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A B S T R A C T

Numerical solutions of stochastic problems require the representation of random functions in their definitions
by finite dimensional (FD) models, i.e., deterministic functions of time and finite sets of random variables. It is
common to represent the coefficients of these FD surrogates by polynomial chaos (PC) models. We propose a
novel model, referred to as the polynomial chaos translation (PCT) model, which matches exactly the marginal
distributions of the FD coefficients and approximately their dependence. PC- and PCT-based FD models are
constructed for a set of test cases and a wind pressure time series recorded at the boundary layer wind tunnel
facility at the University of Florida. The PCT-based models capture the joint distributions of the FD coefficients
and the extremes of target times series accurately while PC-based FD models do not have this capability.

1. Introduction

Most records of time series are insufficient to estimate the dis-
tributions of extremes and other functionals of these records over
bounded time intervals. Available data need to be supplemented by
probabilistic models which deliver these distributions under assump-
tions that are physically acceptable and can be validated. For example,
the extreme value theory may be unsatisfactory in many applications
since it assumes that the time series is infinite while the reference time
is bounded [1]. In addition, extreme value estimates based on exper-
imental data of typical duration exhibit notable statistical variability
when fitted to insufficiently long records [2,3]. Also, the validity of
approximations of the distributions of extremes of time series based
on the mean rates at which they cross specified levels is questionable
since the existence of mean crossing rates is difficult to check for
non-Gaussian processes [4] (Theorem 7.2.4). These limitations justify
the need for robust numerical methods for characterizing extremes of
random functions. Their implementation requires the representation
of the target random functions by finite dimensional (FD) models,
i.e., deterministic functions of time and finite sets of random variables.

The samples of FD models are elements of linear spaces spanned
by specified deterministic basis functions/vectors with random coef-
ficients. The form of the FD models in this study is that of trun-
cated Karhunen-Loève (KL) series for random processes and vectors,
i.e., linear forms of eigenfunctions/eigenvectors of the correlation func-
tion/matrix of the target random processes/time series. In contrast
to standard KL representations whose random coefficients are defined
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partially by their first two moments for non-Gaussian time series, the
random coefficients of FD models are specified by their samples, which
are obtained by projecting target samples on basis functions/vectors.
The resulting random coefficients have the same first two moments as
those of the KL representations.

It is common to represent the random coefficients of FD mod-
els by truncated polynomial chaos (PC) series fitted to the available
information, which may consist of data or statistics. PC-based FD
models have been used extensively in applications to, e.g., construct
efficient kriging-based surrogates [5,6], estimate reliability via sub-
set simulation [6], quantify the uncertainty in the eigenvalues and
eigenfunctions of the Boltzman stochastic differential equation [7].
Algorithms based on 𝜆-distributions [8], sequential sampling [9,10]
and machine learning [11] have been developed to improve the ac-
curacy and efficiency of PC-based FD models. Other available algo-
rithms for constructing efficient and accurate PC-based FD models use
distribution-free PC expansion [12], resampling techniques [13], Mara-
Tarantola transformation [14], fractional moments [15], and active
learning functions [16].

A common feature of the existing PC-based FD models is that
their performance is assessed by the mean square error of the dis-
crepancy between target random functions/vectors and these models.
This metric is adequate for a broad range of applications which deal
with both epistemic and aleatoric uncertainties [17,18]. Moreover, it
can be shown that under mild conditions the PC-based FD models of
target random functions converge to these functions in mean square
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(m.s.) as their truncation level increases indefinitely [19, Chap. 9].
This convergence implies that the joint distributions of the PC-based
FD models converge to those of the target functions. Unfortunately,
this asymptotic result is irrelevant in applications since the truncation
levels of PC-based FD models must be kept low to limit calculations so
that, generally, the joint distributions of target random functions and
their PC-based FD models differ. This observation is relevant for large
dimensional random vectors, e.g., wind pressure time series recorded
in wind tunnels, since their KL representations have large numbers of
terms. To minimize calculations, they need to be truncated so that the
target and KL statistics differ.

A main contribution of the proposed model is that it matches
exactly the marginal distributions of the target random vector for any
truncation level of the underlying PC polynomial. The dependence
structure of the proposed PC-based FD model is captured approximately
and improves with the PC truncation level. These features are essential
for estimating extremes of random functions and vectors and are not
available in the current FD models.

We propose an alternative model for the coefficients of FD repre-
sentations of random functions, referred to as the polynomial chaos
translation (PCT) model, which is constructed as follows. Let 𝜉PC

𝑑
be

a PC model of an R
𝑛-valued random vector 𝜉, where 𝑑 denotes the

stochastic dimension of the FD model. The PC model belongs to the
linear space spanned by, e.g., Hermite polynomials of the independent
standard Gaussian variables (𝐺1,… , 𝐺𝑑 ) whose degrees are limited
by the selected truncation level. The components of the PCT models
𝜉PCT
𝑑

are obtained from those of the PC models by translation [20]
(Chap. 3) so that their distributions match exactly the target marginal
distributions for any PC coefficients. The optimal PCT coefficients
minimize the discrepancy between the dependence of the target and
PCT components. Joint distributions and spectral measures are used as
metrics for the dependence among 𝜉 and 𝜉PCT components.

The paper is organized as follows. The proposed FD models are de-
fined in Section 2. This section also outlines properties of these models
and examines their performance for various basis vectors. PC and PCT
models of the random coefficients of FD models are constructed and
examined in Section 3. The performance of FD models with PC and PCT
coefficients is evaluated in Section 4 for wind pressure records from the
UFBLWT facility. It is found that FD models with PCT-based random
coefficients are superior in the sense that they best describe extremes
of wind pressure time series. Final comments are in Section 5.

2. Bases for finite dimensional (FD) models

Consider a stationary ergodic time series 𝑌1, 𝑌2,… , 𝑌𝑛 with the time
step 𝛥𝑡, which is defined on a probability space (𝛺, , 𝑃 ). For example,
the wind pressure record in Section 4 can be viewed as a sample
of this vector. Generally, the dimension 𝑛 of the random vector 𝜉 =

(𝑌1, 𝑌2,… , 𝑌𝑛) is very large. Our objective is to develop representations
of 𝜉 which are accurate and depend on just 𝑑 ≪ 𝑛 random variables.
We refer to these representations as FD models. We recognize that the
concept of FD models can be confusing in this context since the target
𝜉 is also finite dimensional. This is not the case when dealing with
random functions since their KL representations have infinite numbers
of terms. We agree to call FD models the representations of 𝜉 which
depend on 𝑑 < 𝑛 random variables. The following two subsections
present two types of FD models whose relative performance is assessed
in the third subsection.

Throughout this paper, we use ‖ ⋅‖2 to denote the 𝐿2 norm, defined
by ‖𝑥‖2 = (

∑𝑙

𝑖=1
𝑥2
𝑖
)1∕2 and ‖𝐴‖2 = sup𝑢≠0 ‖𝐴𝑢‖2

‖𝑢‖2
, where 𝑥 is a 𝑙

dimensional vector and 𝐴 is a 𝑙×𝑟 matrix. Similarly, ‖ ⋅‖ means the 𝐿∞

norm, i.e., ‖𝑥‖ = max1≤𝑖≤𝑙 |𝑥𝑖| and ‖𝐴‖ = max1≤𝑖≤𝑙,1≤𝑗≤𝑟 |𝐴𝑖𝑗 |. The two
norms are equivalent since we deal with matrices and vectors in finite
dimensional linear spaces, see [21], Chap. 3 for technical details.

2.1. Covariance eigenvectors

Let 𝜉 be an 𝑛-dimensional (column) real-valued random vector
defined on a probability space (𝛺, , 𝑃 ) with mean 𝐸[𝜉] = 𝟎 and
covariance matrix 𝛾 = 𝐸[𝜉 𝜉𝑇 ]. The assumption 𝐸[𝜉] = 𝟎 is not
restrictive since, if the mean is not zero, it can be added to the samples
of 𝜉. It is assumed that (1) the covariance matrix 𝛾 is not singular so that
its eigenvalues {𝜆𝑘} are strictly positive and (2) the eigenvalues {𝜆𝑘}
are distinct so that the eigenvectors {𝑣𝑘} of 𝛾 span R

𝑛. The random
vector 𝜉 admits the Karhunen-Loève (KL) representation

𝜉KL =

𝑛∑

𝑘=1

𝑍KL,𝑘 𝑣𝑘, (2.1)

where the eigenvectors {𝑣𝑘} are orthonormal, i.e., 𝑣
𝑇
𝑘
𝑣𝑙 = 𝛿𝑘𝑙, and

{𝑍KL,𝑘} are uncorrelated random variables with mean 𝐸[𝑍KL,𝑘] = 0

and variance 𝐸[𝑍2
KL,𝑘

] = 𝜆𝑘, 𝑘 = 1,… , 𝑛. The random vector 𝜉KL

is partially defined by its first two moments which match the corre-
sponding moments of the target vector 𝜉, unless 𝜉 is Gaussian in which
case {𝑍KL,𝑘} are independent Gaussian variables. If 𝜉 is not Gaussian,
{𝑍KL,𝑘} are uncorrelated but dependent non-Gaussian variables with
unknown distributions.

The KL representation of (2.1) can be generalized to characterize
fully 𝜉 if the random coefficients in the expression of 𝜉KL are defined
by the projections of the samples 𝜉(𝜔) of 𝜉 on the eigenvectors of the
covariance matrix 𝛾 of this vector, i.e., 𝑍𝑘(𝜔) = ⟨𝜉(𝜔), 𝑣𝑘⟩ = 𝜉(𝜔)𝑇 𝑣𝑘.
Accordingly, the samples 𝜉(𝜔) of 𝜉 admit the representation

𝜉(𝜔) =

𝑛∑

𝑘=1

𝑍𝑘(𝜔) 𝑣𝑘, 𝜔 ∈ 𝛺, (2.2)

which holds for almost all samples of 𝜉.

If the dimension 𝑛 of 𝜉 is large, it is convenient to represent 𝜉 by
truncated versions of (2.2) which contains the top 𝑑 < 𝑛 eigenvectors
of 𝛾, i.e., the eigenvectors corresponding to the largest 𝑑 eigenvalues of
the covariance matrix of 𝜉. The representation has the form

𝜉𝑑 (𝜔) =

𝑑∑

𝑘=1

𝑍𝑘(𝜔) 𝑣𝑘, 𝜔 ∈ 𝛺, (2.3)

and is referred to as the finite dimensional (FD) model of 𝜉. Since 𝜉𝑑
depends on 𝑑 random variables, its stochastic dimension is 𝑑. The 𝐿2

norm of the error of the FD model is

‖𝜉 − 𝜉𝑑‖22 = (𝜉 − 𝜉𝑑 )
𝑇 (𝜉 − 𝜉𝑑 ) =

𝑛∑

𝑘=𝑑+1

𝑛∑

𝑙=𝑑+1

𝑍𝑘𝑍𝑙𝑣
𝑇
𝑘
𝑣𝑙 =

𝑛∑

𝑘=𝑑+1

𝑍2
𝑘
, 𝑎.𝑠.,

by the orthonormality of the eigenvectors {𝑣𝑘}, where 𝑎.𝑠. means that
the probability of the subset of the sample space 𝛺 on which the
random variables ‖𝜉 − 𝜉𝑑‖22 and

∑𝑛

𝑘=𝑑+1
𝑍2
𝑘
differ is zero. Its mean and

variance are

𝐸
[
‖𝜉 − 𝜉𝑑‖22

]
=

𝑛∑

𝑘=𝑑+1

𝐸[𝑍2
𝑘
] =

𝑛∑

𝑘=𝑑+1

𝐸[(𝜉𝑇 𝑣𝑘)
𝑇 (𝜉𝑇 𝑣𝑘)]

=

𝑛∑

𝑘=𝑑+1

𝑣𝑇
𝑘
𝛾𝑣𝑘 =

𝑛∑

𝑘=𝑑+1

𝜆𝑘 (2.4)

and

Var
[
‖𝜉 − 𝜉𝑑‖22

]
= Var

[ 𝑛∑

𝑘=𝑑+1

𝑍2
𝑘

]
=

𝑛∑

𝑘=𝑑+1

Var[𝑍2
𝑘
] =

𝑛∑

𝑘=𝑑+1

Var[(𝜉𝑇 𝑣𝑘)
𝑇 𝜉𝑇 𝑣𝑘]

=

𝑛∑

𝑘=𝑑+1

(
𝐸[𝑣𝑇

𝑘
𝜉𝜉𝑇 𝑣𝑘𝑣

𝑇
𝑘
𝜉𝜉𝑇 𝑣𝑘] −

(
𝐸[𝑣𝑇

𝑘
𝜉𝜉𝑇 𝑣𝑘]

)2
)

