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SUMMARY

Biologics such as monoclonal antibodies (mAbs) and RNA therapeu-
tics have revolutionized standard of care but present stability chal-
lenges due to their fragile structure. This is particularly true consid-
ering the demanding manufacturing, storage, distribution, and
administration requirements that far exceed the otherwise stable
biological environment from which they are derived. Therefore,
the pharmaceutical industry routinely implements a suite of experi-
ments to optimize formulations using a standard set of excipients
that are known to enhance stability. While this process has been pro-
ductive, the complexity of biologic-excipient interactions prevents
an efficient transition to precise and tailored formulations. Recent
advances in laboratory automation, high-throughput analytics, and
artificial intelligence/machine learning (AI/ML) now provide a
unique opportunity to fully automate the design process and pro-
vide next-generation formulations with remarkable durability.
Here, we put forth a plan to develop a biomaterials acceleration
platform (BioMAP) (i.e., self-driving biomaterials lab) focused
initially on biologic formulation.

INTRODUCTION

Therapeutic proteins and vaccines, known as biologics, have proven themselves as

fundamental technologies to human health. This impact is impressive considering

how fragile many of these biomolecules are to standard pharmaceutical storage

and handling conditions. To be an effective therapy, biologics must retain their com-

plex structures from production to administration. If biologics denature during any

point in this process, their therapeutic efficacy is lost. Thus, to ensure their stability,

monumental formulation efforts using additives such as small-molecule stabilizers,

polymer excipients, and surfactants are routine. In one clear example, hydrolytically

unstable mRNA was encapsulated in lipid nanoparticles (LNPs) to provide the world

population with remarkably effective vaccines against severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2).1 Similarly, many monoclonal antibodies (mAbs)

aggregate at clinically relevant concentrations and temperatures, causing a signifi-

cant drop in efficacy.2 For this reason, the pharmaceutical industry invests significant

resources in formulating stabilization solutions for new biologics.

Current approaches for biologic formulation rely on either human-based rational

design, high-throughput (HTP) screening experiments, or some combination of

the two. When using rational design, a team of scientists rely on their collective

expertise and experience to predict the best combination of additives for a given

therapeutic and objective. This approach can be challenging, as it pulls from a stan-

dard set of excipients and is unable to anticipate higher-order interactions and syn-

ergies that govern stabilization of these complex macromolecules. This limitation is
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partially addressed in HTP screening studies that aim to survey excipient combina-

tions until an acceptable performance threshold is reached. The challenge is that

screening studies are inherently inefficient and may not map the design space

with enough resolution to uncover highly specific non-linear synergies to maximize

performance. Even when thoughtful consideration is given to screening efforts to

maximize information gain from a small number of experiments, such as design of

experiments, the non-linear behavior of formulations continues to act as a barrier

to their development and optimization.

To combat these obstacles, the potential of artificial intelligence (AI) and robot sci-

entists in biologics formulation and biomaterial engineering has long been recog-

nized.3,4 Early proof-of-principle robot scientists, such as Adam, used to autono-

mously study functional genomics5 have provided a glimpse at how automated

experimentation can be combined with data-driven decision-making to investigate

complex problems in biology. With many of the challenges in biologic formulation

stemming from the inability to predict how the choice of excipients and formulation

process ultimately effect performance, these tools are increasingly being adopted to

map such connections.6 In recent examples, machine learning (ML) models have

been utilized to predict complicated phenomena such as aggregation temperature,

viscosity, and long-term stability of mAbs at high concentration.7,8 Further, models

have even been adopted to iteratively optimize biologic formulations toward multi-

ple objectives, enabling optimizations in both protein thermal stability and interfa-

cial stability to be acquired simultaneously.9 While these are exciting developments,

such examples are likely only the beginning of the potential advancements that AI

and robotics will bring to improved formulation.
BIOMATERIALS ACCELERATION PLATFORM (BioMAP)

