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ARTICLE INFO ABSTRACT
Keywords: Although agricultural intensification has been linked with the increment of lake eutrophication and shallow lake
Phytoplankton biomass research has demonstrated the importance of submerged macrophytes for maintaining water clarity, less is

Shallow lakes

known about the role of macrophytes and the effects of agriculture on shallow lakes of the global south. Shallow
Total phosphorus

lakes in the Pampean region of Argentina are subjected to high anthropic pressure and are classified as eutrophic

Submerged macrophytes . . . A . .

Agriculture and hypereutrophic and, in spite of most of them are turbid and dominated by phytoplankton biomass, some

Regional remain in a clear-vegetated regime with profuse submerged macrophytes. We studied the potential drivers of
phytoplankton biomass (estimated as Chlorophyll-a - Chla) by applying a regional approach and a model se-
lection process for a dataset of 58 shallow lakes that represent the variability of the Pampean region. For the 58
lakes, the presence of submerged macrophytes, total nitrogen, and nearby agriculture of each lake were the main
drivers of Chla with —1.55, 0.19 and 0.02 coefficient values, respectively. Moreover, a high proportion of the
variance in this dataset (37.7 %) was explained by the regional location of each lake (hydrographic systems). For
lakes with macrophytes (N = 8), Chla exhibited a positive relationship with total phosphorus (coefficient value
= 3.05), whereas for lakes without macrophytes (N = 50) Chla showed a positive relationship with nearby
agricultural development (coefficient value = 0.02) and 36.4 % of variance explained by the hydrographic
system. Our regional approach highlighted the importance of submerged macrophytes in shaping phytoplankton
biomass in Pampean shallow lakes. Our results support the idea that the conservation of submerged macrophytes,
as well as the control of agriculture in the riparian zones of lakes, will help to stabilize the shallow lakes in clear
regime, even in regions highly impacted by agriculture and in lakes under eutrophic conditions.
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M.L. Sanchez et al.
1. Introduction

In the last decades, there have been large-scale changes in nutrient
cycles mainly due to additional inputs from fertilizers, livestock and
human wastes, and biomass burning (MEA, 2005). All of these changes
have increased the nutrient loading to inland waters, intensifying the
eutrophication process (e.g. Moss, 2008, Anderson et al., 2014). Con-
cerns about eutrophication’s impact on freshwater bodies have led to the
empirical study of relationships between planktonic algal biomass,
measured as chlorophyll a (Chla), and total phosphorus (TP) (e.g.,
Sakamoto, 1966, Dillon and Rigler, 1974, Carlson, 1977, Smith and
Shapiro, 1981, Havens and Niirnberg, 2004, Yuan and Jones, 2020) as
well as the design and implementation of different management stra-
tegies to alleviate eutrophication (Jeppesen et al., 2007).

Many of these studies predicted the effect of the increase of TP
loading on Chla, and TP was often considered to be the limiting factor of
Chla, exhibiting a wide range of coefficients values and different shapes
of response curves (e.g. Vollenweider, 1968, Dillon and Rigler, 1974,
Chapra and Tarapchak, 1976, Jones and Lee, 1986, Stauffer, 1991, Yuan
and Jones, 2020, Quinlan et al., 2021). Some studies additionally
focused on assessing the changes in TP:Chla ratio as a way to estimate
the transfer efficiency between TP and phytoplankton biomass and to
infer the response of phytoplankton to diminishing TP loads (Spears
et al., 2013). Other authors have proposed additional factors that play
roles in the eutrophication process and should be included as predictor
variables in these models (Smith and Shapiro, 1981). For instance, total
nitrogen (TN) and/or the TN:TP ratio have been reported as factors
limiting the biomass of primary producers in some systems and were
incorporated into the models as predictor variables (Smith, 1982, Prairie
et al., 1989), as well as watercolor, mixing regimes (Havens and Niirn-
berg, 2004), depth, water residence time (Vollenweider, 1975, Pridmore
et al., 1985, Phillips et al., 2008, Spears et al., 2013) and alkalinity
(Phillips et al., 2008, Spears et al., 2013, Hammer et al., 2019). Water
transparency measured as Secchi depth has also been reported as a
factor influencing the TP:Chla relationship (Quinlan et al., 2021).

