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ABSTRACT

Efficient computation on massive high-dimensional data greatly

benefits from efficient embedding techniques into simpler metrics.

Perhaps the most celebrated technique is the dimension reduction

à-la Johnson and Lindenstrauss [46]. Another important method

embeds the data into a tree metric space, first efficiently achieved

by Bartal [14]. Both of these algorithmic tools are among the most

general theorems with numerous applications.

In this paper, we study these two embedding methods in the Mas-

sively Parallel Computation (MPC) model. We develop a new hybrid

partitioning algorithm which generalizes both random shifted grid

and ball partitioning methods for generating tree embeddings. This

leads to an 𝑂 (1)-round randomized MPC algorithm for embed-

ding high-dimensional data into a tree while approximating the

distance between any two points within a factor of𝑂 (log1.5 𝑛) (and
thus distortion 𝑂 (log1.5 𝑛)) in expectation as long as the aspect

ratio is 𝑂 (poly(𝑛)). This Euclidean result beats the lower bound

of Ω(log𝑛) MPC rounds for tree embeddings of general metric

spaces and can extend to a number of problems, including densest

ball, minimum spanning tree, and Earth-Mover distance. Along the

way, we implement and use Ailon and Chazelle’s Fast Johnson Lin-

denstrauss Transform [2] with sublinear memory and 𝑂 (1) MPC

rounds, which is of its own interest.
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1 INTRODUCTION

Massive data-driven computation benefits greatly from embed-

ding finite metric spaces into simpler spaces. Specifically, high-

dimensional massive datasets, while often highly practical, are

frequently too large to store on commodity hardware. Therefore,

there is much interest in finding efficient methods for transforming

this data into low-dimensional spaces. For instance, one of the most

famous algorithms in high-dimensional geometry is the Johnson-

Lindenstrauss transform [46], which embeds 𝑛 points in the Eu-

clidean space with any dimension into the 𝑂 (log𝑛)-dimensional

Euclidean space. Another branch of work solving this problem in-

volves embedding metric spaces into tree metrics. A tree metric

over 𝑛 points is represented by an 𝑛-vertex tree, and therefore is

also highly compact, requiring only 𝑂 (𝑛) space. The main result

of this paper is the first non-trivial massively parallel constant

round extension of Bartal [14]’s famous probabilistic tree metric

embeddings of geometric datasets. We additionally provide a space-

efficient massively parallel adaptation of the Johnson-Lindenstrauss

transform.

Rabinovich and Raz [52] showed that deterministically embed-

ding a simple 𝑛-cycle into a tree metric requires Ω(𝑛) distortion,
or maximum proportional deviation between embedded and true

distance. To circumvent this, Karp [48] leverages randomization

to approximate a cycle by a path with low distortion. Alon, Karp,

Peleg, and West [3] were the the first to probabilistically embed

arbitrary metric spaces into trees, however they required up to

2𝑂 (
√
log𝑛 log log𝑛) distortion to do so. Bartal’s work greatly sur-

passed this, achieving an𝑂 (log2 𝑛)-approximation. A novel idea of

Bartal’s work in comparison with previous research is that it defines

and utilizes probabilistic partitions, which ensures that two close

points are more likely to be grouped together in the partition. By

applying a hierarchy of probabilistic partitions, Bartal’s algorithm

embeds the input metric space into the so-called hierarchically

well-separated tree (HST).

Tree embedding with HSTs has been improved a number of

times since Bartal’s inaugural work [15, 27, 49], culminating in the

work of Fakcharoenphol, Rao, and Talwar [32], who improved the

approximation factor to𝑂 (log𝑛), notably yielding the first polylog-
arithmic approximation for the 𝑘-median problem. Since Ω(log𝑛)
is also the lower bound [14], this result sets a good foundation for

expanding tree embeddings in other directions [26, 39, 40].

Metric tree embeddings have already been studied in PRAM [8,

24, 34], a classic model of parallel computing. Given a general
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metric space, Blelloch, Gupta, and Tangwongsan [24] designed a

parallel 𝑂 (log𝑛)-approximate metric tree embedding algorithm

using 𝑂 (𝑛2 log𝑛) work (i.e., number of operations) and 𝑂 (log2 𝑛)
depth (i.e., parallel time). Friedrichs and Lenzen [34] considered

the shortest path metric given by a graph (i.e., graph metric) and

gave a parallel 𝑂 (poly(log𝑛))-approximate metric tree embedding

algorithm using𝑂 (𝑚 +𝑛1+𝜀 ) work and𝑂 (log𝑛) depth where 𝜀 > 0

is an arbitrary constant and𝑚 is the number of edges of the input

graph. Andoni, Stein, and Zhong [8] improved the work of [34] to

(𝑚 + 𝑛) · poly(log𝑛) though with a larger distortion, a high degree

poly(log𝑛).
Due to the success of many modern massively parallel systems

such as MapReduce [30], Hadoop [55], and Spark [57], a more re-

fined model of parallel computing emerged Ð Massively Parallel

Computation (MPC) [18, 38, 47]Ð and has led to the development

of new parallel algorithms in recent years. In this model, data is dis-

tributed to multiple machines where each machine has a sublinear

amount of memory. We alternate between rounds of computation

and rounds of communication where each machine can only send

messages with size bounded by its local memory in a single round.

Since communication is always the bottleneck of the model, the

goal in MPC is to design an algorithm with few rounds (parallel

time). We know that 𝑡-depth PRAM algorithms can be simulated

in MPC in 𝑂 (𝑡) rounds [54]. Thus, in MPC, the simulation of any

above mentioned PRAM algorithm would require Ω(log𝑛) paral-
lel time. On the other hand, an 𝑜 (log𝑛)-round MPC algorithm is

always more desired in practice and faster MPC algorithms exist

for many problems (see e.g., [6, 7, 29, 37]).

Thus emerges the following natural question that we study in

this paper:

Can we design an 𝑜 (log𝑛)-round MPC algorithm for metric tree

embedding?

The answer is no for general input metric spaces (e.g., the graph

metric) with polylogarithmic distortion unless the 1-vs-2Cycle Con-

jecture [56] is false. In geometric space, Arora [9]’s grid partitioning

solves this in 𝑂 (1) MPC rounds with 𝑂 (log2 𝑛) distortion.
We are the first to break this distortion barrier. On 𝑛 points

in R𝑑 with aspect ratio poly(𝑛), there exists an 𝑂 (1)-round MPC

algorithm for 𝑂 (log1.5 𝑛)-approximate metric tree embedding.12

This yields 𝑂 (1)-round 𝑂 (log1.5 𝑛)-approximate MPC algorithms

for Euclidean: minimum spanning tree, Earth-Mover distance, and

densest ball.

We propose a new hierarchical probabilistic partitioning method

to embed data in R𝑑 into a tree with distortion 𝑂 (log1.5 𝑛) using
constant MPC rounds and low memory. Generally speaking, these

methods iteratively partition the data and then recurse on each

part in the partition until singletons or empty sets are reached.

This yields a tree whose edges we weight and whose leaf set is the

dataset. Its tree metric defines pairwise embedded distances. Our

algorithm, hybrid partitioning, can be seen as a generalization of

two existing partitioning methods: Arora [9]’s grid partitioning

and Charikar et al. [27]’s ball partitioning.

1The aspect ratio of a point set is the ratio between the largest and the smallest
interpoint distance.
2𝑂 (𝑓 (𝑛) ) denotes𝑂 (𝑓 (𝑛) · polylog(𝑓 (𝑛) ) ) .

The main novelty of our methods is a hybridization of the two

methods at each level of partitioning. Specifically, to partition the

data, we group dimensions into 𝑟 buckets, executing a ball partition-

ing on each bucket, and combining them with grid partitioning-like

methods. If we set 𝑟 = 1, all dimensions are in one bucket so the al-

gorithm simply ball partitions the data. If 𝑟 = 𝑑 , the ball partitioning

step simplifies greatly, and we end up effectively grid partitioning

all points.

Our algorithm illustrates the trade-offs between the two meth-

ods in the parallel setting: grid partitioning methods reduce local

memory and ball partitioning methods improve distortion. It turns

out the key in our methods is to guarantee that an entire partition

of the data can be stored in local memory. This becomes compli-

cated using ball partitioning, since it requires a large number of

attempts (and therefore, entire grids to store) to encode a partition.

Our hybridization finds a nice way to reduce this space by only

running ball partitions on subsets of dimensions.

Even with our space-reducing hybridization, a preprocessing

application of the Johnson-Lindenstrauss transform to the input

data is required to reduce dimensionality. Therefore, we include, as

a result of independent and dependent interest, an efficient MPC

implementation of the Fast Johnson-Lindenstrauss transform (The-

orem 3). It achieves an𝑂 (log𝑛)-distortion embedding in𝑂 (1) MPC

rounds with low memory. The use of the fast transform over the

original in particular allows for an important reduction in the total

space for high-dimensional data.