In this white paper,10 we propose developing a BioMAP for precision biologic formu-

lation (Figure 1). This concept builds on recent work from our lab where we used a

data-driven Design-Build-Test-Learn workflow to formulate life science enzymes11

and therapeutic proteins.12 In these studies, we optimized tailored polymer addi-

tives using HTP experimentation coupled with ML to formulate multiple unique pro-

teins toward improved thermal stability. Robotic tools were used to manufacture

polymer excipient libraries,13 while scientists performed enzyme assays, trained

ML models, exported AI/ML predicted designs, and initiated the cyclic workflow.

Inspired by other efforts in developing MAPs for accelerating scientific discovery,14

we believe it is possible to move beyond this proof-of-concept work and realize a

fully autonomous BioMAP. Further, we seek to expand our material library to include

generally recognized as safe (GRAS) excipients, allowing formulations to be opti-

mized for both performance and speed to market. Finally, we aim to expand the

impact of our BioMAP by launching new pipelines for LNP formulation. This center

of excellence that combines the best of current practice with the power of ML and

automated chemistry will allow industry partners to benefit from a step change in

their formulation stability with unprecedented agility.

In designing a BioMAP capable of biologic formulation, we first consider how to

organize a closed-loop Design-Build-Test-Learn workflow so that an efficient and

fully autonomous discovery campaign can be implemented. As formulation efforts

are directed at a diverse set of target biologics, an ideal BioMAP must contain a flex-

ible array of automated instrumentation that is advantageous for each biologic type.

mAbs and protein biologics can be primarily handled utilizing a flexible liquid

handling robot, which will serve as the core instrument for combining reagents
2 Cell Reports Physical Science 3, 101041, September 21, 2022



Figure 1. Overview of a closed-loop, self-driving biomaterials acceleration platform (BioMAP) for biologic formulation

Biologic formulation is performed entirely through autonomous workflows. Multisource data from physical and biological experiments are exploited by

deep neural networks to map complex structure-function landscapes and inform downstream design campaigns. Figure created with BioRender.
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and performing sterile cell culture. To increase the versatility of the core module, a

multimode reagent dispenser, plate heater/shaker, plate sealer, and a vacuum filtra-

tion system will be available as supportive modules. Meanwhile, for LNP production,

a parallelized microfluidic device15 would be connected to a continuous-flow fluidics

platform to form LNPs of varied compositions and lipid chemistry on demand. This

automated instrumentation would enable direct formulation of both protein and

RNA therapeutics (mRNA and small interfering RNA [siRNA]) in an HTP format for

downstream functional testing. Once libraries of biologic formulations are made,

analytical testing and characterization to understand formulation behavior can be

readily performed in a highly reproducible automated workflow. An automated mi-

croplate incubator with humidity and CO2 regulation can be included to test the sta-

bility of formulations over a range of storage and handling conditions. This same

platform can also be used to support cell-based assays. On the analytical end, we

will include a suite of standard instruments for continuous monitoring of new formu-

lations and biological activity. This includes UV-visible (UV-vis) and dynamic light

scattering (DLS) plate readers, size-exclusion chromatography (SEC), and a high con-

tent imager (HCI). Further analytical modules to expand the scope of the platform

may include equipment for genomics, transcriptomics, proteomics, and flow cytom-

etry. With this suite of automatable equipment, we would have the necessary hard-

ware to implement a fully self-driving BioMAP.
Cell Reports Physical Science 3, 101041, September 21, 2022 3
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To complement the Build-Test portion of the design campaign, data from exper-

iments can be leveraged to inform Learn-Design efforts. To be machine interpret-

able, it is critical to first consider how features and data should be represented. As