However, some of these driving factors of Chla and TP:Chla re-
lationships differ when the studies are focused on shallow lakes, or when
examining lakes across large spatial extents. For example in clear
shallow lakes, the dominance of submerged macrophytes exerts a
negative effect on Chla by different mechanisms (e.g. competition with
phytoplankton, reduction of turbulence, refuge for zooplankton)
(Scheffer et al., 1993), therefore leading to deviations from the expected
positive linear TP:Chla relationship (Quinlan et al., 2021).

In recent years, a regional perspective has been developed that in-
corporates a multiscale and hierarchical approach to limnological
studies (Soranno et al., 2015). As conceptualized by Soranno et al.
(2009, 2010) in their landscape-context framework, the hierarchical
organization of different components can be illustrated as follows: the
geological characteristic of a region influences the type of soils and the
morphometry of a lake (terrestrial features), and these components
interact with the connectivity among lakes (aquatic features) and with
the land uses in the catchment (human features), which overall deter-
mine the limnological characteristics of a lake. Studying the multiscale
drivers and hierarchical organization of local and regional drivers
(aquatic, terrestrial and human landscape features), helps us understand
broad-scale variation in physical, chemical or biological characteristics
of lakes (Soranno et al., 2009). In recent decades, new statistical tools
offer ways to deal with spatial and/or temporal dependence among data
(Beckerman 2014), as well as the analysis of different components acting
and interacting at different scales (Soranno et al., 2014). Thus, the
incorporation of a regional approach allows us to have a more complete
picture of the system and to analyze the interaction of factors that
directly or indirectly affect phytoplankton biomass (Taranu and
Gregory-Eaves, 2008). Applying such a landscape perspective, studies
have found that variables acting at a regional scale (e.g., climatic factors;
Carvalho et al., 2011) or the percentage of different land use and land
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cover (LULC) types in the watershed of the lakes (e.g. agriculture,
wetland, urbanizations; Wagner et al., 2011, Filstrup et al., 2014;
Cheruvelil et al., 2022) have been described as important variables
affecting the relationship between TP and Chla.

Although statistical models are very useful tools for understanding
the main factors that influence limnological characteristics, several
different functional and ecological metrics are needed to understand and
predict changes in lake characteristics (Spears et al., 2013). This fact can
result in complex models circumscribed for a certain group of lakes in a
specific region (Havens and Niirnberg, 2004, Phillips et al., 2008).
Additionally, most limnological models are based on datasets from
oligotrophic, deep, and dimictic lakes from the northern hemisphere and
it is known that these models are not applicable to other types of lakes in
different regions (Baigtin and Marinone, 1995, Reynolds, 2006, Zhang
et al., 2015, Spoljar et al., 2017), such as the eutrophic polymictic
shallow lakes considered in this study. For example, Phillips et al. (2008)
found that above 100 pg L™! of TP — a similar range to our study lakes —
there exists an inflection point in the relation of Chla vs TP with a
marked reduction in the slope of the linear regression while Prairie et al.
(1989) reported an asymptotic behavior around 100 pg L' of TP.
Therefore, other factors are acting as drivers of Chla when phosphorus is
not limited. Moreover, models applied to large numbers of temperate
shallow lakes are still scarce (Borics et al., 2013, Ginger et al., 2017; but
see Cheruvelil et al., 2022), despite being the most numerous lentic
water bodies distributed worldwide (Downing et al., 2006). Therefore, it
is essential to develop models to understand the drivers of Chla in these
Pampean shallow lakes, which belongs to the south hemisphere and in
spite they are very numerous and ecologically relevant, are underrep-
resented in global models.

The Pampean Plain, a very productive region located in the central
part of Argentina (South America), is an extensive wetland landscape
where shallow lakes are the dominant aquatic ecosystems. Most of them
are eutrophic or hypereutrophic (Diovisalvi et al., 2015) and have
experienced a progressive eutrophication due to increasing loads of
nutrients from anthropogenic activities (e.g. cattle breeding, agriculture
and urban discharges) (Quirds et al., 2002a, 2006, Izaguirre et al.,
2022). In the last decades, an intense process of changes in the LULC of
the region has occurred, mainly due to an increase in the area dedicated
to agriculture (Rios Satuf 2013). These changes are accelerated because
of the expansion of industrial agriculture, with the implementation of
genetically modified crops and the use of huge amounts of agrochemi-
cals associated with them (Viglizzo et al., 2010, Castro Berman et al.,
2018). Shifts in shallow lakes from clear-vegetated to phytoplankton-
turbid regimes have been described over the last 20 years (Quiros
et al., 2006, Kosten et al., 2012, Sanchez et al., 2015, Izaguirre et al.,
2022). Currently, most lakes are in a phytoplankton-turbid regime;
however, there are still regions where some lakes remain in a clear-
vegetated state, with a profuse abundance of submerged macrophytes.

