure 5C). Additionally, the mapping error rate for raw is often infe-
rior to that of HPC. The same is true for our selected MSRs: most of them have comparable performance to
HPC, but none of them outperform raw mapping (Figure 5C).

We conjecture this is due to the highly repetitive nature of centromeres. HPC likely removes small unique
repetitions in the reads and the reference that might allow mappers to better match reads to a particular
occurrence in a centromeric pattern. Mapping raw reads on the other hand preserves all bases in the read
and better differentiates repeats. Therefore, it seems inadvisable to use HPC when mapping reads to high-
ly repetitive regions of a genome, such as a centromere.

Positions of incorrectly mapped reads across the entire human genome

To study how MSRs E, F, and P improve over HPC and raw mapping in terms of mapping error rate on the
human genome, we selected all the primary alignments that paftools mapeval reported as incorrectly
mapped. For HPC and raw, only alignments of mapping quality equal to 60 were considered. To report a
comparable fraction of aligned reads, we selected alignments of mapping quality > 50 for MSRs. We then
reported the origin of those incorrectly mapped reads on whole human genome reference, shown per-
chromosome in Figure 6.

We observe that erroneously mapped reads are not only those from centromeres but also originate from
many other genomic regions. MSRs E and P have a markedly lower number of these incorrect mappings
than either HPC or raw, with 1118 incorrect mappings for raw mappings and 1130 for HPC as opposed
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Figure 6. Histogram of the original simulated positions for the incorrectly mapped reads using minimap2 at high mapping qualities across the
whole human genome, for several transformation methods
For a given chromosome, each row represents the number of simulated reads starting at that particular region. The dark gray rectangle represents the

position of the centromere for that chromosome, obtained from annotations provided by the T2T consortium (http://t2t.gi.ucsc.edu/chm13/hub/t2t-chm13-
v1.1/). Similarly, for chromosomes 13, 14, 15, 21, and 22, a lighter gray rectangle represents the position of the “stalk” satellites also containing repetitive

regions. For HPC and raw reads only alignments of mapping quality 60 were considered. To provide a fair comparison, alignments with mapping qualities >
50 were considered for MSRs E, F, and P. See also Figures S1-S5.

to 549, 970, and 361 for MSRs E, F, and P, respectively. This stays true even for difficult regions of the
genome such as chromosome X, where raw and HPC have 70 incorrect mappings as opposed MSRs E

and P that have 39 and 27 errors, respectively.

We also investigated where all simulated reads were mapped on the whole human genome assembly, for
raw, HPC, and MSRs E,F, and P in Figures S2-S6. The correctly mapped reads are, as expected, evenly
distributed along each chromosome. The incorrectly mapped reads are however unevenly distributed.
For most chromosomes, there is a sharp peak in the distribution of incorrectly mapped reads, located at
the position of the centromere. For the acrocentric chromosomes, there is a second peak corresponding
to the “stalk” satellite region, with an enrichment of incorrectly mapped reads. This is expected since both
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centromeres and “stalks” are repetitive regions which are a challenge for mapping. For chromosomes 1, 9,
and 16, however the majority of incorrectly mapped reads originate in repeated regions just after the
centromere.

DISCUSSION

We have introduced the concept of mapping-friendly sequence reduction and shown that it improves the
accuracy of the popular mapping tool minimap2 on simulated Oxford Nanopore long reads.

We focused on reads with high mapping quality (50-60), as it is a common practice to disregard reads with
low mapping quality (Prodanov and Bansal, 2020; Li, 2021; Li et al., 2018). However, across all mapped reads
(mapg > 0), HPC and our MSRs have lower mapping accuracies than raw reads, consistent with the recom-
mendation made in minimap2 to not apply HPC to ONT data. Despite this, we newly show the benefit of
using HPC (and our MSRs) with minimap2 on ONT data when focusing on high mapping quality reads.
Furthermore, MSRs provide a higher fraction of high-mapq reads compared to both raw and HPC, as shown
on the human and Drosophila genomes.

