Reliability Engineering and System Safety 239 (2023) 109493

journal homepage: www.elsevier.com/locate/ress s

Contents lists available at ScienceDirect

Reliability Engineering and System Safety

=t RELIABILITY
ENGINEERING
& SYSTE

SAFETY

-

Check for

A novel surrogate for extremes of random functions i

Hui Xu®*, Mircea D. Grigoriu ®°, Kurtis R. Gurley ¢

a Center for Applied Mathematics, Cornell University, Ithaca, NY, USA
b Department of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA
¢ Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL, USA

ARTICLE INFO ABSTRACT

MSC: Numerical solutions of stochastic problems require the representation of random functions in their definitions
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distributions of the FD coefficients and approximately their dependence. PC- and PCT-based FD models are
constructed for a set of test cases and a wind pressure time series recorded at the boundary layer wind tunnel
facility at the University of Florida. The PCT-based models capture the joint distributions of the FD coefficients
and the extremes of target times series accurately while PC-based FD models do not have this capability.

1. Introduction

Most records of time series are insufficient to estimate the dis-
tributions of extremes and other functionals of these records over
bounded time intervals. Available data need to be supplemented by
probabilistic models which deliver these distributions under assump-
tions that are physically acceptable and can be validated. For example,
the extreme value theory may be unsatisfactory in many applications
since it assumes that the time series is infinite while the reference time
is bounded [1]. In addition, extreme value estimates based on exper-
imental data of typical duration exhibit notable statistical variability
when fitted to insufficiently long records [2,3]. Also, the validity of
approximations of the distributions of extremes of time series based
on the mean rates at which they cross specified levels is questionable
since the existence of mean crossing rates is difficult to check for
non-Gaussian processes [4] (Theorem 7.2.4). These limitations justify
the need for robust numerical methods for characterizing extremes of
random functions. Their implementation requires the representation
of the target random functions by finite dimensional (FD) models,
i.e., deterministic functions of time and finite sets of random variables.

The samples of FD models are elements of linear spaces spanned
by specified deterministic basis functions/vectors with random coef-
ficients. The form of the FD models in this study is that of trun-
cated Karhunen-Loéve (KL) series for random processes and vectors,
i.e., linear forms of eigenfunctions/eigenvectors of the correlation func-
tion/matrix of the target random processes/time series. In contrast
to standard KL representations whose random coefficients are defined
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partially by their first two moments for non-Gaussian time series, the
random coefficients of FD models are specified by their samples, which
are obtained by projecting target samples on basis functions/vectors.
The resulting random coefficients have the same first two moments as
those of the KL representations.

It is common to represent the random coefficients of FD mod-
els by truncated polynomial chaos (PC) series fitted to the available
information, which may consist of data or statistics. PC-based FD
models have been used extensively in applications to, e.g., construct
efficient kriging-based surrogates [5,6], estimate reliability via sub-
set simulation [6], quantify the uncertainty in the eigenvalues and
eigenfunctions of the Boltzman stochastic differential equation [7].
Algorithms based on A-distributions [8], sequential sampling [9,10]
and machine learning [11] have been developed to improve the ac-
curacy and efficiency of PC-based FD models. Other available algo-
rithms for constructing efficient and accurate PC-based FD models use
distribution-free PC expansion [12], resampling techniques [13], Mara-
Tarantola transformation [14], fractional moments [15], and active
learning functions [16].

A common feature of the existing PC-based FD models is that
their performance is assessed by the mean square error of the dis-
crepancy between target random functions/vectors and these models.
This metric is adequate for a broad range of applications which deal
with both epistemic and aleatoric uncertainties [17,18]. Moreover, it
can be shown that under mild conditions the PC-based FD models of
target random functions converge to these functions in mean square
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(m.s.) as their truncation level increases indefinitely [19, Chap. 9].
This convergence implies that the joint distributions of the PC-based
FD models converge to those of the target functions. Unfortunately,
this asymptotic result is irrelevant in applications since the truncation
levels of PC-based FD models must be kept low to limit calculations so
that, generally, the joint distributions of target random functions and
their PC-based FD models differ. This observation is relevant for large
dimensional random vectors, e.g., wind pressure time series recorded
in wind tunnels, since their KL representations have large numbers of
terms. To minimize calculations, they need to be truncated so that the
target and KL statistics differ.

A main contribution of the proposed model is that it matches
exactly the marginal distributions of the target random vector for any
truncation level of the underlying PC polynomial. The dependence
structure of the proposed PC-based FD model is captured approximately
and improves with the PC truncation level. These features are essential
for estimating extremes of random functions and vectors and are not
available in the current FD models.

We propose an alternative model for the coefficients of FD repre-
sentations of random functions, referred to as the polynomial chaos
translation (PCT) model, which is constructed as follows. Let ﬁgc be
a PC model of an R"-valued random vector £, where d denotes the
stochastic dimension of the FD model. The PC model belongs to the
linear space spanned by, e.g., Hermite polynomials of the independent
standard Gaussian variables (Gj,...,G,;) whose degrees are limited
by the selected truncation level. The components of the PCT models
.§5CT are obtained from those of the PC models by translation [20]
(Chap. 3) so that their distributions match exactly the target marginal
distributions for any PC coefficients. The optimal PCT coefficients
minimize the discrepancy between the dependence of the target and
PCT components. Joint distributions and spectral measures are used as
metrics for the dependence among ¢ and £°CT components.

The paper is organized as follows. The proposed FD models are de-
fined in Section 2. This section also outlines properties of these models
and examines their performance for various basis vectors. PC and PCT
models of the random coefficients of FD models are constructed and
examined in Section 3. The performance of FD models with PC and PCT
coefficients is evaluated in Section 4 for wind pressure records from the
UFBLWT facility. It is found that FD models with PCT-based random
coefficients are superior in the sense that they best describe extremes
of wind pressure time series. Final comments are in Section 5.

2. Bases for finite dimensional (FD) models

Consider a stationary ergodic time series Y}, Y,, ..., Y, with the time
step At, which is defined on a probability space (£, F, P). For example,
the wind pressure record in Section 4 can be viewed as a sample
of this vector. Generally, the dimension n of the random vector ¢ =
Y, Y,,...,Y,) is very large. Our objective is to develop representations
of ¢ which are accurate and depend on just d < n random variables.
We refer to these representations as FD models. We recognize that the
concept of FD models can be confusing in this context since the target
¢ is also finite dimensional. This is not the case when dealing with
random functions since their KL representations have infinite numbers
of terms. We agree to call FD models the representations of ¢ which
depend on d < n random variables. The following two subsections
present two types of FD models whose relative performance is assessed
in the third subsection.

