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THE MATRIX BOCHNER PROBLEM

By W. RILEY CASPER and MILEN YAKIMOV

Abstract. A long standing question in the theory of orthogonal matrix polynomials is the matrix

Bochner problem, the classification of N ×N weight matrices W (x) whose associated orthogonal

polynomials are eigenfunctions of a second order differential operator. Based on techniques from

noncommutative algebra (semiprime PI algebras of Gelfand-Kirillov dimension one), we construct

a framework for the systematic study of the structure of the algebra D(W ) of matrix differential

operators for which the orthogonal polynomials of the weight matrix W (x) are eigenfunctions. The

ingredients for this algebraic setting are derived from the analytic properties of the orthogonal matrix

polynomials. We use the representation theory of the algebras D(W ) to resolve the matrix Bochner

problem under the two natural assumptions that the sum of the sizes of the matrix algebras in the

central localization of D(W ) equals N (fullness of D(W )) and the leading coefficient of the second

order differential operator multiplied by the weight W (x) is positive definite. In the case of 2× 2

weights, it is proved that fullness is satisfied as long as D(W ) is noncommutative. The two conditions

are natural in that without them the problem is equivalent to much more general ones by artificially

increasing the size of the matrix W (x).
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1. Introduction.

1.1. An overview of the results in the paper. Orthogonal matrix polyno-

mials are sequences of matrix-valued polynomials which are pairwise orthogonal

with respect to a matrix-valued inner product defined by a weight matrix W (x).

They were defined seventy years ago by Krein [32] and since then have been shown

to have a wide variety of applications in both pure and applied mathematics, includ-

ing spectral theory, quasi-birth and death processes, signal processing, Gaussian

quadrature, special functions, random matrices, integrable systems and represen-

tation theory. Of great specific interest are those orthogonal matrix polynomials

which are simultaneously eigenfunctions of a matrix-valued differential operator.

They in particular generalize the classical orthogonal polynomials of Hermite, La-

guerre, and Jacobi whose utility in diverse research areas is difficult to understate.

The current and potential applications of matrix-valued orthogonal polynomi-

als and the study of their analytic properties naturally motivate the problem of the

classification of all orthogonal matrix polynomials which are eigenfunctions of a

second order differential operator. This problem was posed and solved by Bochner

[7] in the scalar case and later extended by Durán [17] to the matrix case.

Problem 1.1. (Matrix Bochner Problem) Classify all N ×N weight matrices

W (x) whose associated sequence of orthogonal matrix polynomials are eigenfunc-

tions of a second order matrix differential operator.

Bochner [7] proved that for N = 1 up to an affine change of coordinates the

only weight matrices satisfying these properties are the classical weights e−x2

,

xbe−x1(0,∞)(x), and (1−x)a(1+x)b1(−1,1)(x) of Hermite, Laguerre, and Jacobi

respectively. For brevity, we hereafter refer to affine transformations of these

weight functions as classical weights. However, for N > 1 the solution of the

matrix Bochner problem has proved difficult.

Grünbaum, Pacharoni, and Tirao [24, 25] found the first nontrivial solutions

of the matrix Bochner problem using Harish-Chandra modules for real simple

groups and the associated matrix spherical functions. Further examples related to

Lie groups are found in [31]. In the past twenty years numerous other examples

have been found, not necessarily associated with Lie theory. More recent work has

focused on the study of the algebra D(W ) of all differential operators for which

the matrix-valued polynomials are eigenfunctions. Alternatively, D(W ) may be

described as the algebra of all differential operators which are degree-preserving
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and W -adjointable. This algebra is studied both from a general stand point and for

specific weights W (x), [10, 26, 37, 44, 48]. However, the previous general results

on the structure of D(W ) are very limited and general classification results on the

matrix Bochner problem have remained illusive.

In this paper, we carry out a general study of the algebra D(W ) using tech-

niques from noncommutative algebra. Starting from the analytics properties of the

related sequence of orthogonal matrix polynomials, we equip the algebra D(W )

with the structure of a ∗-algebra with a positive involution. From here we obtain

that D(W ) is an affine semiprime algebra of Gelfand-Kirillov dimension at most

one. Among the hardest of these properties to prove is that D(W ) is affine. We

show this by first proving that the center is affine by constructing an embedding

into a product of Dedekind domains. We then show that the whole algebra D(W )

is a large subalgebra of an order in a semisimple algebra. Once all the properties

of D(W ) are established, the Small-Stafford-Warfield theorem [43] tells us D(W )

is a Noetherian algebra which is finitely generated module over its center Z(W ).

This is used to show that the extension of scalars of D(W ) to the total ring of

fractions of Z(W ) is isomorphic to a product of matrix algebras over the function

fields of the irreducible components of SpecZ(W ) (one matrix algebra for each

irreducible component). This fact in turn allows us to define the notion of the rank

of the algebra D(W ) which equals to the sum of the sizes of the matrix algebras.

This integer is shown to be between 1 and N and another characterizations of it

is given as the maximal number of generalized orthogonal idempotents of D(W )

which sum to a central element.

The above structural results allow us to define canonical submodules of the

Ω(x),D(W )-bimodule Ω(x)⊕N , where Ω(x) is the matrix Weyl algebra with ra-

tional coefficients. Using representation theory, we demonstrate that the algebraic

structure of the algebra D(W ) has a profound influence on the shape of the weight

matrix W (x) itself. Specifically, using D(W ) modules defined from the maximal

set of orthogonal idempotents, we prove that when the algebra D(W ) is full in

the sense that the rank is as large as possible (i.e., equals N ), the matrix W (x) is

congruent to a diagonal weight matrix via a rational matrix T (x),

W (x) = T (x)diag
(
f1(x), . . . ,fN (x)

)
T (x)∗(1.2)

where fi(x) is a classical weight for all i. Further arguments with these D(W )

modules allow us to control the size of the Fourier algebra of the matrix weight

W (x), which is defined as the algebra of matrix differential operators that applied

to the orthogonal matrix polynomials of W (x) equal to a shift operator applied

to the same sequence. This is a larger algebra than D(W ), which in turn is used

to show that under natural assumptions, solutions of the matrix Bochner problem

come from bispectral Darboux transformations of a direct sum of classical weights.

Our main theorem is the following Bochner-type classification result:
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THEOREM 1.3. (Classification Theorem) Let W (x) be a weight matrix and

suppose that D(W ) contains a W -symmetric second order differential operator

D= ∂2
xD2(x)+∂xD1(x)+D0(x)(1.4)

with D2(x)W (x) positive-definite on the support of W (x). Then the algebra

D(W ) is full if and only if W (x) is a noncommutative bispectral Darboux trans-

formation of a direct sum of classical weights. Furthermore, in this case (1.2)

holds.

A matrix differential operator is called W -symmetric when it equals its formal

adjoint with respect to W (x), see Definition 2.14. The algebra D(W ) contains a

second order differential operator if and only if it contains a W -symmetric second

order differential operator. For such an operator (1.4), the matrix D2(x)W (x) is

necessarily Hermitian.

We pause here to briefly explain the assumptions in the theorem, arguing that

they are both relatively weak and natural. The requirement that D(W ) contains a

second order W -symmetric operator D with D2(x)W (x) positive definite on the

support of W (x) is a non-degeneracy condition. It implies that D is not a zero

divisor in D(W ) and that D does not annihilate an infinite dimensional space of

matrix-valued polynomials. It fits well into the literature wherein the stronger con-

dition that the leading coefficient of the second order differential operator is a scalar

is often assumed.

Furthermore, without this positivity assumption, the problem is closely related

to the much more general one for classifying matrix weights for which D(W ) is

nontrivial, i.e., contains a differential operator of an arbitrary nonzero order. This

problem is not solved even in the scalar case. To see the stated relation, consider

an N ×N matrix weight W (x) for which D(W ) contains an operator of order 2k.

Let W̃ (x) be a bispectral Darboux transformation of W (x) obtained by factorizing

the differential operator into a product of operators of orders k in the sense of Def-

inition 2.33. Then the 2N ×2N block diagonal weight matrix diag(W (x),W̃ (x))

has the property that D(diag(W,W̃ )) contains a differential operator of order k,

see Example 3.11 for details. In various common situations this can be iterated to

bring the minimal order of a differential operator in D(W ) down to 2 by increasing

the size of W (x). The positivity assumption on the leading terms of the differential

operator D avoids this vast expansion of the matrix Bochner problem. In a similar

fashion, when one artificially increases the size of a matrix weight, the difference

between N and the rank of D(W ) increases too, leading to cases where the alge-

bra D(W ) is substantially smaller than the size of the matrix weight W (x). The

fullness condition ensures that the problem does not become wild in this way.

Additionally, under the assumptions of the Classification Theorem we obtain

an explicit description of the algebra D(W ) itself. In particular Theorem 5.26 pro-

vides us with a matrix differential operator conjugating D(W ) into a subalgebra of
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D(f1 ⊕ ·· ·⊕ fN ) for some classical weights f1, . . . ,fN . When the f1, . . . ,fN are

suitably chosen, this latter algebra is a maximal order (which is in this context a di-

rect product of matrix algebras over polynomial rings). In this way, we can think of

our process as a noncommutative desingularization of the original algebra D(W ).

We prove that our results take on a more explicit form in the case of matrix

weights W (x) of size 2×2. In this case we show that, if D(W ) is noncommutative,

then D(W ) must be full. This leads us to the following classification result for 2×2

weight matrices.

THEOREM 1.5. (2 × 2 case) Let W (x) be a 2 × 2 weight matrix and sup-

pose that D(W ) contains a W -symmetric second order differential operator whose

leading coefficient multiplied by W (x) is positive definite on the support of W (x).

The algebra D(W ) is noncommutative if and only if the weight W (x) is a noncom-

mutative bispectral Darboux transformation of r(x)I for some classical weight

r(x).

Thus aside from various degenerate cases when D(W ) consists of polynomials

of a single differential operator of order 2, this fully resolves the Bochner problem

for the 2×2 case.

For a comprehensive background on noncommutative rings and polynomial

identity (PI) algebras we refer the reader to the books [23, 35] and [13], respec-

tively. A comprehensive treatment of orders in central simple algebras is given in

[38]. A concise and illuminating treatment of PI rings can be found in [8, Sec-

tions I.13 and III.1].

We refer the reader to the arxiv version of the paper (arXiv:1803.0440, Section

6) for detailed examples of noncommutative bispectral Darboux transformations

for 2×2 matrix weights of Hermite, Laguerre, and Jacobi type. These examples in

particular illustrate how previous solutions of the matrix Bochner problem fit into

our framework.

1.2. From algebraic geometry to noncommutative algebra. The idea

that the algebraic properties of a commutative algebra of differential or difference

operators can tell us about the operators themselves is not new. It is a powerful

point of view that can be pointed to as the central concept in the unification of

various phenomena in integrable systems and algebraic geometry during the 70s

and 80s, [14, 33, 41, 46]. This resulted in a number of strong applications of alge-

braic geometry to the analysis of solutions of integrable systems, and in spectacu-

lar applications in the opposite direction, for instance the solution of the Schottky

problem [42].

More formally, there is a natural correspondence between differential oper-

ator algebras, vector bundles on algebraic curves, and exact solutions of certain

nonlinear partial differential equations. The most basic example of this is when a

Schrödinger operator ∂2 +u(x) commutes with a differential operator of order 3.
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In this case, u(x) gives rise to a soliton solution of the Korteweg-de Vries equation

[34]

φxxx(x,t)+6φ(x,t)φx(x,t) = φt(x,t).

This concept has also been applied in the context of bispectral algebras of dif-

ferential operators of low rank (here rank means the gcd of the orders of differential

operators in the algebra). Most strikingly, Wilson provided a complete classifica-

tion of bispectral differential operators of rank 1 in terms of rational projective

curves with no nodal singularities [47]. General methods for constructing bispec-

tral operators with C(d) of arbitrary rank have been developed [1, 2, 15, 29] and the

bispectral algebras C(d) containing an operator of prime order have been classified

[27]. Moving into a noncommutative direction, rank 1 bispectral solutions of the

KP hierarchy and the related Calogero–Moser systems were analyzed in [3, 4, 6]

using D-modules, one-sided ideals of the first Weyl algebras and noncommutative

projective surfaces.

The basis of the applications of algebraic geometry to integrable systems is

the consideration of commutative algebras of differential and difference operators.

New in this paper is the systematic study of the properties of orthogonal matrix

polynomials for a weight matrix W (x), based on structural results for the algebra

D(W ) which is generally noncommutative. The noncommutative case is quite a bit

more challenging; for example, we no longer have the power of algebraic geome-

try to rely on, at least directly. Our methods use PI algebras, and more precisely,

noncommutative algebras which are module-finite over their centers, their relation

to central simple algebras, and their representation theory [8, 13].

Similarly, to Shiota’s solution of the Schottky problem [42], we expect that our

methods will have applications of orthogonal matrix polynomials to noncommuta-

tive algebra, in that interesting PI algebras can be realized as the algebras D(W ) for

some weight matrices W (x). Such a relation, can be used to study fine properties

of these algebras using orthogonal polynomials.

1.3. Notation. Throughout this paper, we will use capital letters to repre-

sent matrices and lower case letters to represent scalars. We will also use the Gothic

font to represent differential operators and script to represent difference operators.

For example, we will use f(x) or F (x) to represent a function of x, depending on

whether it is a scalar or matrix-valued function. Similarly, we will use d or D to

represent a differential operator, again depending on whether it is scalar or matrix-

valued. Furthermore an expression like M will denote a matrix-valued discrete

operator. Wherever feasible, we will use capitalized calligraphic font, such as A,

to denote various operator algebras, subalgebras, and ideals. Exceptions to this will

include certain special algebras, such as the algebra of all differential operators, that

will have their own special notation.
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For reasons pertaining to compatibility with the matrix-valued inner product

〈·, ·〉W defined below, our differential operators will act on the right. For example,

the basic differential operator ∂x acts on a function f(x) by

f(x) ·∂x = f ′(x).

An arbitrary matrix differential operator D =
∑n

j=0∂
j
xAj(x) acts on a matrix-

valued function F (x) by

F (x) ·D=

n∑

j=0

F (j)(x)Aj(x).

Because this action is a right action, the algebra of all differential operators will

satisfy the fundamental commutation relation

x∂−∂x= 1.

Note this is reversed from the typical identity for the Weyl algebra, since differen-

tial operators are most often taken to act on the left. Thus our algebra of differential

operators will actually be the opposite algebra of usual Weyl algebra.

In addition, we will adopt the following notation:

• For any ring R, R[x], R(x), R[[x]] and R((x)) will denote the rings of poly-

nomials, rational functions, power series and Laurent series with coefficients in R,

respectively.

• We will use Ω[x], Ω(x), Ω[[x]] and Ω((x)) to denote the opposite algebras of

the Weyl algebras with coefficients in C[x], C(x), C[[x]] and C((x)) respectively

(i.e., the rings of differential operators with right action).

• The symbol † will always denote the W -adjoint, as defined below.

• For any ring R, MN (R) will denote the ring of matrices with coefficients in

R and Eij will denote the element of this ring with a 1 in the i,j’th entry and zeros

elsewhere.

• The symbols x, t, and n will represent indeterminants, unless specified oth-

erwise.

Acknowledgments. We are grateful to Ken Goodearl for very helpful corre-

spondence on ∗-algebras. We would also like to thank F. Alberto Grünbaum, Erik

Koelink, Pablo Roman and Ignacio Zurrián for their valuable comments and sug-

gestions on the first version of the paper. We are indebted to the anonymous referee

for making a number of valuable suggestions that greatly improved the paper. In

particular, the referee raised important questions about the case of weights with

unbounded support and because of these comments we were able to structure our

arguments in such a way that Theorem 1.3 fully captures this case.
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2. Background.

2.1. Orthogonal matrix polynomials and Bochner’s problem. We be-

gin with a brief review of the basic theory of orthogonal matrix polynomials and

Bochner’s problem.

Definition 2.1. A weight matrix W (x) supported on a (possibly unbounded)

interval (x0,x1) is Hermitian matrix-valued function W : C → MN (C) which is

entrywise-smooth on R, identically zero outside of (x0,x1), and positive definite

on (x0,x1) with finite moments:

∫
xmW (x)dx < ∞, ∀m≥ 0.

We call the interval (x0,x1) the support of W (x). Note that in general x0,x1 may

be extended real numbers.

Remark 2.2. We are restricting our attention to “smooth” weight matrices in

order to avoid more delicate analytic considerations. In general one may consider

matrix valued measures on R satisfying an appropriate generalization of the above

definition. This is discussed further in [12].

A weight matrix W (x) defines a matrix-valued inner product 〈·, ·〉W on the

vector space MN (C[x]) of all N ×N complex matrix polynomials by

〈P,Q〉W :=

∫

C

P (x)W (x)Q(x)∗dx, ∀P,Q ∈MN (C[x]).(2.3)

By applying Gram-Schmidt we may determine a sequence of matrix-valued

polynomials P (x,n) ∈MN (C[x]), n ∈ N, with P (x,n) degree n with nonsingu-

lar leading coefficient such that 〈P (x,n),P (x,m)〉W = 0 for m �= n. Moreover

this sequence P (x,n) is unique up to left multiplication by a nonsingular constant

matrix. This leads to the following definition.

