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In this paper we propose two new monotonicity conditions 
that could serve as sufficient conditions for uniqueness of 
Nash equilibria in mean field games. In this study we aim for 
unconditional uniqueness that is independent of the length of 
the time horizon, the regularity of the starting distribution 
of the agents, or the regularization effect of a non-degenerate 
idiosyncratic noise. Through a rich class of simple examples we 
show that these new conditions are not only in dichotomy with 
each other, but also with the two widely studied monotonicity 
conditions in the literature, the Lasry–Lions monotonicity and 
displacement monotonicity conditions.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

Mean field games were introduced in the seminal papers [29,27] to model Nash equi-

libria among a continuum of players in stochastic or deterministic differential games. 

A fundamental mathematical question is whether such equilibria are unique. Lasry and 
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Lions introduced a convenient criterion, referred to as the Lasry–Lions monotonicity con-

dition, that can guarantee uniqueness of equilibria for a large class of mean field games. 

Since then, the Lasry–Lions (LL) monotonicity condition has been the most popular cri-

terion used to establish uniqueness in the mathematical literature on mean field games. 

Conversely, various non-uniqueness results have been recently obtained in the literature 

in the absence of LL monotonicity on the data (see [3,8,16]). Indeed, the state of the art 

circa 2019 could be justly represented by the following comment by Cardaliaguet and 

Porretta in their notes on mean field games [12, Section 1.3.2]:

“Let us mention that there are no general criteria for the uniqueness of solutions to 

(1.29) [a generic mean field game system] in arbitrary time horizon T , except for the 

Lasry–Lions monotonicity condition. . . ”

Nevertheless, more recently, several other authors have brought to light another crite-

rion known as displacement monotonicity [1,5,6,18,19,33], which is a sufficient condition 

on the data to ensure uniqueness of Nash equilibria for a general class of games. Impor-

tantly, displacement monotonicity and LL monotonicity are in dichotomy, meaning that 

neither one necessarily implies the other (see [18,19]). These findings revealed that not 

only the LL monotonicity condition is not a necessary condition regarding uniqueness 

issues for mean field games, but there might be other regimes of sufficient conditions on 

the data which could ensure the uniqueness of Nash equilibria.

Given this brief history, a natural question arises:

Are there other monotonicity conditions under which uniqueness of the mean field 

equilibrium is guaranteed?

The main purpose of this note is to provide a strong affirmative answer to this question. 

In what follows, we establish two new general monotonicity conditions, in addition to LL 

and displacement monotonicity, such that all four types of conditions are in dichotomy 

with one another–none of them implies any of the others. We do not claim that these four 

conditions constitute a definitive list. On the contrary, we conjecture that other general 

criteria guaranteeing the uniqueness of equilibria wait to be discovered. Throughout the 

paper we will consider deterministic problems. However, we expect the newly proposed 

monotonicity conditions to translate naturally to models subject to noise, thought not 

without additional challenges (see Remark 2.1). These issues will be the subject of future 

research.

In this paper, by “uniqueness” we generally mean that the Nash equilibrium is unique 

for arbitrary initial measures and arbitrary time horizons, without any particular help 

from the regularization effect of idiosyncratic noise. In particular, our focus here will 

always be on deterministic models. It is well-known that uniqueness tends to hold under 

more or less arbitrary structural assumptions on the data, so long as the time horizon is 

sufficiently small ([14,17,20,32]). By contrast, in this investigation, we will always insist 
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that the time horizon be arbitrarily large. We may occasionally restrict our attention 

to only certain classes of initial measures–for example, those having an upper bound 

on one or more of their moments–but generally speaking, “uniqueness” is taken to be 

synonymous with “unconditional uniqueness.” In this setting, it is natural to appeal 

to monotonicity as a general criterion for uniqueness. Indeed, mathematical analysis 

offers virtually no other generic tools to guarantee uniqueness of a fixed point. Neverthe-

less, for a sufficiently rich mathematical model, we can always ask, “Monotone in what 

sense?” This will be the crucial point in our investigation. It turns out that a mean 

field game can be construed as a fixed point problem in several alternative parameter 

spaces, all of which involve radically different sensitivity analyses. By turning our atten-

tion to each parameter separately, we derive new monotonicity conditions to establish 

uniqueness.