Throughout this paper, we use || - ||, to denote the L, norm, defined

— ! 2y1/2 _ [ Aul] .
by ||x||.2 = (X )Y find I1All, = SUPL MZ, where x is a /
dimensional vector and A is a / Xr matrix. Similarly, || -|| means the L,
norm, i.e., [|x|| = max, ¢ |x;| and [|All = max, ;< << |4;;]- The two

norms are equivalent since we deal with matrices and vectors in finite
dimensional linear spaces, see [21], Chap. 3 for technical details.
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2.1. Covariance eigenvectors

Let ¢ be an n-dimensional (column) real-valued random vector
defined on a probability space (£, F, P) with mean E[¢] = 0 and
covariance matrix y = E[¢&T]. The assumption E[¢] = 0 is not
restrictive since, if the mean is not zero, it can be added to the samples
of £. It is assumed that (1) the covariance matrix y is not singular so that
its eigenvalues {4, } are strictly positive and (2) the eigenvalues {4}
are distinct so that the eigenvectors {v,} of y span R". The random
vector ¢ admits the Karhunen-Loéve (KL) representation

n
&kL = Z Zgyk Vg 2.1)
k=1

where the eigenvectors {v,} are orthonormal, i.e., v: v, = 6y, and

{Zk1 ) are uncorrelated random variables with mean E[Zy; ,] = 0
and variance E[le(ka] = A, k = 1,...,n. The random vector &g
is partially defined by its first two moments which match the corre-
sponding moments of the target vector &, unless ¢ is Gaussian in which
case {Zg; ,} are independent Gaussian variables. If £ is not Gaussian,
{Zxy,) are uncorrelated but dependent non-Gaussian variables with
unknown distributions.

The KL representation of (2.1) can be generalized to characterize
fully ¢ if the random coefficients in the expression of & are defined
by the projections of the samples &(w) of & on the eigenvectors of the
covariance matrix y of this vector, i.e., Z,(0) = (&(@),v;) = E@)T vy.
Accordingly, the samples &(w) of & admit the representation

n
o)=Y Zy@) v, e (2.2)
k=1
which holds for almost all samples of &.

If the dimension n of ¢ is large, it is convenient to represent & by
truncated versions of (2.2) which contains the top d < n eigenvectors
of y, i.e., the eigenvectors corresponding to the largest d eigenvalues of
the covariance matrix of £. The representation has the form

d
L@ =Y Zy@)v, o€, (2.3)
k=1
and is referred to as the finite dimensional (FD) model of ¢. Since &,
depends on d random variables, its stochastic dimension is d. The L,
norm of the error of the FD model is
n n n
le-¢3=E-e)"C-En= Y 3 ZZwo= Y Z, as,
k=d+1I=d+1 k=d+1

by the orthonormality of the eigenvectors {v, }, where a.s. means that
the probability of the subset of the sample space 2 on which the
random variables [|& - &, and ¥;_,,, Z7 differ is zero. Its mean and
variance are

n

EllE-&3] = Y, EZl1= Y ElE 0" € vy

k=d+1 k=d+1
n n
— T —
= 2 UL YU = Z Ak 2.4)
k=d+1 k=d+1

and

n

Var[ > zg] = Y varlZ2l= Y Varl@ o) ¢ o,
k k=d+1

=d+1 k=d+1

Var [|I€ - &,113]

U 2
> <E[v{::TukuZ§§Tuk1 - (Etwfeetv) )

k=d+1

n

A (E[::”‘vkv;fss"] - va}fy)vk. (2.5)

k=d+1

Note that the expectation of the error decreases with d since 4, > 4, >
--- > A, > 0 by assumption so that there exists d such that the variance
can be made as small as desired.
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2.2. Linearly independent vectors

Let {0, } be a set of n orthonormal n-dimensional vectors so that
they are linearly independent and span R". Since the samples of ¢ are
elements of R” and the vectors {#, } span this space, we have

o)=Y Z(@) 5, ®EL (2.6)
k=1

where Z, (w) = &w)" i, are the projections of &(w) on these vectors, see
(2.2). The corresponding FD model has the form

g =) Zi(@) 5, o (2.7)
k=1
where 0, k = 1,...,d, is an arbitrary subset of the vectors under
consideration. The L, norm of the error of &, is
n n n
le=E,12 = E=-E)"¢E=En="Y Y ZZp o= Y, 7% as., (2.8)

k=d+1 I=d+1 k=d+1

by the orthonormality of the vectors {#, }. The definition of Z, in (2.7)
gives

Elle-&13 = Y ElZi1= Y EIE"5)"E 5]
k=d+1 k=d+1
D IAE z (21; ) (2.9)
k=d+1 k=d+1
and

5.4

k=d+1

Var ll& - &113]

n

> var[Z2= Y Varl€T o) 75,

k=d+1 k=d+1
! 2
=Y (wa-féTﬁkﬁfséTﬁkJ—(Ew{afTﬁk]) )
k=d+1
=y ﬁ,f(E[ésTﬂkﬁZféTJ—mﬁ[r)ﬁk, (2.10)
k=d+1

where 5, = " by v; holds since 5, € R" and {v,} is a basis of this
space. If § = v, then by, = &;; and 07 y i = 4.

2.3. Comparison of the two FD models

This section assesses the accuracy of the FD models &, in (2.3) and
g, in (2.7) via the L, norms ||& — §d||§ and ||& — é;d”%- The following
theorem shows that &, is superior to any other FD models in the sense
of the L, norm. The proof of this known result can be found in [22]
and is given here for convenience.

Theorem 2.1. If the covariance matrix of ¢ is positive definite and has
distinct eigenvalues A; > A, > -+ > 4, > 0, then its eigenvectors {v,},
k=1,...,n, are optimal in the sense that E[||& — &3] < E[lI& - &I3] for
&, 1n (2.3) and &, in (2.7).

Proof. The difference between the errors of the FD models &, and &,
can be expressed in the form, see (2.4) and (2.9),

E[llE =&, - E[IE - £,1%] = Z (Zb A,»—Ak>,

where Y| bii =1, k = 1,...,n, since the vectors 7, have unit length
502 2 2

so that 1 = ”Ukllz = | Z,'-lzl bkiU,'”z = Z,] 1bk1bk1 i U= Z?:l bki'

The assumed orthogonality of the vectors {,} implies 0 = ] 7, =

T
(X b vi) (X5 byjv;) = Xz, by by Note that

£ (8004« 3 Fan $a0s)

k=d+1 k=d+1 i=d+2
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Table 1
E[|lE-¢&13 1 and E[ [|€ -3 ] for d = 10,30, 50.
d=10 d=30 d=50
E[ |- é,,ll% ] 71.9224 37.1370 20.5518
E[IE-& 121 90.2117 70.3436 50.0748

n d+1 n n n
= (z Zbi,—1>xd+l+ z Z b4 - 2 A
k:

=d+1 i=1 i=d+2 k=d+1 k=d+2
nd+l n
2 2
= (2 Zbki—l>id+l+ Y < 2 v —1)
k=d+1 i=1 i=d+2 Nk=d+1

v

nd+l n n
< N —1>,1d+1+ > < > b§,—1> Ays1 =0
k=d+1 i=1 i=d+2 Nk=d+1

which implies that the eigenvectors {v, } provide a superior FD model
in the sense of the error under consideration. []

We conclude this subsection with an example illustrating that the FD
models based on eigenvectors are superior to those based on arbitrary
linearly independent vectors in the sense of Theorem 2.1.

Example 2.1. Let ¢ be a zero-mean n-dimensional Gaussian vector
with covariance matrix y = {y; = o 7Jl,i,j = 1,...,n}, 0 < ¢ < L.
We construct the FD models &, in (2.3) and &, in (2.7) with & ; = §;.