=

𝑛∑

𝑘=𝑑+1

𝑣𝑇
𝑘

(
𝐸[𝜉𝜉𝑇 𝑣𝑘𝑣

𝑇
𝑘
𝜉𝜉𝑇 ] − 𝛾𝑣𝑘𝑣

𝑇
𝑘
𝛾

)
𝑣𝑘. (2.5)

Note that the expectation of the error decreases with 𝑑 since 𝜆1 > 𝜆2 >
⋯ > 𝜆𝑛 > 0 by assumption so that there exists 𝑑 such that the variance
can be made as small as desired.
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2.2. Linearly independent vectors

Let {𝑣̃𝑘} be a set of 𝑛 orthonormal 𝑛-dimensional vectors so that
they are linearly independent and span R

𝑛. Since the samples of 𝜉 are
elements of R𝑛 and the vectors {𝑣̃𝑘} span this space, we have

𝜉(𝜔) =

𝑛∑

𝑘=1

𝑍̃𝑘(𝜔) 𝑣̃𝑘, 𝜔 ∈ 𝛺, (2.6)

where 𝑍̃𝑘(𝜔) = 𝜉(𝜔)𝑇 𝑣̃𝑘 are the projections of 𝜉(𝜔) on these vectors, see
(2.2). The corresponding FD model has the form

𝜉𝑑 (𝜔) =

𝑑∑

𝑘=1

𝑍̃𝑘(𝜔) 𝑣̃𝑘, 𝜔 ∈ 𝛺, (2.7)

where 𝑣̃𝑘, 𝑘 = 1,… , 𝑑, is an arbitrary subset of the vectors under
consideration. The 𝐿2 norm of the error of 𝜉𝑑 is

‖𝜉−𝜉𝑑‖22 = (𝜉−𝜉𝑑 )
𝑇 (𝜉−𝜉𝑑 ) =

𝑛∑

𝑘=𝑑+1

𝑛∑

𝑙=𝑑+1

𝑍̃𝑘𝑍̃𝑙 𝑣̃
𝑇
𝑘
𝑣̃𝑙 =

𝑛∑

𝑘=𝑑+1

𝑍̃2
𝑘
, 𝑎.𝑠., (2.8)

by the orthonormality of the vectors {𝑣̃𝑘}. The definition of 𝑍̃𝑘 in (2.7)
gives

𝐸
[
‖𝜉 − 𝜉𝑑‖22

]
=

𝑛∑

𝑘=𝑑+1

𝐸[𝑍̃2
𝑘
] =

𝑛∑

𝑘=𝑑+1

𝐸[(𝜉𝑇 𝑣̃𝑘)
𝑇 (𝜉𝑇 𝑣̃𝑘)]

=

𝑛∑

𝑘=𝑑+1

𝑣̃𝑇
𝑘
𝛾𝑣̃𝑘 =

𝑛∑

𝑘=𝑑+1

( 𝑛∑

𝑖=1

𝑏2
𝑘𝑖
𝜆𝑖

)
(2.9)

and

Var
[
‖𝜉 − 𝜉𝑑‖22

]
= Var

[ 𝑛∑

𝑘=𝑑+1

𝑍̃2
𝑘

]

=

𝑛∑

𝑘=𝑑+1

Var[𝑍̃2
𝑘
] =

𝑛∑

𝑘=𝑑+1

Var[(𝜉𝑇 𝑣̃𝑘)
𝑇 𝜉𝑇 𝑣̃𝑘]

=

𝑛∑

𝑘=𝑑+1

(
𝐸[𝑣̃𝑇

𝑘
𝜉𝜉𝑇 𝑣̃𝑘𝑣̃

𝑇
𝑘
𝜉𝜉𝑇 𝑣̃𝑘] −

(
𝐸[𝑣̃𝑇

𝑘
𝜉𝜉𝑇 𝑣̃𝑘]

)2
)

=

𝑛∑

𝑘=𝑑+1

𝑣̃𝑇
𝑘

(
𝐸[𝜉𝜉𝑇 𝑣̃𝑘𝑣̃

𝑇
𝑘
𝜉𝜉𝑇 ] − 𝛾𝑣̃𝑘𝑣̃

𝑇
𝑘
𝛾

)
𝑣̃𝑘, (2.10)

where 𝑣̃𝑘 =
∑𝑛

𝑖=1
𝑏𝑘𝑖 𝑣𝑖 holds since 𝑣̃𝑘 ∈ R

𝑛 and {𝑣𝑖} is a basis of this
space. If 𝑣̃𝑘 = 𝑣𝑘, then 𝑏𝑘𝑖 = 𝛿𝑘𝑖 and 𝑣̃

𝑇
𝑘
𝛾 𝑣̃𝑘 = 𝜆𝑘.

2.3. Comparison of the two FD models

This section assesses the accuracy of the FD models 𝜉𝑑 in (2.3) and
𝜉𝑑 in (2.7) via the 𝐿2 norms ‖𝜉 − 𝜉𝑑‖22 and ‖𝜉 − 𝜉𝑑‖22. The following
theorem shows that 𝜉𝑑 is superior to any other FD models in the sense
of the 𝐿2 norm. The proof of this known result can be found in [22]
and is given here for convenience.

Theorem 2.1. If the covariance matrix of 𝜉 is positive definite and has
distinct eigenvalues 𝜆1 > 𝜆2 > ⋯ > 𝜆𝑛 > 0, then its eigenvectors {𝑣𝑘},
𝑘 = 1,… , 𝑛, are optimal in the sense that 𝐸

[
‖𝜉 − 𝜉𝑑‖22

] ≤ 𝐸
[
‖𝜉 − 𝜉𝑑‖22

]
for

𝜉𝑑 in (2.3) and 𝜉𝑑 in (2.7).

Proof. The difference between the errors of the FD models 𝜉𝑑 and 𝜉𝑑
can be expressed in the form, see (2.4) and (2.9),

𝐸
[
‖𝜉 − 𝜉𝑑‖2

]
− 𝐸

[
‖𝜉 − 𝜉𝑑‖2

]
=

𝑛∑

𝑘=𝑑+1

( 𝑛∑

𝑖=1

𝑏2
𝑘𝑖
𝜆𝑖 − 𝜆𝑘

)
,

where
∑𝑛

𝑖=1
𝑏2
𝑘𝑖

= 1, 𝑘 = 1,… , 𝑛, since the vectors 𝑣̃𝑘 have unit length
so that 1 = ‖𝑣̃𝑘‖22 = ‖∑𝑛

𝑖=1
𝑏𝑘𝑖 𝑣𝑖‖22 =

∑𝑛

𝑖,𝑗=1
𝑏𝑘𝑖 𝑏𝑘𝑖 𝑣

𝑇
𝑖
𝑣𝑗 =

∑𝑛

𝑖=1
𝑏2
𝑘𝑖
.

The assumed orthogonality of the vectors {𝑣̃𝑘} implies 0 = 𝑣̃𝑇
𝑘
𝑣̃𝑘 =(∑𝑛

𝑖=1
𝑏𝑘𝑖 𝑣𝑖

)𝑇 (∑𝑛

𝑗=1
𝑏𝑙𝑗 𝑣𝑗

)
=
∑𝑛

𝑖=1
𝑏𝑘𝑖 𝑏𝑙𝑖. Note that

𝑛∑

𝑘=𝑑+1

( 𝑛∑

𝑖=1

𝑏2
𝑘𝑖
𝜆𝑖 − 𝜆𝑘

)
≥

𝑛∑

𝑘=𝑑+1

(𝑑+1∑

𝑖=1

𝑏2
𝑘𝑖
𝜆𝑑+1 +

𝑛∑

𝑖=𝑑+2

𝑏2
𝑘𝑖
𝜆𝑖 − 𝜆𝑘

)

Table 1
𝐸[ ‖𝜉 − 𝜉𝑑‖22 ] and 𝐸[ ‖𝜉 − 𝜉𝑑‖22 ] for 𝑑 = 10, 30, 50.

d=10 d=30 d=50

𝐸[ ‖𝜉 − 𝜉𝑑‖22 ] 71.9224 37.1370 20.5518

𝐸[ ‖𝜉 − 𝜉𝑑‖22 ] 90.2117 70.3436 50.0748

=

( 𝑛∑

𝑘=𝑑+1

𝑑+1∑

𝑖=1

𝑏2
𝑘𝑖
− 1

)
𝜆𝑑+1 +

𝑛∑

𝑖=𝑑+2

𝑛∑

𝑘=𝑑+1

𝑏2
𝑘𝑖
𝜆𝑖 −

𝑛∑

𝑘=𝑑+2

𝜆𝑘

=

( 𝑛∑

𝑘=𝑑+1

𝑑+1∑

𝑖=1

𝑏2
𝑘𝑖
− 1

)
𝜆𝑑+1 +

𝑛∑

𝑖=𝑑+2

( 𝑛∑

𝑘=𝑑+1

𝑏2
𝑘𝑖
− 1

)
𝜆𝑖

≥
( 𝑛∑

𝑘=𝑑+1

𝑑+1∑

𝑖=1

𝑏2
𝑘𝑖
− 1

)
𝜆𝑑+1 +

𝑛∑

𝑖=𝑑+2

( 𝑛∑

𝑘=𝑑+1

𝑏2
𝑘𝑖
− 1

)
𝜆𝑑+1 = 0

which implies that the eigenvectors {𝑣𝑘} provide a superior FD model
in the sense of the error under consideration. □

We conclude this subsection with an example illustrating that the FD
models based on eigenvectors are superior to those based on arbitrary
linearly independent vectors in the sense of Theorem 2.1.

Example 2.1. Let 𝜉 be a zero-mean 𝑛-dimensional Gaussian vector
with covariance matrix 𝛾 = {𝛾𝑖𝑗 = 𝜚|𝑖−𝑗|, 𝑖, 𝑗 = 1,… , 𝑛}, 0 < 𝜚 < 1.
We construct the FD models 𝜉𝑑 in (2.3) and 𝜉𝑑 in (2.7) with 𝑣̃𝑘,𝑖 = 𝛿𝑘𝑖.

The following numerical results are for 𝑛 = 100, 𝜚 = 0.5 and 3000
samples of 𝜉. The left, middle and right panels of Fig. 1 show the
histograms of ‖𝜉 − 𝜉𝑑‖22 for 𝑑 = 10, 30 and 50. Similar histograms are
in Fig. 2 for ‖𝜉 − 𝜉𝑑‖22 and the same values of 𝑑. The plots show, in
agreement with our theoretical results, that the discrepancy between
the samples of 𝜉 and 𝜉𝑑 and between the samples of 𝜉 and 𝜉𝑑 can be
made as small as desired by increasing the stochastic dimension 𝑑.
Note also that histograms of Fig. 1 have a smaller range than those
of Fig. 2 and are closer to zero. Table 1 shows that the excepted 𝐿2

norm of the error for 𝜉𝑑 is smaller than the corresponding error for 𝜉𝑑
for 𝑑 = 10, 30, 50.

3. PC and PCT models

Consider the FD model 𝜉𝑑 in (2.3) whose samples are elements of
the linear space spanned by the top 𝑑 eigenvectors of the covariance
matrix of the target random vector 𝜉. The vector 𝑍 = (𝑍1,… , 𝑍𝑑 ) of
its random coefficients is non-Gaussian with dependent components
unless 𝜉 is Gaussian. Our objective is to construct models of 𝑍 from its
samples which are accurate in the sense that their joint distributions
match the joint distribution of 𝜉, and efficient , i.e., standard Monte
Carlo algorithms can be used to generate samples of these models.

The Rosenblatt transformation [23] provides a model with these
features. It shows that the components of 𝑍 = (𝑍1,… , 𝑍𝑑 ) can be
related to the components of, e.g., a vector 𝐺 = (𝐺1,… , 𝐺𝑑 ) with
independent standard Gaussian variables, by the mapping

𝑍1 = 𝐹−1
1

◦𝛷(𝐺1)

𝑍𝑘|𝑍𝑘−1,… , 𝑍1 = 𝐹−1
𝑘|𝑘−1,…,1

◦𝛷(𝐺𝑘), 2 ≤ 𝑘 ≤ 𝑑, (3.1)

where 𝐹𝑘 is the distribution of 𝑍𝑘, 𝐹𝑘|𝑘−1,…,1 is the distribution of
𝑍𝑘|𝑍𝑘−1,… , 𝑍1. If the mapping in (3.1) is available, samples of 𝑍 can
be obtained from samples of 𝐺, which can be generated by standard
algorithms. Since the conditional distributions in mapping 𝐺 ↦ 𝑍

are available analytically only in special cases, they have to be con-
structed numerically in most applications. Their construction from the
joint distribution of 𝑍 is computationally demanding and the resulting
conditional distributions are likely to be unsatisfactory, particularly
when dealing with heavy tail distributions. The construction of the con-
ditional distributions 𝐹𝑘|𝑘−1,…,1 from data is not feasible when dealing
with high dimensional vectors and relatively small data sets.
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Fig. 1. Histograms of ‖𝜉 − 𝜉𝑑‖22 for 𝑑 = 10, 30, 50 (left, middle and right panels) based on 3000 samples.

