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ABSTRACT: Numerical solutions of stochastic problems require the representation of random
functions in their definitions by finite dimensional (FD) models, i.e., deterministic functions of time and
finite sets of random variables. It is common to represent the coefficients of these FD surrogates by
polynomial chaos (PC) models. We propose a novel model, referred to as the polynomial chaos
translation (PCT) model, which matches exactly the marginal distributions of the FD coefficients and
approximately their dependence. PC- and PCT- based FD models are constructed for a set of test cases
and a wind pressure time series recorded at the boundary layer wind tunnel facility at the University of
Florida. The PCT-based models capture the joint distributions of the FD coefficients and the extremes of
target times series accurately while PC-based FD models do not have this capability.

1. INTRODUCTION

The solution of a broad range of problems in sci-
ence and engineering involves extremes of random
processes X (t) over finite times intervals, e.g., ex-
treme climate events and design responses of dy-
namical systems subjected to random loads Grigo-
riu. (2020); Easterling et al. (2000); Grigoriu and
Samorodnitsky. (2015). Yet, most practical meth-
ods for calculating the distribution of the extreme
random variable X; = sup,, jX(t)j are based
on the mean rate at which the real-valued pro-
cess X (t) or its absolute value crosses with posi-
tive slope specified levels Leadbetter et al. (1983)
(Chap. 7), which is available analytically for mean
square differentiable Gaussian processes X(t) and
memoryless transformation of these processes, re-
ferred to as translation processes Gioffré et al.
(2000). If X(t) does not have these properties,
the distribution of the extreme random variable X
can be approximated from crossing of time series
defined by the values of

X(t) atafiniteset0=tg <t; < <tp, =t oftimesin
[0;t] Naess and Gaidai. (2008). The accuracy of this
approximation depends on the time step and the
properties of the samples of X(t). For example, the
approximation fails if the samples of X(t) are not
differentiable, e.g., the Brownian motion process.

It is proposed to approximate the distribu-
tion of X¢ = supy, jX(t)j by that of Xg: =
supg,e  1Xd(t)j, where Xq(t) is a finite dimensional
(FD) model of X(t), i.e., a deterministic function of
time and d < ¥ random variables which has the fol-
lowing two properties. First, the distributions of Xt
and Xgq.¢ are similar for a sufficiently large stochas-
tic dimension d. Accordingly, the distribution of
Xt can be estimated from samples of Xg4(t). Sec-
ond, samples of X4(t) can be generated by standard
Monte Carlo algorithms. In contrast, samples of
X(t) cannot be generated since, generally, stochas-
tic processes have infinite stochastic dimensions as
uncountable families of random variables indexed
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by time.

2. FINITE DIMENSIONAL MODELS

Let X(t) be a real-valued, zero-mean stochas-
tic process on a bounded time interval [0;t] with
correlation function c(s;t) = E[X(s)X(t)]. Denote
by flyg and fj,(t)g, k= 1;2;:::, the eigenvalues
and the eigenfunctions of the correlation function of
X(t). It is assumed that c(s;t) is continuous so that
its eigenfunctions are real-valued continuous func-
tion on [0;t] Mercer. (1909).

The family of FD models of X(t) has the form

d
Xg(t)= g Zix(t); 0Ott; (1)

k=1

where the random  coefficients fZ, =
ot X(t)jk(t)dtg are the projections of X(t)
on the basis functions fji (t)g. Simple calculations
show that E[Z] = 0 and E[ZZ] = Iy dy, so
that the zero-mean random variables fZ,g are
uncorrelated. They are independent if X(t) is
Gaussian.

The FD models X4(t) have two notable proper-
ties. First, they are defined on the same probabil-
ity space as X(t) so their samples are paired with
those of X(t). Second, for given time t, the random
variables Xq4(t) converge in mean square to X (t) as

d! ¥ since
2 o .
E Xg(t)  X(1)7= & *lLjk(t)2! o
k=d+1
as d ! ¥ by Mercer's theorem Mercer. (1909).

This converges implies the converges in probability
of X4(t) to X(t) and, therefore, in distribution. This
observation and Theorem 18.10 of van der Vaart.
(1998) imply that the finite dimensional distribu-
tions of X4(t) converge to those of X(t) asd ! ¥.

3. FD-BASED ESTIMATES OF EXTREMES
Denote by F, and F,; the distributions of
the extremes Xt = sup,, jX(t)j and Xg; =
supy,,  JXq(t)j of X(t) and X4(t) in the bounded
time interval [0;t]. We give conditions under which
F,;t convergesto F, asd ! ¥. Under these condi-

d
tions, F, can be estimated from samples of Xq(t)
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provided that d is sufficiently large. This is es-
sential in applications since samples of X4(t) can
be generated by standard Monte Carlo algorithms
while samples of X (t) are not available. For sim-
plicity, we assume as in the previous section that
X(t) is real-valued. Extension to vector-valued pro-
cesses is straightforward.

