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ABSTRACT:  Numerical solutions of stochastic problems require the representation of random
functions in their definitions by finite dimensional (FD) models, i.e., deterministic functions of time and
finite sets of random variables. It is common to represent the coefficients of these FD surrogates by
polynomial chaos (PC) models. We propose a novel model, referred to as the polynomial chaos
translation (PCT) model, which matches exactly the marginal distributions of the FD coefficients and
approximately their dependence. PC- and PCT- based FD models are constructed for a set of test cases
and a wind pressure time series recorded at the boundary layer wind tunnel facility at the University of
Florida. The PCT-based models capture the joint distributions of the FD coefficients and the extremes of
target times series accurately while PC-based FD models do not have this capability.

1. IN T RODU C T I ON
The solution of a broad range of problems in sci-

ence and engineering involves extremes of random
processes X (t ) over finite times intervals, e.g., ex-
treme climate events and design responses of dy-
namical systems subjected to random loads Grigo-
riu. (2020); Easterling et al. (2000); Grigoriu and
Samorodnitsky. (2015). Yet, most practical meth-
ods for calculating the distribution of the extreme
random variable Xt =  sup           jX (t )j are based
on the mean rate at which the real-valued pro-
cess X (t ) or its absolute value crosses with posi-
tive slope specified levels Leadbetter et al. (1983)
(Chap. 7), which is available analytically for mean
square differentiable Gaussian processes X (t ) and
memoryless transformation of these processes, re-
ferred to as translation processes Gioffré et al.
(2000).     If X (t ) does not have these properties,
the distribution of the extreme random variable Xt
can be approximated from crossing of time series
X(t0); X (t1); : : : ; X (tn) defined by the values of

X (t ) at a finite set 0 = t 0  < t 1  <   < t n  =  t  of times in
[0; t ] Naess and Gaidai. (2008). The accuracy of this
approximation depends on the time step and the
properties of the samples of X (t ). For example, the
approximation fails if the samples of X (t ) are not
differentiable, e.g., the Brownian motion process.

It is proposed to approximate the distribu-
tion of Xt =  sup jX (t )j by that of Xd;t =
sup jXd(t)j, where Xd (t ) is a finite dimensional
(FD) model of X (t ), i.e., a deterministic function of
time and d <  ¥  random variables which has the fol-
lowing two properties. First, the distributions of Xt
and Xd;t are similar for a sufficiently large stochas-
tic dimension d. Accordingly, the distribution of
Xt can be estimated from samples of Xd (t ). Sec-
ond, samples of Xd (t ) can be generated by standard
Monte Carlo algorithms. In contrast, samples of
X (t ) cannot be generated since, generally, stochas-
tic processes have infinite stochastic dimensions as
uncountable families of random variables indexed
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by time.

2. F I N I T E D I M E N S I O NA L M OD E L S

Let X (t ) be a real-valued, zero-mean stochas-
tic process on a bounded time interval [0; t ] with
correlation function c(s; t ) =  E [X (s) X (t )]. Denote
by f l k g  and f jk (t )g,  k =  1;2; : : :, the eigenvalues
and the eigenfunctions of the correlation function of
X (t ). It is assumed that c(s; t ) is continuous so that
its eigenfunctions are real-valued continuous func-
tion on [0; t ] Mercer. (1909).

The family of FD models of X (t ) has the form

d
Xd (t ) = Zk jk (t ) ; 0  t  t ; (1)

k=1

where       the       random       coefficients       fZk      =
X (t ) jk (t ) dt g are the projections of X (t )

on the basis functions f jk (t )g.  Simple calculations
show that E[Zk] =  0 and E[Zk Zl ] =  l k  dkl , so
that the zero-mean random variables fZk g are
uncorrelated.      They are independent if X (t ) is
Gaussian.

The FD models Xd (t ) have two notable proper-
ties. First, they are defined on the same probabil-
ity space as X (t ) so their samples are paired with
those of X (t ). Second, for given time t, the random
variables Xd (t ) converge in mean square to X (t ) as
d !  ¥  since

E
 
Xd (t ) X (t )2 

=  å  l k  jk (t )2  !  0;
k = d +1

as d !  ¥  by Mercer’s theorem Mercer. (1909).
This converges implies the converges in probability
of Xd (t ) to X (t ) and, therefore, in distribution. This
observation and Theorem 18.10 of van der Vaart.
(1998) imply that the finite dimensional distribu-
tions of Xd (t ) converge to those of X (t ) as d !  ¥ .