biologic formulations contain a diverse combination of small and macromolecules,

feature engineering strategies that are amenable to all of these systems will be

required. Initial approaches could include simple one-hot encoding strategies or

the use of SMILES16 paired with packages such as Mordred17 to create chemical

description vectors for formula components. These computationally efficient ap-

proaches have been shown to be effective for learning the behavior of macromo-

lecular systems.11,18 Further, as many experiments for assessing the physical,

chemical, and biological properties of biologics have well-defined experimental

outputs, collected data will be readily paired with these descriptors and immedi-

ately used for supervised ML. As deep neural networks have shown to be effective

at learning in high-dimensional and non-linear data environments, we will couple

Bayesian neural networks with Bayesian optimization strategies to learn from

collected data and autonomously propose new experiments. This implementation

will be critical as the potential permutations of formulation options are near infin-

ite. Thus, Bayesian neural networks can be utilized for active learning approaches

that intelligently explore and exploit formulation and biomaterial parameters in

BioMAPs.19 This approach enables an agile and efficient method for optimizing

key formulation properties for biologics such as shelf-life, aggregation resistance,

and chemical stability.
PLANS FOR PRACTICAL IMPLEMENTATION VIA HEILMEIER’S
CATECHISM

Our long-term goal is to develop a comprehensive BioMAP capable of autono-

mously designing new biomaterials for drug delivery, immunoengineering, and

regenerativemedicine applications. To start, we will focus initially on the formulation

of mAbs with GRAS additives and mRNA with LNPs. These biologics were selected

due to strong clinical need and the opportunity for direct clinical translation.

Therapeutic mAbs are a critically important class of drugs. Precision formulation may

provide new opportunities for concentrated mAb solutions with greater resistance

to aggregation when shipped and stored at more cost- and energy-efficient condi-

tions. Similarly, mRNA LNPs have proven their value during the COVID-19

pandemic; however, these critical vaccines were only possible due to outstanding

formulations by Moderna and BioNTech that still required storage at extremely

low temperatures, limiting their utility in rural and emerging markets.20 As new var-

iants or diseases emerge, we will need a more efficient and precise process for

formulating new therapies and vaccines that enable rapid and widespread

distribution.

Our proposed approach complements HTP automation with AI/ML for the data-

driven design of new formulations. In this instance, all of the collected data will be

used to continuously train deep Bayesian neural network models whose Bayesian

optimizations guide new experimental campaigns within the closed-loop circuit. In

this way, challenging formulation objectives with high dimensionality and non-linear

behavior can be modeled and optimized. We believe that this approach will be suc-

cessful, as proof-of-concept has already been implemented and validated via hu-

man-machine collaboration in our recent work.11,12 Once properly resourced, we

plan to make our facility open for collaboration so that a broad range of discovery

campaigns can proceed in parallel, supporting existing demand from both
4 Cell Reports Physical Science 3, 101041, September 21, 2022
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academia and industry. This would provide the entire biologics community with ac-

cess to state-of-the-art AI/ML-directed formulations as an established center of

excellence service, without needing to establish expertise or infrastructure in house.

Current barriers to fully deploy a BioMAP center around the overall complexity

required to integrate experimental and analytical automationmodules into seamless

workflows. Similar to existing MAP examples, custom application programming in-

terfaces (APIs) for connecting modules and controlling experimental processes will

need to be developed. Further, strategic plans to incorporate automated validation

and redundancies to minimize error will be paramount to inter-experimental repro-

ducibility. Fortunately, the drug discovery community already has decades of expe-

rience building similar systems for HTP drug screening, potentially allowing for sig-

nificant technology transfer toward BioMAPs. Feature engineering optimization is

another area for growth and opportunity, as the goal for biologic formulation would

be to build a flexible model that can transfer learn from each design campaign rather

than generate new models for each new objective.

The financial barrier to full implementation and staffing of a biologic formulation

BioMAP is modest, considering the opportunities for pharmaceutical industry sav-

ings. We estimate it will require $2.5 M in hardware and another $2 M in personnel

over three years to establish the proposed BioMAP. To ensure consistent progress

over this three-year period, the BioMAP will require a collaborative team of software

engineers, biomedical engineers, pharmaceutical scientists, and data scientists.