1.1. Our contributions in this paper

The main results of this paper are as follows. In Section 2.2, we state four types of 

monotonicity conditions on the data, two of which, labeled (Σ) and (L2(L2)), are new. 

The main idea behind the condition (Σ) is as follows. If we assume that the measure 

dependence of the data (the Lagrangian and final cost functions) has a specific factoriza-

tion, we can rewrite the classical fixed point formulation of the mean field game, using 

the new structure imposed by this factorization. This will then lead to a new fixed point 

formulation of the game not in the space of probability measures, but rather in new 

parameter spaces given by this factorization. This idea was initiated in our parallel work 

[23], where our motivation was to find new quantities that are transported through the 

flow of the feedback strategies in the corresponding mean field games, which in particular 

gave a new perspective in the study of the associated master equations. In specific situ-

ations, the condition (Σ) reduces to (σ). This reduction happens when the Lagrangian 

function does not depend on the measure variable, and so the mean field interaction in 

the game is though the final data only. Condition (L2(L2)) was initially inspired by (Σ), 

but in fact it can be seen as more natural: rather than factorizing through an arbitrary 

parameter space, we replace measures with representative L2 random variables, on which 

monotonicity has a clear interpretation thanks to the inner product.

The main results of Section 3 are two-fold. On the positive side, we establish that both 

of our newly proposed monotonicity conditions can be used to prove uniqueness under 

suitable hypotheses on the Hamiltonian and final datum. In the same time, we revisit 

the sufficiency of the LL and displacement monotonicity conditions in connection with 

the question of uniqueness of Nash equilibria. On the negative side, we point to coun-

terexamples showing that the Lasry–Lions monotonicity condition and (σ), in general 

do not necessarily provide uniqueness of Nash equilibria in mean field games.

Let us give some comments regarding the philosophy behind these negative results. 

First, the Lasry–Lions monotonicity condition seems to be inspired from a PDE analysis 

perspective, i.e. characterizing the Nash equilibrium via the solution to the coupled 
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system of Hamilton–Jacobi and Fokker–Planck equations. More precisely, its essence 

relies on a procedure of “cross-multiplying the variables and integrating by parts”. This 

procedure can be carried out successfully, as long as we have enough regularity to justify 

the formal computations. This is typically the case in the presence of the regularizing 

effect of a non-degenerate idiosyncratic noise. However, as long as the solutions are too 

weak (which is the case for instance when the intensity of the noise is degenerate), such 

a method breaks down, and there is a good reason to believe that uniqueness might fail. 

Instead of the presence of a non-degenerate idiosyncratic noise, an alternative framework 

which yields the sufficiency of the LL monotonicity condition for uniqueness of MFG Nash 

equilibria (as explained in [13, Section 3.4]) is the uniqueness of optimizers in optimal 

control problems for representative agents. Such a condition (independently of the length 

of the time horizon, and in case when the dynamics of the representative agents are given 

by a linear control system) can be morally guaranteed only in the case of fully convex 

problems, i.e. when the Lagrangian is jointly convex in the position and velocity variables, 

while the final datum is convex in the position variable (cf. Theorem 3.1). However, 

such convexity assumptions together with the LL monotonicity will enforce the final 

datum to become displacement monotone (see the discussion in [19, Remark 2.8]). It is 

worth mentioning that displacement monotonicity of non-separable Lagrangians implies 

in particular that the Lagrangian is jointly convex in the position and velocity variables 

(see [33, Lemma 2.5]). Therefore the uniqueness of optimizers in the optimal control 

problems for representative agents is philosophically more related to the displacement 

monotonicity of the Hamiltonian and the final datum.

A general phenomenon which underlies both the LL monotonicity and (Σ) is that these 

monotonicity conditions typically ensure uniqueness of the optimal value of the game, 

i.e. the value function; however, uniqueness of Nash equilibria (i.e. the flow of measures 

describing the distributions of the agents) in general does not follow from uniqueness of 

the value function, unless the cost functional is injective on the set of Nash equilibria. 

Such non-injectivity properties pose indeed great issues for instance in the case when the 

value function fails to be differentiable, and so there are potentially multiple optimal feed-

back strategies. From the PDE perspective, it is again at such scenarios when the above 

described method fails. Interestingly, both the displacement monotonicity and the condi-

tion (L2(L2)) prevent such non-injectivity issues, and if they are present, the uniqueness 

of Nash equilibria is a generic property. Again, philosophically, the LL monotonicity con-

dition is intimately linked to PDE arguments, the displacement monotonicity condition 

is strongly connected to optimal control arguments, while the monotonicity conditions 

(Σ) and (L2(L2)) are inspired from game theoretic arguments.