Definition 2.4. We call a sequence of matrix polynomials P (x,n), n ∈ N, a

sequence of orthogonal matrix polynomials for W (x) if for all n the polynomial

P (x,n) has degree n with nonsingular leading coefficient and

〈P (x,n),P (x,m)〉W = 0, ∀m �= n.

The sequence P (x,n) will be called monic if the leading coefficient of each

P (x,n) is I .

The sequence of monic orthogonal polynomials of a weight matrix W (x) must

satisfy a three-term recursion relation and a converse statement also holds.
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THEOREM 2.5 (Durán, Van Assche and López-Rodriguez [20, 19]). Suppose

that P (x,n) is a sequence of monic orthogonal matrix polynomials for a weight

matrix W (x). Then for some sequences of complex matrices B(n) and C(n), we

have

xP (x,n) = P (x,n+1)+B(n)P (x,n)+C(n)P (x,n−1), ∀n≥ 1.(2.6)

Conversely, given sequences of matrices B,C : N→ C satisfying natural mild as-

sumptions, there exists a weight matrix W (x) for which the sequence of polynomi-

als P (x,n) defined by (2.6) is a sequence of monic orthogonal matrix polynomials.

The focus of our paper is the Matrix Bochner Problem 1.1. Specifically, we

wish to determine for which weights W (x) the associated sequence P (x,n) of

monic orthogonal polynomials satisfy a second order matrix differential equation

P ′′(x,n)A2(x)+P ′(x,n)A1(x)+P (x,n)A0(x) = Λ(n)P (x,n)(2.7)

for all n for some sequence of complex matrices Λ(n). Equivalently, we want to

know when the P (x,n) are eigenfunctions of a second order matrix differential

operator D = ∂2
xA2(x)+∂xA1(x)+A0(x) acting on the right with matrix-valued

eigenvalues. More generally, we can consider the algebra of all differential opera-

tors for which the sequence P (x,n) are eigenfunctions.

Definition 2.8. Let W (x) be a weight matrix with sequence of monic orthogo-

nal polynomials P (x,n). We define D(W ) to be the collection of all matrix-valued

differential operators for which the P (x,n) are eigenfunctions for all n. We call

D(W ) the algebra of matrix differential operators associated to W (x). We use

Z(W ) to denote the center of D(W ).

Remark 2.9. Later we will realize D(W ) as the right bispectral algebra associ-

ated to the bispectral function P (x,n). However we will retain the notation D(W )

throughout the paper.

2.2. Adjoints of differential operators. Our methods extensively use ∗-

algebras constructed using the adjoint of a matrix differential operator. We briefly

recall some definitions and ideas here and refer the reader to the excellent reference

[16] for a comprehensive treatment. A matrix differential operator D may always

be viewed as an unbounded linear operator on a suitably chosen Hilbert space.

Therefore it makes sense to think about the adjoint of a differential operator strictly

in terms of functional analysis.

Definition 2.10. An unbounded linear operator on a Hilbert space H is a linear

function T defined on a dense subset H called the domain of T . The adjoint of T
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is an unbounded linear operator T ∗ with domain

{
y ∈H : x→ 〈Tx,y〉 is continuous

}

defined by 〈Tx,y〉 = 〈x,T ∗y〉 for all x and y in the domain of T and T ∗, respec-

tively.

Remark 2.11. Some authors do not require an unbounded operator to be de-

fined on a dense subspace. However it is necessary for Hahn-Banach to imply the

existence of T ∗, so we adopt it as part of our definition. Since we will be working

with differential operators with rational coefficients, this definition will be suffi-

cient for us.

The algebra of differential operators also have a natural adjoint operation ∗
called the formal adjoint.

Definition 2.12. The formal adjoint on MN (Ω((x))) is the unique involution

extending Hermitian conjugate on Ω((x)) and sending ∂xI to −∂xI .

Now consider specifically the Hilbert space H = L2([−1,1]). The formal ad-

joint is defined in such a way that the adjoint of an unbounded operator and its

formal adjoint will agree on a subset of H whose closure has finite codimension.

However as the next example shows, the formal adjoint may not be equal to the

adjoint of D as an unbounded linear operator.

Example 2.13. Let H = L2([−1,1]) with the usual inner product and consider

two polynomials p(x),q(x). Then the formal adjoint of the differential operator ∂x
is ∂∗

x =−∂x. However we calculate

〈
p(x) ·∂x,q(x)

〉
=

∫ 1

−1

p′(x)q(x)dx

= p(1)q(1)−p(0)q(0)−
∫ 1

−1

p(x)q′(x)dx

= 〈p(x),q(x) ·∂∗
x〉+p(1)q(1)−p(0)q(0).

Since there is an extra term on the right-hand side, the formal adjoint of ∂x does

not agree with the adjoint as an unbounded linear operator on its domain.

More generally a weight matrix W (x) defines a Hilbert space of matrix-

valued functions MN (H), where H is the Hilbert space of complex-valued

L2(tr(W (x))dx) functions on the support (x0,x1) of W (x). Any matrix-valued

differential operator D ∈ MN (Ω[[x]]) with suitably nice coefficients will define

an unbounded linear operator on MN (H). There is also a natural choice of formal

adjoint here which takes into account the form of the inner product.
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Definition 2.14. Let W (x) be a weight matrix supported on an interval (x0,x1)

containing 0 and let D∈MN (Ω[[x]]). A formal adjoint of D with respect to W (x),

or formal W (x)-adjoint of D is the unique differential operator D† ∈MN (Ω[[x]])

defined on (x0,x1) by

D† :=W (x)D∗W (x)−1.

An operator D is called formally W (x)-symmetric if D† =D.

Remark 2.15. We require 0 to be in the interval (x0,x1) in order for W (x) and

W (x)−1 to have series expansions at 0, and thereby representations in MN (C[[x]]).

This is a technical necessity for † to be defined on MN (Ω[[x]]), but is not an im-

portant restriction since we can always affinely translate until the support contains

0.

Definition 2.16. Let W (x) be a weight matrix and let D ∈ MN (Ω[x]). We

say that D is W -adjointable if there exists a differential operator D̃ ∈MN (Ω[x])

satisfying

〈P ·D,Q〉W = 〈P,Q · D̃〉W , ∀P,Q ∈MN

(
C[x]

)
.

In this case, we call D̃ the adjoint of D with respect to W (x), or alternatively the

W -adjoint of D. If D= D̃, then D is called W -symmetric.

Even if a given differential operator D is W -symmetric, it is not necessarily

formally W -symmetric, as the following example from [45] shows.

Example 2.17. Let r(x) = 1
x exp(− ln(x)2/2) defined for x > 0 and consider

the weight matrix

W (x) =

(
4r(x) r(x)sin

(
2π ln(x)

)

r(x)sin
(
2π ln(x)

)
2r(x)

)
1(0,∞).

Then for any polynomials P (x),Q(x) ∈M2(C[x]) and real numbers a,b we have

〈
P (x)diag(a,b),Q(x)

〉
W

=
〈
P (x),Q(x)diag(a,b)

〉
W
,

due to the fact that
∫

∞

0
xnr(x)sin(2π ln(x))dx = 0 for all n ≥ 0. Consequently

the element diag(a,b) is W -symmetric. However, diag(a,b) is not formally W -

symmetric since diag(a,b)† �= diag(a,b).

Remark 2.18. We are grateful to the anonymous referee for pointing out this

example to us, greatly contributing to the clarity of the presentation of adjoints for

weight matrices with unbounded support.

The situation described in the previous case is pathological, arising from the

unbounded support of W (x). Specifically it is due to the fact that in an unbounded
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domain two different functions can have identical moments. However, if two dif-

ferent smooth functions have the same moments, and both decrease sufficiently

rapidly for large values of |x|, then they will necessarily be the same. This prompts

the following definition.

Definition 2.19. We say that a matrix-valued function F (x) : R → MN (C)

decreases exponentially at infinity if there exist positive real numbers a,b such that

lim
x→±∞

ea|x|
b

F (x) = 0.

Remark 2.20. In particular, if the support of a weight matrix W (x) is bounded,

then by definition W (x) decreases exponentially at infinity. If F (x) decreases ex-

ponentially at infinity and all its moments exist and are zero, then F (x) will itself

be zero.

Under the following assumption about W (x), the formal W -adjoint of a dif-

ferential operator will always agree with the W -adjoint of a differential operator

when the latter exists.

Assumption 2.21. For each integer n ≥ 0 the n’th derivative W (n)(x) de-

creases exponentially at infinity and there exists a scalar polynomial pn(x) such

that W (n)(x)pn(x) has finite moments.

Here by finite moments, we mean that the entries of W (n)pn(x)x
k are in L1(R)

for all nonnegative integers k.

LEMMA 2.22. Suppose that f : R→ R has finite moments and decreases ex-

ponentially at infinity. If
∫
f(x)xndx= 0 for all n≥ 0 then f(x) = 0 for a.e. x.

Proof. The moment condition is a real constraint, so to prove our lemma it suf-

fices to consider the case when f(x) is real-valued. Write f(x) = f+(x)− f−(x)
for functions f±(x) which are positive with complementary support. Since f(x)

has finite moments and decreases exponentially at infinity, so too do f±(x). There-

fore there exist positive constants r±,a±, b± such that f±(x) ≤ exp(−a±xb±) for

|x|> r±. We calculate that the n’th moment of f±(x) satisfies the inequality

mn,± =

∫

R

xnf±(x)dx≤
∫ r±

−r±
|x|nf±dx+

∫

R

|x|me−a±xb±
dx

≤ rn±‖f±‖1 +
2

b±

1

a
(n+1)/b±
±

Γ

(
n+1

b±

)

≤ K

b±

1

a
(n+1)/b±
±

Γ

(
n+1

b±

)
,
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where K exists because Γ(n) must (eventually) grow faster than (a
1/b±
± r±)n.

Therefore

∞∑

n=1

1

2n
√
m2n,±

≥
∞∑

n=1

(
b±a

1/b±
±
K

)1/2n

a1/b± 1

Γ
(

2n+1
b±

)1/2n
= ∞.

By Carleman’s condition, it follows that f± is the only nonnegative function with

the sequence of moments mn,±. By assumption
∫
f+(x)x

ndx=
∫
f−(x)xndx for

all n ≥ 0, so that mn,+ = mn,− for all n. Consequently f+(x) = f−(x) a.e., and

therefore f(x) = 0 a.e. �

PROPOSITION 2.23. Let W (x) be a weight matrix satisfying Assumption 2.21

and let D∈MN (Ω[x]) be a matrix differential operator. If D is W -adjointable and

D† ∈MN (Ω[x]), then its W -adjoint is equal to the formal W -adjoint D†.

Proof. Suppose that D is W -adjointable and let D̃ ∈ MN (Ω[x]) be the W -

adjoint of D. Additionally let n be the order of D and choose f(x) ∈ C[x] such

that W (j)(x)f(x) ∈ MN (H) for all 0 ≤ j ≤ n. Furthermore let p(x) ∈ C[x] be

the unique monic polynomial vanishing only at the finite endpoints of the sup-

port of W (x) and let q(x) = p1(x)p2(x) . . . pn(x)p(x)
n, for n the order of D and

p1(x), . . . ,pn(x) defined as in Assumption 2.21. Then for any Q(x) ∈MN (C[x])

there exist matrices Bk(x),Ck(x) ∈MN (C[x]) (depending on the values of Q(x)

and D) such that

((
q(x)Q(x)

)
·
(
W (x)D∗− D̃W (x)

))∗
=

n∑

k=0

Bk(x)pk(x)W
(k)(x)Ck(x).

Therefore the expression in the left-hand side decreases exponentially at infinity

and has finite moments. As a consequence, if all the moments are zero, then the

expression will be identically zero.

Integration by parts tells us that for all P (x),Q(x) ∈MN (C[x])

〈
P (x) ·D,q(x)Q(x)

〉
W

=

∫ x1

x0

(
P (x) ·D

)
W (x)q(x)Q(x)∗dx

=

∫ x1

x0

P (x)
((
q(x)Q(x)

)
·W (x)D∗)∗dx.

Combining this with the W (x)-adjoint definition, we obtain that for all P (x),

Q(x) ∈MN (C[x])
∫ x1

x0

P (x)
((
q(x)Q(x)

)
· (W (x)D∗− D̃W (x)

))∗
dx= 0.

This implies that the entries of ((q(x)Q(x)) · (W (x)D∗− D̃W (x)))∗ have all mo-

ments equal to zero. It follows that ((q(x)Q(x)) · (W (x)D∗ − D̃W (x))) = 0 for
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all Q(x) ∈ MN (C[x]) and therefore the kernel of W (x)D∗ − D̃W (x) contains

q(x)MN (C[x]). Hence D† − D̃= 0, completing the proof. �

In the case that D(W ) contains a W -symmetric second order differential op-

erator of the form (1.4), then W (x) satisfies the noncommutative Pearson equation

2
(
D2(x)W (x)

)′
=D1(x)W (x)+W (x)D1(x)

∗.(2.24)

When D2(x)W (x) is positive-definite on the support of W (x), one may use this

to show that the weight matrix W (x) will satisfy Assumption 2.21, as proved in

the next lemma. Hence for the purposes of this paper, the formal W -adjoint will

always be equal to the W -adjoint, whenever the latter exists.

LEMMA 2.25. Suppose that W (x) is a weight matrix and that D(W ) con-

tains a W -symmetric, second order differential operator D of the form (1.4) with

D2(x)W (x) positive-definite on the support of W (x). Then W (x) satisfies As-

sumption 2.21.

Proof. Note that det(D2(x)) is not identically zero, so its inverse exists as

a matrix-valued rational function. Therefore D2(x) is invertible in MN (C(x)).

Let p1(x) = det(D2(x)) ∈ C[x] so that D2(x)
−1p1(x) ∈MN (C[x]). Then by us-

ing the noncommutative Pearson equation (2.24), one may show inductively that

p1(x)
nW (n)(x) is equal to a sum of matrix polynomials multiplying W (x) on the

left and right, and consequently has finite moments, and that if W (x) decreases

exponentially at infinity, then so too does W (n)(x) for each n. Thus it suffices to

show that W (x) decreases exponentially at infinity.

Set Q(x) = D1(x)D2(x)
−1 ∈ MN (C(x)) and H(x) = D2(x)W (x). Since

W (x) = D2(x)
−1H(x), to prove that W (x) decreases exponentially at infinity

it suffices to prove that H(x) decreases exponentially at infinity. Note that the non-

commutative Pearson equation (2.24) reads

2H ′(x) =Q(x)H(x)+H(x)Q(x)∗.

This is a first-order, N 2 ×N 2 linear system of differential equations for the entries

of H(x), with coefficients in C(x). In particular by reindexing, we can write this

equation as

d

dx
�y =M(x)�y,(2.26)

where M(x) is an N 2 ×N 2 rational matrix whose entries are determined by the

entries of Q(x) and the entries of �y are the entries Hij(x) of H(x) arranged in

lexicographical order.

We view (2.26) as a differential equation on C. We consider two possibilities:

either (2.26) has at most a singularity of the first kind at ∞, or else (2.26) has a

singularity of the second kind at infinity.
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In the first case, by [11, Theorem 5.1] the general solution Φ(z) of (2.26) is

meromorphic in a neighborhood of ∞, and therefore the functions Hij(x) extend

to meromorphic functions in a neighborhood of infinity. Consequently 1/Hij(z)

is meromorphic in a neighborhood of infinity also and so for each i,j there exists

an integer nij > 0 with 1/(Hij(z)z
nij )→ 0 as z → ∞. This implies that Hij(z) =

|Hij(z)| > |z|−nij for |z| large enough and since the Hij(z) have finite moments

this implies that the support of W (x) must be bounded.

In the second case, by [11, Theorem 6.1], (2.26) has a formal-solution matrix

Φ(z) of (2.26) of the form

Φ(z) = S(z)diag(eq1(z), . . . ,eqN2 (z)),

where here each qi(z) is a polynomial in C[z1/h] for some fixed integer h > 0 and

S(z) is an N 2 ×N 2 matrix whose determinant does not vanish for large |z| and

Sij(z) = zrij
mij∑

m=0

σijm(z) logm(z), σijm(z) =
∞∑

ℓ=0

σijmℓz
−ℓ/h

for some constants σijmℓ. Appropriate linear combinations of the formal solution

will agree with the values of Hij(x) at points in the support of W (x) near infinity,

but the coefficients in the expansion may change depending on which direction we

approach ∞ on the real line, due to branching.

Suppose that the support of W (x) is unbounded to the right. From the previous

paragraph, we know that Hij(x) will be of the form

Hij(x) =
N2∑

k=1

sijk(x)e
qk(x)

for some functions sijk(x) expressible in terms of the entries of S(z). In particular,

the entries of sijk(x) ∼ xnijk/h log(x)mijk as x→ ∞. Therefore for the Hij(x) to

have finite moments, we must have that Re(qk(x)) goes to zero as x → ∞. Since

sijk(x) = O(xtijk ) for some integer tijk ∈ Z as x → ∞, this shows that Hij(x)

decreases exponentially as x→ ∞.

