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ARTICLE INFO ABSTRACT

MSC: Diffusion processes with linear drift and translations of Gaussian/non-Gaussian diffusion processes are fitted to
60 wind pressure time series recorded at the University of Florida boundary layer wind tunnel facility (UFBLWT).
62 The processes match exactly and approximately the marginal distributions and the correlation functions of these
Keywords: records. It is shown that these simple processes and their finite dimensional models characterize accurately
Diffusion process the extremes of the wind record under consideration provided their correlation functions minimize objective
Extremes

Finite dimensional model
Karhunen-Loéve (KL) representation
Monte Carlo simulation algorithms

functions which account for extremes.

1. Introduction

The information on physical quantities, such as wind pressures
on buildings, sea wave heights and material microstructure features,
consists of values recorded at finite sets of times and/or locations.
For example, suppose that n, independent samples of a real-valued
stationary process X (¢) are recorded in a bounded time interval [0, 7]
at a time step Ar = ¢/n, so that the data set {x;(j 47), j = 0,1,...,n},
i=1,...,ng, provides n; independent samples of the (n+ 1)-dimensional
random vector V = (X(tp), X(1)), ..., X(t,)). Generally, the data set
is sufficient to estimate the mean vector, the correlation matrix and
the marginal distribution of V but is insufficient to characterize the
extreme random variable max,g;., |V;|. Hence, even if the random
variables sup,(o - |X ()| and maxy;, |V;| have similar distributions,
the distribution of sup,¢y,; X (?)| cannot be approximated solely from
data. The information provided by the data set has to be augmented to
characterize extremes of X (z).

There are at least two approaches which can be employed to extend
the available information on X (¢) and use it to characterize the extreme
random variable sup,[o ,; | X (?)|. A common step of these approaches is
the estimation of the mean vector and correlation matrix of the random
vector V, which can be viewed as approximations of the mean and
correlation functions of X(¢) provided that the time step Ar is suffi-
ciently small. The first approach constructs reduced order models {V,},
d =1,2,..., of V, see [1]. The models {V,} are truncated Karhunen—
Loéve (KL) representations of V whose random entries are described by
polynomial chaoses (PCs) and translation polynomial chaoses (PCTs)
with coefficients which minimize objective functions quantifying the
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discrepancy between data and PC/PCT histograms and other properties.
It was shown that extremes of V' can be approximated by extremes of
V, with PCT coefficients provided that the stochastic dimension d is
sufficiently large. We note that V is the target random element in this
approach i.e., the time series derived from X (¢), rather than the process
X (2) itself.

The second approach, which is presented in this study, assumes
that the available records are samples of a stationary and even ergodic
process X(t) with unknown probability law and that the data set can
only provide reliable estimates of the mean, correlation and marginal
distributions functions of this process. Accordingly, there exists an
infinite family of random processes which match these statistics. Of
this family, we consider exponentially correlated diffusion processes,
i.e., diffusion processes with linear drift and multiplicative noise, and
translations of exponentially correlated Gaussian and non-Gaussian
diffusion processes. These processes are required to match exactly the
record marginal distribution and minimize the discrepancy between the
target and model correlation functions and/or extremes.

For each process X (r) under consideration, we construct finite di-
mensional (FD) models {X (1}, d = 1,2,..., for t € [0,7], i.e., deter-
ministic functions of time and d random variables {Z,}, k = 1...,d.
The samples of the FD processes {X,(r)} are elements of the linear
space spanned by the top eigenfunctions of the estimated correlation
function of X (), 0 < ¢ < 1, i.e., the eigenfunctions corresponding to
the largest d eigenvalues, referred to as basis functions. The samples of
{Z,} result by projecting samples of X () on the basis functions. Con-
ditions are established under which extremes of, e.g., the distribution
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of sup,po.-1 | X4(t)| converges to that of sup,jy .7 X (?)] as d — oo so that
the distribution of the target quantity of interest sup,fy ,; | X4(t)| can be
estimated from samples of X () for a sufficiently large d. This property
is essential in applications since samples of X,(r) can be generated
by standard Monte Carlo algorithms while samples of X(r) are not
available since X (¢) has infinite stochastic dimension as an uncountable
family of random variables indexed by 7 € [0, z].

Our objective is to construct simple probabilistic models for uni- and
multi-variate wind pressure wind tunnel records which are capable to
characterize accurately extremes of these records. It is assumed that
the wind records are sufficiently long such that their mean, correlation
and marginal distribution functions can be estimated accurately. Of
the infinite family of processes which can be fitted to these estimates
or only to some of them, we have selected one- and two-dimensional
diffusion processes with linear drift coefficients and translations of
Gaussian/non-Gaussian diffusion processes. The selected models fit
exactly the marginal distribution of the target wind records. Their
correlation function is selected to minimize an objective function which
depends on the discrepancies between target and model correlations
and extremes, so that it may or may not fit accurately the target
correlation function. It is shown that even such simple models can
provide accurate estimates of the distribution of extremes of wind
pressure records.

The paper is organized as follows. We introduce the one- and two-
dimensional diffusion processes with linear drifts and construct their
FD models in Section 2. Translation diffusion processes and their FD
models are defined and examined in Section 3. The processes of the
previous two sections are fitted to wind data in Section 4. The section
also assess the performance of the resulting processes and of their FD
models. Final comments are in Section 5.

2. Diffusion processes with linear drift

We review briefly two of the diffusion processes constructed in [2,3]
and give conditions under which the stochastic differential equations
defining these processes admit unique strong solutions. These condi-
tions illustrate some of the limitations of two-dimensional diffusion
processes under consideration.

2.1. One-dimensional processes

Let X (1), t € [0, 7], be a real-valued diffusion process defined by the
stochastic differential equation

dX () =—pX(t)dt+ D(X(1))dB(t), t>0, (2.1)

where B(?) is the standard Brownian motion process and p > 0. The
stationary solution of this equation is a zero-mean non-Gaussian process
with correlation function c(s,t) = E[X(s)X()] = exp(—p|s —t|). Our
objective is to estimate the distribution of the extreme sup, ) [X ()
of the stationary process X (¢) during a time interval of length = > 0.

