Check for
Updates

Massively Parallel Tree Embeddings for High Dimensional Spaces

Amirmohsen Ahanchi
University of Maryland
College Park, Maryland, USA
ahanchi@cs.umd.edu

Marina Knittel
University of Maryland
College Park, Maryland, USA
mknittel@cs.umd.edu

ABSTRACT

Efficient computation on massive high-dimensional data greatly
benefits from efficient embedding techniques into simpler metrics.
Perhaps the most celebrated technique is the dimension reduction
a-la Johnson and Lindenstrauss [46]. Another important method
embeds the data into a tree metric space, first efficiently achieved
by Bartal [14]. Both of these algorithmic tools are among the most
general theorems with numerous applications.

In this paper, we study these two embedding methods in the Mas-
sively Parallel Computation (MPC) model. We develop a new hybrid
partitioning algorithm which generalizes both random shifted grid
and ball partitioning methods for generating tree embeddings. This
leads to an O(1)-round randomized MPC algorithm for embed-
ding high-dimensional data into a tree while approximating the
distance between any two points within a factor of O(log!*> n) (and
thus distortion O(log!> n)) in expectation as long as the aspect
ratio is O(poly(n)). This Euclidean result beats the lower bound
of Q(logn) MPC rounds for tree embeddings of general metric
spaces and can extend to a number of problems, including densest
ball, minimum spanning tree, and Earth-Mover distance. Along the
way, we implement and use Ailon and Chazelle’s Fast Johnson Lin-
denstrauss Transform [2] with sublinear memory and O(1) MPC
rounds, which is of its own interest.

CCS CONCEPTS

« Theory of computation — Massively parallel algorithms.

KEYWORDS

Massively Parallel Computation; embeddings

ACM Reference Format:

Amirmohsen Ahanchi, Alexandr Andoni, MohammadTaghi Hajiaghayi,
Marina Knittel, and Peilin Zhong. 2023. Massively Parallel Tree Embeddings
for High Dimensional Spaces. In Proceedings of the 35th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA °23), June 17-19, 2023,
Orlando, FL, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3558481.3591096

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

SPAA °23, June 17-19, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9545-8/23/06.
https://doi.org/10.1145/3558481.3591096

Alexandr Andoni
Columbia University
New York, New York, USA
ahanchi@cs.umd.edu

77

MohammadTaghi Hajiaghayi
University of Maryland
College Park, Maryland, USA
hajiagha@cs.umd.edu

Peilin Zhong
Google Research
New York, New York, USA
pz2225@columbia.edu

1 INTRODUCTION

Massive data-driven computation benefits greatly from embed-
ding finite metric spaces into simpler spaces. Specifically, high-
dimensional massive datasets, while often highly practical, are
frequently too large to store on commodity hardware. Therefore,
there is much interest in finding efficient methods for transforming
this data into low-dimensional spaces. For instance, one of the most
famous algorithms in high-dimensional geometry is the Johnson-
Lindenstrauss transform [46], which embeds n points in the Eu-
clidean space with any dimension into the O(log n)-dimensional
Euclidean space. Another branch of work solving this problem in-
volves embedding metric spaces into tree metrics. A tree metric
over n points is represented by an n-vertex tree, and therefore is
also highly compact, requiring only O(n) space. The main result
of this paper is the first non-trivial massively parallel constant
round extension of Bartal [14]’s famous probabilistic tree metric
embeddings of geometric datasets. We additionally provide a space-
efficient massively parallel adaptation of the Johnson-Lindenstrauss
transform.

Rabinovich and Raz [52] showed that deterministically embed-
ding a simple n-cycle into a tree metric requires Q(n) distortion,
or maximum proportional deviation between embedded and true
distance. To circumvent this, Karp [48] leverages randomization
to approximate a cycle by a path with low distortion. Alon, Karp,
Peleg, and West [3] were the the first to probabilistically embed
arbitrary metric spaces into trees, however they required up to

20(Vlognloglogn) gistortion to do so. Bartal’s work greatly sur-
passed this, achieving an O(log? n)-approximation. A novel idea of
Bartal’s work in comparison with previous research is that it defines
and utilizes probabilistic partitions, which ensures that two close
points are more likely to be grouped together in the partition. By
applying a hierarchy of probabilistic partitions, Bartal’s algorithm
embeds the input metric space into the so-called hierarchically
well-separated tree (HST).

Tree embedding with HSTs has been improved a number of
times since Bartal’s inaugural work [15, 27, 49], culminating in the
work of Fakcharoenphol, Rao, and Talwar [32], who improved the
approximation factor to O(log n), notably yielding the first polylog-
arithmic approximation for the k-median problem. Since Q(logn)
is also the lower bound [14], this result sets a good foundation for
expanding tree embeddings in other directions [26, 39, 40].

Metric tree embeddings have already been studied in PRAM [38,
24, 34], a classic model of parallel computing. Given a general

SPAA ’23, June 17-19, 2023, Orlando, FL, USA

metric space, Blelloch, Gupta, and Tangwongsan [24] designed a
parallel O(log n)-approximate metric tree embedding algorithm
using O(n? log n) work (i.e., number of operations) and O(log? n)
depth (i.e., parallel time). Friedrichs and Lenzen [34] considered
the shortest path metric given by a graph (i.e., graph metric) and
gave a parallel O(poly(log n))-approximate metric tree embedding
algorithm using O(m + n'*¢) work and O(log n) depth where £ > 0
is an arbitrary constant and m is the number of edges of the input
graph. Andoni, Stein, and Zhong [8] improved the work of [34] to
(m+n) - poly(log n) though with a larger distortion, a high degree
poly(log n).

Due to the success of many modern massively parallel systems
such as MapReduce [30], Hadoop [55], and Spark [57], a more re-
fined model of parallel computing emerged — Massively Parallel
Computation (MPC) [18, 38, 47]— and has led to the development
of new parallel algorithms in recent years. In this model, data is dis-
tributed to multiple machines where each machine has a sublinear
amount of memory. We alternate between rounds of computation
and rounds of communication where each machine can only send
messages with size bounded by its local memory in a single round.
Since communication is always the bottleneck of the model, the
goal in MPC is to design an algorithm with few rounds (parallel
time). We know that t-depth PRAM algorithms can be simulated
in MPC in O(t) rounds [54]. Thus, in MPC, the simulation of any
above mentioned PRAM algorithm would require Q(log n) paral-
lel time. On the other hand, an o(log n)-round MPC algorithm is
always more desired in practice and faster MPC algorithms exist
for many problems (see e.g., [6, 7, 29, 37]).

Thus emerges the following natural question that we study in
this paper:

Can we design an o(log n)-round MPC algorithm for metric tree
embedding?

The answer is no for general input metric spaces (e.g., the graph
metric) with polylogarithmic distortion unless the 1-vs-2Cycle Con-
jecture [56] is false. In geometric space, Arora [9]’s grid partitioning
solves this in O(1) MPC rounds with O(log? n) distortion.

We are the first to break this distortion barrier. On n points
in R? with aspect ratio poly(n), there exists an O(1)-round MPC
algorithm for 9] (log! n)-approximate metric tree embedding,'?
This yields O(1)-round 5(logl'5 n)-approximate MPC algorithms
for Euclidean: minimum spanning tree, Earth-Mover distance, and
densest ball.

We propose a new hierarchical probabilistic partitioning method
to embed data in RY into a tree with distortion O(log!*® n) using
constant MPC rounds and low memory. Generally speaking, these
methods iteratively partition the data and then recurse on each
part in the partition until singletons or empty sets are reached.
This yields a tree whose edges we weight and whose leaf set is the
dataset. Its tree metric defines pairwise embedded distances. Our
algorithm, hybrid partitioning, can be seen as a generalization of
two existing partitioning methods: Arora [9]’s grid partitioning
and Charikar et al. [27]’s ball partitioning.

The aspect ratio of a point set is the ratio between the largest and the smallest
interpoint distance.

2(~)(f(n)) denotes O(f(n) - polylog(f(n))).

78

Amirmohsen Ahanchi et al.

The main novelty of our methods is a hybridization of the two
methods at each level of partitioning. Specifically, to partition the
data, we group dimensions into r buckets, executing a ball partition-
ing on each bucket, and combining them with grid partitioning-like
methods. If we set r = 1, all dimensions are in one bucket so the al-
gorithm simply ball partitions the data. If r = d, the ball partitioning
step simplifies greatly, and we end up effectively grid partitioning
all points.

Our algorithm illustrates the trade-offs between the two meth-
ods in the parallel setting: grid partitioning methods reduce local
memory and ball partitioning methods improve distortion. It turns
out the key in our methods is to guarantee that an entire partition
of the data can be stored in local memory. This becomes compli-
cated using ball partitioning, since it requires a large number of
attempts (and therefore, entire grids to store) to encode a partition.
Our hybridization finds a nice way to reduce this space by only
running ball partitions on subsets of dimensions.