Similarly, if the support of W (x) is unbounded to the left, then we may show

that the Hij(x) decrease exponentially as x→−∞. Thus in any case, the function

H(x) decreases exponentially at infinity. �

2.3. Bispectrality. The notion of bispectrality arose from questions origi-

nally posed by Duistermaat and Grünbaum [15] on finding locally meromorphic

functions ψ(x,y) which define a family of eigenfunctions for a fixed differential

operator in x and a family of eigenfunctions of another differential operator in y.



1024 W. R. CASPER AND M. YAKIMOV

Examples of functions ψ(x,y) satisfying this property are referred to in the liter-

ature as bispectral functions. The simplest example of a bispectral function is the

exponential function ψ(x,y) = exy.

Example 2.27. The exponential function ψ(x,y) = exy satisfies

∂x ·ψ(x,y) = yψ(x,y), and ∂y ·ψ(x,y) = xψ(x,y).

Therefore ψ(x,y) defines a bispectral function.

Since its inception, the concept of bispectrality has been generalized in various

natural directions, particularly in directions which include certain noncommutative

aspects. To begin, we present bispectrality in very general terms.

Remark 2.28. In our definition, we will use lower case for elements of alge-

bras. Since the algebras themselves are completely abstract, this is not a reflection

on whether the elements themselves are scalar or matrix-valued. Furthermore, the

elements of each of the algebras are never assumed to be commutative. However,

the algebras are assumed to be associative with identity.

Definition 2.29. We define an operator algebra to be an algebra A with a fixed

subalgebra M(A), referred to as the subalgebra of multiplicative operators of A.

A bispectral context is a triple (A,B,H) where A and B are operator algebras and

H is an A,B-bimodule. A bispectral triple is a triple (a,b,ψ) with a ∈ A, b ∈ B
nonconstant and ψ ∈ H satisfying the property that ψ has trivial left and right

annihilator and

a ·ψ = ψ ·g, and ψ · b= f ·ψ

for some f ∈M(A) and g ∈M(B). In the case that ψ forms part of a bispectral

triple we call ψ bispectral.

In the classical case A and B are both algebras of differential operators with

multiplicative operator subalgebras consisting of the functions on which the dif-

ferential operators act (eg. polynomials, holomorphic functions, smooth function,

etc). However, as is clear from the definition, bispectrality is a far more general

construction. The generalization of specific relevance to this paper is the case when

the multiplicative operator subalgebra M(A) and M(B) are themselves not com-

mutative.

Given ψ ∈H bispectral, we define certain natural subalgebras of A and B.

Definition 2.30. Let ψ ∈H be bispectral. We define the left and right Fourier

algebras FL(ψ) and FR(ψ) to be

FL(ψ) = {a ∈ A : ∃b ∈ B, a ·ψ = ψ · b},
FR(ψ) = {b ∈ B : ∃a ∈A, a ·ψ = ψ · b}.
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We define the left and right bispectral algebras BL(ψ) and BR(ψ) to be

BL(ψ) = {a ∈ A : ∃g ∈M(B), a ·ψ = ψ ·g},
BR(ψ) = {b ∈ B : ∃f ∈M(A), f ·ψ = ψ · b}.

Since the left and right annihilators of ψ are both trivial, there is a natural

isomorphism bψ : FL(ψ)→FR(ψ) defined by the identity

a ·ψ = ψ · bψ(a).

Definition 2.31. Let ψ ∈ H be bispectral. We call the natural isomorphism

bψ : FL(ψ)→FR(ψ) defined above the generalized Fourier map.

Remark 2.32. The name generalized Fourier map comes from our first ex-

ample. In that case A = Ω(x)op,B = Ω(y) and ψ = exy . Then FL(ψ) = Ω[x]op,

FR(ψ) = Ω[y] and the generalized Fourier map is in fact the Fourier transform:

bψ :

r∑

i,j=0

aijx
i∂j

x �−→
r∑

i,j=0

aijy
j∂i

y.

Here and below, for an algebra A, Aop denotes the one with opposite product.

2.4. Bispectral Darboux transformations. In practice many of the impor-

tant families of bispectral triples arise from simpler or more obvious examples

through bispectral Darboux transformations.

Definition 2.33. Let (A,B,H) be a bispectral context, and let ψ,ψ̃ ∈ H. We

say that ψ̃ is a bispectral Darboux transformation of ψ if there exist u, ũ ∈ FR(ψ)

and units p, p̃ ∈M(A) and units q, q̃ ∈M(B) with

ψ̃ = p−1 ·ψ ·uq−1 and ψ = p̃−1 · ψ̃ · q̃−1ũ.(2.34)

In the case that M(A) or M(B) is noncommutative, this is also called a noncom-

mutative bispectral Darboux transformation in [22].

It follows from the definition that

ψ · (uq−1q̃−1ũ) = pp̃ ·ψ,
(
b−1
ψ (ũ)p̃−1p−1b−1

ψ (u)
)
·ψ = ψ · q̃q.

Furthermore, one works out that

p̃p · ψ̃ = ψ̃ · (q̃−1ũuq−1),
(
p−1b−1

ψ (u)b−1
ψ (ũ)p̃−1

)
· ψ̃ = ψ̃ · qq̃,

see [22, Theorem 2.1]. Thus both ψ and ψ̃ are bispectral.
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The following symmetry property of bispectral Darboux transformations di-

rectly follows from the definition and its proof is left to the reader.

THEOREM 2.35. If ψ̃ is a bispectral Darboux transformation of ψ then ψ is a

bispectral Darboux transformation of ψ̃.

The bispectral nature of this type of Darboux transformations is established by

the next theorem.

THEOREM 2.36. (Geiger, Horozov, and Yakimov [22]) Suppose that ψ̃ is a

bispectral Darboux transformation of ψ. Then for all a ∈ FL(ψ)

p̃ap · ψ̃ = ψ̃ · q̃−1ũbψ(a)uq
−1,

p−1b−1
ψ (u)ab−1

ψ (ũ)p̃−1 · ψ̃ = ψ̃ · qbψ(a)q̃.

2.5. Degree-filtration preserving and exceptional differential operators.

Each differential operator D ∈ D(W ) will have an entire MN (C)-module basis of

MN (C[x]) as eigenfunctions. As such for any polynomial Q(x) ∈MN (C[x]) we

know that the degree of Q(x) ·D will be at most the degree of Q(x). We call such

operators degree-filtration preserving.

Definition 2.37. A matrix-valued differential operator D∈MN (C(x)) is called

degree-filtration preserving if for all polynomials Q(x) ∈MN (C[x]) the function

Q(x) ·D is a polynomial whose degree is no larger than the degree of Q(x).

Degree-filtration preserving differential operators will necessarily have poly-

nomial coefficients.

PROPOSITION 2.38. An operator D ∈MN (C(x)) is degree-filtration preserv-

ing if and only if

D=
ℓ∑

i=0

∂i
xAi(x)

with Ai(x) ∈MN (C[x]) a polynomial of degree at most i for all i.

Proof. Suppose D ∈MN (Ω(x)). Then we may write

D=
ℓ∑

i=0

∂i
xAi(x)

for some matrix-valued rational functions Ai(x) ∈ MN (C(x)). It is clear that if

Ai(x) ∈MN (C[x]) is a polynomial of degree at most i for all i, then D is degree-

filtration preserving.

To prove the converse, suppose that D is degree-filtration preserving and that

for some i the matrix-valued rational function Ai(x) is either not a polynomial or
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has degree larger than i. Let j be the smallest nonnegative integer with Aj(x) not

a polynomial of degree ≤ j. Then we calculate

1

j!
xj ·D=Aj(x)+

j−1∑

i=0

1

(j− i)!
xj−iAi(x).

Since D is degree-filtration preserving the left-hand side of the above equality is

a polynomial of degree at most j. Furthermore the sum on the right-hand side is a

polynomial of degree at most j, so we conclude

Aj(x) =

j−1∑

i=0

1

(j− i)!
xj−iAi(x)−

1

j!
xj ·D

is a polynomial of degree at most j. This is a contradiction and completes the

proof. �

A Darboux conjugate D̃ of D will still have a great many polynomials which

are eigenfunctions, but not necessarily a full basis for MN (C[x]). For this reason D̃

may have non-polynomial rational coefficients. This leads us to consider the notion

of an exceptional differential operator [21, Definition 4.1].

Definition 2.39. A differential operator d ∈ Ω(x) is called exceptional if it has

polynomial eigenfunctions of all but finitely many degrees. More precisely d is

exceptional if there exists a finite subset {m1, . . . ,mk} ⊆N satisfying the property

that there exists a polynomial p(n) of degree n ∈N which is an eigenfunction of d

if and only if n /∈ {m1, . . . ,mk}. The values m1, . . . ,mk are called the exceptional

degrees of d.

Example 2.40. The classical differential operators

∂2
x−∂x2x, ∂2

xx+∂x(b+1−x), ∂2
x(1−x2)+∂x

(
b−a+(b+a−2)x

)

of Hermite, Laguerre, and Jacobi respectively have polynomial eigenfunctions of

every degree and are therefore exceptional operators.

Example 2.41. The differential operator

d= ∂2
x−∂x

(
2x+

4x

1+2x2

)

is an exceptional differential operator with exceptional degrees 1 and 2.

We can create new exceptional differential operators from old ones via Dar-

boux conjugation.

Definition 2.42. Let d, d̃ ∈ Ω(x). We say that d̃ is a Darboux conjugate of d if

there exists a differential operator h ∈Ω(x) satisfying hd= d̃h.
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PROPOSITION 2.43. if d̃ is a Darboux conjugate of d, then d is a Darboux

conjugate of d̃.

Proof. Assume that d̃ is a Darboux conjugate of d. Then there exists a differ-

ential operator h ∈ Ω(x) such that hd = d̃h. This implies that ker(h) · d̃ ⊆ ker(h).

The kernel is finite dimensional, so we may choose a polynomial q(d̃) ∈ C[d̃] with

ker(h) ·q(d̃) = 0. This implies that there exists h̃ satisfying q(d̃) = hh̃. In particular

d̃ commutes with hh̃ so that

hdh̃= d̃hh̃= hh̃d̃.

Since Ω(x) is an integral domain, this implies dh̃ = h̃d̃. Therefore d is a Darboux

conjugate of d̃. �

PROPOSITION 2.44. Let d be an exceptional differential operator and suppose

that d is a Darboux conjugate of d̃. Additionally assume hd̃= dh for h∈Ω[x]. Then

d̃ is also exceptional.

Proof. For all but finitely many n, there exists a polynomial p(x,n) of de-

gree n which is an eigenfunction of d. This implies that p(x,n) ·h is a polynomial

eigenfunction of d̃. One may easily show that there exists an integer m ∈ Z such

that for all but finitely many n the degree of p(x,n) ·h is n+m. Consequently d̃ is

exceptional. �

Definition 2.45. We call a differential operator d ∈ Ω(x) degree-filtration pre-

serving if for all polynomials p(x) ∈ C[x] the function p(x) · d is a polynomial of

degree at most the degree of p(x).

The most interesting fact about exceptional operators is that for low orders ex-

ceptional operators always arise as Darboux conjugates of degree preserving differ-

ential operators. For order 0 or 1, one may in fact show that exceptional differential

operators are necessarily degree-filtration preserving. The case of order 2 is sub-

stantially more difficult and is treated by the next theorem.

THEOREM 2.46. (Garcı́a-Ferrero, Gómez-Ullate, and Milson [21]) If d is an

exceptional, second order differential operator then d is a Darboux conjugate to a

degree-filtration preserving differential operator.

3. Bispectral Darboux transformations of weight matrices.

3.1. W -adjoints of algebras of matrix differential and shift operators.

In this paper, we will be restricting our attention to a single specific bispectral con-

text. Specifically, we will consider the bispectral context (MN (S),MN (Ω[x]),P)

where P is the set of all functions P : C×N → MN (C) satisfying the property

that for any fixed n, P (x,n) is a matrix-valued rational function in x. Equivalently,
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P is the set of all semi-infinite sequences of matrix-valued rational functions. The

algebra S is the collection of discrete operators in variable n. The multiplicative

subalgebra M(S) of S consists of all functions N → C and S itself is the set of

operators L of the form

L =

k∑

j=0

aj(n)D
j +

ℓ∑

j=1

bj(n)(D
∗)j

for aj, bj : N→ C and D ,D∗ the operators acting on sequences by

(D ·a)(n) = a(n+1), and (D∗ ·a)(n) =
{
a(n−1), n �= 0

0, n= 0.

Remark 3.1. The operator D∗ is adjoint to the operator D in the Hilbert space

ℓ2(N), and this explains the notation. Moreover DD
∗ = 1 so D∗ is a right inverse

of D . However D∗D = 1− δ0n, so D∗ is not quite a left inverse of D .

Remark 3.2. For us, sequences will always be indexed over N. With this in

mind, we will always take the value of a sequence at a negative integer to be 0,

unless otherwise stated. Furthermore, n will be treated as an indeterminant.

Now let W (x) be a weight matrix and let P (x,n) be the associated sequence of

monic orthogonal polynomials. Then the three-term recursion relation of P (x,n)

tells us that there exists L ∈MN (S) of the form

L = D +A(n)+B(n)D∗

such that

L ·P (x,n) = P (x,n)x.

Thus if D(W ) contains a differential operator D of positive order, then P (x,n)

will be bispectral with respect to this bispectral context.

As proved by Tirao and Grünbaum [26], the algebra D(W ) is closed under

the W -adjoint †. Since the left and right bispectral algebras of P are isomorphic,

it makes sense that the involution † of BR(P ) induces an involution on BL(P ).

Moreover, the involution † is actually the restriction of an involution on a much

larger algebra. In fact, the right Fourier algebra FR(P ) is closed under †. Thus

FL(P ) is closed under the involution induced by the generalized Fourier map also.

To prove this, we first describe the induced involution. First note that MN (S) has

a natural ∗ operation extending Hermitian conjugation on matrices and sending D
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to D∗ (and vice-versa). Specifically it is defined by

⎛
⎝

ℓ∑

j=0

Aj(n)D
j+

m∑

j=1

(
Bj(n)D

∗)j
⎞
⎠

∗

:=
ℓ∑

j=0

Aj(n− j)∗(D∗)j+
m∑

j=1

Bj(n+ j)D j.

(3.3)

With this in mind, we define the W -adjoint on MN (S).

Definition 3.4. The W -adjoint of a shift operator M ∈ MN (S) is defined to

be

M
† :=

∥∥P (x,n)
∥∥2

W
M

∗∥∥P (x,n)
∥∥−2

W
,

where here we view ‖P (x,n)‖2
W = 〈P (x,n),P (x,n)〉W as the sequence of Her-

mitian matrices in MN (C) defined by the W -norms of the monic orthogonal poly-

nomials of the weight matrix W (x).

The next lemma shows that this adjoint operation is well behaved with respect

to the inner product defined by the weight matrix W (x).

LEMMA 3.5. Let M ∈ MN (S). We write Mn or Mm to emphasize that the

shift operator is acting on the discrete variable n or m, respectively. Then consider

the two polynomial sequences P (x,n),P (x,m) in variables n and m, respectively.

We have that

〈
Mn ·P (x,n),P (x,m)

〉
W

=
〈
P (x,n),M †

m ·P (x,m)
〉
W
.

Proof. By linearity, it is enough to show that the above identity holds when

Mn = A(n)Dℓ or when Mn = A(n)(D∗)ℓ for some sequence A(n) and some

integer ℓ≥ 0. We will prove the first case, leaving the second to the reader. In this

case M ∗
n =A(n− ℓ)∗(D∗)ℓ so that

M
†
n =

∥∥P (x,n)
∥∥2

W
A(n− ℓ)∗

∥∥P (x,n− ℓ)
∥∥−2

(D∗)ℓ.

We calculate

〈
Mn ·P (x,n),P (x,m)

〉
W

=
〈
A(n) ·P (x,n+ ℓ),P (x,m)

〉
W

=A(n)
∥∥P (m)

∥∥2

W
δn+ℓ,m

=
∥∥P (x,n)

∥∥2

W

∥∥P (x,m− ℓ)
∥∥−2

W
A(m− ℓ)

∥∥P (x,m)
∥∥2

W
δn,m−ℓ

=
〈
P (x,n),

∥∥P (x,m)
∥∥2

W
A(m− ℓ)∗

∥∥P (x,m− ℓ)
∥∥−2

W
·P (x,m− ℓ)

〉
W

=
〈
P (x,n),M †

m ·P (x,m)
〉
W
.

This proves the lemma. �
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3.2. The Fourier algebras of orthogonal matrix polynomials. We wish

to describe the left and right Fourier algebras of P . The next theorem describes the

corresponding Fourier algebras in this case. To prove it, we first require a lemma

characterizing the differential operators contained in the algebra of left MN (C)-

linear endomorphisms of MN (C[x]).