1.1 Massively Parallel Computation

We work in the Massively Parallel Computation (MPC) model [18,

47]. MPC is an abstraction of MapReduce [30] that models program-

ming frameworks such as Hadoop [33], Spark [57], and Flume [25].

MapReduce is used across industry, and is known for its fault tol-

erance and compatibility with commodity hardware. On graphs

specifically, MPC has been used in many applications such as clus-

tering [16, 42, 56] and Earth-Mover distance [5], as well as the-

oretical problems like connectivity [6, 7, 12, 21], matching and

vertex cover [1, 10, 23, 35], minimum spanning tree [5], and col-

oring [11, 19]. Recent research has also explored adaptations of

MPC [20, 22, 43, 44, 54]. MPC is highly practical and for this reason,

we study it in this work.

In MPC, the input is distributed across multiple machines. The

computation proceeds in rounds, wherein each machine executes

a local polynomial-time computation. At the end of the round,

machines may send messages to and receive messages from any

other machines. The total size of messages sent or received by a

machine in a round is bounded by its local memory. MPC algorithm

efficiency is measured by: the number of rounds (parallel time), the

local memory, and the total space (number of machines times the

local memory).

In this work, we consider MPC algorithms in the geometric con-

text, where the input data contains 𝑛 points in R𝑑 , represented

by 𝑑-dimensional vectors. We use the most restrictive version of

MPC where local space per machine is 𝑂 ((𝑛𝑑)𝜀 ) for any constant

𝜀 ∈ (0, 1)Ðtermed the łfully scalablež regime [6, 7]. All our algo-

rithms are fully scalable, take𝑂 (1) rounds, and use total space near
linear in the input size 𝑛 · 𝑑 .
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1.2 Grid Partitioning Methods for Tree Metrics

We now describe two grid partitioning methods that we will extend

in our work: random shifted grids and ball partitioning.

1.2.1 Random Shifted Grids. The first is the standard random

shifted grid introduced by Arora [9]. Consider a geometric space

in 𝑑 dimensions. A random shifted grid is just a standard grid with

cell width𝑤 whose origin is translated by some vector (𝑥1, . . . , 𝑥𝑑 )
where 𝑥𝑖 is drawn uniformly at random from [0,𝑤]. Equivalently,
each cell is translated by the vector (𝑥1, . . . , 𝑥𝑑 ). A visualization

can be seen in Figure 1a.

Definition 1. Given a cell width parameter 𝑤 , consider a grid 𝐺

of cell length𝑤 shifted randomly by a vector sampled uniformly at

random from [0,𝑤]𝑑 . Place each point 𝑝 into a partition representing

the cell that contains it. This partitioning is a random shifted grid

partitioning with scale𝑤 .

We now discuss how to create a hierarchical partitioning from

these random shifted grids. At this point, we will often refer to a

level, which refers to a flat partitioning in a hierarchy, or alterna-

tively, the recursive level in the hierarchical partitioning algorithm,

starting with zero at the top. Let Δ be the aspect ratio (the maximum

ratio between the maximum and minimum pairwise distances), B
be a bounding box over our data (which we can say has width Δ),

and ℓ be a parameter defining how many cells our grid should have,

and howmuch it should increase at each level. We start by sampling

a random shifted grid over B with cell width𝑤 = Δ/ℓ . Each point

then falls into a cell in the grid. We create a partitioning of data

where each partition corresponds to a non-empty cell such that it

contains all points contained within the cell. We then recurse to

make a hierarchical structure. The idea is to create a more refined

grid (i.e., a grid with a smaller cell width) at each consecutive step.

Generally, at the 𝑖th level in the hierarchy, partition each partition

in the previous level using a randomly shifted grid of width Δ/ℓ𝑖 .
This then yields a new partitioning over our data, where partitions

are more numerous and smaller, which we add to the hierarchy.

For any partition, we stop partitioning as soon as it has one or no

points.

The hierarchy defined by the random shifted grid partitioning

procedure can be simply viewed as a tree. Let B be the root vertex.

Then for each cell we create, add a vertex to the tree with parent

vertex corresponding to the cell’s parent cell (i.e., the one which

contains a superset of its points). Clearly this is a tree, and the leaves

will either be empty (in that case, we can simply not create such a

node) or they will represent a single datapoint. Therefore, we have

created a tree structure to represent the data. Consider labeling

each tree edge with weight 𝑤
√
𝑑 , where 𝑤 was the cell width on

that level. Then, the distance between two points is defined as the

weight of the shortest path between the two points.

Grid partitioning is a nice, simple, classic technique that has

inspired many results, including ball partitioning and our hybrid

partitioning. It would be nice to simply use grid partitioning out-of-

the-box, and it is not too hard to see that this can be implemented

efficiently in MPC in𝑂 (1) rounds with no significant local and total
space issues. However, grid partitionings only achieve an𝑂 (log2 𝑛)
distortion. We can do better.

1.2.2 Ball Partitioning. The ball parititioning method, depicted in

Figure 1b, was introduced by [27] for the purpose of derandomizing

Bartal’s algorithm. In spirit, it works quite similarly to random

shifted grids, however we create partitions based off a grid of balls

instead of the cells in a grid. In this method, we have two width

parameters: the cell width and the ball radius. For simplicity of

understanding, say that the ball radius is 𝑤 and the cell width is

ℓ = 4𝑤 .

To create a single partitioning, first sample a random shifted

grid of cell width 4𝑤 over the space. At each grid intersection

point in our bounding box, create a ball of radius𝑤 . Note here that

it is necessary that the cell width is more than twice as large as

the ball radius, otherwise the balls will overlap and a point may

fall into two balls. Even if the balls do not overlap, the resulting

partitioning will not necessarily partition the grid entirely, as some

points may fall outside of all balls. To account for this, we simply

continue to sample random shifted grids and create partitions for

each grid, removing covered points as we go. We do this until all

points are covered (or stop at some point and know that we succeed

at covering all points with some probability).

Definition 2. Given a cell length parameter ℓ and radius 𝑤 with

𝑤 =
1
4 ℓ , consider a sequence of grids𝐺1,𝐺2, . . . of cell length ℓ shifted

randomly by vectors 𝑠1, 𝑠2, . . . sampled uniformly at random from

[0, ℓ]𝑑 . Place a ball of radius𝑤 at each grid point for all 𝐺1,𝐺2, . . ..

Place each point 𝑝 into the first ball that contains it according to the

grid ordering. This partitioning is a ball partitioning with scale𝑤

(or scale ℓ).

The described method defines a partitioning at a single layer in

the hierarchy. To create an entire hierarchy, we use the exact same

strategy employed by the random shifted grids method, but instead

creating our partitionings at each level using the ball partition.

Ball partitionings, while slightly more complicated, achieve a

much nicer 𝑂 (log1.5 𝑛) distortion. The issue with this method is

that it requires too much space to implement efficiently in MPC.

Namely, we need to generate a large number of grids in order to

cover the entire space, which will be exponential in 𝑑 . Even though

we reduce𝑑 to𝑂 (log𝑛) using the Johnson-Lindenstrauss transform,

this dependency is still too large. We later show in Lemma 7 how

to reduce this dependency by adding more buckets of dimensions.

1.3 Our Contributions

We propose fully scalable, constant-round MPC algorithms for

embeddings of geometric data in the MPC model. The set of points

𝑃 ⊂ R𝑑 is encoded as a set of 𝑑-dimensional vectors (and therefore

requires𝑂 (𝑛𝑑) total space) and is assumed to have a bounded aspect

ratio. Without loss of generality, we regard the coordinates of points

as integers from [Δ] = {1, 2, · · · ,Δ}. For two points 𝑥,𝑦 ∈ R𝑑 , we
use ∥𝑥−𝑦∥2 to denote their Euclidean distance. Our goal is to output
a weighted tree containing all points in 𝑃 such that 𝑑𝑖𝑠𝑡𝑇 (𝑝, 𝑞), the
total length of the path from 𝑝 to 𝑞 on𝑇 (i.e., the tree metric on𝑇 ), is

close to ∥𝑝 − 𝑞∥2. Note that since the input size is𝑂 (𝑛𝑑),𝑂 ((𝑛𝑑)𝜖 )
local space is considered fully scalable.

Our main result is the first fully scalable constant round MPC

algorithm to break the 𝑂 (log2 𝑛) expected distortion (i.e., the mul-

tiplicative deviation of E𝑇 [𝑑𝑖𝑠𝑡𝑇 (𝑝, 𝑞)] from | |𝑝 − 𝑞 | |2) implied by

Arora [9]’s grid partitioning. To our knowledge, other than the
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(a) Grid partitioning, 𝑤 = 1. (b) Ball partitioning, 𝑤 = 1/4. (c) Hybrid partitioning, 𝑤 = 1/4.