3. FD- BA S E D E S T I M AT E S OF E X T R E M E S
Denote by F and F  ;t     the distributions of

the extremes Xt =  sup jX (t )j and Xd;t =
sup jXd (t)j of X (t ) and Xd (t ) in the bounded
time interval [0; t ]. We give conditions under which
F  ;t converges to F  as d !  ¥ .  Under these condi-
tions, F  can be estimated from samples of Xd (t )

provided that d is sufficiently large. This is es-
sential in applications since samples of Xd (t ) can
be generated by standard Monte Carlo algorithms
while samples of X (t ) are not available. For sim-
plicity, we assume as in the previous section that
X (t ) is real-valued. Extension to vector-valued pro-
cesses is straightforward.

Property 1. If X (t ) has continuous samples and it-s
correlation function c(s; t ) =  E [X (s) X (t )] is con-
tinuous and the finite dimensional distributions of
Xd (t ) converge to those of X (t ) as d !  ¥ ,  then
the distribution F  ;t of sup jXd (t)j converges
to the distribution F  of sup0tt jX (t )j as d !  ¥ .

This property results by showing that the condition-s
of the Theorem 8.2 of Billingsley. (1968) are sat-
isfied. Details can be found in Xu and Grigoriu.
(2022). The practical implication of this property
is that the distribution of the extreme random vari-
able sup jX (t )j can be estimated from samples
of FD models Xd (t ) of X (t ) provided that d is suffi-
ciently large. This is essential in applications since
the distribution of sup jX (t )j is available ana-
lytically in special cases of limited practical interest
and samples of X (t ) cannot be generated.

Property 2. If X (t ) is a Gaussian process with
continuous samples and its correlation function
c(s; t ) =  E [X (s) X (t )] is continuous and if the fi-
nite dimensional distributions of Xd (t ) converge to
those of X (t ) as d !  ¥ ,  then the sequence of ran-
dom variables sup jXd (t ) X (t )j converges to
zero in probability as d !  ¥ .

The proof can be found in Xu and Grigoriu. (2022).
This means that the “bad” subset

W (e ) =  fw 2  W : sup jX (t ) X (t )j >  eg
0tt

of the sample space W on which the samples of
X (t ) and Xd (t ) differs by more than any e >  0 can
be made as small as desired by increasing d since
P Wd (e ) !  0 as d !  ¥ .  Accordingly, most of the
samples of X (t ) can be represented by the samples
of Xd (t ) for a sufficiently large stochastic dimen-
sion d.
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4. PC AND P C T M OD E L S
Our objective is to construct models of Z =

(Z1;  ;Zd )T from its samples which are accurate in
the sense that their joint distributions match the
joint distribution of Z, and efficient, i.e., standard
Monte Carlo algorithms can be used to generate
samples of these models.

The Rosenblatt transformation Rosenblatt.
(1952) provides a model with these features. It
shows that the components of Z =  (Z1; : : : ; Zd )
can be related to the components of, e.g., a vector
G =  (G1; : : : ; Gd) with independent standard
Gaussian variables, by the mapping

Z1 =  F  1 F(G1 )
ZkjZk 1;  ;Z1 =  F  jk 1;;1 F(Gk ); (2)

where F  is the distribution of Zk, F  jk 1;;1 is the
distribution of ZkjZk 1;  ;Z1. If the mapping in (2)
is available, samples of Z can be obtained from
samples of G, which can be generated by standard
algorithms. Since the conditional distributions in
mapping G !  Z are available analytically only in
special cases, they have to be constructed numeri-
cally in most applications. Their construction from
the joint distribution of Z is computationally de-
manding and the resulting conditional distribution-s
are likely to be unsatisfactory, particularly when
dealing with heavy tail distributions. The construc-
tion of the conditional distributions F  jk 1;;1 from
data is not feasible when dealing with high dimen-
sional vectors and relatively small data sets.

This section develops approximations of the
Rosenblatt transformation for the random coeffi-
cients (Z1; : : : ; Zd) of the FD models in (1) based
on polynomial chaos (PC) and an extension of
this representation, referred to as PCT models.
These models of (Z ; : : : ;Z )  are denoted by ZPC =
(ZPC;  ; ZPC) and ZPCT =  (ZPCT ;  ;ZPCT ).