For every pair of elements a,b of an algebra A, we denote

Ada(b) := ab− ba and Adk+1
a (b) := Adka

(
Ada(b)

)
.

LEMMA 3.6. Suppose that Φ : MN (C[x]) → MN (C[x]) is a left MN (C)-

module endomorphism. If Adℓ+1
xI (Φ) = 0 for some integer ℓ ≥ 0, then there exists

a differential operator D ∈ MN (Ω[x]) of order at most ℓ satisfying Φ(P (x)) =

P (x) ·D for all P (x) ∈MN (C[x]).

Proof. First recall that any left MN (C[x])-module endomorphism of

MN (C[x]) is of the form P (x) �→ P (x)A(x) for some A(x) ∈ MN (C[x]).

With this in mind, we proceed by induction on ℓ. If ℓ = 0, then AdxI(Φ) = 0

so that Φ(xP (x)) = xΦ(P (x)) for all P (x) ∈ MN (C[x]). Since Φ(x) is a left

MN (C)-module endomorphism of MN (C[x]) it follows that Φ is a left MN (C[x])-

module endomorphism. Thus by the fact recalled at the start our lemma is true

when ℓ= 0.

As an inductive assumption, suppose that the statement of the lemma is true

for all ℓ ≤m. Now suppose that Adm+1
xI (Φ) = 0. Then AdxI(Φ) is a left MN (C)-

module endomorphism of MN (C[x]) with AdmxI(AdxI(Φ)) = 0. Thus by our in-

ductive assumption there exists a differential operator D ∈MN (C[x]) of order at

most m satisfying

AdxI(Φ)
(
P (x)

)
= P (x) ·D

for all P (x) ∈ MN (C[x]). We write D =
∑m

j=0∂
j
xAj(x) and define a new left

MN (C)-module endomorphism Ψ of MN (C[x]) by

Ψ(P (x)) = Φ(P (x))−P (x) ·

⎡
⎣

m∑

j=0

∂j+1
x

1

j+1
Aj(x)

⎤
⎦ .

We calculate

AdxI(Ψ)
(
P (x)

)
=Ψ

(
xP (x)

)
−xΨ

(
P (x)

)

= AdxI(Φ)
(
P (x)

)
−P (x) ·

⎡
⎣

m∑

j=0

∂j
xAj(x)

⎤
⎦= 0.
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Therefore there exists a matrix A(x) ∈MN (C[x]) with Ψ(P (x)) = P (x)A(x) for

all P (x) ∈MN (C[x]). Hence for all P (x) we have

Φ(P (x)) = P (x) ·

⎡
⎣

m∑

j=0

∂j+1
x

1

j+1
Aj(x)+A(x)

⎤
⎦ .

Hence by induction our lemma is true for all ℓ. �

THEOREM 3.7. Let W (x) be a weight matrix and let P (x,n) be the associ-

ated sequence of monic orthogonal polynomials and let L ∈ MN (S) with L ·
P (x,n) = P (x,n)x. Then the Fourier algebras of P (x,n) are given by

FL(P ) =
{
M ∈MN (S) : Adk+1

L
(M ) = 0 for some k ≥ 0

}
,

FR(P ) =
{
D ∈MN

(
Ω[x]

)
: D is W -adjointable and D† ∈MN

(
Ω[x]

)}
.

Proof. We will first prove our formula for FL(P ). If M ∈ FL(P ), then M ·
P (x,n) = P (x,n) ·D. If D has order ℓ, then Adℓ+1

xI (D) = 0. Applying the gener-

alized Fourier map, this implies that Adℓ+1
L

(M ) = 0. Thus

FL(P )⊆
{
M ∈MN (S) : Adk+1

L
(M) = 0 for some k ≥ 0

}
.

To prove the opposite containment, suppose that M ∈ MN (S) with

Adℓ+1
L

(M) = 0 for some integer ℓ. Consider the left MN (C)-module endo-

morphism Φ of MN (C[x]) induced by

Φ : P (x,n) �−→ M ·P (x,n).

For any Q(x)∈MN (C[x]), we write Q(x) ·Φ to mean Φ(Q)(x). Then for all n we

see

P (x,n) ·Adℓ+1
xI (Φ) = Adℓ+1

L
(M ) ·P (x,n) = 0.

Consequently Adℓ+1
xI (Φ) = 0 and by the previous lemma we know that

M ·P (x,n) = Φ
(
P (x,n)

)
= P (x,n) ·D

for some differential operator D ∈MN (Ω[x]) for all n. In particular M ∈ FL(P ).

This proves

FL(P ) =
{
M ∈MN (S) : Adk+1

L
(M ) = 0 for some k ≥ 0

}
.

Suppose that D ∈MN (Ω[x]) and D is W -adjointable with D† ∈ MN (Ω[x]).

Then we may write

D=
ℓ∑

i=0

∂i
xAi(x) and D† =

ℓ∑

i=0

∂i
xBi(x)
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for some polynomials Ai(x),Bi(x) ∈MN (C[x]). Let m be the maximum degree

of all of these polynomials. Then we may write

P (x,n) ·D=
n+m∑

j=0

C(n,j)P (x,j)

for the matrices C(n,j) ∈MN (C), defined by

C(n,j) =
〈
P (x,n) ·D,P (x,j)

〉
W

∥∥P (x,j)
∥∥−2

W
.

Then using the W -adjointability, we see that

C(n,j) =
〈
P (x,n),P (x,j) ·D†

〉
W

∥∥P (x,j)
∥∥−2

W

and therefore C(n,j) is zero if n− j > m. Thus

P (x,n) ·D=

n+m∑

j=n−m

C(n,j)P (x,j) = M ·P (x,n)

for

M =

m∑

j=0

C(n,n+ j)D j+

m∑

j=1

C(n,n− j)(D∗)j.

Therefore D∈FR(P ). Moreover, since Adℓ+1
x (D)= 0 we know that Adℓ+1

L
(M )=

0. This proves

FR(P )⊇
{
D ∈MN

(
Ω[x]

)
: D is W -adjointable and D† ∈MN

(
Ω[x]

)}
.

Next, suppose instead that D ∈ FR(P ). Then there exists M ∈MN (S) with M ·
P (x,n) = P (x,n) ·D. Then Adℓ+1

L
(M ) = 0 for ℓ the order of D. Since xI is

†-symmetric, so too is L . It follows that Adℓ+1
L

(M †) = 0 and therefore M † ·
P (x,n) = P (x,n) · D̃ for some D̃ ∈ FR(P ). Note that by the previous lemma for

all m ∈ Z

〈
P (x,n) ·D,P (x,m)

〉
W

=
〈
Mn ·P (x,n),P (x,m)

〉
W

=
〈
P (x,n),M †

m ·P (x,m)
〉
W

=
〈
P (x,n),P (x,m) · D̃

〉
W
.

This implies that 〈P · D,Q〉W = 〈P,Q · D̃〉W for all polynomials P,Q ∈
MN (C[x]). Hence D is W -adjointable and D̃ = D†. Thus D† is W -symmetric

with D† ∈MN (Ω[x]). This proves

FR(P ) =
{
D ∈MN

(
Ω[x]

)
: D is W -adjointable and D† ∈MN

(
Ω[x]

)}
.
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�

As a corollary of this, we see that the left and right Fourier algebras are closed

under the adjoint operation. In this way, the previous theorem provides a more

conceptual proof of the fact D(W ) is closed under † than the proof found in [26],

see Theorem 4.1 below.

COROLLARY 3.8. Let W (x) be a weight matrix and P (x,n) be the associated

sequence of monic orthogonal polynomials. The left and right Fourier algebras

FL(P ) and FR(P ) are closed under †. Furthermore for all M ∈ FL(P ) we have

bP (M
†) = bP (M )†.

Proof. It is clear from the statement of the previous theorem that FR(P ) is

closed under †. We showed in the proof of the previous theorem that if bP (M ) =

D, then bP (M
†) =D†. Therefore the identity in the statement of the corollary is

true. Since bP is an isomorphism, this implies FL(P ) is also closed under †. �

Definition 3.9. Let W (x) and W̃ (x) be weight matrices and let P (x,n) and

P̃ (x,n) be their associated sequences of monic orthogonal polynomials. We say

that P̃ (x,n) is a bispectral Darboux transformation of P (x,n) if there exist differ-

ential operators T, T̃∈FR(P ), polynomials F (x), F̃ (x) and sequences of matrices

C(n), C̃(n) which are nonsingular for almost all n and satisfy

C(n)P̃ (x,n) = P (x,n) ·TF (x) and C̃(n)P (x,n) = P̃ (x,n) · F̃ (x)T̃.

We say that W̃ (x) is a bispectral Darboux transformation of W (x) if P̃ (x,n) is a

bispectral Darboux transformation of P (x,n).

Remark 3.10. We do not require the C(n), C̃(n)’s to be nonsingular for all n,

because doing so would eliminate many important bispectral Darboux transforma-

tions, including many trivial ones. In particular, the vanishing of C(n) or C̃(n)

corresponds to “poles” of the eigenvalues, which occur naturally. For example, we

should expect any T, T̃ ∈ BR(P ) which are not zero divisors to define a bispectral

Darboux transformation of P to itself. However, if we required the C(n), C̃(n)’s

to not have poles then these trivial transformations would have to be thrown out.

This is a feature of the “discrete” bispectral case not featured in the continuous

case, since in the latter we deal with meromorphic eigenvalues which can already

have poles.

Example 3.11. Bispectral Darboux transformations can be used to artificially

create weight matrices W (x) for which the algebra D(W ) contains differential

operators of lower order at the expense of enlarging the size of the weight by the

following procedure.

Let W (x) and W̃ (x) be a pair of weight matrices of size N×N which are bis-

pectral Darboux transformations from each other. Denote by P (x,n) and P̃ (x,n)
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their associated sequences of monic orthogonal polynomials. Thus

P̃ = p−1 ·P ·dq−1 and P = p̃−1 · P̃ · q̃−1d̃

for some d, d̃ ∈ FR(P ) and some functions q, q̃ ∈ FR(P ), p, p̃ ∈ FL(P ).

The two sequences P (x,n) and P̃ (x,n) are eigenfunctions of differential op-

erators of orders ordd+ord d̃,

P · (dq−1q̃−1d̃) = pp̃ ·P and p̃p · P̃ = P̃ · (q̃−1d̃dq−1).

At the same time, the sequence of orthogonal polynomials for the block diag-

onal weight diag(W (x),W̃ (x)) is diag(P (x,n), P̃ (x,n)). It is an eigenfunction of

a differential operator of order max{ordd,ord d̃},

diag(p̃,p) ·diag(P,P̃ ) = diag(P,P̃ ) ·
(

0 dq−1

q̃−1d̃ 0

)
.

Note that the leading coefficient of the operator in the right-hand side does not have

the positivity property from Theorem 1.3. Thus by doubling the size of the weight

matrix W (x) we were able to construct orthogonal matrix polynomials that are

eigenfunctions of differential operators of order max{ordd,ord d̃} using orthogonal

matrix polynomials which were eigenfunctions of differential operators of order

ordd+ord d̃.

4. The algebraic structure of D(W ). In this section, we describe the al-

gebraic structure of the algebra D(W ) in very specific terms.

4.1. The ∗-involution of D(W ). The structural results featured in this sub-

section are dependent on the existence of a proper ∗-involution on D(W ). Recall

that a (complex) ∗-algebra is an algebra A over C with an involutive skew-linear

anti-automorphism D �→D†. One of the first general results regarding the algebra

D(W ) is that it is a ∗-algebra under the W -adjoint †.

THEOREM 4.1. (Grünbaum and Tirao [26]) Let W (x) be a weight matrix,

and let D ∈ D(W ). Then a W -adjoint of D exists and is in D(W ). The operator

D �→D† is an involution on D(W ) giving D(W ) the structure of a ∗-algebra.

This is also a consequence of Corollary 3.8 in the previous section. As a result,

we have the following corollary proved in [26].

COROLLARY 4.2. Let W (x) be a weight matrix. Then D(W ) contains a differ-

ential operator of order m if and only if D(W ) contains a W -symmetric differential

operator of order m.
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Definition 4.3. The involution D �→ D† of a ∗-algebra A is called positive if

for all D1, . . . ,Dn ∈ A,

D1D
†
1 + · · ·+DnD

†
n = 0 if and only if D1 = · · ·=Dn = 0.(4.4)

The involution is called proper if the above property holds for n = 1, see [5,

Sect. 2].

THEOREM 4.5. (Casper [9]) Let W (x) be a weight matrix. The involution

of the ∗-algebra D(W ) is positive. As a consequence D(W ) is a semiprime PI-

algebra, and thus its center Z(W ) is reduced.

Proof. The generalized Fourier map defined in the next subsection embeds

D(W ) into the matrix ring MN (C[n]) of polynomials in variable n. Hence D(W )

is a PI-algebra.

To prove that the involution of the ∗-algebra D(W ) is positive, consider

D1, . . . ,Dn ∈ D(W ) such that D1D
†
1 + · · ·+DnD

†
n = 0. Then for all polynomials

P (x) we have that

0 =
〈
P (x) · (D1D

†
1 + · · ·+DnD

†
n),P (x)

〉
W

=
∑

k

〈
P (x) ·Dk,P (x) ·Dk〉W =

∑

k

∥∥P (x) ·Dk

∥∥2

W
.

Therefore P (x) ·Dk = 0 for all polynomials P (x) and 1 ≤ k ≤ n which implies

Dk = 0.

Every ∗-algebra A with a proper involution is semiprime. For this one needs

to show that for any D ∈ A, the condition DAD = 0 implies D = 0. For consis-

tency, denote the ∗-operation of A by †. Suppose DAD= 0. Then DD†D= 0 and

therefore

0 =DD†DD† = (DD†)(DD†)†.

Applying (4.4) gives DD† = 0 and, applying (4.4) one more time, gives D= 0.

The center of every semiprime algebra A is reduced. If D ∈Z(A) and D2 = 0,

then DAD= 0, hence D= 0. �

4.2. The center of D(W ). In this subsection we will use the involution of

D(W ) to prove that the center Z(W ) of D(W ) is a Noetherian algebra of Krull

dimension at most 1 and that the minimal prime ideals of Z(W ) are preserved by

the W -adjoint of D(W ). There are simple examples of commutative subalgebras of

M2(C[n]) which are not finitely generated, such as CI⊕
(

0 C[n]
0 0

)
, so the presence

of the involution is crucial to our arguments.
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LEMMA 4.6. Let R1, . . . ,Rℓ be any collection of Dedekind domains whose

fraction fields are finite extensions of C(t). Then any subalgebra of R1 ×·· ·×Rℓ

is finitely generated.

Proof. Note that each Ri is isomorphic to the ring of functions of Xi\{p} for

some smooth, projective algebraic curve Xi over C and some closed point pi ∈Xi

called the point at infinity. The local ring of Xi at pi is isomorphic to a discrete

valuation ring Si with fraction field Li and residue field C. The completion of this

ring at its maximal ideal is isomorphic to C[[t]], and thus we have an injection

Li ⊆ C((t)) into the ring of Laurent series with coefficients in C. Restriction of

functions on Xi\{pi} to (Xi\{pi})∩Spec(Si) defines an injection Ri →Li and

thereby an embedding φi : Ri → C((t)). Note that for any nonzero r ∈ Ri the

image φi(r) has nonpositive degree.

Let A be a subalgebra of R1×·· ·×Rℓ. For any nonzero A= (r1, . . . ,rℓ) ∈A,

we define

deg(A) = max
rj �=0

deg
(
φj(rj)

)
and supp(A) =

{
i : deg(ri) = deg(A)

}
.

Further, set

Am =
{
A ∈A : A= 0 or deg(A)≥−m

}
.

We define χ : R1 ×·· ·×Rℓ →C⊕ℓ by setting χ(r1, . . . ,rℓ) to be the vector whose

i’th entry is the leading coefficient of ri if νi(ri) = ν(r1, . . . ,rℓ) and 0 otherwise

(with χ(0) = 0). Note that χ induces a C-linear injection Am+1/Am → C⊕ℓ so

that in particular dim(Am+1/Am)≤ ℓ.

We have supp(Aj) = supp(A) for all A ∈ A. Now consider any two elements

A,B ∈ A with ν(A) =m and ν(B) = n. Then for some nonzero λ ∈ C we have

supp(An+λBm) = supp(A)∪ supp(B).

Thus there exists C ∈ A such that supp(A)⊆ supp(C) for all A ∈ A. Denote k =

ν(C). Multiplication by C induces an injection (Am+1/Am)→ (Am+k+1/Am+k)

for all m. Since the dimension of (Am+1/Am) is bounded by ℓ, there must exist

n > 0 such that for all m > n the above map is an isomorphism. It follows that

A is generated by a C-linear basis for An+k, keeping in mind that C ∈ An+k. In

particular A is finitely generated. �

LEMMA 4.7. Let A ⊆ MN (C[t]) be a subalgebra of the matrix algebra with

coefficients in the polynomial ring C[t] in an indeterminant t. If all of the elements

of A are simultaneously diagonalizable over the algebraic closure C(t) of C(t),

then A is finitely generated as an algebra over C.