The following numerical results are for n = 100, ¢ = 0.5 and 3000
samples of & The left, middle and right panels of Fig. 1 show the
histograms of ||& — fdllé for d = 10, 30 and 50. Similar histograms are
in Fig. 2 for ||& — §d||§ and the same values of d. The plots show, in
agreement with our theoretical results, that the discrepancy between
the samples of £ and &, and between the samples of ¢ and &, can be
made as small as desired by increasing the stochastic dimension d.
Note also that histograms of Fig. 1 have a smaller range than those
of Fig. 2 and are closer to zero. Table 1 shows that the excepted L,
norm of the error for &, is smaller than the corresponding error for &,
for d = 10, 30, 50.

3. PC and PCT models

Consider the FD model ¢, in (2.3) whose samples are elements of
the linear space spanned by the top d eigenvectors of the covariance
matrix of the target random vector . The vector Z = (Z, ..., Z,) of
its random coefficients is non-Gaussian with dependent components
unless & is Gaussian. Our objective is to construct models of Z from its
samples which are accurate in the sense that their joint distributions
match the joint distribution of &, and efficient, i.e., standard Monte
Carlo algorithms can be used to generate samples of these models.

The Rosenblatt transformation [23] provides a model with these
features. It shows that the components of Z = (Z,,...,Z,;) can be
related to the components of, e.g., a vector G = (Gy,...,G,) with
independent standard Gaussian variables, by the mapping

Z, = Flod(G))
Zi\Zpors s Zy =y o®(Gy), 2 <k <d, 3.1

where F; is the distribution of Z;, Fy_, ; is the distribution of
Z\Z_y, ..., Z,. If the mapping in (3.1) is available, samples of Z can
be obtained from samples of G, which can be generated by standard
algorithms. Since the conditional distributions in mapping G » Z
are available analytically only in special cases, they have to be con-
structed numerically in most applications. Their construction from the
joint distribution of Z is computationally demanding and the resulting
conditional distributions are likely to be unsatisfactory, particularly
when dealing with heavy tail distributions. The construction of the con-
ditional distributions F,_; _; from data is not feasible when dealing
with high dimensional vectors and relatively small data sets.
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Fig. 2. Histograms of ||& — Edllé for d = 10,30,50 (left, middle and right panels) based on 3000 samples.

This section develops approximations of the Rosenblatt transforma-
tion for the random coefficients (Z,, ..., Z,) of the FD models in (2.3)
based on polynomial chaos (PC) and an extension of this representation,
referred to as PCT models. These models of (Z,, ..., Z,) are denoted by
ZPC =(zfC,...,ZzFC) and ZPCT = (ZFCT, ..., ZFCT).

3.1. Definitions

Unless stated otherwise, the PC models considered here are

quadratic forms of independent standard Gaussian variables G, ..., G,
defined by
d
ZPC = ElZ+ Y a G+ Y, (GG =6, k=1,...d, (3.2)
j=1 1<j<i<d

where {q; ;,q ;,} are yet undetermined coefficients. This form is used
to limit the computational effort related to the determination of the
unknown coefficients in the expressions of {Z}. Note that E[Z]C] =
E[Z,] by construction, since E[G,] =0 and E|G,G, — E[G,G,]| =0 for
any 1 < j <1 < d. The coefficients {ag > ai ;) in (3.2) are determined
by minimizing the objective function

ej(ag;.ar;) = & El 1z - ZPC“% ]

hP€

+8& lsir,nfi)z(sd Ay i, O = R 5 Clag g ag Dl

+&(1E[2Z"] - E[Z"(Z"9)"ID) (3.3)

is the histogram of (Z;

where h; ; () o> Z;,) and hf§2(~|ak,j,ak,jy,) is
the histogram of (Zl.‘;’ C,Zi’z’ €) for given coefficients {a, ;,a;;,}. The
Matlab function histcounts2 is used to construct the two dimensional
histograms of (Z; , Z;,) and (Zl.’l’ C,Zi’; C). The error between the two
matrices is described by the norm | - ||,, i.e., the absolute largest
eigenvalue of the error matrix. We consider the set of all pairs of
components rather than all components to minimize calculations. The
weighting coefficients g, g,, g3 are such that the components E[ || Z —
ZPCY3 1, max g, <y <q Ay, 4y () = h,ffz('mk,jsak,j,/)”z and ||E[ZZT] -
E[ZPC€(ZPA)T]|| contribute equally to the objective function (3.3). We
set g, = 0 if Z and ZPC are not defined on the same probability space
since the mean squared error E[ || Z — ZP Cll% ] cannot be calculated.

The components of the PCT models are defined by

ZFT = FloFfC(ZFS), k=1,...4, (3.4

where FkP € is the distribution of Z ,f C for given coefficients {a; I
and F, is the distribution of Z,. In applications, F/¢ and F, are
empirical distributions estimated from data, see Section 4.4. The coef-
ficients {q, oAk} in (3.4) are determined by minimizing the objective
function

PCT 2
ez(ak’j,ak,j’,) =wElZ-Z ||2 1
PCT
w, max ||s; ;. ()=s; 5 Clag . ay;
+w, I<iy ety <d [l 11,,2() i ,in ¢l k.jo k,j,[)”Z
wy; max ||k ;. ()=hPCT(ay i a, ; 3.5
+ 31$i1<i25d” i () = By 5 Clag s ai g pDllos (3.5)
where hi i, ) is as in (3.3), Siiy () is the spectral measure of (Z,,,Z;)),
PCT

st Clayj.ay ;) and hST (lay ;. ay. ;) are the spectral measure and the
histogram of (Z7<T,Z I}’ ™) for given coefficients {a, ;. a; ;,}. Spectral
measures of (Z; ,Z; ) are metrics which quantify the likelihood that
(Z;,,Z;,)) are simultaneously large, see (5.3) and (5.4) in [24] for def-
initions and [25], Chap.6 for technical details. We sort the samples of
the two-dimensional vectors (Z;,, Z;,) and (Z, i’l’ €T, ZPCT) according to
their lengths such that the first sample is the furthest to the origin and
construct the spectral measures from the top 10% of these samples. The
Matlab function histcounts2 is used to construct the two dimensional
histograms and spectral measures of (Z; , Z;,) and (Z,.’l’ cT, Zii CTy, We
consider the set of all pairs of components rather than all components
to minimize calculations. The weighting coefficients w;, w,,w; are
such that the components E[ [|Z — ZPCT|12 ], max,g; o, <q llsi, 1, () =
S,-}I),C,-ZT('|”k,ja“k,j,1)||2 and max, g, <i,<q 17, 1, () = h,-}])s:(‘lak,j’ak,j,l)lh con-
tribute equally to the objective function (3.5). We set w;, = 0 if Z
and ZPCT are not defined on the same probability space since the
mean squared error E[ ||Z — ZP CT||§ ] cannot be calculated. The
second and third terms of e,(ay ;, a; ; ;) quantify differences between the
dependence structure of Z and Z”¢7. The third term is an approximate
metric for the differences between the joint distributions of Z and
ZPCT while the second term measures the differences between the tail

dependence of these random vectors.

3.2. PC versus PCT random coefficients

Consider the FD model &, in (2.3) whose random coefficients
(Z,,...,Z,) are given by the PC and PCT models of the previous



H. Xu et al.

subsection. They have the form

d d

§;C=ZZ[CUk andéfCT=ZZ:CTUk (3.6)
k=1 k=1

with ZkPC and ZfCT in (3.2) and (3.4), respectively.