Figure 1: We depict one level (and one sample) of each discussed partitioning method. In grid partitioning (1a), we partition the

grid into hypercubic cells of width 1 shifted by a random vector. In ball partitioning (1b), we place a ball of radius 1/4 at each
intersection of grid boundaries. Note that one instance of this placement is not sufficient to partition an entire space, as some

parts are not covered by balls. Thus, we need to repeatedly draw randomly shifted grids and place balls at the intersections

until every point in the space is covered by a ball. In hybrid partitioning (1c) with 𝑟 = 2, we run a ball partitioning with ball

radius 1/4 on buckets of dimensions. If the 𝑧 axis is sticking out towards the reader, then this involves two buckets: {𝑥,𝑦} and
{𝑧}. We do a ball partitioning of the points projected onto the 𝑥𝑦-plane and the 𝑧-axis independently, and then intersect them to

get a partitioning. Since partitions in the 𝑥𝑦 plane are circles and partitions on the 𝑧 axis are intervals, taking their intersection

in 3-dimensional space results in cylindrical-shaped partitions.

work of Arora, this is the only constant-round MPC algorithm for

tree embeddings of high-dimensional data. Note that the success

probability 1 − 1/poly(𝑛) holds for any polynomial function in 𝑛.

Theorem 1. Consider a set of 𝑛 points 𝑃 ⊆ [Δ]𝑑 for Δ ∈ Z≥1.
There is an𝑂 (1)-round randomized MPC algorithm which computes a

weighted spanning tree𝑇 over 𝑃 when it succeeds, such that ∀𝑝, 𝑞 ∈ 𝑃 ,
(1) 𝑑𝑖𝑠𝑡𝑇 (𝑝, 𝑞) ≥ ∥𝑝 − 𝑞∥2,
(2) E𝑇 [𝑑𝑖𝑠𝑡𝑇 (𝑝, 𝑞)] ≤ 𝑂 (

√︁
log𝑛 · logΔ ·

√︁
log log𝑛) · ∥𝑝 − 𝑞∥2.

The success probability is at least 1 − 1/poly(𝑛). The algorithm uses

𝑂 (𝑛 ·𝑑 +𝑛 log𝑛 ·
(
logΔ · log log𝑛 +min(𝑑, log2 𝑛)

)
) total space and

each machine holds 𝑂 ((𝑛𝑑)𝜀 ) local space for an arbitrary constant

𝜀 ∈ (0, 1). If the algorithm fails, it reports failure.

The algorithm that achieves this result has two parts. The first is

an efficient implementation of the Fast Johnson Lindenstrauss trans-

form, a famous technique that reduces any high dimensional space

into at most𝑂 (log𝑛) dimensions. The second is a novel hybrid par-

titioning algorithm which combines Arora’s random shifted grid

partitioning [9] and Charikar et al.’s ball partitioning [27] methods.

On 𝑂 (log𝑛)-dimensional data, this can be efficiently implemented

in MPC. Together, these yield our main result.

This result stands in contrast to the results for general shortest-

path metric of graphs. Conditioning on the 1-vs-2Cycle Conjec-

ture [56] (which postulates that distinguishing between a graph

that is one𝑛-cycle or two disjoint𝑛/2-cycles requires Ω(log𝑛)MPC

rounds), any fully scalable MPC algorithm for general graph con-

nectivity needs Ω(log𝑛) rounds. If a graph is disconnected, then

there are some 𝑝, 𝑞 ∈ 𝑃 that are infinitely far apart. Any multi-

plicative approximation of the shortest path distance between 𝑝

and 𝑞 by a fully scalable MPC algorithm would approximate that

distance as infinite, thus identifying the graph as disconnected.

It therefore requires Ω(log𝑛) rounds. This means that there is

no multiplicative-approximate 𝑜 (log𝑛)-round fully scalable MPC

metric tree embedding algorithm for the graph metric under the

1-vs-2Cycle Conjecture [56]. While we do not break this important

barrier, our results show that the 1-vs-2Cycle Conjecture implies an

infinite approximation gap for sublogarithmic MPC round shortest

path distance in metric and geometric graphs.

1.3.1 Methods: Hybrid Partitioning. To achieve our result, we intro-

duce the notion of hybrid partitioning, which combines two different

geometric partitioning methods. Both partitioning methods are il-

lustrated in Figure 1. The first is the standard random shifted grid

introduced by Arora [9], where the data is partitioned by the cells

of a grid, and the origin of the grid is offset by a random vector.

The second is the randomized ball partitioning method, where the

same random grid is used but instead of partitioning into the grid

cells, balls of radius 1/4 the width of the cells are placed at each

line intersection [27]. These define partitions. This is repeated until

each point is covered.

The goal of a hybrid partitioning is to create an intermediate

method which combines strategies from both partitioning algo-

rithms. When parameterized to one extreme, hybrid partitioning is

equivalent to grid partitioning. At the other extreme, it is equivalent

to ball partitioning. We define hybrid partitioning with parameters

𝑤, ℓ ≤ Δ and 𝑟 ≤ 𝑑 , where ℓ and𝑤 determine the scale of the parti-

tions (similarly to ball partitioning) and 𝑟 controls how to hybridize

grid and ball partitioning. The following formal definition defines

a flat partitioning of the space (and the data). This can be made

hierarchical by recursing on each partition. The resulting hierarchy

is represented by a weighted tree: our embedding.

Definition 3. In a 𝑑-dimensional space, consider bucketing all 𝑑

dimensions into 𝑟 buckets {{1, . . . , 𝑑/𝑟 }, {𝑑/𝑟 +1, . . . , 2𝑑/𝑟 }, . . . {𝑑 −
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𝑑/𝑟 +1, . . . , 𝑑}} for parameter 𝑟 ≤ 𝑑 . Let ℓ be a scaling parameter and

𝑤 =
1
4 ℓ .

3 For an arbitrary point 𝑝 ∈ R𝑑 , let 𝑝 (𝑖 ) ∈ R𝑑/𝑟 be obtained
from restricting (projecting) 𝑝 on the dimensions in bucket 𝑖 . For each

bucket 1 ≤ 𝑖 ≤ 𝑟 , run a ball partitioning on 𝑃 (𝑖 ) = {𝑝 (𝑖 ) : 𝑝 ∈ 𝑃}
with parameters𝑤 and ℓ . If a partitioning of R𝑑 satisfies that 𝑝 and 𝑞

are in the same partition if and only if they are in the same partition

for all buckets, we call it an 𝑟 -hybrid partitioning with scale𝑤 (or

scale ℓ).

An illustration of hybrid partitioning on R3 can be seen in Fig-

ure 1c. Abstracting away the specific functionality of the algorithm,

we can see the similarities between ball and grid partitioning, and

how hybrid partitioning is an intermediate strategy. In this example,

𝑟 = 2. If 𝑟 = 3, hybrid partitioning must partition the space into

cubes. If 𝑟 = 1, it must partition the space into spheres.

We start with a sequential algorithm which is described in Sec-

tion 3. Later, in Section 4, we will show how this algorithm can be

implemented fully scalably in the MPC model, which results in our

Theorem 1. We show that the sequential algorithm achieves the

following guarantees:

Theorem 2. Consider a set of 𝑛 points 𝑃 ⊆ [Δ]𝑑 for Δ ∈ Z≥1
and a parameter 𝑟 ∈ [𝑑]. Algorithm 1 computes a weighted span-

ning tree 𝑇 over 𝑃 such that ∀𝑝, 𝑞 ∈ 𝑃 , ∥𝑝 − 𝑞∥2 ≤ 𝑑𝑖𝑠𝑡𝑇 (𝑝, 𝑞) and
E𝑇 [𝑑𝑖𝑠𝑡𝑇 (𝑝, 𝑞)] ≤ 𝑂 (

√
𝑑 · 𝑟 · logΔ) · ∥𝑝 − 𝑞∥2.

We now describe our sequential algorithm for hybrid partition-

ing. Without loss of generality, we suppose 𝑟 divides 𝑑 . We start by

grouping the dimensions into 𝑟 buckets each containing 𝑑/𝑟 dimen-

sions. For each bucket, we project the data points into the space

defined by these dimensions and then we run a ball partitioning (see

Section 1.2.2 for a detailed description) with scale parameter Θ(𝑤),
meaning that the ball radius is 𝑤 . Then each point is associated

with one partition for each bucket. To join the buckets, we simply

take the intersection of partitions over all buckets. For instance,

two points 𝑝 and 𝑞 are in the same final partition under the hybrid

partitioning if they are in the same partition obtained by the ball

partitioning for every bucket.