Fig. 2. Histograms of ‖𝜉 − 𝜉𝑑‖22 for 𝑑 = 10, 30, 50 (left, middle and right panels) based on 3000 samples.

This section develops approximations of the Rosenblatt transforma-
tion for the random coefficients (𝑍1,… , 𝑍𝑑 ) of the FD models in (2.3)
based on polynomial chaos (PC) and an extension of this representation,
referred to as PCT models. These models of (𝑍1,… , 𝑍𝑑 ) are denoted by
𝑍𝑃𝐶 = (𝑍𝑃𝐶

1
,… , 𝑍𝑃𝐶

𝑑
) and 𝑍𝑃𝐶𝑇 = (𝑍𝑃𝐶𝑇

1
,… , 𝑍𝑃𝐶𝑇

𝑑
).

3.1. Definitions

Unless stated otherwise, the PC models considered here are
quadratic forms of independent standard Gaussian variables 𝐺1,… , 𝐺𝑑
defined by

𝑍𝑃𝐶
𝑘

= 𝐸[𝑍𝑘] +

𝑑∑

𝑗=1

𝑎𝑘,𝑗𝐺𝑗 +
∑

1≤𝑗≤𝑙≤𝑑
𝑎𝑘,𝑗,𝑙(𝐺𝑗𝐺𝑙 − 𝛿𝑗𝑙), 𝑘 = 1,… , 𝑑, (3.2)

where {𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙} are yet undetermined coefficients. This form is used
to limit the computational effort related to the determination of the
unknown coefficients in the expressions of {𝑍𝑃𝐶

𝑘
}. Note that 𝐸[𝑍𝑃𝐶

𝑘
] =

𝐸[𝑍𝑘] by construction, since 𝐸[𝐺𝑗 ] = 0 and 𝐸
[
𝐺𝑗𝐺𝑙 − 𝐸[𝐺𝑗𝐺𝑙]

]
= 0 for

any 1 ≤ 𝑗 ≤ 𝑙 ≤ 𝑑. The coefficients {𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙} in (3.2) are determined
by minimizing the objective function

𝑒1(𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙) = 𝑔1𝐸[ ‖𝑍 −𝑍𝑃𝐶‖2
2
]

+ 𝑔2 max
1≤𝑖1<𝑖2≤𝑑

‖ℎ𝑖1 ,𝑖2 (⋅) − ℎ
𝑃𝐶
𝑖1 ,𝑖2

(⋅|𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙)‖2

+ 𝑔3(‖𝐸[𝑍𝑍𝑇 ] − 𝐸[𝑍𝑃𝐶 (𝑍𝑃𝐶 )𝑇 ]‖) (3.3)

where ℎ𝑖1 ,𝑖2
(⋅) is the histogram of (𝑍𝑖1 , 𝑍𝑖2 ) and ℎ𝑃𝐶

𝑖1 ,𝑖2
(⋅|𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙) is

the histogram of (𝑍𝑃𝐶
𝑖1
, 𝑍𝑃𝐶

𝑖2
) for given coefficients {𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙}. The

Matlab function histcounts2 is used to construct the two dimensional
histograms of (𝑍𝑖1 , 𝑍𝑖2 ) and (𝑍𝑃𝐶

𝑖1
, 𝑍𝑃𝐶

𝑖2
). The error between the two

matrices is described by the norm ‖ ⋅ ‖2, i.e., the absolute largest
eigenvalue of the error matrix. We consider the set of all pairs of
components rather than all components to minimize calculations. The
weighting coefficients 𝑔1, 𝑔2, 𝑔3 are such that the components 𝐸[ ‖𝑍 −

𝑍𝑃𝐶‖2
2
], max1≤𝑖1<𝑖2≤𝑑 ‖ℎ𝑖1 ,𝑖2 (⋅) − ℎ𝑃𝐶

𝑖1 ,𝑖2
(⋅|𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙)‖2 and ‖𝐸[𝑍𝑍𝑇 ] −

𝐸[𝑍𝑃𝐶 (𝑍𝑃𝐶 )𝑇 ]‖ contribute equally to the objective function (3.3). We
set 𝑔1 = 0 if 𝑍 and 𝑍𝑃𝐶 are not defined on the same probability space
since the mean squared error 𝐸[ ‖𝑍 −𝑍𝑃𝐶‖2

2
] cannot be calculated.

The components of the PCT models are defined by

𝑍𝑃𝐶𝑇
𝑘

= 𝐹−1
𝑘

◦𝐹 𝑃𝐶
𝑘

(𝑍𝑃𝐶
𝑘

), 𝑘 = 1,… , 𝑑, (3.4)

where 𝐹 𝑃𝐶
𝑘

is the distribution of 𝑍𝑃𝐶
𝑘

for given coefficients {𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙}
and 𝐹𝑘 is the distribution of 𝑍𝑘. In applications, 𝐹 𝑃𝐶

𝑘
and 𝐹𝑘 are

empirical distributions estimated from data, see Section 4.4. The coef-
ficients {𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙} in (3.4) are determined by minimizing the objective
function

𝑒2(𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙) = 𝑤1𝐸[ ‖𝑍 −𝑍𝑃𝐶𝑇 ‖2
2
]

+𝑤2 max
1≤𝑖1<𝑖2≤𝑑

‖𝑠𝑖1 ,𝑖2 (⋅) − 𝑠
𝑃𝐶𝑇
𝑖1 ,𝑖2

(⋅|𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙)‖2

+𝑤3 max
1≤𝑖1<𝑖2≤𝑑

‖ℎ𝑖1 ,𝑖2 (⋅) − ℎ
𝑃𝐶𝑇
𝑖1 ,𝑖2

(⋅|𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙)‖2, (3.5)

where ℎ𝑖1 ,𝑖2 (⋅) is as in (3.3), 𝑠𝑖1 ,𝑖2 (⋅) is the spectral measure of (𝑍𝑖1 , 𝑍𝑖2 ),
𝑠𝑃𝐶𝑇
𝑖1 ,𝑖2

(⋅|𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙) and ℎ𝑃𝐶𝑇𝑖1 ,𝑖2
(⋅|𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙) are the spectral measure and the

histogram of (𝑍𝑃𝐶𝑇
𝑖1

, 𝑍𝑃𝐶𝑇
𝑖2

) for given coefficients {𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙}. Spectral
measures of (𝑍𝑖1 , 𝑍𝑖2 ) are metrics which quantify the likelihood that
(𝑍𝑖1 , 𝑍𝑖2 ) are simultaneously large, see (5.3) and (5.4) in [24] for def-
initions and [25], Chap.6 for technical details. We sort the samples of
the two-dimensional vectors (𝑍𝑖1 , 𝑍𝑖2 ) and (𝑍𝑃𝐶𝑇

𝑖1
, 𝑍𝑃𝐶𝑇

𝑖2
) according to

their lengths such that the first sample is the furthest to the origin and
construct the spectral measures from the top 10% of these samples. The
Matlab function histcounts2 is used to construct the two dimensional
histograms and spectral measures of (𝑍𝑖1 , 𝑍𝑖2 ) and (𝑍𝑃𝐶𝑇

𝑖1
, 𝑍𝑃𝐶𝑇

𝑖2
). We

consider the set of all pairs of components rather than all components
to minimize calculations. The weighting coefficients 𝑤1, 𝑤2, 𝑤3 are
such that the components 𝐸[ ‖𝑍 − 𝑍𝑃𝐶𝑇 ‖2

2
], max1≤𝑖1<𝑖2≤𝑑 ‖𝑠𝑖1 ,𝑖2 (⋅) −

𝑠𝑃𝐶𝑇
𝑖1 ,𝑖2

(⋅|𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙)‖2 and max1≤𝑖1<𝑖2≤𝑑 ‖ℎ𝑖1 ,𝑖2 (⋅) − ℎ𝑃𝐶𝑇𝑖1 ,𝑖2
(⋅|𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙)‖2 con-

tribute equally to the objective function (3.5). We set 𝑤1 = 0 if 𝑍
and 𝑍𝑃𝐶𝑇 are not defined on the same probability space since the
mean squared error 𝐸[ ‖𝑍 − 𝑍𝑃𝐶𝑇 ‖2

2
] cannot be calculated. The

second and third terms of 𝑒2(𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙) quantify differences between the
dependence structure of 𝑍 and 𝑍𝑃𝐶𝑇 . The third term is an approximate
metric for the differences between the joint distributions of 𝑍 and
𝑍𝑃𝐶𝑇 while the second term measures the differences between the tail
dependence of these random vectors.

3.2. PC versus PCT random coefficients

Consider the FD model 𝜉𝑑 in (2.3) whose random coefficients
(𝑍1,… , 𝑍𝑑 ) are given by the PC and PCT models of the previous
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subsection. They have the form

𝜉𝑃𝐶
𝑑

=

𝑑∑

𝑘=1

𝑍𝑃𝐶
𝑘

𝑣𝑘 and 𝜉𝑃𝐶𝑇
𝑑

=

𝑑∑

𝑘=1

𝑍𝑃𝐶𝑇
𝑘

𝑣𝑘 (3.6)

with 𝑍𝑃𝐶
𝑘

and 𝑍𝑃𝐶𝑇
𝑘

in (3.2) and (3.4), respectively.
The PC-based FD models 𝜉𝑃𝐶

𝑑
have been studied extensively [26–

30]. They provide accurate approximations for the means and corre-
lations of target random vectors, processes and fields. Since the PC
vector {𝑍𝑃𝐶

𝑘
} converges in mean square to the target vector {𝑍𝑘}

as the truncation level increases indefinitely, the joint distribution of
{𝑍𝑃𝐶

𝑘
}matches that of {𝑍𝑘} for a sufficiently large truncation level [19,

Chap. 9]. However, this argument does not hold in applications since,
generally, the truncation levels for PC expansions have to be kept low
to limit calculations, which increase exponentially with the truncation
level [31].

The PCT-based FD models 𝜉𝑃𝐶𝑇
𝑑

are novel. Their defining mapping
{𝐺𝑘} ↦ {𝑍𝑃𝐶𝑇

𝑘
} is a nonlinear transformation of the defining mapping

{𝐺𝑘} ↦ {𝑍𝑃𝐶
𝑘

} of PC models. The transformation guarantees that the
marginal distributions of {𝑍𝑃𝐶𝑇

𝑘
} match exactly the target marginal

distributions for any values of the coefficients of the PC representation.
The unknown coefficients of the mapping {𝐺𝑘} ↦ {𝑍𝑃𝐶𝑇

𝑘
} are found

by minimizing differences between joint properties of the components
of {𝑍𝑃𝐶𝑇

𝑘
} and {𝑍𝑘}, as discussed in the previous subsection. Accord-

ingly, the resulting PCT models capture approximately the dependence
between the components of this vector, in addition to matching exactly
the marginal distributions of {𝑍𝑘}.

The practical implication of the differences between PC- and PCT-
based FD models is illustrated in the subsequent sections. They show
that samples of {𝑍𝑃𝐶𝑇

𝑘
} and {𝑍𝑘} are similar while those of {𝑍

𝑃𝐶
𝑘

}

and {𝑍𝑘} differ significantly and that extremes of PCT-based FD models
capture accurately extremes of target processes while PC-based FD
models do not have this capability.

3.3. Numerical illustrations

The following three examples are presented to illustrate the imple-
mentation and accuracy of the PC and PCT models. The Rosenblatt map
𝐺 → 𝑍 can be obtained analytically in the first two examples so that
samples of 𝑍 can be paired with samples of 𝑍𝑃𝐶 and 𝑍𝑃𝐶𝑇 since they
are calculated from the same samples {𝐺(𝜔)} of 𝐺. It is not possible to
pair samples of 𝑍 with samples of 𝑍𝑃𝐶 and 𝑍𝑃𝐶𝑇 in the last example
since the Rosenblatt map is not available analytically.

Example 3.1. Let 𝑀 = (𝑀1,𝑀2) ∈ R
2 be a Gaussian vector with zero-

mean, unit variance and correlation 𝐸[𝑀1𝑀2] = 𝜌, 0 < 𝜌 < 1. Let
𝑍 = (𝑍1, 𝑍2) be a random vector, where 𝑍𝑘 = 𝐹−1

𝑘
◦𝛷(𝑀𝑘) with (i) 𝐹𝑘

is uniform in (0, 1), 𝑘 = 1, 2 and (ii) 𝐹𝑘 is exponential with parameters
𝜇𝑘 > 0, 𝑘 = 1, 2.

