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THE MATRIX BOCHNER PROBLEM

By W. RILEY CASPER and MILEN YAKIMOV

Abstract. A long standing question in the theory of orthogonal matrix polynomials is the matrix
Bochner problem, the classification of N x N weight matrices W (z) whose associated orthogonal
polynomials are eigenfunctions of a second order differential operator. Based on techniques from
noncommutative algebra (semiprime PI algebras of Gelfand-Kirillov dimension one), we construct
a framework for the systematic study of the structure of the algebra D(W) of matrix differential
operators for which the orthogonal polynomials of the weight matrix W (z) are eigenfunctions. The
ingredients for this algebraic setting are derived from the analytic properties of the orthogonal matrix
polynomials. We use the representation theory of the algebras D(W) to resolve the matrix Bochner
problem under the two natural assumptions that the sum of the sizes of the matrix algebras in the
central localization of D(W) equals N (fullness of D(WW)) and the leading coefficient of the second
order differential operator multiplied by the weight W (x) is positive definite. In the case of 2 x 2
weights, it is proved that fullness is satisfied as long as D (W) is noncommutative. The two conditions
are natural in that without them the problem is equivalent to much more general ones by artificially
increasing the size of the matrix W (x).
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1. Introduction.

1.1. An overview of the results in the paper. Orthogonal matrix polyno-
mials are sequences of matrix-valued polynomials which are pairwise orthogonal
with respect to a matrix-valued inner product defined by a weight matrix W (x).
They were defined seventy years ago by Krein [32] and since then have been shown
to have a wide variety of applications in both pure and applied mathematics, includ-
ing spectral theory, quasi-birth and death processes, signal processing, Gaussian
quadrature, special functions, random matrices, integrable systems and represen-
tation theory. Of great specific interest are those orthogonal matrix polynomials
which are simultaneously eigenfunctions of a matrix-valued differential operator.
They in particular generalize the classical orthogonal polynomials of Hermite, La-
guerre, and Jacobi whose utility in diverse research areas is difficult to understate.

The current and potential applications of matrix-valued orthogonal polynomi-
als and the study of their analytic properties naturally motivate the problem of the
classification of all orthogonal matrix polynomials which are eigenfunctions of a
second order differential operator. This problem was posed and solved by Bochner
[7] in the scalar case and later extended by Duran [17] to the matrix case.

Problem 1.1. (Matrix Bochner Problem) Classify all N x N weight matrices
W (x) whose associated sequence of orthogonal matrix polynomials are eigenfunc-
tions of a second order matrix differential operator.

Bochner [7] proved that for N = 1 up to an affine change of coordinates the
only weight matrices satisfying these properties are the classical weights e*zz,
abe 1 (g (%), and (1 —2)*(1+x)"1(_y 1)(x) of Hermite, Laguerre, and Jacobi
respectively. For brevity, we hereafter refer to affine transformations of these
weight functions as classical weights. However, for N > 1 the solution of the
matrix Bochner problem has proved difficult.

Grunbaum, Pacharoni, and Tirao [24, 25] found the first nontrivial solutions
of the matrix Bochner problem using Harish-Chandra modules for real simple
groups and the associated matrix spherical functions. Further examples related to
Lie groups are found in [31]. In the past twenty years numerous other examples
have been found, not necessarily associated with Lie theory. More recent work has
focused on the study of the algebra D(W) of all differential operators for which
the matrix-valued polynomials are eigenfunctions. Alternatively, D(WW') may be
described as the algebra of all differential operators which are degree-preserving
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and W -adjointable. This algebra is studied both from a general stand point and for
specific weights W (x), [10, 26, 37, 44, 48]. However, the previous general results
on the structure of D(W) are very limited and general classification results on the
matrix Bochner problem have remained illusive.

In this paper, we carry out a general study of the algebra D(W) using tech-
niques from noncommutative algebra. Starting from the analytics properties of the
related sequence of orthogonal matrix polynomials, we equip the algebra D(W)
with the structure of a x-algebra with a positive involution. From here we obtain
that D(W) is an affine semiprime algebra of Gelfand-Kirillov dimension at most
one. Among the hardest of these properties to prove is that D(W) is affine. We
show this by first proving that the center is affine by constructing an embedding
into a product of Dedekind domains. We then show that the whole algebra D(1V)
is a large subalgebra of an order in a semisimple algebra. Once all the properties
of D(W) are established, the Small-Stafford-Warfield theorem [43] tells us D (V)
is a Noetherian algebra which is finitely generated module over its center Z(W).
This is used to show that the extension of scalars of D(WW) to the total ring of
fractions of Z(W) is isomorphic to a product of matrix algebras over the function
fields of the irreducible components of Spec Z(WW') (one matrix algebra for each
irreducible component). This fact in turn allows us to define the notion of the rank
of the algebra D(W') which equals to the sum of the sizes of the matrix algebras.
This integer is shown to be between 1 and N and another characterizations of it
is given as the maximal number of generalized orthogonal idempotents of D (1)
which sum to a central element.

The above structural results allow us to define canonical submodules of the
Q(x),D(W)-bimodule (x)®Y, where Q(x) is the matrix Weyl algebra with ra-
tional coefficients. Using representation theory, we demonstrate that the algebraic
structure of the algebra D(TV) has a profound influence on the shape of the weight
matrix W (x) itself. Specifically, using D(W') modules defined from the maximal
set of orthogonal idempotents, we prove that when the algebra D(W) is full in
the sense that the rank is as large as possible (i.e., equals V), the matrix W (z) is
congruent to a diagonal weight matrix via a rational matrix 7'(z),

(1.2) W(x) =T(x)diag (fl(a:),...,fN(:E))T(:E)*

where f;(x) is a classical weight for all 7. Further arguments with these D (W)
modules allow us to control the size of the Fourier algebra of the matrix weight
W (zx), which is defined as the algebra of matrix differential operators that applied
to the orthogonal matrix polynomials of W (x) equal to a shift operator applied
to the same sequence. This is a larger algebra than D(W), which in turn is used
to show that under natural assumptions, solutions of the matrix Bochner problem
come from bispectral Darboux transformations of a direct sum of classical weights.
Our main theorem is the following Bochner-type classification result:
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THEOREM 1.3. (Classification Theorem) Let W (x) be a weight matrix and
suppose that D(W) contains a W -symmetric second order differential operator

(1.4) D = 92Dy () + 9y Dy () + Do(x)

with Dy (z)W (z) positive-definite on the support of W (x). Then the algebra
D(W) is full if and only if W (z) is a noncommutative bispectral Darboux trans-
formation of a direct sum of classical weights. Furthermore, in this case (1.2)
holds.

A matrix differential operator is called W -symmetric when it equals its formal
adjoint with respect to W (x), see Definition 2.14. The algebra D(W) contains a
second order differential operator if and only if it contains a W -symmetric second
order differential operator. For such an operator (1.4), the matrix D, (z)W (x) is
necessarily Hermitian.

We pause here to briefly explain the assumptions in the theorem, arguing that
they are both relatively weak and natural. The requirement that D(1) contains a
second order WW-symmetric operator ® with D,(x)W (z) positive definite on the
support of W (x) is a non-degeneracy condition. It implies that © is not a zero
divisor in D(W) and that ® does not annihilate an infinite dimensional space of
matrix-valued polynomials. It fits well into the literature wherein the stronger con-
dition that the leading coefficient of the second order differential operator is a scalar
is often assumed.

Furthermore, without this positivity assumption, the problem is closely related
to the much more general one for classifying matrix weights for which D(W) is
nontrivial, i.e., contains a differential operator of an arbitrary nonzero order. This
problem is not solved even in the scalar case. To see the stated relation, consider
an N x N matrix weight W (z) for which D(W) contains an operator of order 2k.
Let W(l‘) be a bispectral Darboux transformation of T (z) obtained by factorizing
the differential operator into a product of operators of orders £ in the sense of Def-
inition 2.33. Then the 2N x 2N block diagonal weight matrix diag(W (), W(m))
has the property that D(diag(WV, W)) contains a differential operator of order k,
see Example 3.11 for details. In various common situations this can be iterated to
bring the minimal order of a differential operator in D(W) down to 2 by increasing
the size of W (). The positivity assumption on the leading terms of the differential
operator ® avoids this vast expansion of the matrix Bochner problem. In a similar
fashion, when one artificially increases the size of a matrix weight, the difference
between /N and the rank of D(W) increases too, leading to cases where the alge-
bra D(W) is substantially smaller than the size of the matrix weight W (x). The
fullness condition ensures that the problem does not become wild in this way.

Additionally, under the assumptions of the Classification Theorem we obtain
an explicit description of the algebra D (W) itself. In particular Theorem 5.26 pro-
vides us with a matrix differential operator conjugating D(W) into a subalgebra of
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D(fi®---® fn) for some classical weights fi,..., fx. When the fi,..., fy are
suitably chosen, this latter algebra is a maximal order (which is in this context a di-
rect product of matrix algebras over polynomial rings). In this way, we can think of
our process as a noncommutative desingularization of the original algebra D(W).

We prove that our results take on a more explicit form in the case of matrix
weights W () of size 2 x 2. In this case we show that, if D(1¥) is noncommutative,
then D(W') must be full. This leads us to the following classification result for 2 x 2
weight matrices.

THEOREM 1.5. (2 x 2 case) Let W (x) be a 2 X 2 weight matrix and sup-
pose that D(W) contains a W -symmetric second order differential operator whose
leading coefficient multiplied by W (x) is positive definite on the support of W (z).
The algebra D(W) is noncommutative if and only if the weight W (x) is a noncom-
mutative bispectral Darboux transformation of r(x)I for some classical weight

r(x).

Thus aside from various degenerate cases when D (W) consists of polynomials
of a single differential operator of order 2, this fully resolves the Bochner problem
for the 2 x 2 case.

For a comprehensive background on noncommutative rings and polynomial
identity (PI) algebras we refer the reader to the books [23, 35] and [13], respec-
tively. A comprehensive treatment of orders in central simple algebras is given in
[38]. A concise and illuminating treatment of PI rings can be found in [8, Sec-
tions 1.13 and III.1].

We refer the reader to the arxiv version of the paper (arXiv:1803.0440, Section
6) for detailed examples of noncommutative bispectral Darboux transformations
for 2 x 2 matrix weights of Hermite, Laguerre, and Jacobi type. These examples in
particular illustrate how previous solutions of the matrix Bochner problem fit into
our framework.

1.2. From algebraic geometry to noncommutative algebra. The idea
that the algebraic properties of a commutative algebra of differential or difference
operators can tell us about the operators themselves is not new. It is a powerful
point of view that can be pointed to as the central concept in the unification of
various phenomena in integrable systems and algebraic geometry during the 70s
and 80s, [14, 33, 41, 46]. This resulted in a number of strong applications of alge-
braic geometry to the analysis of solutions of integrable systems, and in spectacu-
lar applications in the opposite direction, for instance the solution of the Schottky
problem [42].

More formally, there is a natural correspondence between differential oper-
ator algebras, vector bundles on algebraic curves, and exact solutions of certain
nonlinear partial differential equations. The most basic example of this is when a
Schrodinger operator 9 + u(x) commutes with a differential operator of order 3.
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In this case, u(z) gives rise to a soliton solution of the Korteweg-de Vries equation
[34]

Ouza(X,t) +60(2,t) Py (x,t) = dr(2,t).

This concept has also been applied in the context of bispectral algebras of dif-
ferential operators of low rank (here rank means the gcd of the orders of differential
operators in the algebra). Most strikingly, Wilson provided a complete classifica-
tion of bispectral differential operators of rank 1 in terms of rational projective
curves with no nodal singularities [47]. General methods for constructing bispec-
tral operators with C'(9) of arbitrary rank have been developed [1, 2, 15, 29] and the
bispectral algebras C'(9) containing an operator of prime order have been classified
[27]. Moving into a noncommutative direction, rank 1 bispectral solutions of the
KP hierarchy and the related Calogero-Moser systems were analyzed in [3, 4, 6]
using D-modules, one-sided ideals of the first Weyl algebras and noncommutative
projective surfaces.

The basis of the applications of algebraic geometry to integrable systems is
the consideration of commutative algebras of differential and difference operators.
New in this paper is the systematic study of the properties of orthogonal matrix
polynomials for a weight matrix W (x), based on structural results for the algebra
D(W) which is generally noncommutative. The noncommutative case is quite a bit
more challenging; for example, we no longer have the power of algebraic geome-
try to rely on, at least directly. Our methods use PI algebras, and more precisely,
noncommutative algebras which are module-finite over their centers, their relation
to central simple algebras, and their representation theory [8, 13].

Similarly, to Shiota’s solution of the Schottky problem [42], we expect that our
methods will have applications of orthogonal matrix polynomials to noncommuta-
tive algebra, in that interesting PT algebras can be realized as the algebras D (W) for
some weight matrices W (x). Such a relation, can be used to study fine properties
of these algebras using orthogonal polynomials.

1.3. Notation. Throughout this paper, we will use capital letters to repre-
sent matrices and lower case letters to represent scalars. We will also use the Gothic
font to represent differential operators and script to represent difference operators.
For example, we will use f(x) or F'(z) to represent a function of =, depending on
whether it is a scalar or matrix-valued function. Similarly, we will use 0 or © to
represent a differential operator, again depending on whether it is scalar or matrix-
valued. Furthermore an expression like .# will denote a matrix-valued discrete
operator. Wherever feasible, we will use capitalized calligraphic font, such as A,
to denote various operator algebras, subalgebras, and ideals. Exceptions to this will
include certain special algebras, such as the algebra of all differential operators, that
will have their own special notation.
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For reasons pertaining to compatibility with the matrix-valued inner product
(-,-)w defined below, our differential operators will act on the right. For example,
the basic differential operator 0, acts on a function f(z) by

F(2)-0, = /().

An arbitrary matrix differential operator ® = Z?:o %Aj(a:) acts on a matrix-
valued function F'(z) by

Because this action is a right action, the algebra of all differential operators will
satisfy the fundamental commutation relation

x0—0x = 1.

Note this is reversed from the typical identity for the Weyl algebra, since differen-
tial operators are most often taken to act on the left. Thus our algebra of differential
operators will actually be the opposite algebra of usual Weyl algebra.

In addition, we will adopt the following notation:

e For any ring R, R[z], R(x), R[[z]] and R((z)) will denote the rings of poly-
nomials, rational functions, power series and Laurent series with coefficients in R,
respectively.

e We will use Q[z], Q(z), Q[[x]] and Q((x)) to denote the opposite algebras of
the Weyl algebras with coefficients in C[x], C(x), C[[x]] and C((x)) respectively
(i.e., the rings of differential operators with right action).

e The symbol { will always denote the 1 -adjoint, as defined below.

e For any ring R, My (R) will denote the ring of matrices with coefficients in
R and E;; will denote the element of this ring with a 1 in the ¢, j’th entry and zeros
elsewhere.

e The symbols z, ¢, and n will represent indeterminants, unless specified oth-
erwise.

Acknowledgments. We are grateful to Ken Goodearl for very helpful corre-
spondence on *-algebras. We would also like to thank F. Alberto Grinbaum, Erik
Koelink, Pablo Roman and Ignacio Zurrian for their valuable comments and sug-
gestions on the first version of the paper. We are indebted to the anonymous referee
for making a number of valuable suggestions that greatly improved the paper. In
particular, the referee raised important questions about the case of weights with
unbounded support and because of these comments we were able to structure our
arguments in such a way that Theorem 1.3 fully captures this case.
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2. Background.