To compute a tree embedding, we iteratively call the hybrid par-

titioning. At the beginning,𝑤 = Δ/2. Once we obtain the partitions

from the hybrid partitioning, we reduce the scale parameter𝑤 by a

factor of 2 and recursively apply the hybrid partitioning on each

partition. This yields a hierarchy whose root is the partition of all

data points, and leaves represent a partitioning into singletons. As

we move down the hierarchy, we connect each child node to its

parent node with a weight proportional to𝑤 · √𝑟 , where𝑤 is the

scale parameter of the recursive level, and we show that𝑤 · √𝑟 is
an upper bound of the diameter of a partition in the current level.

Finally, we obtain a weighted tree. We refer readers to Section 3 for

more details.

To see why this algorithm generalizes grid and ball partitioning,

we consider extreme values of 𝑟 . When 𝑟 = 1, we have a single

bucket. Clearly, then, our partitioning algorithm just executes the

ball partitioning algorithm. When 𝑟 = 𝑑 , we partition each dimen-

sion separately. Therefore, the shapes of the intersections of all

partitions end up being hypercubes. In our implementation, we

3Without loss of generality, we assume 𝑑 is divisible by 𝑟 . Otherwise, we can concate-
nate 0s to each point to increase 𝑑 to 𝑑 ′ by a factor at most 2 and 𝑑 ′ mod 𝑟 = 0.

let the ball radius be 𝑤 and the cell length be 4𝑤 , which means

there is space between the hypercubes, unlike grid partitioning.

However, if we instead let the ball radius be𝑤/2, we eliminate all

the uncovered space for 𝑟 = 𝑑 , and our algorithm becomes equiv-

alent to grid partitioning. Therefore, this is a hybridized version

of the two partitioning methods. This algorithm also, notably, is

implementable in the MPC model.

An interesting property of our hybrid partitioning is that we

can find a bound on the cutting probability of two points (i.e., the

probability that two points are assigned to different partitions) that

is independent of 𝑟 . This means that we can ensure some probability

that two points are not separated at some level in the hierarchy

regardless of the selection of 𝑟 . Our bound for the diameter of

partitions, however, is dependent on 𝑟 . These two bounds are as

follows. Note that the separation probability bound is only useful

when𝑤 >

√
𝑑 | |𝑝 − 𝑞 | |2. Since𝑤 starts as Δ, this is true for at least

one pair of points (though in most cases, many pairs) in the initial

stages of the algorithm.

Lemma 1. Consider a hybrid partitioning with parameters𝑤 ∈ R>0
and 𝑟 ≤ 𝑑 in the 𝑑-dimensional Euclidean space. For any two points

𝑝, 𝑞 ∈ R𝑑 , the probability that 𝑝 and 𝑞 are assigned to different

partitions is at most 𝑂
(√

𝑑 · ∥𝑝−𝑞 ∥2𝑤

)
. If 𝑝, 𝑞 ∈ R𝑑 are assigned to

the same partition, ∥𝑝 − 𝑞∥2 ≤ 𝑂 (√𝑟 ·𝑤).
1.3.2 Methods: Johnson Lindenstrauss in MPC. In addition to our

metric tree embedding result, we devise an efficient MPC imple-

mentation of the Fast Johnson-Lindenstrauss Transform (FJLT) [2].

The FJLT utilizes sparse projections and the randomized Fourier

transform to improve upon the standard Johnson-Lindenstrauss

transform [46]. It reduces the dimension of data points to 𝑂 (log𝑛)
with distortion at most (1 ± 𝜉) for any 𝜉 > 0. The guarantee of our

algorithm is the following, beating previous work in terms of total

space by a factor of log𝑛/𝜉2:
Theorem 3. Consider a set of points 𝑃 = {𝑝1, 𝑝2, · · · , 𝑝𝑛} ⊂ R𝑑 .
Let 𝜙 : R𝑑 → R𝑘 be Fast Johnson Lindenstrauss Transform with

𝑘 = Θ(𝜉−2 log𝑛) for 𝜉 ∈ (0, 0.5). There is an MPC algorithm which

outputs𝜙 (𝑝1), 𝜙 (𝑝2), · · · , 𝜙 (𝑝𝑛) in𝑂 (1) rounds. In addition, the total
space of the algorithm is at most 𝑂 (𝑛𝑑 + 𝜉−2𝑛 log3 𝑛) and each ma-

chine holds 𝑂 ((𝑛𝑑)𝜀 ) local space for an arbitrary constant 𝜀 ∈ (0, 1).
Details on the implementation and proofs can be found in Sec-

tion 5. Along with being a separate interesting result in its own

right, the ability to execute the transform in MPC is necessary for

our main result. If we were to omit the transform as the first step

before the hybrid partitioning, the hybrid partitioning would work

on a potentially 𝑛-dimensional dataset. However, as we will see in

the analysis for the MPC implementation of hybrid partitioning in

Section 4, this would require an intractable computation. Specifi-

cally, the number of łballsž (i.e., partitions) at each partitioning is

required to be exponential in 𝑑 in order to cover the whole space

with high probability. Since we must store the entire partitioning,

potentially, this would make the total space exponential in 𝑛, which

is quite excessive in MPC. However, we show that the dimensional-

ity reduction of the Johnson Lindenstrauss transform is sufficient

to yield an efficient MPC implementation.

We briefly note that the fast transform, as opposed to the original

method, yields a more efficient MPC algorithm on high-dimensional
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data. Specifically, the standard transform would require𝑂 (𝑛𝑑 log𝑛)
total space. However, if 𝑑 = 𝜔 (log2 𝑛), the rest of our algorithm
(along with the fast transformation) achieves about 𝑂 (𝑛𝑑) total
space. Therefore, we are able to achieve a total space reduction

that is proportional to log𝑛 using the fast transform. In large-scale

models such as MPC, even careful improvements like this can yield

significant gains.

1.3.3 Applications. Both our metric tree embedding and fast John-

son Lindenstrauss results are useful for creating compact represen-

tations of high-dimensional geometric spaces. In fact, Theorem 1

is obtained by running the result from Theorem 3 to reduce the

dimension of the data with constant distortion and then an MPC

implementation of Algorithm 1 with 𝑟 = 𝑂 (log log𝑛) (Theorem 2).

Metric tree embeddings can be used to solve or approximate

many problems in graph theory, and our results are no exception.

This work can be extended to numerous applications, and we note

three important ones below. Proofs can be found in the appendix.

Note that an (𝛼, 𝛽)-approximate densest ball is a bicriteria solution

indicating that given a target diameter 𝐷 , we approximate the

problem of finding the ball that contains the most points within

a factor of 𝛼 with up to a 𝛽-multiplicative violation of the ball

diameter. In other words, the ball may have diameter up to 𝛽𝐷 .

Corollary 1. Consider a set of 𝑛 points 𝑃 ⊆ R𝑑 with aspect ratio

Δ ∈ Z≥1. There is an 𝑂 (1)-round randomized MPC algorithm which

computes (on 𝑃 with probability at least 1 − 1/log log𝑛) a:
(1) (1 −𝑂 (1/log log𝑛),𝑂 (log1.5 𝑛))-approximate densest ball

(2) 𝑂 (log1.5 𝑛)-approximate minimum spanning tree

(3) 𝑂 (log1.5 𝑛)-approximate Earth-Mover distance

It uses𝑂 (𝑛 ·𝑑 +𝑛 log𝑛 ·
(
logΔ · log log𝑛 +min(𝑑, log2 𝑛)

)
) total

space and each machine holds 𝑂 ((𝑛𝑑)𝜀 ) local space for an arbitrary

constant 𝜀 ∈ (0, 1).
There are a few important things to note regarding these appli-

cations. First, to our knowledge, densest ball has not been studied

in MPC and therefore our result is the first in this area. It is highly

related to the problem of finding the densest subgraph of a given

graph. In this problem the idea is to identify a subgraph 𝐻 of an un-

weighted graph𝐺 that minimizes the density 𝑑 (𝐻 ) = |𝐸 (𝐻 ) |/|𝐻 |,
where 𝐸 (𝐻 ) is the set of edges with both endpoints in 𝐻 . While

this has been studied in the sublinear regime [13, 36], it does not

imply any results for densest ball.

Additionally, a recent work [28] proposed an efficient Θ̃(log𝑛)-
approximate algorithm for EMD and MST in R𝑑 . However, their

work is less broad since they directly compute EMD and MST,

whereas we provide a general low-distortion embedding algorithm

that can be used to solve a wide range of problems. In addition, there

are applications where maintaining a space-efficient embedding of

a dataset before computation may be highly practical. Therefore,

our result is still of unique interest.

Finally, it is also notable that storing data on trees provides a

unique structure for data computation. For instance, relatedworks [17,

44] introduced efficient low-memory MPC and AMPC algorithms

for solving dynamic programs on trees.4 Consider a problem that

4Adaptive MPC, a related model where machines have adaptive in-round read-only
access to a distributed hash table.

can be formulated on a tree embedding (i.e., where leaves corre-

spond to the data set) with distortion 𝛼 such that the problem can

be approximated within a factor of 𝑓 (𝛼). Then we can apply these

algorithms on top of our embedding to achieve an 𝑓 (𝑂 (log1.5 (𝑛))-
approximation. Since the AMPC algorithm of [44] runs in constant

rounds, then this process would require 𝑂 (1) rounds overall to
embed and compute. Unfortunately, the MPC algorithm of [17]

requires 𝑂 (log𝑛) rounds, and therefore does not fully leverage our

constant round complexity. Future work in this area may reveal

more interesting results.