The characterization of extremes of X(¢) requires detailed knowl-
edge of the samples of this process, which is provided by the strong
solution of (2.1), see [4] (Sect. 4.7). The following theorem gives
conditions under which this solution exists and is unique.

Theorem 2.1. The stochastic differential Eq. (2.1) admits a unique
strong solution X (¢) with stationary marginal density function f, if f is
continuously differentiable on R, lim,_, —2pxf(x)/f'(x) < co and

2p

x 1/2
D(x):(—m _oouf(u)du) . 2.2)

Proof. It has been shown in [2] that the stationary process X(r) of
(2.1) has a specified marginal density f if its diffusion coefficient has
the expression in (2.2).
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The strong solutions of (2.1) exists and are unique if D(x) is locally
Lipschitz continuous and satisfies the growth condition [4, Chap. 4],
i.e., if for each & > 0, there exists C:>0 such that

|D(x;) = D(xp)| < Celxy = x5, Ixq ], [x] <€, (2.3)
and there exists K > 0 such that
D(x)? < K(1+x?), xeR. (2.4)

Since f(x) > 0 and /_xoo uf(u)du are continuous functions on R, then
from (2.2), D(x)? is also continuous on R. Therefore, for any |x| < &
with 0 < £ < o0, f(x) > 0 so that D(x)? < oo. Moreover, D(x)? is
bounded on R since /f; uf(w)du = E[X(f)] = 0 so that

X

lim D(x)> = — lim Z_p uf(w)du = — lim M < ©

X—00 X—00 f(x) o X—00 f’(x)

by using I’Hopital rule. Since D(x)? is bounded on R, then there exists
a constant K > 0 such that D(x)? < K(1 + x?), which means that D(x)
satisfies condition (2.4). The differentiation of (2.2) gives

px__ f'DG)
D(x) 2f(x)
so that this function is continuous since f(x), f/(x) and D(x) are contin-

uous. Therefore, D(x) is continuously differentiable so that it is locally
Lipschitz continuous. This means that D(x) satisfies condition (2.3). []

D'(x)= -

2.2. Two-dimensional processes

Let X(¢) = (X,(t), X,())T, t € [0, 7] be a diffusion process defined by
the stochastic differential equations

dX,(1) = (a1, X,(0) + a1, X,0)dt + D (X, (1), X5(1))d B, (1)
dX,(1) = (ay X, (1) + aypX,(0)dt + Dy(X, (1), X,(0)dBy(1), t >0 (2.5)

where B;(r) and B,(r) are independent standard Brownian motion
processes. The stationary solution X () of (2.5) has zero mean and cor-
relation function c(s, t) = E[X ()X ()" ] = exp(A(t—s))c(s, s) [4, Chap. 71,
provided that the real part of the eigenvalues of A = [a; ajy;ay; ay]
are negative, where exp(-) denotes the matrix exponential function [5,
Sect. 1.5].

It was found in [3] that the stationary bivariate process X (¢) has the
marginal density f if the diffusion coefficients have the expressions

2 x| 1/2
a1
Di(xq1,%xp) = <m uf(u,xz)du>
) X, 1/2
a2
Dy(xq,xy) = <m uf(xl,u)du> , —00 < X[,Xp <00. (2.6)

These results have been obtained by solving the time-invariant Fokker—
Planck equation

P
e ((a“xl Fapx) f(X), %) — =~ (Dl(xl,xz)zf(xl,x2)>>

9 9
+ ox, <(021x1 + ay X)) f(xy, %) — 3% (Dz(xl,xz)zf(xl,xz))> =0. (2.7)

under the conditions

0 ad
alzxz_d S(x1,x0) + ayx; — f(x1,x) =0 (2.8)
X1 0x,
and
a6 (g x0) = 222 [Dy (xy, 302 f (e X)) = 0
nx e xp) = 5 o it X 12 X2)] =
1 0
ay X,y f(x1, %) — > e [D,(xy, %)% f(x1,%,)] = 0. 2.9
X2

The condition of (2.8) is satisfied if, e.g., f is a function of a21x% —a12x§
or a;, = ap; = 0. These assumptions impose rather severe restrictions

on the form of the density f and/or the correlation function.
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As previously noted, our objective is to characterize extremes of the
diffusion process X (r) whose characterization requires detailed infor-
mation on the sample properties of this process, which are provided by
the strong solution of (2.5). The following theorem provides conditions
under which (2.5) admits a unique strong solution.

Theorem 2.2. The stochastic differential Eq. (2.5) admits a unique strong
solution X(t) with stationary marginal density f, if the drift coefficients
D, (x) and D,(x) are local Lipschitz continuous (2.10), i.e., for each & > 0,
there exists C; > 0 such that

1D(x) = D25 < Cellx—zlly, llxlly. 121l < & x = Gepox)”s 2= (21, 2)"
(2.10)

where D(x ), x;) = (D (x|, Xp), Dy(x1,x))7, ||-|l, denotes the L, norm, and
satisfy the growth condition, i.e., there exists K > 0 such that

Dy (x1,%,)* + Dy(x;,x)* < K(1 + x% + x%), x1, X, €ER. (2.11)
Proof. The above conditions are those in (4.74) and (4.75) of [4,
Chap. 4]. We note that there are processes X(¢) of the type in (2.5)
which satisfy (2.10) and (2.11), see Section 3.2.2. Yet, these conditions
are rather restrictive. For example, if the joint density of (X (t), X,(1))
is a zero-mean Gaussian distributions with covariance matrix [1 c¢;c 1],
0 < |c|] <1, then
2ay, X1

Di(x),x))* = —1—

P ) e
where f(x,|x,) denotes the conditional density of X (#)|X,(r). For any
fixed x, € R,

uf (ulxy)du, —oo < xy,x, < 00,

/ uf(u|xy)du — / ufulxy)du = E[X,()|X,() = x,] = ¢x,, x; = 0.

o0

2

and, since 1/f(x;|x,) increases much faster than x|

growth condition (2.11) is not satisfied. []

as x; — oo, the

We conclude with the observation that the condition of (2.8) limits
the use of X(r) in (2.5) since the set of marginal distributions and
correlation functions of X (¢) under this condition is small so that few
data sets can be described by this process.