2.1. Orthogonal matrix polynomials and Bochner’s problem. We be-
gin with a brief review of the basic theory of orthogonal matrix polynomials and
Bochner’s problem.

Definition 2.1. A weight matrix W (x) supported on a (possibly unbounded)
interval (zo,z) is Hermitian matrix-valued function W : C — My (C) which is
entrywise-smooth on R, identically zero outside of (x¢,x;), and positive definite
on (zg,x;) with finite moments:

/me(ac)da: <eo, VYm>0.

We call the interval (x,z) the support of W (x). Note that in general x¢,x; may
be extended real numbers.

Remark 2.2. We are restricting our attention to “smooth” weight matrices in
order to avoid more delicate analytic considerations. In general one may consider
matrix valued measures on R satisfying an appropriate generalization of the above
definition. This is discussed further in [12].

A weight matrix W (z) defines a matrix-valued inner product (-,-)y on the
vector space My (C[x]) of all N x N complex matrix polynomials by

@3 (PQwi= [ P@W@Qa) dr. VP.QEMy(Cl).

By applying Gram-Schmidt we may determine a sequence of matrix-valued
polynomials P(z,n) € Myn(Clz]), n € N, with P(z,n) degree n with nonsingu-
lar leading coefficient such that (P(z,n),P(z,m))w = 0 for m # n. Moreover
this sequence P(x,n) is unique up to left multiplication by a nonsingular constant
matrix. This leads to the following definition.

Definition 2.4. We call a sequence of matrix polynomials P(x,n), n € N, a
sequence of orthogonal matrix polynomials for W (x) if for all n the polynomial
P(z,n) has degree n with nonsingular leading coefficient and

(P(z,n),P(x,m))w =0, Vm#n.

The sequence P(z,n) will be called monic if the leading coefficient of each
P(z,n)is I.

The sequence of monic orthogonal polynomials of a weight matrix W () must
satisfy a three-term recursion relation and a converse statement also holds.
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THEOREM 2.5 (Durdn, Van Assche and Lopez-Rodriguez [20, 19]). Suppose
that P(x,n) is a sequence of monic orthogonal matrix polynomials for a weight
matrix W (x). Then for some sequences of complex matrices B(n) and C(n), we
have

(2.6) xP(xz,n)=P(z,n+1)+B(n)P(x,n)+C(n)P(z,n—1), VYn>1.

Conversely, given sequences of matrices B,C : N — C satisfying natural mild as-
sumptions, there exists a weight matrix W (x) for which the sequence of polynomi-
als P(x,n) defined by (2.6) is a sequence of monic orthogonal matrix polynomials.

The focus of our paper is the Matrix Bochner Problem 1.1. Specifically, we
wish to determine for which weights W (x) the associated sequence P(xz,n) of
monic orthogonal polynomials satisfy a second order matrix differential equation

(2.7) P"(x,n)Ay(z) + P'(z,n) A (x) + P(z,n)Ao(x) = A(n)P(z,n)

for all n for some sequence of complex matrices A(n). Equivalently, we want to
know when the P(z,n) are eigenfunctions of a second order matrix differential
operator ® = 92 A, (x) + 0, A1 () + Ao(z) acting on the right with matrix-valued
eigenvalues. More generally, we can consider the algebra of all differential opera-
tors for which the sequence P(x,n) are eigenfunctions.

Definition 2.8. Let W (x) be a weight matrix with sequence of monic orthogo-
nal polynomials P(z,n). We define D (1) to be the collection of all matrix-valued
differential operators for which the P(x,n) are eigenfunctions for all n. We call
D(W) the algebra of matrix differential operators associated to W (z). We use
Z(W) to denote the center of D(W).

Remark 2.9. Later we will realize D(W) as the right bispectral algebra associ-
ated to the bispectral function P(z,n). However we will retain the notation D(W)
throughout the paper.

2.2. Adjoints of differential operators. Our methods extensively use -
algebras constructed using the adjoint of a matrix differential operator. We briefly
recall some definitions and ideas here and refer the reader to the excellent reference
[16] for a comprehensive treatment. A matrix differential operator ® may always
be viewed as an unbounded linear operator on a suitably chosen Hilbert space.
Therefore it makes sense to think about the adjoint of a differential operator strictly
in terms of functional analysis.

Definition 2.10. An unbounded linear operator on a Hilbert space 7 is a linear
function 7" defined on a dense subset H called the domain of T'. The adjoint of T'



1018 W. R. CASPER AND M. YAKIMOV
is an unbounded linear operator 7 with domain
{y € H:az— (Tz,y) is continuous }

defined by (T'z,y) = (x,T*y) for all z and y in the domain of 7" and 7™, respec-
tively.

Remark 2.11. Some authors do not require an unbounded operator to be de-
fined on a dense subspace. However it is necessary for Hahn-Banach to imply the
existence of 7, so we adopt it as part of our definition. Since we will be working
with differential operators with rational coefficients, this definition will be suffi-
cient for us.

The algebra of differential operators also have a natural adjoint operation
called the formal adjoint.

Definition 2.12. The formal adjoint on My (2((z))) is the unique involution
extending Hermitian conjugate on £2((x)) and sending 0,1 to —0,.1.

Now consider specifically the Hilbert space H = L?([—1,1]). The formal ad-
joint is defined in such a way that the adjoint of an unbounded operator and its
formal adjoint will agree on a subset of H whose closure has finite codimension.
However as the next example shows, the formal adjoint may not be equal to the
adjoint of ® as an unbounded linear operator.

Example 2.13. Let H = L*([—1,1]) with the usual inner product and consider
two polynomials p(z),q(x). Then the formal adjoint of the differential operator 0,
is 0 = —0,.. However we calculate

1

(p() 00 q(z)) = / P (@)g(@)dx

-1

Since there is an extra term on the right-hand side, the formal adjoint of 0, does
not agree with the adjoint as an unbounded linear operator on its domain.

More generally a weight matrix W (x) defines a Hilbert space of matrix-
valued functions My (#), where H is the Hilbert space of complex-valued
L?(tr(W (x))dz) functions on the support (xo,z1) of W (x). Any matrix-valued
differential operator © € My (£2[[z]]) with suitably nice coefficients will define
an unbounded linear operator on My (H). There is also a natural choice of formal
adjoint here which takes into account the form of the inner product.
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Definition 2.14. Let W (x) be a weight matrix supported on an interval (o, )
containing 0 and let © € My (Q[[z]]). A formal adjoint of © with respect to W (x),
or formal W (z)-adjoint of ® is the unique differential operator D € My (Q[[z]])
defined on (zg,x;) by

D= W(z)D*W (x)"".
An operator @ is called formally W (x)-symmetric if D7 = D.

Remark 2.15. We require 0 to be in the interval (x¢, ;) in order for W (z) and
W (2)~! to have series expansions at 0, and thereby representations in My (C[[z]]).
This is a technical necessity for T to be defined on My (2[[x]]), but is not an im-

portant restriction since we can always affinely translate until the support contains
0.

Definition 2.16. Let W (x) be a weight matrix and let © € My (2[z]). We
say that © is W-adjointable if there exists a differential operator ® € My (Q[z])
satisfying

(P-D,Q)w = (P,Q-D)w, VP,Q¢e My(Clz]).

In this case, we call D the adjoint of © with respect to W (x), or alternatively the
W-adjoint of ®. If © =D, then © is called W -symmetric.

Even if a given differential operator © is W-symmetric, it is not necessarily
formally W -symmetric, as the following example from [45] shows.

Example 2.17. Let r(z) = 1 exp(—In(z)?/2) defined for z > 0 and consider
the weight matrix

4r(x) r(z)sin (27 In(x)

W(z) = . ( ) L(0,00)-
r(z) sin (27 In(z)) 2r(z)

Then for any polynomials P(z),Q(z) € M>(C[z]) and real numbers a,b we have

(P(x)diag(a,),Q(x))y, = (P(),Q(x)diag(a,b)),

due to the fact that ["2"r(x)sin(2rIn(z))daz = 0 for all n > 0. Consequently
the element diag(a,b) is W-symmetric. However, diag(a,b) is not formally W -
symmetric since diag(a,b)" # diag(a,b).

Remark 2.18. We are grateful to the anonymous referee for pointing out this
example to us, greatly contributing to the clarity of the presentation of adjoints for
weight matrices with unbounded support.

The situation described in the previous case is pathological, arising from the
unbounded support of W (). Specifically it is due to the fact that in an unbounded
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domain two different functions can have identical moments. However, if two dif-
ferent smooth functions have the same moments, and both decrease sufficiently
rapidly for large values of |x|, then they will necessarily be the same. This prompts
the following definition.

Definition 2.19. We say that a matrix-valued function F'(z) : R — My(C)
decreases exponentially at infinity if there exist positive real numbers a,b such that

lim e’ F(z) = 0.

xr—rteo

Remark 2.20. In particular, if the support of a weight matrix W () is bounded,
then by definition W (x) decreases exponentially at infinity. If F'(x) decreases ex-
ponentially at infinity and all its moments exist and are zero, then F'(z) will itself
be zero.

Under the following assumption about W (z), the formal W -adjoint of a dif-
ferential operator will always agree with the WW-adjoint of a differential operator
when the latter exists.

Assumption 2.21. For each integer n > 0 the n’th derivative W) (z) de-
creases exponentially at infinity and there exists a scalar polynomial p,(x) such
that W) (x)p,, () has finite moments.

Here by finite moments, we mean that the entries of W (")p,, (x)z" are in L' (R)
for all nonnegative integers k.

LEMMA 2.22. Suppose that f : R — R has finite moments and decreases ex-
ponentially at infinity. If [ f(z)z™dz = 0 for all n > 0 then f(x) =0 for a.e. .

Proof. The moment condition is a real constraint, so to prove our lemma it suf-
fices to consider the case when f(z) is real-valued. Write f(z) = fi(x) — f-(x)
for functions f4 (x) which are positive with complementary support. Since f(x)
has finite moments and decreases exponentially at infinity, so too do f (x). There-
fore there exist positive constants 7, a,bs such that fi(z) < exp(—a+z’*) for
|z| > r1.. We calculate that the n’th moment of f, (z) satisfies the inequality

ri
o= [atfuytn < [ e pudet [ fafme e an
R R

—ry

. 21 n+1
Sr:ﬁ:”f:t|’1+aa(in+l)/bir< by >

K 1 n+1
< —
~ by a("+1)/bir< by >’
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where K exists because I'(n) must (eventually) grow faster than (ai/ biri)”.
Therefore

. o 1/b 1/2n
Z Z b / + al/bi 1 e
- Y/ Mon,+ - M)I/ZH

F( [

By Carleman’s condition, it follows that f. is the only nonnegative function with
the sequence of moments m,, 1. By assumption [ f(z)z"dz = [ f_(x)x™dx for
all n > 0, so that m,, . = m,, _ for all n. Consequently f,(z) = f_(z) a.e., and
therefore f(x) =0 a.e. O

PROPOSITION 2.23. Let W (x) be a weight matrix satisfying Assumption 2.21
and let ® € My (Qx]) be a matrix differential operator. If © is W -adjointable and
D' € My(Q[x)), then its W -adjoint is equal to the formal W -adjoint .

Proof. Suppose that D is W-adjointable and let ® € My (Q[z]) be the W-
adjoint of ©. Additionally let n be the order of © and choose f(z) € C[z] such
that WU)(z) f(z) € My(H) for all 0 < j < n. Furthermore let p(x) € C[z] be
the unique monic polynomial vanishing only at the finite endpoints of the sup-
port of W (z) and let ¢(z) = pi(x)p2(x)...pn(z)p(x)", for n the order of © and
p1(x),...,pn(x) defined as in Assumption 2.21. Then for any Q(z) € My (Clx])
there exist matrices By(z),Ck(x) € My (Clz]) (depending on the values of Q(x)
and ©) such that

((9(2)Q(x)) - (W(2)D* =DW (2)))" = _ Br(a)pi(a)WH) (2)Cr ().
k=0

Therefore the expression in the left-hand side decreases exponentially at infinity
and has finite moments. As a consequence, if all the moments are zero, then the
expression will be identically zero.

Integration by parts tells us that for all P(x),Q(x) € My (C|x])

(P(a)Doa@)Q@))y = [ (Pla) D)W (@)al0) Qo) d

0

= [7 P ((a)@@) W )2 d.

0

Combining this with the W (x)-adjoint definition, we obtain that for all P(z),

Q(x) € My(Cl[z])
/ " P(a) (g(2)Q() - (W (2)D" — DW (2)))"de = 0.

0

This implies that the entries of ((¢(z)Q(x)) - (W (x)D* — 5W(ai)))* have all mo-
ments equal to zero. It follows that ((¢(z)Q(z)) - (W (2)®* —DW (x))) =0 for
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all Q(z) € My (Clz]) and therefore the kernel of W (z)D* — DW (x) contains
q(x) My (C[z]). Hence D" —® = 0, completing the proof. O

In the case that D(W) contains a W-symmetric second order differential op-
erator of the form (1.4), then W () satisfies the noncommutative Pearson equation

(2.24) 2(Dy(z)W ()" = Dy(x)W (z) + W (2) Dy (z)*.

When D, (z)W (z) is positive-definite on the support of W (x), one may use this
to show that the weight matrix W (x) will satisfy Assumption 2.21, as proved in
the next lemma. Hence for the purposes of this paper, the formal VW -adjoint will
always be equal to the 1 -adjoint, whenever the latter exists.

LEMMA 2.25. Suppose that W (x) is a weight matrix and that D(W') con-
tains a W -symmetric, second order differential operator © of the form (1.4) with
Dy (z)W () positive-definite on the support of W (x). Then W (z) satisfies As-
sumption 2.21.

Proof. Note that det(D;(x)) is not identically zero, so its inverse exists as
a matrix-valued rational function. Therefore D;(z) is invertible in My (C(x)).
Let pi(x) = det(Dy(x)) € C[z] so that D;(x) 'p;(x) € My (C[z]). Then by us-
ing the noncommutative Pearson equation (2.24), one may show inductively that
p1(z)"W ™ () is equal to a sum of matrix polynomials multiplying W (z) on the
left and right, and consequently has finite moments, and that if W (x) decreases
exponentially at infinity, then so too does W (") (z) for each n. Thus it suffices to
show that W (x) decreases exponentially at infinity.

Set Q(x) = Dy(z)Da(x)~" € My(C(x)) and H(z) = Do(z)W (). Since
W (x) = Dy(x)"'H(z), to prove that W (x) decreases exponentially at infinity
it suffices to prove that H (z) decreases exponentially at infinity. Note that the non-
commutative Pearson equation (2.24) reads

2H'(z) = Q(x)H () + H(x)Q(x)".

This is a first-order, N2 x N? linear system of differential equations for the entries
of H(x), with coefficients in C(z). In particular by reindexing, we can write this
equation as

d
2.26 2= M(z)§
(2.26) e (z)7,

where M (z) is an N2 x N? rational matrix whose entries are determined by the
entries of (Q(«) and the entries of ¥ are the entries H;;(z) of H(x) arranged in
lexicographical order.

We view (2.26) as a differential equation on C. We consider two possibilities:
either (2.26) has at most a singularity of the first kind at oo, or else (2.26) has a
singularity of the second kind at infinity.
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In the first case, by [11, Theorem 5.1] the general solution ®(z) of (2.26) is
meromorphic in a neighborhood of oo, and therefore the functions H;;(x) extend
to meromorphic functions in a neighborhood of infinity. Consequently 1/H;;(z)
is meromorphic in a neighborhood of infinity also and so for each ¢, j there exists
an integer n;; > 0 with 1/(H;;j(z)2"%) — 0 as z — oo. This implies that H;;(z) =
|H;j(z)| > |z|~™ for |z| large enough and since the H;;(z) have finite moments
this implies that the support of W (x) must be bounded.