Even with our space-reducing hybridization, a preprocessing
application of the Johnson-Lindenstrauss transform to the input
data is required to reduce dimensionality. Therefore, we include, as
a result of independent and dependent interest, an efficient MPC
implementation of the Fast Johnson-Lindenstrauss transform (The-
orem 3). It achieves an O(log n)-distortion embedding in O(1) MPC
rounds with low memory. The use of the fast transform over the
original in particular allows for an important reduction in the total
space for high-dimensional data.

1.1 Massively Parallel Computation

We work in the Massively Parallel Computation (MPC) model [18,
47]. MPC is an abstraction of MapReduce [30] that models program-
ming frameworks such as Hadoop [33], Spark [57], and Flume [25].
MapReduce is used across industry, and is known for its fault tol-
erance and compatibility with commodity hardware. On graphs
specifically, MPC has been used in many applications such as clus-
tering [16, 42, 56] and Earth-Mover distance [5], as well as the-
oretical problems like connectivity [6, 7, 12, 21], matching and
vertex cover [1, 10, 23, 35], minimum spanning tree [5], and col-
oring [11, 19]. Recent research has also explored adaptations of
MPC [20, 22, 43, 44, 54]. MPC is highly practical and for this reason,
we study it in this work.

In MPC, the input is distributed across multiple machines. The
computation proceeds in rounds, wherein each machine executes
a local polynomial-time computation. At the end of the round,
machines may send messages to and receive messages from any
other machines. The total size of messages sent or received by a
machine in a round is bounded by its local memory. MPC algorithm
efficiency is measured by: the number of rounds (parallel time), the
local memory, and the total space (number of machines times the
local memory).

In this work, we consider MPC algorithms in the geometric con-
text, where the input data contains n points in RY, represented
by d-dimensional vectors. We use the most restrictive version of
MPC where local space per machine is O((nd)®) for any constant
¢ € (0,1)—termed the “fully scalable” regime [6, 7]. All our algo-
rithms are fully scalable, take O(1) rounds, and use total space near
linear in the input size n - d.

Massively Parallel Tree Embeddings for High Dimensional Spaces

1.2 Grid Partitioning Methods for Tree Metrics

We now describe two grid partitioning methods that we will extend
in our work: random shifted grids and ball partitioning.

1.2.1 Random Shifted Grids. The first is the standard random
shifted grid introduced by Arora [9]. Consider a geometric space
in d dimensions. A random shifted grid is just a standard grid with
cell width w whose origin is translated by some vector (xi,...,xgq)
where x; is drawn uniformly at random from [0, w]. Equivalently,
each cell is translated by the vector (xi,...,xy). A visualization
can be seen in Figure 1la.

Definition 1. Given a cell width parameter w, consider a grid G
of cell length w shifted randomly by a vector sampled uniformly at
random from [0, w]<. Place each point p into a partition representing
the cell that contains it. This partitioning is a random shifted grid
partitioning with scale w.

We now discuss how to create a hierarchical partitioning from
these random shifted grids. At this point, we will often refer to a
level, which refers to a flat partitioning in a hierarchy, or alterna-
tively, the recursive level in the hierarchical partitioning algorithm,
starting with zero at the top. Let A be the aspect ratio (the maximum
ratio between the maximum and minimum pairwise distances), 8
be a bounding box over our data (which we can say has width A),
and ¢ be a parameter defining how many cells our grid should have,
and how much it should increase at each level. We start by sampling
a random shifted grid over 8 with cell width w = A/¢. Each point
then falls into a cell in the grid. We create a partitioning of data
where each partition corresponds to a non-empty cell such that it
contains all points contained within the cell. We then recurse to
make a hierarchical structure. The idea is to create a more refined
grid (i.e., a grid with a smaller cell width) at each consecutive step.
Generally, at the ith level in the hierarchy, partition each partition
in the previous level using a randomly shifted grid of width A/¢%.
This then yields a new partitioning over our data, where partitions
are more numerous and smaller, which we add to the hierarchy.
For any partition, we stop partitioning as soon as it has one or no
points.

The hierarchy defined by the random shifted grid partitioning
procedure can be simply viewed as a tree. Let B be the root vertex.
Then for each cell we create, add a vertex to the tree with parent
vertex corresponding to the cell’s parent cell (i.e., the one which
contains a superset of its points). Clearly this is a tree, and the leaves
will either be empty (in that case, we can simply not create such a
node) or they will represent a single datapoint. Therefore, we have
created a tree structure to represent the data. Consider labeling
each tree edge with weight wVd, where w was the cell width on
that level. Then, the distance between two points is defined as the
weight of the shortest path between the two points.

Grid partitioning is a nice, simple, classic technique that has
inspired many results, including ball partitioning and our hybrid
partitioning. It would be nice to simply use grid partitioning out-of-
the-box, and it is not too hard to see that this can be implemented
efficiently in MPC in O(1) rounds with no significant local and total
space issues. However, grid partitionings only achieve an O(log? n)
distortion. We can do better.

79

SPAA ’23, June 17-19, 2023, Orlando, FL, USA

1.2.2 Ball Partitioning. The ball parititioning method, depicted in
Figure 1b, was introduced by [27] for the purpose of derandomizing
Bartal’s algorithm. In spirit, it works quite similarly to random
shifted grids, however we create partitions based off a grid of balls
instead of the cells in a grid. In this method, we have two width
parameters: the cell width and the ball radius. For simplicity of
understanding, say that the ball radius is w and the cell width is
= 4w.

To create a single partitioning, first sample a random shifted
grid of cell width 4w over the space. At each grid intersection
point in our bounding box, create a ball of radius w. Note here that
it is necessary that the cell width is more than twice as large as
the ball radius, otherwise the balls will overlap and a point may
fall into two balls. Even if the balls do not overlap, the resulting
partitioning will not necessarily partition the grid entirely, as some
points may fall outside of all balls. To account for this, we simply
continue to sample random shifted grids and create partitions for
each grid, removing covered points as we go. We do this until all
points are covered (or stop at some point and know that we succeed
at covering all points with some probability).

Definition 2. Given a cell length parameter ¢ and radius w with
w= %{’, consider a sequence of grids G1, Ga, . . . of cell length ¢ shifted
randomly by vectors s1, s2, . . . sampled uniformly at random from
[0, ¢]9. Place a ball of radius w at each grid point for all G1,Ga, . . .
Place each point p into the first ball that contains it according to the
grid ordering. This partitioning is a ball partitioning with scale w
(or scale t).

The described method defines a partitioning at a single layer in
the hierarchy. To create an entire hierarchy, we use the exact same
strategy employed by the random shifted grids method, but instead
creating our partitionings at each level using the ball partition.

Ball partitionings, while slightly more complicated, achieve a
much nicer O(log! n) distortion. The issue with this method is
that it requires too much space to implement efficiently in MPC.
Namely, we need to generate a large number of grids in order to
cover the entire space, which will be exponential in d. Even though
we reduce d to O(log n) using the Johnson-Lindenstrauss transform,
this dependency is still too large. We later show in Lemma 7 how
to reduce this dependency by adding more buckets of dimensions.

1.3 Our Contributions

We propose fully scalable, constant-round MPC algorithms for
embeddings of geometric data in the MPC model. The set of points
P c R is encoded as a set of d-dimensional vectors (and therefore
requires O(nd) total space) and is assumed to have a bounded aspect
ratio. Without loss of generality, we regard the coordinates of points
as integers from [A] = {1,2,---, A}. For two points x,y € RY, we
use ||x—y||2 to denote their Euclidean distance. Our goal is to output
a weighted tree containing all points in P such that dist7(p, q), the
total length of the path from p to g on T (i.e., the tree metric on T), is
close to ||p — gql|2. Note that since the input size is O(nd), O((nd)€)
local space is considered fully scalable.

Our main result is the first fully scalable constant round MPC
algorithm to break the O(log? n) expected distortion (i.e., the mul-
tiplicative deviation of Er [distT(p, q)] from ||p — gq||2) implied by
Arora [9]’s grid partitioning. To our knowledge, other than the

SPAA ’23, June 17-19, 2023, Orlando, FL, USA

Amirmohsen Ahanchi et al.

(a) Grid partitioning, w = 1.

ANIZANEAN!

A v W
an g g JANEANEIAN
L v W @
an ap 4 JANIANEAN
NI N AR FARST

(b) Ball partitioning, w = 1/4.

(c) Hybrid partitioning, w = 1/4.