2.3. Finite dimensional (FD) models

Let X(r), 0 < t < 7, be a zero-mean, finite-variance R"-valued
stochastic process defined on a probability space (£, F, P), which may
or may not be stationary. The FD models { X,(#)} of X(r) are defined by

d
Xiq, @)= 2 Zix@in®, di=12,..., (2.12)

k=1

te0,7z],i=1,...,n,
where {¢;, ()}, k = 1,...,d;, are the top d; eigenfunctions of the
correlation function {c;(s,) = E[X;(s)X;()]}, i.e., the eigenfunctions
corresponding to the largest d; eigenvalues of the correlation functions
{cii(s,1)}, and {Z,,} are random coefficients whose samples are ob-
tained by projecting samples X;(r,w), ® € £, of X;(t) on the basis
functions {g, (1)}, i.e.,
T
Z; () = / Xt 0 (Ddt, k=12,..., we, i=1,...,n
0

The following theorem from [6] states that the extremes of X, id; )
converges to those of X;(r) weakly as d; increases indefinitely under
some conditions. This means that the distribution of the target quantity
of interest sup,¢(g ;) | X;()| can be estimated from samples of X; ; (1) for
sufficiently large stochastic dimensions {d;}.

Theorem 2.3. If X (1) has continuous samples, the correlation functions of
the components of X (1) are continuous and Y,;> | A; 1 SUp,cfo.) @i x(t)* < %
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forany i=1,...,n, then

sup |X; 4 ()] £ sup |X;(D|, di > 0, i=1,...,n (2.13)
1€[0,7] ! 1€[0,7]
and

sup X, (0]l = sup X, min d; = co, (2.14)
1€[0,7] 1€[0,7] I<i<n
where w denotes weak convergence, || - || is the L., norm and X,(t) =

(X1, @0 X (D)

This theorem is essential in applications since it shows that the
distributions of the target extremes sup,¢ .1 | X;(1)| and sup,(o .1 X @)l
can be estimated from samples of FD models of X(r) provided that
the stochastic dimensions {d;} are sufficiently large, which can be
generated by standard Monte Carlo algorithms.

The following Corollary specializes the statement of the previous
theorem to the case of real-valued stationary processes with exponen-
tial correlation function.

Corollary 2.1. If a real-valued, zero-mean, weakly stationary stochastic
process X(t) has exponential correlation function, then

sup X, (0] = sup [X()], d -,
1€[0,7] 1€[0,7]

where d = d; and X;(t) = X, 4, (1.

Proof. The eigenfunctions of the exponential correlation function
c(s,t) = e=?Is7l of X(¢) are given by (2.51) and (2.52) of [7]. They have
the expressions

sin(é,(t +7)/2) cos(m (t +7)/2)

T sin(27,)/ (25 T+ sinen)/Crp)

where ¢, and 5, are solutions of &, + ptan(z&,) = 0 and #; tan(zy) = p,
k=1,2,.... Since

@1 () = and @y (1) =

|21 (D] = sinG@+ /D1 <L k=12,
VT +cos2(zE)/2p) VT

and

|¢2k(1)|=w < k=1.2....

1
\/ 7+ sin(zn,)/(2p) G

we have |@,(1)] < l/\/? for all k > 1 so that

[~ 1 0
D A sup @) < — Y Ay < oo,
k=1 1€l07] \/; k=1

since Z,‘:":l A < oo [8, Chap. 4]. Therefore,

sup [X 0 > sup [X()], d; — oo,
t€[0,7] te[0,7]

by Theorem 2.3. [J

This corollary holds also for vector-valued processes provided that
the components of these processes are exponentially correlated.

The stochastic process with exponential correlation function is not
differentiable. As noted in [9,10], replacing the exponential correlation
function by a smoother function can have certain advantages without
necessarily compromising the modeling accuracy. The second deriva-
tive of these modified correlation functions exist and are continuous.
The FD models constructed under these modified correlation func-
tions converge to the target processes weakly under the sup-norm, see
Theorem 3.2 in [6].

3. Translation diffusion processes

Let X(1) = (X,(?),..., X, ”(t))T be an n-variate zero-mean stationary
process with correlation function c(u) = E[X (/)X (¢ + )" ] and marginal
distributions F;, i = 1,...,n of the components of X(r). We construct
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translation models for X(r) by mapping stationary Gaussian and non-
Gaussian processes into processes which match exactly the marginal
distributions of the components of X(r) and approximately the cor-
relation functions of this process. We also examine the extremes of
the resulting translation processes which are equivalent in the sense
that they have the same marginal distributions and similar correlation
functions.

3.1. Gaussian diffusion processes

The translation version Xr(t) of X(7) has the components X7 (1) =
Flo®(G,(t)), i = 1,....n, where {G,(1)} are zero-mean, unit-variance
stationary Gaussian processes with correlation functions cg;;(u)
E[G,( G;(t + u)]. Note that the processes X ,(t) and X, () have the
same marginal distributions. Generally, the correlation functions of the
components of Xr(t) = (X (1), ..., Xy ,;(1)) and G() = (G,(®), ..., G, (1))
are similar particularly when dealing with positive and mildly neg-
ative correlations [11, Sect. 3]. For simplicity, we approximate the
correlation function of X;(r) by that of G(r).