The next natural question which arises in this study is whether there are any possible 

connections between all these monotonicity conditions. For our main results in Section 4, 

we show that all four monotonicity conditions are completely distinct: there does not 

exist any necessary implication from one to another (although we give some examples 

for which two or more of these monotonicity conditions may hold at the same time). 

Taken together, these results establish that the uniqueness question in mean field games 
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is significantly richer than has been previously shown in the literature, and we believe 

they provide a starting point for new avenues of research.

2. The setting

Let us introduce first some notations and preliminaries that will be used throughout 

the paper. If X and Y are topological spaces, then for a Borel measurable map f : X → Y
and a measure m supported on X , we denote by f♯m the push-forward measure supported 

on Y given by the relation (f♯m)(E) := m 
(
f−1(E)

)
. For p ≥ 1, we use the notation 

Pp(Rd) to denote the space of nonnegative Borel probability measures supported in Rd

with finite p-order moments. On Pp(Rd) we define the standard p-Wasserstein distance 

Wp : Pp(Rd) × Pp(Rd) → [0, +∞) as,

Wp(μ, ν) := inf

⎧
⎪⎨
⎪⎩

ˆ

Rd×Rd

|x − y|p dγ : γ ∈ Pp(Rd × R
d), (p1)♯γ = μ, (p1)♯γ = μ

⎫
⎪⎬
⎪⎭

1

p

.

Classical results imply (cf. [2]) that there exists at least one optimizer γ in the previous 

problem. We denote by Πo(μ, ν) the set of all optimal plans γ.

Let (Ω, A, P ) be an atomless probability space. We use the notation H := L2(Ω; Rd). 

It is a well-known result that if P has no atoms, then for each m ∈ P2(Rd) there exists 

X ∈ H such that X♯P = m. In this case, m is the law of the random variable X and we 

use the notation m = LX .

Using the terminology from [2] (see also [13, Chapter 5]), we say that a function 

U : P2(Rd) → R has a Wasserstein gradient at m ∈ P2(Rd), if there exists DmU(m, ·) ∈
∇C∞

c (Rd)
L2

m
(the closure of gradients of C∞

c (Rd) function in L2
m(Rd; Rd)) such that 

for all m′ ∈ P2(Rd) in any small neighborhood of m we have the first order Taylor 

expansion

U(m′) = U(m) +

¨

Rd×Rd

DmU(m, x) · (y − x) dγ(x, y) + o(W2(m, m′)), ∀γ ∈ Πo(m, m′).

We say that U is differentiable on P2(Rd) if its Wasserstein gradient exists at any 

point.

For U : P2(Rd) → R, we can define its ‘lift’ Ũ : H → R by Ũ(X) := U(X♯P ). By the 

results from [21] and [13, Chapter 5] (cf. [31]), U is differentiable at m, if and only if Ũ

is Fréchet differentiable at X for any X ∈ H, such that X♯P = m. In this case we can 

write the decomposition

DŨ(X) = DmU(m, ·) ◦ X in H, ∀X ∈ H : X♯P = m,

where DŨ(X) ∈ H stands for the Fréchet derivative of Ũ at X.
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2.1. Mild solutions to a mean field game

Let T > 0 be a given time horizon, let L : [0, T ] × R
d × R

d × P2(Rd) → R and 

G : R
d × P2(Rd) → R be given continuous functions. Let m0 ∈ P2(Rd) be the initial 

agent distribution.

Let Γ := AC(0, T ; Rd) be the space of absolutely continuous curves on [0, T ] with 

values in Rd. For t ∈ [0, T ], et : Γ → R
d stands for the evaluation map, i.e. et(γ) = γ(t).

Here we give a Lagrangian formulation of the mean field equilibrium problem (cf. [4, 

Section 3] in the case of potential mean field games with local couplings and [10] in the 

case of mean field games with state constraints). In this informal discussion, the data 

L and G are supposed to satisfy suitable assumptions, as imposed in the mentioned 

references.