Figure 1: We depict one level (and one sample) of each discussed partitioning method. In grid partitioning (1a), we partition the
grid into hypercubic cells of width 1 shifted by a random vector. In ball partitioning (1b), we place a ball of radius 1/4 at each
intersection of grid boundaries. Note that one instance of this placement is not sufficient to partition an entire space, as some
parts are not covered by balls. Thus, we need to repeatedly draw randomly shifted grids and place balls at the intersections
until every point in the space is covered by a ball. In hybrid partitioning (1c) with r = 2, we run a ball partitioning with ball
radius 1/4 on buckets of dimensions. If the z axis is sticking out towards the reader, then this involves two buckets: {x,y} and
{z}. We do a ball partitioning of the points projected onto the xy-plane and the z-axis independently, and then intersect them to
get a partitioning. Since partitions in the xy plane are circles and partitions on the z axis are intervals, taking their intersection
in 3-dimensional space results in cylindrical-shaped partitions.

work of Arora, this is the only constant-round MPC algorithm for
tree embeddings of high-dimensional data. Note that the success
probability 1 — 1/poly(n) holds for any polynomial function in n.

Theorem 1. Consider a set of n points P C [A]4 for A € Zx;.
There is an O(1)-round randomized MPC algorithm which computes a
weighted spanning tree T over P when it succeeds, such thatVp,q € P,

(1) distr(p, q) = lIp = gll2,

(2) Er [distr(p,q)] < O(ylogn -log A - yloglogn) - [Ip — ql2.
The success probability is at least 1 — 1/poly(n). The algorithm uses
O(n-d+nlogn- (log A - loglog n + min(d, log? n))) total space and
each machine holds O((nd)?) local space for an arbitrary constant
€ € (0,1). If the algorithm fails, it reports failure.

The algorithm that achieves this result has two parts. The first is
an efficient implementation of the Fast Johnson Lindenstrauss trans-
form, a famous technique that reduces any high dimensional space
into at most O(log n) dimensions. The second is a novel hybrid par-
titioning algorithm which combines Arora’s random shifted grid
partitioning [9] and Charikar et al’s ball partitioning [27] methods.
On O(log n)-dimensional data, this can be efficiently implemented
in MPC. Together, these yield our main result.

This result stands in contrast to the results for general shortest-
path metric of graphs. Conditioning on the 1-vs-2Cycle Conjec-
ture [56] (which postulates that distinguishing between a graph
that is one n-cycle or two disjoint n/2-cycles requires Q(log n) MPC
rounds), any fully scalable MPC algorithm for general graph con-
nectivity needs Q(logn) rounds. If a graph is disconnected, then
there are some p,q € P that are infinitely far apart. Any multi-
plicative approximation of the shortest path distance between p
and q by a fully scalable MPC algorithm would approximate that
distance as infinite, thus identifying the graph as disconnected.

80

It therefore requires Q(logn) rounds. This means that there is
no multiplicative-approximate o(log n)-round fully scalable MPC
metric tree embedding algorithm for the graph metric under the
1-vs-2Cycle Conjecture [56]. While we do not break this important
barrier, our results show that the 1-vs-2Cycle Conjecture implies an
infinite approximation gap for sublogarithmic MPC round shortest
path distance in metric and geometric graphs.

1.3.1 Methods: Hybrid Partitioning. To achieve our result, we intro-
duce the notion of hybrid partitioning, which combines two different
geometric partitioning methods. Both partitioning methods are il-
lustrated in Figure 1. The first is the standard random shifted grid
introduced by Arora [9], where the data is partitioned by the cells
of a grid, and the origin of the grid is offset by a random vector.
The second is the randomized ball partitioning method, where the
same random grid is used but instead of partitioning into the grid
cells, balls of radius 1/4 the width of the cells are placed at each
line intersection [27]. These define partitions. This is repeated until
each point is covered.

The goal of a hybrid partitioning is to create an intermediate
method which combines strategies from both partitioning algo-
rithms. When parameterized to one extreme, hybrid partitioning is
equivalent to grid partitioning. At the other extreme, it is equivalent
to ball partitioning. We define hybrid partitioning with parameters
w,f < Aand r < d, where £ and w determine the scale of the parti-
tions (similarly to ball partitioning) and r controls how to hybridize
grid and ball partitioning. The following formal definition defines
a flat partitioning of the space (and the data). This can be made
hierarchical by recursing on each partition. The resulting hierarchy
is represented by a weighted tree: our embedding.

Definition 3. In a d-dimensional space, consider bucketing all d
dimensions intor buckets {{1,...,d/r},{d/r+1,...,2d/r},... {d—

Massively Parallel Tree Embeddings for High Dimensional Spaces

d/r+1,...,d}} for parameterr < d. Let ¢ be a scaling parameter and
w= }1[.3 For an arbitrary point p € R9, letp(i) € R" be obtained
from restricting (projecting) p on the dimensions in bucket i. For each
bucket 1 < i < r, run a ball partitioning on P) = {p() : p € P}
with parameters w and ¢. If a partitioning ofRd satisfies that p and q
are in the same partition if and only if they are in the same partition
for all buckets, we call it an r-hybrid partitioning with scale w (or
scale t).

An illustration of hybrid partitioning on R? can be seen in Fig-
ure 1c. Abstracting away the specific functionality of the algorithm,
we can see the similarities between ball and grid partitioning, and
how hybrid partitioning is an intermediate strategy. In this example,
r = 2. If r = 3, hybrid partitioning must partition the space into
cubes. If r = 1, it must partition the space into spheres.

We start with a sequential algorithm which is described in Sec-
tion 3. Later, in Section 4, we will show how this algorithm can be
implemented fully scalably in the MPC model, which results in our
Theorem 1. We show that the sequential algorithm achieves the
following guarantees:

Theorem 2. Consider a set of n points P C [A]? for A € Zx;
and a parameter r € [d]. Algorithm 1 computes a weighted span-
ning tree T over P such thatVp,q € P, ||p — qll2 < distr(p, q) and
Er [distr(p,q)] < O(Vd - r-logA) - [Ip = qll2.

We now describe our sequential algorithm for hybrid partition-
ing. Without loss of generality, we suppose r divides d. We start by
grouping the dimensions into r buckets each containing d/r dimen-
sions. For each bucket, we project the data points into the space
defined by these dimensions and then we run a ball partitioning (see
Section 1.2.2 for a detailed description) with scale parameter ©(w),
meaning that the ball radius is w. Then each point is associated
with one partition for each bucket. To join the buckets, we simply
take the intersection of partitions over all buckets. For instance,
two points p and q are in the same final partition under the hybrid
partitioning if they are in the same partition obtained by the ball
partitioning for every bucket.

To compute a tree embedding, we iteratively call the hybrid par-
titioning. At the beginning, w = A/2. Once we obtain the partitions
from the hybrid partitioning, we reduce the scale parameter w by a
factor of 2 and recursively apply the hybrid partitioning on each
partition. This yields a hierarchy whose root is the partition of all
data points, and leaves represent a partitioning into singletons. As
we move down the hierarchy, we connect each child node to its
parent node with a weight proportional to w - 4/r, where w is the
scale parameter of the recursive level, and we show that w - V7 is
an upper bound of the diameter of a partition in the current level.
Finally, we obtain a weighted tree. We refer readers to Section 3 for
more details.

To see why this algorithm generalizes grid and ball partitioning,
we consider extreme values of r. When r = 1, we have a single
bucket. Clearly, then, our partitioning algorithm just executes the
ball partitioning algorithm. When r = d, we partition each dimen-
sion separately. Therefore, the shapes of the intersections of all
partitions end up being hypercubes. In our implementation, we

3Without loss of generality, we assume d is divisible by r. Otherwise, we can concate-
nate Os to each point to increase d to d’ by a factor at most 2 and d’ mod r = 0.

81

SPAA ’23, June 17-19, 2023, Orlando, FL, USA

let the ball radius be w and the cell length be 4w, which means
there is space between the hypercubes, unlike grid partitioning.
However, if we instead let the ball radius be w/2, we eliminate all
the uncovered space for r = d, and our algorithm becomes equiv-
alent to grid partitioning. Therefore, this is a hybridized version
of the two partitioning methods. This algorithm also, notably, is
implementable in the MPC model.

An interesting property of our hybrid partitioning is that we
can find a bound on the cutting probability of two points (i.e., the
probability that two points are assigned to different partitions) that
is independent of r. This means that we can ensure some probability
that two points are not separated at some level in the hierarchy
regardless of the selection of r. Our bound for the diameter of
partitions, however, is dependent on r. These two bounds are as
follows. Note that the separation probability bound is only useful
when w > \/EHp — g||2- Since w starts as A, this is true for at least
one pair of points (though in most cases, many pairs) in the initial
stages of the algorithm.