Assembling and resourcing this multidisciplinary and dynamic team represents the

most significant go/no-go milestone for building and testing a BioMAP.
POTENTIAL FOR SOCIETAL IMPACT

In their 2021 Strategic Plan, theMaterials Genome Initiative (MGI), a United States fed-

eral multiagency initiative, outlined an ambitious plan to unify the materials innovation

infrastructure, harness the power of materials data, and educate, train, and connect

the materials research and development (R&D) workforce.21 Central to this plan is

the strategic integration of laboratory automation and AI/ML into MAPs, which they

predict may be one of our greatest opportunities to enter the next age of materials

discovery.22 While MAPs have been demonstrated for other critical materials

science efforts,10,14,23 no developedMAPs currently exist for the explicit development

of bioformulations. As a field with enormous impact on health and well-being in

society, we believe that advancingMAPs toward the invention of novel biologic formu-

lations and biomaterials at large is a pressing need for the biomedical and materials

sciences communities. If successful, BioMAPs could play a pivotal role in accelerating

the rate at which new mAbs, RNA, and other biological therapies are brought to mar-

ket. Further, as cold-chain logistics needed for transporting sensitive biologics are

disproportionately lacking in underdeveloped regions of the world, novel stable

formulations could improve global access to life-saving therapies.24

The outlined BioMAP builds on existing and synergistic projects in collaboration

with the MGI through the National Science Foundation Designing Materials to

Revolutionize and Engineer our Future (DMREF) program.25 In this multidisciplinary

and collaborative project, AI/ML methods are being developed for optimized pro-

tein formulation with a long-term goal of creating generalizable AI/ML models for

protein formulation based on downloadable PDB files. This approach draws inspi-

ration from DeepMind’s AlphaFold26 by aiming to publish models as readily acces-

sible cyberinfrastructure for the broader research community. In line with the MGI’s
Cell Reports Physical Science 3, 101041, September 21, 2022 5
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mission, specific attention is focused on the featurization of polymers18 and pro-

teins so that past, present, and future data can be equally used to continuously

evolve models as new knowledge is gained. To be machine interpretable, this proj-

ect adopts a standardized approach to data handling and storage27 so that data is

findable, accessible, interoperable, and reusable (FAIR) through the National Ma-

terials Data Network (NMDN).21 Ultimately, these AI/ML methods will serve as the

core cyber platform for the proposed BioMAP, which will enshrine it as an active

participant and contributor to the community of open science. The proposed

BioMAP will also directly serve the scientific community as physical infrastructure.

Companies and academics in need of biologic formulation may engage the

BioMAP by providing material, an assay, and campaign objectives. Those inter-

ested in augmenting the discovery pipeline could gain access to the BioMAP as

users to help install methods for new applications. In this way, the BioMAP can

be continuously improved and updated to ensure it meets new demands by the

scientific community.

VISIONS FOR A DISTRIBUTED BioMAP INFRASTRUCTURE

The field of biomaterials science and drug delivery is diverse and actively engaged in

solvingmany scientific andmedical challenges. This includes regenerativemedicine,

immunoengineering, medical diagnostics, and targeted cancer therapy. Successful

validation of the proposed BioMAP for biologic formulation would motivate diversi-

fication into these new areas. Each field is likely to benefit from AI/ML, and it is

possible that an expanded BioMAP could play a central role in these data-driven

projects. As major elements of the platform are validated for diverse applications,

we envision the installation of new BioMAP infrastructure around the world using

this validated blueprint like the expansion of HTP drug screening facilities in the

1990s and 2000s. If expanded, BioMAP infrastructure in core facilities, national

labs, and companies could become an integral part of biomedical research facilities

worldwide as patients ultimately benefit from a realized dream of an automatable

and AI-driven future.
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