The PC-based FD models £7C have been studied extensively [26-
30]. They provide accurate approximations for the means and corre-
lations of target random vectors, processes and fields. Since the PC
vector {Z,f €y converges in mean square to the target vector {Z,}
as the truncation level increases indefinitely, the joint distribution of
{Z[€} matches that of { Z, } for a sufficiently large truncation level [19,
Chap. 9]. However, this argument does not hold in applications since,
generally, the truncation levels for PC expansions have to be kept low
to limit calculations, which increase exponentially with the truncation
level [31].

The PCT-based FD models 55 CT are novel. Their defining mapping
{Gi} ~ {Z[°T} is a nonlinear transformation of the defining mapping
(G}~ {Z If €} of PC models. The transformation guarantees that the
marginal distributions of {Z“"} match exactly the target marginal
distributions for any values of the coefficients of the PC representation.
The unknown coefficients of the mapping {G,} — {Z ,f €T} are found
by minimizing differences between joint properties of the components
of {ZFCT} and {Z,}, as discussed in the previous subsection. Accord-
ingly, the resulting PCT models capture approximately the dependence
between the components of this vector, in addition to matching exactly
the marginal distributions of {Z,}.

The practical implication of the differences between PC- and PCT-
based FD models is illustrated in the subsequent sections. They show
that samples of {ZFT} and {Z,} are similar while those of {Z[€}
and { Z, } differ significantly and that extremes of PCT-based FD models
capture accurately extremes of target processes while PC-based FD
models do not have this capability.

3.3. Numerical illustrations

The following three examples are presented to illustrate the imple-
mentation and accuracy of the PC and PCT models. The Rosenblatt map
G — Z can be obtained analytically in the first two examples so that
samples of Z can be paired with samples of Z¥€ and Z*CT since they
are calculated from the same samples {G(w)} of G. It is not possible to
pair samples of Z with samples of Z*C and Z?¢7 in the last example
since the Rosenblatt map is not available analytically.

Example 3.1. Let M = (M, M,) € R? be a Gaussian vector with zero-
mean, unit variance and correlation E[M,;M,] = p, 0 < p < 1. Let
Z = (Z,,Z,) be a random vector, where Z;, = Fk‘lotb(Mk) with (i) F,
is uniform in (0, 1), k = 1,2 and (ii) F, is exponential with parameters
>0, k=12

Note that the joint distribution of (Z,Z,) and the conditional
distribution of Z,|Z, are

P(Z, <z2,,Zy < 2;) = P(M, S @7 'oF|(z)), M, < @70 F,(z,))
and

Fz,12,=2(22)

D oF,)(27) |
- / T CXP
- V-
X{ 201 - )<( _]OFI(Z1)>2_2p¢_1°F1(ZJ)u+”2)}du

<D—10F1(zl))2}du

>~ ]°F2(Zz) 1 1
/ exp{— <u—p
—o0 V2r( = p2) 21 -p?)
_ ¢<¢_I°F2(ZZ) - p(D_loFl(zl)>

V=7
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The definition of {Z,} and the above distributions give the Rosenblatt
map

G, = @ 'oF|(Z)) = M,

M, —pM,
V1=p?
where G, and G, are independent standard Gaussian variables.

The PC representation ZPC = (ZfC,ZZPC) is given by (3.2) with
d = 2, where the coefficients {ay ;,qa;,} for the PC model are deter-
mined by minimizing the objective function in (3.3). The PCT model
zZPeT = (z lp CT, ZZP CT) is defined by (3.4) with d = 2, where the coeffi-
cients {ay ;,ay ;,} for the PCT model are determined by minimizing the
objective function in (3.5).

Since Z, ZPC and ZPCT are defined on the same probability space,
the terms E[ |Z — Z"€||2 ] and E[ || Z — ZPT|2 ] of the objective
functions (3.3) and (3.5) can be calculated. We set g, = g3 = 0,
since the resulting objective function (3.3) is adequate for constructing
PC models [9]. We set w; = 0, since we are interested in the tail
dependence, see comments following (3.5). The values of w, and w,
in (3.5) are given in the subsequent two cases.

Case (i): F, is uniform in (0,1) for k = 1,2. Generally, it is not
possible to obtain analytical expressions of coefficients {qy ;,ay ;,} of
the PC model. We show that the expressions of {q, ;,a, ;,} can be found
in this special case. Note that the following two equations hold for any
k=1,2,

G, 3.7)

D7 oFy(Z,12)) =

E[M, ®(M,)] = / XOW) _ap, o [T_90), ep

- 2z " e V2r
L
_eo 2T 2\/;

and

© 2
E[M2D(M))] = / XOX) _2p, O

Vor AN

© —x2/2 o0
= dx®(x) = / PX) =124y
—co

V2rx 2r

+ / xe™*

_eo 27

Since M, — pM, is independent of @(M,) and pM,
of ®(M,), then

dx = %d)z(x)

—o0

— M, is independent

E[Z,ZF€] = %E[¢(M1)]+aUE[M1cD(M1)]

M, — pM
+a1W2E[ 2_F ch(Ml)]
1-p2
+ay;  EIM}®(M,)) - &(M))]

[MI(MZ pM)

+a; 1, F (D(Ml)]

M 2
& v ¢<M1)—¢(M1)]

and

E[Z,2€] = %E[db(Mz)] + ay | E[M,®(M,)]

+a22E[M¢(M2)]

+ay, | E[IMI®(M,) — D(M,)]

M(M, — pM))
Ve

PM1)

+ay 1, E ¢(M2)]

+‘1222E[( <D(M2)—<D(M2)]
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Fig. 3. Histograms of (Z,, Z,), (Z[“, Z{) obtained under the objective function (3.3) with

(wy, w,, wy) = (228,500,0) based on 5000 samples (left, middle and right panels).

pay; Gy [1-—p2
+ + == .
24z 2 ™

Bl

Therefore from
E[(Z:C)z]
1 2
= E[(E + a0, Gy +2Gy + ag (G2 = 1) + a1 ,G Gy + a5 5(G2 — 1)) ]

1, > 2 2 2 2
= 1 +ag, +a, +2“k,1,1 +a,,,+ 2ak72’2, k=12,

we have

el(ak.j’ak,j.l)
= E[Z}1-2E[Z,Z]°1+ E(ZF) + E[Z2]1 - 2E[Z,Z]“1 + E[(ZF9)
2 ay,  pay, 1-p2 1
Ll 2! _r Ly ail + aiz + 2"%,1,1 + "%,1,2 + 2(1?‘212

-3 Vi oz Vor T4

1,2 2 2 2 2
Tyt ta,t 2ay,, + a5+ 203,

S S RS U S O RS RS By LV
_6 2” 1,1 2\/; 2.1 2\/; 1,2 2,2 2 T

2 2 2 2 2 2
+2ay Fay, +2a7,, 420y + a5, +245,,,

which implies the optimal values are a; | = 1/(2\/;), a; = p/(Z\/;),
ay, = V(l=p?)/x/2and a, =ay ) = ay,, =aj5, = a1 = ay1p =
a5, =0.