1.3.4 Related Lower Bounds. When the aspect ratio is poly(𝑛), the
distortion of our current metric tree embedding is 𝑂 (log1.5 𝑛). One
of the future directions is to improve this approximation ratio in the

MPC model. A natural goal would be to improve the distortion to

𝑂 (log𝑛) since any 𝑜 (log𝑛)-distortion metric tree embedding would

imply an embedding of the Earth-Mover distance into ℓ1 with distor-

tion better than the long-standing state-of-the-art embeddings [51]

(even for planar Earth-Mover distance).

A number of related problems also exhibit similar apparent limi-

tations. Embedding an 𝑛-point metric in ℓ2 space into probabilistic

trees needs at least Ω(
√︁
log𝑛) distortion. This follows from a result

of Rao [53] which states any finite planar metric of cardinality 𝑛,

in particular a log𝑛-level diamond graph, can be embedded into ℓ2
space with distortion 𝑂 (

√︁
log𝑛) (which is tight according to Lee

and Naor [50]) and another result of Gupta, Newman, Rabinovich,

and Sinclair [41] which states a log𝑛-level diamond graph needs

distortion of at least Ω(log𝑛) to probabilistically embed into trees.

Therefore, the distortion of embedding Euclidean points into trees

must be at least Ω(
√︁
log𝑛). While some of the above discussion

does not enforce bounds on our problem, they are indicative of the

difficulty of metric tree embedding in general. It is an open question

to further explore this gap for high-dimensional Euclidean spaces.

2 PRELIMINARIES

Here we introduce some preliminary definitions that will be useful

in describing our algorithm and our results. This work provides tree

embeddings on geometric data that exhibit two properties: they

dominate the original geometric space and have small distortion.

A metric space dominates another if the distance between any

pairs of points is not smaller in the new metric space. This is a

baseline assumption that many embeddings are shown to satisfy, as

in Fakcharoenphol, Rao, and Talwar [32]. They define domination

as follows.

Definition 4 ([32]). A metric spaceM dominates another metric

space N for all 𝑞, 𝑝 ∈ 𝑃 for some set of points 𝑃 if 𝑑M (𝑞, 𝑝) ≥
𝑑N (𝑞, 𝑝), where 𝑑M and 𝑑N represent the distance function in each

metric space respectively.

Distortion (in our case, bi-Lipschitz distortion) measures the

difference between the distance between two points in the original

space and two points in a tree embedding. It is a measure of the

goodness of the embedding in that low distortion implies we better

approximate all pairwise distances, as measured by the largest

proportional deviation.

Definition 5 ([24]). Ametric spaceM has𝛼 distortion over another

metric space N if and only ifM dominates N and for any points
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𝑥 and 𝑦, 𝑑M (𝑥,𝑦) ≤ 𝛼𝑑N (𝑥,𝑦), where 𝑑M and 𝑑N represent the

distance function in each metric space respectively.

IfM is generated by a random process or represents a distribu-

tion over metric spaces, we instead view distortions in expectation,

where 𝐸 [𝑑M (𝑥,𝑦)] ≤ 𝛼𝑑N (𝑥,𝑦). Specifically, our algorithm is ran-

domized, sowewill use this probabilistic interpretation of distortion.

In this paper, we develop algorithms that dominate the original

geometric space with low distortion.

3 HYBRID PARTITIONING AND ITS
DISTORTION

Our sequential hybrid partitioning algorithm, Algorithm 1 (subrou-

tines BuildGrids and BallPart can be found in the appendix, is a

generalization of both Arora [9]’s random shifted grid and Charikar

et al. [27]’s random ball partition method. As we discussed in Sec-

tion 1.2, the reason we cannot use either of these independently

for a massively parallel algorithm is actually quite simple. For ran-

dom shifted grids, the problem is that the resulting distortion is

𝑂 (log2 𝑛). Our methods strive to achieve a better approximation

factor than this. For ball partitions, the local space required is ex-

ponential in the dimension of the problem since we require many

random shifted grids to cover all points in 𝑃 . Even for 𝑑 logarithmic

in 𝑛, this method is unattainable in MPC.

Algorithm 1 Hybrid Partitioning: A Sequential Tree Embedding

Algorithm

Input: Point set 𝑃 ⊆ [Δ]𝑑 and parameters 𝑟 ∈ [𝑑], the number of

buckets, and 𝑈 ∈ N, the number of grids

Output: 𝑇 , a tree embedding of 𝑃

// Bucket the dimensions [𝑑] into 𝑟 buckets
for 𝑗 ∈ [𝑟 ] do

𝑗0 ← (𝑑/𝑟 ) · ( 𝑗 − 1)
𝑃 ( 𝑗 ) ← {𝑝 ( 𝑗 ) | 𝑝 ∈ 𝑃 : 𝑝 ( 𝑗 ) = (𝑝 𝑗0+1, 𝑝 𝑗0+2, · · · , 𝑝 𝑗0+𝑑/𝑟 )}

// Create a full ball partitioning and a corresponding hierarchy

for each bucket

For all 𝑗 ∈ [𝑟 ]: 𝐺 ( 𝑗 ) = BuildGrids(𝑃 ( 𝑗 ) , 𝑟 ,𝑈 )
For all 𝑗 ∈ [𝑟 ]: 𝑇𝑗 ← BallPart(𝑃 ( 𝑗 ) ,𝐺 (𝑟 ) ),
If any ball partitionings failed, halt and report failure

// Join the partitionings to make a single, unified hierarchy

For all 𝑗 ∈ [𝑟 ]: 𝑣0, 𝑗 ← the root of 𝑇𝑗
𝑣0 = (𝑣0,1, 𝑣0,2, · · · , 𝑣0,𝑟 ) // A vertex for the single cluster

containing all of 𝑃

𝑇 ← ({𝑣0}, ∅)
Let 𝐶 : 𝑇 → 2𝑃 where 𝐶 (𝑣0) = 𝑃 // Identifying the cluster

corresponding to a vertex

while ∃𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑟 ) ∈ leaves(𝑇 ) such that |𝐶 (𝑣) | > 1 do

𝑆 = children(𝑣1) × children(𝑣2) × · · · × children(𝑣𝑟 )
for 𝑢 = (𝑢1, 𝑢2, . . . 𝑢𝑟 ) ∈ 𝑆 do

𝑃𝑢 ← {𝑝 ∈ 𝑃 : ∀𝑗 ∈
[𝑟 ], 𝑝 ( 𝑗 ) is in the cluster corresponding to 𝑢 𝑗 }
If 𝑃𝑢 ≠ ∅, add 𝑢 to 𝑇 as a child of 𝑣 and set 𝐶 (𝑢) = 𝑃𝑢 .

return 𝑇

The advantage of ball partitioning, however, is that it achieves

a lower distortion. Therefore, the main idea of the hybrid parti-

tioning method is to combine these two methods such that it is

implementable in MPC, like random shifted grids, while still ob-

taining the improved distortion from ball partitioning. To do this,

we introduce the notion of bucketing. To see how bucketing works,

consider our bounding box B of our data, whose width is Δ, the

aspect ratio of the data. To partition this bounding box, we start

by bucketing the 𝑑 dimensions into 𝑟 buckets. That is, for a vector

®𝑥 = (𝑥1, . . . , 𝑥𝑑 ), let it be bucketed as follows:

𝑥 (1) = (𝑥1, . . . , 𝑥𝑑/𝑟 ), 𝑥 (2) = (𝑥𝑑/𝑟+1, . . . , 𝑥2𝑑/𝑟 ),
. . . , 𝑥 (𝑟 ) = (𝑥𝑑−𝑑/𝑟+1, . . . , 𝑥𝑑 )

In a sense, the bucketing is taking a single point in space and

projecting it into a number of different orthogonal subspaces. Since

all dimensions are contained in exactly one subspace each, we do

not lose any information in this process. This describes how one

point is broken up into different projections. Over a set 𝑃 of points,

we create sets for each bucket of dimensions. The set contains the

projection of each point in 𝑃 into the respective bucket.

𝑃 (1) = {𝑥 (1) |∀𝑥 ∈ 𝑃}, 𝑃 (2) = {𝑥 (2) |∀𝑥 ∈ 𝑃},
. . . , 𝑃 (𝑟 ) = {𝑥 (𝑟 ) |∀𝑥 ∈ 𝑃}

At a high level, our algorithm, Algorithm 1, will create a ball

partitioning on each bucket with cell width 4𝑤 and ball radius𝑤

for each level with different scale parameter𝑤 , and only group two

points together if they are in the same partition for each bucket.