We define an equilibrium to be a measure

η ∈ Pm0
(Γ) :=

{
η̃ ∈ P(Γ) : (e0)♯η̃ = m0

}
,

such that it is supported on a set of curves Γ̄ ⊆ Γ and the functional Jη : Γ → R,

Jη[γ] :=

T̂

0

L(s, γs, γ̇s, (es)♯η) ds + G(γT , (eT )♯η)

satisfies

Jη[γ̄] ≤ Jη[γ], ∀γ ∈ Γ, ∀γ̄ ∈ Γ̄, γ(0) = γ̄(0).

We can recast this definition as a fixed point problem. The set Pm0
(Γ) denotes the 

set of all η ∈ P(Γ) such that (e0)♯η = m0. For any η ∈ Pm0
(Γ), there exists a unique 

Borel measurable family of probabilities {ηx}x∈Rd on Γ that disintegrates η in the sense 

that

⎧
⎨
⎩

η(dγ) =
´

Rd ηx(dγ) dm0(x),

spt(ηx) ⊂ Γ[x] m0 − a.e. x ∈ R
d,

(2.1)

where Γ[x] :=
{

γ ∈ Γ : γ(0) = x
}

. We define the set-valued map E : Pm0
(Γ) → 2Pm0

(Γ)

by

E(η) =
{

η̂ ∈ Pm0
(Γ) : spt(η̂x) ⊆ Γη[x] m0 − a.e. x ∈ R

d
}

, (2.2)

where

Γη[x] :=
{

γ̄ ∈ Γ[x] : Jη[γ̄] ≤ Jη[γ], ∀γ ∈ Γ[x]
}

. (2.3)
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An equilibrium corresponding to the initial measure m0 is simply a fixed point of E, 

i.e. η ∈ E(η).

In this manuscript we exploit additional structural assumptions on the terminal cost 

G and the Lagrangian, namely that for any given curve (ms)s∈[0,T ] in AC([0, T ]; P2(Rd))

G(x, mT ) = g(x, Σ(m)T ) and L(s, x, v, m) = ℓ(s, x, v, Σ(m)s), (2.4)

for some Σ : AC([0, T ]; P2(Rd)) → C([0, T ]; X ), and g : R
d × X → R, ℓ : [0, T ] × R

d ×
R

d × X → R, where X is a given Hilbert space. We emphasize that the space X has 

nothing to do with the Hilbert space H of L2 random variables, defined above. Such 

structure will let us investigate new monotonicity properties associated to the mean field 

game, which will be useful to establish uniqueness of Nash equilibria.

This is quite a natural assumption, as in many applications the dependence on the 

measure variables is through a generalized moment, a finite dimensional projection, etc. 

A typical example is for instance when X = R
k is a finite dimensional space, Σ(m)s =

´

Rd ψ(s, x) dms(x), for s ∈ [0, T ] or Σ(m)s =
´

Rd(ψ(s, ·) ⋆ ms)(x) dms(x), etc. where 

ψ : [0, T ] × R
d → R

k is given. When X is finite dimensional, such dependence on the 

measure variable can be also seen as a sort of “dimension reduction”, cf. [30,36].

For σ : [0, T ] → X given, we can now consider the cost

Jσ[γ] :=

T̂

0

ℓ(s, γs, γ̇s, σs) ds + g(γT , σT ),

where if Σ 
(

((es)♯η)s∈[0,T ]

)
= σ, then Jσ[γ] = Jη[γ]. Likewise, we replace Γη[x] with

Γσ[x] :=
{

γ̄ ∈ Γ[x] : Jσ[γ̄] ≤ Jσ[γ] ∀γ ∈ Γ[x]
}

.

Finally, we replace E(η) with the set-valued map E : C([0, T ]; X ) → C([0, T ]; X ) given 

by

E(σ) :=

{
Σ
(

((es)♯η̂)s∈[0,T ]

)
: η̂ ∈ Pm0

(Γ), spt(η̂x) ⊆ Γσ[x] m0 − a.e. x ∈ R
d

}
.

(2.5)

We consider σ = (σs)s∈[0,T ] to be an equilibrium provided that σ ∈ E(σ). If σ ∈
C([0, T ]; X ) is an equilibrium, then σ = Σ 

(
((es)♯η)s∈[0,T ]

)
, for some equilibrium η ∈

Pm0
(Γ). Conversely, if η is an equilibrium in Pm0

(Γ) then σ = Σ 
(

((es)♯η)s∈[0,T ]

)
is an 

equilibrium in C([0, T ]; X ).