Proof. Let F =C(t) and suppose that A is simultaneously diagonalizable over

the algebraic closure F . Let B be the F-subalgebra of MN (F) spanned by A.
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Note in particular that all the elements of B are simultaneously diagonalizable. As

a consequence, the nilradical of B is 0 and since B is finite dimensional over F we

conclude that B is semisimple. Therefore by Artin-Wedderburn, B is isomorphic

to a direct product of matrix algebras over skew-fields over F . However, since B
is commutative this in fact implies that B is isomorphic to a direct product of field

extensions

B ∼= L1 ×·· ·×Lℓ

where each Li is a finite extension of the field F .

For each i, let Ri denote the integral closure of C[t] in Li. In particular it

satisfies the assumptions of the previous lemma. The algebra A is contained in

MN (C[t]), so each element of A is integral over C[t]. Hence the image of A in

L1 × ·· · ×Lℓ is contained in R1 × ·· · ×Rℓ. By the previous lemma, A must be

finitely generated. �

THEOREM 4.8. The center Z(W ) of D(W ) is a Noetherian algebra of Krull

dimension at most 1.

Proof. First recall that the generalized Fourier map embeds D(W ) as a subal-

gebra A of MN (C[n]). This latter ring has GK dimension 1, so the GK dimension

of A must be at most 1. Therefore the GK dimension of the center Z of A is at

most 1. For a commutative ring the GK dimension and the Krull dimension are the

same, so the Krull dimension of Z is at most 1.

Let A ⊆ MN (C[n]) denote the preimage of D(W ) under the generalized

Fourier map bP and let Z denote the center of A. The involution † on A is an anti-

automorphism of A and therefore must restrict to an automorphism of Z . Further-

more for any W -symmetric A(n)∈A we know that ‖P (x,n)‖−1
W A(n)‖P (x,n)‖W

is Hermitian and therefore diagonalizable. Therefore A(n) evaluates to a diagonal-

izable matrix for every integer value of n. Since A(n) is polynomial in n, it follows

that A(n) is diagonalizable for all values of n. The algebra Z is commutative and

spanned over C by its W -symmetric elements, so therefore all of the elements of

Z are simultaneously diagonalizable. By the previous lemma this implies that Z
is finitely generated as an algebra over C. The statement of the theorem follows

immediately. �

PROPOSITION 4.9. The minimal prime ideals P1(W ), . . . ,Pr(W ) of Z(W )

are fixed by the adjoint operation †.

Proof. For brevity set Pi := Pi(W ) and Z :=Z(W ). The involution † defines

an anti-isomorphism of D(W ) and therefore restricts to an isomorphism of Z .

Consequently the image P†
i of the minimal prime ideal Pi must be a minimal prime

ideal also. If Z has only one minimal prime, then the result of the proposition is

trivial. Therefore we assume otherwise, so that in particular each of the minimal

prime is not the zero ideal.
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For each i, consider the annihilator ideal of Pi defined by

Ann(Pi) = {D ∈ Z(W ) : DPi = 0}.

Since Z(W ) is Noetherian, the ideal Pi is finitely generated by some elements

D1, . . . ,Dm ∈ Z(W ). For each i there exists D′
i ∈ Z(W )\Pi with DiD

′
i = 0.

The set Z(W )\Pi is multiplicatively closed and does not contain zero, so

D′ = D′
1 . . .D

′
m is nonzero. Since D′ annihilates the generators of Pi this proves

Ann(Pi) is nonzero.

For all j �= i, by definition Ann(Pi)Pi = 0 ⊆ Pj . Since Pj is prime either

Ann(Pi) ⊆ Pj or Pi ⊆ Pj . However since Pj is a minimal prime, it must be the

former. Hence Ann(Pi)⊆
⋂

j �=iPj .

Choose a nonzero D ∈ Ann(Pi). Since DD† �= 0, this implies that D† /∈ Pi

and therefore D /∈P†
i . By the previous paragraph D ∈Pj for all j �= i, so therefore

P†
i �= Pj for all j �= i. Thus P†

i = Pi. This completes the proof. �

4.3. D(W ) is finite over its center. The results of the previous subsec-

tion tell us that Z(W ) is reduced and Noetherian with Krull dimension 1. In this

subsection we will prove that the algebra D(W ) is affine (i.e., finitely generated

as an algebra over C), from which we conclude that it is Noetherian and finitely

generated over its center.

The spectrum of the center will consist of a disjoint union of affine curves

and points. As in the previous section, let P1, . . . ,Pr denote the minimal primes of

Z(W ). Let I ⊆ {1, . . . ,r} be the set of indices of minimal primes corresponding

to discrete points of Spec(Z(W )), i.e.

I =
{
i : Z(W )/Pi

∼= C
}
.

For each i ∈ I , there exists a W -symmetric idempotent Ei ∈ Z(W ) which maps

to 1 in Z(W )/Pj if j = i and to 0 otherwise. Using the system of orthogonal

idempotents {Ei : i ∈ I} the rings D(W ) and Z(W ) decompose as a direct sums

D(W ) =Ddisc(W )⊕Dcont(W );

Ddisc(W ) =
⊕

i∈I
EiZ(W )Ei, Dcont(W ) = ED(W )E;

Z(W ) = Zdisc(W )⊕Zcont(W );

Zdisc(W ) =
⊕

i∈I
EiZ(W )Ei, Zcont(W ) = EZ(W )E

for E = I −∑
i∈I Ei. Each of the above summands is an algebra and the above

identifications are algebra isomorphisms. Since D(W ) is a semiprime PI-algebra,

both Ddisc(W ) and Dcont(W ) must be semiprime PI-algebras.
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The next lemma captures the crucial algebraic consequence of our involution.

LEMMA 4.10. Consider a weight matrix W (x) with sequence of monic or-

thogonal matrix polynomials P (x,n). Let D ∈ D(W ) and let A(n) ∈MN (C[n])

be the preimage of D under the generalized Fourier map bP . If the eigenvalues of

A(n)A(n)† are all constant, then both A(n) and D are constant.

Proof. Let B(n) =A(n)A(n)† and assume all of the eigenvalues of B(n) are

constant. Then the characteristic polynomial of B(n) has constant coefficients. In

particular there exists a nonzero polynomial p(t) ∈ C[t] satisfying p(B(n)) = 0.

Assume that D is not a constant differential operator, i.e., D /∈MN (C). Then

we may write

D=

ℓ∑

j=0

∂j
xAj(x), for some ℓ > 0 and Aj(x) ∈MN (C[x]) with Aℓ(x) �= 0.

Since W (x) is Hermitian and positive-definite on its support, the product

Aℓ(x)W (x)Aℓ(x)
∗ is not identically zero. Hence the operator DD† is W -symmet-

ric of order 2ℓ with leading coefficient Aℓ(x)W (x)Aℓ(x)
∗W (x)−1. By a short

argument, one proves we may factor W (x) = T (x)T (x)∗ for some T (x) smooth

on the support of W (x). Then the leading coefficient of T (x)−1DD†T (x) is

(T (x)−1Aℓ(x)T (x))(T (x)
−1Aℓ(x)T (x))

∗. In particular it is nonzero and Hermit-

ian and therefore not nilpotent. Hence for all j the operator (T (x)−1DD†T (x))j ,

has order 2ℓj. Thus so too does the operator DD†. In particular DD† cannot be a

root of a nonzero polynomial p(t) ∈ C[t]. This is a contradiction, so D and A(n)

must be constant. �

As a consequence of the previous lemma, we may show that the discrete part

Ddisc(W ) of D(W ) is finite dimensional.

LEMMA 4.11. For all i, the algebra EiD(W )Ei is finite dimensional. Conse-

quently Ddisc(W ) is finite dimensional.

Proof. For brevity, let A⊆MN (C[n]) denote the preimage of EiD(W )Ei un-

der the generalized Fourier map bP and let E(n) be the preimage of Ei. Note that

E(n) is the identity element of A and that the center of A is CE(n).

The algebra A has an action on the C[n]-submodule E(n)C[n]⊕N of C[n]⊕N .

Since C[n] is a PID, we know that E(n)C[n]⊕N is isomorphic to C[n]⊕m for some

integer m. The action of A on E(n)C[n]⊕N is faithful, and therefore induces an

algebra monomorphism π : A→Mm(C[n]).

Since D(W ) is a semiprime PI algebra, so too is A. Now suppose that A(n) ∈
A, let λ ∈ C and set B(n) =A(n)A(n)†. By [39, Theorem 2] the two-sided ideal

of A generated by λE(n)−B(n) must intersect nontrivially with the center of

A. Therefore there exists C(n), C̃(n) ∈A such that C(n)(B(n)−λE(n))C̃(n) =
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E(n). This implies that for all λ the determinant det(π(B(n)− λE(n))) lies in

C×. Therefore the characteristic polynomial of B(n) satisfies

pB(t,n) := det
(
tI−B(n)

)
= tN−m det

(
π
(
tE(n)−B(n)

))
∈ C[t].

In particular the matrix B(n) has constant eigenvalues. By Lemma 4.10 this im-

plies that A(n) is constant. Thus we conclude all of the matrices in A are constant,

and so A is finite dimensional. �

THEOREM 4.12. The algebra D(W ) is affine.

Proof. From the previous lemma, it suffices to show that Dcont(W ) is finitely

generated. Thus without loss of generality, we may assume that the center of D(W )

consists of a disjoint union of (possibly singular) algebraic curves over C. Let A
be the preimage of D(W ) in MN (C[n]) under the generalized Fourier map and

let B = spanC(n)(A). Then B is finite dimensional over C(n) and has no nontrivial

two-sided nilpotent ideals. Therefore B is semisimple and by the Artin-Wedderburn

theorem B is isomorphic to a direct sum

B ∼=
ℓ⊕

j=1

Mnj
(Lj)

for some skew-field extensions Lj of C(n). Note that by Tsen’s theorem, each of

the Lj is actually simply a field extension of C(n). For each j let Rj denote the

integral closure of C[n] in Lj . Let L be a finite field extension of C(n) containing

each of the Lj’s and let R be the integral closure of C[n] in L and define ∆ =⊕ℓ
j=1Mnj

(L).
Let O be the R-subalgebra of ∆ generated by A. Then spanL(O) ⊆ ∆ con-

tains spanL(spanF (A)) = spanL(
⊕ℓ

j=1Mnj
(Lj)) =∆. Therefore spanL(O) =∆.

Furthermore every element of A is integral over C[n] and therefore integral over

R. Therefore every element of A is integral over R, and it follows that every ele-

ment of O is integral over R. Therefore by [38, Theorem 10.3] O is an R-order in

∆, and in particular O is affine and Noetherian.

The center of A maps into the center of B, the latter being ⊕ℓ
j=1LjInj

. Ev-

ery element of A is actually integral over C[n], so the image of the center of A
is isomorphic to a subalgebra Z of Z̃ := ⊕ℓ

j=1RInj
. Since Z is Noetherian and

D = Dcont(W ), the spectrum of Z consists of a collection of affine curves over

C. The inclusion Z → ⊕ℓ
j=1RjInj

is precisely the normalization of Z , while the

inclusion maps Rj →R correspond finite morphisms of smooth curves. Therefore

the inclusion Z ⊆Z ′ corresponds to the finite morphism of affine algebraic curves

Spec(Z ′) → Spec(Z), so in particular Z ′ is finitely generated as a module over

Z . As a consequence, O is finitely generated as a module over A. The algebra O
is an A-centralizing extension, so by Montgomery and Small’s extension of the

Artin-Tate lemma [36, Proposition 2], A must be affine. �
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THEOREM 4.13. (Casper [9]) The algebra D(W ) is Noetherian and is finitely

generated as a module over its center Z(W ).

Proof. Consider the preimage E(W ) of D(W ) under the generalized Fourier

map bP . The algebra E(W ) is a subalgebra of MN (C[n]), and thus has GK dimen-

sion at most the GK dimension of MN (C[n]). The algebras MN (C[n]) and C[n]

have equal GK dimension by [35, Proposition 3.2.7], and C[n] has GK dimension

1. Thus E(W ) has GK dimension at most 1. Since D(W ) is affine and semiprime

of GK dimension at most 1, we can apply the Small-Stafford-Warfield theorem

[43, Theorem 1.6] to obtain that D(W ) is Noetherian and finitely generated over

its center. �

4.4. Localizing D(W ) on its center. Recall that for a commutative ring

with zero divisors, we can still define a total ring of fractions to be the localization

of the ring at the multiplicative set of elements in Z(W ) which are not zero divi-

sors. Geometrically the total ring of fractions is isomorphic to the product of the

ring of fractions of every irreducible component of the spectrum of the ring.

Definition 4.14. Let W (x) be a weight matrix, let P (x,n) be the associated

sequence of monic orthogonal polynomials, and let bP : MN (C[n])→D(W ) de-

note the generalized Fourier map. We define F(W ) to be the total ring of fractions

of Z(W ).

We will show that when we localize D(W ) by extending scalars in the ring

D(W ) to the total ring of fractions F(W ) of Z(W ), we get a product of matrix al-

gebras over the fraction fields of each of the irreducible components. Equivalently,

this means that D(W ) is generically isomorphic to a matrix algebra over each ir-

reducible component of Z(W ). This result is analogous to Posner’s theorem for

prime PI rings.

THEOREM 4.15. Suppose that W (x) is a weight matrix. Then there exist pos-

itive integers n1, . . . ,nr with r the number of minimal primes of Z(W ) such that

D(W )⊗Z(W )F(W )∼=
r⊕

i=1

Mni

(
Fi(W )

)
,(4.16)

where Fi(W ) is the localization of Z(W ) at the minimal prime Pi(W ) of Z(W ),

i.e., the function field of the irreducible curve Spec(Z(W )/Pi(W )). Moreover the

localization map D(W )→D(W )⊗Z(W )F(W ) is injective.

Remark 4.17. The proof of the theorem actually establishes the following

stronger statement:

Any affine ∗-algebra with proper involution, which is finitely generated as a

module over its center, localizes over its center to a product of central simple alge-

bras.
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The center of such an algebra is affine by the Artin-Tate Lemma [8, p. 116].

Rowen [40, Appendix] has previously obtained results which are similar in

nature. Specifically he proved that quasi-Goldie, semiprime, PI-algebras localize

over their centers to semisimple Artinian rings. Here quasi-Goldie means every set

of independent ideals is finite and every set of left annihilators of ideals contains a

maximal element. We do not know of the exact relation between these assumptions

and ours.

Proof. First we show that the natural map D(W ) → D(W )⊗Z(W )F(W ) is

injective. To see this, suppose that D ∈ D(W ) maps to 0 in the localization. Then

there must exist an element D′ ∈ Z(W ) which is not a zero divisor in Z(W )

and which satisfies DD′ = 0. It follows that D′ annihilates the two-sided ideal of

D(W ) generated by D. However, since D(W ) is a semiprime PI algebra [39, The-

orem 2] tells us any nonzero two-sided ideal of D(W ) must intersect nontrivially

with Z(W ). This contradicts the fact that D′ is not a zero divisor in Z(W ), and

thus the localization map is injective.

Next note that

F(W ) = F1(W )×·· ·×Fr(W ).

Using this, we have

D(W )⊗Z(W )F(W ) =

r∏

i=1

Ri, for Ri :=D(W )⊗Z(W )Fi(W ).

We know that D(W ) is finitely generated as a module over its center, so the local-

izations Ri will also be finitely generated over Fi(W ). The latter is a field, so each

of the algebras Ri is a finite dimensional Fi(W ) vector space. Note that since Ri

is a localization, all elements in Ri are of the form D⊗A for some D∈D(W ) and

A ∈ Fi(W ).

The adjoint operation † fixes Z(W ) and extends to an adjoint operation on

F(W ). Since the adjoint operation fixes each minimal prime ideal Pi(W ), it also

preserves the complement Z(W )\Pi(W ), and thus induces an adjoint operation

on Fi(W ). This in turn induces an adjoint operation on Ri, defined by (D⊗A)† =

D† ⊗A† for D ∈D(W ) and A ∈ Fi(W ).

We claim that the property (4.4) is maintained under this extension. To see

this, suppose that (D⊗A)(D⊗A)† = 0 for some D ∈ D(W ) and A ∈ Fi(W ).

Note that (D⊗A)(D⊗A)† = (DD†)⊗ (AA†), and this latter element is zero if

and only if there exists D̃ ∈ Z(W )\Pi with (DD†)D̃ = 0. This then would imply

that DD̃(DD̃)† = 0 and therefore that DD̃= 0. Hence D⊗A= 0. Thus the desired

property holds.

Each Ri is a ∗-algebra (over Fi(W )) with proper involution, therefore it is a

semiprime PI-algebra. In particular, Ri has no nonzero two-sided nilpotent ideals.