In the second case, by [11, Theorem 6.1], (2.26) has a formal-solution matrix
®(z) of (2.26) of the form

¢(z) = S(Z)dlag(eql (Z)j e 7eqN2 (Z))7

where here each ¢;(z) is a polynomial in C[z'/"] for some fixed integer h > 0 and
S(z) is an N? x N? matrix whose determinant does not vanish for large || and

mij

i _ —t/h
= 2" Z oijm(2)1og™(2), oijm(z) = ZO’ijng /
=0

for some constants o;;,,¢. Appropriate linear combinations of the formal solution
will agree with the values of H;;(z) at points in the support of W (x) near infinity,
but the coefficients in the expansion may change depending on which direction we
approach oo on the real line, due to branching.

Suppose that the support of W (z) is unbounded to the right. From the previous
paragraph, we know that H;;(x) will be of the form

§ :s”k er

for some functions s, () expressible in terms of the entries of S(z). In particular,
the entries of sy, () ~ x™%/"log(z)™isk as x — oo. Therefore for the H;(x) to
have finite moments, we must have that Re(qx(x)) goes to zero as x — oo. Since
sijk(z) = O(ativ) for some integer t;;), € Z as x — oo, this shows that H,;(z)
decreases exponentially as x — oo.

Similarly, if the support of W (z) is unbounded to the left, then we may show
that the H;;(x) decrease exponentially as & — —eo. Thus in any case, the function
H (x) decreases exponentially at infinity. O

2.3. Bispectrality. The notion of bispectrality arose from questions origi-
nally posed by Duistermaat and Griinbaum [15] on finding locally meromorphic
functions v (x,y) which define a family of eigenfunctions for a fixed differential
operator in z and a family of eigenfunctions of another differential operator in y.



1024 W. R. CASPER AND M. YAKIMOV

Examples of functions v (x,y) satisfying this property are referred to in the liter-
ature as bispectral functions. The simplest example of a bispectral function is the
exponential function ¢ (x,y) = e"Y.

Example 2.27. The exponential function ¢ (x,y) = e*¥ satisfies

O P(z,y) =y¥(z,y), and Oy -Y(z,y) =zY(z,Yy).
Therefore ¢(x,y) defines a bispectral function.

Since its inception, the concept of bispectrality has been generalized in various
natural directions, particularly in directions which include certain noncommutative
aspects. To begin, we present bispectrality in very general terms.

Remark 2.28. In our definition, we will use lower case for elements of alge-
bras. Since the algebras themselves are completely abstract, this is not a reflection
on whether the elements themselves are scalar or matrix-valued. Furthermore, the
elements of each of the algebras are never assumed to be commutative. However,
the algebras are assumed to be associative with identity.

Definition 2.29. We define an operator algebra to be an algebra A with a fixed
subalgebra M (.A), referred to as the subalgebra of multiplicative operators of A.
A bispectral context is a triple (A, B, H) where A and B are operator algebras and
H is an A, B-bimodule. A bispectral triple is a triple (a,b,1)) with a € A,b € B
nonconstant and ¢ € H satisfying the property that ¢ has trivial left and right
annihilator and

a-¢Y=1v-g, and Y-b=f-1p

for some f € M(A) and g € M(B). In the case that 1) forms part of a bispectral
triple we call v bispectral.

In the classical case .4 and B are both algebras of differential operators with
multiplicative operator subalgebras consisting of the functions on which the dif-
ferential operators act (eg. polynomials, holomorphic functions, smooth function,
etc). However, as is clear from the definition, bispectrality is a far more general
construction. The generalization of specific relevance to this paper is the case when
the multiplicative operator subalgebra M (.A) and M (B) are themselves not com-
mutative.

Given 1) € H bispectral, we define certain natural subalgebras of A and 5.

Definition 2.30. Let b € H be bispectral. We define the left and right Fourier
algebras Fr,(1) and Fr(v) to be

Fr)={ac A:3Fbe B, a-yp =1-b},
Fr(p)={beB:Jac A, a-yp =1-b}.
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We define the left and right bispectral algebras By, (1) and Br(1)) to be
Br(y)={a€A:3g€ M(B), a-v=1-g},
Br() ={beB:3f € M(A), f-¢=1-b}.

Since the left and right annihilators of ¢ are both trivial, there is a natural
isomorphism by, : F1,(v)) — Fr(1)) defined by the identity

a-1h=1)-by(a).

Definition 2.31. Let ¢ € H be bispectral. We call the natural isomorphism
by : Fr.(¢) = Fr() defined above the generalized Fourier map.

Remark 2.32. The name generalized Fourier map comes from our first ex-
ample. In that case A = Q(z)?,B = Q(y) and ¢ = e*¥. Then F1 (1)) = Q[z]P,
Fr(¥) = Q[y| and the generalized Fourier map is in fact the Fourier transform:

T T
. R EY] i J
by, Z a;;x' 0 — Z ai;y 8y.
2,7=0 1,7=0

Here and below, for an algebra A, A°P denotes the one with opposite product.

2.4. Bispectral Darboux transformations. In practice many of the impor-
tant families of bispectral triples arise from simpler or more obvious examples
through bispectral Darboux transformations.

Definition 2.33. Let (A,B,H) be a bispectral context, and let 1,2),1; € H. We
say that 1 is a bispectral Darboux transformation of 1) if there exist u,u € Fr(1))
and units p,p € M(A) and units ¢,q € M(B) with

(2.34) J:pil.w.uqfl and wzﬁfl.,lz_’qvflfd.

In the case that M(.A) or M(B) is noncommutative, this is also called a noncom-
mutative bispectral Darboux transformation in [22].

It follows from the definition that
¢ (ug™'q ') = pp- v,
(b, @p~"p~ "oy (w) - = g,
Furthermore, one works out that
P =1+ (q g "),
(p~ "0y (Wb (@p") - =1 - qq,

see [22, Theorem 2.1]. Thus both ¢ and J are bispectral.
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The following symmetry property of bispectral Darboux transformations di-
rectly follows from the definition and its proof is left to the reader.

THEOREM 2.35. If 1,; is a bispectral Darboux transformation of v then 1 is a
bispectral Darboux transformation of .

The bispectral nature of this type of Darboux transformations is established by
the next theorem.

THEOREM 2.36. (Geiger, Horozov, and Yakimov [22]) Suppose that ”(Z is a
bispectral Darboux transformation of 1. Then for all a € Fr,(1)

pap - = - q by (a)ug,
p by (waby, (@~ ) =1 - gby(a)d.

2.5. Degree-filtration preserving and exceptional differential operators.
Each differential operator © € D(W) will have an entire M (C)-module basis of
My (Clz]) as eigenfunctions. As such for any polynomial Q(x) € My (C[z]) we
know that the degree of Q(x)-D will be at most the degree of Q(x). We call such
operators degree-filtration preserving.

Definition 2.37. A matrix-valued differential operator © € My (C(x)) is called
degree-filtration preserving if for all polynomials Q(z) € My (C[x]) the function
Q(x)-D is a polynomial whose degree is no larger than the degree of Q(z).

Degree-filtration preserving differential operators will necessarily have poly-
nomial coefficients.

PROPOSITION 2.38. An operator ® € My (C(x)) is degree-filtration preserv-
ing if and only if

l
D= 9 Ai(x)
=0

with A;(x) € My (C[z]) a polynomial of degree at most i for all i.

Proof. Suppose © € My (€Q(z)). Then we may write
£ .
D= 9LA(x)
=0

for some matrix-valued rational functions A;(x) € My (C(z)). It is clear that if
Ai(x) € Mn(Cl[z]) is a polynomial of degree at most 4 for all 7, then © is degree-
filtration preserving.

To prove the converse, suppose that ® is degree-filtration preserving and that
for some 7 the matrix-valued rational function A4;(x) is either not a polynomial or



THE MATRIX BOCHNER PROBLEM 1027

has degree larger than i. Let j be the smallest nonnegative integer with A;(z) not
a polynomial of degree < j. Then we calculate

—_

<.

1

; 1
—!:L'j D=Aj(x)+

G-

Since © is degree-filtration preserving the left-hand side of the above equality is
a polynomial of degree at most j. Furthermore the sum on the right-hand side is a
polynomial of degree at most j, so we conclude

27 A ().

J

Il
<

i

j7
1 - 1.
Aix) = — 7 "A () — =27 - D

—_

is a polynomial of degree at most j. This is a contradiction and completes the
proof. ]

A Darboux conjugate D of D will still have a great many polynomials which
are eigenfunctions, but not necessarily a full basis for My (C[z]). For this reason ®
may have non-polynomial rational coefficients. This leads us to consider the notion
of an exceptional differential operator [21, Definition 4.1].

Definition 2.39. A differential operator 0 € )(x) is called exceptional if it has
polynomial eigenfunctions of all but finitely many degrees. More precisely 0 is
exceptional if there exists a finite subset {m,...,my} C N satisfying the property
that there exists a polynomial p(n) of degree n € N which is an eigenfunction of d
if and only if n & {my,...,my}. The values my,...,my are called the exceptional
degrees of 0.

Example 2.40. The classical differential operators
=02z, Oix+0,(b+1—z), O2(1—2?)+0s(b—a+(b+a—2)z)

of Hermite, Laguerre, and Jacobi respectively have polynomial eigenfunctions of
every degree and are therefore exceptional operators.

Example 2.41. The differential operator

4
D:@%—&E <2$+m>

is an exceptional differential operator with exceptional degrees 1 and 2.

We can create new exceptional differential operators from old ones via Dar-
boux conjugation.

Definition 2.42. Let 0,0 € Q(z). We say that 9 is a Darboux conjugate of 9 if
there exists a differential operator h € Q(z) satisfying ho = 0b.
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PROPOSITION 2.43. if d is a Darboux conjugate of 9, then 0 is a Darboux
conjugate of 0.

Proof. Assume that 9 is a Darboux conjugate of 9. Then there exists a differ-
ential operator b € Q(z) such that ho = db. This implies that ker(h) -0 C ker(h).
The kernel is finite dimensional, so we may choose a polynomial ¢(9) € C[2] with
ker(h) - ¢(d) = 0. This implies that there exists h satisfying ¢(?) = bb. In particular

? commutes with b so that
hoh = dhh = hhd.

Since () is an integral domain, this implies DE = 55 Therefore 0 is a Darboux
conjugate of 0. O

PROPOSITION 2.44. Let 0 be an exceptional differential operator and suppose
that 0 is a Darboux conjugate of 0. Additionally assume hd = b for h € Q[x]. Then
0 is also exceptional.

Proof. For all but finitely many n, there exists a polynomial p(z,n) of de-
gree n which is an eigenfunction of 0. This implies that p(x,n) - b is a polynomial
eigenfunction of 9. One may easily show that there exists an integer m € Z such
that for all but finitely many 7 the degree of p(z,n) -y is n+m. Consequently 9 is
exceptional. O

Definition 2.45. We call a differential operator 0 € Q(x) degree-filtration pre-
serving if for all polynomials p(z) € C[z] the function p(x) -0 is a polynomial of
degree at most the degree of p(z).

The most interesting fact about exceptional operators is that for low orders ex-
ceptional operators always arise as Darboux conjugates of degree preserving differ-
ential operators. For order O or 1, one may in fact show that exceptional differential
operators are necessarily degree-filtration preserving. The case of order 2 is sub-
stantially more difficult and is treated by the next theorem.

THEOREM 2.46. (Garcia-Ferrero, Gémez-Ullate, and Milson [21]) If 0 is an
exceptional, second order differential operator then 0 is a Darboux conjugate to a
degree-filtration preserving differential operator.

3. Bispectral Darboux transformations of weight matrices.

3.1. W-adjoints of algebras of matrix differential and shift operators.
In this paper, we will be restricting our attention to a single specific bispectral con-
text. Specifically, we will consider the bispectral context (My(S), My (Q2[x]),P)
where P is the set of all functions P : C x N — My (C) satisfying the property
that for any fixed n, P(x,n) is a matrix-valued rational function in x. Equivalently,
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P is the set of all semi-infinite sequences of matrix-valued rational functions. The
algebra S is the collection of discrete operators in variable n. The multiplicative
subalgebra M(S) of S consists of all functions N — C and S itself is the set of
operators .Z of the form

14
aj(n)2’ +)_b;(n)(2*)
j=1

M=

L =
=0

for aj,b; : N — C and &, 2" the operators acting on sequences by

-1 0
(Z-a)n)=a(n+1), and (7*-a)m)=1°" "1 "7
0, n =0.
Remark 3.1. The operator Z* is adjoint to the operator & in the Hilbert space
¢*(N), and this explains the notation. Moreover 22" = 1 so Z* is a right inverse
of 9. However *% = 1 — dy,,, s0 Z* is not quite a left inverse of 2.

Remark 3.2. For us, sequences will always be indexed over N. With this in
mind, we will always take the value of a sequence at a negative integer to be 0,
unless otherwise stated. Furthermore, n will be treated as an indeterminant.

Now let W (z) be a weight matrix and let P(x,n) be the associated sequence of
monic orthogonal polynomials. Then the three-term recursion relation of P(x,n)
tells us that there exists .£ € My (S) of the form

L =92+ An)+B(n)2*
such that
Z-P(x,n) = P(z,n)x.

Thus if D(WV) contains a differential operator © of positive order, then P(z,n)
will be bispectral with respect to this bispectral context.

As proved by Tirao and Griinbaum [26], the algebra D(W) is closed under
the W-adjoint f. Since the left and right bispectral algebras of P are isomorphic,
it makes sense that the involution 1 of Br(P) induces an involution on Br,(P).
Moreover, the involution T is actually the restriction of an involution on a much
larger algebra. In fact, the right Fourier algebra Fr(P) is closed under f. Thus
F1.(P) is closed under the involution induced by the generalized Fourier map also.
To prove this, we first describe the induced involution. First note that My (S) has
a natural * operation extending Hermitian conjugation on matrices and sending &
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to Z* (and vice-versa). Specifically it is defined by
(3.3)

l m
> A;(m)27+>  (Bj(n)2
§=0 j=1

With this in mind, we define the W-adjoint on My (S).

*

)4 m
= S A=) (VY Byn+ )P,
=0 =1

Definition 3.4. The W -adjoint of a shift operator .# € My(S) is defined to
be

M= ||Plan) |yt || P,n)|

where here we view ||P(z,n)||3, = (P(z,n), P(z,n))w as the sequence of Her-
mitian matrices in My (C) defined by the W -norms of the monic orthogonal poly-
nomials of the weight matrix W (z).

The next lemma shows that this adjoint operation is well behaved with respect
to the inner product defined by the weight matrix W (z).

LEMMA 3.5. Let # € Mn(S). We write My, or My, to emphasize that the
shift operator is acting on the discrete variable n or m, respectively. Then consider
the two polynomial sequences P(x,n), P(x,m) in variables n and m, respectively.
We have that

<///n . P(:E,n),P(:c,m)>W = <P(a:,n),///,; . P(a:,m)>W.