Property 1. If X(t) has continuous samples and it-s
correlation function c(s;t) = E[X(s)X(t)] is con-
tinuous and the finite dimensional distributions of
X4(t) converge to those of X(t) as d ! ¥, then
the distribution F ;¢ of sup,,,  jXq(t)j converges
to the distribution F, of supg,; jX(t)jasd ! ¥.

This property results by showing that the condition-s
of the Theorem 8.2 of Billingsley. (1968) are sat-
isfied. Details can be found in Xu and Grigoriu.
(2022). The practical implication of this property
is that the distribution of the extreme random vari-
able sup,,,  jX(t)j can be estimated from samples
of FD models Xq4(t) of X (t) provided that d is suffi-
ciently large. This is essential in applications since
the distribution of sup,,,  jX(t)j is available ana-
lytically in special cases of limited practical interest
and samples of X(t) cannot be generated.

Property 2. If X(t) is a Gaussian process with
continuous samples and its correlation function
c(s;t) = E[X(s)X(t)] is continuous and if the fi-
nite dimensional distributions of X4(t) converge to
those of X(t) asd ! ¥, then the sequence of ran-
dom variables SUP ., jXq(t) X(t)j converges to
zero in probabilityasd ! ¥.

The proof can be found in Xu and Grigoriu. (2022).
This means that the “bad” subset

Wy(e) = fw 2 W: sup jXy(t)
Ott

X(t)j> eg

of the sample space W on which the samples of
X(t) and X4(t) differs by more than any e > 0 can
be made as small as desired by increasing d since
P Wg(e) ! Oasd! ¥. Accordingly, most of the
samples of X (t) can be represented by the samples
of Xq4(t) for a sufficiently large stochastic dimen-
sion d.
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4. PCAND PCT MODELS

Our objective is to construct models of Z =
(Z1; ;Z4)" from its samples which are accurate in
the sense that their joint distributions match the
joint distribution of Z, and efficient, i.e., standard
Monte Carlo algorithms can be used to generate
samples of these models.

The Rosenblatt transformation Rosenblatt.
(1952) provides a model with these features. It
shows that the components of Z =
can be related to the components of, e.g., a vector
G = (Gi;:::;Gq) with independent standard
Gaussian variables, by the mapping

1F(Gl)
F(Gk);

Z1
ZyjZy 1; 521 = F

(2)

where Fy is the distribution of Zy, [ jx 1,1 is the
distribution of Z\jZy 1; ;Z1. If the mapping in (2)
is available, samples of Z can be obtained from
samples of G, which can be generated by standard
algorithms. Since the conditional distributions in
mapping G ! Z are available analytically only in
special cases, they have to be constructed numeri-
cally in most applications. Their construction from
the joint distribution of Z is computationally de-
manding and the resulting conditional distribution-s
are likely to be unsatisfactory, particularly when
dealing with heavy tail distributions. The construc-
tion of the conditional distributions F j 1,7 from
data is not feasible when dealing with high dimen-
sional vectors and relatively small data sets.

This section develops approximations of the
Rosenblatt transformation for the random coeffi-
cients (Z1;:::;Z4) of the FD models in (1) based
on polynomial chaos (PC) and an extension of
this representation, referred to as PCT models.
These models of (Z,;:::;Z,) are denoted by ZPC =
(lec’ 'chzj and ZPCT _ (ZPCTl’ .ZPCT),

The PC models considered here are quadratic
forms of independent standard Gaussian variables
Gy;:::; Gy defined by

ka11

d
Zlfc = E[Zk]+ é ak;jG
j=1
+a  a(G;G E[G;G]): (3)

1j<Id
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The coefficients fay;;; a;j;1g in (3) are determined
by minimizing the objective function

e1(a;j; ak;j;1)

= gEljjiz zP3]
+g2 max JJh|1,|2() <., (1ak; 35 ak; ;1 id2
142
+g3(jjE[ZZT]  E[ZP%(ZP9)T1jj) (4)
where h..i,() is the histogram of (Z;;Z;) and

€ (jak;j;ak;j1) is the histogram of (Z ,Zifc)
for given coefficients fay,;;ay;j.18. The Matlab
function histcounts2 is used to construct the
two dimensional histograms of (Z;;Z;,) and
(ZPC ZP9. The error between the two matri-ces
is descrzlbed by the norm jj jj», i.e., the absolute
largest eigenvalue of the error matrix. We
consider the set of all pairs of components rather
than all components to minimize calcu-lations.
The weighting coefficients g1;g»;g3are such that
the components E[ ij Z jjrq, %
maxii, <i,d Jjhiy; ir () h; ‘i (ﬁgk j»ak;j; 1)jj2 and
JIEIZZT] E[ZPC(ZPC)T]JJ Contribute equally to
the objective function (4). We set g, = 0 if Z and
ZPC are not defined on the same probability space
ZPCjj5 1 cannot be

|1 i2

since the mean error E[ jjZ
calculated.