Since it is finite dimensional over Fi(W ), this implies the Jacobson radical of Ri
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is trivial, so that Ri is a finite dimensional semisimple algebra over Fi(W ). Fur-

thermore, by virtue of the construction of the Ri and the injectivity of the local-

ization map D(W )→D(W )⊗Z(W )F(W ), the center of Ri is Fi(W ). Thus Ri

is a central simple algebra with center Fi(W ), and by Tsen’s theorem is therefore

isomorphic to Mni
(Fi(W )) for some integer ni. This completes the proof. �

Definition 4.18. Suppose that W (x) is a weight matrix with D(W ) containing

an operator of positive order. Using the notation of Theorem 4.15, we call n1 +

n2 + · · ·+nr the module rank of D(W ) over Z(W ).

PROPOSITION 4.19. Suppose that W (x) is a weight matrix with CI �Z(W ).

Then the module rank of D(W ) is at most N .

Proof. Let m be the rank of D(W ). Then we may choose m non-nilpotent ele-

ments V1, . . . ,Vm ∈D(W ) such that ViVj = 0 for i �= j. Let Aj(n) ∈MN (C[n])

be the image of Vj under the generalized Fourier map. Then each Aj(n) is nonzero

and satisfies Aj(n)Ak(n) = 0 for j �= k. Since each Vj is non-nilpotent, each

Aj(n) is also non-nilpotent. Therefore we may choose a column vector �vj(n) of
�Aj(n) with �Aj(n)�vj(n) �=�0. With this choice, �Aj(n)�vk(n) =�0 if and only if j �= k

and thus the m vectors �v1(n), . . . ,�vm(n) in C[n]⊕N are C[n]-linearly independent.

We conclude that m≤N . �

Definition 4.20. We say D(W ) is full if the module rank of D(W ) is N .

Fullness is a relatively weak condition, especially for N small as we see in the

next theorem.

THEOREM 4.21. Suppose that W (x) is a 2×2 matrix and that D(W ) is non-

commutative. Then the associated algebra of differential operators D(W ) is full.

In fact in this case F(W ) is a field and D(W ) is a Z(W )-order in M2(F(W )).

Proof. Since D(W ) is noncommutative, so too is its localization over its cen-

ter. Using the notation of Theorem 4.15 and referring to (4.16) the noncommuta-

tivity implies that ni > 1 for some i. However, since the rank is bounded by 2, we

get n1 + · · ·+nr ≤ 2. Thus r = 1 and n1 = 2, so that (4.16) says

D(W )⊗Z(W )F(W )∼=M2

(
F(W )

)
.

Thus D(W ) is a Z(W )-order in M2(F(W )) and in particular D(W ) is full. �

More generally, fullness can be characterized in terms of the existence of

enough orthonormal idempotents in the localization of D(W ) over Z(W ). This

is summarized by the next theorem.

THEOREM 4.22. The algebra D(W ) is full if and only if there exist nonzero

W -symmetric elements V1,V2, . . . ,VN in D(W ) satisfying ViVj = 0 for i �= j

with V1 + · · ·+VN a central element of D(W ) which is not a zero divisor.
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Proof. Suppose that D(W ) is full. Then we have an isomorphism

D(W )⊗Z(W )F(W )∼=
r⊕

i=1

Mni

(
Fi(W )

)
,

with n1 + · · ·+nr =N .

Fix an integer 1 ≤ i ≤ n. By the above, we know that the adjoint operation †

of D(W ) restricts to an adjoint operation on both Fi(W ) and on Mni
(Fi(W )).

However, the adjoint operation on Mni
(Fi(W )) may not be the one naturally in-

duced by the adjoint operation on Fi(W ). In fact we in general have two adjoints

on Mni
(Fi(W )), the adjoint coming from the restriction of † (which we also de-

note by †), and the one obtained by applying † to each of the matrix entries of

an element of Mni
(Fi(W )) and then taking the transpose. We denote this latter

adjoint operation by ⋆. The composition of these two adjoint operations (·)†⋆ de-

fines an automorphism of Mni
(Fi(W )) which fixes the base field Fi(W ). By the

Skolem-Noether theorem, this automorphism must be inner. Thus there exists an

invertible matrix U ∈Mni
(Fi(W )) such that

A† = (U⋆)−1A⋆U⋆, ∀A ∈Mni

(
Fi(W )

)
.

We can apply the same argument to the opposite composition (·)⋆†, and if we use

the fact that † and ⋆ are order two, we find

A† = U−1A⋆U, ∀A ∈Mni

(
Fi(W )

)
.

Putting this together, we find that U⋆ =U . Therefore U has a Cholesky-type factor-

ization of the form U = PDP ⋆ for some invertible matrices P,D ∈MN (Fi(W ))

with D diagonal and ⋆-symmetric. Then for 1 ≤ j ≤N , we have

(P−1⋆EjjP
⋆)† = U−1PEjjP

−1U = U−1PEjjDP ⋆ = P−1⋆D−1EjjDP ⋆.

For each 1 ≤ j ≤ ni, choose D′
ij ∈D(W )⊗Z(W )F(W ) corresponding to the ma-

trix (P ⋆)−1EiiP
⋆. Then by definition D′

ij is †-symmetric and satisfy D′
ijD

′
ab = 0

for (a,b) �= (i,j).

We can repeat the above process for each i, obtaining N elements D′
ij . For

each i,j, we can clear denominators using W -symmetric, central elements to ob-

tain an element Dij ∈ D(W ). By definition, the elements Dij are W -symmetric.

Furthermore, since the localization map is injective the N elements Dij satisfy

DijDkℓ = 0 if i �= k or j �= ℓ, and the sum is a central element of D(W ) which is

not a zero divisor.

Conversely, suppose that the D1, . . . ,DN exist and set D = D1 + · · ·+DN .

Then the N elements

D−1 ⊗Di, i= 1,2, . . . ,N
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define a family of N orthogonal idempotents in F(W )⊗Z(W )D(W ). From the

isomorphism

D(W )⊗Z(W )F(W )∼=
r⊕

i=1

Mni

(
Fi(W )

)
,

we see that
⊕r

i=1Mni
(Fi(W )) must have a collection of N orthogonal idempo-

tents. This implies that n1 + · · ·+nr is at least N and therefore exactly N . �

PROPOSITION 4.23. Let W (x) and W̃ (x) be weight matrices. Suppose that

D(W ) is full and that W̃ (x) is a bispectral Darboux transformation of W (x).

Then D(W̃ ) is also full.

Proof. This follows from Theorem 2.36, combined with the previous theorem.

�

Definition 4.24. Let W (x) be a weight matrix. We call a collection of nonzero

W -symmetric elements V1, . . . ,VN ∈D(W ) satisfying the condition that ViVj =

0 for i �= j an orthogonal system for D(W ).

Since D(W ) is finitely generated over its center Z(W ), it also makes sense to

consider the support of a given element D ∈D(W ) over the center.

Definition 4.25. Let W (x) be a weight matrix. The support supp(D) of an

element D ∈ D(W ) is the set of prime ideals of D(W ) containing the annihilator

Ann(D) of D over its center, i.e.,

Ann(D) :=
{
V ∈ Z(W ) : VD= 0

}
.

Let Z1(W ), . . . ,Zr(W ) be the irreducible components of Z(W ) and let P1, . . . ,Pr

be the corresponding minimal primes. We say that an element D ∈ D(W ) is sup-

ported on Zi(W ) if Pi is contained in one of the primes in supp(D). We say that

two elements D1,D2 ∈D(W ) are supported on the same irreducible component if

for some i both D1 and D2 are supported on Zi(W ).

Alternatively, one may define the support of D ∈ D(W ) to be the set of prime

ideals P ⊆ Z(W ) such that D is nonzero in the localization of D(W ) at P. The

support of any element in D(W ) defines a closed subscheme of Z(W ). Clearly

any element of D(W ) must be supported on at least one irreducible component of

Z(W ).

There is a simple algebraic criterion for two elements D1,D2 ∈ D(W ) to be

supported on the same irreducible component. The proof is a consequence of (4.16)

and is left to the reader.
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PROPOSITION 4.26. LetW (x) be a weight matrix with D(W ) full and suppose

D1,D2 ∈ D(W ). Then D1D(W )D2 �= 0 if and only if both share an irreducible

component of Z(W ) on which they are supported.

5. Consequences of the algebraic structure of D(W ). We demonstrate

in this section that the algebraic structure of D(W ) has strong consequences for

the form of the weight matrix W (x). Most importantly, we prove the Classification

Theorem 1.3. Throughout this section, we will always suppose Assumption 2.21.

Note again, that this assumption always holds in the case that D(W ) contains a W -

symmetric, second-order differential operator of the form (1.4) with A2(x)W (x)

positive definite on the support of W (x).

We will focus exclusively on the case when D(W ) is full. With this in mind,

throughout this section the elements V1, . . . ,VN will denote an orthogonal system

for D(W ), i.e., a collection of nonzero, W -symmetric matrix differential operators

in D(W ) with ViVj = 0 for i �= j and with V1 + · · ·+VN ∈ Z(W ) a nonzero

divisor. Of course, the existence of an orthogonal system is guaranteed by Theorem

4.22.

5.1. Cyclic modules and diagonalization of matrix weights. To under-

stand the application of the orthogonal system to our understanding of the structure

of D(W ), we first consider a certain left Ω(x)-module and its right counterpart. For

each Vi, we consider the left Ω(x)-module

Mi :=
{
�u ∈ Ω(x)⊕N : �uTVj =�0T , ∀i �= j

}
,(5.1)

as well as the right Ω(x)-module

Ni :=
{
�w ∈Ω(x)⊕N : Vj�w=�0, ∀i �= j

}
.(5.2)

The next result proves that the modules Mi and Ni are cyclic.

THEOREM 5.3. For each i, there exists �ui, �wi ∈ Ω(x)⊕N with

Mi =Ω(x)�ui and Ni = �wiΩ(x).(5.4)

Proof. The ring Ω(x) is a left and right principal ideal domain. The module

Mi is a submodule of the free left module Ω(x)⊕N in this PID, and is therefore

free. Furthermore, Mi contains the transposes of all the row vectors of Vi. Since

Vi is nonzero, this implies that Mi is nonzero. In particular, each of the Mi has

rank at least 1 as a left Ω(x)-module.

Now if �u ∈Vi∩Vj for some i �= j, then �uTVk = �0T for all 1 ≤ k ≤N . This

in turn would imply that �uT (V1 + · · ·+VN) = �0T . Since V1 + · · ·+VN is not a

zero divisor, this implies that �uT =�0T . Thus Mi∩Mj =�0 for i �= j. Since each of

the Mi is a submodule of Ω(x)⊕N , it follows immediately that Mi is free of rank

1 for all i. The same proof works for Ni. �
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We fix some choice of generators �ui of Mi for i= 1, . . . ,N and define U to be

the matrix differential operator whose rows are �u1
T , . . . , �uN

T

U=
[
�u1 �u2 · · · �uN

]T
.(5.5)

Each of the �ui may be written as

�ui =

ℓi∑

j=0

∂j
x�uji(x)(5.6)

for some �u0i(x), . . . ,�uℓii(x)∈C(x)⊕N with �uℓii(x) not identically zero. We define

U(x) to be the matrix whose rows are �uℓ11(x), . . . ,�uℓNN (x)

U(x) =
[
�uℓ11(x) �uℓ22(x) · · · �uℓNN (x)

]T
.(5.7)

We will see below that U(x) is a unit in MN (C(x)).

For all i, we know that �ui
T
ViVj = �0T for i �= j. Moreover, by definition

�ui
T
Vj =�0T for i �= j. This means that (�ui

T
Vi)

T ∈Mi for all i, and consequently

there exists vi ∈ Ω(x) such that

vi�ui
T = �ui

T
Vi and �ui

T
Vj =�0T , ∀i �= j.(5.8)

We will let mi be the order of vi and write

vi =

mi∑

j=0

∂j
xvji(x)(5.9)

for some rational functions vji(x).

Remark 5.10. The principality of certain annihilator ideals is reminiscent of

Rickart ∗-rings [5, p. 12, Definition 2]. While D(W ) itself is not a Rickart ∗-ring,

as it contains (left) annihilators not generated by idempotents, it would be inter-

esting to know what properties D(W ) might share with more general families of

∗-algebras. More specifically, it would be interesting to know more about the ideal

structure of D(W ) in general.

One of the more immediate consequences of the fullness of D(W ) is that there

exists a rational matrix which diagonalizes the bilinear form associated to W (x).

THEOREM 5.11. Let W (x) be a weight matrix with D(W ) full and let

V1, . . . ,VN , U and U(x) be defined as above. The matrix differential operator

UW (x)U∗ is diagonal with leading coefficient

diag
(
r1(x), . . . ,rN (x)

)

= U(x)W (x)U(x)∗ where ri(x) = �uℓii(x)
TW (x)�uℓii(x)

T∗.
(5.12)
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Proof. Applying (5.8), we see

UVi = EiiviU.

Now since Vi is W -symmetric, this also tells us

ViW (x)U∗ =W (x)U∗Eiiv
∗
i .

Multiplying both sides of the equality on the left by U, this says that for all i

viEiiUW (x)U∗ = UW (x)U∗Eiiv
∗
i .

In particular, UW (x)U∗ must be a diagonal matrix

UW (x)U∗ = diag(b1, . . . ,bN ), where bi = �uTi W (x)�uT∗
i .

Since W (x) is Hermitian and positive-definite on (x0,x1), we know that the func-

tion ri(x) := �uℓii(x)
TW (x)�uℓii(x)

T∗ is not identically zero. Consequently the dif-

ferential operator bi is order 2ℓi with leading coefficient ri(x) for all i. In particular

U(x)W (x)U(x)∗ =R(x) := diag
(
r1(x), . . . ,rN (x)

)
. �

Remark 5.13. The U(x) and ri(x) are not quite the same as the T (x) and fi(x)

from (1.2). In particular the ri(x) do not need to be classical weights. However, as

we will see below the ri(x) will be classical weights up to multiplication by some

rational functions.

In the case of generalized Gegenbauer polynomials, the decomposition (5.12)

was previously obtained in [30] and was interpreted in terms of an LDU decom-

position of W (x).

Note that in the proof of the previous theorem, we also showed the following

symmetry-type result for the vi’s:

vibi = biv
∗
i .(5.14)

We also showed above that �ui
TW (x)�uj

T∗ = 0 for i �= j, so that

�uℓii(x)
TW (x)�uℓjj(x)

T∗ = 0 for i �= j.

Since W (x) is Hermitian and positive-definite on (x0,x1), it follows that �uℓ11(x),

. . . ,�uℓNN (x) are C(x)-linearly independent. In particular det(U(x)) is not identi-

cally zero so that U(x) is a unit in MN (C(x)).
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5.2. Control of the size of Fourier algebras. As a consequence of the

previous theorem, we find that the involution † preserves a large subalgebra of

MN (Ω(x)). Moreover, we can deduce that the right Fourier algebra of the orthog-

onal polynomials of W (x) is very large.

To see this, first note that the operators v1, . . . ,vN may be related to one an-

other, and these relationships are encoded by the center Z(W ) of D(W ).

PROPOSITION 5.15. Let W (x) be a weight matrix with D(W ) full and let

V1, . . . ,VN , U, v1, . . . ,vN and U(x) be defined as above. If Vi and Vj are sup-

ported on the same irreducible component of Z(W ), then vi and vj are Darboux

conjugates and ri(x)/rj(x) is rational.

Proof. Suppose Vi and Vj are supported on the same irreducible component

of Z(W ). Then there exists D ∈ D(W ) such that ViDVj �= 0. Without loss of

generality, we may take D to be W -symmetric. Moreover �uk
T
ViDVjVℓ �= �0T

only if k = i and j = ℓ, and therefore

UViDVj = EijdU

for some d ∈ Ω(x). Similarly

UVjDVi = Ejid̃U

for some d̃ ∈ Ω(x).

Since ViDVj �= 0, we know that d �= 0. Now since V1 + · · ·+VN is in the

center of Z(W ) we know that ViDVj commutes with V1 + · · ·+VN and there-

fore v1E11 + · · ·+vNENN commutes with Eijd. Consequently vid= dvj and this

shows that vi and vj are Darboux conjugates.

Next, using the fact that D, Vi and Vj are all W -symmetric we calculate

d̃bi = bjd
∗.

This in particular implies that d̃ is nonzero. Comparing leading coefficients, we see

that ri(x)/rj(x) must be rational. This completes the proof. �

As the previous proposition shows, ri(x)/rj(x) will be rational for some val-

ues of i,j. We can actually say more than this in the case that W (x) is irreducible.

Definition 5.16. A weight matrix W (x) is reducible if there exists a nonsin-

gular constant matrix A ∈MN (C) such that AW (x)A∗ is a direct sum of matrix

weights of smaller size.

As shown in [45, Theorem 2.8] a weight matrix W (x) is reducible if and only

if there exists a formally W -symmetric constant idempotent matrix different from

0 and I . Since our interest is in the classification of weight matrices, it makes sense

to focus specifically on irreducible weight matrices.
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PROPOSITION 5.17. Suppose that W (x) is an irreducible weight matrix with

D(W ) full. Then for all i,j the ratio ri(x)/rj(x) is a rational function.