Lemma 1. Consider a hybrid partitioning with parameters w € Rs¢
and r < d in the d-dimensional Euclidean space. For any two points
p,q € R4, the probability that p and q are assigned to different

partitions is at most O (\/3 _Hp:vqllz) Ifp.q € R? are assigned to
the same partition, ||p — qll2 < O(\F - w).

1.3.2 Methods: Johnson Lindenstrauss in MPC. In addition to our
metric tree embedding result, we devise an efficient MPC imple-
mentation of the Fast Johnson-Lindenstrauss Transform (FJLT) [2].
The FJLT utilizes sparse projections and the randomized Fourier
transform to improve upon the standard Johnson-Lindenstrauss
transform [46]. It reduces the dimension of data points to O(log n)
with distortion at most (1 + £) for any & > 0. The guarantee of our
algorithm is the following, beating previous work in terms of total
space by a factor of log n/&?:

Theorem 3. Consider a set of points P = {p1,p2.- -+ ,pn} C R
Let ¢ : R? — RK be Fast Johnson Lindenstrauss Transform with
k=0(£%logn) for € (0,0.5). There is an MPC algorithm which
outputs p(p1), p(p2), - -+ , ¢(pn) in O(1) rounds. In addition, the total
space of the algorithm is at most O(nd + £~*nlog® n) and each ma-
chine holds O((nd)¢) local space for an arbitrary constant ¢ € (0,1).

Details on the implementation and proofs can be found in Sec-
tion 5. Along with being a separate interesting result in its own
right, the ability to execute the transform in MPC is necessary for
our main result. If we were to omit the transform as the first step
before the hybrid partitioning, the hybrid partitioning would work
on a potentially n-dimensional dataset. However, as we will see in
the analysis for the MPC implementation of hybrid partitioning in
Section 4, this would require an intractable computation. Specifi-
cally, the number of “balls” (i.e., partitions) at each partitioning is
required to be exponential in d in order to cover the whole space
with high probability. Since we must store the entire partitioning,
potentially, this would make the total space exponential in n, which
is quite excessive in MPC. However, we show that the dimensional-
ity reduction of the Johnson Lindenstrauss transform is sufficient
to yield an efficient MPC implementation.

We briefly note that the fast transform, as opposed to the original
method, yields a more efficient MPC algorithm on high-dimensional

SPAA ’23, June 17-19, 2023, Orlando, FL, USA

data. Specifically, the standard transform would require O(nd log n)
total space. However, if d = w(log? n), the rest of our algorithm
(along with the fast transformation) achieves about O(nd) total
space. Therefore, we are able to achieve a total space reduction
that is proportional to log n using the fast transform. In large-scale
models such as MPC, even careful improvements like this can yield
significant gains.

1.3.3 Applications. Both our metric tree embedding and fast John-
son Lindenstrauss results are useful for creating compact represen-
tations of high-dimensional geometric spaces. In fact, Theorem 1
is obtained by running the result from Theorem 3 to reduce the
dimension of the data with constant distortion and then an MPC
implementation of Algorithm 1 with » = O(loglog n) (Theorem 2).
Metric tree embeddings can be used to solve or approximate
many problems in graph theory, and our results are no exception.
This work can be extended to numerous applications, and we note
three important ones below. Proofs can be found in the appendix.
Note that an (e, f)-approximate densest ball is a bicriteria solution
indicating that given a target diameter D, we approximate the
problem of finding the ball that contains the most points within
a factor of @ with up to a f-multiplicative violation of the ball
diameter. In other words, the ball may have diameter up to D.

Corollary 1. Consider a set of n points P C R? with aspect ratio
A € Z>1. There is an O(1)-round randomized MPC algorithm which
computes (on P with probability at least 1 — 1/loglogn) a:

(1) (1-0(1/loglogn), 5(10g1'5 n))-approximate densest ball
(2) O(log!”® n)-approximate minimum spanning tree
(3) O(log!® n)-approximate Earth-Mover distance

It usesO(n-d+nlogn- (logA -loglog n + min(d, log? n))) total

space and each machine holds O((nd)®) local space for an arbitrary
constant € € (0, 1).

There are a few important things to note regarding these appli-
cations. First, to our knowledge, densest ball has not been studied
in MPC and therefore our result is the first in this area. It is highly
related to the problem of finding the densest subgraph of a given
graph. In this problem the idea is to identify a subgraph H of an un-
weighted graph G that minimizes the density d(H) = |E(H)|/|H|,
where E(H) is the set of edges with both endpoints in H. While
this has been studied in the sublinear regime [13, 36], it does not
imply any results for densest ball.

Additionally, a recent work [28] proposed an efficient (:)(log n)-
approximate algorithm for EMD and MST in R?. However, their
work is less broad since they directly compute EMD and MST,
whereas we provide a general low-distortion embedding algorithm
that can be used to solve a wide range of problems. In addition, there
are applications where maintaining a space-efficient embedding of
a dataset before computation may be highly practical. Therefore,
our result is still of unique interest.

Finally, it is also notable that storing data on trees provides a
unique structure for data computation. For instance, related works [17,
44] introduced efficient low-memory MPC and AMPC algorithms
for solving dynamic programs on trees.* Consider a problem that

4 Adaptive MPC, a related model where machines have adaptive in-round read-only
access to a distributed hash table.

82

Amirmohsen Ahanchi et al.

can be formulated on a tree embedding (i.e., where leaves corre-
spond to the data set) with distortion a such that the problem can
be approximated within a factor of f(«). Then we can apply these
algorithms on top of our embedding to achieve an f(O(log!?(n))-
approximation. Since the AMPC algorithm of [44] runs in constant
rounds, then this process would require O(1) rounds overall to
embed and compute. Unfortunately, the MPC algorithm of [17]
requires O(log n) rounds, and therefore does not fully leverage our
constant round complexity. Future work in this area may reveal
more interesting results.

1.3.4 Related Lower Bounds. When the aspect ratio is poly(n), the
distortion of our current metric tree embedding is 5(logl'5 n). One
of the future directions is to improve this approximation ratio in the
MPC model. A natural goal would be to improve the distortion to
O(log n) since any o(log n)-distortion metric tree embedding would
imply an embedding of the Earth-Mover distance into #; with distor-
tion better than the long-standing state-of-the-art embeddings [51]
(even for planar Earth-Mover distance).

A number of related problems also exhibit similar apparent limi-
tations. Embedding an n-point metric in ¢, space into probabilistic
trees needs at least Q(+/log n) distortion. This follows from a result
of Rao [53] which states any finite planar metric of cardinality n,
in particular a log n-level diamond graph, can be embedded into £,
space with distortion O(+/logn) (which is tight according to Lee
and Naor [50]) and another result of Gupta, Newman, Rabinovich,
and Sinclair [41] which states a log n-level diamond graph needs
distortion of at least Q(log n) to probabilistically embed into trees.
Therefore, the distortion of embedding Euclidean points into trees
must be at least Q(+/logn). While some of the above discussion
does not enforce bounds on our problem, they are indicative of the
difficulty of metric tree embedding in general. It is an open question
to further explore this gap for high-dimensional Euclidean spaces.

2 PRELIMINARIES

Here we introduce some preliminary definitions that will be useful
in describing our algorithm and our results. This work provides tree
embeddings on geometric data that exhibit two properties: they
dominate the original geometric space and have small distortion.
A metric space dominates another if the distance between any
pairs of points is not smaller in the new metric space. This is a
baseline assumption that many embeddings are shown to satisfy, as
in Fakcharoenphol, Rao, and Talwar [32]. They define domination
as follows.

Definition 4 ([32]). A metric space M dominates another metric
space N for all g,p € P for some set of points P if dp(q,p) >
dn(q, p), where d pq and d n represent the distance function in each
metric space respectively.

Distortion (in our case, bi-Lipschitz distortion) measures the
difference between the distance between two points in the original
space and two points in a tree embedding. It is a measure of the
goodness of the embedding in that low distortion implies we better
approximate all pairwise distances, as measured by the largest
proportional deviation.

Definition 5 ([24]). A metric space M has « distortion over another
metric space N if and only if M dominates N and for any points

Massively Parallel Tree Embeddings for High Dimensional Spaces

x and y, dpq(x,y) < adpn(x,y), where d pq and dp; represent the
distance function in each metric space respectively.

If M is generated by a random process or represents a distribu-
tion over metric spaces, we instead view distortions in expectation,
where E[dpq(x,y)] < adpn(x,y). Specifically, our algorithm is ran-
domized, so we will use this probabilistic interpretation of distortion.
In this paper, we develop algorithms that dominate the original
geometric space with low distortion.