A natural future direction is to also test whether our MSRs perform well on mapping Pacific Biosciences long
reads. Furthermore, it is important to highlight that our sampling of MSRs is incomplete. This is of course
due to only looking at functions having | = 2, but also to the operational definition of RC-core-insensitive
functions, and finally to taking representatives of equivalence classes. An interesting future direction would
consist in exploring other families of MSRs, especially those that would include HPC and/or close variations
of it.

Additionally, our analyses suggests to not perform HPC on centromeres and other repeated regions, hint-
ing at applying sequence transformations to only some parts of the genomes. We leave this direction for
future work.

Limitations of the study

Our proposed MSRs improve upon HPC at mapq 60, both in terms of fraction of reads mapped and map-
ping error rate on whole human, Drosophila melanogaster, and Escherichia coli genomes. We chose these
sequences because they were from organisms that we deemed different enough; however, it would be
interesting to verify if our proposed MSRs are still advantageous on even more organisms, e.g. more bac-
terial or viral genomes. This would allow us to assess the generalizability of our proposed MSRs.

We made the choice of using simulated data to be able to compute a mapping error rate. Some metrics,
such as fraction of reads mapped, might still be informative with regards to the mapping performance ben-
efits of MSRs, even on real data. Evaluating the MSRs on real data might be more challenging but would
offer insight into real-world usage of such pre-processing transformations.

The hypothesis we made in subsection equivalence classes of SSRs was derived from non-mapping-related
tests; it helped us reduce the search space and find MSRs. Testing if this hypothesis holds true on mapping
tasks would help us make sure we are not missing some potentially well-performing SSRs by discarding
them at this stage.

Finally, the restrictions we imposed to define RC-core-insensitive MSRs though intuitively understandable
are somewhat arbitrary, so exploring a larger search space might be beneficial. Alternatively, for higher or-
der MSRs, even with our restrictions, the search spaces remain much too large to be explored exhaustively.
To mitigate this problem, either further restrictions need to be found, or an alternative, optimization-based
exploration method should be implemented.
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REAGENT or RESOURCE

SOURCE

IDENTIFIER

Deposited data

T2T CHM13 v1.1, whole human
genome assembly

Release 6 plus ISO1 MT, whole drosophila

melanogaster genome assembly

Synthetic centrormeric sequence

Escherichia coli str. K-12 substr.
MG1655, complete genome
Coordinates of repeated regions of the

CHM13 whole genome assembly

(Nurk et al., 2022)

(Adams et al., 2000)

(Mikheenko et al., 2020)

(Blattner et al., 1997)

Telomere to Telomere consortium

GenBank: GCA_009914755.3

GenBank: GCA_000001215.4
https://github.com/ablab/TandemTools/
blob/master/test_data/simulated_del.fasta

GenBank: U00096.2

https://t2t.gi.ucsc.edu/chm13/hub/t2t-
chm13-v1.1/rmsk/rmsk.bigBed

Software and algorithms

minimap2 v2.22-r1101
Winnowmap v2.0
NanoSim v3.0.0
Bedtools v2.30.0
Meryl v1.0

Analysis pipelines

(Li, 2018)

(Jain et al., 2020)

(Yang et al., 2017)

(Quinlan and Hall et al., 2010)
(Rhie et al., 2020)

This paper

https://github.com/Ih3/minimap2
https://github.com/marbl/Winnowmap
https://github.com/bcgsc/NanoSim
https://github.com/arg5x/bedtools2
https://github.com/marbl/Winnowmap
https://doi.org/10.5281/zenodo.6859636

RESOURCE AVAILABILITY
Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-
tact, Rayan Chikhi (rayan.chikhi@pasteur.fr)

Materials availability

This study did not generate new unique reagents.

Data and code availability
This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in

the key resources table.