Note that the joint distribution of (𝑍1, 𝑍2) and the conditional
distribution of 𝑍2|𝑍1 are

𝑃 (𝑍1 ≤ 𝑧1, 𝑍2 ≤ 𝑧2) = 𝑃
(
𝑀1 ≤ 𝛷−1◦𝐹1(𝑧1),𝑀2 ≤ 𝛷−1◦𝐹2(𝑧2)

)

and

𝐹𝑍2|𝑍1=𝑧1
(𝑧2)

= ∫
𝛷−1◦𝐹2(𝑧2)

−∞

1√
2𝜋(1 − 𝜌2)

exp

×

{
−

1

2(1 − 𝜌2)

((
𝜌𝛷−1◦𝐹1(𝑧1)

)2
− 2𝜌𝛷−1◦𝐹1(𝑧1)𝑢 + 𝑢

2
)}

𝑑𝑢

= ∫
𝛷−1◦𝐹2(𝑧2)

−∞

1√
2𝜋(1 − 𝜌2)

exp

{
−

1

2(1 − 𝜌2)

(
𝑢 − 𝜌𝛷−1◦𝐹1(𝑧1)

)2
}
𝑑𝑢

= 𝛷

(
𝛷−1◦𝐹2(𝑧2) − 𝜌𝛷

−1◦𝐹1(𝑧1)√
1 − 𝜌2

)
.

The definition of {𝑍𝑘} and the above distributions give the Rosenblatt
map

𝐺1 = 𝛷−1◦𝐹1(𝑍1) =𝑀1

𝐺2 = 𝛷−1◦𝐹2|1(𝑍2|𝑍1) =
𝑀2 − 𝜌𝑀1√

1 − 𝜌2
. (3.7)

where 𝐺1 and 𝐺2 are independent standard Gaussian variables.

The PC representation 𝑍𝑃𝐶 = (𝑍𝑃𝐶
1
, 𝑍𝑃𝐶

2
) is given by (3.2) with

𝑑 = 2, where the coefficients {𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙} for the PC model are deter-
mined by minimizing the objective function in (3.3). The PCT model
𝑍𝑃𝐶𝑇 = (𝑍𝑃𝐶𝑇

1
, 𝑍𝑃𝐶𝑇

2
) is defined by (3.4) with 𝑑 = 2, where the coeffi-

cients {𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙} for the PCT model are determined by minimizing the
objective function in (3.5).

Since 𝑍, 𝑍𝑃𝐶 and 𝑍𝑃𝐶𝑇 are defined on the same probability space,
the terms 𝐸[ ‖𝑍 − 𝑍𝑃𝐶‖2

2
] and 𝐸[ ‖𝑍 − 𝑍𝑃𝐶𝑇 ‖2

2
] of the objective

functions (3.3) and (3.5) can be calculated. We set 𝑔2 = 𝑔3 = 0,
since the resulting objective function (3.3) is adequate for constructing
PC models [9]. We set 𝑤3 = 0, since we are interested in the tail
dependence, see comments following (3.5). The values of 𝑤1 and 𝑤2

in (3.5) are given in the subsequent two cases.

Case (i): 𝐹𝑘 is uniform in (0, 1) for 𝑘 = 1, 2. Generally, it is not
possible to obtain analytical expressions of coefficients {𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙} of
the PC model. We show that the expressions of {𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙} can be found
in this special case. Note that the following two equations hold for any
𝑘 = 1, 2,

𝐸[𝑀𝑘𝛷(𝑀𝑘)] = ∫
∞

−∞

𝑥𝛷(𝑥)
√
2𝜋

𝑒−𝑥
2∕2𝑑𝑥 = ∫

∞

−∞

−
𝛷(𝑥)
√
2𝜋
𝑑𝑒−𝑥

2∕2

= ∫
∞

−∞

𝑒−𝑥
2

2𝜋
𝑑𝑥 =

1

2
√
𝜋

and

𝐸[𝑀2
𝑘
𝛷(𝑀𝑘)] = ∫

∞

−∞

𝑥2𝛷(𝑥)
√
2𝜋

𝑒−𝑥
2∕2𝑑𝑥 = ∫

∞

−∞

−
𝑥𝛷(𝑥)
√
2𝜋

𝑑𝑒−𝑥
2∕2

= ∫
∞

−∞

𝑒−𝑥
2∕2

√
2𝜋

𝑑𝑥𝛷(𝑥) = ∫
∞

−∞

𝛷(𝑥)
√
2𝜋
𝑒−𝑥

2∕2𝑑𝑥

+ ∫
∞

−∞

𝑥𝑒−𝑥
2

2𝜋
𝑑𝑥 =

1

2
𝛷2(𝑥)

||||

∞

−∞

=
1

2
.

Since𝑀2−𝜌𝑀1 is independent of 𝛷(𝑀1) and 𝜌𝑀2−𝑀1 is independent
of 𝛷(𝑀2), then

𝐸[𝑍1𝑍
𝑃𝐶
1

] =
1

2
𝐸[𝛷(𝑀1)] + 𝑎1,1𝐸[𝑀1𝛷(𝑀1)]

+ 𝑎1,2𝐸

[
𝑀2 − 𝜌𝑀1√

1 − 𝜌2
𝛷(𝑀1)

]

+ 𝑎1,1,1𝐸[𝑀
2
1
𝛷(𝑀1) −𝛷(𝑀1)]

+ 𝑎1,1,2𝐸

[
𝑀1(𝑀2 − 𝜌𝑀1)

1 − 𝜌2
𝛷(𝑀1)

]

+ 𝑎1,2,2𝐸

[
(𝑀2 − 𝜌𝑀1)

2

1 − 𝜌2
𝛷(𝑀1) −𝛷(𝑀1)

]

=
1

4
+

𝑎1,1

2
√
𝜋

and

𝐸[𝑍2𝑍
𝑃𝐶
2

] =
1

2
𝐸[𝛷(𝑀2)] + 𝑎2,1𝐸[𝑀1𝛷(𝑀2)]

+ 𝑎2,2𝐸

[
𝑀2 − 𝜌𝑀1√

1 − 𝜌2
𝛷(𝑀2)

]

+ 𝑎2,1,1𝐸[𝑀
2
1
𝛷(𝑀2) −𝛷(𝑀2)]

+ 𝑎2,1,2𝐸

[
𝑀1(𝑀2 − 𝜌𝑀1)√

1 − 𝜌2
𝛷(𝑀2)

]

+ 𝑎2,2,2𝐸

[
(𝑀2 − 𝜌𝑀1)

2

1 − 𝜌2
𝛷(𝑀2) −𝛷(𝑀2)

]
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Fig. 3. Histograms of (𝑍1 , 𝑍2), (𝑍
𝑃𝐶
1
, 𝑍𝑃𝐶

2
) obtained under the objective function (3.3) with (𝑔1 , 𝑔2 , 𝑔3) = (1, 0, 0) and (𝑍𝑃𝐶𝑇

1
, 𝑍𝑃𝐶𝑇

2
) obtained under the objective function (3.5) with

(𝑤1 , 𝑤2 , 𝑤3) = (228, 500, 0) based on 5000 samples (left, middle and right panels).

=
1

4
+
𝜌𝑎2,1

2
√
𝜋
+
𝑎2,2

2

√
1 − 𝜌2

𝜋
.

Therefore from

𝐸[(𝑍𝑃𝐶
𝑘

)2]

= 𝐸

[(
1

2
+ 𝑎𝑘,1𝐺1 + 𝑎𝑘,2𝐺2 + 𝑎𝑘,1,1(𝐺

2
1
− 1) + 𝑎𝑘,1,2𝐺1𝐺2 + 𝑎𝑘,2,2(𝐺

2
2
− 1)

)2
]

=
1

4
+ 𝑎2

𝑘,1
+ 𝑎2

𝑘,2
+ 2𝑎2

𝑘,1,1
+ 𝑎2

𝑘,1,2
+ 2𝑎2

𝑘,2,2
, 𝑘 = 1, 2,

we have

𝑒1(𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙)

= 𝐸[𝑍2
1
] − 2𝐸[𝑍1𝑍

𝑃𝐶
1

] + 𝐸[(𝑍𝑃𝐶
1

)2] + 𝐸[𝑍2
2
] − 2𝐸[𝑍2𝑍

𝑃𝐶
2

] + 𝐸[(𝑍𝑃𝐶
2

)2]

=
2

3
− 1 −

𝑎1,1√
𝜋
−
𝜌𝑎2,1√
𝜋

− 𝑎2,2

√
1 − 𝜌2

𝜋
+

1

4
+ 𝑎2

1,1
+ 𝑎2

1,2
+ 2𝑎2

1,1,1
+ 𝑎2

1,1,2
+ 2𝑎2

1,2,2

+
1

4
+ 𝑎2

2,1
+ 𝑎2

2,2
+ 2𝑎2

2,1,1
+ 𝑎2

2,1,2
+ 2𝑎2

2,2,2

=
1

6
−

1

2𝜋
+

(
𝑎1,1 −

1

2
√
𝜋

)2

+

(
𝑎2,1 −

𝜌

2
√
𝜋

)2

+ 𝑎2
1,2

+

(
𝑎2,2 −

1

2

√
1 − 𝜌2

𝜋

)2

+2𝑎2
1,1,1

+ 𝑎2
1,1,2

+ 2𝑎2
1,2,2

+ 2𝑎2
2,1,1

+ 𝑎2
2,1,2

+ 2𝑎2
2,2,2

,

which implies the optimal values are 𝑎1,1 = 1∕(2
√
𝜋), 𝑎2,1 = 𝜌∕(2

√
𝜋),

𝑎2,2 =
√
(1 − 𝜌2)∕𝜋∕2 and 𝑎1,2 = 𝑎1,1,1 = 𝑎1,1,2 = 𝑎1,2,2 = 𝑎2,1,1 = 𝑎2,1,2 =

𝑎2,2,2 = 0.
The following numerical results are for 𝜌 = 0.5 and are based

on 5000 samples. The left, middle and right panels of Fig. 3 show
5000 samples of (𝑍1, 𝑍2) and the corresponding samples of (𝑍

𝑃𝐶
1
, 𝑍𝑃𝐶

2
)

obtained under (3.3) and (𝑍𝑃𝐶𝑇
1

, 𝑍𝑃𝐶𝑇
2

) obtained under (3.5) with
(𝑤1, 𝑤2) = (228, 500). For these values of (𝑤1, 𝑤2) the components
𝐸[ ‖𝑍 − 𝑍𝑃𝐶𝑇 ‖2

2
] and max1≤𝑖1<𝑖2≤𝑑 ‖𝑠𝑖1 ,𝑖2 (⋅) − 𝑠𝑃𝐶𝑇

𝑖1 ,𝑖2
(⋅|𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙)‖2 of

the objective function (3.5) have similar magnitudes. The two dimen-
sional histograms of the middle panel suggest that the joint densities
of (𝑍1, 𝑍2) and (𝑍𝑃𝐶

1
, 𝑍𝑃𝐶

2
) differ significantly. The left, middle and

right panels of Fig. 4 show the histograms of ‖𝑍 − 𝑍𝑃𝐶‖2
2
obtained

under (3.3) and of ‖𝑍 − 𝑍𝑃𝐶𝑇 ‖2
2
obtained under (3.5) with weighting

coefficients (𝑤1, 𝑤2) = (1, 0) and (𝑤1, 𝑤2) = (228, 500). They suggest that
the PCT model is superior to the PC model. We take two different sets
of (𝑤1, 𝑤2) to assess the usefulness of including the spectral measures in
the objective function (3.5). The plots suggest that objective functions
with the spectral measures delivered improved PCT models.

Case (ii): 𝐹𝑘 is exponential with parameters 𝜇𝑘 > 0, 𝑘 = 1, 2. Then
we have 𝑍𝑘 = − log

(
1−𝛷(𝑀𝑘)

)
∕𝜇𝑘 and the Rosenblatt mapping 𝐺 → 𝑍

is given by (3.7).
The following numerical results are for 𝜌 = 0.5, 𝜇1 = 1, 𝜇2 = 2,

and are based on 5000 samples. The left, middle and right panels of
Fig. 5 show 5000 samples of (𝑍1, 𝑍2) and the corresponding samples
of (𝑍𝑃𝐶

1
, 𝑍𝑃𝐶

2
) obtained under (3.3) and (𝑍𝑃𝐶𝑇

1
, 𝑍𝑃𝐶𝑇

2
) obtained under

(3.5) with (𝑤1, 𝑤2) = (3000, 500). For these values of (𝑤1, 𝑤2) the compo-
nents 𝐸[ ‖𝑍−𝑍𝑃𝐶𝑇 ‖2

2
] and max1≤𝑖1<𝑖2≤𝑑 ‖𝑠𝑖1 ,𝑖2 (⋅)−𝑠𝑃𝐶𝑇𝑖1 ,𝑖2

(⋅|𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙)‖2 of
the objective function (3.5) have similar magnitudes. The two dimen-
sional histograms of the middle panel suggest that the joint densities
of (𝑍1, 𝑍2) and (𝑍𝑃𝐶

1
, 𝑍𝑃𝐶

2
) differ significantly. The left, middle and

right panels of Fig. 6 show the histograms of ‖𝑍 − 𝑍𝑃𝐶‖2
2
obtained

under (3.3) and of ‖𝑍 − 𝑍𝑃𝐶𝑇 ‖2
2
obtained under (3.5) with weighting

coefficients (𝑤1, 𝑤2) = (1, 0) and (𝑤1, 𝑤2) = (3000, 500). They suggest
that the PCT model is superior to the PC model. We take two different
sets of values of (𝑤1, 𝑤2) to assess the usefulness of including the
spectral measures in the objective function (3.5). The plots suggest that
objective functions with the spectral measures delivered improved PCT
models.