3 HYBRID PARTITIONING AND ITS
DISTORTION

Our sequential hybrid partitioning algorithm, Algorithm 1 (subrou-
tines BuildGrids and BallPart can be found in the appendix, is a
generalization of both Arora [9]’s random shifted grid and Charikar
et al. [27]’s random ball partition method. As we discussed in Sec-
tion 1.2, the reason we cannot use either of these independently
for a massively parallel algorithm is actually quite simple. For ran-
dom shifted grids, the problem is that the resulting distortion is
O(log? n). Our methods strive to achieve a better approximation
factor than this. For ball partitions, the local space required is ex-
ponential in the dimension of the problem since we require many
random shifted grids to cover all points in P. Even for d logarithmic
in n, this method is unattainable in MPC.

Algorithm 1 Hybrid Partitioning: A Sequential Tree Embedding
Algorithm

Input: Point set P C [A]d and parameters r € [d], the number of
buckets, and U € N, the number of grids
Output: T, a tree embedding of P
// Bucket the dimensions [d] into r buckets
for j € [r] do
Jo—=(d/r)-(j-1)
PU — {pD | peP:pl) = (pjpsr. pjosze + Pjorasr)}

// Create a full ball partitioning and a corresponding hierarchy
for each bucket

Forall j € [r]: GU) = BuildGrids(PU), r,U)

Forall j € [r]: Tj « BaIIPart(P<j),G(r)),

If any ball partitionings failed, halt and report failure

// Join the partitionings to make a single, unified hierarchy
For all j € [r]: vg,j < the root of Tj
vo = (v0,1,00,2, - * * ,V0,r) /] A vertex for the single cluster
containing all of P
T — ({00}, 0)
Let C: T — 2F where C(vg) = P
corresponding to a vertex
while Jo = (v1,v,...,0,) € leaves(T) such that |C(v)| > 1 do
S = children(v1) X children(v2) X - - - X children(v,)
foru = (uy,uz,...ur) € Sdo
Py {r € p
[r], p(j) is in the cluster corresponding to u;}
If P, # 0,add u to T as a child of v and set C(u) = Py,.
return T

// Identifying the cluster

— Vj €

83

SPAA ’23, June 17-19, 2023, Orlando, FL, USA

The advantage of ball partitioning, however, is that it achieves
a lower distortion. Therefore, the main idea of the hybrid parti-
tioning method is to combine these two methods such that it is
implementable in MPC, like random shifted grids, while still ob-
taining the improved distortion from ball partitioning. To do this,
we introduce the notion of bucketing. To see how bucketing works,
consider our bounding box 8B of our data, whose width is A, the
aspect ratio of the data. To partition this bounding box, we start
by bucketing the d dimensions into r buckets. That is, for a vector
X =(x1,...,%q), let it be bucketed as follows:

x(W = (x1, .. ~,xd/r),x(2) = (xd/r+ls .. ~>x2d/r),

ox) = (Kgagpens o xa)

In a sense, the bucketing is taking a single point in space and
projecting it into a number of different orthogonal subspaces. Since
all dimensions are contained in exactly one subspace each, we do
not lose any information in this process. This describes how one
point is broken up into different projections. Over a set P of points,
we create sets for each bucket of dimensions. The set contains the
projection of each point in P into the respective bucket.

PO = (xVvx e P}, PO = (xB|vx € P},
P = (x|vx € P}

At a high level, our algorithm, Algorithm 1, will create a ball
partitioning on each bucket with cell width 4w and ball radius w
for each level with different scale parameter w, and only group two
points together if they are in the same partition for each bucket.
Specifically, for each i € [r], let C; be the partitioning created by
the ball partitioning on only the dimensions in bucket i (i.e., the
(i—1)d/r+1 through id/r dimensions of each data point). We create
our C partitioning as follows: for each point p, to find the other
points in its partition, let C? be the set of partitions in C, ..., Cr
that contain p (note that some may be empty, as a ball partitioning
may not cover p). Take the intersection of all partitions in C? to
form the partition CP (CP = Ncecp C). If CP contains any other
point, then it will be a partition in our new partitioning. Like in the
ball partitioning method, we repeat this until all points are covered.
If at any point in this method a point does not have any other points
within w of it, we simply partition it as its own partition.

Beyond this, the algorithm simply proceeds as the others to
construct a hierarchy. Our ball radius starts as w = A/2 for the top
level and is scaled by 1/2 at each recursive step. We recurse on each
partition until all partitions are empty or singletons, and we create
an edge of weight \/rw from each partition to its parent partition.
With this hierarchy as our final tree embedding, it is not hard to
see that the distance between any two points can be calculated by
the number of levels of the hierarchy in which the two points are
separated. If at any level they are separated, we add v/rw to their
distance.

It is not too difficult to see how this method generalizes both the
random shifted grid and ball partitions. Definitionally, if = 1, then
there is a single bucket containing all dimensions, and thus we are
simply working in the original space. Then for any iteration of ball
partitioning, two points are grouped together if they are captured
by the same ball. Therefore, for r = 1, we are simply running the

SPAA ’23, June 17-19, 2023, Orlando, FL, USA

ball partitioning algorithm. If r = d and if we let the ball radius be
half the cell width, then each dimension is given its own bucket.
When we run a ball partition on each bucket, or each 1-dimensional
space, independently, we are just shifting that coordinate and parti-
tioning that dimension into equally-sized intervals. Intersecting the
partitions formed by partitioning dimensions like this is the same
as defining d-dimensional cells in a grid based off a random shift
vector composed of the random shifts of each individual dimension.
Thus, we get precisely the random shifted grid.

Now that we have discussed the algorithm, we move on to the
desired result. Note that all proofs can be found in the appendix.
We ultimately show that, as long as we cover all points in each level
(this is discussed probabilistically, by setting a high value of U, in
Section 4):

Theorem 2. Consider a set of n points P € [A]? for A € Zsq
and a parameter r € [d]. Algorithm 1 computes a weighted span-
ning tree T over P such thatVp,q € P, ||p — qll2 < distr(p,q) and
Er [distr(p,q)] < O(Vd - r-logA) - [Ip = qll2-

The first property, the lower bound on the tree distance, is the
notion of dominance. The second defines the amount of distortion
resulting from the metric. Both are commonly required in popular
probabilistic tree embeddings. It turns out that the first is much
simpler to show for our algorithm:

Lemma 2. For any two points p,q € P, ||p — qll2 < distT(p, q)-

The next goal is to prove the distortion. Crucially, to show this,
we must find a relationship between the distance between two
points and whether or not they are in the same partition at some
level. This brings up the following lemma, which reveals an inter-
esting property: the probability that two points are separated at a
level can be bounded in a way that is independent of r, however
the diameter of a partition relative to P is bounded by /r - w.

Lemma 1. Consider a hybrid partitioning with parametersw € Rs¢
andr < d in the d-dimensional Euclidean space. For any two points
p.q € R?, the probability that p and q are assigned to different

partitions is at most O (\/3 @) Ifp,q € RY are assigned to
the same partition, ||p — qll2 < O(r - w).

Since this lemma is quite extensive, we break it down into two
parts. The more interesting part is considering the probability that
two points are separated in the partitioning at a certain level. We
simply consider a ball partitioning:

Lemma 3. Consider a ball partitioning over a set of points P C Rk
For any two points p, q € P, the probability that p and q are assigned

to different partitions in a level with scale w is at most O (\/E@)

In order to solve this, we consider a random variable Iy, that
indicates if q and p exist in the same ball in a partitioning. This can
be used to determine the probability of separation, but we can also
relate it to the volume of the intersection of balls centered at these
points with radius w. Eventually, we see that the probability of
separation boils down to the probability that a random unit vector
falls into the bound of a cap surface intersected with the surface of
a sphere. In order to bound this, we need a slight detour into more
pure geometric arguments, Lemma 4.

84

Amirmohsen Ahanchi et al.

In particular, the following lemma shows that the probability
that a random vector is near the equator of a unit sphere has a good
upper bound.

Lemma 4. Letu € R? be a random vector drawn uniformly from a
unit sphere. Then for any D, w € Ry, we have

Pr[lui| < D/(2w)] = O (\/E- %)

While this lemma is close to the result we need, it unfortunately
deals with vectors drawn from a voluminous shape, whereas we
are interested in the probability that a random vector drawn from
a surface falls within the bounds of intersected surfaces. A slight
adaptation yields the following:

Lemma 5. Leto € R? be a random vector drawn uniformly from a
unit ball. Then for any D, w € Rx, we have

Pr[|o1| < D/(2w)] = o(\/é. g)

For two points to not be separated within some bucket in the par-
titioning, they must either be grouped together or left uncovered.
This allows us to relate the probability of separation to the intersec-
tion of geometric surfaces. Ultimately, we can then derive a bound
from Lemma 3 using Lemma 5 (see the proof of Lemma 3 in the
appendix. Since two points separated on a level must be separated
in some bucket, the separation probability is bounded by a union
bound over the probability of separation in each bucket, yielding
Lemma 1. As we have already showed the domination result, all
we need is to show that the expected distortion is small, which is
directly related to the probability that two points are separated on
any level. This concludes Theorem 2.