At this point, it is worth noticing that the question of uniqueness of mean field game 

Nash equilibria could be linked to uniqueness of the fixed point of the operator E de-

fined over C([0, T ]; X ). In particular, as X is a Hilbert space, for convenience we embed 

C([0, T ]; X ) into L2([0, T ]; X ), which is a Hilbert space on its own, and so the existence 
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and uniqueness of a fixed point will be ensured by a particular monotonicity condition 

in a Hilbert space. This is what we will investigate later.

Remark 2.1. At this point the reader may notice that it is easier to analyze deterministic 

games from this point of view. For a stochastic game, the set-valued maps E and E would 

be defined in terms of a stochastic flow rather than a measure on curves.

Let us present some particular cases now to demonstrate the richness of phenom-

ena generated by the structural assumption described above. If one assumes that the 

Lagrangian does not depend on the measure and time variables, i.e.

L(t, x, v, m) = L(x, v), (2.6)

then only the final measure (eT )♯η figures into the cost Jη[η].

Under the condition (2.6), in the structural assumption (2.4) only ΣT appears, and 

so the cost has the form

Jσ[γ] :=

T̂

0

L(γs, γ̇s) ds + g(γT , σ),

where if ΣT ((eT )♯η) = σ, then Jσ[γ] = Jη[γ]. Γσ[x] will have the form

Γσ[x] :=
{

γ̄ ∈ Γ[x] : Jσ[γ̄] ≤ Jσ[γ] ∀γ ∈ Γ[x]
}

.

Finally, the operator E reduces to ET : X → X given by

ET (σ) :=
{

ΣT

(
(eT )♯η̂

)
: η̂ ∈ Pm0

(Γ), spt(η̂x) ⊆ Γσ[x] m0 − a.e. x ∈ R
d
}

. (2.7)

So, again σ ∈ X is an equilibrium provided that σ ∈ ET (σ). If σ ∈ X is an equilibrium, 

then σ = ΣT (m) for some equilibrium measure m ∈ P2(Rd), and as before m = (eT )♯η

for some equilibrium η ∈ Pm0
(Γ). Conversely, if η is an equilibrium in Pm0

(Γ) then 

σ = ΣT ((eT )♯η) is an equilibrium in X . In this case, supposing that X is a Hilbert space 

will allow us to use a monotonicity condition relying on the Hilbert space structure.

We may now notice that under the condition (2.6), not necessarily imposing special 

factorization via ΣT , we are free to redefine the cost as

Jm[γ] :=

T̂

0

L(γs, γ̇s) ds + G(γT , m),

where if (eT )♯η = m, then Jm[γ] = Jη[γ]. Likewise, we replace Γη[x] with

Γm[x] :=
{

γ̄ ∈ Γ[x] : Jm[γ̄] ≤ Jm[γ], ∀γ ∈ Γ[x]
}

.
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Finally, we replace E(η) with the set-valued map ET : P2(Rd) → 2P2(R
d) given by

ET (m) :=
{

(eT )♯η̂ : η̂ ∈ Pm0
(Γ), spt(η̂x) ⊆ Γm[x] m0 − a.e. x ∈ R

d
}

. (2.8)

We say that m ∈ P2(Rd) is an equilibrium in its own right provided m ∈ ET (m). To 

justify this definition, suppose m ∈ ET (m). Then there exists η̂ ∈ Pm0
(Γ) such that 

m = (eT )♯η̂ and spt(η̂x) ⊆ Γm[x] = Γη̂[x] for m0-a.e. x, which implies η̂ is an equilibrium. 

Conversely, if η is an equilibrium, then we observe that m = (eT )♯η ∈ ET (m).