The Gaussian process G(¢) can be defined as the stationary solution
of the stochastic differential equation

dG(t) = aG(t)dt + pd B(1), t € [0, 7], (3.1)

where « and g are (n,n) and (n, m) real-valued matrices which need
to be determined and B(f) denotes an m-dimensional process whose
components are independent standard Brownian motions. The above
equation admits stationary solution if the real parts of the eigenvalues
of a are negative. Under this condition, the covariance matrix y =
E[G1)G(1)T] and the correlation function of the stationary process G(r)
are such that

ay +ya +ppT =0, (3.2)

and E[G(G(t + u)'] = exp(au)y, where exp(-) denotes the matrix
exponential function [4, Chap. 7].

The matrices a« and # can be determined in two steps. First, the
matrix « is selected to minimize the objective function

e(a) = wy /O lle@) = exp(aw) 7113 + wy Y I1H,() = Hy I} 3.3)
i=1

where || - ||; denotes the L; norm, i = 1,2, c(w) = {e;;)}, H()
is the histogram of sup,epo,; |X;()| and Hr,(-) is the histogram of
SUp,(o.r | X7, (t)| obtained from the translation model, where the his-
tograms have been calculated by the Matlab histcounts function. The
weighting coefficients w,, w, are such that the two components of e, ()
in (3.3) contribute equally to the objective function.

We conclude with the observation that the translation process
Xr() = (X7,(), ..., X7,,(t)) exists for any a and f under the stated con-
ditions provided that the target distribution functions { F;} are strictly
monotonically increasing and admit densities. The components of X (f)
also satisfy the stochastic differential equations, see [4, Chap. 4],

dX;,() = (Vh)TdG(t) + %(dG(t))T[VZh,]dG(t)

((Vh,.)Ta + %Tr(ﬂT[Vzhi]ﬂ)>dt+ (Vh)T pdB(r), i=1,....n,(3.4)

where Vh; and V2h; are the gradient and Hessian matrix of h; and Tr
is the trace operator.

3.2. Non-Gaussian diffusion processes

The construction of the previous subsection is extended to trans-
lation models which are obtained by memoryless transformations of
non-Gaussian diffusion processes. The resulting translation models are
equivalent in the sense that they have the same marginal distributions
and similar correlation functions. Yet, they may have very different
extremes.
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3.2.1. One dimensional case

Let X(r) be the target process with zero-mean, correlation func-
tion c(u) = E[X({ + u) X()] = e, p > 0, and marginal distribu-
tion F. We construct translation models {Xg)(t)} of X(¢) from two
(non-Gaussian) diffusion processes {Y(¢)} defined by the stochastic
differential equations

dYO@) = —pYD(dt + D,(Y P (1))d B(t), t € [0,7], i = 1,2, (3.5)
where D;(x) = 1/2p and D,(x) = 2p(x + 2/0)/6)!/% with p,0 > 0. The

first two moments of these processes are E[Y® ()] = 0 and E[YD(t +
u) YO()] = e~P*. Their marginal distributions are Gauss and Gamma
with the densities f;(x) = ¢(x), x € R and f,(x) = 0(0x + 2)e~0*+2,
x > —2/0, where ¢ is the standard Gaussian density [12].

The stochastic differential Eq. (3.5) admits a unique strong solution
since the diffusion coefficients D;(x), i = 1,2, are locally Lipschitz, a
property which results directly from their expressions, and satisfy the
growth condition in [4, Chap. 4] since there exist constants K, = 2p
and K, = (2pf + 4p)/6> such that

D(x)? =2p <K (1+x?), xeR

2(x+ %) <Ky(1+xD), x> —2/6. (3.6)

D, (x)? 5

The translation processes defined by the mapping X(Ti)(t, w) =
FloFy,(YO(t,0)), i = 1,2, have the marginal distribution F and their
correlation functions are similar to the exponential correlation function
of the processes Y)(¢). Note also that the extremes of { X (Ti)(t)} occur at
the same time as those of {Y®(z)}.

3.2.2. Two dimensional case

Suppose that the target is a real-valued, zero-mean, stationary pro-
cess X (1) = (X (), Xz(t))T with correlation function c(u) = E[X()X (¢t +
u)"] and component marginal distributions F, i = 1,2. We con-
struct translation models of X (¢) from two diffusion processes Y (¢) =
(Yl(i)(t),}’z(i)(t))r i = 1,2, which have the same correlation function
as X(¢) by translating them such that their components match the
marginal distributions { F;} of {X;(®)}, j =1,2.

The diffusion processes {Y (1)}, i = 1,2 are defined by the stochas-
tic differential equations

ay () = (@, Y0 + a,, ¥, @)dt + DO v 1), v (1))d B, (1)
+D\ (0, Y, (1)d By(1)
dY" (1) = (ay Y"(0) + ap Y, @)dt + DO (v 1), Y (1))d B, (1)
+D0 (0, Y (1))d By (1), (3.7)
where B;(r) and B,(r) are independent standard Brownian motion

processes, a;; <0, ay <0, ajpa,; <0 and the diffusion coefficients

DP(x;,x,) = by, x,x, €R, i,j=1,2,

Kij <(X1 - x,)°
V20 -1 41 =r)

X, % €R, 0>1,{>0, (3.8)
with « = {x;;}, k7 = —(AQQT + QOTAT), A = [a) apiay ay),

=[- \/1 —r V1+r V1=r V1+rl and r = E[Y2 Y2 0)].