The following numerical results are for p = 0.5 and are based
on 5000 samples. The left, middle and right panels of Fig. 3 show
5000 samples of (Z,, Z,) and the corresponding samples of (Z 1P c, Z; )
obtained under (3.3) and (Zl‘D CT,ZZP CTy obtained under (3.5) with
(wy,w,) = (228,500). For these values of (w;,w,) the components
E[ 1Z = ZPCT| | and max, g, i, <q lI8;,1,() = Sﬁgj(’l“k.p”k,},l)lb of
the objective function (3.5) have similar magnitudes. The two dimen-
sional histograms of the middle panel suggest that the joint densities
of (Z,,7,) and (ZIP C,ZZP C) differ significantly. The left, middle and
right panels of Fig. 4 show the histograms of ||Z — Z* CIl% obtained
under (3.3) and of ||Z — ZP CTll% obtained under (3.5) with weighting
coefficients (w;, w,) = (1,0) and (w,, w,) = (228,500). They suggest that
the PCT model is superior to the PC model. We take two different sets
of (w;, w,) to assess the usefulness of including the spectral measures in
the objective function (3.5). The plots suggest that objective functions
with the spectral measures delivered improved PCT models.

Case (ii): F; is exponential with parameters y;, > 0, k = 1,2. Then
we have Z, = —log(1-®(M,))/u, and the Rosenblatt mapping G — Z
is given by (3.7).

The following numerical results are for p = 0.5, y; = 1, y, = 2,
and are based on 5000 samples. The left, middle and right panels of
Fig. 5 show 5000 samples of (Z,,Z,) and the corresponding samples
of (ZI'¢, ZFC) obtained under (3.3) and (Z/7, Z,°T) obtained under
(3.5) with (w, w,) = (3000, 500). For these values of (w,, w,) the compo-
nents E[ || Z—-Z"<T|3 ] and max, ¢, <, <4 ||si1,i2(')_s,'l;§27-('|ak,j7ak,j,[)“Z of
the objective function (3.5) have similar magnitudes. The two dimen-
sional histograms of the middle panel suggest that the joint densities
of (Zy,2,) and (Z[€, ZFC) differ significantly. The left, middle and
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pCT 0
4

(21-£2,83) = (1,0,0) and (Z/", Z7<T) obtained under the objective function (3.5) with

right panels of Fig. 6 show the histograms of ||Z — Z” C||§ obtained
under (3.3) and of ||Z — ZP CT||§ obtained under (3.5) with weighting
coefficients (w;,w,) = (1,0) and (w;,w,) = (3000,500). They suggest
that the PCT model is superior to the PC model. We take two different
sets of values of (w;,w,) to assess the usefulness of including the
spectral measures in the objective function (3.5). The plots suggest that
objective functions with the spectral measures delivered improved PCT
models.

Example 3.2. Let Z; = R; and Z, = R; + R,, where R, R, are
independent gamma random variables with distribution functions F,
k = 1,2, and density functions

1 o7k 0k

I'(6y) k

SR (i) = s e8>0, k=12
The CDF of the conditional random variable Z,|Z, = z, is

FZzI21=21(22) = P(Rj+R, < z,|R; =2;) = P(Ry, < 2,—2)) = FR2(22_Z1)'

so that the Rosenblatt map has the form

G, = & 'oF|(Z))
Gy, = &7 'oF,(Z,1Z) = @ oF, (Z, - Z)) = @ "o Fg (Ry). (3.8)

where G| and G, are independent standard Gaussian variables.

The PC representation ZPC = (ZIPC,ZZPC) is given by (3.2) with
d = 2, where the coefficients {ay ;,q;;,} for the PC model are deter-
mined by minimizing the objective function in (3.3). The PCT model
zZPeT = (z lp CT, 22P CT) is defined by (3.4) with d = 2, where the coeffi-
cients {ay ;,ay ;,} for the PCT model are determined by minimizing the
objective function in (3.5).

Since Z, ZPC and ZPCT are defined on the same probability space,
the terms E[ |Z — ZPC|3 ] and E[ ||Z — ZPT|Z ] of the objective
functions (3.3) and (3.5) can be calculated. We set g, = g3 = 0,
since the resulting objective function (3.3) is adequate for constructing
PC models [9]. We set w; = 0, since we are interested in the tail
dependence, see comments following (3.5). The values of w, and w,
in (3.5) are given in the subsequent numerical experiment.

The following numerical results are for §, = 2,6, = 3 and are based
on 5000 samples. The left, middle and right panels of Fig. 7 show
5000 samples of (Z,, Z,) and the corresponding samples of (Z¢, ZF<)
obtained under (3.3) and (ZIP CT,Z; CTy obtained under (3.5) with
(w;, w,y) = (3000,500). For these values of (w;,w,) the components
E[ |Z - ZPCT”% 1 and max,g; ¢, <q lIs; 1, () = Sﬁng('|“k,j:ak,/,1)||2 of
the objective function (3.5) have similar magnitudes. The two dimen-
sional histograms of the middle panel suggest that the joint densities
of (Z,,7,) and (ZIP C,ZZP C) differ significantly. The left, middle and
right panels of Fig. 8 show the histograms of || Z — ZPC|2 obtained
under (3.3) and of ||Z — ZP CT||§ obtained under (3.5) with weighting
coefficients (w;,w,) = (1,0) and (w;,w,) = (3000,500). They suggest
that the PCT model is superior to the PC model. We take two different
sets of (w;, w,) to assess the contribution of the spectral measure to the
objective function (3.5). The plots suggest that the incorporation of the
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Fig. 4. Histograms of ||Z — Z”C||§ obtained under the objective function (3.3) with (g,g,.&;) = (1,0,0) and of || Z — ZPCT||§ obtained under the objective function (3.5) with
(wy, wy, wy) = (1,0,0) and (w,, w,,ws;) = (228,500,0) based on 5000 samples (left, middle and right panels).
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Z
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Z

Fig. 5. Histograms of (Z,, Z,), (Zl"c, ZZPC) obtained under the objective function (3.3) with (g, g,.g;) = (1,0,0) and (ZIPCT,ZZPCT) obtained under the objective function (3.5) with

(wy, w,, ws) = (3000, 500,0) based on 5000 samples (left, middle and right panels).
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Fig. 6. Histograms of || Z — Z*“||3 obtained under the objective function (3.3) with (g;,g,,£) = (1,0,0) and of [|Z — Z"“"||} obtained under the objective function (3.5) with
(wy, wy, wy) = (1,0,0) and (w,, w,,ws;) = (3000,500,0) based on 5000 samples (left, middle and right panels).
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Fig. 7. Histograms of (Z,, Z,), (Z], Z) obtained under the objective function (3.3) with (g, £,,g;) = (1,0,0) and (Z/", Z7") obtained under the objective function (3.5) with

(wy, w,, wy) = (3000, 500, 0) based on 5000 samples (left, middle and right panels).

spectral measures in the objective function improves the quality of PCT
models.

Example 3.3. Let X,(?), X,(1), 0 < ¢ < 7, be real-valued processes
defined by the differential equations

X0+ X, (0 + X, (0) = 5, V()

Xo() + o Xo() + o Xo(t) = KV(1), 0<t<7t (3.9

with the initial conditions X;(0) = 0 and X;(0) = 0, i = 1,2, where
a;, i, k; > 0, i = 1,2 are constants. The input is the translation process
V() = F-lo®(W (1)), where F is the Gamma distribution function with

the shape parameter v and scale parameter 1, W (z) is the stationary
solution of dW (t) = =9 W (t)dt + \/29dB(t), 9 > 0, and B denotes the
standard Brownian motion.