We will make use of the following “lifted version” of ET , namely ẼT : H → 2H given 

by

ẼT (X) := {Y ∈ H : LY ∈ ET (LX)}. (2.9)

In fact, one can study the “lifted version” of the operator E itself, namely we can 

introduce Ẽ : C([0, T ]; H) → 2C([0,T ];H) defined as

Ẽ(X) :=
{

Y = (Yt)t∈[0,T ] ∈ C([0, T ]; H) : (2.10)

LYt
= (et)♯η, t ∈ [0, T ], η ∈ Pm0

(Γ), spt(ηx) ⊆ ΓX [x], m0 − a.e. x ∈ R
d
}

,

where

we redefine the cost as

JX [γ] :=

T̂

0

L(s, γs, γ̇s, LXt
) ds + G(γT , LXT

),

where if (et)♯η = LXt
, then JX [γ] = Jη[γ]. Likewise, we replace Γη[x] with

ΓX [x] :=
{

γ̄ ∈ Γ[x] : JX [γ̄] ≤ JX [γ], ∀γ ∈ Γ[x]
}

.

We can notice that under the assumption (2.6), the operator Ẽ reduces in fact to the 

operator ẼT .

2.2. Four types of monotonicity conditions

We now introduce four monotonicity conditions, whose implications for uniqueness will 

be explored in this manuscript. Unless specified otherwise, the data functions G and L

are supposed to have sufficient regularity (they are at least continuously differentiable). 

Precise hypotheses will be assumed on them in the statements of the specific results. 

First, let us recall the Lasry–Lions and displacement monotonicity conditions, studied 

intensively in the literature.
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Definition 2.2 (Lasry–Lions monotonicity). We say that condition (LL) holds for the 

function G provided that G satisfies the Lasry–Lions monotonicity condition, namely

ˆ

Rd

(
G(x, m1) − G(x, m2)

)
d(m1 − m2)(x) ≥ 0 ∀m1, m2 ∈ P2(Rd). (LL)

We say that condition (LL) holds strongly if the inequality is strict whenever G(·, m1)

and G(·, m2) are not identical. In other words, equality in (LL) implies that G(·, m1)

and G(·, m2) are identical.

This condition was introduced in the seminal paper [29], and was the first one in the 

literature that guaranteed uniqueness of sufficiently regular solutions to MFG systems. 

The LL condition for the function L can be stated in an analogous way. Typically, this 

is done if L can be “separated” as follows:

L(t, x, v, m) = ℓ(t, x, v) + f(t, x, m),

so that Definition 2.2 applies directly to f(t, ·, ·). We refer to e.g. [11, Section 5, condition 

3] and to [28] for a more general statement for Lagrangians appearing in so-called mean 

field games of controls; see also the discussion below in Section 3.1.

Remark 2.3. We would like to emphasize that the strong version of LL monotonicity in 

Definition 2.2 does not rule out the scenario when the function G is independent of the 

measure variable. Indeed, if G(x, m) ≡ G(x), for all (x, m) ∈ R
d ×P2(Rd), we have that 

the left hand side of (LL) is zero for any m1, m2, but then G(·, m1) = G(·, m2) for any 

m1 = m2. In particular, this means that even the constant zero function is strongly LL 

monotone. Therefore, we say that the strong LL monotonicity condition is non-trivially 

satisfied provided there exist m1, m2 ∈ P2(Rd) for which G(·, m1) and G(·, m2) are not 

identical.

Definition 2.4 (Displacement monotonicity). We say that condition (D) holds for the 

function G provided that G satisfies the displacement monotonicity condition, namely

E

[(
DxG(X1, LX1

) − DxG(X2, LX2
)
)

· (X1 − X2)
]

≥ 0 ∀X1, X2 ∈ H. (D)

The condition (D) naturally extends to Hamiltonians which are not necessarily sepa-

rated (cf. [19,33]).

Displacement monotonicity was first considered in the work [1] (although under a 

different name) to study the uniqueness of solutions to MFG with common noise. It 

became evident later in the works [18,19,33] that this condition can serve as an alternative 

sufficient condition both for the uniqueness of solutions to MFG systems and the well-

posedness of the corresponding master equations. The discussions in Subsection 2.1 let 

us define the following monotonicity conditions.
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Assuming the decomposition of G and L via Σ as in (2.4), we can formulate the 

following condition.

Definition 2.5 (Monotonicity condition in L2(0, T ; X )). Suppose that (2.4) holds and

Σ : AC([0, T ]; P2(Rd)) → C([0, T ]; X )

is given. Suppose furthermore that X is a Hilbert space.

We say that the monotonicity condition (Σ) holds provided that, for all initial mea-

sures m0 ∈ P2(Rd) and all time horizons T > 0, I − E is a monotone vector field on 

range Σ, i.e.