Specifically, for each 𝑖 ∈ [𝑟 ], let C𝑖 be the partitioning created by

the ball partitioning on only the dimensions in bucket 𝑖 (i.e., the

(𝑖−1)𝑑/𝑟 +1 through 𝑖𝑑/𝑟 dimensions of each data point). We create

our C partitioning as follows: for each point 𝑝 , to find the other

points in its partition, let C𝑝 be the set of partitions in C1, . . . , C𝑟
that contain 𝑝 (note that some may be empty, as a ball partitioning

may not cover 𝑝). Take the intersection of all partitions in C𝑝 to

form the partition 𝐶𝑝 (𝐶𝑝
=
⋂
𝐶∈C𝑝 𝐶). If 𝐶𝑝 contains any other

point, then it will be a partition in our new partitioning. Like in the

ball partitioning method, we repeat this until all points are covered.

If at any point in this method a point does not have any other points

within𝑤 of it, we simply partition it as its own partition.

Beyond this, the algorithm simply proceeds as the others to

construct a hierarchy. Our ball radius starts as𝑤 = Δ/2 for the top
level and is scaled by 1/2 at each recursive step. We recurse on each

partition until all partitions are empty or singletons, and we create

an edge of weight
√
𝑟𝑤 from each partition to its parent partition.

With this hierarchy as our final tree embedding, it is not hard to

see that the distance between any two points can be calculated by

the number of levels of the hierarchy in which the two points are

separated. If at any level they are separated, we add
√
𝑟𝑤 to their

distance.

It is not too difficult to see how this method generalizes both the

random shifted grid and ball partitions. Definitionally, if 𝑟 = 1, then

there is a single bucket containing all dimensions, and thus we are

simply working in the original space. Then for any iteration of ball

partitioning, two points are grouped together if they are captured

by the same ball. Therefore, for 𝑟 = 1, we are simply running the
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ball partitioning algorithm. If 𝑟 = 𝑑 and if we let the ball radius be

half the cell width, then each dimension is given its own bucket.

When we run a ball partition on each bucket, or each 1-dimensional

space, independently, we are just shifting that coordinate and parti-

tioning that dimension into equally-sized intervals. Intersecting the

partitions formed by partitioning dimensions like this is the same

as defining 𝑑-dimensional cells in a grid based off a random shift

vector composed of the random shifts of each individual dimension.

Thus, we get precisely the random shifted grid.

Now that we have discussed the algorithm, we move on to the

desired result. Note that all proofs can be found in the appendix.

We ultimately show that, as long as we cover all points in each level

(this is discussed probabilistically, by setting a high value of 𝑈 , in

Section 4):

Theorem 2. Consider a set of 𝑛 points 𝑃 ⊆ [Δ]𝑑 for Δ ∈ Z≥1
and a parameter 𝑟 ∈ [𝑑]. Algorithm 1 computes a weighted span-

ning tree 𝑇 over 𝑃 such that ∀𝑝, 𝑞 ∈ 𝑃 , ∥𝑝 − 𝑞∥2 ≤ 𝑑𝑖𝑠𝑡𝑇 (𝑝, 𝑞) and
E𝑇 [𝑑𝑖𝑠𝑡𝑇 (𝑝, 𝑞)] ≤ 𝑂 (

√
𝑑 · 𝑟 · logΔ) · ∥𝑝 − 𝑞∥2.

The first property, the lower bound on the tree distance, is the

notion of dominance. The second defines the amount of distortion

resulting from the metric. Both are commonly required in popular

probabilistic tree embeddings. It turns out that the first is much

simpler to show for our algorithm:

Lemma 2. For any two points 𝑝, 𝑞 ∈ 𝑃 , ∥𝑝 − 𝑞∥2 ≤ 𝑑𝑖𝑠𝑡𝑇 (𝑝, 𝑞).
The next goal is to prove the distortion. Crucially, to show this,

we must find a relationship between the distance between two

points and whether or not they are in the same partition at some

level. This brings up the following lemma, which reveals an inter-

esting property: the probability that two points are separated at a

level can be bounded in a way that is independent of 𝑟 , however

the diameter of a partition relative to 𝑃 is bounded by
√
𝑟 ·𝑤 .

Lemma 1. Consider a hybrid partitioning with parameters𝑤 ∈ R>0
and 𝑟 ≤ 𝑑 in the 𝑑-dimensional Euclidean space. For any two points

𝑝, 𝑞 ∈ R𝑑 , the probability that 𝑝 and 𝑞 are assigned to different

partitions is at most 𝑂
(√

𝑑 · ∥𝑝−𝑞 ∥2𝑤

)
. If 𝑝, 𝑞 ∈ R𝑑 are assigned to

the same partition, ∥𝑝 − 𝑞∥2 ≤ 𝑂 (√𝑟 ·𝑤).
Since this lemma is quite extensive, we break it down into two

parts. The more interesting part is considering the probability that

two points are separated in the partitioning at a certain level. We

simply consider a ball partitioning:

Lemma 3. Consider a ball partitioning over a set of points 𝑃 ⊂ R𝑘 .
For any two points 𝑝, 𝑞 ∈ 𝑃 , the probability that 𝑝 and 𝑞 are assigned

to different partitions in a level with scale𝑤 is at most𝑂
(√

𝑘
∥𝑝−𝑞 ∥2

𝑤

)
.

In order to solve this, we consider a random variable 𝐼𝑞,𝑝 that

indicates if 𝑞 and 𝑝 exist in the same ball in a partitioning. This can

be used to determine the probability of separation, but we can also

relate it to the volume of the intersection of balls centered at these

points with radius 𝑤 . Eventually, we see that the probability of

separation boils down to the probability that a random unit vector

falls into the bound of a cap surface intersected with the surface of

a sphere. In order to bound this, we need a slight detour into more

pure geometric arguments, Lemma 4.

In particular, the following lemma shows that the probability

that a random vector is near the equator of a unit sphere has a good

upper bound.

Lemma 4. Let 𝑢 ∈ R𝑑 be a random vector drawn uniformly from a

unit sphere. Then for any 𝐷,𝑤 ∈ R≥0, we have

Pr[|𝑢1 | ≤ 𝐷/(2𝑤)] = 𝑂

(√
𝑑 · 𝐷

𝑤

)
.

While this lemma is close to the result we need, it unfortunately

deals with vectors drawn from a voluminous shape, whereas we

are interested in the probability that a random vector drawn from

a surface falls within the bounds of intersected surfaces. A slight

adaptation yields the following:

Lemma 5. Let 𝑣 ∈ R𝑑 be a random vector drawn uniformly from a

unit ball. Then for any 𝐷,𝑤 ∈ R≥0, we have

Pr[|𝑣1 | ≤ 𝐷/(2𝑤)] = 𝑂

(√
𝑑 · 𝐷

𝑤

)
.

For two points to not be separated within some bucket in the par-

titioning, they must either be grouped together or left uncovered.

This allows us to relate the probability of separation to the intersec-

tion of geometric surfaces. Ultimately, we can then derive a bound

from Lemma 3 using Lemma 5 (see the proof of Lemma 3 in the

appendix. Since two points separated on a level must be separated

in some bucket, the separation probability is bounded by a union

bound over the probability of separation in each bucket, yielding

Lemma 1. As we have already showed the domination result, all

we need is to show that the expected distortion is small, which is

directly related to the probability that two points are separated on

any level. This concludes Theorem 2.

4 TREE EMBEDDING IN MPC

In this section we show how to implement Algorithm 1 in 𝑂 (1) of
rounds in the MPC model using the total space 𝑂 (𝑛 · 𝑑 + 𝑛 · logΔ ·
log𝑛 · log log𝑛). Specifically, we prove Theorem 1.

Theorem 1. Consider a set of 𝑛 points 𝑃 ⊆ [Δ]𝑑 for Δ ∈ Z≥1.
There is an𝑂 (1)-round randomized MPC algorithm which computes a

weighted spanning tree𝑇 over 𝑃 when it succeeds, such that ∀𝑝, 𝑞 ∈ 𝑃 ,
(1) 𝑑𝑖𝑠𝑡𝑇 (𝑝, 𝑞) ≥ ∥𝑝 − 𝑞∥2,
(2) E𝑇 [𝑑𝑖𝑠𝑡𝑇 (𝑝, 𝑞)] ≤ 𝑂 (

√︁
log𝑛 · logΔ ·

√︁
log log𝑛) · ∥𝑝 − 𝑞∥2.

The success probability is at least 1 − 1/poly(𝑛). The algorithm uses

𝑂 (𝑛 ·𝑑 +𝑛 log𝑛 ·
(
logΔ · log log𝑛 +min(𝑑, log2 𝑛)

)
) total space and

each machine holds 𝑂 ((𝑛𝑑)𝜀 ) local space for an arbitrary constant

𝜀 ∈ (0, 1). If the algorithm fails, it reports failure.