Proof. By linearity, it is enough to show that the above identity holds when
My, = A(n) D or when 4, = A(n)(2*)" for some sequence A(n) and some
integer ¢ > 0. We will prove the first case, leaving the second to the reader. In this

case A = A(n —0)*(2*)" so that
M= ||P ()| Aln = 0| P(z,n—0)|| 2(27)
We calculate

(A

P(xz,n),P(x, m)>W
<A(n) P(z,n+1?), P(m,m)>

w
= A(m) [ Pm)][[fy S m
= <m,n>HWHP .m0y AGm = 0| PG, m) [y bnm s
= (P(e.n).||P(x.m) 3, Alm — 0| Px.m = 0)] - Ple,m — D)y,
= (P(z,n), 4, (w,m)>w.

This proves the lemma. U
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3.2. The Fourier algebras of orthogonal matrix polynomials. We wish
to describe the left and right Fourier algebras of P. The next theorem describes the
corresponding Fourier algebras in this case. To prove it, we first require a lemma
characterizing the differential operators contained in the algebra of left My (C)-
linear endomorphisms of My (C[z]).

For every pair of elements a, b of an algebra A, we denote

Adg(b):=ab—ba and AdET(b) := AdE (Ad,(D)).

LEMMA 3.6. Suppose that ® : My (Clz]) — My (Clz]) is a left My (C)-
module endomorphism. If Adﬁl(d)) = 0 for some integer £ > 0, then there exists
a differential operator ® € My (Q[x]) of order at most ¢ satisfying ®(P(zx)) =
P(x)-D forall P(x) € My(C[z]).

Proof. First recall that any left My (C[z])-module endomorphism of
Mny(Clz]) is of the form P(z) — P(x)A(x) for some A(z) € Mn(Clx]).
With this in mind, we proceed by induction on ¢. If ¢ = 0, then Ad,;(®) =0
so that ®(xP(z)) = 2®(P(z)) for all P(z) € Mn(Clx]). Since ®(z) is a left
M (C)-module endomorphism of My (C[x]) it follows that ® is a left My (C|x])-
module endomorphism. Thus by the fact recalled at the start our lemma is true
when ¢ = 0.

As an inductive assumption, suppose that the statement of the lemma is true
for all £ < m. Now suppose that Ad”}"!(®) = 0. Then Ad,;(®) is a left My (C)-
module endomorphism of My (C[z]) with Ad);(Ad,7(®)) = 0. Thus by our in-
ductive assumption there exists a differential operator © € My (Cl[z]) of order at
most m satisfying

Ady1(®)(P(z)) = P(z)-®

for all P(z) € Mn(Clz]). We write © = Z;io@f,;Aj(a:) and define a new left
M (C)-module endomorphism ¥ of My (C[z]) by

m

U(P(x)) = &(P(x) - P(x)- | 00—

L Aj(2)
= j+1

We calculate

Ad, (V) (P(z)) = ¥ (2P(z)) — 2V (P(x))

= Ad,/(®)(P(x)) — P(z)- | Y _9A;(z)| =0.
j=0
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Therefore there exists a matrix A(z) € My (C[x]) with ¥(P(x)) = P(z)A(x) for
all P(z) € My (C|x]). Hence for all P(x) we have

m

; 1
_ +1 ,
(P (x)) = P(x)- JE_O % A+ AR)
Hence by induction our lemma is true for all /. U

THEOREM 3.7. Let W (z) be a weight matrix and let P(x,n) be the associ-
ated sequence of monic orthogonal polynomials and let £ € My(S) with £ -
P(x,n) = P(x,n)x. Then the Fourier algebras of P(x,n) are given by

Fr(P)={ € Mn(S): Ad"} () = 0 for some k >0},
Fr(P)={D € My(Q[z]) : © is W-adjointable and D" € My (z]) }.

Proof. We will first prove our formula for Fr,(P). If .# € Fr(P), then . -
P(z,n) = P(x,n)-D. If © has order /, then Ad’}!' (D) = 0. Applying the gener-
alized Fourier map, this implies that Adf(;l () =0. Thus

Fr(P) C{a € My (S): Ad%S! (M) =0 for some k > 0}.

To prove the opposite containment, suppose that .#Z € My(S) with
Ad@ Y(M) = 0 for some integer ¢. Consider the left My (C)-module endo-
morphism ® of My (C[z]) induced by

¢ : P(x,n)— M -P(z,n).

For any Q(z) € My (Clz]), we write Q(x) - ® to mean ®(Q)(x). Then for all n we
see

P(z,n)-AdN (@) = AdS () - P(z,n) =0.
Consequently Adﬁ1 (@) = 0 and by the previous lemma we know that
M - P(z,n) = (P(z,n)) = P(x,n) D

for some differential operator © € My (€2[x]) for all n. In particular .Z € Fr,(P).
This proves

Fr(P)={# € Mn(S): Ad%S! () = 0 for some &k > 0}.

Suppose that ® € My (Q[z]) and D is W -adjointable with D" € My (Q[z]).
Then we may write

4 4
D= dAi(x) and D'=) 0.Bi(x)
=0 =0
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for some polynomials A;(z), B;(z) € My (C|x]). Let m be the maximum degree
of all of these polynomials. Then we may write

n+m

=0

for the matrices C'(n,j) € My(C), defined by

C(n,j) = (P(x,n)- D, P(z,5))y | P(@,5)||-

Then using the W -adjointability, we see that

. . T
C(n,j) = (P(x,n), P(z,j) D)y | Pz, 5)|
and therefore C'(n, j) is zero if n — j > m. Thus

n+m
P(zn)-D= > C(n,j)P(x,j) =4 P(x,n)

j=n—m

for

M= ZC(n,n—Fj)@j+ZC(n,n—j)(@*)j.

Therefore © € Fr(P). Moreover, since Ad5™ (D) = 0 we know that Adf;; Ya)=
0. This proves

Fr(P) 2 {D € My (Q[z]) : © is W-adjointable and D" € My (Qz]) }.

Next, suppose instead that © € Fr(P). Then there exists .# € My (S) with .4 -

P(z,n) = P(x,n)-®. Then Adf;l(///) = 0 for ¢ the order of ®. Since xI is

t-symmetric, so too is .Z. It follows that Adij Y#7) = 0 and therefore .2 -

P(z,n) = P(z,n)-D for some D € F(P). Note that by the previous lemma for
allmeZ

<P(m,n)-©,P(:E,m)>W =(

(

,%HP(ZL‘,TL),P(ZL‘,W)>W
P(z,n), A -P(a:,m)>W

m

This implies that (P - ®,Q)w = (P,Q - D) for all polynomials P,Q €
My (C[z]). Hence ® is W-adjointable and ® = D7. Thus ®7 is W-symmetric
with ® € My (Q[x]). This proves

Fr(P)={D € My(Q[z]) : © is W-adjointable and D" € My (Q[z]) }.
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0

As a corollary of this, we see that the left and right Fourier algebras are closed
under the adjoint operation. In this way, the previous theorem provides a more
conceptual proof of the fact D(W) is closed under T than the proof found in [26],
see Theorem 4.1 below.

COROLLARY 3.8. Let W (x) be a weight matrix and P(x,n) be the associated
sequence of monic orthogonal polynomials. The left and right Fourier algebras
Fr(P) and Fr(P) are closed under t. Furthermore for all # € Fr,(P) we have
bp(A*) =bp(M)".

Proof. Tt is clear from the statement of the previous theorem that Fr(P) is
closed under 1. We showed in the proof of the previous theorem that if bp(.#) =
D, then bp(.# ") = DT, Therefore the identity in the statement of the corollary is
true. Since bp is an isomorphism, this implies F,(P) is also closed under .  [J

Definition 3.9. Let W (z) and W(a:) be weight matrices and let P(x,n) and
]S(m,n) be their associated sequences of monic orthogonal polynomials. We say
that P(z,n) is a bispectral Darboux transformation of P(z,n) if there exist differ-
ential operators T, % € Fr(P), polynomials F(z), F'(z) and sequences of matrices
C(n),C(n) which are nonsingular for almost all  and satisfy

C(n)P(z,n) = P(z,n)-TF(z) and C(n)P(z,n)=P(x,n)-F(z)%.

We say that W(ZL‘) is a bispectral Darboux transformation of W (z) if P(z,n) is a
bispectral Darboux transformation of P(z,n).

Remark 3.10. We do not require the C'(n),C(n)’s to be nonsingular for all n,
because doing so would eliminate many important bispectral Darboux transforma-
tions, including many trivial ones. In particular, the vanishing of C'(n) or C(n)
corresponds to “poles” of the eigenvalues, which occur naturally. For example, we
should expect any ¥, TeB r(P) which are not zero divisors to define a bispectral
Darboux transformation of P to itself. However, if we required the C'(n),C (n)’s
to not have poles then these trivial transformations would have to be thrown out.
This is a feature of the “discrete” bispectral case not featured in the continuous
case, since in the latter we deal with meromorphic eigenvalues which can already
have poles.

Example 3.11. Bispectral Darboux transformations can be used to artificially
create weight matrices W (x) for which the algebra D(WV) contains differential
operators of lower order at the expense of enlarging the size of the weight by the
following procedure.

Let W (z) and W (z) be a pair of weight matrices of size N x N which are bis-
pectral Darboux transformations from each other. Denote by P(z,n) and P(z,n)
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their associated sequences of monic orthogonal polynomials. Thus
P=p'.Pog! and P=p"'-P-g "

for some 9,0 € Fr(P) and some functions ¢,q € Fr(P), p,p € Fr(P).
The two sequences P(xz,n) and P(x,n) are eigenfunctions of differential op-
erators of orders ord 0 + ord?,

P-(0¢'g'0)=pp-P and pp-P=P- (G '00q").

At the same time, the sequence of orthogonal polynomials for the block diag-

onal weight diag(W (z), W (z)) is diag(P(z,n), P(x,n)). It is an eigenfunction of
a differential operator of order max{ordd,ord0},

- - 0 og!
diag(p,p) - diag( P, P) = diag(P, P) - <~15 qO ) )
q

Note that the leading coefficient of the operator in the right-hand side does not have
the positivity property from Theorem 1.3. Thus by doubling the size of the weight
matrix W (x) we were able to construct orthogonal matrix polynomials that are
eigenfunctions of differential operators of order max{ordd,ord 5} using orthogonal
matrix polynomials which were eigenfunctions of differential operators of order
ordd + ordd.

4. The algebraic structure of D(1/). In this section, we describe the al-
gebraic structure of the algebra D(W) in very specific terms.

4.1. The *-involution of D(WW). The structural results featured in this sub-
section are dependent on the existence of a proper *-involution on D(W). Recall
that a (complex) x-algebra is an algebra A over C with an involutive skew-linear
anti-automorphism ® > D 7. One of the first general results regarding the algebra
D (W) is that it is a x-algebra under the ¥ -adjoint .

THEOREM 4.1. (Griinbaum and Tirao [26]) Let W (x) be a weight matrix,
and let © € D(W). Then a W -adjoint of © exists and is in D(W). The operator
D > DT is an involution on D(W) giving D(W) the structure of a x-algebra.

This is also a consequence of Corollary 3.8 in the previous section. As a result,
we have the following corollary proved in [26].

COROLLARY 4.2. Let W (z) be a weight matrix. Then D(W') contains a differ-
ential operator of order m if and only if D(W') contains a W -symmetric differential
operator of order m.
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Definition 4.3. The involution ® +— ©" of a x-algebra A is called positive if
forall ©y,...,9, € A,

@44) DD +--+9,0) =0 ifandonlyifD;=--=D,=0.

The involution is called proper if the above property holds for n = 1, see [5,
Sect. 2].

THEOREM 4.5. (Casper [9]) Let W (x) be a weight matrix. The involution
of the x-algebra D(W) is positive. As a consequence D(W) is a semiprime PI-
algebra, and thus its center Z(W) is reduced.

Proof. The generalized Fourier map defined in the next subsection embeds
D(W) into the matrix ring My (C[n]) of polynomials in variable n. Hence D(W)
is a PI-algebra.

To prove that the involution of the x-algebra D(W) is positive, consider
D1,...,9, € D(W) such that @191 +---+9,9! = 0. Then for all polynomials
P(x) we have that

0=(P(z)- (DD} + - +D,00), P(x)),,
= SPGB0 ) B =3 P2l
g k

Therefore P(x)-®j = 0 for all polynomials P(z) and 1 < k < n which implies
D =0.

Every x-algebra A with a proper involution is semiprime. For this one needs
to show that for any © € A, the condition .49 = 0 implies © = 0. For consis-
tency, denote the *-operation of .4 by . Suppose DAD = 0. Then DD'D = 0 and
therefore

0=22"09"= (@2")(92")".

Applying (4.4) gives DD = 0 and, applying (4.4) one more time, gives D = 0.
The center of every semiprime algebra A is reduced. If ® € Z(A) and D% =0,
then D AD =0, hence © = 0. O

4.2. The center of D(W). In this subsection we will use the involution of
D(W) to prove that the center Z (W) of D(WW) is a Noetherian algebra of Krull
dimension at most 1 and that the minimal prime ideals of Z(W) are preserved by
the WW-adjoint of D(W). There are simple examples of commutative subalgebras of
M, (CJn]) which are not finitely generated, such as CI & (0 Cln]

o 0 ), so the presence
of the involution is crucial to our arguments.
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LEMMA 4.6. Let Ri,...,R¢ be any collection of Dedekind domains whose
fraction fields are finite extensions of C(t). Then any subalgebra of Ry X --- X Ry
is finitely generated.

Proof. Note that each R; is isomorphic to the ring of functions of X;\{p} for
some smooth, projective algebraic curve X; over C and some closed point p; € X;
called the point at infinity. The local ring of X; at p; is isomorphic to a discrete
valuation ring \S; with fraction field £; and residue field C. The completion of this
ring at its maximal ideal is isomorphic to C[[¢]], and thus we have an injection
L; C C((t)) into the ring of Laurent series with coefficients in C. Restriction of
functions on X;\{p;} to (X;\{pi}) N Spec(S;) defines an injection R; — L; and
thereby an embedding ¢; : R; — C((¢)). Note that for any nonzero r € R; the
image ¢;(r) has nonpositive degree.

Let A be a subalgebra of R x --- x Ry. For any nonzero A = (ry,...,ry) € A,
we define

deg(A) = ?i)édeg (¢;(r;)) and supp(A) = {i:deg(r;) =deg(A)}.

J

Further, set
Ap={AcA: A=0or deg(A) > —m}.

We define x : R| x --- X Ry — CP by setting x(r1,...,7) to be the vector whose
i’th entry is the leading coefficient of r; if v;(r;) = v(r1,...,r¢) and O otherwise
(with x(0) = 0). Note that y induces a C-linear injection A,,1/A,, — C% so
that in particular dim(A,,11/Ay,) < ¢.

We have supp(A7) = supp(A) for all A € A. Now consider any two elements
A, B € Awith v(A) =m and v(B) = n. Then for some nonzero A € C we have

supp(A”™ + AB™) = supp(A) Usupp(B).

Thus there exists C' € A such that supp(A) C supp(C) for all A € A. Denote k =
v(C). Multiplication by C' induces an injection (Ap,+1/Am) = (Amikt1/Amik)
for all m. Since the dimension of (A;,+1/.A,,) is bounded by ¢, there must exist
n > 0 such that for all m > n the above map is an isomorphism. It follows that
A is generated by a C-linear basis for A, , keeping in mind that C' € A, .. In
particular A is finitely generated. U

LEMMA 4.7. Let A C My (CJt]) be a subalgebra of the matrix algebra with
coefficients in the polynomial ring Clt] in an indeterminant t. If all of the elements

of A are simultaneously diagonalizable over the algebraic closure C(t) of C(t),
then A is finitely generated as an algebra over C.