Although most Pampean shallow lakes are eutrophic and hyper-
eutrophic, they show high variability in terms of their phytoplanktonic
biomass. Therefore, the main drivers of Chla in these aquatic systems
remain unknown. Our main objectives are to: 1) investigate the rela-
tionship between phytoplankton biomass (as estimated by Chla) and TP;
2) identify the main drivers of phytoplankton biomass in shallow lakes;
and 3) explore how the presence of submerged macrophytes might alter
the drivers of Chla in these shallow lakes with high nutrient concen-
trations. In order to achieve these objectives, we applied a regional
perspective and a modeling approach with a data set of 58 shallow lakes
located across 250,000 km? of the Pampean Plain and limnological and
landscape factors operating at different spatial scales.

2. Methods
2.1. Study area

The 58 studied shallow lakes represent the heterogeneity of those
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located in the Pampean Plain (33°-39°S, 57°-66°W), the central area of
Argentina (Fig. 1). This region represents one of the largest wetland
areas of South America (Quirds, 2005). This is a heterogeneous
geological and geomorphological area, with formations that can be
dated back to the Precambrian-Paleozoic or Cenozoic-late Holocene eras
(Zarate and Rabassa, 2005), although the area’s shallow lakes have a
more recent origin (Diovisalvi et al., 2015). The modern landscape,
characterized by dune fields, floodplains, fluvial valleys and lake sys-
tems, was originated during the last 10,000 years (Zarate and Rabassa,
2005) and contains nutrient-rich soils composed mainly of loess
(Rodrigues Capitulo et al., 2010). According to the classification of
Giraut et al. (2003), at least 15 hydrological systems can be distin-
guished within this region, all characterized by a very low regional slope
and drainage densities (Sala et al., 1983, Kruse and Laurencena, 2005).
Mean annual air temperatures in the region range from 20 °C in the
northeast to 14 °C in the southwest (Viglizzo and Frank, 2006), with a
characteristic temperate-humid climate (Burgos and Vidal, 1951). The
mean annual rainfall average is 935 mm (Iriondo and Drago, 2004),
ranging from 1000 mm in the northeast to 400 mm in the southwest
(Viglizzo and Frank, 2006). The mean annual wind speed is around 10
km h™! and the prevailing wind directions are N and NW (Diovisalvi
et al., 2015). In this region, there are around of 13,800 large and
146,000 small shallow lakes (Geraldi et al., 2011). Most of them are in
turbid regime, with high phytoplankton biomass (Allende et al., 2009).
Shallow lakes that remains in clear-vegetated regime are dominated by
different species of submerged vegetation as Ceratophyllum demersum
and Myriophyllum sp. (Pérez et al., 2010, Sanchez et al., 2017).

-60.000
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2.2. Dataset curation

The original data set was composed of local (limnological and
morphometric) and regional (landscape) variables from 58 shallow
lakes, some of which were sampled more than once (N = 102; Table S1).
We subset this data set to include values from sampling conducted
during the warm seasons from September 2015 to March 2019 for each
shallow lake. Data were obtained from a combination of published pa-
pers (Castro Berman et al., 2018, Schiaffino et al., 2019, 2020, Sanchez
et al., 2021, O’Farrell et al., 2021, Izaguirre et al., 2022, Balina et al.,
2022) and existing data that have yet to be published (Table S1). Since
data came from multiple projects, we started by reviewing metadata and
performing a homogenization of units. We calculated the mean value for
each variable and for each lake, resulting in a data set corresponding to
58 lakes located within 7 different hydrographic systems (hereinafter
“Subregions”) within the Pampean Plain (Giraut et al., 2003) (Fig. 1).
The data set, and their corresponding sources are presented in Supple-
mentary material Table S1.