From [32] (Chap.2), the solution of (3.9) is
t .
X;(1) = / 5 -2 sin(y;(t —u)V(wdu, i=1,2, 0<tr<z, (3.10)
0o Vi

where y; = (8, — a?/H'/2, i =1,2.

Our objective is to construct FD models for the vector-valued pro-
cess (X(1), X,(t)). Since (3.9) has to be solved numerically, V(¢) and
(X 1D, X 2(1)) are defined and calculated at a finite set of times, e.g., the
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Fig. 8. Histograms of ||Z — Z”C||§ obtained under the objective function (3.3) with (g,£,.8;) = (1,0,0) and of || Z — Z"’CT||§ obtained under the objective function (3.5) with
(wy, w,, ws) = (1,0,0) and (w,, w,,ws) = (3000,500,0) based on 5000 samples (left, middle and right panels).

equally spaced times t; = id4t, i = 1,...,n, where At = z/n denotes
the integration time step. Denote by n = (V(t)),...,V(t,) and ¢ =
(X;(t)), ..., X;(t,), i = 1,2, the discrete versions of the input V()
and of the processes X;(r), i = 1,2. The random vector » admits the
representation n = Y;;_, Z,v;, where {v,} are the eigenvectors of the
covariance matrix E[#4”] and the random coefficients { Z, } are defined
sample by projection, i.e., Z, (@) = #7 (®) vy, ® € Q. The corresponding
FD model is 5, = ZZ= | Zvy- Since the differential Eqgs. (3.9) are linear,
their solutions to # and #, are linear forms of {Z, } denoted by {; = {(; ;}
and {4, = {&y ;) i=12,j=1,....n

We construct PC and PCT models of the random vector (Z, ..., Z,).
The PC representation ZFC¢ = (ZIPC, s Z(fc) is given by (3.2),
where the coefficients {q; ;,qa, ;,} for the PC model are determined by
minimizing the objective function in (3.3). The PCT model ZP¢T =
(zker, .., Z;CT) is defined by (3.4), where the coefficients {a; ;. ;;}
for the PCT model are determined by minimizing the objective func-
tion in (3.5). In this example, which mimics the common situation
in applications, target and FD samples cannot be paired as in the
previous two examples, so that we can only compare global properties,
e.g., distributions. As a result, the mean squared errors E[ || Z—Z? Cll% ]
and E[ ||Z — ZPCT|2 ] are not available and are removed from the
objective functions (3.3) and (3.5) by setting g, = w; = 0. The discrete
versions of the FD models of X;(1), i = 1,2, corresponding to the PC and
PCT models Z¢ and Z7 of Z are denoted by ¢¥< and ¢F<ST. They
are elements of the same n-dimensional Euclidean space. An additional
FD model denoted by ¢;,.; is constructed. It has the same functional
form as ¢S and ¢FCT but the samples of its random coefficients are
given by Z,(w) =# (w)uk, see discussion following (3.10).

The following numerical results are for v =2,a; =0.1,a, = 0.5, 8, =
25,8, = 9., = Lxy = 10,8 = 5,z = 10,n = 1000,d = 20 and the
time step At = 0.01. We set g, = w; = 0 since the mean squared
errors E[ || Z - ZPC||§ land E[ || Z - ZPCTllg ] are not available, see
comments following (3.3) and (3.5). The other weighting coefficients
are (g,,83) = (1,300) and (w,,w3) = (1,1.1). For these values, the
components max;; <;,<q 1, ;,() = h,}l)c,z( lay;» ax;Dll> and |E[ZZT] -
E[ZPC(ZPC)T|| of the objective function (3.3) and the components
max1<11<12<d ”Sll ;2() - S,I?(;;T( |ak/’ak/l)”2 and maxl</]<tz<d ||hll 12()
hPC (layj» a;; I, of the objective function (3.5) have similar mag-
n1tudes so that they contribute equally to the objective functions. All
the plots are based on 10000 samples.

The left, middle and right panels of Figs. 9 and 10 show the two
dimensional histograms of (Z;, Z s (ZI.P ¢z ;J C) obtained under (3.3)
and (ZF°T,z f’ CT) obtained under (3.5). Visual inspection of the plots
in Figs. 9 and 10 suggests that the PCT histograms are closer to the
target histograms then PC histograms. This qualitative observation
is confirmed by the plots of Fig. 11 which show with estimates of
extremes for PC- and PCT-based FD models. The PCT-based estimates of
extremes follow closely the target estimates in contrast to the PC-based
estimates which are unsatisfactory.

The thin solid lines of the left and right panels of Fig. 11 are
estimates of P(||{;|| > x) for i = 1 and i = 2 which are obtained directly
from data, where ||{;|| = max, ¢;<, |¢; ;|- These probabilities are viewed

as truth. The other lines of the figure are calculated from samples of
¢q:; (heavy solid lines), ¢P€ PC (dotted lines) and o4 P CT (dashed lines) for
the first and second components (left and right panels) The heavy solid
lines are the closest to the truth. The next best model is ¢7$" while ¢7<
differs significantly from the truth. We prefer (IS to ¢,.; 'since the set
of samples of ¢;.; is defined by the available data so that it cannot be
extended. In contrast, samples of any size can be generated from ¢F¢7
since its probability law is known.

4. Wind data analysis

PC- and PCT-based FD models are developed for the vector-valued
wind pressure time series recorded in the University of Florida bound-
ary layer wind tunnel facility (UFBLWT) on the surface of a bluff body
at m = 6 pressure taps. The experimental setup and recorded data are
discussed in the following subsection. Sections 4.2 and 4.3 construct
PC- and PCT-based FD models and assess their performance. The focus
is on the capability of these models to predict extremes of the recorded
wind pressure time series. The optimization algorithm used to construct
the FD models for the wind time series is presented in Section 4.4.

4.1. Experimental setting and data

The pressure data set used in this section was generated in October
of 2021 as a part of an investigation into the influence of raised
planter bed shapes on their vulnerability to high winds. The study was
inspired by Hurricane Irma (2017) which damaged the plastic coating
over the tops of raised planter beds in agricultural fields in Florida.
These coatings are necessary to optimize the retention of moisture and
nutrients, and their damage due to high winds represents an economic
loss.

The premise of the experimental study was to evaluate the wind
pressures over the surfaces of a series of adjacent agricultural planter
bed rows using 1:10 scale models of two different planter bed shapes,
see the top panel of Fig. 12. The complete model consisted of 5 adjacent
rows of raised planter beds, see the bottom panel of Fig. 12. Three of
these rows were fitted with 84 pressure taps each over half the length
of the row. The left panel of Fig. 13 shows the five adjacent bed model,
the location of the 252 taps, and the approach wind direction employed
in this section. The box on the center row in the left panel shows the
location of the six taps used in this section, which are numbered 79 -84
from left to right. The model was mounted on a turntable to change the
approach wind direction. The right panel of Fig. 13 shows the model
in the wind tunnel in the zero degree approach wind angle.

For both planter bed shapes, the pressure data were sampled at
625 Hz for 180 s for 36 directions and two different boundary layer
roughness regimes (open and suburban exposure).

The subset of data accessed for the study presented in the following
two subsections corresponds to the wide planter bed shape in the right
panel of Fig. 12, zero degree wind approach in the right panel of
Fig. 13, the open terrain exposure, and the six taps identified in the
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Fig. 9. Histograms of (Z,,Z,), (Z]°, Z{) obtained under the objective function (3.3) with (g, g, ;) = (0,1,300) and (Z/“", Z") obtained under the objective function (3.5)

with (w,,w,,w;) =(0,1,1.1) based on 10000 samples (left, middle and right panels).