Example 3.2. Let 𝑍1 = 𝑅1 and 𝑍2 = 𝑅1 + 𝑅2, where 𝑅1, 𝑅2 are
independent gamma random variables with distribution functions 𝐹𝑘,
𝑘 = 1, 2, and density functions

𝑓𝑅𝑘
(𝑟𝑘) =

1

𝛤 (𝜃𝑘)
𝑒−𝑟𝑘 𝑟

𝜃𝑘−1

𝑘
, 𝑟𝑘, 𝜃𝑘 > 0, 𝑘 = 1, 2.

The CDF of the conditional random variable 𝑍2|𝑍1 = 𝑧1 is

𝐹𝑍2|𝑍1=𝑧1
(𝑧2) = 𝑃 (𝑅1+𝑅2 ≤ 𝑧2|𝑅1 = 𝑧1) = 𝑃 (𝑅2 ≤ 𝑧2−𝑧1) = 𝐹𝑅2

(𝑧2−𝑧1).

so that the Rosenblatt map has the form

𝐺1 = 𝛷−1◦𝐹1(𝑍1)

𝐺2 = 𝛷−1◦𝐹2|1(𝑍2|𝑍1) = 𝛷−1◦𝐹𝑅2
(𝑍2 −𝑍1) = 𝛷−1◦𝐹𝑅2

(𝑅2). (3.8)

where 𝐺1 and 𝐺2 are independent standard Gaussian variables.

The PC representation 𝑍𝑃𝐶 = (𝑍𝑃𝐶
1
, 𝑍𝑃𝐶

2
) is given by (3.2) with

𝑑 = 2, where the coefficients {𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙} for the PC model are deter-
mined by minimizing the objective function in (3.3). The PCT model
𝑍𝑃𝐶𝑇 = (𝑍𝑃𝐶𝑇

1
, 𝑍𝑃𝐶𝑇

2
) is defined by (3.4) with 𝑑 = 2, where the coeffi-

cients {𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙} for the PCT model are determined by minimizing the
objective function in (3.5).

Since 𝑍, 𝑍𝑃𝐶 and 𝑍𝑃𝐶𝑇 are defined on the same probability space,
the terms 𝐸[ ‖𝑍 − 𝑍𝑃𝐶‖2

2
] and 𝐸[ ‖𝑍 − 𝑍𝑃𝐶𝑇 ‖2

2
] of the objective

functions (3.3) and (3.5) can be calculated. We set 𝑔2 = 𝑔3 = 0,
since the resulting objective function (3.3) is adequate for constructing
PC models [9]. We set 𝑤3 = 0, since we are interested in the tail
dependence, see comments following (3.5). The values of 𝑤1 and 𝑤2

in (3.5) are given in the subsequent numerical experiment.

The following numerical results are for 𝜃1 = 2, 𝜃2 = 3 and are based
on 5000 samples. The left, middle and right panels of Fig. 7 show
5000 samples of (𝑍1, 𝑍2) and the corresponding samples of (𝑍

𝑃𝐶
1
, 𝑍𝑃𝐶

2
)

obtained under (3.3) and (𝑍𝑃𝐶𝑇
1

, 𝑍𝑃𝐶𝑇
2

) obtained under (3.5) with
(𝑤1, 𝑤2) = (3000, 500). For these values of (𝑤1, 𝑤2) the components
𝐸[ ‖𝑍 − 𝑍𝑃𝐶𝑇 ‖2

2
] and max1≤𝑖1<𝑖2≤𝑑 ‖𝑠𝑖1 ,𝑖2 (⋅) − 𝑠𝑃𝐶𝑇

𝑖1 ,𝑖2
(⋅|𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙)‖2 of

the objective function (3.5) have similar magnitudes. The two dimen-
sional histograms of the middle panel suggest that the joint densities
of (𝑍1, 𝑍2) and (𝑍𝑃𝐶

1
, 𝑍𝑃𝐶

2
) differ significantly. The left, middle and

right panels of Fig. 8 show the histograms of ‖𝑍 − 𝑍𝑃𝐶‖2
2
obtained

under (3.3) and of ‖𝑍 − 𝑍𝑃𝐶𝑇 ‖2
2
obtained under (3.5) with weighting

coefficients (𝑤1, 𝑤2) = (1, 0) and (𝑤1, 𝑤2) = (3000, 500). They suggest
that the PCT model is superior to the PC model. We take two different
sets of (𝑤1, 𝑤2) to assess the contribution of the spectral measure to the
objective function (3.5). The plots suggest that the incorporation of the
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Fig. 4. Histograms of ‖𝑍 − 𝑍𝑃𝐶‖2
2
obtained under the objective function (3.3) with (𝑔1 , 𝑔2 , 𝑔3) = (1, 0, 0) and of ‖𝑍 − 𝑍𝑃𝐶𝑇 ‖2

2
obtained under the objective function (3.5) with

(𝑤1 , 𝑤2 , 𝑤3) = (1, 0, 0) and (𝑤1 , 𝑤2 , 𝑤3) = (228, 500, 0) based on 5000 samples (left, middle and right panels).

Fig. 5. Histograms of (𝑍1 , 𝑍2), (𝑍
𝑃𝐶
1
, 𝑍𝑃𝐶

2
) obtained under the objective function (3.3) with (𝑔1 , 𝑔2 , 𝑔3) = (1, 0, 0) and (𝑍𝑃𝐶𝑇

1
, 𝑍𝑃𝐶𝑇

2
) obtained under the objective function (3.5) with

(𝑤1 , 𝑤2 , 𝑤3) = (3000, 500, 0) based on 5000 samples (left, middle and right panels).

Fig. 6. Histograms of ‖𝑍 − 𝑍𝑃𝐶‖2
2
obtained under the objective function (3.3) with (𝑔1 , 𝑔2 , 𝑔3) = (1, 0, 0) and of ‖𝑍 − 𝑍𝑃𝐶𝑇 ‖2

2
obtained under the objective function (3.5) with

(𝑤1 , 𝑤2 , 𝑤3) = (1, 0, 0) and (𝑤1 , 𝑤2 , 𝑤3) = (3000, 500, 0) based on 5000 samples (left, middle and right panels).

Fig. 7. Histograms of (𝑍1 , 𝑍2), (𝑍
𝑃𝐶
1
, 𝑍𝑃𝐶

2
) obtained under the objective function (3.3) with (𝑔1 , 𝑔2 , 𝑔3) = (1, 0, 0) and (𝑍𝑃𝐶𝑇

1
, 𝑍𝑃𝐶𝑇

2
) obtained under the objective function (3.5) with

(𝑤1 , 𝑤2 , 𝑤3) = (3000, 500, 0) based on 5000 samples (left, middle and right panels).

spectral measures in the objective function improves the quality of PCT
models.

Example 3.3. Let 𝑋1(𝑡), 𝑋2(𝑡), 0 ≤ 𝑡 ≤ 𝜏, be real-valued processes
defined by the differential equations

𝑋̈1(𝑡) + 𝛼1𝑋̇1(𝑡) + 𝛽1𝑋1(𝑡) = 𝜅1𝑉 (𝑡),

𝑋̈2(𝑡) + 𝛼2𝑋̇2(𝑡) + 𝛽2𝑋2(𝑡) = 𝜅2𝑉 (𝑡), 0 ≤ 𝑡 ≤ 𝜏 (3.9)

with the initial conditions 𝑋𝑖(0) = 0 and 𝑋̇𝑖(0) = 0, 𝑖 = 1, 2, where
𝛼𝑖, 𝛽𝑖, 𝜅𝑖 > 0, 𝑖 = 1, 2 are constants. The input is the translation process
𝑉 (𝑡) = 𝐹−1◦𝛷(𝑊 (𝑡)), where 𝐹 is the Gamma distribution function with

the shape parameter 𝜈 and scale parameter 1, 𝑊 (𝑡) is the stationary
solution of 𝑑𝑊 (𝑡) = −𝜗𝑊 (𝑡) 𝑑𝑡 +

√
2 𝜗 𝑑𝐵(𝑡), 𝜗 > 0, and 𝐵 denotes the

standard Brownian motion.

From [32] (Chap.2), the solution of (3.9) is

𝑋𝑖(𝑡) = ∫
𝑡

0

𝜅𝑖

𝜓𝑖
𝑒−𝛼𝑖(𝑡−𝑢)∕2 sin(𝜓𝑖(𝑡 − 𝑢))𝑉 (𝑢)𝑑𝑢, 𝑖 = 1, 2, 0 ≤ 𝑡 ≤ 𝜏, (3.10)

where 𝜓𝑖 = (𝛽𝑖 − 𝛼
2
𝑖
∕4)1∕2, 𝑖 = 1, 2.

Our objective is to construct FD models for the vector-valued pro-
cess

(
𝑋1(𝑡), 𝑋2(𝑡)

)
. Since (3.9) has to be solved numerically, 𝑉 (𝑡) and(

𝑋1(𝑡), 𝑋2(𝑡)
)
are defined and calculated at a finite set of times, e.g., the
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Fig. 8. Histograms of ‖𝑍 − 𝑍𝑃𝐶‖2
2
obtained under the objective function (3.3) with (𝑔1 , 𝑔2 , 𝑔3) = (1, 0, 0) and of ‖𝑍 − 𝑍𝑃𝐶𝑇 ‖2

2
obtained under the objective function (3.5) with

(𝑤1 , 𝑤2 , 𝑤3) = (1, 0, 0) and (𝑤1 , 𝑤2 , 𝑤3) = (3000, 500, 0) based on 5000 samples (left, middle and right panels).

equally spaced times 𝑡𝑖 = 𝑖 𝛥𝑡, 𝑖 = 1,… , 𝑛, where 𝛥𝑡 = 𝜏∕𝑛 denotes
the integration time step. Denote by 𝜂 = (𝑉 (𝑡1),… , 𝑉 (𝑡𝑛)) and 𝜁𝑖 =

(𝑋𝑖(𝑡1),… , 𝑋𝑖(𝑡𝑛)), 𝑖 = 1, 2, the discrete versions of the input 𝑉 (𝑡)

and of the processes 𝑋𝑖(𝑡), 𝑖 = 1, 2. The random vector 𝜂 admits the
representation 𝜂 =

∑𝑛

𝑘=1
𝑍𝑘𝑣𝑘, where {𝑣𝑘} are the eigenvectors of the

covariance matrix 𝐸[𝜂𝜂𝑇 ] and the random coefficients {𝑍𝑘} are defined
sample by projection, i.e., 𝑍𝑘(𝜔) = 𝜂𝑇 (𝜔) 𝑣𝑘, 𝜔 ∈ 𝛺. The corresponding
FD model is 𝜂𝑑 =

∑𝑑

𝑘=1
𝑍𝑘𝑣𝑘. Since the differential Eqs. (3.9) are linear,

their solutions to 𝜂 and 𝜂𝑑 are linear forms of {𝑍𝑘} denoted by 𝜁𝑖 = {𝜁𝑖,𝑗}

and 𝜁𝑑∶𝑖 = {𝜁𝑑∶𝑖,𝑗}, 𝑖 = 1, 2, 𝑗 = 1,… , 𝑛.
We construct PC and PCT models of the random vector (𝑍1,… , 𝑍𝑑 ).