Proof. Let F = C(t) and suppose that A is simultaneously diagonalizable over
the algebraic closure F. Let B be the F-subalgebra of My (F) spanned by A.
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Note in particular that all the elements of B3 are simultaneously diagonalizable. As
a consequence, the nilradical of B is 0 and since B is finite dimensional over F we
conclude that B is semisimple. Therefore by Artin-Wedderburn, B is isomorphic
to a direct product of matrix algebras over skew-fields over F. However, since 3
is commutative this in fact implies that 5 is isomorphic to a direct product of field
extensions

BX=Lyx-xLy

where each £; is a finite extension of the field F.

For each i, let R; denote the integral closure of C[t] in £;. In particular it
satisfies the assumptions of the previous lemma. The algebra A is contained in
My (CJt]), so each element of A is integral over C[t]. Hence the image of A in
L1 X+ x Ly is contained in Ry X --- X Ry. By the previous lemma, A must be
finitely generated. U

THEOREM 4.8. The center Z(W') of D(W) is a Noetherian algebra of Krull
dimension at most 1.

Proof. First recall that the generalized Fourier map embeds D(WV) as a subal-
gebra A of My (Cln]). This latter ring has GK dimension 1, so the GK dimension
of A must be at most 1. Therefore the GK dimension of the center Z of A is at
most 1. For a commutative ring the GK dimension and the Krull dimension are the
same, so the Krull dimension of Z is at most 1.

Let A C My(C|n]) denote the preimage of D(W) under the generalized
Fourier map bp and let Z denote the center of A. The involution } on A is an anti-
automorphism of .4 and therefore must restrict to an automorphism of Z. Further-
more for any W-symmetric A(n) € A we know that || P(z,n)||y,} A(n)|| P(z,n)|lw
is Hermitian and therefore diagonalizable. Therefore A(n) evaluates to a diagonal-
izable matrix for every integer value of n. Since A(n) is polynomial in 7, it follows
that A(n) is diagonalizable for all values of n. The algebra Z is commutative and
spanned over C by its W-symmetric elements, so therefore all of the elements of
Z are simultaneously diagonalizable. By the previous lemma this implies that Z
is finitely generated as an algebra over C. The statement of the theorem follows
immediately. U

PROPOSITION 4.9. The minimal prime ideals Py(W),...,Pr(W) of Z(W)
are fixed by the adjoint operation 7.

Proof. For brevity set P; := P;(W) and Z := Z(W). The involution { defines
an anti-isomorphism of D(WW') and therefore restricts to an isomorphism of Z.
Consequently the image 77; of the minimal prime ideal P; must be a minimal prime
ideal also. If Z has only one minimal prime, then the result of the proposition is
trivial. Therefore we assume otherwise, so that in particular each of the minimal
prime is not the zero ideal.
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For each 7, consider the annihilator ideal of P; defined by
Ann(P;) ={D € Z(W) : DP; =0}.

Since Z(W) is Noetherian, the ideal P; is finitely generated by some elements
D1,...,9,, € Z(W). For each i there exists D, € Z(W)\P; with D, = 0.
The set Z(W)\P; is multiplicatively closed and does not contain zero, so
D' =2 ...9D], is nonzero. Since ©’ annihilates the generators of P; this proves
Ann(7P;) is nonzero.

For all j # i, by definition Ann(P;)P; = 0 C P;. Since P; is prime either
Ann(P;) C P; or P; C P;j. However since P; is a minimal prime, it must be the
former. Hence Ann(P;) C (1,4, P;.

Choose a nonzero ® € Ann(7P;). Since DD # 0, this implies that D ¢ P;
and therefore © ¢ 73’; . By the previous paragraph © € P; for all j # 1, so therefore
73’; # Pj for all j # i. Thus 732-T = P;. This completes the proof. O

4.3. D(W) is finite over its center. The results of the previous subsec-
tion tell us that Z (1) is reduced and Noetherian with Krull dimension 1. In this
subsection we will prove that the algebra D(W) is affine (i.e., finitely generated
as an algebra over C), from which we conclude that it is Noetherian and finitely
generated over its center.

The spectrum of the center will consist of a disjoint union of affine curves
and points. As in the previous section, let Py, ..., P, denote the minimal primes of
Z(W). Let I C{l,...,r} be the set of indices of minimal primes corresponding
to discrete points of Spec(Z(W)), i.e.

I={i:ZW)/P;=C}.

For each i € I, there exists a W-symmetric idempotent &; € Z(W) which maps
to 1 in Z(W)/P; if j =i and to O otherwise. Using the system of orthogonal
idempotents {€; : i € I} the rings D(WW) and Z(W) decompose as a direct sums

D(W) = Ddisc(W) SP Dcont(W);
Daise (W) = P €;Z(W)€;, Deon(W) = ED(W)€;
iel
Z(W) = Zdisc(W) @ Zcont(W);
Ziise(W) = P &G Z(W) &, Zeom(W) = EZ(W)E
iel
for € =1—3,.; €. Each of the above summands is an algebra and the above

identifications are algebra isomorphisms. Since D (W) is a semiprime PI-algebra,
both Dygisc (W) and Deon (W) must be semiprime Pl-algebras.
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The next lemma captures the crucial algebraic consequence of our involution.

LEMMA 4.10. Consider a weight matrix W (x) with sequence of monic or-
thogonal matrix polynomials P(x,n). Let © € D(W) and let A(n) € My (C|n])
be the preimage of © under the generalized Fourier map bp. If the eigenvalues of
A(n)A(n)" are all constant, then both A(n) and ® are constant.

Proof. Let B(n) = A(n)A(n)" and assume all of the eigenvalues of B(n) are
constant. Then the characteristic polynomial of B(n) has constant coefficients. In
particular there exists a nonzero polynomial p(t) € C[t] satisfying p(B(n)) = 0.

Assume that © is not a constant differential operator, i.e., ® ¢ My (C). Then
we may write

D=)Y & Aj(x), forsomel>0and A;(zx)€ My(Clz]) with Ay(x) # 0.

4
J=0

Since W (x) is Hermitian and positive-definite on its support, the product
Ay(z)W (x) Ag()* is not identically zero. Hence the operator DD is T -symmet-
ric of order 2¢ with leading coefficient A,(z)W (z)A,(z)*W (z)~'. By a short
argument, one proves we may factor W (z) = T'(x)T'(z)* for some 7'(x) smooth
on the support of W (z). Then the leading coefficient of T'(x) 'DD T (z) is
(T(z) ' Ap(z)T(2))(T(x) "' Ag(2)T(x))*. In particular it is nonzero and Hermit-
ian and therefore not nilpotent. Hence for all j the operator (T'(z) '®DT(x))/,
has order 2¢5. Thus so too does the operator DD . In particular DD cannot be a
root of a nonzero polynomial p(t) € C[t]. This is a contradiction, so ® and A(n)
must be constant. g

As a consequence of the previous lemma, we may show that the discrete part
Dyisc (W) of D(W) is finite dimensional.

LEMMA 4.11. For all i, the algebra €;D(W )€, is finite dimensional. Conse-
quently Dyisc (W) is finite dimensional.

Proof. For brevity, let A C My (C[n]) denote the preimage of €, D(W)¢&; un-
der the generalized Fourier map bp and let £/(n) be the preimage of &;. Note that
E(n) is the identity element of .4 and that the center of 2 is CE(n).

The algebra A has an action on the C[n]-submodule E(n)C[n]®" of C[n]®V.
Since C[n] is a PID, we know that E(n)C[n]®" is isomorphic to C[n]*™ for some
integer m. The action of A on E(n)C[n]®" is faithful, and therefore induces an
algebra monomorphism 7 : A — M,,(C[n]).

Since D(W) is a semiprime PI algebra, so too is .4. Now suppose that A(n) €
A, let A € C and set B(n) = A(n)A(n)". By [39, Theorem 2] the two-sided ideal
of A generated by AE(n) — B(n) must intersect nontrivially with the center of
A. Therefore there exists C(n),C (n) € A such that C(n)(B(n) — AE(n))C(n) =
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E(n). This implies that for all A the determinant det(7(B(n) — AE(n))) lies in
C*. Therefore the characteristic polynomial of B(n) satisfies

pe(t,n) :=det (tI — B(n)) = t" "™det(r(tE(n) — B(n))) € C[t].

In particular the matrix B(n) has constant eigenvalues. By Lemma 4.10 this im-
plies that A(n) is constant. Thus we conclude all of the matrices in .A are constant,
and so A is finite dimensional. (]

THEOREM 4.12. The algebra D(W) is affine.

Proof. From the previous lemma, it suffices to show that Deon (W) is finitely
generated. Thus without loss of generality, we may assume that the center of D (1)
consists of a disjoint union of (possibly singular) algebraic curves over C. Let A
be the preimage of D(W) in My (C[n]) under the generalized Fourier map and
let B = spang,,)(A). Then B is finite dimensional over C(n) and has no nontrivial
two-sided nilpotent ideals. Therefore B is semisimple and by the Artin-Wedderburn
theorem B is isomorphic to a direct sum

B =) M, (L))

j=1

for some skew-field extensions £; of C(n). Note that by Tsen’s theorem, each of
the £; is actually simply a field extension of C(n). For each j let R; denote the
integral closure of C[n| in £;. Let £ be a finite field extension of C(n) containing
each of the £;’s and let R be the integral closure of C[n] in £ and define A =
D) My, (L).

Let O be the R-subalgebra of A generated by .A. Then span; (O) C A con-
tains span; (spany(A)) = spalnL(69§:1 My, (L;)) = A. Therefore span;, (0) = A.
Furthermore every element of A is integral over C[n] and therefore integral over
R. Therefore every element of A is integral over R, and it follows that every ele-
ment of O is integral over R. Therefore by [38, Theorem 10.3] O is an R-order in
A, and in particular O is affine and Noetherian.

The center of A maps into the center of I3, the latter being @?Zlﬁjlnj. Ev-
ery element of A is actually integral over C[n], so the image of the center of A
is isomorphic to a subalgebra Z of 7 = @?ZlRInj. Since Z is Noetherian and
D = Deont (W), the spectrum of Z consists of a collection of affine curves over
C. The inclusion Z — @glejInj is precisely the normalization of Z, while the
inclusion maps R ; — R correspond finite morphisms of smooth curves. Therefore
the inclusion Z C Z’ corresponds to the finite morphism of affine algebraic curves
Spec(Z’) — Spec(Z), so in particular Z’ is finitely generated as a module over
Z. As a consequence, O is finitely generated as a module over A. The algebra O
is an A-centralizing extension, so by Montgomery and Small’s extension of the
Artin-Tate lemma [36, Proposition 2], A must be affine. O
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THEOREM 4.13. (Casper [9]) The algebra D(W) is Noetherian and is finitely
generated as a module over its center Z(W).

Proof. Consider the preimage £(W') of D(W) under the generalized Fourier
map bp. The algebra £(W) is a subalgebra of My (C|[n]), and thus has GK dimen-
sion at most the GK dimension of My (C[n]). The algebras My (C[n]) and C[n]
have equal GK dimension by [35, Proposition 3.2.7], and C[n] has GK dimension
1. Thus £(W') has GK dimension at most 1. Since D(W) is affine and semiprime
of GK dimension at most 1, we can apply the Small-Stafford-Warfield theorem
[43, Theorem 1.6] to obtain that D(WV) is Noetherian and finitely generated over
its center. U

4.4. Localizing D(1V) on its center. Recall that for a commutative ring
with zero divisors, we can still define a rotal ring of fractions to be the localization
of the ring at the multiplicative set of elements in Z (W) which are not zero divi-
sors. Geometrically the total ring of fractions is isomorphic to the product of the
ring of fractions of every irreducible component of the spectrum of the ring.

Definition 4.14. Let W (x) be a weight matrix, let P(z,n) be the associated
sequence of monic orthogonal polynomials, and let bp : My (Cln]) — D(W) de-

note the generalized Fourier map. We define F (/) to be the total ring of fractions
of Z(W).

We will show that when we localize D(WW) by extending scalars in the ring
D(W) to the total ring of fractions F (W) of Z(WW'), we get a product of matrix al-
gebras over the fraction fields of each of the irreducible components. Equivalently,
this means that D(W) is generically isomorphic to a matrix algebra over each ir-
reducible component of Z(W'). This result is analogous to Posner’s theorem for
prime PI rings.

THEOREM 4.15. Suppose that W (x) is a weight matrix. Then there exist pos-

itive integers ny,...,n, with v the number of minimal primes of Z(W') such that
(4.16) DW) @zw) F(W) =P My, (Fi(W)),
i=1

where F;(W) is the localization of Z(W) at the minimal prime P;(W') of Z(W),
i.e., the function field of the irreducible curve Spec(Z(W)/P;(W)). Moreover the
localization map D(W) — D(W) @ z () F (W) is injective.

Remark 4.17. The proof of the theorem actually establishes the following
stronger statement:

Any affine x-algebra with proper involution, which is finitely generated as a
module over its center, localizes over its center to a product of central simple alge-
bras.
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The center of such an algebra is affine by the Artin-Tate Lemma [8, p. 116].

Rowen [40, Appendix] has previously obtained results which are similar in
nature. Specifically he proved that quasi-Goldie, semiprime, PI-algebras localize
over their centers to semisimple Artinian rings. Here quasi-Goldie means every set
of independent ideals is finite and every set of left annihilators of ideals contains a
maximal element. We do not know of the exact relation between these assumptions
and ours.

Proof. First we show that the natural map D(W) — D(W) @z F(W) is
injective. To see this, suppose that ©® € D(W) maps to 0 in the localization. Then
there must exist an element ©' € Z (W) which is not a zero divisor in Z(W)
and which satisfies D’ = 0. It follows that ©’ annihilates the two-sided ideal of
D(W) generated by ©. However, since D(W) is a semiprime PI algebra [39, The-
orem 2] tells us any nonzero two-sided ideal of D(W) must intersect nontrivially
with Z(W). This contradicts the fact that ®’ is not a zero divisor in Z (W), and
thus the localization map is injective.

Next note that

FW)=Fi(W)x - x F.(W).

Using this, we have

DW) @z FW) =][Ri, for Ri:=DW)@zmu)Fi(W).
=1

We know that D(WW) is finitely generated as a module over its center, so the local-
izations R; will also be finitely generated over F;(W). The latter is a field, so each
of the algebras R; is a finite dimensional F; (') vector space. Note that since R;
is a localization, all elements in R; are of the form © @2l for some © € D(W') and
A e F(W).

The adjoint operation { fixes Z(W) and extends to an adjoint operation on
F(W). Since the adjoint operation fixes each minimal prime ideal P;(W), it also
preserves the complement Z (W )\P;(W), and thus induces an adjoint operation
on F;(W). This in turn induces an adjoint operation on R;, defined by (D ® )" =
DTRAT for ® € D(W) and A € F;(W).

We claim that the property (4.4) is maintained under this extension. To see
this, suppose that (D @ A)(D @2A)" = 0 for some ® € D(W) and A € F;(W).
Note that (D @A) (D @A)’ = (DDT) @ (AAT), and this latter element is zero if
and only if there exists ® € Z(W)\P; with (DD)D = 0. This then would imply
that DD (DD)" = 0 and therefore that DD = 0. Hence © @2 = 0. Thus the desired
property holds.