4 TREE EMBEDDING IN MPC

In this section we show how to implement Algorithm 1 in O(1) of
rounds in the MPC model using the total space O(n-d +n -logA -
log n - loglog n). Specifically, we prove Theorem 1.

Theorem 1. Consider a set of n points P C [A]¢ for A € Zs;.
There is an O(1)-round randomized MPC algorithm which computes a
weighted spanning tree T over P when it succeeds, such thatVp,q € P,

(1) distr(p,q) = lIp = qll2,

(2) Er [distr(p.q)] < O(ylogn - log A - yfloglog n) - [|p = gll..
The success probability is at least 1 — 1/poly(n). The algorithm uses
O(n-d+nlogn- (log A -loglog n + min(d, log? n))) total space and
each machine holds O((nd)*) local space for an arbitrary constant
€ € (0,1). If the algorithm fails, it reports failure.

At a high level, our algorithm consists of four main steps:

(1) Using our fast Johnson-Lindenstrauss (see Section 5), em-
bed the data into O(log n) dimensions. This is the first O(1)
rounds of the algorithm.

(2) We group dimensions into r buckets and generate grids for
each bucket and distribute the grids and points among the
machines. This requires 1 round on 1 machine.

(3) We compute the hierarchical tree using ball partitioning.
This requires 1 round of parallel computation.

Massively Parallel Tree Embeddings for High Dimensional Spaces SPAA ’23, June 17-19, 2023, Orlando, FL, USA

(4) For each node, we compute the path-to-root in the hybrid Algorithm 2 MPC Hybrid Partitioning
partitioning (to construct the final tree). This also requires 1 Input: Point set P C [A]? and a parameter r € [d] (after dimension
round of parallel computation. reduction, e.g., see Section 5).
In order to create the hierarchy in parallel, the grid of balls will be Output: T, a tree embedding of P
shared among all machines. Andoni [4] lets us bounds the number // Run on a single machine:
of grids needed to cover the entire space: Split the dimensions [d] into r = O(loglog n) buckets // As in the first
step of Algorithm 1
Lemma 6 ([4] Section 3.2.2). Consider a d-dimensional space RY, Let U = 20((d/m)1og(d/1) . 1og(rlogA) // This comes from Lemma 7
and fix some § > 0. Let G be a regular infinite grid of balls of radius For each j € [r]: G = BuildGrids(PY), r, u)
w placed at coordinates 4w - 74, Define Gy, foru € N, as G, = G +sy, Send G to all other machines
where s, € [0, 4W]d is a uniformly selected random shift of the grid Partition P into parts P; with |P;| = O(n€/log A) and send P; to machine
G4, IfU; = 20(d1ogd) 1651/5, then the grids Gy, Go, . . . Gy, cover mi
the entire space RY, with probability at least 1 — 8. J//In parallel:
Since we will be using grids to cover the whole space for each for each machine m; do)
bucket and level we need the following lemma: For each j € [r]: T; « BallPart(Pi(]), G()

If any ball partitionings failed, halt and report failure
for each p € P; do
for j € [r] do

Lemma 7. Consider n points over a d-dimensional space, and fix
some parameter € > 0,8 > 0. Define U as the number of grids of balls

used iln tize hybrid partitioning. By setting U = 20((d/r)log(d/r)) . Find path (p) — (o, 017, .. "Ul(ch’p(j)), the path from p
log(~ %g), hybrid partitioning covers the whole space with proba- to the root of T;
bility at least 1 - 6. For i € [logA]: path;(p) « (051), 052), .. .,U}r)), the tuple for

the ith element on p’s path for all T;

path(p) « (pathi(p), pathy(p), ..., pathiga(p), p), the path
from p to the root of T

For standard ball partitioning the number of grids needed to
cover the whole space would be too large. More specifically, for stan-
dard ball partitioning of a d-dimensional space we need 20(dlogd) Let T; be the union of path(p) forall p € P;
grids. Even after reducing the data into O(log n) dimensions, this return T; as a part of the output tree T (implicitly, T is the union of
would result in 20(ognloglogn) — ,O(loglogn) dimensions which all returned T;s)
would be too large considering we have O(n€) space per machine.
Hence the need to use hybrid partitioning.

To do so first we transform the data points from d-dimensional
space to O(log n) dimensional space using our fast Johnson-Lindenstrauss
transform. We fix r = 2/e - loglog n. Then we group the dimen-

sions into r buckets and distribute them among the machines, each
nE

logA

needs log A space per point to store the hierarchy, assuming we

store the path from a vertex to the root.

in the massively parallel setting, this effectively becomes a general
matrix multiplication problem, which does not meet the round and
space complexity goals of many MPC algorithms. Particularly, we
can achieve this either using O(ndk) = O(ndlog n) total space in
a constant number of rounds [31] or using linear space O(nd) in
O(log n) rounds.

machine holding points. This is because the ball partitioning

For each bucket j we generate sets of grids {Gj, Gé, .- 'GljogA}

and distribute them to the corresponding machines that hold points To prove our main result, Theorem 1, we require first applying

from this bucket. Where G{ = {By1,Ba,- - By} is the set of grids the Johnson Lindenstrauss transform to reduce the dimensional-

that cover the space in bucket j in level 2. Each By is a partitioning ity of our data, then we apply our methods from Section 4. The

from a single randomly shifted instance of a ball partition. transform must be applied first because otherwise the number of

Define U as the number of grids used to cover the space in our balls required to partition the entire space with sufficiently high

hybrid partitioning. probability is too large, and they cannot be fit within our total space
requirements.

Lemma 8. Consider n points over a d-dimensional space where
d = O(logn), and a hybrid partitioning withr = 2/e - loglogn
buckets. The space used per machine to store the set of grids is O(n€)
as long as § = Q(1/poly(n)).

Recall that our final results manage to shave off the additional log-
arithmic factor in the total space. Namely, running an O(nd log n)
total space implementation of the Johnson Lindenstrauss transform
would increase our total space. Therefore, we propose a solution

This proves all grids can be stored on each machine, and thus to the dimension-reducing problem in the MPC model based on a
the local computation can proceed in constant rounds to complete more recent iteration of the Johnson Lindenstrauss transform by
Theorem 1. Ailon and Chazelle [2] that uses linear total space.

Consider a dataset of n points in a d-dimensional Euclidean space.

5 MPC FAST JOHNSON-LINDENSTRAUSS The Fast Johnson Lindenstrauss Transform (FJLT), developed by

The Johnson Lindenstrauss transform, which maps any high-dimensional Ailon and Chazelle [2], is a quickly computed transformation that

data into logarithmic dimensions with arbitrarily small distortion maps the input points into a k-dimensional space while preserving
constant, is a foundational method for (potentially) significant re- distances within a (1 + £) factor. Here, k = c£ 2 logn for some
ductions in data dimension in the sequential setting. Unfortunately, constant c.

85

SPAA ’23, June 17-19, 2023, Orlando, FL, USA

They show that the FJLT, ¢(x) = k™! PHDx, for some input x can
be computed relatively quickly. Matrices P, H, and D are designed
as follows:

(1) Pisak x d matrix with P;; = 0 with probability 1 - g, other-
wise it is sampled from the Gaussian distribution N (0,¢~1).
We let q take value:

1 2
og'n. 1))
d

(2) H is a normalized d x d Walsh-Hadamard matrix. In other
words, it is the d-dimensional discrete Fourier transform. In
particular, H; j = d-1/z. (—1)<"_1’j_1> where (i—1,j— 1) is
the bitwise inner product of the binary representations of
i—landj—1.

(3) D is a random diagonal d X d matrix where D; ;
probability 0.5 and D;; = 1 otherwise.

= min

= —1 with

We now propose a method to parallelize this algorithm in the
MPC model as shown in Algorithm 3. We consider the case where
each machine has local space O((nd)¢) for some arbitrary constant
€ € (0,1). The algorithm takes an input A which is a d X n matrix.
To compute PHD(A), we simply apply one matrix at a time. To
compute D(A), since D is diagonal, we can use O(1) rounds and
O(d) total space to generate all D; ;. To multiply D with A, since D
is diagonal, each of the resulting nd entries in DA form a simple bi-
nary multiplication problem. We simply allocate (nd)!~€
to do O((nd)€) computations each. To apply H, we can simply ap-
ply the fast Fourier transform in the MPC model introduced by
Hajiaghayi, Saleh, Seddighin, and Sun [45]. This step takes O(1/¢)
rounds. Finally, we generate P in a similar way to D, by allocating
O((nd)€) entries per machine and randomly generating numbers.
To apply P, we can bound the total number of multiplications by the
results of Ailon and Chazelle, and then distribute additions across
machines iteratively to compute the matrix in O(1/¢) rounds.

machines

Theorem 3. Consider a set of points P = {p1,p2,- - ,pn} C R
Let ¢ : R? — R¥ be Fast Johnson Lindenstrauss Transform with
k = (£ 2logn) for & € (0,0.5). There is an MPC algorithm which
outputs $(p1), p(p2), - - - , ¢(pn) in O(1) rounds. In addition, the total
space of the algorithm is at most O(nd + £~ ?nlog® n) and each ma-
chine holds O((nd)?) local space for an arbitrary constant ¢ € (0, 1).