The PC representation 𝑍𝑃𝐶 = (𝑍𝑃𝐶
1
,… , 𝑍𝑃𝐶

𝑑
) is given by (3.2),

where the coefficients {𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙} for the PC model are determined by
minimizing the objective function in (3.3). The PCT model 𝑍𝑃𝐶𝑇 =

(𝑍𝑃𝐶𝑇
1

,… , 𝑍𝑃𝐶𝑇
𝑑

) is defined by (3.4), where the coefficients {𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙}
for the PCT model are determined by minimizing the objective func-
tion in (3.5). In this example, which mimics the common situation
in applications, target and FD samples cannot be paired as in the
previous two examples, so that we can only compare global properties,
e.g., distributions. As a result, the mean squared errors 𝐸[ ‖𝑍−𝑍𝑃𝐶‖2

2
]

and 𝐸[ ‖𝑍 − 𝑍𝑃𝐶𝑇 ‖2
2
] are not available and are removed from the

objective functions (3.3) and (3.5) by setting 𝑔1 = 𝑤1 = 0. The discrete
versions of the FD models of 𝑋𝑖(𝑡), 𝑖 = 1, 2, corresponding to the PC and
PCT models 𝑍𝑃𝐶 and 𝑍𝑃𝐶𝑇 of 𝑍 are denoted by 𝜁𝑃𝐶

𝑑∶𝑖
and 𝜁𝑃𝐶𝑇

𝑑∶𝑖
. They

are elements of the same 𝑛-dimensional Euclidean space. An additional
FD model denoted by 𝜁𝑑∶𝑖 is constructed. It has the same functional
form as 𝜁𝑃𝐶

𝑑∶𝑖
and 𝜁𝑃𝐶𝑇

𝑑∶𝑖
but the samples of its random coefficients are

given by 𝑍𝑘(𝜔) = 𝜂𝑇 (𝜔)𝑣𝑘, see discussion following (3.10).
The following numerical results are for 𝜈 = 2, 𝛼1 = 0.1, 𝛼2 = 0.5, 𝛽1 =

25, 𝛽2 = 9, 𝜅1 = 1, 𝜅2 = 10, 𝜗 = 5, 𝜏 = 10, 𝑛 = 1000, 𝑑 = 20 and the
time step 𝛥𝑡 = 0.01. We set 𝑔1 = 𝑤1 = 0 since the mean squared
errors 𝐸[ ‖𝑍 − 𝑍𝑃𝐶‖2

2
] and 𝐸[ ‖𝑍 − 𝑍𝑃𝐶𝑇 ‖2

2
] are not available, see

comments following (3.3) and (3.5). The other weighting coefficients
are (𝑔2, 𝑔3) = (1, 300) and (𝑤2, 𝑤3) = (1, 1.1). For these values, the
components max1≤𝑖1<𝑖2≤𝑑 ‖ℎ𝑖1 ,𝑖2 (⋅) − ℎ𝑃𝐶𝑖1 ,𝑖2 (⋅|𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙)‖2 and ‖𝐸[𝑍𝑍𝑇 ] −

𝐸[𝑍𝑃𝐶 (𝑍𝑃𝐶 )𝑇 ]‖ of the objective function (3.3) and the components
max1≤𝑖1<𝑖2≤𝑑 ‖𝑠𝑖1 ,𝑖2 (⋅) − 𝑠𝑃𝐶𝑇

𝑖1 ,𝑖2
(⋅|𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙)‖2 and max1≤𝑖1<𝑖2≤𝑑 ||ℎ𝑖1 ,𝑖2 (⋅) −

ℎ𝑃𝐶𝑇
𝑖1 ,𝑖2

(⋅|𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙)||2 of the objective function (3.5) have similar mag-
nitudes so that they contribute equally to the objective functions. All
the plots are based on 10000 samples.

The left, middle and right panels of Figs. 9 and 10 show the two
dimensional histograms of (𝑍𝑖, 𝑍𝑗 ), (𝑍

𝑃𝐶
𝑖
, 𝑍𝑃𝐶

𝑗
) obtained under (3.3)

and (𝑍𝑃𝐶𝑇
𝑖

, 𝑍𝑃𝐶𝑇
𝑗

) obtained under (3.5). Visual inspection of the plots
in Figs. 9 and 10 suggests that the PCT histograms are closer to the
target histograms then PC histograms. This qualitative observation
is confirmed by the plots of Fig. 11 which show with estimates of
extremes for PC- and PCT-based FD models. The PCT-based estimates of
extremes follow closely the target estimates in contrast to the PC-based
estimates which are unsatisfactory.

The thin solid lines of the left and right panels of Fig. 11 are
estimates of 𝑃 (‖𝜁𝑖‖ > 𝑥) for 𝑖 = 1 and 𝑖 = 2 which are obtained directly
from data, where ‖𝜁𝑖‖ = max1≤𝑗≤𝑛 |𝜁𝑖,𝑗 |. These probabilities are viewed

as truth. The other lines of the figure are calculated from samples of
𝜁𝑑∶𝑖 (heavy solid lines), 𝜁

𝑃𝐶
𝑑∶𝑖

(dotted lines) and 𝜁𝑃𝐶𝑇
𝑑∶𝑖

(dashed lines) for
the first and second components (left and right panels). The heavy solid
lines are the closest to the truth. The next best model is 𝜁𝑃𝐶𝑇

𝑑∶𝑖
while 𝜁𝑃𝐶

𝑑∶𝑖

differs significantly from the truth. We prefer 𝜁𝑃𝐶𝑇
𝑑∶𝑖

to 𝜁𝑑∶𝑖 since the set
of samples of 𝜁𝑑∶𝑖 is defined by the available data so that it cannot be
extended. In contrast, samples of any size can be generated from 𝜁𝑃𝐶𝑇

𝑑∶𝑖

since its probability law is known.

4. Wind data analysis

PC- and PCT-based FD models are developed for the vector-valued
wind pressure time series recorded in the University of Florida bound-
ary layer wind tunnel facility (UFBLWT) on the surface of a bluff body
at 𝑚 = 6 pressure taps. The experimental setup and recorded data are
discussed in the following subsection. Sections 4.2 and 4.3 construct
PC- and PCT-based FD models and assess their performance. The focus
is on the capability of these models to predict extremes of the recorded
wind pressure time series. The optimization algorithm used to construct
the FD models for the wind time series is presented in Section 4.4.

4.1. Experimental setting and data

The pressure data set used in this section was generated in October
of 2021 as a part of an investigation into the influence of raised
planter bed shapes on their vulnerability to high winds. The study was
inspired by Hurricane Irma (2017) which damaged the plastic coating
over the tops of raised planter beds in agricultural fields in Florida.
These coatings are necessary to optimize the retention of moisture and
nutrients, and their damage due to high winds represents an economic
loss.

The premise of the experimental study was to evaluate the wind
pressures over the surfaces of a series of adjacent agricultural planter
bed rows using 1:10 scale models of two different planter bed shapes,
see the top panel of Fig. 12. The complete model consisted of 5 adjacent
rows of raised planter beds, see the bottom panel of Fig. 12. Three of
these rows were fitted with 84 pressure taps each over half the length
of the row. The left panel of Fig. 13 shows the five adjacent bed model,
the location of the 252 taps, and the approach wind direction employed
in this section. The box on the center row in the left panel shows the
location of the six taps used in this section, which are numbered 79−84

from left to right. The model was mounted on a turntable to change the
approach wind direction. The right panel of Fig. 13 shows the model
in the wind tunnel in the zero degree approach wind angle.

For both planter bed shapes, the pressure data were sampled at
625 Hz for 180 s for 36 directions and two different boundary layer
roughness regimes (open and suburban exposure).

The subset of data accessed for the study presented in the following
two subsections corresponds to the wide planter bed shape in the right
panel of Fig. 12, zero degree wind approach in the right panel of
Fig. 13, the open terrain exposure, and the six taps identified in the
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Fig. 9. Histograms of (𝑍1 , 𝑍2), (𝑍
𝑃𝐶
1
, 𝑍𝑃𝐶

2
) obtained under the objective function (3.3) with (𝑔1 , 𝑔2 , 𝑔3) = (0, 1, 300) and (𝑍𝑃𝐶𝑇

1
, 𝑍𝑃𝐶𝑇

2
) obtained under the objective function (3.5)

with (𝑤1 , 𝑤2 , 𝑤3) = (0, 1, 1.1) based on 10000 samples (left, middle and right panels).

Fig. 10. Histograms of (𝑍5 , 𝑍10), (𝑍
𝑃𝐶
5
, 𝑍𝑃𝐶

10
) obtained under the objective function (3.3) with (𝑔1 , 𝑔2 , 𝑔3) = (0, 1, 300) and (𝑍𝑃𝐶𝑇

5
, 𝑍𝑃𝐶𝑇

10
) obtained under the objective function (3.5)

with (𝑤1 , 𝑤2 , 𝑤3) = (0, 1, 1.1) based on 10000 samples (left, middle and right panels).

Fig. 11. Estimates of the target probability 𝑃 (‖𝜁𝑖‖ > 𝑥) (thin solid line), estimates based on FD model (heavy solid line), estimates based on finite dimensional PC model (dotted
line) and estimates based on finite dimensional PCT model in logarithmic scale (dashed line) for 𝜁1 and 𝜁2 (left and right panels).

left panel of Fig. 13. All experiments were conducted with a steady fan
speed of 1200 RPM, resulting in stationary ergodic datasets.

The left and right panels of Fig. 14 show segments of length 1000

of the wind pressure records at taps 79 and 80. The lack of symme-
try of these records suggests that the wind pressure process is non-
Gaussian. This qualitative observation is quantified in the following two
subsections.

4.2. Construction of FD models

Let
(
𝑦1, 𝑦2,… , 𝑦𝑛

)
with 𝑦𝑗 = (𝑦1,𝑗 ,… , 𝑦𝑚,𝑗 )

𝑇 , 𝑗 = 1,… , 𝑛 be the
wind pressure record at 𝑚 pressure taps. The analysis in this section
considers the pressure taps 79 to 84 so that 𝑚 = 6, (Fig. 13, left).
The taps 79 − 84 are renamed 1 − 6 in the remainder of this section.
The proximity of these six taps is such that strong spatial correlation
exists over adjacent pairs. The record has length 𝑛 = 110000 and time
step 𝛥𝑡 = 0.0016 seconds. It is assumed that the record is a sample
of an 𝑚 = 6 dimensional time series which is stationary and ergodic.
Our objective is to construct FD models of this series whose random
coefficients are represented by PC and PCT models, see (3.2) and (3.4).

The construction involves the following three steps.

– Step 1: The available record in partition in 𝑞 segments of length
𝑁 = [𝑛∕𝑞] each, i.e., (𝑦1, 𝑦2,… , 𝑦𝑁 ) is the first sample, (𝑦𝑁+1,

𝑦𝑁+2,… , 𝑦2𝑁 ) is the second sample and so on. These segments
are assumed to be 𝑞 independent realizations of an𝑁-dimensional
vector (𝑌1, 𝑌2,… , 𝑌𝑁 ). This heuristic assumption is supported by
the estimates of the correlation functions of the time series based
on the entire record and on its 𝑞 segments shown in Figs. 15 and
16 by heavy solid lines and heavy dotted lines which nearly co-
incide. The above partition of the record violates our assumption
of independence. To satisfy this assumption, we should skip every
other segment of length 𝑁 . Yet, numerical studies suggest that
such precaution is unnecessary and is not implemented.

– Step 2: Let 𝑖 = (𝑌𝑖,1, 𝑌𝑖,2,… , 𝑌𝑖,𝑁 )𝑇 , 𝑖 = 1,… , 𝑚, denote the 𝑚-
dimensional time series of length 𝑁 describing the wind model.
We construct the FD models 𝑑∶𝑖 = (𝑑∶𝑖,1,… ,𝑑∶𝑖,𝑁 )𝑇 of the type

𝑑∶𝑖 =
𝑑∑

𝑘=1

𝑍𝑖,𝑘 𝑣𝑖,𝑘, 𝑖 = 1,… , 𝑚, (4.1)
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Fig. 12. Top Row: Full-scale dimensions of the cross section of a single row of the wide (left panel) and compact (right panel) planter bed model. Bottom Row: The 1:10 scale
full 5-row model of the wide (left panel) and compact (right panel) planter beds as installed on the 1 m diameter turntable.

Fig. 13. Left panel: Locations of 252 pressure taps on the upper half of three out of five planter bed rows. The box on the center row shows the location of taps 79–84 (left to
right) used in this study. The arrow indicates the zero degree wind approach direction used in this study. Right panel: Model in the wind tunnel at zero degree wind approach
angle.

Fig. 14. Segments of length 1000 of wind pressure records at taps 79 and 80 (left and right panels).
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Fig. 15. Correlation function 𝑐𝑖𝑖(𝑢) = 𝐸[𝑌𝑖,1𝑌𝑖,𝑢], 𝑖 = 1,… , 6 for the time lag 𝑢 = 1,… , 20 estimated by the entire records and the partitioned samples (heavy solid lines and heavy
dotted lines).

where {𝑣𝑖,𝑘} are the eigenvectors of the covariance matrix
𝐸[𝑖𝑇

𝑖
] and the random coefficients {𝑍𝑖,𝑘} are defined sample

by projection, i.e., 𝑍𝑖,𝑘(𝜔) = 𝑖(𝜔)𝑇 𝑣𝑖,𝑘, 𝜔 ∈ 𝛺. These samples are
used to estimate the marginal distributions 𝐹𝑖,𝑘 of 𝑍𝑖,𝑘.