〈τ1 − τ2, σ1 − σ2〉L2([0,T ];X ) ≤ ‖σ1 − σ2‖2
L2([0,T ];X )

∀σ1, σ2 ∈ range Σ, ∀τ1 ∈ E(σ1), ∀τ2 ∈ E(σ2). (Σ)

We say that condition (Σ) holds strictly if the inequality is strict for σ1 �= σ2.

Remark 2.6. We remark that the Hilbert space L2([0, T ]; X ) appearing in condition (Σ)

could be replaced by other Hilbert spaces, which could appear naturally in particular 

problems. We refer to the discussion in Subsection 3.1, in the case of mean field games 

of controls.

Definition 2.7 (Monotonicity condition in L2(0, T ; H)). We say that the monotonicity 

condition (L2(L2)) holds provided that, for all initial measures m0 ∈ P2(Rd) and all 

time horizons T > 0, I − Ẽ is a monotone vector field on range Ẽ, i.e.

T̂

0

E

[
(Y 1

t − Y 2
t ) · (X1

t − X2
2 )
]

dt ≤
T̂

0

E

∣∣∣X1
t − X2

t

∣∣∣
2

dt, (L2(L2))

∀X1, X2 ∈ C([0, T ]; H), ∀Y 1 ∈ Ẽ(X1), ∀Y 2 ∈ Ẽ(X2). We say that condition (L2(L2))

holds strictly if the inequality is strict for X1 �= X2.

Remark 2.8.

(1) Let us notice that the choice of the inner product in the definition of (Σ) is for 

convenience. As L2([0, T ]; X ) is Hilbert space, the terminology of monotonicity is 

used in the standard sense of the word, as for operators between Hilbert spaces. 

This condition could be rephrased in a different non-Hilbertian setting, but we do 

not want to deviate the attention of the reader from the main message by further 

technical constructions.

(2) We emphasize that the conditions (Σ) and (L2(L2)) are significantly different 

from each other, as we will see later. Philosophically, one might be able to say 
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that (L2(L2)) is a particular case of (Σ), by setting X = H. As the operation 

H ∋ X �→ LX is not invertible, one would need to define Σ as a multivalued oper-

ator, Σ : AC2([0, T ]; P2(Rd)) → 2C([0,T ];H) as Σ(m) = {X ∈ C([0, T ]; H) : LXt
=

mt, ∀t ∈ [0, T ]}. In this case, the definition of E(σ) would also need to be modified 

accordingly. However, the main difference between the conditions (L2(L2)) and (Σ)

is that the former exploits the ‘full’ probability measure, while the latter one regards 

only at some specific features of the measure in a given parameter space.

It is worth mentioning that if L is independent of the measure and time variables, 

i.e. if (2.6) holds, then the previous monotonicity conditions may be replaced with the 

following ones.

Definition 2.9 (Monotonicity condition in X ). Suppose that (2.6) holds and suppose 

that X is a Hilbert space. We say that condition (σ) holds provided that, for all initial 

measures m0 ∈ P2(Rd) and all time horizons T > 0, I − ET is a monotone vector field 

on range ΣT , i.e.

〈τ1 − τ2, σ1 −σ2〉X ≤ ‖σ1 −σ2‖2
X ∀σ1, σ2 ∈ range ΣT , ∀τ1 ∈ ET (σ1), ∀τ2 ∈ ET (σ2). (σ)

We say that condition (σ) holds strictly if the inequality is strict for σ1 �= σ2.

Definition 2.10 (Monotonicity condition in H). Suppose that (2.6) holds (but (2.4) does 

not necessarily). We say that condition (L2) holds provided that, for all initial measures 

m0 ∈ P2(Rd) and all time horizons T > 0, I − ẼT is a monotone vector field on H, i.e.

E
[
(Y1 − Y2) · (X1 − X2)

]
≤ E|X1 − X2|2

∀X1, X2 ∈ H, ∀Y1 ∈ ẼT (X1), ∀Y2 ∈ ẼT (X2). (L2)

We say that condition (L2) holds strictly if the inequality is strict for X1 �= X2.

Some comments about these definitions are in order.

Remark 2.11.