PROOF. Let A € R9%" be the concatenation of points p1, p2,- - -, pn.
Then, the goal is to compute P - H - D - A. First, we show how to
compute DA (a d X n-dimensional matrix). Clearly we can use
O(1) rounds and O(d) total space to generate the entries on the
diagonal of D. Note that we can easily compute each element
(DA)ij = Dj;A;j. This is a total of nd computations. So we can
do it on (nd)!~€ machines with (nd)€ local space per machine in
O(1) rounds.

Next, we compute H(DA) (a d X n-dimensional matrix). Note
that H is just the d-dimensional DFT. We can then utilize the d-
dimensional MPC FFT algorithm [45] and apply it to each column
of DA. For any € € (0, 1), this requires O (d€) machines, O (d'~€)
memory, and O(1/¢) rounds. Thus, we can compute all columns
of DA in the MPC model using O((nd)?) space per machine and
O((nd)'~%) machines in O(1/¢) rounds.

86

Amirmohsen Ahanchi et al.

Finally, we compute P(HDA) (a k X n-dimensional matrix). Just
as in Ailon and Chazelle, we see that the number of nonzero values,
or |P|, is ~ Binom(dk, q), which means:

E[|P|] =nkq = O (d&21og’(n)/d) = O(log’ (n) /%)

And then by the Markov inequality, we have |P| = O(log>(n)/£?)
with probability at least 0.99. This means we only have O(£~2 log® n)
values in P with probability at least 0.99. For each value in P, we mul-
tiply it by one row of HDA of length n for a total of O(né~? log® n)
computations. Beyond this, some of these values need to be added
to find values in PHDA, but that will not exceed O(né=2log> n).
Thus, these computations can be done in O(1) rounds as long as
the total space is at least Q(n& =2 log® n). Finally, there are at most
d additions required to define a single entry, then we can divide
this into d1=€ sets of additions of size d¢. We can then pack all
these sets of computations of size at most d€ into machines with
memory O(d€). This requires at most O(d'~€) machines. Then we
perform the computations. To find the values for entries that require
n computations, this will require O(1/¢) rounds. That completes

the computation. O
Algorithm 3 FJLT in MPC
Input: A, a matrix of n d-dimensional vectors, and a parameter
£e€(0,0.5)

Output: ¢(A)
for i € [d] in parallel do
Let D;; be 1 or —1 with probabilities 1/2
fori € [d], j € [n] in parallel do
(DA)i,j < DijiAij
Let H(DA) « FFT(DA, ¢)
//IMPC algorithm for fast Fourier transform [45]. Each machine
holds O((nd)?) space.
Let M be the set of multiplications of nonzero entries in P and
entries in HDA
for Assign M to (nd)!~€£~%log® n/d machines in parallel do
Compute multiplication m € M locally.
Let A be the set of additions of m outputs in P(HDA)
while A is nonempty do
for Pack large contiguous chunks of a € A into (nd)€ per
machine in parallel do
Compute a and simplify A
Store results of A in ¢(A) = P(HDA)

REFERENCES

[1] Kook Jin Ahn and Sudipto Guha. 2015. Access to Data and Number of Iterations:
Dual Primal Algorithms for Maximum Matching under Resource Constraints. In
Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms. 202-211.
Nir Ailon and Bernard Chazelle. 2006. Approximate nearest neighbors and the
fast Johnson-Lindenstrauss transform. In Proceedings of the 38th Annual ACM
Symposium on Theory of Computing. 557-563.

Noga Alon, Richard M. Karp, David Peleg, and Douglas B. West. 1995. A Graph-
Theoretic Game and Its Application to the k-Server Problem. SIAM J. Comput.
(1995), 78-100.

Alexandr Andoni. 2009. Nearest Neighbor Search: the Old, the New, and the
Impossible. Ph. D. Dissertation. Massachusetts Institute of Technology, Cambridge,
MA, USA.

Massively Parallel Tree Embeddings for High Dimensional Spaces

&

[10]

(1]

(12]

[13]

[14

[15]

[16]

(18]

[19]

[20

[21

[22]

[23

[24

[25]

[26]

Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev.
2014. Parallel algorithms for geometric graph problems. In Symposium on Theory
of Computing. ACM, 574-583.

Alexandr Andoni, Zhao Song, Clifford Stein, Zhengyu Wang, and Peilin Zhong.
2018. Parallel Graph Connectivity in Log Diameter Rounds. In 59th IEEE Annual
Symposium on Foundations of Computer Science. IEEE Computer Society, 674-685.
Alexandr Andoni, Clifford Stein, and Peilin Zhong. 2019. Log Diameter Rounds
Algorithms for 2-Vertex and 2-Edge Connectivity. In 46th International Colloquium
on Automata, Languages, and Programming. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 14:1-14:16.

Alexandr Andoni, Clifford Stein, and Peilin Zhong. 2020. Parallel approximate
undirected shortest paths via low hop emulators. In Proceedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing. 322-335.

Sanjeev Arora. 1997. Nearly Linear Time Approximation Schemes for Euclidean
TSP and other Geometric Problems. In 38th Annual Symposium on Foundations of
Computer Science. 554-563.

Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab S. Mirrokni,
and CIiff Stein. 2019. Coresets Meet EDCS: Algorithms for Matching and Vertex
Cover on Massive Graphs. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete. 1616-1635.

Sepehr Assadi, Yu Chen, and Sanjeev Khanna. 2019. Sublinear Algorithms for A+1
Vertex Coloring. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete. 767-786.

Sepehr Assadi, Xiaorui Sun, and Omri Weinstein. 2019. Massively Parallel Algo-
rithms for Finding Well-Connected Components in Sparse Graphs. In Proceedings
of the 2019 ACM Symposium on Principles of Distributed. 461-470.

Bahman Bahmani, Ashish Goel, and Kamesh Munagala. 2014. Efficient Primal-
Dual Graph Algorithms for MapReduce. In Algorithms and Models for the Web
Graph - 11th International Workshop, WAW 2014, Beijing, China, December 17-18,
2014, Proceedings (Lecture Notes in Computer Science, Vol. 8882), Anthony Bonato,
Fan Chung Graham, and Pawel Pralat (Eds.). Springer, 59-78.

Yair Bartal. 1996. Probabilistic Approximations of Metric Spaces and Its Algorith-
mic Applications. In 37th Annual Symposium on Foundations of Computer Science.
184-193.

Yair Bartal. 1998. On Approximating Arbitrary Metrices by Tree Metrics. In
Proceedings of the Thirtieth Annual ACM Symposium on the Theory. 161-168.
MohammadHossein Bateni, Soheil Behnezhad, Mahsa Derakhshan, Mohammad-
Taghi Hajiaghayi, Raimondas Kiveris, Silvio Lattanzi, and Vahab S. Mirrokni.
2017. Affinity Clustering: Hierarchical Clustering at Scale. In Advances in Neu-
ral Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems. 6864-6874.

MohammadHossein Bateni, Soheil Behnezhad, Mahsa Derakhshan, Mohammad-
Taghi Hajiaghayi, and Vahab S. Mirrokni. 2018. Brief Announcement: MapReduce
Algorithms for Massive Trees. In 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic
(LIPIcs, Vol. 107). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 162:1-162:4.
https://doi.org/10.4230/LIPIcs ICALP.2018.162

Paul Beame, Paraschos Koutris, and Dan Suciu. 2017. Communication steps for
parallel query processing. Journal of the ACM (JACM) 64, 6 (2017), 1-58.

Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Marina
Knittel, and Hamed Saleh. 2019. Streaming and Massively Parallel Algorithms for
Edge Coloring. In 27th Annual European Symposium on Algorithms. 15:1-15:14.
Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, Vahab
Mirrokni, and Warren Schudy. 2019. Massively parallel computation via remote
memory access. In The 31st ACM Symposium on Parallelism in Algorithms and
Architectures. 59-68.

Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, and Va-
hab S. Mirrokni. 2019. Near-Optimal Massively Parallel Graph Connectivity. In
60th IEEE Annual Symposium on Foundations of Computer Science. 1615-1636.
Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, Vahab S.
Mirrokni, and Warren Schudy. 2020. Parallel Graph Algorithms in Constant
Adaptive Rounds: Theory meets Practice. Proc. VLDB Endow. (2020), 3588-3602.
Soheil Behnezhad, MohammadTaghi Hajiaghayi, and David G. Harris. 2019.
Exponentially Faster Massively Parallel Maximal Matching. In 60th IEEE Annual
Symposium on Foundations of Computer Science. 1637-1649.

Guy E. Blelloch, Anupam Gupta, and Kanat Tangwongsan. 2012. Parallel prob-
abilistic tree embeddings, k-median, and buy-at-bulk network design. In 24th
ACM Symposium on Parallelism in Algorithms and Architectures. 205-213.

Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R.
Henry, Robert Bradshaw, and Nathan Weizenbaum. 2010. FlumeJava: easy, effi-
cient data-parallel pipelines. In Proceedings of the 2010 ACM SIGPLAN Conference
on Programming Language Design and Implementation, Benjamin G. Zorn and
Alexander Aiken (Eds.). 363-375.

Hubert Tsz-Hong Chan, Anupam Gupta, Bruce M. Maggs, and Shuheng Zhou.
2005. On hierarchical routing in doubling metrics. In Proceedings of the Sixteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, Vancouver,
British Columbia, Canada, January 23-25, 2005. SIAM, 762-771. http://dL.acm.
org/citation.cfm?id=1070432.1070540

87

[37

[38

[39

=
2

[41

[42

[43]

'S
ot

'S
&

[52

[53

SPAA ’23, June 17-19, 2023, Orlando, FL, USA

Moses Charikar, Chandra Chekuri, Ashish Goel, Sudipto Guha, and Serge A.
Plotkin. 1998. Approximating a Finite Metric by a Small Number of Tree Metrics.
In 39th Annual Symposium on Foundations of Computer Science. 379-388.

Xi Chen, Rajesh Jayaram, Amit Levi, and Erik Waingarten. 2020. An Improved
Analysis of the Quadtree for High Dimensional EMD. (2020).

Artur Czumaj, Jakub Lacki, Aleksander Madry, Slobodan Mitrovic, Krzysztof
Onak, and Piotr Sankowski. 2019. Round compression for parallel matching
algorithms. SIAM J. Comput. 49, 5 (2019), STOC18-1.

Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (2008), 107-113.

Alessandro Epasto, Mohammad Mahdian, Vahab S. Mirrokni, and Peilin Zhong.
2021. Massively Parallel and Dynamic Algorithms for Minimum Size Clustering.
CoRR abs/2106.02685 (2021). arXiv:2106.02685 https://arxiv.org/abs/2106.02685
Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. 2003. A tight bound on
approximating arbitrary metrics by tree metrics. In Proceedings of the 35th Annual
ACM Symposium on Theory of Computing. 448—455.

Apache Software Foundation. [n.d.]. Hadoop. https://hadoop.apache.org/.
Stephan Friedrichs and Christoph Lenzen. 2018. Parallel metric tree embedding
based on an algebraic view on moore-bellman-ford. Journal of the ACM (JACM)
65, 6 (2018), 1-55.

Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrovic, and
Ronitt Rubinfeld. 2018. Improved Massively Parallel Computation Algorithms
for MIS, Matching, and Vertex Cover. In Proceedings of the 2018 ACM Symposium
on Principles of Distributed. 129-138.

Mohsen Ghaffari, Silvio Lattanzi, and Slobodan Mitrovic. 2019. Improved Par-
allel Algorithms for Density-Based Network Clustering. In Proceedings of the
36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA (Proceedings of Machine Learning Research, Vol. 97),
Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 2201-2210.
Mohsen Ghaffari and Jara Uitto. 2019. Sparsifying distributed algorithms with
ramifications in massively parallel computation and centralized local computa-
tion. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms. SIAM, 1636-1653.

Michael T Goodrich, Nodari Sitchinava, and Qin Zhang. 2011. Sorting, searching,
and simulation in the mapreduce framework. In International Symposium on
Algorithms and Computation. Springer, 374-383.

Anupam Gupta, Mohammad Taghi Hajiaghayi, and Harald Racke. 2006. Oblivious
network design. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006.
ACM Press, 970-979. http://dl.acm.org/citation.cfm?id=1109557.1109665
Anupam Gupta, Robert Krauthgamer, and James R. Lee. 2003. Bounded Geome-
tries, Fractals, and Low-Distortion Embeddings. In 44th Symposium on Founda-
tions of Computer Science (FOCS 2003), 11-14 October 2003, Cambridge, MA, USA,
Proceedings. IEEE Computer Society, 534-543.

Anupam Gupta, Ilan Newman, Yuri Rabinovich, and Alistair Sinclair. 2004. Cuts,
Trees and 1;-Embeddings of Graphs. Comb. 24, 2 (2004), 233-269. https://doi.
0rg/10.1007/500493-004-0015-x

MohammadTaghi Hajiaghayi and Marina Knittel. 2020. Matching Affinity Clus-
tering: Improved Hierarchical Clustering at Scale with Guarantees. In Proceedings
of the 19th International Conference on Autonomous Agents. 1864-1866.
MohammadTaghi Hajiaghayi, Marina Knittel, Jan Olkowski, and Hamed Saleh.
2022. Adaptive Massively Parallel Algorithms for Cut Problems. In SPAA ’22: 34th
ACM Symposium on Parallelism in Algorithms and Architectures, Kunal Agrawal
and I-Ting Angelina Lee (Eds.). ACM, 23-33.

MohammadTaghi Hajiaghayi, Marina Knittel, Hamed Saleh, and Hsin-Hao Su.
2022. Adaptive Massively Parallel Constant-Round Tree Contraction. , 83:1-
83:23 pages.

MohammadTaghi Hajiaghayi, Hamed Saleh, Saeed Seddighin, and Xiaorui Sun.
2021. Massively Parallel Algorithms for String Matching with Wildcards. (2021).
William Johnson and Joram Lindenstrauss. 1984. Extensions of Lipschitz maps
into a Hilbert space. Contemp. Math. (1984), 189-206.

Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. 2010. A model of com-
putation for MapReduce. In Proceedings of the twenty-first annual ACM-SIAM
symposium on Discrete Algorithms. SIAM, 938-948.

R. Karp. 1989. A 2k-competitive algorithm for the circle.

Goran Konjevod, R. Ravi, and F. Sibel Salman. 2001. On approximating planar
metrics by tree metrics. Inf. Process. Lett. (2001), 213-219.

James R Lee and Assaf Naor. 2004. Embedding the diamond graph in L p and
dimension reduction in L 1. Geometric & Functional Analysis GAFA 14, 4 (2004),
745-747.

Assaf Naor and Gideon Schechtman. 2006. Planar Earthmover is not in L_1. In
47th Annual IEEE Symposium on Foundations of Computer Science. IEEE Computer
Society, 655-666.

Yuri Rabinovich and Ran Raz. 1998. Lower Bounds on the Distortion of Embedding
Finite Metric Spaces in Graphs. Discret. Comput. Geom. 19, 1 (1998), 79-94.
https://doi.org/10.1007/PL00009336

Satish Rao. 1999. Small Distortion and Volume Preserving Embeddings for Planar
and Euclidean Metrics. In Proceedings of the Fifteenth Annual Symposium on

SPAA ’23, June 17-19, 2023, Orlando, FL, USA Amirmohsen Ahanchi et al.

Computational Geometry (Miami Beach, Florida, USA) (SCG ’99). Association for [56] Grigory Yaroslavtsev and Adithya Vadapalli. 2018. Massively Parallel Algorithms
Computing Machinery, New York, NY, USA, 300-306. https://doi.org/10.1145/ and Hardness for Single-Linkage Clustering under £, Distances. In Proceedings
304893.304983 of the 35th International Conference on Machine Learning. 5596—-5605.

[54] Tim Roughgarden, Sergei Vassilvitskii, and Joshua R. Wang. 2016. Shuffles and [57] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust,
Circuits: (On Lower Bounds for Modern Parallel Computation). In Proceedings of Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
the 28th ACM Symposium on Parallelism in Algorithms. 1-12. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. 2016. Apache

[55] Tom White. 2012. Hadoop: The definitive guide. " O’Reilly Media, Inc.". Spark: a unified engine for big data processing. Commun. ACM (2016), 56-65.

88

	Abstract
	1 Introduction
	1.1 Massively Parallel Computation
	1.2 Grid Partitioning Methods for Tree Metrics
	1.3 Our Contributions

	2 Preliminaries
	3 Hybrid Partitioning and its Distortion
	4 Tree Embedding in MPC
	5 MPC Fast Johnson-Lindenstrauss
	References