The PC models considered here are quadratic
forms of independent standard Gaussian variables
G1; : : : ;Gd defined by

ZPC =  E [Zk ] + å ak; jG j
j=1

+ å  ak; j;l (G jGl E[G jGl ]): (3)
1j<l d

The coefficients fak; j; ak; j;lg in (3) are determined
by minimizing the objective function

e1(ak; j; ak; j;l )

=  g1E[ jjZ ZPCjj2 ]
+g2  

1
max

d 
jjhi1;i2 ()      hi1;i2 (jak; j; ak; j;l )jj2

+g3(jjE [ZZT ]      E [ZPC (ZPC)T ]jj)               (4)

where h () is the histogram of (Z ;Z )  and
hPC (jak; j; ak; j;l ) is the histogram of (ZPC; ZPC)
for given coefficients fak; j ; ak; j;lg. The Matlab
function histcounts2 is used to construct the
two dimensional histograms of (Zi ;Zi )  and
(Z ;Z     ).      The error between the two matri-ces
is described by the norm jj  jj2, i.e., the absolute
largest eigenvalue of the error matrix. We
consider the set of all pairs of components rather
than all components to minimize calcu-lations.
The weighting coefficients g1;g2;g3 are such that
the components E [ jjZ Z jj ],
max1i1<i2d jjhi1;i2 ()   hi ;i (jak; j; ak; j;l )jj2     and
jjE[ZZT ]   E [ZPC (ZPC)T ]jj contribute equally to
the objective function (4). We set g =  0 if Z and
ZPC are not defined on the same probability space
since the mean error E [ jjZ ZPCjj2 ] cannot be
calculated.

The components of the PCT models are defined
by

ZPCT =  F  1 F PC (ZPC ); k =  1;  ;d; (5)

where F PC is the distribution of ZPC for given co-
efficients fak; j ; ak; j;lg. The coefficients fak; j; ak; j;lg
in (5) are determined by minimizing the objective
function

e2(ak; j; ak; j;l )
=  w1E[ jjZ ZPCT jj2 ]

+w2  
1
max

d 
jjsi1;i2 () sPCT (jak; j; ak; j;l )jj2

+w3  
1
max

d 
jjhi1;i2 ()      hi1;i

T (jak; j; ak; j;l )jj2;

(6)

where hi ;i ( )  is as in (4), si ;i ( )  is the spec-
tral measure of (Zi1 ; Zi2 ), si1;i2 

(jak; j; ak; j;l ) and
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hi ;i
T (jak; j; ak; j;l ) are the spectral measure and the

histogram of (ZPCT ;ZPCT )  for given coefficients
fak; j; ak; j;lg. Spectral measures of (Zi ;Zi )  are
metrics which quantify the likelihood that (Zi ; Zi )
are simultaneously large, see (5.3) and (5.4)
in Grigoriu. (2019) for definitions and Resnick.
(2007), Chap.6 for technical details. We sort the
samples of the two-dimensional vectors (Z ;Z )
and (ZPCT ;ZPCT )  according to their lengths such
that the first sample is the furthest to the ori-gin
and construct the spectral measures from the top
10% of these samples. The Matlab func-
tion histcounts2 is used to construct the two di-
mensional histograms and spectral measures of
(Zi ;Zi )  and (ZPCT ; ZPCT ). We consider the set
of all pairs of components rather than all com-
ponents to minimize calculations. The weighting
coefficients w ; w ;w are such that the compo-
nents E [ jjZ ZPCT jj2 ], max1i < i  d jjsi ;i ( )
si ;i (jak; j; ak; j;l )jj2 and max1i1<i2d jjhi1;i2 ()
hi ;i

T (jak; j; ak; j;l )jj2 contribute equally to the objec-
tive function (6). We set w1 =  0 if Z and ZPCT are
not defined on the same probability space since the
mean error E [ jjZ ZPCT jj2 ] cannot be calculated.
The second and third terms of e2(ak; j; ak; j;l ) quan-
tify differences between the dependence structure
of Z and ZPCT . The third term is an approximate
metric for the differences between the joint distri-
butions of Z and ZPCT while the second term mea-
sures the differences between the tail dependence
of these random vectors.

Example 1. Let X1(t ); X2(t ), 0  t  t , be real-
valued processes defined by the differential equa-
tions

X1(t ) + a1X1(t ) + b1X1(t ) =  k1V (t );
X2(t ) + a2X2(t ) + b2X2(t ) =  k2V (t ) (7)

with the initial conditions Xi(0) =  0 and Xi(0) =
0, i =  1;2, where ai; bi; ki >  0, i =  1;2 are con-
stants. The input is the translation process V (t ) =
F  1  F(W (t )),  where F  is the Gamma distribu-
tion function with the shape parameter n and s-
cale parameter 1, W (t ) is the stationary solution of
dW (t) =   J W (t ) dt + 2 J  dB(t ), J  >  0, and B
denotes the standard Brownian motion.