At a high level, our algorithm consists of four main steps:

(1) Using our fast Johnson-Lindenstrauss (see Section 5), em-

bed the data into 𝑂 (log𝑛) dimensions. This is the first 𝑂 (1)
rounds of the algorithm.

(2) We group dimensions into 𝑟 buckets and generate grids for

each bucket and distribute the grids and points among the

machines. This requires 1 round on 1 machine.

(3) We compute the hierarchical tree using ball partitioning.

This requires 1 round of parallel computation.

84



Massively Parallel Tree Embeddings for High Dimensional Spaces SPAA ’23, June 17–19, 2023, Orlando, FL, USA

(4) For each node, we compute the path-to-root in the hybrid

partitioning (to construct the final tree). This also requires 1

round of parallel computation.

In order to create the hierarchy in parallel, the grid of balls will be

shared among all machines. Andoni [4] lets us bounds the number

of grids needed to cover the entire space:

Lemma 6 ( [4] Section 3.2.2). Consider a 𝑑-dimensional space R𝑑 ,

and fix some 𝛿 > 0. Let 𝐺 be a regular infinite grid of balls of radius

𝑤 placed at coordinates 4𝑤 ·Z𝑑 . Define𝐺𝑢 , for𝑢 ∈ N, as𝐺𝑢 = 𝐺 +𝑠𝑢 ,
where 𝑠𝑢 ∈ [0, 4𝑤]𝑑 is a uniformly selected random shift of the grid

𝐺𝑑 . If 𝑈𝑑 = 2𝑂 (𝑑 log𝑑 ) log 1/𝛿, then the grids 𝐺1,𝐺2, . . . 𝐺𝑈𝑑
cover

the entire space R𝑑 , with probability at least 1 − 𝛿 .
Since we will be using grids to cover the whole space for each

bucket and level we need the following lemma:

Lemma 7. Consider 𝑛 points over a 𝑑-dimensional space, and fix

some parameter 𝜖 > 0, 𝛿 > 0. Define𝑈 as the number of grids of balls

used in the hybrid partitioning. By setting 𝑈 = 2𝑂 ( (𝑑/𝑟 ) log(𝑑/𝑟 ) ) ·
log( 𝑟 logΔ

𝛿
), hybrid partitioning covers the whole space with proba-

bility at least 1 − 𝛿 .
For standard ball partitioning the number of grids needed to

cover the whole space would be too large. More specifically, for stan-

dard ball partitioning of a 𝑑-dimensional space we need 2𝑂 (𝑑 log𝑑 )

grids. Even after reducing the data into 𝑂 (log𝑛) dimensions, this

would result in 2𝑂 (log𝑛 log log𝑛)
= 𝑛𝑂 (log log𝑛) dimensions which

would be too large considering we have 𝑂 (𝑛𝜖 ) space per machine.

Hence the need to use hybrid partitioning.

To do so first we transform the data points from 𝑑-dimensional

space to𝑂 (log𝑛) dimensional space using our fast Johnson-Lindenstrauss

transform. We fix 𝑟 = 2/𝜖 · log log𝑛. Then we group the dimen-

sions into 𝑟 buckets and distribute them among the machines, each

machine holding 𝑛𝜖

logΔ
points. This is because the ball partitioning

needs logΔ space per point to store the hierarchy, assuming we

store the path from a vertex to the root.

For each bucket 𝑗 we generate sets of grids {𝐺 𝑗
1 ,𝐺

𝑗
2 , · · ·𝐺

𝑗

𝑙𝑜𝑔Δ
}

and distribute them to the corresponding machines that hold points

from this bucket. Where 𝐺
𝑗
𝑖 = {𝐵1, 𝐵2, · · · 𝐵𝑈 } is the set of grids

that cover the space in bucket 𝑗 in level 2𝑖 . Each 𝐵𝑘 is a partitioning

from a single randomly shifted instance of a ball partition.

Define 𝑈 as the number of grids used to cover the space in our

hybrid partitioning.

Lemma 8. Consider 𝑛 points over a 𝑑-dimensional space where

𝑑 = 𝑂 (log𝑛), and a hybrid partitioning with 𝑟 = 2/𝜖 · log log𝑛
buckets. The space used per machine to store the set of grids is 𝑂 (𝑛𝜖 )
as long as 𝛿 = Ω(1/poly(𝑛)).

This proves all grids can be stored on each machine, and thus

the local computation can proceed in constant rounds to complete

Theorem 1.

5 MPC FAST JOHNSON-LINDENSTRAUSS

The Johnson Lindenstrauss transform,whichmaps any high-dimensional

data into logarithmic dimensions with arbitrarily small distortion

constant, is a foundational method for (potentially) significant re-

ductions in data dimension in the sequential setting. Unfortunately,

Algorithm 2 MPC Hybrid Partitioning

Input: Point set 𝑃 ⊆ [Δ]𝑑 and a parameter 𝑟 ∈ [𝑑 ] (after dimension

reduction, e.g., see Section 5).

Output:𝑇 , a tree embedding of 𝑃

// Run on a single machine:

Split the dimensions [𝑑 ] into 𝑟 = 𝑂 (log log𝑛) buckets // As in the first

step of Algorithm 1

Let𝑈 = 2𝑂 ( (𝑑/𝑟 ) log(𝑑/𝑟 ) ) · log(𝑟 logΔ) // This comes from Lemma 7

For each 𝑗 ∈ [𝑟 ]:𝐺 (𝑟 ) = BuildGrids(𝑃 ( 𝑗 ) , 𝑟 ,𝑢 )
Send𝐺 to all other machines

Partition 𝑃 into parts 𝑃𝑖 with |𝑃𝑖 | = 𝑂 (𝑛𝜖/logΔ) and send 𝑃𝑖 to machine

𝑚𝑖

// In parallel:

for each machine𝑚𝑖 do

For each 𝑗 ∈ [𝑟 ]:𝑇𝑗 ← BallPart(𝑃 ( 𝑗 )𝑖 ,𝐺 (𝑟 ) )
If any ball partitionings failed, halt and report failure

for each 𝑝 ∈ 𝑃𝑖 do
for 𝑗 ∈ [𝑟 ] do

Find 𝑝𝑎𝑡ℎ 𝑗 (𝑝 ) ← (𝑣 ( 𝑗 )0 , 𝑣
( 𝑗 )
1 , . . . , 𝑣

( 𝑗 )
logΔ

, 𝑝 ( 𝑗 ) ) , the path from 𝑝

to the root of𝑇𝑗

For 𝑖 ∈ [logΔ]: 𝑝𝑎𝑡ℎ𝑖 (𝑝 ) ← (𝑣 (1)𝑖 , 𝑣
(2)
𝑖 , . . . , 𝑣

(𝑟 )
𝑖 ) , the tuple for

the 𝑖th element on 𝑝’s path for all𝑇𝑗

𝑝𝑎𝑡ℎ (𝑝 ) ← (𝑝𝑎𝑡ℎ1 (𝑝 ), 𝑝𝑎𝑡ℎ2 (𝑝 ), . . . , 𝑝𝑎𝑡ℎlogΔ (𝑝 ), 𝑝 ) , the path
from 𝑝 to the root of𝑇

Let𝑇𝑖 be the union of 𝑝𝑎𝑡ℎ (𝑝 ) for all 𝑝 ∈ 𝑃𝑖
return 𝑇𝑖 as a part of the output tree𝑇 (implicitly,𝑇 is the union of

all returned𝑇𝑖 s)

in the massively parallel setting, this effectively becomes a general

matrix multiplication problem, which does not meet the round and

space complexity goals of many MPC algorithms. Particularly, we

can achieve this either using 𝑂 (𝑛𝑑𝑘) = 𝑂 (𝑛𝑑 log𝑛) total space in
a constant number of rounds [31] or using linear space 𝑂 (𝑛𝑑) in
𝑂 (log𝑛) rounds.

To prove our main result, Theorem 1, we require first applying

the Johnson Lindenstrauss transform to reduce the dimensional-

ity of our data, then we apply our methods from Section 4. The

transform must be applied first because otherwise the number of

balls required to partition the entire space with sufficiently high

probability is too large, and they cannot be fit within our total space

requirements.

Recall that our final results manage to shave off the additional log-

arithmic factor in the total space. Namely, running an 𝑂 (𝑛𝑑 log𝑛)
total space implementation of the Johnson Lindenstrauss transform

would increase our total space. Therefore, we propose a solution

to the dimension-reducing problem in the MPC model based on a

more recent iteration of the Johnson Lindenstrauss transform by

Ailon and Chazelle [2] that uses linear total space.

Consider a dataset of𝑛 points in a𝑑-dimensional Euclidean space.