2.3. Limnological variables

The limnological variables included were: Chla, TP, TN, pH, Con-
ductivity, Dissolved Oxygen (DO), Turbidity, Total Suspended Solids
(TSS), Percentage of Inorganic Material (Perc_Inorg) and Water Tem-
perature. For chemical determinations, methods described in APHA
(2009) were followed; details of the methodology used for the mea-
surements of the limnological variables were published in previous pa-
pers (Schiaffino et al., 2019; O’Farrell et al., 2021). Based on field
observations and visual exploration (Google Earth®), we classified the
shallow lakes according to the dominance or not of submerged

-56.000

Subregions
Bahia Blanca
Austral Atlantic

-35.000

Oriental Atlantic
Mar Chiquita
Salado River
South-West Endorreic [
North Patagonia
North-East

DD/DDD

-36.000

OB0

North-West

-37.000

-38.000

-39.000

Fig. 1. Map of the Pampean plain with the 58 selected shallow lakes and their codes. See Supplementary Table 1 for names and geographic position. Each color
represents a different subregion according to the classification of Giraut et al. (2003).
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macrophytes. Presently, only a few shallow lakes in the study extent are
in a clear vegetated regime (Izaguirre et al., 2022) and our dataset in-
cludes only 8 lakes in this condition. This information was included as a
categorical variable indicating presence or absence of submerged
macrophytes.

2.4. Morphometric variables

Morphometric variables were retrieved with QGIS using a raster
layer of Google satellite corresponding to the region as a base (https://
www.google.cn/maps/). We created a “shape” file containing polygons
describing the shape of each lake. With the polygon shape file, we
estimated the Lake Area and Lake Perimeter of each shallow lake.

Ecological Indicators 146 (2023) 109834

Catchment area for each lake was extracted from the shape file “Cuencas
Hidrograficas Etapa I SSRH” (http://gis.ada.gba.gov.ar/gis/) and we
calculated Drainage Ratio as the catchment area/lake area. However,
these catchments were very large and often included more than one
study lake (i.e., network watersheds). Therefore, we also calculated the
1000 m buffer around each lake, which can be a proxy for the local lake
watershed (Soranno et al., 2015).

Since several lakes in the region are interconnected, we included the
categorical variable “Chain” to indicate that a lake was connected
directly to other lakes (1) as opposed to not connected in chain (0). We
also estimated surface water connectivity using visual inspection of
satellite images and creating a categorical variable as follows: 0-isolated
lake (not connected), 1-stream leaving lake (only with outlet), 2-stream

Multi-step process

N

3. Correlations between LN_Chla and
quantitative variables and one-way ANOVAs
with categorical variables. Selection of
quantitative and categorical variables.

. J

Step Analytical method

a. corrplot function (package corrplot) for
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Significance level p<0.05.

4
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Fig. 2. Diagram of the steps and analytical method followed in the process of model selection. LN_Chla: LN_chlorophyll a.
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into lake (only with inlet), 3-streams in both directions (with both and
inlet and outlet).

2.5. Landscape variables

The landscape variables included were Subregion Membership
(Subregion) and measures of LULC using an available LULC map for the
region (de Abelleyra et al., 2019). Using the 1 km buffer around each
lake, we extracted the Percentage of Agriculture (Perc_Agr) from the
raster file of the LULC map. These analyses were performed with the
software QGIS (v3.12.2). We also created a categorical variable, by vi-
sual exploration of satellite images, to describe the presence (1)/absence
(0) of any urbanization on the shore of each lake.

2.6. Data analysis

We used a multi-step process to meet our objectives (Fig. 2). Previ-
ously, we transformed response and predictor variables, if necessary to
meet statistical requirements. Then, we performed Pearson correlations
and One-way ANOVAs for continuous and discrete predictor variables,
respectively, at local and regional scales to preselect variable candidates
that could be influencing phytoplankton biomass for inclusion in the
model selection process (Fig. 2, step a). We included in the global model
those variables that resulted in significant correlations or were statisti-
cally significant (p < 0.05) with LN_Chla (Fig. 2, step b). Next, we
created a Global Model, applying Linear Mixed Models or Linear Models
(depending on the inclusion of Subregion as a random factor) with
LN_Chla as our dependent variable (Fig. 2, step c). Then, we performed a
model selection process by applying the function dredge to make a
ranking of potential models from the Global model (package MuMIn)
(Burnham and Anderson 2002) based on their AICc (Akaike Information
Criteria ccc) which is a measures of the goodness of fit of each model
(Fig. 2, step d). After that, we selected the best model(s) using the
function get.models (package MuMIn) that established a subset of models
using criteria of Akaike weight <= 0.95 and delta <= 7 (Gutiérrez-
Cénovas and Escribano-Avila, 2019) (Fig. 2, step e). The inclusion of
Subregion membership as a random factor in the models was evaluated
by the percentage of variance explained by this variable. If this value
was higher than 20 % we included it in the final model. Then, we
selected the best fit model by analyzing the significance of each variable
using the function Ime (package nlme) or Im (package stats) depending
on whether we included Subregion as a random factor or not in the
model, respectively (Fig. 2, step f). If we have two or more model can-
didates to be selected as the best one, we also evaluated the variation
explained by the fixed factor (marginal R?) and by the entire model
(conditional RZ) in the case of linear mixed models with the function R.
squaredGLMM (package MuMIn) or the variance explained in linear
models (R?), for those models that did not include Subregion (Fig. 2, step
g).