Each R; is a *-algebra (over F;(WW')) with proper involution, therefore it is a
semiprime Pl-algebra. In particular, R; has no nonzero two-sided nilpotent ideals.
Since it is finite dimensional over J;(W), this implies the Jacobson radical of R;
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is trivial, so that R; is a finite dimensional semisimple algebra over JF; (). Fur-
thermore, by virtue of the construction of the R; and the injectivity of the local-
ization map D(W) — D(W) @ zw) F (W), the center of R; is F;(W). Thus R;
is a central simple algebra with center F; (1), and by Tsen’s theorem is therefore
isomorphic to M,,, (F;(W)) for some integer n;. This completes the proof. O

Definition 4.18. Suppose that W () is a weight matrix with D(W/) containing
an operator of positive order. Using the notation of Theorem 4.15, we call n; +
ny + - -+ n, the module rank of D(W') over Z(W).

PROPOSITION 4.19. Suppose that W () is a weight matrix with CI C Z(W).
Then the module rank of D(W) is at most N.

Proof. Let m be the rank of D(WV'). Then we may choose m non-nilpotent ele-
ments Uy, ..., Y, € D(W) such that V;U; = 0 for i # j. Let A;j(n) € Mn(C[n])
be the image of *J; under the generalized Fourier map. Then each A;(n) is nonzero
and satisfies A;(n)Ay(n) = 0 for j # k. Since each 2, is non-nilpotent, each
Aj(n) is also non-nilpotent. Therefore we may choose a column vector 7;(n) of
ffj(n) with A}-(n)@-(n) - 0. With this choice, gj(n)ﬁk(n) =0 ifand only if j # k
and thus the m vectors 7 (n), . .., U, (n) in C[n]®"N are C[n]-linearly independent.
We conclude that m < N. O

Definition 4.20. We say D(W) is full if the module rank of D(W) is N.

Fullness is a relatively weak condition, especially for N small as we see in the
next theorem.

THEOREM 4.21. Suppose that W (x) is a 2 x 2 matrix and that D(W) is non-

commutative. Then the associated algebra of differential operators D(W) is full.
In fact in this case F (W) is a field and D(W) is a Z(W )-order in My(F(W)).

Proof. Since D(W) is noncommutative, so too is its localization over its cen-
ter. Using the notation of Theorem 4.15 and referring to (4.16) the noncommuta-
tivity implies that n; > 1 for some ¢. However, since the rank is bounded by 2, we
getny+---+n, <2. Thus r =1 and n; = 2, so that (4.16) says

D(W) @zw) F(W) = My (F(W)).
Thus D(W) is a Z(W)-order in M, (F(W)) and in particular D(W) is full. [

More generally, fullness can be characterized in terms of the existence of
enough orthonormal idempotents in the localization of D(WW') over Z(W). This
is summarized by the next theorem.

THEOREM 4.22. The algebra D(W) is full if and only if there exist nonzero
W -symmetric elements 01,D, ..., By in D(W) satisfying B;V; =0 for i # j
with 01+ -+ Uy a central element of D(W') which is not a zero divisor.
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Proof. Suppose that D(W) is full. Then we have an isomorphism
D(W) @z FW) = D M, (F:(W)),
i=1

withn;+---+n, = N.

Fix an integer 1 <7 < n. By the above, we know that the adjoint operation ¥
of D(W) restricts to an adjoint operation on both F;(W) and on M,,, (F;(W)).
However, the adjoint operation on M, (F;(1¥)) may not be the one naturally in-
duced by the adjoint operation on F;(W). In fact we in general have two adjoints
on M, (F;(W)), the adjoint coming from the restriction of f (which we also de-
note by T), and the one obtained by applying § to each of the matrix entries of
an element of M, (F;(WW)) and then taking the transpose. We denote this latter
adjoint operation by x. The composition of these two adjoint operations (-)™* de-
fines an automorphism of M, (F;(W)) which fixes the base field F;(W). By the
Skolem-Noether theorem, this automorphism must be inner. Thus there exists an
invertible matrix U € M,,, (F;(W)) such that

AT = (U TATU*, VA€ My, (F;(W)).

We can apply the same argument to the opposite composition (-)*T, and if we use
the fact that ¥ and % are order two, we find

AT=UTA"U, VAe M, (F(W)).

Putting this together, we find that U* = U. Therefore U has a Cholesky-type factor-
ization of the form U = P D P* for some invertible matrices P, D € My (F;(W))
with D diagonal and *-symmetric. Then for 1 < j < N, we have

(P "E;;P)' =U'PE;;P'U=U"'PE;;DP*=P “D 'E;;DP".

For each 1 < j <nj;, choose D;; € D(W) @ z(w) F (W) corresponding to the ma-
trix (P*)~'E;; P*. Then by definition ©j; is t-symmetric and satisfy ©},0/,;, = 0
for (a,b) # (i,7).

We can repeat the above process for each 7, obtaining N elements ”Dé] For
each ¢, j, we can clear denominators using W -symmetric, central elements to ob-
tain an element ©;; € D(W). By definition, the elements ©;; are W -symmetric.
Furthermore, since the localization map is injective the N elements D;; satisfy
9;j®pe =0if i # k or j # £, and the sum is a central element of D(1V) which is
not a zero divisor.

Conversely, suppose that the ®j,..., Dy exist and set © =D +--- + D .
Then the N elements

9 '99;, i=1,2,...,N
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define a family of N orthogonal idempotents in F(W) ®z(y) D(W). From the
isomorphism

we see that @;_, M, (F;(WW)) must have a collection of N orthogonal idempo-
tents. This implies that nj + --- +n, is at least N and therefore exactly V. ]

PROPOSITION 4.23. Let W (x) and W(m) be weight matrices. Suppose that
D(W) is full and that W (x) is a bispectral Darboux transformation of W (x).
Then D(W) is also full.

Proof. This follows from Theorem 2.36, combined with the previous theorem.
U

Definition 4.24. Let W (x) be a weight matrix. We call a collection of nonzero
W -symmetric elements Uy, ..., Uy € D(W) satisfying the condition that ;0 ; =
0 for ¢ # j an orthogonal system for D(W).

Since D(W) is finitely generated over its center Z (W), it also makes sense to
consider the support of a given element © € D(W) over the center.

Definition 4.25. Let W (x) be a weight matrix. The support supp(D) of an
element © € D(W) is the set of prime ideals of D(W) containing the annihilator
Ann(®D) of ® over its center, i.e.,

Amn(D) :={V e Z(W): 0D =0}.

Let Z,(W),..., Z.(W) be the irreducible components of Z(W) and let Py,..., P,
be the corresponding minimal primes. We say that an element © € D(W) is sup-
ported on Z;(W) if P; is contained in one of the primes in supp(®). We say that
two elements D 1,9, € D(W) are supported on the same irreducible component if
for some i both ©; and ©; are supported on Z;(W).

Alternatively, one may define the support of ® € D(WW) to be the set of prime
ideals P C Z(W) such that © is nonzero in the localization of D(WV) at P. The
support of any element in D(W') defines a closed subscheme of Z(W). Clearly
any element of D(W') must be supported on at least one irreducible component of

There is a simple algebraic criterion for two elements 1,9, € D(W) to be
supported on the same irreducible component. The proof is a consequence of (4.16)
and is left to the reader.
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PROPOSITION 4.26. Let W (x) be a weight matrix with D(W) full and suppose
91,9, € D(W). Then ©,D(W ), # 0 if and only if both share an irreducible
component of Z(W') on which they are supported.

5. Consequences of the algebraic structure of D(17). We demonstrate
in this section that the algebraic structure of D(W) has strong consequences for
the form of the weight matrix W (z). Most importantly, we prove the Classification
Theorem 1.3. Throughout this section, we will always suppose Assumption 2.21.
Note again, that this assumption always holds in the case that D(WV') contains a W -
symmetric, second-order differential operator of the form (1.4) with A, (z)W (x)
positive definite on the support of W (z).

We will focus exclusively on the case when D(W) is full. With this in mind,
throughout this section the elements Uy, ... U will denote an orthogonal system
for D(W), i.e., a collection of nonzero, W -symmetric matrix differential operators
in D(W) with 0;0; = 0 for ¢ # j and with U; +--- +Ux € Z(W) a nonzero
divisor. Of course, the existence of an orthogonal system is guaranteed by Theorem
4.22.

5.1. Cyclic modules and diagonalization of matrix weights. To under-
stand the application of the orthogonal system to our understanding of the structure
of D(W), we first consider a certain left {2(x)-module and its right counterpart. For
each *J;, we consider the left {2(z)-module

(5.1) M; = {ie Q)N Ty, =07, Vi #£ 5},

as well as the right Q(x)-module

(5.2) N; = {1 € Q)™ : ;1% =0, Vi # 5}

The next result proves that the modules M; and N; are cyclic.
THEOREM 5.3. For each i, there exists 1i;,10; € Q(x)™N with

(5.4) M; =Q(x); and N;=1,;Q(z).

Proof. The ring Q(x) is a left and right principal ideal domain. The module
M, is a submodule of the free left module Q(z)®" in this PID, and is therefore
free. Furthermore, M; contains the transposes of all the row vectors of ;. Since
0, is nonzero, this implies that M, is nonzero. In particular, each of the M; has
rank at least 1 as a left Q(z)-module.

Now if &f € ;NY; for some i # 7, then il By, = 07 forall 1 <k < N. This
in turn would imply that i/ (0| +--- + V) = 07, Since Y| +--- +Vy is not a
zero divisor, this implies that 7 = 0. Thus M; N M i= 0 for i = 4. Since each of
the M, is a submodule of Q(x)®, it follows immediately that M is free of rank
1 for all 7. The same proof works for N;. O
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We fix some choice of generators u; of M, fori=1,..., N and define il to be
the matrix differential operator whose rows are u_iT, e ,u?VT
S 1T
(5.5) U= [ul Uy - LlN] .

Each of the 1t; may be written as

4;
(5.6) 0= ilji(x)
7=0
for some dio; (z), ... , iy, (x) € C(x)®N with iy, (x) not identically zero. We define
U (x) to be the matrix whose rows are @y, (), ..., U, n(x)
. _ . T
(5.7) Ulz) = [te1(2) tro(x) - dgen(z)] .

We will see below that U (x) is a unit in My (C(x)).

For all i, we know that @T%i%j = 07 for i % j. Moreover, by definition
LQT%]- — 07 for i # j. This means that (LQT%i)T € M, for all 4, and consequently
there exists v; € {2(x) such that

(5.8) ot =0 0; and W'Y, =07, Vi#j.

We will let m; be the order of v; and write
m;

(5.9) vi =Y dvji(x)
§=0

for some rational functions vj;(x).

Remark 5.10. The principality of certain annihilator ideals is reminiscent of
Rickart #-rings [5, p. 12, Definition 2]. While D(W) itself is not a Rickart *-ring,
as it contains (left) annihilators not generated by idempotents, it would be inter-
esting to know what properties D(1/') might share with more general families of
x-algebras. More specifically, it would be interesting to know more about the ideal
structure of D(W) in general.

One of the more immediate consequences of the fullness of D (W) is that there
exists a rational matrix which diagonalizes the bilinear form associated to W (x).

THEOREM 5.11. Let W (z) be a weight matrix with D(W) full and let
By,..., BN, W and U(x) be defined as above. The matrix differential operator
UW (z)* is diagonal with leading coefficient

diag (r1(2),...,rn(2))

5.12
612 = U(z)W (2)U(z)* where ri(x) = g, (x)T W (x)dp,(x)"".
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Proof. Applying (5.8), we see
UY; = Byl

Now since U; is W-symmetric, this also tells us

U, W ()" =W (z)U" B0
Multiplying both sides of the equality on the left by i, this says that for all ¢

0, By UW (z) " = UW () U Eyo;.
In particular, ${1V (z)4* must be a diagonal matrix
UW (z)U* = diag(by,...,by), where b; =] W (z)ul *.

Since W (z) is Hermitian and positive-definite on (x¢, ), we know that the func-

tion r; () := iig,; ()T W ()i, (x)T* is not identically zero. Consequently the dif-
ferential operator b; is order 2¢; with leading coefficient r; () for all i. In particular

U(z)W (z)U(z)" = R(z) := diag (r1(z),...,rn (). O

Remark 5.13. The U(x) and r;(x) are not quite the same as the 7'(z) and f;(x)
from (1.2). In particular the 7;(z) do not need to be classical weights. However, as
we will see below the 7;(x) will be classical weights up to multiplication by some
rational functions.

In the case of generalized Gegenbauer polynomials, the decomposition (5.12)
was previously obtained in [30] and was interpreted in terms of an LDU decom-
position of W (z).

Note that in the proof of the previous theorem, we also showed the following
symmetry-type result for the v;’s:

(5.14) v;b; = bzbj
We also showed above that LQTW(aj)u}T* = 0 for ¢ # j, so that
- T - Ts _ o
g (x)” W(x)iig, ()" " =0 forij.
Since W (x) is Hermitian and positive-definite on (zg, ), it follows that @y, (z),

..., Ugyn(x) are C(x)-linearly independent. In particular det(U(z)) is not identi-
cally zero so that U(x) is a unit in My (C(x)).
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5.2. Control of the size of Fourier algebras. As a consequence of the
previous theorem, we find that the involution { preserves a large subalgebra of
Mn(Q(z)). Moreover, we can deduce that the right Fourier algebra of the orthog-
onal polynomials of W (x) is very large.

To see this, first note that the operators v;,...,vx may be related to one an-
other, and these relationships are encoded by the center Z(W) of D(W).

PROPOSITION 5.15. Let W (x) be a weight matrix with D(W') full and let
Bi,..., 0N, Y, v1,...,0n and U(z) be defined as above. If V; and U are sup-
ported on the same irreducible component of Z(W), then v; and v are Darboux
conjugates and r;(x) /r;(x) is rational.

Proof. Suppose U; and U, are supported on the same irreducible component
of Z(W). Then there exists ® € D(W) such that U;0%; # 0. Without loss of
generality, we may take ® to be W-symmetric. Moreover u}TQ]iQQ]jQ]g =+ 07
only if £ =7 and j = ¢, and therefore

UV,DV; = E;8
for some 0 € Q(z). Similarly
UB;DY; = E;;04

for some d € Q(x).

Since U;DY; # 0, we know that 0 # 0. Now since U + --- + Uy is in the
center of Z(W') we know that 20,00, commutes with 2 4 --- 4+ U and there-
fore vy Eyy +---+ vy E Ny commutes with F;;0. Consequently b;0 = 0v; and this
shows that v; and v; are Darboux conjugates.

Next, using the fact that D, °U; and U are all W -symmetric we calculate

ob; = b,0".

This in particular implies that 2 is nonzero. Comparing leading coefficients, we see
that r;(x)/r;(x) must be rational. This completes the proof. O

As the previous proposition shows, r;(x)/r;(x) will be rational for some val-
ues of 7, . We can actually say more than this in the case that W (z) is irreducible.

Definition 5.16. A weight matrix W (z) is reducible if there exists a nonsin-
gular constant matrix A € My (C) such that AW (z)A* is a direct sum of matrix
weights of smaller size.

As shown in [45, Theorem 2.8] a weight matrix W (z) is reducible if and only
if there exists a formally W -symmetric constant idempotent matrix different from
0 and I. Since our interest is in the classification of weight matrices, it makes sense
to focus specifically on irreducible weight matrices.
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PROPOSITION 5.17. Suppose that W (x) is an irreducible weight matrix with
D(W) full. Then for all i, j the ratio ri(x)/r;(x) is a rational function.