From Grigoriu. (2021) (Chap.2), the solution of
(7) is

X (t ) =  
Z t ki  e ai (t  u)=2 sin(y (t u))V (u)du; (8)

0 i

where y i  =  (bi a 2=4)1=2, i =  1;2.
Our objective is to construct FD models for the

vector-valued process X1(t ); X2(t ) . Since (7) has
to be solved numerically, V (t ) and X1(t ); X2(t )
are defined and calculated at a finite set of times,
e.g., the equally spaced times ti =  i Dt, i =
1; : : : ;n, where Dt =  t =n denotes the integration
time step. Denote by h =  (V (t1); : : : ;V (tn)) and
zi =  (Xi(t1); : : : ; Xi(tn)), i =  1;2, the discrete ver-
sions of the input V (t ) and of the processes Xi(t ),
i =  1;2. The random vector h admits the represen-
tation h =  å n Zkvk, where fvk g are the eigenvec-
tors of the covariance matrix E[hh ] and the ran-
dom coefficients fZ g are defined sample by sam-
ple by projection, i.e., Zk(w ) =  hT (w) vk, w 2  W.
The corresponding FD model is hd =  å Zkvk. S-
ince the differential equations (7) are linear, their
solutions to h and hd are linear forms of fZk g de-
noted by zi  =  fzi; j g and zd:i =  fzd:i; jg, i =  1;2,
j =  1; : : : ;n.

The thin solid lines of the left and right panel-
s of Fig. 1 are estimates of P(kzik >  x) for i =  1
and i =  2 which are obtained directly from data,
where kzik =  max1jn jzi; j j. These probabilities are
viewed as truth. The other lines of the figure are
calculated from samples of z (heavy solid lines),
z PC (dotted lines) and z PCT (dashed lines) for the
first and second components (left and right panel-
s). The heavy solid lines are the closest to the truth.
The next best model is z PCT while z PC differs sig-
nificantly from the truth. We prefer z PCT to zd:i s-
ince the set of samples of zd:i is defined by the avail-
able data so that it cannot be extended. In contrast,
samples of any size can be generated from z PCT s-
ince its probability law is known.

5. FD M OD E L F O R WIND F O R C E S
Construct FD models for the vector-valued

wind pressure time series X (t ) =  X1(t); : : : ; Xm(t)
recorded in the wind tunnel of the University of
Florida and estimate the distributions of extremes
of the time series.
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dom coefficients fZi;kg which are used to find the
corresponding samples of FD models of X (t ).

The plots of Fig. 2 explore the effects of the de-
pendence between the random coefficients of FD
models on extremes. The estimates are unsatisfac-
tory if the components of ZPCT are assumed inde-
pendent, an expected result since the resulting FD
wind model is approximately Gaussian. They ap-
proach the target probability as the degree of the
polynomial chaos is increased from two to four s-
ince this increases results in a superior representa-
tion of the dependence between the random vari-
ables Zi;k. However, increasing the degree of the
polynomial chaos does not improve the estimates
based on PC models, since Z and ZPC have differ-
ent marginal distributions.

Figure 1: Estimates of the target probability P(jjzijj >
x) (thin solid line), estimates based on FD model
(heavy solid line), estimates based on finite dimensional
PC model (dotted line) and estimates based on finite
dimensional PCT model in logarithmic scale (dashed
line) for z1 and z2 (left and right panels).

Data is used to estimate the correlation functions
of the vector-valued process X (t ), find the eigen-
functions of these functions and calculate the sam-
ples of the random coefficients fZi;kg of the FD
models of the components of X (t ) by projection as
discussed in Sect. 2.

The joint distribution of the random vector whose
components are the random variables fZi;kg is
obtained by translating polynomial chaos repre-
sentation such that they match exactly the target
marginal distribution, see Grigoriu. (2019). These
models can be used to generate samples of the ran-

6. CONCLUS IONS
Finite dimensional (FD) models, i.e., determinis-

tic functions of time and finite sets of random vari-
ables, have been constructed for a set of test cases
and a wind pressure time series recorded at the UF-
BLWT facility in Gainesville by using polynomial
chaos (PC) and polynomial chaos translation (PCT)
models to represent their random coefficients. The
components of PCT models are obtained from those
of PC models by translation, so that they match ex-
actly the target marginal distributions irrespective
of the coefficients in their definition. The optimal
values of the PCT coefficients minimize the dis-
crepancy between the PCT and target joint proper-
ties, which are quantified by joint distributions and
spectral measures. In summary, the PCT models
match exactly the marginal distributions of the ran-
dom coefficients of FD models by construction and
capture their dependence with an accuracy that in-
creases with the truncation level of the underlining
PC models.

FD models with random coefficients represented
by PC and PCT models have been constructed for a
set of test cases and a 6-dimensional wind pressure
time series recorded in the UFBLWT facility.
The FD models with PCT random coefficients
are superior to those with PC coefficients in the
following sense. First, the PCT models provide
a more accurate representation of the joint distri-
butions of the random coefficients of FD models
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