The stationary solutions {Y)(r)} of (3.7) are zero-mean processes
with correlation function c(s,7) = exp(A|t—s|)y, where A =
[a;, aja;ay axl, exp(-) denotes the matrix exponential function [5,
Sect. 1.5] and y is the stationary covariance matrix of {Y(r)}, which
exists if the real part of the eigenvalues of the matrix A are negative.
The process {Y(V(t)} is Gaussian while {Y®(t)} is not. The joint
densities of the two-dimensional vector (Y1<2>(t), Y2(2>(t)) is

A-nd+n\ 40=r ’

where C; is the normalizing constant.

ij?

x| +x 2 1/2
Dﬁf)(xl’xz): -+ ) |

41 +r)

(x; +x5)?
41+r)

falxp,xp) =
2
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For the diffusion coefficients under consideration, the stochastic
differential Eq. (3.7) admits strong unique solution since the diffusion
coefficients Df’.‘)(xl,xz) are locally Lipschitz continuous and satisfy
the growth condition (2.11). For example, the drift and diffusion co-
efficients of Y@(f) are locally Lipschitz continuous since they are
continuously differentiable by definition. The growth condition is sat-
isfied since there exists K, = max{ I,C}(Klzl + K122 + K%l + K%Z)/(4(0 - 1)
such that for any x; € R, i = 1,2,

2 2 3 2 3
DY (x1.x,)? + D)(x). x0)* + D)

2 2 2 2

KD, + KD+ K5, 4K
_ 1271 " 2 2 2,.2
= T(x1 + x5+ < K31+ x7 +x3).

As for the translation processes of the previous section, we note that

the translation processes X;i?j(t) = F/.‘loFYf,)(Yj(")(t)), j=12i=12,

have the marginal distributions { F;} and correlation functions similar
to the exponential correlation function of the processes Y (r), see [11,
Sect. 3]. Note also that the extremes of { X?/.(t)} and {Y/.(’)(t)} occur at

the same times.

3
(x1. %)% + D) (x1, x,)?

3.3. Finite dimensional (FD) models

The FD models {Xr ,()} of the translation model Xy (r) have the
form

Xra, () = FloFy (Y, (1), i=1,..,n, (3.9)

where Y, ; (1) are finite dimensional models of the stationary stochastic
process Y;(#) of the type in (2.12) with marginal distribution Fy, i =
1,...,n. As previously, we are interested in extremes sup,c(g | X7 (1| of
X7 ,(t) in the stationary regime during a time interval of length z > 0.

The following Corollary from [6] shows that the extremes of
Xr,4,(t) converges to those of X7 ,(t) in probability as d; increases
indefinitely if the input Y; is Gaussian. This means that the distribution
of the target quantity of interest sup,c(o | X7,(#)| can be estimated
from samples of X, 4 (¢) for a sufficiently large d; since convergence
in probability implies convergence in distribution.

Corollary 3.1. If Y;(t) is Gaussian and has continuous samples and con-
tinuous correlation function, and F; is continuous and strictly monotonically
increasing for each i = 1, ..., n, then

sup | X7y () = Xl > 0, min d; — co,
1€[0,7] ' I<isn
where p denotes convergence in probability.

4. Wind tunnel records and probabilistic models

The random processes discussed in the previous sections are fitted to
wind pressure time series recorded at the University of Florida bound-
ary layer wind tunnel facility (UFBLWT). The data set is discussed
extensively in [1]. It consists of wind pressure time series at 252 taps
recorded under a steady fan speed of 1200 RPM.

The following subsection presents the data set and estimates the
first two moments and the marginal distributions of the wind pressure
time series. The subsequent sections fit the processes discussed in
the first part of this study to these estimates, construct FD models
for the resulting processes, referred to as target processes, and assess
performance by comparing target and FD extremes.

4.1. Estimates of mean, correlation and marginal distributions

The wind pressure data was recorded for T = 180 seconds at a time
step AT = 0.00164 second, so that it consists of n = T /AT = 110,000
readings. We consider records at two pressure taps and denote them
by (1. . ....5,), where 3, = (5, ;, $,,)7, j = L.....n. The taps, labeled
120 and 126 in the experiment, have been selected since their skewness
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and kurtosis coefficients are 1.2138 and 5.8509 for tap 120 and 1.1926
and 5.9813 for tap 126. Segments of the record {j;} of length 10004T
are shown in the left and right panels of Fig. 1.

We assume that the wind records are samples of an ergodic process
X(@) = (X,(t), X,(0)T and that these samples are sufficiently long to
estimate the marginal distribution and the correlation function of this
process. Let 2; = 3_, 3 ;/n and §; = ¥_, (¥, —ﬁ,-)z/n, i = 1,2, denote
the estimated mean and variance of the recorded time series {7} and
set y,; = (§i; — i) /3, i =1.2.

The estimates of the correlation function and the marginal densities
of the normalized components X,(t) = (X,(t) — E[X,(®)])/Std[X,(»)] of
X(t) are

—k
3 1~ -
cij(k):n_ka,‘,yj’H_k, k=0,1,..., i,j=12. 4.
=1
and
X L (X7
f,-(x>=—2¢<—”>, =12 (4.2)
nKj:l K

where ¢ denotes the density of the standard Gaussian variable and
x is a bandwidth parameter set equal to x = (4/3n)!/> [13, Chap.3].
These estimates are viewed as the actual correlation functions and
marginal distributions of X (¢). The left and right panels of Fig. 2 show
the histograms and the estimates f;(x) of the normalized wind pressure
records at taps 120 and 126. The plots show that the estimates of (4.2)
are consistent with data. The estimates of the marginal distributions
of X,(#) result from f; by integration, i = 1,2. The left and right panels
of Fig. 3 show the marginal distributions obtained from data and the
estimates F;(x) of the normalized wind pressure records at taps 120 and
126 in logarithmic scale.

We also estimate the distributions of the extremes sup,¢g 1 | X; ()|
of the normalized components X,(t) = (X,(t) — E[X,(1)])/Std[X,(»)] of
X (1) by the following procedure. First, the wind record is partition
in non-overlapping segments of duration 100047 = 1.62 sec, so that
there are ¢ = 1100 such segments. Second, the extremes of the indi-
vidual segments are recorded and used to estimate the distribution of
sup,epo..1 1X; ()| at each pressure tap by using, e.g., the MATLAB ecdf
function.