To explore how the drivers of phytoplankton biomass differ
depending on the presence or not of submerged macrophytes in the
lakes, we split our data set into lakes with (N = 8) and without (N = 50)
submerged macrophytes. We repeated the process of model selection
(Fig. 2) and selected the best fit model for each subset of lakes. All these
analyses were performed in R (version 4.1.0) and RStudio (version
1.4.1717).

3. Results
3.1. Limnological characterization

Most of the 58 studied lakes (Table S1) are eutrophic or hyper-
eutrophic according to their Chla, TP and TN mean values (Table 1).
Chla ranged from 1.6 to 242.7 pg/L, TP from 57.5 to 4538 pg/L and TN
from 960 to 8422 pug/L. All the studied lakes are alkaline (pH = 8.1-9.4),
with conductivity ranging from 0.3 to 202.1 mS cm ™! and are generally
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well-oxygenated (mean DO = 9.8 mg L'}, ranging from 4.2 to 17.2 mg L~
1). The percentage of the area dedicated to agricultural activities within
al km-width buffer area ranged from 0 to 79.6 %, mean = 16.7 + 18.9
%, and 13.8 % had urbanization on their shore. Approximately a third of
lakes (36.2 %) were connected directly with other lakes (chain) and
81.1 % had stream inlets and/or outlets. Only 13.8 % of the lakes had
submerged macrophytes (Table S2).

3.2. Whole data set

Preliminary analysis showed that the linear regression between
LN_Chla and TP was non-significant (F = 1.989, df = 1; 56, p-value =
0.16). Furthermore, the correlation coefficient between LN_Chla and TP
for the whole data set was —0.18 and non statistically significant
(Fig. 3). Correlations among LN_Chla and quantitative variables were
significant for Perc_Agr, Turbidity and TN (Fig. 4a). Moreover, the cat-
egorical variables Macrophytes and Subregion were also statistically
significant (One-way ANOVA: F = 13.6, df = 1; 56, p-value <0.005; F =
3.7, df = 6; 51, p-value < 0.005; respectively). The Global model was
built with LN_Chla as a dependent variable and Perc_Inorg, Perc_Agr,
TN, Macrophytes and their interactions as independent variables. We
included Perc_Inorg instead of Turbidity because the two are positively
correlated (Fig. 4a) and Turbidity is not entirely independent of the
dependent variable (LN_Chla) since it is comprised of the effect of
dispersion and absorption of light due to chlorophyll particles. Subre-
gion membership of each lake was included in the model as a random
factor to take into account the inter-variability among Subregions (Zuur
et al., 2009).

After the selection process for the global model, we obtained a
ranking of models (Table S3). According to the Akaike weight <=0.95
criteria for model selection, three models were selected (1-3 in Table 2
and Table S4). In model 1 only Macrophytes was selected as a predictive
variable, in model 2 both TN and Macrophytes were selected and in
model 3 both variables were selected as well as their interaction
(Table 2). Coefficient values were negative for Macrophytes and positive
for TN, the coefficient of the interaction between Macrophytes and TN
was positive in model 3 (Table 2). The random factor Subregion
explained 42.7 % of the variance in model 1, 44.7 % in model 2, and
45.0 % in model 3 (Table 2).