– Step 3: We construct PC and PCT models of the random vectors
𝑍 = (𝑍1,1,… , 𝑍1,𝑑 ,…, 𝑍𝑚,𝑑 )

𝑇 . The set of FD models in (4.1)
depends on 𝑚𝑑 random coefficients which are related to 𝑚𝑑

independent standard Gaussian variables 𝐺1, 𝐺2,… , 𝐺𝑚𝑑 by

𝑍𝑃𝐶
𝑖,𝑘

= 𝐸[𝑍𝑖,𝑘] +

𝑚𝑑∑

𝑗=1

𝑎𝑖,𝑘,𝑗𝐺𝑗 +
∑

1≤𝑗≤𝑙1≤𝑚𝑑
𝑎𝑖,𝑘,𝑗,𝑙1

(𝐺𝑗𝐺𝑙1
− 𝛿𝑗𝑙1

)

+
∑

1≤𝑗≤𝑙1≤𝑙2≤𝑚𝑑
𝑎𝑖,𝑘,𝑗,𝑙1 ,𝑙2

𝐺𝑗𝐺𝑙1
𝐺𝑙2

+
∑

1≤𝑗≤𝑙1≤𝑙2≤𝑙3≤𝑚𝑑
𝑎𝑖,𝑘,𝑗,𝑙1 ,𝑙2 ,𝑙3

(𝐺𝑗𝐺𝑙1
𝐺𝑙2

𝐺𝑙3
− 𝐸[𝐺𝑗𝐺𝑙1

𝐺𝑙2
𝐺𝑙3

]),

𝑖 = 1,… , 𝑚, 𝑘 = 1,… , 𝑑, (4.2)

where the coefficients {𝑎𝑖,𝑘,𝑗 , 𝑎𝑖,𝑘,𝑗,𝑙1 , 𝑎𝑖,𝑘,𝑗,𝑙1 ,𝑙2 , 𝑎𝑖,𝑘,𝑗,𝑙1 ,𝑙2 ,𝑙3} are de-
termined by minimizing the objective function (3.3). The above
equation gives us the PC model 𝑍𝑃𝐶 = (𝑍𝑃𝐶

1,1
,… , 𝑍𝑃𝐶

1,𝑑
,… , 𝑍𝑃𝐶

𝑚,𝑑
)𝑇

∈ R
𝑚𝑑 and extends (3.2), by increasing the degree of the polyno-

mial chaos from two to four. The PCT model 𝑍𝑃𝐶𝑇 = (𝑍𝑃𝐶𝑇
1,1

,… ,

𝑍𝑃𝐶𝑇
1,𝑑

,…, 𝑍𝑃𝐶𝑇
𝑚,𝑑

)𝑇 ∈ R
𝑚𝑑 is defined by

𝑍𝑃𝐶𝑇
𝑖,𝑘

= 𝐹−1
𝑖,𝑘

◦𝐹 𝑃𝐶
𝑖,𝑘

(𝑍𝑃𝐶
𝑖,𝑘

), 𝑖 = 1,… , 𝑚, 𝑘 = 1,… , 𝑑, (4.3)

where 𝐹 𝑃𝐶
𝑖,𝑘

is the distribution of 𝑍𝑃𝐶
𝑖,𝑘

for given coefficients
{𝑎𝑖,𝑘,𝑗 , 𝑎𝑖,𝑘,𝑗,𝑙1 , 𝑎𝑖,𝑘,𝑗,𝑙1 ,𝑙2 , 𝑎𝑖,𝑘,𝑗,𝑙1 ,𝑙2 ,𝑙3}. These coefficients are deter-
mined by minimizing the objective function (3.5). Since target
and FD samples cannot be paired as in Examples 3.1 and 3.2, we
can only compare global properties, e.g., distributions. As a result,
the mean squared errors 𝐸[ ‖𝑍 −𝑍𝑃𝐶‖2

2
] and 𝐸[ ‖𝑍 −𝑍𝑃𝐶𝑇 ‖2

2
]

are not available and are removed from the objective functions
(3.3) and (3.5) by setting 𝑔1 = 𝑤1 = 0.

The functional form of the FD models under consideration is given
by (4.1). The models, denoted by 𝐼𝑁𝐷

𝑑∶𝑖
, 𝑃𝐶

𝑑∶𝑖
and 𝑃𝐶𝑇

𝑑∶𝑖
, are elements

of the space spanned by the same vectors {𝑣𝑖,𝑘}, but their coefficients
differ. The random coefficients of 𝑃𝐶

𝑑∶𝑖
are given by (4.2). The random

coefficients of 𝐼𝑁𝐷
𝑑∶𝑖

and 𝑃𝐶𝑇
𝑑∶𝑖

have the same marginal distributions
but they are independent for 𝐼𝑁𝐷

𝑑∶𝑖
and dependent given by (4.3) for

𝑃𝐶𝑇
𝑑∶𝑖

.

4.3. Extremes of wind pressures by FD models

The following numerical results are for 𝑞 = 5500,𝑁 = 20 and 𝑑 = 15.
As mentioned in Section 4.2, we set 𝑔1 = 𝑤1 = 0 since the mean squared
errors 𝐸[ ‖𝑍 − 𝑍𝑃𝐶‖2

2
] and 𝐸[ ‖𝑍 − 𝑍𝑃𝐶𝑇 ‖2

2
] are not available, see

comments following (3.3) and (3.5). The other weighting coefficients
are (𝑔2, 𝑔3) = (1, 100) and (𝑤2, 𝑤3) = (1, 1.1). For these values, the
components max1≤𝑖1<𝑖2≤𝑑 ‖ℎ𝑖1 ,𝑖2 (⋅) − ℎ𝑃𝐶𝑖1 ,𝑖2 (⋅|𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙)‖2 and ‖𝐸[𝑍𝑍𝑇 ] −

𝐸[𝑍𝑃𝐶 (𝑍𝑃𝐶 )𝑇 ]‖ of the objective function (3.3) and the components
max1≤𝑖1<𝑖2≤𝑑 ‖𝑠𝑖1 ,𝑖2 (⋅) − 𝑠𝑃𝐶𝑇

𝑖1 ,𝑖2
(⋅|𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙)‖2 and max1≤𝑖1<𝑖2≤𝑑 ‖ℎ𝑖1 ,𝑖2 (⋅) −

ℎ𝑃𝐶𝑇
𝑖1 ,𝑖2

(⋅|𝑎𝑘,𝑗 , 𝑎𝑘,𝑗,𝑙)‖2 of the objective function (3.5) have similar magni-
tudes so that they contribute equally to the objective functions. All the
plots are based on 5500 samples.

The left, middle and right panels of Figs. 17 and 18 show the two
dimensional histograms of (𝑍𝑖1 ,𝑘1 , 𝑍𝑖2 ,𝑘2 ), (𝑍

𝑃𝐶
𝑖1 ,𝑘1

, 𝑍𝑃𝐶
𝑖2 ,𝑘2

) obtained under

(3.3) and (𝑍𝑃𝐶𝑇
𝑖1 ,𝑘1

, 𝑍𝑃𝐶𝑇
𝑖2 ,𝑘2

) obtained under (3.5). Visual inspection of the
plots in Figs. 17 and 18 suggests that the PCT histograms are closer to
the target histograms than PC histograms. This qualitative observation
is confirmed by the plots of Fig. 19 which show with estimates of
extremes for PC- and PCT-based FD models. The PCT-based estimates of
extremes follow closely the target estimates in contrast to the PC-based
estimates which are unsatisfactory. The thin solid lines of Fig. 19 are
estimates of 𝑃 (‖𝑖‖ > 𝑥) for 𝑖 = 1,… , 6 which are obtained directly
from data, where ‖𝑖‖ = max1≤𝑗≤𝑁 |𝑌𝑖,𝑗 |. These probabilities are viewed
as truth. The other lines of the figure are calculated from samples of
𝑑∶𝑖 in (4.1) (heavy solid lines), 𝑃𝐶

𝑑∶𝑖
(dotted lines) and 𝑃𝐶𝑇

𝑑∶𝑖
(dashed

lines) for taps 79 to 84. The heavy solid lines are the closest to the truth.
The next best model is 𝑃𝐶𝑇

𝑑∶𝑖
while 𝑃𝐶

𝑑∶𝑖
differs significantly from the

truth. The PC and PCT models are based on polynomial chaos of degree
two, i.e., without the last two terms in (4.2).

The plots of Fig. 20 explore the effects of the dependence between
the random coefficients of FD models on extremes. The solid lines
are estimates of the probability 𝑃 (‖5‖ > 𝑥) obtained from the wind
record at tap 83 for which the performance of the PCT model was less
satisfactory. The other lines are extremes of 𝑑∶5 in (4.1) with random
coefficients {𝑍5,𝑘} which have different dependencies: independent
(dash-dotted lines), 𝑍𝑃𝐶 based on a second degree polynomial chaos
(dotted line, left panel), 𝑍𝑃𝐶 based on a fourth degree polynomial
chaos (dotted line, right panel), 𝑍𝑃𝐶𝑇 based on a second degree poly-
nomial chaos (dashed line, left panel) and 𝑍𝑃𝐶𝑇 based on a fourth
degree polynomial chaos (dashed line, right panel) for tap 83. The
estimates are unsatisfactory if the components of 𝑍𝑃𝐶𝑇 are assumed
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Fig. 16. Correlation function 𝑐𝑖𝑗 (𝑢) = 𝐸[𝑌𝑖,1𝑌𝑗,𝑢], (𝑖, 𝑗) = (1, 6), (2, 5), (3, 4) for the time lag 𝑢 = 1,… , 20 estimated by the entire records and the partitioned samples (heavy solid lines
and heavy dotted lines).

Fig. 17. Histograms of (𝑍1,1 , 𝑍1,2), (𝑍
𝑃𝐶
1,1
, 𝑍𝑃𝐶

1,2
) obtained under the objective function (3.3) with (𝑔1 , 𝑔2 , 𝑔3) = (0, 1, 100) and (𝑍𝑃𝐶𝑇

1,1
, 𝑍𝑃𝐶𝑇

1,2
) obtained under the objective function (3.5)

with (𝑤1 , 𝑤2 , 𝑤3) = (0, 1, 1.1) based on 5500 samples (left, middle and right panels).

Fig. 18. Histograms of (𝑍2,5 , 𝑍3,6), (𝑍
𝑃𝐶
2,5
, 𝑍𝑃𝐶

3,6
) obtained under the objective function (3.3) with (𝑔1 , 𝑔2 , 𝑔3) = (0, 1, 100) and (𝑍𝑃𝐶𝑇

2,5
, 𝑍𝑃𝐶𝑇

3,6
) obtained under the objective function (3.5)

with (𝑤1 , 𝑤2 , 𝑤3) = (0, 1, 1.1) based on 5500 samples (left, middle and right panels).

independent, an expected result since the resulting FD wind model is
approximately Gaussian. They approach the target probability as the
degree of the polynomial chaos is increased from two to four since
this increases results in a superior representation of the dependence
between the random variables 𝑍𝑖,𝑘. However, increasing the degree
of the polynomial chaos does not improve the estimates based on PC
models, since 𝑍 and 𝑍𝑃𝐶 have different marginal distributions.

4.4. Optimization algorithm

The following five-step method is used to identify the optimal co-
efficients {𝑎𝑖,𝑘,𝑗 , 𝑎𝑖,𝑘,𝑗,𝑙1 , 𝑎𝑖,𝑘,𝑗,𝑙1 ,𝑙2 , 𝑎𝑖,𝑘,𝑗,𝑙1 ,𝑙2 ,𝑙3} for the PC and PCT models
of the random variables 𝑍𝑖,𝑘.

– Step 1: The marginal distributions 𝐹𝑖,𝑘 are estimated from the set
of 𝑞 independent samples of the random variables 𝑍𝑖,𝑘.

– Step 2: Samples of 𝐺1,… , 𝐺𝑚𝑑 are generated by the MATLAB
function randn. These samples are mapped into samples of 𝑍𝑃𝐶

𝑖,𝑘

via (4.2) for given coefficients {𝑎𝑖,𝑘,𝑗 , 𝑎𝑖,𝑘,𝑗,𝑙1 , 𝑎𝑖,𝑘,𝑗,𝑙1 ,𝑙2 , 𝑎𝑖,𝑘,𝑗,𝑙1 ,𝑙2 ,𝑙3}

and are used to estimate the marginal distributions 𝐹 𝑃𝐶
𝑖,𝑘

of 𝑍𝑃𝐶
𝑖,𝑘
.

– Step 3: Samples of 𝑍𝑃𝐶𝑇
𝑖,𝑘

are calculated from (4.3) based on
estimates of 𝐹𝑖,𝑘 in step 1 and estimates of 𝐹

𝑃𝐶
𝑖,𝑘

corresponding
to given coefficients {𝑎𝑖,𝑘,𝑗 , 𝑎𝑖,𝑘,𝑗,𝑙1 , 𝑎𝑖,𝑘,𝑗,𝑙1 ,𝑙2 , 𝑎𝑖,𝑘,𝑗,𝑙1 ,𝑙2 ,𝑙3}.