4.2. One-dimensional exponential diffusion processes

We fit the diffusion process X () in (2.1) to the normalized wind
pressure records at tap 120 by using the properties of this process
summarized in Theorem 2.1. We construct FD models { X (1)} for fitted
diffusion process X (r) and assess their performance by comparing the
distributions of sup,c(g ) |X(#)| and sup,c(g . |X,(®)| for 7 = 0.162 sec.,
based on 5000 samples of X(r) with the time step 4z = 3.27 x 107> sec.
Note that this time step has no relation to that of the recorded wind
pressure series. The diffusion process in (2.5) cannot be fitted to wind
pressure records at two taps because of restrictions on its distributions,
see Section 2.2.

4.2.1. Process fitted to wind data

The parameter p of the exponential diffusion process in (2.1) is
selected to minimize the objective function (3.3). Its diffusion coeffi-
cient D(x) is calculated from (2.2) with f set equal to the estimate
f of the marginal distribution f given by (4.2). We note that the
defining equation of X(r) admits a unique strong solutions by Theo-
rem 2.1 since f(x) defined by (4.2) is continuously differentiable and
lim,_, o, —2pxf(x)/ f'(x) = 2px?* < co.

The left panel of Fig. 4 shows the target correlation function é(k)
for k =1, ...,100 estimated from the wind record at tap 120 (solid line)
and the corresponding correlation functions of X (¢) obtained under the
objective function (3.3) with (w, = 1,w, = 0) (dotted line) and with
(w; = 1,w, = 10) (dashed line).
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Fig. 1. Segments of length 1000 AT = 1.62 of wind pressure records at taps 120 and 126 (left and right panels).
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Fig. 2. Histograms of normalized wind pressure records at taps 120 and 126 with the marginal density f; (left and right panels).
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Fig. 3. Marginal distributions obtained from data and estimates F; of normalized wind pressure records at taps 120 and 126 in logarithmic scale (left and right panels).

The right panel of Fig. 4 shows with solid line in semi logarithmic
scale the estimate of the target probability P(sup,c . [X(®)| > x) at
tap 120 obtained from wind data. The dotted and dashed lines are the
corresponding probabilities of the diffusion process X (r) defined under
the objective function (3.3) with (w;, = 1,w, = 0) and (w; = l,w, =
10). The extremes of X(¢) corresponding to the objective function with
(w; = 1,w, = 10) are superior although its correlation function differs
notable from the target correlation.

We conclude with the observation that the diffusion process X (r)
in (2.1) can only fit arbitrary marginal distributions. Its extremes

may or may not match target extremes depending on the objective
function used to select the correlation parameter p of X (). Correlation
functions rather different from the target correlation function may yield
accurate estimates of extremes. This is an example of a simple model
which, although captures exactly a single feature of the target process
X(1), the marginal distribution of X(7) in this example, characterizes
the extremes of this process accurately. A possible explanation for
this behavior is that (1) the fitted exponential correlation (objective
function with (w;, = 1,w, = 0)) is too simplistic to capture the
complex dependence of the wind time series and (2) the correlation
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Fig. 4. Left panel: Estimated (solid line) and calculated correlation functions under (3.3) with (w, = 1,w, = 0) (dotted line), and (w, = 1,w, = 10) (dashed line). Right panel:
Estimated (solid line) and calculated probability P(sup,g(o . |X(*)| > x) under (3.3) with (w, = 1,w, = 0) (dotted line), and (w, = 1,w, = 10) (dashed line).

supyefo, | Xa(t)|

targetireference
50

i ?;é

P(supe | X(t) > x)

sup;c o) [ X (£)

supyc(o.- | X (t) X

Fig. 5. Scatter plots of sup,c |X(1)| and sup,gy; | X,(t)| for d = 50,200 (left and middle panels). Estimate of the target probability P(sup,eo. |X (1] > x) (solid line) and estimates
of P(sup,e |1 X,4()] > x) for d =50 (dotted line) and d =200 (dashed line) in logarithmic scale (right panel).

function corresponding to the objective function with (w; = 1, w, = 10)
constitutes an “equivalent” correlation function designed to capture
extremes.

4.2.2. Finite dimensional (FD) models

We develop FD models X,(¢) for the process X(¢) constructed for
the tap 120 under the objective function (3.3) with (w; = lL,w, =
10). The FD models X,(¢) are defined by (2.12) for n = 1. Since the
correlation function is exponential, sup,g . |X,(#)| converges weakly
to sup,cpo [X(®)| as d — oo by Corollary 2.1. This means that the
distribution of sup,[o ) | X(1)| can be estimated from samples of X, (t)
for a sufficiently large d.

The left and middle panels of Fig. 5 show scatter plots of
(sup;eqo. 1X @, sup,epor1 1 X4(®)]) for d = 50,200. The solid line in the
right panel of Fig. 5 is an estimate of P(sup,[o,j |X (1| > x) which is
obtained directly from data. It is viewed as reference. The other lines
of the figure are calculated from FD models for d = 50 (dotted line),
d = 200 (dashed line). The dashed line is the closest to the reference.
These plots show, in agreement with our theoretical results, that the
discrepancy between the distributions of extremes of X(¢) and X,(r)
decrease with the stochastic dimension d.

4.2.3. Synthetic exponential data

We examine the potential of the FD models constructed in this study
and in [6] for the special case in which data set consists of samples
of a zero-mean stationary diffusion process Y () with exponential cor-
relation function E[Y(s)Y(t)] = ¢~*I*"l and shifted Gamma marginal
distribution with shape and scale parameters 2 and 6. The process is
defined by the stationary solution of the stochastic differential equation

1/2
dY () = kY (1)di + (%’fm) + ‘;—’2() dB(), >0,

with k =1 and 6 = 1.
The following numerical results are based on 5000 independent
samples of Y () with 5000 time steps Az = 0.0002. The correlation

function and the marginal density of Y (r) are estimated from cy (s, 1) =
Zf:o?o & (s)E;(1)/5000 and (4.2) for an arbitrary time z, where &(1), i =
I,...,5000 denote the samples of Y(r). The marginal distribution of
the diffusion process X(7) is that of Y () and its correlation function is
selected to minimize the objective function (3.3) with (w, = 1, w, = 0).