We closely examined the results of multiple criteria in order to decide
on the best model for the whole dataset. First, although model 1 had a
slightly lower AICc value than the other two models (Table S3), we
opted for model 2 as the model that better explains the variability in the
region. This decision was based on the fact that the AICc value was
similar to that of model 1 (Table S3) and the marginal R? (mR? the
variation explained by the fixed factor) and the conditional R? (cR? the
variation explained by the entire model) were higher than in model 1
(Table 2). The only difference between model 2 and model 3 was the
inclusion of the interaction between TN and Macrophytes; however, this
interaction was not significant (Table 2). Second, we considered the
delta AICc <=7 criteria for model selection, which showed that model 4
and model 5 (Table S3) were just as strong candidate models as 1-3.
Both of these models included Macrophytes with negative coefficients
and Perc_Agr with positive coefficients as predictive variables (Table 2).
In model 5 TN was also selected as a factor with a positive coefficient.
Subregion explained 37.7 % of the variance in model 4 and 38.5 % in
model 5 (Table 2). The values of mR? and cR? were higher for model 4
and model 5 in comparison with models 1, 2 and 3 (Table 2). Third, we
tested a model that included Macrophytes, TN and Perc_Agr; the three
variables were statistically significant (Table 2). Taking into consider-
ation all of the evidence (criteria in Table 2, mR? and cR?) we chose
model 5 as the best model for the whole data set (Table 3).

3.3. Subset of shallow lakes with submerged macrophytes

For the subset of lakes with submerged macrophytes (N = 8), the
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Table 1

Ecological Indicators 146 (2023) 109834

Main statistical descriptive variables (mean, median, Min: minimum, Max: maximum and SD: standard deviation) of the limnological, morphometric and landscape
variables of the 58 selected shallow lakes. Chla: chlorophyll a, Cond.: conductivity, DO: dissolved oxygen, TP: total phosphorus, TN: total nitrogen, Turb.: turbidity,
TSS: total suspended solids, Perc_inorg: percentage of inorganic material, Temp.: temperature, Perc_Agr: percentage of agriculture.

Mean Median Min Max SD
LIMNOLOGICAL VARIABLES Chla (ug/L) 59.41 42.05 1.58 242.74 63.72
pH 8.75 8.75 8.09 9.40 0.27
Cond. (mS cm™) 6.92 2.26 0.32 202.10 26.35
DO (mg L'l) 9.81 10.00 4.18 17.20 2.22
TP (ug/L) 708 514 57.5 4538 844
TN (ug/L) 4384 4295 960 8422 1394
Turb. (NTU) 75.8 64.7 2.0 363.0 66.9
TSS (mg L) 93.86 71.35 6.80 788.40 116.03
Perc_inorg (%) 51.35 56.06 0 96.51 21.86
Temp. (°C) 20.31 20.00 7.00 34.30 5.03
LANDSCAPE VARIABLES Perc_Agr (%) 16.68 10.76 0 79.64 18.92
MORPHOMETRIC VARIABLES Area (km?) 18.18 5.56 0.06 149.67 29.41
Perimeter (km) 22.89 11.49 0.93 137.54 25.20
Drainage ratio 10,215 3092 12 216,366 230,262
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Fig 3. LN_Chla (ug L") vs TP (ug L") for the whole data set: green dots are lakes with macrophytes (N = 8), black dots are lakes without macrophytes (N = 50).

LN_Chla: LN_chlorophyll a, TP: total phosphorus.

correlation between LN_Chla and TP was 0.87 and statistically signifi-
cant (p-value < 0.05) (Fig. 3 green dots). We also detected a negative
and significant correlation between DO and LN_Chla (Fig. 4b). No cat-
egorical variables were statistically significant in the One-way ANOVAs
for this subset. Best-fitted model included only TP as the independent
variable (Table 3) with a positive and significant coefficient (Table 2,
model 6). The alternative model that included DO and TP resulted in
either one of these two variables being insignificant (Table 2, model 7).
The introduction of Subregion as a random factor did not increase the
percentage of explanation of the model (Table 2, model 8).

3.4. Subset of shallow lakes without submerged macrophytes

For the subset of lakes without submerged macrophytes (N = 50), a
statistically significant (p < 0.05) negative correlation between LN_Chla

and TP (r = -0.38) was found (Fig. 3, black dots). We included in the full
model the following quantitative variables: TP, Conductivity, Lake Area,
Perc_Inorg (instead of Turbidity) and Perc_Agr, all of which had signif-
icant correlations with the dependent variable (Fig. 4c). Only Subregion
was significant among categorical variables (One-way ANOVA: F = 6.3,
df = 6; 43, p-value <0.005) and it was included as a random factor. Since
the function dredge does not support global models built with more than
four variables, we ran the selection process five times in order to include
all the possible combinations (Table S4). Based on the criteria of
selecting a group of models whose Akaike weights were <=0.95 and
delta <=7, we obtained a subset of predictor variables from each global
model (Table S4). The selected variables were: TP, Perc_Agr and Con-
ductivity. However, when we ran the full model including the three
predictor variables and Subregion as a random factor, only Perc_Agr was
statistically significant (Table 2, model 9). Therefore, the best-fitted
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a) Whole data set (n=58) b) With macrophytes (n=8)
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Fig 4. Correlations among the continuous