Proof. Suppose that for some i there exists a j such that the ratio ri(x)/rj(x)

is not a rational function. Define S ⊆ {1, . . . ,N} by

S =
{
j : ri(x)/rj(x) is not rational

}
.

Then by assumption both S and S′ := {1, . . . ,N}\S are nonempty. Further-

more if j ∈ S and k ∈ S′ then rj(x)/rk(x) is not rational. Define R(x) =

diag(r1(x), . . . ,rN (x)) and note that W (x) = U(x)−1R(x)(U(x)−1)∗. Then for

any W -symmetric D ∈D(W ) we calculate

R(x)
(
U(x)DU(x)−1

)∗
=

(
U(x)DU(x)−1

)
R(x).

Clearly U(x)DU(x)−1 ∈MN (Ω(x)). Comparing leading coefficients, we see that

if the j,k’th entry of U(x)DU(x)−1 is nonzero, then rj(x)/rk(x) must be rational.

Hence for all j ∈ S and k ∈ S′ the j,k’th entry of U(x)DU(x)−1 must be zero. It

follows immediately that the nonzero idempontent matrix-valued rational function

G(x) := U(x)−1

⎛
⎝∑

j∈S
Ejj

⎞
⎠U(x)

commutes with D for all D ∈ D(W ). Consider the Laurent series for G(x) at ∞

G(x) =

∞∑

j=−ℓ

Gjx
−j .

for some integer ℓ ∈ Z and matrices Gj ∈ MN (C) with Gℓ �= 0. Note that since

G(x) is idempotent, we must have ℓ≥ 0.

Let P (x,n) be the sequence of monic orthogonal polynomials for the weight

matrix W (x) and let E(W )⊆MN (C[n]) be the preimage of D(W ) under bP . For

any n≥ 0 and any Λ(n) ∈ E(W ) we calculate

Λ(n)P (x,n)G(x) = P (x,n) · bP (Λ(n))G(x) = P (x,n)G(x) · bP
(
Λ(n)

)
.

Since bP (Λ(n)) is degree-filtration preserving it will have the form bP (Λ(n)) =∑d
j=0∂

j
xDj(s) for some Dj(s) ∈MN (C[s]) with s= ∂xx and both D0 and Λ are

equal polynomials. Comparing leading coefficients, this shows that GℓΛ(n+ ℓ) =

Λ(n)Gℓ for all n ≥ 0. Since D(W ) is full, there exists a nonconstant f(n) ∈ C[n]

such that f(n)I ∈ E(W ). Letting Λ(n) = f(n)I , the above implies that Gℓ(f(n+

ℓ)−f(n)) = 0 for all n≥ 0 and therefore that ℓ= 0 since Gℓ �= 0. Thus G(x) is of
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the form

G(x) =G0 +
∞∑

j=1

Gjx
−j.(5.18)

and G0 is a nonzero, idempotent matrix commuting with everything in E(W ).

We claim that G(x) =G0. Set D= bP (f(n)I) so that for all integers n≥ 0

(
G0P (x,n)−P (x,n)G(x)

)
·D= f(n)

(
G0P (x,n)−P (x,n)G(x)

)

The degree of G0P (x,n)−P (x,n)G(x) is strictly less than n, and so if it is

not zero for some value of n then we may write G0P (x,n)− P (x,n)G(x) =∑ℓn
j=−∞

Qjx
j for some matrices Qj ∈ MN (C) with Qℓn �= 0 for some ℓn < ℓ.

Therefore by comparing leading coefficients, we see that f(n)Qℓn = f(ℓn)Qℓn .

Since f(n) is either strictly increasing or strictly decreasing for n ≫ 0, this is a

contradiction. Hence G0P (x,n) = P (x,n)G(x) for n ≫ 0. Because of (5.18), if

G(x) �=G0, then G(x) has a pole at some a ∈C and therefore there exists an inte-

ger ℓ > 0 such that G̃(x) =G(x)(x−a)ℓ has no pole at a and satisfies G̃(a) �= 0.

Therefore for all n ≫ 0 we have P (a,n)G̃(a) = G0P (a,n)(a− a)ℓ = 0, so that

the nonzero column vectors of G̃(a) are in the kernel of P (a,n) for all n ≫ 0.

However, this contradicts [18, Theorem 1.1], so we must conclude G(x) =G0.

Since det(G(x)) = 0, G(x) �= I . One easily checks that G(x)† = G(x), so

this contradicts the assumption that W (x) was irreducible. This completes the

proof. �

The next theorem shows that the right Fourier algebra is significantly large.

THEOREM 5.19. Let W (x) be an N×N irreducible weight matrix with N > 1

and D(W ) full, and let P (x,n) be the associated sequence of monic orthogonal

polynomials. Then for all D ∈ MN (Ω(x)) we have D† ∈ MN (Ω(x)) and there

exists a polynomial q(x) ∈ C[x] with q(x)D,Dq(x) ∈ FR(P ).

Proof. Let V1, . . . ,VN , U, U(x), and v1, . . . ,vN be defined as above. Note that

if �uℓii(x)
T times the leading coefficient of Vi is identically zero, then U(x) times

the leading coefficient of Vi is identically zero. Since U(x) is a unit in MN (C(x)),

this is impossible. Thus the order mi of vi must agree with the order of Vi. Fur-

thermore since W (x) is irreducible the order of Vi must be greater than 0 for all

i, as otherwise Vi would define a constant idempotent matrix in D(W ) different

from 0 and I . Therefore mi > 0 for all i.

Then by the previous theorem, we know that

U(x)W (x)U(x)∗ = diag
(
r1(x), . . . ,rN (x)

)
.



THE MATRIX BOCHNER PROBLEM 1053

By definition each of the vi is a differential operator with rational coefficients. By

(5.9) we have

vi =

mi∑

j=0

∂j
xvji(x)

for some rational functions v0i(x), . . . ,vmii(x) ∈ C(x) for all i, with vmii(x) �= 0.

Additionally, (5.14) tells us

biv
∗
i = vibi

where here bi = �uTi W (x)�uT∗
i is a differential operator of order 2ℓi with leading

coefficient ri(x). Let si(x) represent the subleading coefficient of bi. Comparing

coefficients, we see that

(−1)miri(x)vmii(x)
∗ = vmii(x)ri(x)

and also that

vmii(x)si(x)+ v(mi−1)i(x)ri(x)+2ℓiv
′
mii(x)ri(x)

= (−1)miri(x)(miv
′
mii(x)

∗− v(mi−1)i(x)
∗)

+ (−1)misi(x)vmii(x)
∗+(−1)mimir

′
i(x)vmii(x)

∗.

Combined with the first equation, this second equation simplifies to

(
v(mi−1)i(x)+ (−1)miv(mi−1)i(x)

)∗
ri(x)+ (2ℓi−mi)v

′
mii(x)ri(x)

=mir
′
i(x)vmii(x).

Solving this differential equation for ri(x), we obtain for mi even

ri(x) = vmii(x)
2ℓi/mi−1 exp

∫
Re

(
v(mi−1)i(x)

)

(mi/2)vmii(x)
dx,(5.20)

and for mi odd

ri(x) = vmii(x)
2ℓi/mi−1 exp

∫
Im

(
v(mi−1)i(x)

)

(mi/2)vmii(x)
dx.(5.21)

In either case, conjugation by ri(x) sends Ω(x) to Ω(x).

Now suppose that D ∈MN (Ω(x)). Set R(x) = diag(r1(x), . . . ,rN (x)). Then

we know that W (x) = U(x)−1R(x)(U(x)−1)∗. Therefore

D† = U(x)−1R(x)(U(x)−1)∗D∗U(x)∗R(x)−1U(x)

has rational entries if and only if R(x)−1U(x)DU(x)−1R(x) has rational entries.

By the previous proposition combined with the fact that conjugation by ri(x) pre-

serves Ω(x), we see that D† has rational entries.
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Now suppose that D ∈MN (Ω(x)). Choose a polynomial q0(x) such that both

q0(x)D and D†q0(x) have polynomial coefficients. Let p(x) be the unique monic

polynomial vanishing only at the finite endpoints of the support of W (x). If the

order of D is ℓ set q1(x) = q0(x)p(x)
2ℓ. Then both q1(x)D and (q1(x)D)† are in

MN (Ω[x]), and the coefficients of q1(x)D vanish to sufficiently high order at the

endpoints of the support of W (x) so q1(x)D is W -adjointable. Hence q1(x)D ∈
FR(P ). Similarly, we can choose q2(x) ∈ C[x] with Dq2(x) ∈ FR(P ). Taking

q(x) = q1(x)q2(x), we get q(x)D,Dq(x) ∈ FR(P ). �

5.3. First part of the proof of the Classification Theorem. We next prove

a theorem that comprises most of the Classification Theorem from the introduction.

It tells us that V1, . . . ,VN are Darboux conjugate to degree-filtration preserving

differential operators of order at most two. To do so, we first recall a result for

algebras of commuting differential operators with rational spectra.

LEMMA 5.22. (Kasman [28]) Let A⊆Ω(x) be a commutative subalgebra with

Spec(A) a rational curve. Then there exist differential operators h,d ∈ Ω(x) with

hAh−1 ⊆ C[d]

where d has order equal to the greatest common divisor of the orders of operators

in A.

With this in mind, we have the following theorem.

THEOREM 5.23. Suppose that W (x) is a weight matrix with D(W ) full and

that D(W ) contains a W -symmetric second order differential operator whose

leading coefficient multiplied by W (x) is positive definite on the support of W (x).

Then there exist rational matrix differential operators T, T̃ ∈MN (Ω(x)) with

TT̃= diag
(
pi(d1), . . . ,pi(dN )

)
and T̃EiiT= q(Vi)(5.24)

for all i where for each i di ∈ Ω(x) is a differential operator of order 1 or 2 and

pi,q are nonzero polynomials. If any nonconstant polynomials in vi and vj are Dar-

boux conjugates (for example if Vi and Vj are supported on the same irreducible

component of Z(W )) then we may take di = dj .

Proof. Suppose that D ∈ D(W ). Then we calculate for all i,j,k that

�ui
T
VjDVjVk is �0T if i �= j or j �= k. Therefore for all j there exists di ∈ Ω(x)

satisfying

UVjDVj = djEjjU.
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Since V1 + · · ·+VN ∈ Z(W ) we also know that dj commutes with vj . Thus for

all j the algebra VjD(W )Vj is isomorphic to a subalgebra Aj ⊆Ω(x) defined by

Aj =
{
d ∈ Ω(x) : dEjjU= UVjDVj, D ∈ D(W )

}
.

Each element of Aj commutes with the operator vj , so by a result of Schur the

algebra Aj is a commutative subalgebra of Ω(x).

For all i let mi be the order of vi. Let D be a second order differential operator

in D(W ) whose leading coefficient multiplied by W (x) is positive definite on the

support of W (x). For all i, the differential operator ViDVi has order 2mi+2. To

see this, write Vi =
∑mi

j=0∂
j
xVji(x) and D = ∂2

xD2(x) + ∂xD1(x) +D0(x) and

note that since Vi is W -symmetric we must have

Vmii(x)D2(x)Vmii(x) = Vmii(x)D2(x)W (x)Vmii(x)
∗W (x)−1.

By assumption D2(x)W (x) is positive-definite and Hermitian on the support of

W (x). Therefore Vmii(x)D2(x)Vmii(x)
∗ is not identically zero on the support of

W (x). Hence Vmii(x)D2(x)W (x)Vmii(x)
∗W (x)−1 is not identically zero so the

product ViDVi has the desired order.

As mentioned in the previous paragraph, there must exist ai ∈ Ω(x) with

UViDVi = aiEiiU.

In other words, for all i and j

�uj
T
ViDVi = δjiai�ui

T .

If the order of ai is less than the order of ViDVi, then this would imply that U(x)

would be a left zero divisor of the leading coefficient of ViDVi. The determinant

of U(x) is not identically zero, so this is impossible. Thus the order of ai is 2mi+2.

In particular the greatest common divisor of the orders of elements in Ai is either

1 or 2.

We claim that Spec(Aj) is a rational curve. To see this, for all i let Λi(n)

be the sequence of matrices satisfying Λi(n)P (x,n) = P (x,n) ·Vi. In terms of

the generalized Fourier map bP (Λi(n)) =Vi for all i. Since Vi is W -symmetric,

we also know that ‖P (x,n)‖2
WΛi(n)

∗‖P (x,n)‖−2
W = Λi(n) for all n. Therefore

‖P (x,n)‖−1
W Λi(n)‖P (x,n)‖W defines a sequence of Hermitian matrices for all

i. The spectral theorem tells us they are unitarily diagonalizable and since they

commute, they are simultaneously unitarily diagonalizable. Thus there exists a se-

quence of unitary matrices U(n) and sequences of real numbers λ1(n), . . . ,λN (n)

such that for all i

C(n)−1Λi(n)C(n) = λi(n)Eii,

where here C(n) := ‖P (x,n)‖WU(n).
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Now again take D ∈ D(W ). Let Θi(n) = b−1
P (ViDVi). Since ViDVi com-

mutes with Vi for all i and is annihilated by Vj for i �= j, we know that there

exist sequences of complex numbers θ1(n), . . . ,θN (n) with C(n)−1Θi(n)C(n) =

θi(n)Eii. We also know that for all i the sequence Θi(n) ∈ MN (C[n]). Since

θi(n) = tr(Θi(n)), we see that θi(n) ∈C[n] for all i. Thus for all i, the generalized

Fourier map defines an injection Ai → C[n]Eii via

Ai
∼=←−−ViD(W )Vi

C(n)−1b−1
P

(·)C(n)−−−−−−−−−−→ C[n]Eii.

Thus Spec(Ai) is unirational and by Lüroth’s theorem Spec(Ai) is rational.

Since Spec(Ai) is rational, the previous lemma tells us that there exist differ-

ential operators hi,di ∈ Ω(x) with the order of di equal to the greatest common

divisor of the orders of elements in A (either 1 or 2) such that hiAh−1
i ⊆ C[di]. If

any nonconstant polynomials in vi and vj are Darboux conjugates, then di and dj
are Darboux conjugates and by modifying our choice of the hi we can take di = dj .

We can also obtain a revised version of (5.14). To see this, define b̃i = hibih
∗
i .

Then for any a∈Ai coming from a W -symmetric D∈D(W ), we have bia
∗ = abi.

Therefore b̃i(hah
−1)∗b̃ = hah−1. Since Ai is spanned by such elements, this de-

fines an involution of Ai and of hAih
−1 and therefore of their fraction fields. Since

the fraction field of the subalgebra hiAih
−1
i of C[di] is C(di) (by rationality plus

order arguments), this means that p(di) �→ b̃ip(di)
∗b̃i

−1
defines a sesquilinear au-

tomorphism of C(di). Such an automorphism must map di to a generator of C(di),

i.e., to an element of the form adi+b
cdi+d for some a,b,c,d ∈ C with ad− bc �= 0. The

automorphism fixes the polynomial hivih
−1
i ∈ C[di], so we must have c = 0 and

we can take d= 1. Also by comparing leading coefficients of the polynomial fixed

by the automorphism, we see a must be a root of unity. Therefore the automor-

phism sends a1/2di− (a1/2di)
∗ = −a−1/2b to a−1/2b. Since the automorphism is

sesquilinear, it follows that a−1/2b must be purely imaginary. Thus replacing di
with a1/2di+a−1/2b/2 we obtain

b̃id
∗
i = dib̃i.(5.25)

For each i there exists a polynomial pi(di) ∈C[di] with

hivi = pi(di)hi.

This implies that

ker(h∗i ) ·vi ⊆ ker(h∗i ).

Choose a polynomial q(vi)∈C[vi] such that ker(h∗i ) ·q(vi) = 0 for all i. Then there

exists a rational differential operator ti with

q(vi) = tihi.
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Let ci = b−1
i vi, viewed as a pseudo-differential operator. Note that ci may ac-

tually be shown to be a differential operator, but this is not necessary for our argu-

ments. It is clear from (5.14) that ci is ∗-symmetric. Furthermore an easy calcula-

tion shows

Vi =W (x)U∗ciEiiU.

This means that

Viq(Vi) =W (x)U∗ciq(vi)EiiU

=W (x)U∗citihiEiiU

and also that

pi(di)q
(
pi(di)

)
Eii = hviq(vi)h

−1
i Eii

= hbiciq(vi)h
−1
i Eii

= hbicitiEii

= hUW (x)U∗citiEii.

Take

T= diag(h1, . . . ,hN )U

and also

T̃=W (x)U∗ diag(c1t1, . . . ,cN tN ) =
∑

i

W (x)�ui
∗
citi�e

T
i .