Two types of FD models have been constructed. They have the same
basis functions, the top d eigenfunctions {¢, (1)} of the estimated corre-
lation function of X (7). The first FD model X,(¢) is that of (2.12) with
n=11e, X,0 = X0 Zo(n) with Zi(@) = [; X(1.0)@,(t)dt. The
second FD model X;CT’m(t) = ZZ=1 Z}:CT(pk(t) represents the random
coefficients { Zf"} by PCT models, where m denotes the degree of the
underlying PC model, see [1] for details.

The left panel of Fig. 6 shows the correlation function of the target
process Y () (solid line) and the estimated correlation function of X (r)
(dotted line). The right panel of Fig. 6 shows with solid line in semi log-
arithmic scale an estimate of the target probability P(sup,c(o |Y(#)| >
x). The dotted, thin dashed, heavy dashed and dotted-dashed lines are
the corresponding probabilities of the diffusion processes X(7), its FD
models X,(7), the PCT models X gcm(t) and X SCTA(t) for d = 15.

The probability P(sup,jo . |Y(#)| > x) has an abrupt change of slope
at x = 2 since

P< sup |Y ()| > x) = P( sup Y (1) < —x) + P< sup Y (1) > x)

te[0.7] tef0.7] t€[0.7]

and Y(¢) is supported on [-2, ], the above two probabilities have
different tails and P(sup,gpo Y (1) < —x) = 0 when x > 2.

4.3. Translation Gaussian diffusion processes

We fit the diffusion process X () of (3.4) to the wind pressure
records at the taps 120 and 126, construct FD models for this process
and compare extremes of Xr(r) with those of their FD models X7 (1)
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Fig. 7. Correlation functions ¢,,(k), é,,(k) and é,,(k) for k = 1,...,100 (left, middle and right panels) (solid lines) and the corresponding correlation functions of X;(r) obtained
under the objective function (3.3) with (w, = 1,w, = 0) (dotted lines), and (w, = 1,w, = 50) (dashed lines).

4.3.1. Process fitted to wind data

The Gaussian image of the translation processes of (3.4) for the
wind records at taps 120 and 126 is constructed by using the objective
function in (3.3) with (w, = 1,w, = 0) and (w; = 1, w, = 50).

The left, middle and right panels of Fig. 7 show the target correla-
tion functions ¢, (k), é;,(k) and é,,(k) for k =1, ..., 100 estimated from
wind records at taps 120 and 126 (solid lines) and the corresponding
correlation functions of X;(f) obtained under the objective function
(3.3) with (w;, = 1,w, = 0) (dotted lines) and with (w;, = 1,w, = 50)
(dashed lines).

The left and right panels of Fig. 8 show with solid lines in semi loga-
rithmic scale the estimates of the target probability P(sup,co . |X;®)| >
x) for taps 120 and 126 based on the wind records. The dotted and
dashed lines are the corresponding probabilities of the translation
diffusion process X (¢) defined under the objective function (3.3) with
(w; = Lw, = 0) and (w; = 1l,w, = 50). The extremes of X ()
corresponding to the objective function with (w, = 1,w, = 50) are
superior although its correlation functions differ notable from the target
correlations.

We conclude with the observation that the translation diffusion pro-
cess X, (1) in (3.4) can fit exactly the marginal distribution of the target
process X,(t) and approximately its correlation function. However, its
extremes may or may not match target extremes depending on the
objective function used to select the correlation parameter a of X (¢).
Correlation functions rather different from the target correlation may
yield accurate estimates of extremes. This is another example of model
which provides accurate estimates of a particular quantity of interest
although it does not capture some target properties.

4.3.2. Finite dimensional (FD) models

We develop FD models X ,(t) for the process X (¢) constructed for
the taps 120 and 126 under the objective function (3.3) with (w, =
1,w, = 50). The FD models X ,4(¢) are defined by (3.9) with Y; ; (1) =

G4 ), where Gig defined by (2.12) for n = 1 is the FD model of the
Gaussian process G;(1). Since the input G,(¢) is Gaussian has continuous
correlation function and continuous samples, supe(o ) |X7,q, ()] con-
verges to sup,gpo 1 | X7, ()| in probability as d; — oo by Corollary 3.1.
This means that the distribution of sup,(g ;) X7, 4 ()| can be estimated
from samples of X7 ;(¢) for a sufficiently large d;.

The left and right panels of Fig. 9 show scatter plots of
(suprero.q 1 X7, (D], suprepo.r | X754, OI), i = 1,2 for d; = 50 and 200.
The solid lines in the left and right panels of Fig. 10 are estimates
of P(sup,epo .1 X7, (t)] > x) which are obtained directly from samples
of Xr,. These probabilities are viewed as reference. The other lines
of the figure are calculated from FD models for d = 50 (dotted
lines), d = 200 (dashed lines). The dashed lines are the closest to the
reference. These plots show, in agreement with our theoretical results,
that the discrepancy between the distributions of extremes of X ;(r)
and X 4 (1) decreases with stochastic dimensions d;, i = 1,2.

4.4. Translation non-Gaussian diffusion processes

Translation models in Section 4.3 can be extended to map non-
Gaussian diffusion processes rather the Gaussian diffusion processes.
The following two subsections show results for one- and
two-dimensional translation non-Gaussian diffusion processes. We note
that FD models for these processes can be constructed by the approach
of Section 4.3 and are reported here.