The components of the PCT models are defined
by

Z{T = F UFPUEZPY) k= 155d; (5)

where FPC is the distribution of ZPC for given co-
efficients fay;;; ay;j.18. The coefficients fay;;j; ay;;j;18
in (5) are determined by minimizing the objective
function

e2(ay;j; ak;j;1)
= wiE[jjiz ZPTjj3]

+WwW max S, -
2, i1<dZJJ in;ip ()

PCT

St Uak;js ak iz

+w3 max jjhi;i,() hil;iTFJ%J(;j}ak;j;l)jjz}
1i<d

(6)

where h; i () is as in (4), s1 3 () is the spec-

tral measure of (Zi;Zi,), &1 (jak;j;ak;j;1) and
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PCT(iq ..
hil;i2 (Jak;j; ak;j;1) are the spectral measure and the

histogram of (Zi'ZCT;Zi':CT) for given coefficients
fay;j;ak;j; 8. Spectral measures of (Zil;ZiZ) are
metrics which quantify the likelihood that (Zil;Ziz)
are simultaneously large, see (5.3) and (5.4)
in Grigoriu. (2019) for definitions and Resnick.
(2007), Chap.6 for technical details. We sort the
samples of the two-dimensional vectors (Zil;Ziz)
and (Zi'jCT;ZiPCT) according to their lengths such
that the first sample is the furthest to the ori-gin
and construct the spectral measures from the top
10% of these samples. The Matlab func-
tion histcounts2 is used to construct the two di-
mensional histograms and spectral measures of
(Zil;Ziz) and (Zi'ZCT;Zi':CT). We consider the set
of all pairs of components rather than all com-
ponents to minimize calculations. The weighting
coefficients W W, w, are such that the compo-
nents E[ i ZPCTjj3 1, maxa o lisi 5 (),
PCT . . iy

Sivi, @k j5 Ak;j;1 )il and maxyi;<i,d Jjhiy;is ()
h:alcg (Jak;j; ak;j;1)ij2 contribute equally to the objec-
tive function (6). We set wy = 0 if Z and ZPCT are
not defined on the same probability space since the
mean error E[ jjZ  ZPCTjj3 | cannot be calculated.
The second and third terms of ez(ay;;; ak;j;1) quan-
tify differences between the dependence structure
of Z and ZPCT. The third term is an approximate
metric for the differences between the joint distri-
butions of Z and ZP¢T while the second term mea-
sures the differences between the tail dependence
of these random vectors.

Example 1. Let Xi(t);Xz2(t), 0 t t, be real-
valued processes defined by the differential equa-
tions

X1(t)+ar1X1(t)+b1X1(t) = kiV(t);
Xa(t) +a2Xa(t) +b2Xa(t) = kaV(t) (7)
with the initial conditions X;(0) = 0 and X;(0) =

0, i = 1;2, where aj;bi;ki > 0, i = 1;2 are con-
stants. The input is the translation process V (t) =
F 1 F(W(t)), where F is the Gamma distribu-
tion function with the shape parameter n and s-
cale parameter 1, W (t) iB the stationary solution of
dw(t)= JW(t)dt+ 2JdB(t),)] > 0, and B
denotes the standard Brownian motion.
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From Grigoriu. (2021) (Chap.2), the solution of
(7) is

t ki

Xi(t)= e ailt “)=Zsin(yi(t u))V(u)du; (8)
0Yi

where y; = (b; ai2=4)1=2, i= 1;2.

Our objective is to construct FD models for the
vector-valued process Xi(t); X2(t) . Since (7) has
to be solved numerically, V(t) and Xi(t); Xa(t)
are defined and calculated at a finite set of times,
e.g., the equally spaced times tj = iDt,

= 1;2, the discrete ver-
sions of the input V (t) and of the processes X;(t),
i = 1;2. The random vector h admits the represen-
tation h = 8" Zyxvk, where fvig are the eigenvec-
tors of the cdVariance matrix E[hhT] and the ran-
dom coefficients fZ g are defined sample by sam-
ple by projection, 6., Z(w) = hT(w)ve, w2 W.
The corresponding FD modelishg = ad Zgvg. S-
ince the differential equations (7) are hﬁ%ar, their
solutions to h and hy are linear forms of fZ,g de-
noted by zj = fzj;;g and z4.; = fzq.;j8, i = 1;2,
j= 1;::5n.