PC
Zi

PCT
Zy

Fig. 10. Histograms of (Zs, Z,), (Z£¢, Z['C) obtained under the objective function (3.3) with (g;.,,,g;) = (0,1,300) and (ZF<", ZFCT) obtained under the objective function (3.5)

with (w,, w,,w;) =(0,1,1.1) based on 10000 samples (left, middle and right panels).

PGl > =)

P(l[Ce]] > )

Fig. 11. Estimates of the target probability P(||{;|| > x) (thin solid line), estimates based on FD model (heavy solid line), estimates based on finite dimensional PC model (dotted
line) and estimates based on finite dimensional PCT model in logarithmic scale (dashed line) for ¢, and ¢, (left and right panels).

left panel of Fig. 13. All experiments were conducted with a steady fan
speed of 1200 RPM, resulting in stationary ergodic datasets.

The left and right panels of Fig. 14 show segments of length 1000
of the wind pressure records at taps 79 and 80. The lack of symme-
try of these records suggests that the wind pressure process is non-
Gaussian. This qualitative observation is quantified in the following two
subsections.

4.2. Construction of FD models

Let (yy.¥5.....¥,) with y; = ...y, )7, j = 1,....n be the
wind pressure record at m pressure taps. The analysis in this section
considers the pressure taps 79 to 84 so that m = 6, (Fig. 13, left).
The taps 79 — 84 are renamed 1 — 6 in the remainder of this section.
The proximity of these six taps is such that strong spatial correlation
exists over adjacent pairs. The record has length » = 110000 and time
step At = 0.0016 seconds. It is assumed that the record is a sample
of an m = 6 dimensional time series which is stationary and ergodic.
Our objective is to construct FD models of this series whose random
coefficients are represented by PC and PCT models, see (3.2) and (3.4).

The construction involves the following three steps.

— Step 1: The available record in partition in ¢ segments of length
N = [n/q] each, ie., (y1,,,...,yy) is the first sample, (yy,i,
YN42s---» Yon) is the second sample and so on. These segments
are assumed to be ¢ independent realizations of an N-dimensional
vector (Y}, Y,, ..., Yy). This heuristic assumption is supported by
the estimates of the correlation functions of the time series based
on the entire record and on its g segments shown in Figs. 15 and
16 by heavy solid lines and heavy dotted lines which nearly co-
incide. The above partition of the record violates our assumption
of independence. To satisfy this assumption, we should skip every
other segment of length N. Yet, numerical studies suggest that
such precaution is unnecessary and is not implemented.

— Step 2: Let X, = (Y, 1,Y,,,....Y, ;)T, i = 1,...,m, denote the m-
dimensional time series of length N describing the wind model.
We construct the FD models X,.; = (X, 1. ..., X,.; )7 of the type

d
Xy = 2 Zig Vg i=1,.0,m, (4.1)
k=1
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Fig. 12. Top Row: Full-scale dimensions of the cross section of a single row of the wide (left panel) and compact (right panel) planter bed model. Bottom Row: The 1:10 scale
full 5-row model of the wide (left panel) and compact (right panel) planter beds as installed on the 1 m diameter turntable.

Fig. 13. Left panel: Locations of 252 pressure taps on the upper half of three out of five planter bed rows. The box on the center row shows the location of taps 79-84 (left to
right) used in this study. The arrow indicates the zero degree wind approach direction used in this study. Right panel: Model in the wind tunnel at zero degree wind approach
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where (v;,} are the eigenvectors of the covariance matrix
E[X,XT] and the random coefficients {Z;} are defined sample
by projection, i.e., Z; () = X ()T v; > @ € Q. These samples are
used to estimate the marginal distributions F;, of Z;,.

Step 3: We construct PC and PCT models of the random vectors
Z = (Z1\,.... 214, .., Zpy)'. The set of FD models in (4.1)
depends on md random coefficients which are related to md
independent standard Gaussian variables G|, G,, ...,G,,; by

PC
Z E[Zxk]+z ;G + 2 ai,k.j,ll(GJGII —5111)
j=1 1<j<ly <md
+ 4y i1, 1,GiG1 Gy
1<j<l <ly<md
+ Yk jiyip i3 (GGl G, Gy = ELG; Gy Gy, Gy ),

1<j<ly <l <ly <md

i=1,....m k=1,....d, (4.2)

where the coefficients {a; ;, ;s ;1,5 ik ji iy Gikjiydyds ) T€ de-
termined by minimizing the objective function (3.3). The above
equation gives us the PC model ZP€ = (zFC, ... zFPC ..  zP C)T

L fa
€ R" and extends (3.2), by increasing the degree of the polyno—

mial chaos from two to four. The PCT model Z¥¢T = (zZ 1P ICT, L
PCT PCT\T d 3 !

Zld V. Zm’d )" € R™ is defined by

zheT = Fl._kloF’.PC(Z ), i Lm k=1,....d, (4.3)

where F/ PC is the distribution of ZIP ¢ for given coefficients
{a;x,-a ,’k’j’,l, Qg jiydy> Qikojidy il These coefficients are deter-
mined by minimizing the objective function (3.5). Since target
and FD samples cannot be paired as in Examples 3.1 and 3.2, we
can only compare global properties, e.g., distributions. As a result,
the mean squared errors E[ || Z - ZPC|2 ] and E[ || Z — ZP<T|2 ]
are not available and are removed from the objective functions

(3.3) and (3.5) by setting g, = w; = 0.

The functional form of the FD models under consideration is given
by (4.1). The models, denoted by XINP, xPC and x7<T, are elements
of the space spanned by the same vectors { ,k} but their coefficients
differ. The random coefficients of X” f are given by (4.2). The random
coefficients of XINP and xPCT have the same marginal distributions

but they are 1ndependent for XIND and dependent given by (4.3) for
xrer,
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,20 estimated by the entire records and the partitioned samples (heavy solid lines and heavy

4.3. Extremes of wind pressures by FD models

The following numerical results are for ¢ = 5500, N = 20 and d = 15.
As mentioned in Section 4.2, we set g, = w; = 0 since the mean squared
errors E[ || Z — ZPC”% ]and E[ || Z - ZPCTllg ] are not available, see
comments following (3.3) and (3.5). The other weighting coefficients
are (g,,83) = (1,100) and (w,,w;) = (1,1.1). For these values, the
components max, ¢, , <g 1, 1,() = AES Clag, g, )l; and |E[ZZ7] -
E[ZPC(ZPC)T|| of the objective function (3.3) and the components
max; g, <i,<d 15i,,,() — Sﬁﬁz('lak,j’ak,j,/)HZ and max, g, <, <q A 4, () =

i (lay j» ay ;)ll, of the objective function (3.5) have similar magni-
tudes so that they contribute equally to the objective functions. All the
plots are based on 5500 samples.