All original code has been deposited at a github backed zenodo repository and is publicly available as of
the date of publication. DOlIs are listed in the key resources table, and the backing github repository is
available at github.com/lucblassel/MSR_discovery.

Any additional information required to reanalyze the data reported in this paper is available from the lead
contact upon request.

METHOD DETAILS
Datasets

The following three reference sequences were used for evaluation:

Whole human genome

This reference sequence is a whole genome assembly of the CHM13hTERT human cell line by the
Telomere-to-Telomere consortium (Nurk et al., 2022). We used the 1.1 assembly release (Genbank Assem-
bly ID: GCA_009914755.3).
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Whole Drosophila genome

This reference sequence is a whole genome assembly of a Drosophila melanogaster, release 6.35 (Genbank
Assembly ID: GCA_000001215.4) (Adams et al., 2000).

Synthetic centromeric sequence

This sequence was obtained from the TandemToo1ls mapper test data (Mikheenko et al., 2020). It is a simu-
lated centromeric sequence that is inherently difficult to map reads to. Document S1 describes how it was
constructed, and it is downloadable from https://github.com/lucblassel/TandemTools/blob/master/test
data/simulated_del.fasta.

Simulation pipeline

Given a reference sequence, simulated reads were obtained using nanosim (Yang et al., 2017) with the
human_NA12878_DNA_FAB49712_guppy_flipflop pre-trained model, mimicking sequencing with an
Oxford Nanopore instrument. The number of simulated reads was chosen to obtain a theoretical coverage
of whole genomes around 1.5X, this resulted in simulating =6.6+10° reads for the whole human genome
and =2.6+10% reads for the whole Drosophila genome. Since the centromeric sequence is very short, we
aimed for a theoretical coverage of 100% which resulted in =1.3-10* simulated reads.

For each evaluated SSR, the reads as well as the reference sequence were reduced by applying the SSR to
them. The reduced reads were then mapped to the reduced reference usingminimap2 (Li, 2018) with the
map-ont preset and the -c flag to generate precise alignments. Although HPC is an option in minimap2
we do not use it and we evaluate HPC as any of the other SSRs by transforming the reference and reads prior
to mapping. The starting coordinates of the reduced reads on the reduced reference were translated to
reflect deletions incurred by the reduction process. The mapping results with translated coordinates
were filtered to keep only the primary alignments. This process was done for each of our 2135 SSRs as
well as with HPC and the original untransformed reads (denoted as raw).

Evaluation pipeline

We use two metrics to evaluate the quality of a mapping of a simulated read set. The first is the fraction of
reads mapped, i.e. that have atleast one alignment. The second is the mapping error rate, which is the frac-
tion of mapped reads that have an incorrect location as determined by paftools mapeval (Li, 2018). This
tool considers a read as correctly mapped if the intersection between its true interval of origin, and the in-
terval where it has been mapped to, is at least 10% of the union of both intervals.

Furthermore, we measure the mapping error rate as a function of a given mapping quality threshold. Map-
ping quality (abbreviated mapq) is a metric reported by the aligner that indicates its confidence in read
placement; the highest value (60) indicates that the mapping location is likely correct and unique with
high probability, and a low value (e.g. 0) indicates that the read has multiple equally likely candidate map-
pings and that the reported location cannot be trusted. The mapping error rate at a mapq threshold tis
then defined as the mapping error rate of reads whose mapping quality is t or above. For example, the
mapping error rate at t = 0 is the mapping error rate of the whole read set, while the mapping error rate
at t = 60 is the mapping error rate of only the most confident read mappings. Observe that the mapping
error rate decreases as t increases.

All experiments performed for this article are implemented and documented as nextflow workflows avail-
able in this project’s repository (github.com/lucblassel/MSR_discovery). These workflows may be used to
rerun experiments and reproduce results. The repository also contains a Rmarkdown notebook to generate
all figures and tables in the main text and supplemental information from the pipeline outputs.
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