Proof. Suppose that for some 4 there exists a j such that the ratio r;(z)/r;(x)
is not a rational function. Define S C {1,...,N} by

S ={j:ri(x)/rj(z) is not rational } .

Then by assumption both S and S’ := {1,...,N}\S are nonempty. Further-
more if j € S and k € S’ then r;(z)/ri(z) is not rational. Define R(x) =
diag(r(),...,7n(z)) and note that W (z) = U(z) " 'R(z)(U(z)"!)*. Then for
any W-symmetric © € D(W) we calculate

R(z)(U(z)DU(z) ") = (U(z)DU(z) ") R(x).

Clearly U(z)DU (z)~! € My (Q(z)). Comparing leading coefficients, we see that
if the j, k’th entry of U(2)®U (z) ! is nonzero, then r;(z) /7, () must be rational.
Hence for all j € S and k € S the j, k’th entry of U (x)DU (z)~! must be zero. It
follows immediately that the nonzero idempontent matrix-valued rational function

Gz)=U(@)™" | D Ejj | Ule)

jes

commutes with © for all © € D(W). Consider the Laurent series for G(x) at oo

G(z)= Z Gz,

j=t

for some integer ¢ € Z and matrices G; € My (C) with G, # 0. Note that since
G(z) is idempotent, we must have ¢ > 0.

Let P(x,n) be the sequence of monic orthogonal polynomials for the weight
matrix W (z) and let £(W) C My (C|n]) be the preimage of D(W') under bp. For
any n > 0 and any A(n) € E(W) we calculate

A(n)P(z,n)G(z) = P(z,n) -bp(A(n))G(z) = P(z,n)G(z) - bp(A(n)).

Since bp(A(n)) is degree-filtration preserving it will have the form bp(A(n)) =
Z?:O &D;(s) for some D;(s) € My(Cls]) with s = &, and both Dy and A are
equal polynomials. Comparing leading coefficients, this shows that GyA(n+ /() =
A(n)Gy for all n > 0. Since D(W) is full, there exists a nonconstant f(n) € Cln]
such that f(n)I € E(W). Letting A(n) = f(n)I, the above implies that Gy(f(n+
¢)— f(n)) =0 for all n > 0 and therefore that £ = 0 since Gy # 0. Thus G(x) is of
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the form

(5.18) G(z)=Go+ Y Gju .

j=1

and G| is a nonzero, idempotent matrix commuting with everything in £(W).
We claim that G(z) = Gy. Set © = bp(f(n)I) so that for all integers n > 0

(GoP(z,n) — P(z,n)G(z)) -D = f(n)(GoP(z,n) — P(z,n)G(z))

The degree of GoP(x,n) — P(x,n)G(z) is strictly less than n, and so if it is
not zero for some value of n then we may write GoP(z,n) — P(z,n)G(x) =
Z?’;wajxj for some matrices Q; € My (C) with Qg # 0 for some ¢, < {.
Therefore by comparing leading coefficients, we see that f(n)Q, = f(¢n)Qy,, -
Since f(n) is either strictly increasing or strictly decreasing for n > 0, this is a
contradiction. Hence GoP(z,n) = P(x,n)G(x) for n > 0. Because of (5.18), if
G(z) # G, then G(x) has a pole at some a € C and therefore there exists an inte-
ger £ > 0 such that G(z) = G(z)(x — )’ has no pole at a and satisfies G (a) # 0.
Therefore for all n > 0 we have P(a,n)G(a) = GoP(a,n)(a —a)’ =0, so that
the nonzero column vectors of G(a) are in the kernel of P(a,n) for all n>> 0.
However, this contradicts [18, Theorem 1.1], so we must conclude G(z) = Gj.
Since det(G(z)) = 0, G(x) # I. One easily checks that G(z)" = G(z), so
this contradicts the assumption that W (x) was irreducible. This completes the
proof. O

The next theorem shows that the right Fourier algebra is significantly large.

THEOREM 5.19. Let W (x) be an N x N irreducible weight matrix with N > 1
and D(W) full, and let P(x,n) be the associated sequence of monic orthogonal
polynomials. Then for all ® € My (Q(x)) we have DT € My (Q(x)) and there
exists a polynomial q(x) € Cz] with q(x)D,Dq(z) € Fr(P).

Proof. Let*Uy,...,Un, U, U(z),and vy,...,0 x5 be defined as above. Note that
if ip,;(x)T times the leading coefficient of ; is identically zero, then U (z) times
the leading coefficient of °U; is identically zero. Since U () is a unit in M (C(x)),
this is impossible. Thus the order m; of v; must agree with the order of J;. Fur-
thermore since W () is irreducible the order of 2J; must be greater than 0 for all
i, as otherwise 2U; would define a constant idempotent matrix in D (V) different
from O and I. Therefore m; > 0 for all 7.

Then by the previous theorem, we know that

U(z)W (z)U(z)" = diag (r1(z),...,rn(2)).
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By definition each of the v; is a differential operator with rational coefficients. By
(5.9) we have

m;g
vi = Huvji()
=0

for some rational functions vg;(x),...,vm,i(x) € C(z) for all i, with v,,;(z) # 0.
Additionally, (5.14) tells us

bitl? =v;b;

where here b; = il W (x)u]* is a differential operator of order 2¢; with leading

coefficient r;(x). Let s;(z) represent the subleading coefficient of b;. Comparing
coefficients, we see that

(=)™ ri(2)vm,i(2)" = vm,i(2)ri(@)
and also that
Um;i (%) 8i(%) + V(m ( )n(m)+2€v i(@)ri(z)
( *

= (=1)™ri(z )( )" = V(m—1)i(2)")
+(=D" Sz'(w)vmn(:v)“r(—l) i () O ()"

Combined with the first equation, this second equation simplifies to
(V(ms—1i () + (= 1) V(m, 133 () 7i(@) + (205 = mi)vp ()i ()
= mr}(x)vm,i(z).
Solving this differential equation for r;(z), we obtain for m; even

Re (V(m;—1)i())
(i /2)Vm,i ()

(5.20) () = s () 26/ exp/ dz,

and for m; odd
Im (V(n, —1)i())
(mi/2)vm,i(x)

In either case, conjugation by r;(x) sends (x) to Q(z).
Now suppose that © € My (§2(z)). Set R(x) = diag(r(z),...,r~(z)). Then
we know that W (z) = U(x) "' R(z)(U(x)~")*. Therefore

dx.

(5.21) ri(x) :vmii(:p)%/milexp/

D =U(z) 'R(z)(U(z) ' D*U(z)* R(z) " 'U(x)

has rational entries if and only if R(z)~'U(2)®U (z)~'R(z) has rational entries.
By the previous proposition combined with the fact that conjugation by r;(x) pre-
serves (), we see that D has rational entries.
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Now suppose that © € My (2(x)). Choose a polynomial go(x) such that both
qo(z)® and D7 qo(z) have polynomial coefficients. Let p(x) be the unique monic
polynomial vanishing only at the finite endpoints of the support of W (x). If the
order of D is £ set q1(z) = qo(x)p(x)?*. Then both ¢;(z)® and (gi(z)D)" are in
My (€2[z]), and the coefficients of ¢;(x)D vanish to sufficiently high order at the
endpoints of the support of W (x) so ¢;(x)® is W-adjointable. Hence ¢ (z)® €
Fr(P). Similarly, we can choose ¢»(z) € C[z] with D¢ (x) € Fr(P). Taking
q(z) = q1(z)q2(x), we get q(2)D,Dq(x) € Fr(P). O

5.3. First part of the proof of the Classification Theorem. We next prove
a theorem that comprises most of the Classification Theorem from the introduction.
It tells us that Uy,..., Uy are Darboux conjugate to degree-filtration preserving
differential operators of order at most two. To do so, we first recall a result for
algebras of commuting differential operators with rational spectra.

LEMMA 5.22. (Kasman [28]) Let A C Q)(x) be a commutative subalgebra with
Spec(A) a rational curve. Then there exist differential operators §,0 € Q(x) with

hAh~! C C[o]

where 0 has order equal to the greatest common divisor of the orders of operators

in A.
With this in mind, we have the following theorem.

THEOREM 5.23. Suppose that W (x) is a weight matrix with D(W) full and
that D(W') contains a W -symmetric second order differential operator whose
leading coefficient multiplied by W (z) is positive definite on the support of W (x).
Then there exist rational matrix differential operators T,% € My (Q(z)) with

(5.24) TX = diag (pi(01),...,pi(On)) and TE;T = q(V;)

for all i where for each i 0; € Q(x) is a differential operator of order 1 or 2 and
Di»q are nonzero polynomials. If any nonconstant polynomials in v; and v ; are Dar-
boux conjugates (for example if *0; and *U; are supported on the same irreducible
component of Z(W)) then we may take d; = 0;.

Proof. Suppose that © € D(W). Then we calculate for all i,j,k that
LQTQ]jQQ]jQ]k is 07 if i % j or j # k. Therefore for all j there exists 0; € (x)
satisfying

UBDV; = 0, Ejsl.
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Since Uy +---+UVy € Z(W) we also know that 0; commutes with v;. Thus for
all j the algebra U ;D (V)% is isomorphic to a subalgebra .A; C Q(x) defined by

A;={0eQx): 0E;;4 = UB,DY;, D € D(W)}.

Each element of .A; commutes with the operator v;, so by a result of Schur the
algebra 4 is a commutative subalgebra of (}(z).

For all ¢ let m; be the order of v;. Let ® be a second order differential operator
in D(W') whose leading coefficient multiplied by W (x) is positive definite on the
support of W (z). For all 4, the differential operator 0,0, has order 2m; + 2. To
see this, write U; = 37", 8%‘/]1(33) and © = 92D () + 0, Dy (x) + Dy(z) and
note that since U; is W -symmetric we must have

Vinii(2) Do (%) Vinyi (%) = Viyi (2) Do (@)W (2) Vi (2) W () .

By assumption D, (xz)W (x) is positive-definite and Hermitian on the support of
W (z). Therefore V,,,i(x) Dy (2)Vin,i(x)* is not identically zero on the support of
W (). Hence Vi (2) Do ()W (2)Vin,i(2)* W (z)~! is not identically zero so the
product *U,;2%0; has the desired order.

As mentioned in the previous paragraph, there must exist a; € Q(z) with

MQL-@QL' = aiEZ'Z'L[.
In other words, for all 7 and j
UGTQ]Z'QQ]Z' = jz-aiuZ-T.

If the order of a; is less than the order of U;0;, then this would imply that U (z)
would be a left zero divisor of the leading coefficient of 2U;©%0;. The determinant
of U(x) is not identically zero, so this is impossible. Thus the order of a; is 2m; +2.
In particular the greatest common divisor of the orders of elements in A; is either
1 or?2.

We claim that Spec(.A;) is a rational curve. To see this, for all i let A;(n)
be the sequence of matrices satisfying A;(n)P(z,n) = P(z,n)-Y;. In terms of
the generalized Fourier map bp(A;(n)) =Y, for all 4. Since U, is W-symmetric,
we also know that || P(z,n)|/3,Ai(n)*||P(z,n)|,7 = Ai(n) for all n. Therefore
| P(x,n)||;;} Ai(n)|| P(z,n)||w defines a sequence of Hermitian matrices for all
1. The spectral theorem tells us they are unitarily diagonalizable and since they
commute, they are simultaneously unitarily diagonalizable. Thus there exists a se-
quence of unitary matrices U (n) and sequences of real numbers A\ (n),..., Ay (n)
such that for all ¢

where here C'(n) := || P(x,n)||lwU(n).
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Now again take D € D(W). Let ©;(n) = bp! (V;9%;). Since V;DV; com-
mutes with 2J; for all ¢ and is annihilated by U, for i # j, we know that there
exist sequences of complex numbers 0;(n),...,0x(n) with C(n)~10;(n)C(n) =
0;(n)E;;. We also know that for all i the sequence ©;(n) € My (C[n]). Since
0;(n) = tr(©;(n)), we see that 0;(n) € C[n] for all i. Thus for all 4, the generalized
Fourier map defines an injection A; — C[n]FE;; via

11
Ay <= oWy, S0, g
Thus Spec(.4;) is unirational and by Liiroth’s theorem Spec(.A;) is rational.

Since Spec(.A;) is rational, the previous lemma tells us that there exist differ-
ential operators h;,0; € Q(x) with the order of d; equal to the greatest common
divisor of the orders of elements in A (either 1 or 2) such that f)i.Af);l CClo;]. If
any nonconstant polynomials in v; and v; are Darboux conjugates, then 0; and 0;
are Darboux conjugates and by modifying our choice of the f; we can take 0; = 0;.

We can also obtain a revised version of (5.14). To see this, define bNZ = h;b;b;.
Then for any a € A; coming from a W-symmetric © € D(WW), we have b;a* = ab;.
Therefore b?-(hahfl)*g = hab~!. Since A; is spanned by such elements, this de-
fines an involution of .4; and of h.A;h~" and therefore of their fraction fields. Since
the fraction field of the subalgebra hi.AZ-h;l of C[o;] is C(9;) (by rationality plus

order arguments), this means that p(d;) — Qp(ﬁi)*gfl defines a sesquilinear au-
tomorphism of C(9;). Such an automorphism must map 9; to a generator of C(?;),
i.e., to an element of the form % for some a,b,c,d € C with ad — bc # 0. The
automorphism fixes the polynomial Uz’%b[l € C[o;], so we must have ¢ = 0 and
we can take d = 1. Also by comparing leading coefficients of the polynomial fixed
by the automorphism, we see a must be a root of unity. Therefore the automor-
phism sends a'/?d; — (a'/%0;)* = —a~"/?b to a~'/?b. Since the automorphism is
sesquilinear, it follows that a~'/2b must be purely imaginary. Thus replacing 9;
with a'/20; + a~'/2b/2 we obtain

(5.25) 6,07 = 0:b.
For each i there exists a polynomial p;(9;) € C[0;] with
biv; = pi(0:)b;.
This implies that
ker(h;) - v; Cker(h;).

Choose a polynomial ¢(v;) € C[v;] such that ker(h!)-¢(v;) =0 for all 7. Then there
exists a rational differential operator t; with

q(v;) = t;b;.
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Letc; = b;lni, viewed as a pseudo-differential operator. Note that ¢; may ac-
tually be shown to be a differential operator, but this is not necessary for our argu-
ments. It is clear from (5.14) that ¢; is *-symmetric. Furthermore an easy calcula-
tion shows

This means that

Q]Zq(Q]Z) = W(m)u*ciq(ni)Eﬁu

and also that

pi(0:)q(pi(9:)) Eii = hosq(v;)b; ' Ey;
= bb;ciq(vi)b; ' Ei

= hb;citi Ei;
= hUW (z)U* et By
Take
T =diag(by,...,hn)Y
and also

T =W (2)W diag(city,....enty) = > W (@) ety

It is clear from the construction that ¥ € My (2(z)). Note that for all 7 the row
vectors of J; belong to M;, so that U, = @ " for some a; € Q(x)®VN. Since the
ring of pseudo-differential operators is an integral domain and W (z)1;” *car;” =

0, we find W(:L")L?ZT* ¢; = a;. Hence ¥ is rational. Furthermore for all ¢

TF = diag (p1 (01)q(p1(21)),--.,.on On)a (PN (ON)))

and also

THEOREM 5.26. Suppose that W (x) satisfies the assumptions of the previous
theorem and let p;,q, T, % and 0; be defined as in the above theorem, with 0; = 0;
if and only if some nonconstant polynomials in 0; and 0; are Darboux conjugates.
Let d,...,0) be the distinct values of 91,...,0n, and let n; be the multiplicity of
o), i.e, n; = #{i:0; =0.}. Then the centralizer of 9| ®--- ®On in My (Q[z]) is
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given by

T

Co1@---@oy) = @D My, (C[oj]).
i=1

Moreover conjugation by ¥ defines an embedding of D(W) into C(0) & --- B ON).