– Step 4: The objective functions for given coefficients {𝑎𝑖,𝑘,𝑗 , 𝑎𝑖,𝑘,𝑗,𝑙1 ,
𝑎𝑖,𝑘,𝑗,𝑙1 ,𝑙2

, 𝑎𝑖,𝑘,𝑗,𝑙1 ,𝑙2 ,𝑙3
} are calculated from (3.3) and (3.5), where

the histograms and spectral measures in the expressions of these
functions are constructed by the MATLAB function histcounts2.

– Step 5: The MATLAB genetic algorithm is used to identify the
optimal coefficients {𝑎𝑖,𝑘,𝑗 , 𝑎𝑖,𝑘,𝑗,𝑙1 , 𝑎𝑖,𝑘,𝑗,𝑙1 ,𝑙2 , 𝑎𝑖,𝑘,𝑗,𝑙1 ,𝑙2 ,𝑙3} in the ex-
pressions of the objective functions.

The PC and PCT models are based on polynomial chaos of degree
two for the numerical experiments of Figs. 17–19 and the left panel
of Fig. 20. It takes approximately 12 hours for the PC model and
approximately 15 hours for the PCT model to obtain the optimal
coefficients {𝑎𝑖,𝑘,𝑗 , 𝑎𝑖,𝑘,𝑗𝑙1} using MATLAB genetic algorithms. The nu-
merical experiments of the right panel of Fig. 20 are based on the
PCT model of tap 83 with polynomial chaos of degree four only. It
takes approximately 3 hours for the PCT model of tap 83 to obtain
the optimal coefficients {𝑎𝑖,𝑘,𝑗 , 𝑎𝑖,𝑘,𝑗𝑙1 , 𝑎𝑖,𝑘,𝑗,𝑙1 ,𝑙2 , 𝑎𝑖,𝑘,𝑗,𝑙1 ,𝑙2 ,𝑙3}. We use the
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Fig. 19. Estimates of the target probability 𝑃 (‖𝑖‖ > 𝑥) (solid line), estimates based on FD model (heavy solid lines), estimates based on finite dimensional PC models (dotted
lines) and estimates based on finite dimensional PCT models in logarithmic scale (dashed lines), 𝑖 = 1,… , 6.

Fig. 20. Estimates of the target probability 𝑃 (‖5‖ > 𝑥) (thin solid line), estimates based on FD model (heavy solid line), estimates based on finite dimensional independent model
(dash-dotted line), estimates based on finite dimensional PC models (dotted line) and estimates based on finite dimensional PCT model in logarithmic scale (dashed line) based on
second and forth degree polynomial chaos (left and right panels).

MATLAB 2022a version for calculations. We perform all the numerical
tests on a personal computer with a 3.6 GHz CPU and 16 GB RAM.

5. Conclusions

Finite dimensional (FD) models, i.e., deterministic functions of time
and finite sets of random variables, have been constructed for a set of
test cases and a wind pressure time series recorded at the UFBLWT facil-
ity in Gainesville by using polynomial chaos (PC) and polynomial chaos
translation (PCT) models to represent their random coefficients. The
components of PCT models are obtained from those of PC models by
translation, so that they match exactly the target marginal distributions
irrespective of the coefficients in their definition. The optimal values
of the PCT coefficients minimize the discrepancy between the PCT
and target joint properties, which are quantified by joint distributions
and spectral measures. In summary, the PCT models match exactly
the marginal distributions of the random coefficients of FD models
by construction and capture their dependence with an accuracy that
increases with the truncation level of the underlining PC models.

FD models with random coefficients represented by PC and PCT
models have been constructed for a set of test cases and a 6-dimensional
wind pressure time series recorded in the UFBLWT facility. The FD
models with PCT random coefficients are superior to those with PC
coefficients in the following sense. First, the PCT models provide a
more accurate representation of the joint distributions of the random
coefficients of FD models than the PC models. Second, the distributions
of extremes of PCT-based FD models are similar to those of target time
series while PC-based FD models do not have this capability. It is also
shown that the performance of PCT-based FD models can be further
improved by increasing their stochastic dimension and/or the order of
their underlining PC models.

CRediT authorship contribution statement

Hui Xu:Writing – review & editing, Software, Formal analysis, Data
curation. Mircea D. Grigoriu: Writing – review & editing, Writing –
original draft, Project administration, Methodology, Funding acquisi-
tion, Formal analysis. Kurtis R. Gurley: Writing – review & editing,
Resources, Project administration, Investigation, Data curation.



Reliability Engineering and System Safety 239 (2023) 109493

14

H. Xu et al.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The datasets generated during the current study are not publicly
available, since they have been generated for particular applications,
but are available from the corresponding author on reasonable request.

Acknowledgments

The work reported in this paper has been partially supported by
the National Science Foundation, United States under the grant CMMI-
2013697. This support is gratefully acknowledged. The wind tunnel
datasets were generated through a grant from the USDA Specialty
Crop Block Grant Program and the Florida Department of Agriculture
and Consumer Services, United States. Special thanks to Professor
Sanjay Shukla at the University of Florida for generously sharing these
datasets.

References

[1] Karpa O, Naess A. Extreme value statistics of wind speed data by the ACER
method. J Wind Eng Ind Aerodyn 2013;112:1–10.

[2] Gavanski E, Cook NJ. Evaluation of XIMIS for assessing extreme pressure
coefficients. Front Built Environ 2019;5(48). http://dx.doi.org/10.3389/fbuil.
2019.00048.

[3] Peng X, Yang L, Gavanski E, Gurley K, Prevatt D. A comparison of methods to
estimate peak wind loads on buildings. J Wind Eng Ind Aerodyn 2014;126:11–23.
http://dx.doi.org/10.1016/j.jweia.2013.12.013.

[4] Leadbetter MR, Lindgren G, Rootzén H. Extremes and related properties of
random sequences and processes. Springer; 1983.

[5] Che Y, Guo Z, Cheng C. Generalized polynomial Chaos-informed efficient
stochastic Kriging. J Comput Phys 2021;445:110598.

[6] Rossat D, Baroth J, Briffaut M, Dufour F. Bayesian inversion using adap-
tive polynomial Chaos Kriging within subset simulation. J Comput Phys
2022;455:110986.

[7] Poëtte G, Brun E. Efficient uncertain 𝑘eff computations with the Monte Carlo
resolution of generalised polynomial Chaos based reduced models. J Comput
Phys 2022;456:111007.

[8] Cao L, Liu J, Jiang C, Liu G. Optimal sparse polynomial Chaos expansion for
arbitrary probability distribution and its application on global sensitivity analysis.
Comput Methods Appl Mech Engrg 2022;399:115368.

[9] Novák L, Vořechovský M, Sadílek V, Shields MD. Variance-based adaptive
sequential sampling for polynomial chaos expansion. Comput Methods Appl Mech
Engrg 2021;386:114105.

[10] Zhang B, Ni Y. A hybrid sequential sampling strategy for sparse polynomial Chaos
expansion based on compressive sampling and Bayesian experimental design.
Comput Methods Appl Mech Engrg 2021;386:114130.

[11] Zhou Y, Lu Z, Cheng K. Adaboost-based ensemble of polynomial Chaos expansion
with adaptive sampling. Comput Methods Appl Mech Engrg 2022;388:114238.

[12] Lim H, Manuel L. Distribution-free polynomial Chaos expansion surrogate models
for efficient structural reliability analysis. Reliab Eng Syst Saf 2021;205:107256.

[13] Liu Z, Lesselier D, Sudret B, Wiart J. Surrogate modeling based on resampled
polynomial Chaos expansions. Reliab Eng Syst Saf 2020;202:107008.

[14] Mara TA, Becker WE. Polynomial chaos expansion for sensitivity analysis of
model output with dependent inputs. Reliab Eng Syst Saf 2021;214:107795.

[15] Zhang R, Dai H. A non-Gaussian stochastic model from limited observations using
polynomial Chaos and fractional moments. Reliab Eng Syst Saf 2022;221:108323.

[16] Zhou Y, Lu Z, Yun W. Active sparse polynomial Chaos expansion for system
reliability analysis. Reliab Eng Syst Saf 2020;202:107025.

[17] Wang Z, Ghanem R. An extended polynomial Chaos expansion for PDF character-
ization and variation with aleatory and epistemic uncertainties. Comput Methods
Appl Mech Engrg 2021;382:113854.

[18] Wang Z, Ghanem R. A functional global sensitivity measure and efficient
reliability sensitivity analysis with respect to statistical parameters. Comput
Methods Appl Mech Engrg 2022. http://dx.doi.org/10.1016/j.cma.2022.115175.

[19] Kuo Hui-Hsiung. Introduction to stochastic integration. New York: Springer;
2006.

[20] Grigoriu M. Applied non-gaussian processes: examples, theory, simulation, linear
random vibration, and MATLAB solutions. Englewood Cliffs, NJ: Prentice Hall,
Inc; 1995.

[21] Rudin W. Real and complex analysis. 3rd Ed.. New York: McGraw-Hill, Inc.;
1987.

[22] Dür A. On the optimality of the discrete Karhunen–Loève expansion. SIAM J
Control Optim 1998;36(6):1937–9.

[23] Rosenblatt M. Remarks on a multivariate transformation. Ann Math Statist
1952;23:470–2.

[24] Grigoriu M. PC translation models for random vectors and multivariate extremes.
SIAM J Sci Comput 2019;41(2):A1228–51.

[25] Resnick S. Heavy-tail phenomena: probabilistic and statistical modeling. New
York: Springer; 2007.

[26] Abraham S, Tsirikoglou P, Miranda J, Lacor C, Contino F, Ghorbaniasl G. Spectral
representation of stochastic field data using sparse polynomial Chaos expansions.
J Comput Phys 2018;367:109–20.

[27] Alexanderian A, Gremaud PA, Smith RC. Variance-based sensitivity analysis for
time-dependent processes. Reliab Eng Syst Saf 2019;196:106722.

[28] Jacquelin E, Baldanzini N, Bhattacharyya B, Brizard D, Pierini M. Random
dynamical system in time domain: A POD-PC model. Mech Syst Signal Pr
2019;133:106251.

[29] Raisee M, Kumar D, Lacor C. A non-intrusive model reduction approach for
polynomial Chaos expansion using proper orthogonal decomposition. Int J Numer
Meth Eng 2015;103(4):293–312.

[30] Sun X, Pan X, Choi J-Il. Non-intrusive framework of reduced-order modeling
based on proper orthogonal decomposition and polynomial Chaos expansion. J
Comput Appl Math 2021;390:113372.

[31] Xiu D, Karniadakis GE. The Wiener–Askey polynomial Chaos for stochastic
differential equations. SIAM J Sci Comput 2002;24(2):619–44.

[32] Grigoriu M. Linear dynamical systems. 1st Ed.. Cham: Springer; 2021.

http://refhub.elsevier.com/S0951-8320(23)00407-6/sb1
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb1
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb1
http://dx.doi.org/10.3389/fbuil.2019.00048
http://dx.doi.org/10.3389/fbuil.2019.00048
http://dx.doi.org/10.3389/fbuil.2019.00048
http://dx.doi.org/10.1016/j.jweia.2013.12.013
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb4
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb4
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb4
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb5
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb5
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb5
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb6
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb6
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb6
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb6
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb6
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb7
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb7
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb7
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb7
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb7
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb8
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb8
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb8
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb8
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb8
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb9
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb9
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb9
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb9
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb9
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb10
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb10
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb10
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb10
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb10
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb11
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb11
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb11
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb12
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb12
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb12
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb13
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb13
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb13
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb14
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb14
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb14
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb15
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb15
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb15
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb16
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb16
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb16
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb17
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb17
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb17
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb17
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb17
http://dx.doi.org/10.1016/j.cma.2022.115175
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb19
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb19
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb19
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb20
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb20
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb20
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb20
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb20
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb21
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb21
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb21
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb22
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb22
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb22
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb23
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb23
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb23
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb24
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb24
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb24
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb25
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb25
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb25
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb26
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb26
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb26
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb26
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb26
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb27
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb27
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb27
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb28
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb28
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb28
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb28
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb28
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb29
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb29
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb29
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb29
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb29
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb30
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb30
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb30
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb30
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb30
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb31
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb31
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb31
http://refhub.elsevier.com/S0951-8320(23)00407-6/sb32

	A novel surrogate for extremes of random functions
	Introduction
	Bases for finite dimensional (FD) models
	Covariance eigenvectors
	Linearly independent vectors
	Comparison of the two FD models 

	PC and PCT models
	Definitions
	PC versus PCT random coefficients
	Numerical illustrations

	Wind data analysis
	Experimental setting and data
	Construction of FD models
	Extremes of wind pressures by FD models
	Optimization algorithm

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