4.4.1. One dimensional processes
Consider the one-dimensional translation diffusion processes

X0 = FloFn(yOm), i=1.2, (4.3)

where F is the distribution of the estimated marginal density in (4.2)
for the wind record at the tap 120, Y®(¢) is the non-Gaussian diffusion
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Fig. 8. Estimates of the target probability P(sup,cy . |X;(#)| > x) for taps 120 (left panel) and 126 (right panel) based on the wind records (solid lines), the corresponding probabilities
of the translation diffusion process X (r) defined under the objective function (3.3) with (w, = 1,w, = 0) (dotted lines), and (w, = 1, w, = 50) (dashed lines) in logarithmic scale.
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Fig. 9. Scatter plots of sup,ci - |X7,;()| and sup,gg 1 X7, 4 ()] for d; = 50,200 (left and right panels) and i = 1,2 (upper and lower panels).

processes of (3.5) with diffusion coefficients in (3.6), 8 = 1 and Fy is
the empirical distribution estimated from samples of Y (¢), i = 1,2.

We fit the one-dimensional translation diffusion processes {Xg)(t)}
in (4.3) to the wind pressure record at the tap 120. The estimates of the
correlation function and the marginal distribution of the wind record
at the tap 120 are given by (4.1) and (4.2). The parameter p is selected
to minimizes the objective function (3.3) with (w, = 1, w, = 0).

The left panel of Fig. 11 shows the scatter plot of
UPefo 1 XSO, sup,gio.0 IXSV(®)]). The middle panel of Fig. 11 shows
the correlation function é(k) for k = 1,...,100 estimated from the
wind record at tap 120 (solid line) and the correlation functions of the
translation diffusion processes {X (Ti)(t)} (dotted and dashed lines).

The right panel of Fig. 11 shows with solid line in semi logarithmic
scale an estimate of the target probability P(sup.cp. [X(®)| > x)
obtained from wind records at the tap 120. The dotted and dashed

lines are the corresponding probabilities of the translation diffusion
processes {Xg)(t)}.

We conclude with the observation that translation diffusion pro-
cesses {Xg)(t)} based on the non-Gaussian, exponentially correlated
diffusion processes of (3.5), which are equivalent in the sense that
they have the marginal of the wind pressure time series recorded at a
pressure tap and similar correlation functions, can have very different
extremes. This is another illustration of the fact that extremes require
information beyond the first two moments and marginal distributions.

4.4.2. Two dimensional processes
Consider the two-dimensional translation diffusion processes

Xp0 = FloFy (Y 0). ij = 1.2 4.4)
J
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data (solid line) and the corresponding probabilities of {X¥'(r)) (dotted and dashed lines) in logarithmic scale.

where Fj, j = 1,2 are the distribution of the estimated marginal density
in (4.2) for the wind records at the pressure taps 120 and 126, ij(t) is
the non-Gaussian diffusion processes of (3.7) with diffusion coefficients
in (3.8) with # = 3 and ¢ = 1 and Fy,(” is the empirical distribution

. J
estimated from samples of Yj(’)(t), i,j = 1,2. The process {Yj(l)(t)} is
Gaussian while {Y(z)(t)} is not.

We fit the two dimensional translation diffusion processes {X () (0}
in (4.4) to the wind records at the pressure taps 120 and 126 “The
estimates of the correlation function and the marginal distribution of
the wind records at the pressure taps 120 and 126 are given by (4.1) and
(4.2). Note that the correlation functions of G(¢) in (3.1) and {)’j(i)(t)}
in (3.7) are completely defined by the matrices « = [a;, a;5;a,; ax] up
to a scale parameters. The optimal values of these matrices minimize
the objective function in (3.3) with the weighting coefficients (w, =
1, w, = 50).

The left and right panels of Figs. 12 show scatter plots of
(SUPreqo,7] |X(Tl3(t)|,sup,e[0’r] |X(Tzl,(t)|) for j = 1,2. The left, middle and
right panels of Fig. 13 show the target correlation functions ¢, (k),
é1,(k) and é,,(k) for k = 1,...,100 estimated from wind records at taps
120 and 126 (solid lines) and the corresponding correlation functions of
the translation diffusion processes {X;)j(t)} (dotted and dashed lines).

The left and right panels of Fig. 14 show with solid lines in semi log-
arithmic scale the estimates of the target probability
P(sup,¢po o) | X;(1)] > x) obtained from wind records at taps 120 and 126.
The dotted and dashed lines are the corresponding probabilities of the
translation diffusion processes {X%(r)}.

We conclude with the observation that translation diffusion pro-
cesses { X o (t)} based on the non-Gaussian diffusion processes of (3.7),
which are equ1valent in the sense that they have the marginal of the
wind pressure time series recorded at two pressure taps and similar
correlation functions, can have very different extremes. This is another

10

illustration of the fact that extremes require information beyond the
first two moments and marginal distributions.

5. Conclusions

Two classes of random processes are constructed to describe wind
pressures recorded at the University of Florida boundary layer wind
tunnel facility (UFBLWT). The first consists of diffusion processes with
linear drift. The functional form of the correlation functions of these
processes is fixed, e.g., exponential correlation for one-dimensional
processes. The second class consists of translations of Gaussian/non-
Gaussian diffusion processes. These processes can characterize a
broader set of wind data than those of the first class when dealing with
multivariate time series.

It is shown that the processes of both classes can describe accurately
the extremes of wind pressure records if their correlation functions are
selected to minimize objective functions quantifying the discrepancy
between correlations and extremes of these processes and of wind
pressure records. It is also shown that the finite dimensional (FD)
models developed for these processes can be used to estimate extreme
wind pressures. The FD models are deterministic functions of time and
finite sets of random variables.

Diffusion processes with linear drift and translations of
Gaussian/non-Gaussian diffusion processes are fitted to wind pressure
time series recorded at the University of Florida boundary layer wind
tunnel facility (UFBLWT). The processes match exactly and approxi-
mately the marginal distributions and the correlation functions of these
records. It is shown that (1) the extreme of these simple processes char-
acterize accurately the extremes of the wind record if their correlation
functions minimize objective functions which account for extremes and
(2) the finite dimensional (FD) models of these processes can be used
to estimate extremes of the wind records.
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lines).
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