¢) Without macrophytes (n=50) variables for the studied shallow lakes. Only
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model for this subset of lakes was LN_Chla ~ Perc_Agr (Table 3), with
36.4 % of the variance explained by Subregion as random factor
(Table 2, model 10). Taking into account all the results of this subset of
lakes we consider that the negative relationship between LN_Chla and
TP is a spurious correlation and is not reflecting the drivers of phyto-
plankton biomass, since when we performed the model selection process
LN_Chla was positively related to Perc_Agr (Table 3) and TP was not
selected as a significant variable, a result that is in line with the previous
results of the whole data set (Table 3) and reflects the effect of agri-
culture in the water quality of these shallow lakes.

4. Discussion

We investigated potential drivers of Chla in a set of 58 shallow lakes
that encompass a great deal of the heterogeneity and that characterize
the Pampean region of Argentina. For this purpose, we adopted a
regional perspective that included local and landscape variables as po-
tential drivers. Furthermore, we asked if these drivers differed between
lakes with and without submerged macrophytes.

These Pampean shallow lakes are eutrophic and hypereutrophic.
Their range of TP and TN concentrations are consistent with the findings
of Diovisalvi et al. (2015), who reported Pampean shallow lakes as
extreme points in the trophic-state continuum of a worldwide broad
database of shallow lakes (N = 2,727 lakes). The Chla of the 58 studied
shallow lakes were not significantly correlated with TP, which is aligned
with the lack of positive relationship reported by Phillips et al. (2008)
and Prairie et al. (1989) for lakes with ranges of TP concentration similar
to our study lakes. This result supports the idea that in eutrophic and
hypereutrophic lakes there are other factors regulating the phyto-
planktonic biomass. However, it is important to recognize that when
considering TP as a potential driver of Chla, it is not only the dissolved
phosphorus in the water, but also the phosphorus contained in the or-
ganisms (autotrophs and heterotrophs) and sediments (APHA, 2009)
that could result in a different relationship between Chla and TP. For
example, a lake with a high input of allochthonous organic material -
which leads to high TP concentration in water - can sustain a plankton
community dominated by heterotrophic organisms with relatively low
Chla (del Giorgio and Gasol 1995). In this way, lakes with similar TP
concentrations could have different proportions of autotroph: hetero-
troph organisms, resulting in a lack of relationship between Chla and TP.

For the 58 studied shallow lakes, the best model selected indicated
that the presence of submerged macrophytes, TN concentration and
Perc_Agr were key factors in shaping the phytoplankton biomass
(Table 3). We observed that macrophyte presence exerted a significant
and negative effect on the LN_Chla (Table 3). On the other hand, TN and
Perc_Agr were positively and significantly related to the phytoplankton

biomass in this set of lakes (Table 3). When we split-up the data set and
focused on lakes with submerged macrophytes (N = 8), TP was posi-
tively related to LN_Chla (Table 3). For the subset of lakes without
submerged macrophytes (N = 50), agriculture was the most important
factor (Table 3). These results are in agreement with the paradigm that
when submerged macrophytes dominate a lake, they negatively affect
the phytoplankton biomass. On the other hand, increasing TN and the
percentage of agriculture in the surrounding area of each lake both
enable higher concentrations of planktonic Chla. This finding is in line
with what was observed by S¢ndergaard et al. (2017), where they
showed that at high TP concentrations, TN explained most of the vari-
ability in Chla and its increment has a negative effect on lake water
quality. A possible ecological mechanism explaining this finding is that
many species of phytoplankton are co-limited by nitrogen and phos-
phorus and under high phosphorus concentration the increase in nitro-
gen redounds in an increment of this community (Miiller and Mitrovic,
2015; Sgndergaard et al., 2017). Concomitantly, TN concentration is
increased by loadings of nutrients and biocides received from the agri-
cultural activities in the basin. Agriculture can change the flow of
organic matter to water bodies, modify the surrounding areas of lakes
(Meerhoff and Gonzalez Sagrario, 2021) and provoke physical disrup-
tion — by drainage and canalization — which also negatively affects the
water quality of inland waters (Moss, 2008), threatening the aquatic
biodiversity (Sala et al., 2000).