The Fast Johnson Lindenstrauss Transform (FJLT), developed by

Ailon and Chazelle [2], is a quickly computed transformation that

maps the input points into a 𝑘-dimensional space while preserving

distances within a (1 ± 𝜉) factor. Here, 𝑘 = 𝑐𝜉−2 log𝑛 for some

constant 𝑐 .
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They show that the FJLT,𝜙 (𝑥) = 𝑘−1𝑃𝐻𝐷𝑥 , for some input 𝑥 can

be computed relatively quickly. Matrices 𝑃 , 𝐻 , and 𝐷 are designed

as follows:

(1) 𝑃 is a 𝑘 ×𝑑 matrix with 𝑃𝑖 𝑗 = 0 with probability 1−𝑞, other-
wise it is sampled from the Gaussian distribution 𝑁

(
0, 𝑞−1

)
.

We let 𝑞 take value:

𝑞 = Θ

(
min

(
log2 𝑛

𝑑
, 1

))

(2) 𝐻 is a normalized 𝑑 × 𝑑 Walsh-Hadamard matrix. In other

words, it is the 𝑑-dimensional discrete Fourier transform. In

particular, 𝐻𝑖, 𝑗 = 𝑑−1/2 · (−1) ⟨𝑖−1, 𝑗−1⟩ where ⟨𝑖 − 1, 𝑗 − 1⟩ is
the bitwise inner product of the binary representations of

𝑖 − 1 and 𝑗 − 1.
(3) 𝐷 is a random diagonal 𝑑 × 𝑑 matrix where 𝐷𝑖,𝑖 = −1 with

probability 0.5 and 𝐷𝑖,𝑖 = 1 otherwise.

We now propose a method to parallelize this algorithm in the

MPC model as shown in Algorithm 3. We consider the case where

each machine has local space𝑂 ((𝑛𝑑)𝜀 ) for some arbitrary constant

𝜀 ∈ (0, 1). The algorithm takes an input 𝐴 which is a 𝑑 × 𝑛 matrix.

To compute 𝑃𝐻𝐷 (𝐴), we simply apply one matrix at a time. To

compute 𝐷 (𝐴), since 𝐷 is diagonal, we can use 𝑂 (1) rounds and
𝑂 (𝑑) total space to generate all 𝐷𝑖,𝑖 . To multiply 𝐷 with 𝐴, since 𝐷

is diagonal, each of the resulting 𝑛𝑑 entries in 𝐷𝐴 form a simple bi-

nary multiplication problem. We simply allocate (𝑛𝑑)1−𝜖 machines

to do 𝑂 ((𝑛𝑑)𝜖 ) computations each. To apply 𝐻 , we can simply ap-

ply the fast Fourier transform in the MPC model introduced by

Hajiaghayi, Saleh, Seddighin, and Sun [45]. This step takes 𝑂 (1/𝜀)
rounds. Finally, we generate 𝑃 in a similar way to 𝐷 , by allocating

𝑂 ((𝑛𝑑)𝜖 ) entries per machine and randomly generating numbers.

To apply 𝑃 , we can bound the total number of multiplications by the

results of Ailon and Chazelle, and then distribute additions across

machines iteratively to compute the matrix in 𝑂 (1/𝜀) rounds.

Theorem 3. Consider a set of points 𝑃 = {𝑝1, 𝑝2, · · · , 𝑝𝑛} ⊂ R𝑑 .
Let 𝜙 : R𝑑 → R𝑘 be Fast Johnson Lindenstrauss Transform with

𝑘 = Θ(𝜉−2 log𝑛) for 𝜉 ∈ (0, 0.5). There is an MPC algorithm which

outputs𝜙 (𝑝1), 𝜙 (𝑝2), · · · , 𝜙 (𝑝𝑛) in𝑂 (1) rounds. In addition, the total
space of the algorithm is at most 𝑂 (𝑛𝑑 + 𝜉−2𝑛 log3 𝑛) and each ma-

chine holds 𝑂 ((𝑛𝑑)𝜀 ) local space for an arbitrary constant 𝜀 ∈ (0, 1).

Proof. Let𝐴 ∈ R𝑑×𝑛 be the concatenation of points 𝑝1, 𝑝2, · · · , 𝑝𝑛 .
Then, the goal is to compute 𝑃 · 𝐻 · 𝐷 · 𝐴. First, we show how to

compute 𝐷𝐴 (a 𝑑 × 𝑛-dimensional matrix). Clearly we can use

𝑂 (1) rounds and 𝑂 (𝑑) total space to generate the entries on the

diagonal of 𝐷 . Note that we can easily compute each element

(𝐷𝐴)𝑖 𝑗 = 𝐷𝑖𝑖𝐴𝑖 𝑗 . This is a total of 𝑛𝑑 computations. So we can

do it on (𝑛𝑑)1−𝜖 machines with (𝑛𝑑)𝜖 local space per machine in

𝑂 (1) rounds.
Next, we compute 𝐻 (𝐷𝐴) (a 𝑑 × 𝑛-dimensional matrix). Note

that 𝐻 is just the 𝑑-dimensional DFT. We can then utilize the 𝑑-

dimensional MPC FFT algorithm [45] and apply it to each column

of 𝐷𝐴. For any 𝜖 ∈ (0, 1), this requires 𝑂 (𝑑𝜖 ) machines, 𝑂
(
𝑑1−𝜖

)

memory, and 𝑂 (1/𝜀) rounds. Thus, we can compute all columns

of 𝐷𝐴 in the MPC model using 𝑂 ((𝑛𝑑)𝜀 ) space per machine and

𝑂 ((𝑛𝑑)1−𝜀 ) machines in 𝑂 (1/𝜀) rounds.

Finally, we compute 𝑃 (𝐻𝐷𝐴) (a 𝑘 × 𝑛-dimensional matrix). Just

as in Ailon and Chazelle, we see that the number of nonzero values,

or |𝑃 |, is ∼ Binom(𝑑𝑘, 𝑞), which means:

E[|𝑃 |] =𝑛𝑘𝑞 = 𝑂
(
𝑑𝜉−2 log3 (𝑛)/𝑑

)
= 𝑂 (log3 (𝑛)/𝜉2)

And then by the Markov inequality, we have |𝑃 | = 𝑂 (log3 (𝑛)/𝜉2)
with probability at least 0.99. Thismeanswe only have𝑂 (𝜉−2 log3 𝑛)
values in 𝑃 with probability at least 0.99. For each value in 𝑃 , wemul-

tiply it by one row of 𝐻𝐷𝐴 of length 𝑛 for a total of𝑂 (𝑛𝜉−2 log3 𝑛)
computations. Beyond this, some of these values need to be added

to find values in 𝑃𝐻𝐷𝐴, but that will not exceed 𝑂 (𝑛𝜉−2 log3 𝑛).
Thus, these computations can be done in 𝑂 (1) rounds as long as

the total space is at least Ω(𝑛𝜉−2 log3 𝑛). Finally, there are at most

𝑑 additions required to define a single entry, then we can divide

this into 𝑑1−𝜖 sets of additions of size 𝑑𝜖 . We can then pack all

these sets of computations of size at most 𝑑𝜖 into machines with

memory 𝑂 (𝑑𝜖 ). This requires at most 𝑂 (𝑑1−𝜖 ) machines. Then we

perform the computations. To find the values for entries that require

𝑛 computations, this will require 𝑂 (1/𝜖) rounds. That completes

the computation. □

Algorithm 3 FJLT in MPC

Input: 𝐴, a matrix of 𝑛 𝑑-dimensional vectors, and a parameter

𝜉 ∈ (0, 0.5)
Output: 𝜙 (𝐴)

for 𝑖 ∈ [𝑑] in parallel do

Let 𝐷𝑖,𝑖 be 1 or −1 with probabilities 1/2

for 𝑖 ∈ [𝑑], 𝑗 ∈ [𝑛] in parallel do

(𝐷𝐴)𝑖, 𝑗 ← 𝐷𝑖,𝑖𝐴𝑖, 𝑗

Let 𝐻 (𝐷𝐴) ← FFT(𝐷𝐴, 𝜀)
//MPC algorithm for fast Fourier transform [45]. Each machine

holds 𝑂 ((𝑛𝑑)𝜀 ) space.
Let 𝑀 be the set of multiplications of nonzero entries in 𝑃 and

entries in 𝐻𝐷𝐴

for Assign𝑀 to (𝑛𝑑)1−𝜖𝜉−2 log3 𝑛/𝑑 machines in parallel do

Compute multiplication𝑚 ∈ 𝑀 locally.

Let A be the set of additions of𝑚 outputs in 𝑃 (𝐻𝐷𝐴)
while A is nonempty do

for Pack large contiguous chunks of 𝑎 ∈ A into (𝑛𝑑)𝜖 per

machine in parallel do

Compute 𝑎 and simplify A
Store results of A in 𝜙 (𝐴) = 𝑃 (𝐻𝐷𝐴)
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