Proof. Suppose that A € My (Q2[z]) commutes with 9; @ --- @0y, and let a;;
be the entries of (. For all ¢ and j we must have 0;a;; = a;;0;. Thus by the choice
of the 0;’s we see that a;; = 0 unless 9; = 0, in which case a;; belongs to the
centralizer of 9; in Q[x], the latter being C[0,]. From this the above isomorphism
is clear.

Fix i,j. We define a map ¢;; : D(W) — C(0;) as follows. By arguments al-
ready applied in previous proofs, the element U, DU ; satisfies TU; DU = ak;;'T
for some a satisfying ap;(9;) = p;(9;)a. If a is nonzero then again by the choice of
the 9; we know that 9; = 9; so that a commutes with p;(9;) and therefore with ;.
We define ¢;;(D) = ap;(0;) 'p;(9;)~'. More generally for any i, j and © € D(W)
we define ¢;;(D) € C(0;) to be the unique element satisfying

pi(0:)9i;(D)p; (0;) i T = TD.

We further define
O : D(W) — €P M, (C(2}))
i=1

by setting ¢(®) to be the matrix whose entries are ¢;;(®) for all ¢, j. It is easy to
see that @ is an algebra monomorphism. In fact, if we view @._, M,,, (C(d})) as
a subalgebra of the algebra of N x N matrices with pseudo-differential operator
entries, then ® is simply the conjugation map ® : © — TDT L.

The center Z(W) of D(W) is mapped under ® to ._, C[d}]1,, (for I,,, the
n; X n; identity matrix). In particular, the image of the center Z(W) is integral
over @;_, C[0}]I,, (i.e., each element is the root of a monic polynomial with co-
efficients n this ring). The algebra D(W) is a finite module over its center, so we
conclude that the image of D(W) is integral over @;_, C[0}]1,,,.

We claim that ® actually maps D(W) into @;_, M, (C[d}]). To see this,
first note that as a consequence of (5.25), we have ®(D7) = ®&(D)*, where %
represents the unique involution of @;_, M,,(C(?})) extending Hermitian con-
jugate on M, (C) and sending ) to 9. Thus if A; is the image of D(W) —
@i My, (C(2})) — M,,;(C(?’)) then A; may be identified with a subalgebra
of M, (C(t)) closed under Hermitian conjugation, with each element satisfying a
monic polynomial identity with coefficients in C[t]. However if F'(t) € M, (C(t))
is Hermitian and integral over C[t], then F(t)? is integral over C[t]. This means
that tr(F(¢)?) is in C[t]. However tr(F(t)?) = > i | £i;(t)|?, where fi;(t) are the
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entries of F'(t), so this means F'(¢) is in M, (C[t]). Since A; is spanned by its
Hermitian matrices, this shows that A; C M,,;(C[0}]). This proves the claim and
the theorem. (]

5.4. Second part of the proof of the Classification Theorem. We now
complete the proof of the Classification Theorem stated in the introduction. Before
doing so, we require a couple of lemmas.

LEMMA 5.27. For all i the function vy,,;(x) is a polynomial in x which van-
ishes at the finite endpoints of the support (xo,x1) of W (x).

Proof. For each 7 we may write J; = Z;”;OG%V](JJ) for some polynomials
Vji(z) € My (C[z]) with V,;,,;(x) not identically zero and m; the order of v;, as
above. Since U, is W-symmetric, the leading coefficient V;,,,;(x) of °0; must evalu-
ate to a nilpotent matrix at the finite endpoints of the support of W (z). In particular,
its eigenvalues at these points must be zero. To see this, note that since U; is W -
adjointable, so too is m%, Ad;”f'*1 (0;) = 0y Vi,i() + miiV(mi,l)i(a;). Therefore so
is (O Vin,i(w))¥ for any integer k > 0. By taking appropriate linear combinations
for various k, it follows that V,, ;(x)*0% is W -adjointable for all k. Hence for all
k we must have the expression Vj,,;()*W (z)*) vanish as z approaches z or ;
from within (z¢,x ). For each finite endpoint there must exist a value of & such that
the derivative W(a:)(k) evaluates to a nonzero matrix at the endpoint. Consequently
Vinsi(2)F must evaluate to the zero there.

Next note that the matrix U(z) as defined above satisfies U(x)V,,,i(z) =
Um,i(z)U(z) and since U(x) is a unit in My (C(x)), this implies that v,,,;(x)
is equal to the trace of V;,,,;(z). Hence it is a polynomial and it evaluates to O at the
finite endpoints of the support of W (z). O

LEMMA 5.28. Forall 1 <i < N, let hi(x,n) be a sequence of classical orthog-
onal polynomials and let P(x,n) be a sequence of matrix polynomials satisfying
the property that

P(z,n) =diag (hi(z,n—m),...,hn(z,n —m))

for all integers n > { for some fixed integers £,m with £ > 0. Then for all i, there
exists a sequence of classical orthogonal polynomials p;(x,n) such that

P({L’,"I’L) = dlag (ﬁl(m7n)7 s 7ﬁN(‘T7n))
is a bispectral Darboux transformation of P(z,n).

Proof. The sequences of classical orthogonal polynomials come with inter-
twining operators which relate polynomials of various degrees. For example, con-
sider the Jacobi polynomials j, g(x,n) for the weight (1 —z)*(1+ 33)51(,1,1)(3:).
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They are eigenfunctions of the Jacobi operator ¢, 5 = 02(1 — 2%) + 0,(8 — o —
(B+ a+2)x). The intertwining operator for j, g(x,n) is defined as

taps=0;(1—2*)+B—a—(B+a+2)r.
Note that
eq,3 = 8xta,5 and Cat1,8+1 — (,B+a+2) = ’taﬁax

SO Ja+1,8+1(x,n) -ty g is an polynomial eigenfunction of e, 5 of degree n + 1
and therefore equal to a constant multiple of j, g(x,n + 1). Similarly 0, sends
Ja,8(x,n) 10 jat1.8+1(x,n—1). It follows that

ja,ﬁ (a;, n— m) . 8£ta+£71,ﬁ+€fl e tafm,ﬁfm = anafm,ﬁfm(myn)

for some sequence of constants c,,. Furthermore 0" sends jo—m g—m(z,n) to a
constant multiple of j, g(x,n —m) and therefore the j, g must be eigenfunctions
of the product. Thus

(aﬁfa+g,1’5+g,1 . ta,mﬁ,m)a}? S C[eaﬁ].

By similar arguments to those in the previous paragraph for the Hermite and
Jacobi case, we see that taking appropriate products of J, and the associated in-
tertwining operators we can obtain differential operators ;,t; € Q[z] such that the
kernel of t; contains all polynomials of degree less than ¢ and such that

tt; € Clo;] and hi(z,n—m)-t;, = c;hi(z,n)

for some sequence of monic orthogonal polynomials ﬁl(az,n) Note that all but
finitely many of the c,,’s must be nonzero, since otherwise the kernel of the differ-
ential operator will be too large. Setting T = diag(t;,...,ty) and T = diag(t;,...,
ty) it follows that

P(z,n)-T = C(n)P(z,n) and P(z,n)-% = C(n)P(z,n)

for some sequences of matrices C/(n),C(n) nonsingular for almost every n and for
P(x,n) defined as in the statement of the lemma. By Theorem 5.19, it follows that

P(z,n) is a bispectral Darboux transformation of P(z,n). O

Proof of the Classification Theorem 1.3. We assume W (x) is a weight matrix
and that D(W) contains a W-symmetric second order differential operator whose
leading coefficient multiplied by W () is positive definite on the support of W (x).
Without loss of generality, we may assume that W (z) is unitarily irreducible N x
N weight matrix with N > 1.

The first direction is easy. If W (x) is a bispectral Darboux transformation of a
direct sum of classical weights fi(x) @ --- @ fny(x), then the fact that D(f)(x) ®
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@ fn(x)) is full automatically implies D(W) is full. The difficult part is proving
the converse. Assume D (W) is full.

By Theorem 5.23, we may choose T, € My (€(z)) with TE;T = ¢(U;) and
with TT = diag(p;(91),...,pn (o)) for some differential operators 91, ...,y of
order 1 or 2 and polynomials p;, . Note that by rescaling T on the left and T on the
right, we may without loss of generality assume that T has polynomial coefficients.
Also from the proof of Theorem 5.23, we know that there exist by,...,hy € Q(z)
and polynomials p;(91),...,pn(0n) with bh;v; = p;(0;)h; for all i. Let n; be the
degree of the polynomial p; and write

ki
bi =Y 0ihi(x)
=0

for some rational functions ho; (x),...,hx,i(z) € C(z) with hy;(x) # 0.

We also assumed that there exists a second order differential operator © &
D(W') whose leading coefficient multiplied by W (x) is Hermitian and positive-
definite on the support of W (z). By Theorem 5.26 TO = DT for some second
order differential operator De D(W). Furthermore by the calculation in the proof
of Theorem 5.23 we know that Eu{éEn = a; F;; for some second order differential
operator a; € C[9;]. Let C'(n) be the sequence of matrices from the proof Theorem
5.23 and define a sequence of matrix polynomials P (z,n) and sequences of scalar
polynomials g;(z,n) by

P(x,n) =C(n)P(x,n)-T and gi(z,n)E; = EyP(x,n)Ey.

Then for all 7, we calculate

%q(ai)Eu‘ = q(%z)‘f and ‘Eq(bi)zaiEii = mlng%

Therefore

P(z,n)-q(0;)Ei; = ¢(\i(n))Ey P(z,n)
and

P(x,n)-q(0;)%0; B = q(\i(n))*0:(n) E;; P(z,n)
for some polynomial 6;(n). Putting this together

P(x,n)-;Ey; = 0;(n) E;; Pz,n).

In particular it follows that for all %

gi(x,n)-a; =0;(n)g;(x,n).

Note also that P(z,n)Ej; - T = pi(A\i(n))Ey P(x,n). Defining t; by tE; =
FE;; T Ey;, this says that for all but possibly finitely many n (corresponding to roots
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of p;(Ai(n))) the function g;(xz,n) - t; is a polynomial of degree n. Hence for each
1 there exists an integer m; (possibly negative) such that for all but finitely many
n the degree of g;(z,n) is n —m;. In particular a; is exceptional and by Theo-
rem 2.46 we know that a; is Darboux conjugate to a degree-filtration preserving
differential operator of order 2.

The previous paragraph shows that we may have originally chosen b;, ‘Z,‘E
so that the a; (or equivalently the 9;) are degree-filtration preserving. Thus without
loss of generality we take ; to be degree-filtration preserving for all <. In particular
for each 9; we may write

0; = Daagi () + Opars () + agi(x)

where a;(x) is a polynomial with deg(a;;(z)) <jforall1 <i<Nand0<j<2.
We next show that 0; must be order 2 and equal to one of the classical second
order differential operators of Hermite, Laguerre and Jacobi (hereafter referred to
simply as classical operators). Let ¢; be the order of 0;, which is either 1 or 2.
Comparing leading coefficients in the expression h;v; = p;(9;)h; we see

vmﬂ(m) = atii(m)ni'
Furthermore by comparing subleading coefficients we find
hkii(x)v(mifl)i(aj) + h(kﬁl)z’(aj)vmﬂ( z) + mzhk i (@) Um,i ()
= at;i(2)" B, —1)i (@) + (niagi ()" ag,—1)(z)
+ (i — ti+mgng)agi (€)™ ag (@) i ().

Combining this with the first equation, this simplifies to

Vi 1i() = @i ()™ _mihﬁgii(l’)_I_nz'a(tﬁl)z'(l’)‘*‘(ni(mi+ti)—ti)aiii(m) ‘
i Z i ) ai(x)

Therefore by (5.20)-(5.21) we calculate that up to a constant multiple the function
ri(x) is given by

(5.29)
(2£ ing m+2nz(m )~ 2t2) ) Qni a(ti,l)i(ﬂc)
=R i i it a1

for m; even and

(5.30)

(Phmi gy, g 2ri(mitty) =2t ) 2n; a(trl)z‘(ﬂf)
() = Im | @y () m hy B
TZ(:E) m |:(Itzz(33) k’ﬂ(x) exXp m; atii(m) €L

for m; odd.
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The leading coefficient vy, ;(x) of b; must vanish at the finite endpoints of the
support of W (x). Since vy,,i(x) = ay,;(z)™, this implies that a;,;(x) must vanish
at the finite endpoints of the support of W (x). If ¢; is 1, then (5.29)-(5.30) imply
that r;(x) is rational. Thus in this case W (x) must be rational, and for W (x) to
have finite moments the support of ¥ (z) must then be a finite interval. However,
at,;(x) can only have one root in this case, so a;,;(x) does not vanish at both the
endpoints of the support of W (x). Thus we see that ¢; = 2 for all 7 and that 9; is an
operator of order 2.

Suppose that for some ¢ the polynomial ay;(z) has degree two. Then (5.29)-
(5.30) tell us that for W (z) to have finite moments the support of W (z) must lie on
a finite interval. Therefore in this case the roots of ay;(z) must be real and distinct
and equal to the finite endpoints of the support of W (z). Up to an affine translation,
they can be taken to be £1 in which case 9; is equal to a Jacobi operator. Note that
in this case since aj(x) must vanish on the support of W (z), they must all be
Jacobi operators.

Alternatively suppose that for some ¢ the polynomial ay;(x) has degree 1. Then
again to have finite moments and for ay;(x) to vanish at the finite endpoints of
the support of W (x), the support of W (x) must be semi-infinite. Up to an affine
translation, we can take the support to be (0,e0) in which case 0; is a Laguerre
operator. Again, this implies that all of the 9; are Laguerre operators.

Finally, suppose that for some ¢ the polynomial ay;(x) has degree 0. Then the
weight matrix W (z) must be supported on the whole real line. Also since ?; is ex-
ceptional the polynomial ay;(z) must have degree 1 in this case (since otherwise 9;
would not have polynomial eigenfunctions of all but finitely many degrees). There-
fore up to an appropriate translation we may take 0; to be the Hermite operator.

In any case, 9; is a classical operator. For all ¢ let f;(z) be the weight function
associated to the classical operator d;, and let h;(x,n) be the associated sequence
of monic orthogonal polynomials. From the above calculation (replacing 9; with
a;), we know that the polynomials P(z,n) := C(n)P(z,n) - < are eigenfunctions
of 0; E;; for all 7 with

for some polynomials 6;(n),...,0n(n). If 6;(n) is nonzero, the above implies that
the 4,7 th entry P(z, n);; of P(z,n) is zero for all j # i. Thus for all but finitely
many 7, the polynomial P(a: n) is diagonal. Furthermore, for all n sufficiently
large the degree of the diagonal entry of P (z,n) is n —m. Thus for all but finitely
many n, we know that 15(:1:, n) is a diagonal polynomial matrix whose i’th diagonal
piece is a;h;(x,n —m) for some nonzero constant ;. Therefore by the previous
lemma we know that 15(:1:, n) is a bispectral Darboux transformation of a sequence
of orthogonal polynomials for a direct sum of classical weights. U
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Proof of Theorem 1.5. We know in this case that D(W) is full and that the

center of D(W) is irreducible. The result follows immediately. 0
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