Submerged macrophytes play a key role in stabilizing clear regimes
by different mechanisms (Scheffer, 2009 and cites therein). In partic-
ular, macrophytes act as a sink of nutrients (phosphorus and nitrogen) in
the growing season by reducing their availability in the water column,
which could limit phytoplankton development (Carpenter and Lodge,
1986, Sgndergaard and Moss, 1998). In accordance with the alternative
regimes theory proposed for shallow lakes (Scheffer et al., 1993) some
pampean shallow lakes have been shifting from clear to turbid regimes
and vice versa (Cano et al., 2008, Izaguirre et al., 2022). However,
eutrophication provokes a shortening of the macrophyte growing season
by favoring the increase of summer phytoplankton abundance (Phillips
et al., 2016), preventing the switch back from a turbid to a clear regime.
In eutrophic and hypereutrophic lakes this process causes, in advanced
phases, the collapse of submerged plants with a simplification of the
habitat complexity and a dominance of high phytoplankton biomass
(Meerhoff and Gonzalez Sagrario, 2021). Currently, the presence of
submerged macrophytes is restricted to a small number of Pampean
shallow lakes that although their eutrophic conditions remain in a clear
regime. When we focused the analysis only on the subset of shallow
lakes with submerged macrophytes, we found that the LN_Chla of these
water bodies exhibited a classic positive relation with TP (e.g. Wetzel
2001). This also could be related to the stabilization mechanisms of
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have shown the existence of a pristine clear regime dominated by
macrophytes that changed recently towards a turbid regime (Stutz et al.,
2014, Gonzalez Sagrario et al., 2020, Sanchez Vuichard et al., 2021).
Most of these changes were probably related to the intensification of
agriculture in the region, canalization and changes in water levels
(Quirds et al., 2002a, b, 2006, Sanchez et al., 2015, Izaguirre et al.,
2022). These historical records, along with the results of our study,
reveal the deterioration of these shallow lakes driven mainly by
increasing nutrients concentrations, highlighting the key role of TN, and
a decrease of submerged macrophytes concomitantly with the increase
of agriculture in the surrounding areas. The few Pampean shallow lakes
that remain in a clear-vegetated regime are probably near the boundary
of the hysteresis situation and, if the turbidity increases - provoked for
example by a strong water level decrease- a turnover to the turbid
regime could be triggered (Sanchez et al., 2015). If this change occurs
and the system is pushed out of the limits of alternative states, the return
to the previous state is neither easy nor direct. In restoration experi-
ences, the effect of reducing nutrient loads on the recovery of macro-
phytes was not uniform: while some lakes experienced a macrophyte
increase (in abundance, coverage or depth distribution) other lakes
exhibited no changes (Jeppesen et al., 2005). Therefore, once the lake
shifts to a turbid regime, reestablishing the previous regime demands a
strong effort and the combination of different strategies (Scheffer,
2004). All these difficulties along with our results highlight the impor-
tance of directing efforts to conserving shallow lakes with submerged
macrophytes that are still in a clear regime in the Pampean region as
well as in designing management strategies to preserve the surrounding
areas of lakes in order to diminish the impact of anthropic activities from
the catchment.

5. Conclusions

Our regional study extent and our inclusion of continuous and cat-
egorical factors acting at multiple scales (local and regional) allowed us
to incorporate a new perspective into the study of the Pampean shallow
lakes constituting an important contribution to the study of these
aquatic systems in South America. We determined the influence of
different factors to better understand the main drivers of phytoplankton
biomass in clear and turbid shallow lakes in this highly anthropically-
impacted region, moving us toward a more comprehensive under-
standing of the dynamics of these systems. Our models provide evidence
of the role of submerged macrophytes as one of the main drivers of
phytoplankton biomass in Pampean shallow lakes, probably acting as
stabilizers of clear regimes. On the other hand, our results showed the
positive effect of TN and agriculture on algal biomass. Therefore, mea-
sures for improving water quality of these shallow lakes should conserve
macrophytes as well as to regulate the agriculture in the area sur-
rounding each water body.
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