The left, middle and right panels of Figs. 17 and 18 show the two
dimensional histograms of (Z; i1ky> Zigky)s (2’1 o Z P C ) obtained under
(3.3) and (ZIP f{T, zP CT) obtained under (3.5). Vlsual inspection of the
plots in Figs. 17 ané 18 suggests that the PCT histograms are closer to
the target histograms than PC histograms. This qualitative observation
is confirmed by the plots of Fig. 19 which show with estimates of
extremes for PC- and PCT-based FD models. The PCT-based estimates of
extremes follow closely the target estimates in contrast to the PC-based
estimates which are unsatisfactory. The thin solid lines of Fig. 19 are
estimates of P(||X;|| > x) for i = 1,...,6 which are obtained directly
from data, where ||&;|| = max, ;< |Y; ;|. These probabilities are viewed
as truth. The other lines of the figure are calculated from samples of
X,.; in (4.1) (heavy solid lines), X< (dotted lines) and X" (dashed
lines) for taps 79 to 84. The heavy sohd lines are the closest to the truth.
The next best model is X77 while XPC differs significantly from the
truth. The PC and PCT Inodels are based on polynomial chaos of degree
two, i.e., without the last two terms in (4.2).

The plots of Fig. 20 explore the effects of the dependence between
the random coefficients of FD models on extremes. The solid lines
are estimates of the probability P(||Xs|| > x) obtained from the wind
record at tap 83 for which the performance of the PCT model was less
satisfactory. The other lines are extremes of X,;.5 in (4.1) with random
coefficients {Zs,} which have different dependencies: independent
(dash-dotted lines), Z”C based on a second degree polynomial chaos
(dotted line, left panel), ZPC based on a fourth degree polynomial
chaos (dotted line, right panel), ZPCT based on a second degree poly-
nomial chaos (dashed line, left panel) and Z”¢T based on a fourth
degree polynomial chaos (dashed line, right panel) for tap 83. The
estimates are unsatisfactory if the components of ZP¢T are assumed
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estimated by entire samples
estimated by partitioned samples

g(u)

&

timated by entire samples
+ estimated by partitioned samples| 07

timated by entire samples
estimated by partitioned samples

Fig. 16. Correlation function c;(u) = E[Y,,Y; ], (i,j) = (1,6),(2,5),(3,4) for the time lag u = 1,...,20 estimated by the entire

and heavy dotted lines).

Fig. 17. Histograms of (Z,,, Z,,), (Z{'€, Z[§

with (w,,w,,w;) =(0,1,1.1) based on 5500 samples (left, middle and right panels).

300 300
250
200
150

100

Z[¢) obtained under the objective function (3.3) with (g;, £, ;) = (0, 1,100) and

records and the partitioned samples (heavy solid lines

(ZIPICT, ZIPZCT) obtained under the objective function (3.5)

Fig. 18. Histograms of (Z,5, Zs4), (ZX€, ZFC) obtained under the objective function (3.3) with (g, g,.g;) = (0, 1,100) and (Z;SCT, Z;’[fT) obtained under the objective function (3.5)

25436
with (w,,w,,w;) =(0,1,1.1) based on 5500 samples (left, middle and right panels).

independent, an expected result since the resulting FD wind model is
approximately Gaussian. They approach the target probability as the
degree of the polynomial chaos is increased from two to four since
this increases results in a superior representation of the dependence
between the random variables Z;,. However, increasing the degree
of the polynomial chaos does not improve the estimates based on PC
models, since Z and Z*C have different marginal distributions.

4.4. Optimization algorithm

The following five-step method is used to identify the optimal co-
efficients {a; . ;, ;. j1,+ @i k.jiy 0> Fik,jidy oy} fOT the PC and PCT models
of the random variables Z; .

— Step 1: The marginal distributions F;, are estimated from the set
of ¢ independent samples of the random variables Z; ;.

— Step 2: Samples of Gy,...,G,, are generated by the MATLAB
function randn. These samples are mapped into samples of Z fkc
via (4.2) for given coefficients {a; ;, a;x;1,s @ik iyt Fikjilydnds )
and are used to estimate the marginal distributions Fl.ic of Zi‘”kc.

12

— Step 3: Samples of Z&CT are calculated from (4.3) based on
estimates of F;, in step 1 and estimates of F’.ic corresponding
to given coefficients (@i js Qe jty > Tirkjidy dy> Gy sl

- Step 4: The objective functions for given coefficients {a; ;, a;x j,,
Qigejiyyo Gikojidy 1y, Are calculated from (3.3) and (3.5), where
the histograms and spectral measures in the expressions of these
functions are constructed by the MATLAB function histcounts2.

— Step 5: The MATLAB genetic algorithm is used to identify the
optimal coefficients {a; ;. a4 1, Gikji, 1y Gikjiypdy} D the €x-
pressions of the objective functions.

The PC and PCT models are based on polynomial chaos of degree
two for the numerical experiments of Figs. 17-19 and the left panel
of Fig. 20. It takes approximately 12 hours for the PC model and
approximately 15 hours for the PCT model to obtain the optimal
coefficients {a;; ;,a;y, } using MATLAB genetic algorithms. The nu-
merical experiments of the right panel of Fig. 20 are based on the
PCT model of tap 83 with polynomial chaos of degree four only. It
takes approximately 3 hours for the PCT model of tap 83 to obtain
the optimal coefficients {a; ;, a;x i, ik jiy 0> Gikijily dyds 1+ We use the
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tap 81

P(|| || > z)

Fig. 19. Estimates of the target probability P(||X;|| > x) (solid line), estimates based on FD model (heavy solid lines),

estimates based on finite dimensional PC models (dotted

lines) and estimates based on finite dimensional PCT models in logarithmic scale (dashed lines), i =1,...,6.

tap 83 and second degree PC
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Fig. 20. Estimates of the target probability P(||Xs|| > x) (thin solid line), estimates based on FD model (heavy solid line), estimates based on finite dimensional independent model
(dash-dotted line), estimates based on finite dimensional PC models (dotted line) and estimates based on finite dimensional PCT model in logarithmic scale (dashed line) based on

second and forth degree polynomial chaos (left and right panels).

MATLAB 2022a version for calculations. We perform all the numerical
tests on a personal computer with a 3.6 GHz CPU and 16 GB RAM.

5. Conclusions

Finite dimensional (FD) models, i.e., deterministic functions of time
and finite sets of random variables, have been constructed for a set of
test cases and a wind pressure time series recorded at the UFBLWT facil-
ity in Gainesville by using polynomial chaos (PC) and polynomial chaos
translation (PCT) models to represent their random coefficients. The
components of PCT models are obtained from those of PC models by
translation, so that they match exactly the target marginal distributions
irrespective of the coefficients in their definition. The optimal values
of the PCT coefficients minimize the discrepancy between the PCT
and target joint properties, which are quantified by joint distributions
and spectral measures. In summary, the PCT models match exactly
the marginal distributions of the random coefficients of FD models
by construction and capture their dependence with an accuracy that
increases with the truncation level of the underlining PC models.

13

FD models with random coefficients represented by PC and PCT
models have been constructed for a set of test cases and a 6-dimensional
wind pressure time series recorded in the UFBLWT facility. The FD
models with PCT random coefficients are superior to those with PC
coefficients in the following sense. First, the PCT models provide a
more accurate representation of the joint distributions of the random
coefficients of FD models than the PC models. Second, the distributions
of extremes of PCT-based FD models are similar to those of target time
series while PC-based FD models do not have this capability. It is also
shown that the performance of PCT-based FD models can be further
improved by increasing their stochastic dimension and/or the order of
their underlining PC models.
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