It is clear from the construction that T ∈ MN (Ω(x)). Note that for all i the row

vectors of Vi belong to Mi, so that Vi = �ai�ui
T∗

for some �ai ∈Ω(x)⊕N . Since the

ring of pseudo-differential operators is an integral domain and W (x)�ui
T∗
ci�ui

T =

Vi, we find W (x)�ui
T∗
ci = �ai. Hence T̃ is rational. Furthermore for all i

TT̃= diag
(
p1(d1)q

(
p1(d1)

)
, . . . ,pN (dN )q

(
pN (dN )

))

and also

T̃EiiT=Viq(Vi). �

THEOREM 5.26. Suppose that W (x) satisfies the assumptions of the previous

theorem and let pi,q, T, T̃ and di be defined as in the above theorem, with di = dj
if and only if some nonconstant polynomials in di and dj are Darboux conjugates.

Let d′1, . . . ,d
′
r be the distinct values of d1, . . . ,dN , and let ni be the multiplicity of

d′i, i.e., ni = #{i : di = d′i}. Then the centralizer of d1 ⊕·· ·⊕ dN in MN (Ω[x]) is
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given by

C(d1 ⊕·· ·⊕dN )∼=
r⊕

i=1

Mni

(
C[d′i]

)
.

Moreover conjugation by T defines an embedding of D(W ) into C(d1 ⊕·· ·⊕dN).

Proof. Suppose that A ∈MN (Ω[x]) commutes with d1 ⊕·· ·⊕dN , and let aij
be the entries of A. For all i and j we must have diaij = aijdj . Thus by the choice

of the di’s we see that aij = 0 unless di = dj , in which case aij belongs to the

centralizer of dj in Ω[x], the latter being C[dj ]. From this the above isomorphism

is clear.

Fix i,j. We define a map φij : D(W ) → C(di) as follows. By arguments al-

ready applied in previous proofs, the element ViDVj satisfies TViDVj = aEijT

for some a satisfying apj(dj) = pi(di)a. If a is nonzero then again by the choice of

the di we know that di = dj so that a commutes with pi(di) and therefore with di.

We define φij(D)= api(di)
−1pj(dj)

−1. More generally for any i,j and D∈D(W )

we define φij(D) ∈ C(di) to be the unique element satisfying

pi(di)φij(D)pj(dj)EijT= TD.

We further define

Φ : D(W )→
r⊕

i=1

Mni

(
C(d′i)

)

by setting Φ(D) to be the matrix whose entries are φij(D) for all i,j. It is easy to

see that Φ is an algebra monomorphism. In fact, if we view
⊕r

i=1Mni
(C(d′i)) as

a subalgebra of the algebra of N ×N matrices with pseudo-differential operator

entries, then Φ is simply the conjugation map Φ : D �→ TDT−1.

The center Z(W ) of D(W ) is mapped under Φ to
⊕r

i=1C[d
′
i]Ini

(for Ini
the

ni×ni identity matrix). In particular, the image of the center Z(W ) is integral

over
⊕r

i=1C[d
′
i]Ini

(i.e., each element is the root of a monic polynomial with co-

efficients n this ring). The algebra D(W ) is a finite module over its center, so we

conclude that the image of D(W ) is integral over
⊕r

i=1C[d
′
i]Ini

.

We claim that Φ actually maps D(W ) into
⊕r

i=1Mni
(C[d′i]). To see this,

first note that as a consequence of (5.25), we have Φ(D†) = Φ(D)⋆, where ⋆

represents the unique involution of
⊕r

i=1Mni
(C(d′i)) extending Hermitian con-

jugate on Mni
(C) and sending d′i to d′i. Thus if Aj is the image of D(W ) →⊕r

i=1Mni
(C(d′i)) → Mnj

(C(d′j)) then Aj may be identified with a subalgebra

of Mnj
(C(t)) closed under Hermitian conjugation, with each element satisfying a

monic polynomial identity with coefficients in C[t]. However if F (t) ∈Mnj
(C(t))

is Hermitian and integral over C[t], then F (t)2 is integral over C[t]. This means

that tr(F (t)2) is in C[t]. However tr(F (t)2) =
∑

ij |fij(t)|2, where fij(t) are the
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entries of F (t), so this means F (t) is in Mnj
(C[t]). Since Aj is spanned by its

Hermitian matrices, this shows that Aj ⊆ Mnj
(C[d′j ]). This proves the claim and

the theorem. �

5.4. Second part of the proof of the Classification Theorem. We now

complete the proof of the Classification Theorem stated in the introduction. Before

doing so, we require a couple of lemmas.

LEMMA 5.27. For all i the function vmii(x) is a polynomial in x which van-

ishes at the finite endpoints of the support (x0,x1) of W (x).

Proof. For each i we may write Vi =
∑mi

j=0∂
j
xVji(x) for some polynomials

Vji(x) ∈ MN (C[x]) with Vmii(x) not identically zero and mi the order of vi, as

above. Since Vi is W -symmetric, the leading coefficient Vmii(x) of Vi must evalu-

ate to a nilpotent matrix at the finite endpoints of the support of W (x). In particular,

its eigenvalues at these points must be zero. To see this, note that since Vi is W -

adjointable, so too is 1
mi!

Ad
mi−1
xI (Vi) = ∂xVmii(x)+

1
mi

V(mi−1)i(x). Therefore so

is (∂xVmii(x))
k for any integer k > 0. By taking appropriate linear combinations

for various k, it follows that Vmii(x)
k∂k

x is W -adjointable for all k. Hence for all

k we must have the expression Vmii(x)
kW (x)(k) vanish as x approaches x0 or x1

from within (x0,x1). For each finite endpoint there must exist a value of k such that

the derivative W (x)(k) evaluates to a nonzero matrix at the endpoint. Consequently

Vmii(x)
k must evaluate to the zero there.

Next note that the matrix U(x) as defined above satisfies U(x)Vmii(x) =

vmii(x)U(x) and since U(x) is a unit in MN (C(x)), this implies that vmii(x)

is equal to the trace of Vmii(x). Hence it is a polynomial and it evaluates to 0 at the

finite endpoints of the support of W (x). �

LEMMA 5.28. For all 1≤ i≤N , let hi(x,n) be a sequence of classical orthog-

onal polynomials and let P (x,n) be a sequence of matrix polynomials satisfying

the property that

P (x,n) = diag
(
h1(x,n−m), . . . ,hN (x,n−m)

)

for all integers n ≥ ℓ for some fixed integers ℓ,m with ℓ ≥ 0. Then for all i, there

exists a sequence of classical orthogonal polynomials p̃i(x,n) such that

P̃ (x,n) := diag
(
p̃1(x,n), . . . , p̃N (x,n)

)

is a bispectral Darboux transformation of P (x,n).

Proof. The sequences of classical orthogonal polynomials come with inter-

twining operators which relate polynomials of various degrees. For example, con-

sider the Jacobi polynomials jα,β(x,n) for the weight (1−x)α(1+x)β1(−1,1)(x).
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They are eigenfunctions of the Jacobi operator eα,β = ∂2
x(1− x2)+ ∂x(β −α−

(β+α+2)x). The intertwining operator for jα,β(x,n) is defined as

tα,β := ∂x(1−x2)+β−α− (β+α+2)x.

Note that

eα,β = ∂xtα,β and eα+1,β+1 − (β+α+2) = tα,β∂x

so jα+1,β+1(x,n) · tα,β is an polynomial eigenfunction of eα,β of degree n+ 1

and therefore equal to a constant multiple of jα,β(x,n+ 1). Similarly ∂x sends

jα,β(x,n) to jα+1,β+1(x,n−1). It follows that

jα,β(x,n−m) ·∂ℓ
xtα+ℓ−1,β+ℓ−1 . . . tα−m,β−m = cnjα−m,β−m(x,n)

for some sequence of constants cn. Furthermore ∂m
x sends jα−m,β−m(x,n) to a

constant multiple of jα,β(x,n−m) and therefore the jα,β must be eigenfunctions

of the product. Thus

(∂ℓ
xtα+ℓ−1,β+ℓ−1 . . . tα−m,β−m)∂m

x ∈ C[eα,β].

By similar arguments to those in the previous paragraph for the Hermite and

Jacobi case, we see that taking appropriate products of ∂x and the associated in-

tertwining operators we can obtain differential operators ti, t̃i ∈ Ω[x] such that the

kernel of ti contains all polynomials of degree less than ℓ and such that

ti t̃i ∈ C[di] and hi(x,n−m) · ti = cih̃i(x,n)

for some sequence of monic orthogonal polynomials h̃i(x,n). Note that all but

finitely many of the cn’s must be nonzero, since otherwise the kernel of the differ-

ential operator will be too large. Setting T= diag(t1, . . . , tN ) and T̃= diag(t̃1, . . . ,

t̃N ) it follows that

P (x,n) ·T= C(n)P̃ (x,n) and P̃ (x,n) · T̃= C̃(n)P (x,n)

for some sequences of matrices C(n), C̃(n) nonsingular for almost every n and for

P̃ (x,n) defined as in the statement of the lemma. By Theorem 5.19, it follows that

P̃ (x,n) is a bispectral Darboux transformation of P (x,n). �

Proof of the Classification Theorem 1.3. We assume W (x) is a weight matrix

and that D(W ) contains a W -symmetric second order differential operator whose

leading coefficient multiplied by W (x) is positive definite on the support of W (x).

Without loss of generality, we may assume that W (x) is unitarily irreducible N ×
N weight matrix with N > 1.

The first direction is easy. If W (x) is a bispectral Darboux transformation of a

direct sum of classical weights f1(x)⊕·· · ⊕ fN (x), then the fact that D(f1(x)⊕
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· · ·⊕fN(x)) is full automatically implies D(W ) is full. The difficult part is proving

the converse. Assume D(W ) is full.

By Theorem 5.23, we may choose T, T̃ ∈MN (Ω(x)) with T̃EiiT= q(Vi) and

with TT̃= diag(p1(d1), . . . ,pN (dN )) for some differential operators d1, . . . ,dN of

order 1 or 2 and polynomials pi,q. Note that by rescaling T on the left and T̃ on the

right, we may without loss of generality assume that T̃ has polynomial coefficients.

Also from the proof of Theorem 5.23, we know that there exist h1, . . . ,hN ∈ Ω(x)

and polynomials p1(d1), . . . ,pN (dN ) with hivi = pi(di)hi for all i. Let ni be the

degree of the polynomial pi and write

hi =

ki∑

j=0

∂j
xhji(x)

for some rational functions h0i(x), . . . ,hkii(x) ∈ C(x) with hkii(x) �= 0.

We also assumed that there exists a second order differential operator D ∈
D(W ) whose leading coefficient multiplied by W (x) is Hermitian and positive-

definite on the support of W (x). By Theorem 5.26 TD = D̃T for some second

order differential operator D̃ ∈D(W ). Furthermore by the calculation in the proof

of Theorem 5.23 we know that EiiD̃Eii = aiEii for some second order differential

operator ai ∈C[di]. Let C(n) be the sequence of matrices from the proof Theorem

5.23 and define a sequence of matrix polynomials P̃ (x,n) and sequences of scalar

polynomials gi(x,n) by

P̃ (x,n) = C(n)P (x,n) · T̃ and gi(x,n)Eii = EiiP̃ (x,n)Eii.

Then for all i, we calculate

T̃q(di)Eii = q(Vi)T̃ and T̃q(di)
2aiEii =ViDViT̃.

Therefore

P̃ (x,n) · q(di)Eii = q(λi(n))EiiP̃ (x,n)

and

P̃ (x,n) · q(di)2aiEii = q(λi(n))
2θi(n)EiiP̃ (x,n)

for some polynomial θi(n). Putting this together

P̃ (x,n) ·aiEii = θi(n)EiiP̃ (x,n).

In particular it follows that for all i

gi(x,n) ·ai = θi(n)gi(x,n).

Note also that P̃ (x,n)Eii · T = pi(λi(n))EiiP (x,n). Defining ti by tiEii =

EiiTEii, this says that for all but possibly finitely many n (corresponding to roots
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of pi(λi(n))) the function gi(x,n) · ti is a polynomial of degree n. Hence for each

i there exists an integer mi (possibly negative) such that for all but finitely many

n the degree of gi(x,n) is n−mi. In particular ai is exceptional and by Theo-

rem 2.46 we know that ai is Darboux conjugate to a degree-filtration preserving

differential operator of order 2.

The previous paragraph shows that we may have originally chosen hi, T, T̃

so that the ai (or equivalently the di) are degree-filtration preserving. Thus without

loss of generality we take di to be degree-filtration preserving for all i. In particular

for each di we may write

di = ∂2
xa2i(x)+∂xa1i(x)+a0i(x)

where aji(x) is a polynomial with deg(aji(x))≤ j for all 1≤ i≤N and 0 ≤ j ≤ 2.

We next show that di must be order 2 and equal to one of the classical second

order differential operators of Hermite, Laguerre and Jacobi (hereafter referred to

simply as classical operators). Let ti be the order of di, which is either 1 or 2.

Comparing leading coefficients in the expression hivi = pi(di)hi we see

vmii(x) = atii(x)
ni .

Furthermore by comparing subleading coefficients we find

hkii(x)v(mi−1)i(x)+h(ki−1)i(x)vmii(x)+mih
′
kii(x)vmii(x)

= atii(x)
nih(ki−1)i(x)+ (niatii(x)

ni−1a(ti−1)i(x)

+ (tini− ti+mini)atii(x)
ni−1a′tii(x))hkii(x).

Combining this with the first equation, this simplifies to

v(mi−1)i(x)=atii(x)
ni

[
−mi

h′kii(x)

hkii(x)
+
nia(ti−1)i(x)+(ni(mi+ ti)− ti)a

′
tii
(x)

atii(x)

]
.

Therefore by (5.20)-(5.21) we calculate that up to a constant multiple the function

ri(x) is given by

ri(x) = Re

[
atii(x)

(
2ℓini
mi

−ni+
2ni(mi+ti)−2ti

mi
)
hkii(x)

−2 exp

∫
2ni

mi

a(ti−1)i(x)

atii(x)
dx

](5.29)

for mi even and

ri(x) = Im

[
atii(x)

(
2ℓini
mi

−ni+
2ni(mi+ti)−2ti

mi
)
hkii(x)

−2 exp

∫
2ni

mi

a(ti−1)i(x)

atii(x)
dx

](5.30)

for mi odd.
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The leading coefficient vmii(x) of vi must vanish at the finite endpoints of the

support of W (x). Since vmii(x) = atii(x)
ni , this implies that atii(x) must vanish

at the finite endpoints of the support of W (x). If ti is 1, then (5.29)-(5.30) imply

that ri(x) is rational. Thus in this case W (x) must be rational, and for W (x) to

have finite moments the support of W (x) must then be a finite interval. However,

atii(x) can only have one root in this case, so atii(x) does not vanish at both the

endpoints of the support of W (x). Thus we see that ti = 2 for all i and that di is an

operator of order 2.

Suppose that for some i the polynomial a2i(x) has degree two. Then (5.29)-

(5.30) tell us that for W (x) to have finite moments the support of W (x) must lie on

a finite interval. Therefore in this case the roots of a2i(x) must be real and distinct

and equal to the finite endpoints of the support of W (x). Up to an affine translation,

they can be taken to be ±1 in which case di is equal to a Jacobi operator. Note that

in this case since a2j(x) must vanish on the support of W (x), they must all be

Jacobi operators.

Alternatively suppose that for some i the polynomial a2i(x) has degree 1. Then

again to have finite moments and for a2i(x) to vanish at the finite endpoints of

the support of W (x), the support of W (x) must be semi-infinite. Up to an affine

translation, we can take the support to be (0,∞) in which case di is a Laguerre

operator. Again, this implies that all of the dj are Laguerre operators.

Finally, suppose that for some i the polynomial a2i(x) has degree 0. Then the

weight matrix W (x) must be supported on the whole real line. Also since di is ex-

ceptional the polynomial a1i(x) must have degree 1 in this case (since otherwise di
would not have polynomial eigenfunctions of all but finitely many degrees). There-

fore up to an appropriate translation we may take di to be the Hermite operator.

In any case, di is a classical operator. For all i let fi(x) be the weight function

associated to the classical operator di, and let hi(x,n) be the associated sequence

of monic orthogonal polynomials. From the above calculation (replacing di with

ai), we know that the polynomials P̃ (x,n) := C(n)P (x,n) · T̃ are eigenfunctions

of diEii for all i with

P̃ (x,n) ·diEii = θi(n)EiiP̃ (x,n)

for some polynomials θ1(n), . . . ,θN (n). If θi(n) is nonzero, the above implies that

the i,j’th entry P̃ (x,n)ij of P̃ (x,n) is zero for all j �= i. Thus for all but finitely

many n, the polynomial P̃ (x,n) is diagonal. Furthermore, for all n sufficiently

large the degree of the diagonal entry of P̃ (x,n) is n−m. Thus for all but finitely

many n, we know that P̃ (x,n) is a diagonal polynomial matrix whose i’th diagonal

piece is αihi(x,n−m) for some nonzero constant αi. Therefore by the previous

lemma we know that P̃ (x,n) is a bispectral Darboux transformation of a sequence

of orthogonal polynomials for a direct sum of classical weights. �
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Proof of Theorem 1.5. We know in this case that D(W ) is full and that the

center of D(W ) is irreducible. The result follows immediately. �
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