The thin solid lines of the left and right panel-
s of Fig. 1 are estimates of P(kzik > x) fori= 1
and i = 2 which are obtained directly from data,
where kzik = maxyjnjzi;jj. These probabilities are
viewed as truth. The other lines of the figure are
calculated from samples of Zy. (heavy solid lines),
zPC (dotted lines) and zPCT (dashed lines) for the
first and second compone:r'1ts (left and right panel-
s). The heavy solid lines are the closest to the truth.
The next best model is ZZFT while sz differs sig-
nificantly from the truth.”We prefer z 'jfT to z4:j S-
ince the set of samples of zy.; is deﬁne(fl:;ythe avail-
able data so that it cannot be extended. In contrast,
samples of any size can be generated from zdpfi:T s-
ince its probability law is known.

5. FD MODEL FOR WIND FORCES

Construct FD models for the vector-valued
wind pressure time series X(t) =
recorded in the wind tunnel of the University of
Florida and estimate the distributions of extremes
of the time series.
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Figure 1: Estimates of the target probability P(jjzijj >
x) (thin solid line), estimates based on FD model
(heavy solid line), estimates based on finite dimensional
PC model (dotted line) and estimates based on finite
dimensional PCT model in logarithmic scale (dashed
line) for z; and z, (left and right panels).

Data is used to estimate the correlation functions
of the vector-valued process X(t), find the eigen-
functions of these functions and calculate the sam-
ples of the random coefficients fZ;.xg of the FD
models of the components of X (t) by projection as
discussed in Sect. 2.

The joint distribution of the random vector whose
components are the random variables fZ;g is
obtained by translating polynomial chaos repre-
sentation such that they match exactly the target
marginal distribution, see Grigoriu. (2019). These
models can be used to generate samples of the ran-
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dom coefficients fZ;. g which are used to find the
corresponding samples of FD models of X(t).

The plots of Fig. 2 explore the effects of the de-
pendence between the random coefficients of FD
models on extremes. The estimates are unsatisfac-
tory if the components of ZP¢T are assumed inde-
pendent, an expected result since the resulting FD
wind model is approximately Gaussian. They ap-
proach the target probability as the degree of the
polynomial chaos is increased from two to four s-
ince this increases results in a superior representa-
tion of the dependence between the random vari-
ables Z;.x. However, increasing the degree of the
polynomial chaos does not improve the estimates
based on PC models, since Z and ZPC€ have differ-
ent marginal distributions.

6. CONCLUSIONS

Finite dimensional (FD) models, i.e., determinis-
tic functions of time and finite sets of random vari-
ables, have been constructed for a set of test cases
and a wind pressure time series recorded at the UF-
BLWT facility in Gainesville by using polynomial
chaos (PC) and polynomial chaos translation (PCT)
models to represent their random coefficients. The
components of PCT models are obtained from those
of PC models by translation, so that they match ex-
actly the target marginal distributions irrespective
of the coefficients in their definition. The optimal
values of the PCT coefficients minimize the dis-
crepancy between the PCT and target joint proper-
ties, which are quantified by joint distributions and
spectral measures. In summary, the PCT models
match exactly the marginal distributions of the ran-
dom coefficients of FD models by construction and
capture their dependence with an accuracy that in-
creases with the truncation level of the underlining
PC models.

FD models with random coefficients represented
by PC and PCT models have been constructed for a
set of test cases and a 6-dimensional wind pressure
time series recorded in the UFBLWT facility.
The FD models with PCT random coefficients
are superior to those with PC coefficients in the
following sense. First, the PCT models provide
a more accurate representation of the joint distri-
butions of the random coefficients of FD models
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Figure 2: Estimates of the target probability P(jjXsjj >
x) (thin solid line), estimates based on FD model

(heavy solid line), estimates based on finite dimen-sional
independent model (dash-dotted line), estimates based
on finite dimensional PC models (dotted line) and
estimates based on finite dimensional PCT model in
logarithmic scale (dashed line) based on second and
forth degree polynomial chaos (left and right panels).

than the PC models. Second, the distributions
of extremes of PCT-based FD models are similar
to those of target time series while PC-based FD
models do not have this capability. It is also shown
that the performance of PCT-based FD models can
be further improved by increasing their stochastic
dimension and/or the order of their underlining PC
models.
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