(1) Conditions (L2(L2)), (Σ) (and (L2) and (σ)) are supposed to hold uniformly with 

respect to the initial measure m0 and the time horizon T . The reason for this is two-

fold. For one, the conditions (LL) and (D) are also uniform with respect to these 

data. More importantly, in this manuscript we are concerned with unconditional

uniqueness, i.e. uniqueness that does not depend on the time horizon or the initial 

measure.

(2) Monotonicity can go either direction, and we could have easily insisted on the op-

posite sign in conditions (L2(L2)), (Σ) (and (σ) and (L2)); we will give the names 
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-(L2(L2)), -(Σ) (and -(L2) and -(σ)) to the analogous conditions with the inequalities 

reversed. Formally, conditions (LL), (D), (L2), and (σ) all have the “same sign”, as 

the example below in Section 4.5 illustrates. Even for conditions (LL) and (D) it 

is known that a form of “anti-monotonicity” can also lead to uniqueness; see [34]. 

Note, however, that for these it is not enough to simply “reverse the sign”, but one 

must have sufficiently large anti-monotonicity and impose some specific structural 

assumptions on the Hamiltonian.

(3) It is worth noticing that conditions (L2(L2)) and (Σ) (and (L2) and (σ)) take into 

account the actual game itself, i.e. monotonicity is imposed ‘after’ we have access 

to the global-in-time optimal response to an arbitrary crowd trajectory. In contrast 

to this, the conditions (LL) and (D) are imposed in some sense ‘locally’, without 

having access to the global-in-time optimal response. This is one of the major dif-

ferences between the philosophy behind our newly proposed conditions compared to 

the existing ones from the literature.

In the following sections, we will first address the question of uniqueness of MFG 

equilibria. Namely, which of these conditions guarantee that the equilibrium measure 

is unique? Second, we address the question of the logical connection between different 

conditions. We will see that in general, these conditions are independent and do not 

imply one another.

3. Monotonicity conditions and uniqueness

In this section we investigate the following question: in what cases is there at most 

one MFG Nash equilibrium, i.e. at most one fixed point of E?

We begin with a simple observation: under (2.6), if (L2) or -(L2) holds strictly, then 

uniqueness is immediate! Indeed, this means there is at most one fixed point X ∈ ẼT (X), 

and m = LX is thereby the unique Nash equilibrium. By the same argument, if (L2(L2)), 

-(L2(L2)) holds strictly, we again have uniqueness. Examples where (L2) or -(L2) can be 

checked will be given below in Section 4. Examples where (L2(L2)) or -(L2(L2)) holds 

could be constructed in a similar spirit as in Section 3.1.

Next, we observe that, under suitable assumptions on the Lagrangian (which, if it 

depends on the measure variable, satisfies the corresponding displacement monotonicity 

condition) (D) also implies uniqueness. This follows directly from the results of [33] (see 

Theorem 4.5 and Corollary 4.6 in this reference). It is remarkable that the condition 

need not be strict. On the other hand, unlike (L2(L2)) (or (L2)), a condition of the form 

-(D), i.e. with the inequality reverse, certainly does not imply uniqueness. Indeed, to 

satisfy -(D), it would be sufficient to have a function G(x, m) = G(x) that is concave

with respect to x, i.e. D2
xxG(x) ≤ 0, and independent of m. Suppose also that (2.6)

holds and L is convex in the v variable. In that case, the cost is independent of the final 

measure m, which implies that m is an equilibrium whenever it is the push-forward of 

m0 through an optimal flow at time T . However, since G is concave, there can easily be 



14 P.J. Graber, A.R. Mészáros / Journal of Functional Analysis 285 (2023) 110095

more than one optimal flow, which implies more than one equilibrium. See the discussion 

below for more details.

Suppose that (2.6) is in force. The situation is different and quite interesting for 

conditions (LL) and (σ). In the case of Lasry–Lions monotonicity (LL), an inspection 

of the proof of [10, Theorem 4.1], for example, implies that when (LL) holds strictly, 

then the final cost G(x, m) gives the same value for all equilibria m. However, unless 

m �→ G(x, m) is injective on the set of equilibria, this does not imply uniqueness of the 

equilibrium. (Here we are referring only to the final measure; let alone the whole flow of 

measures!) Likewise, when (σ) holds strictly, we see that the parameter ΣT (m) has the 

same value for all equilibria m. However, unless m �→ ΣT (m) is injective on the set of 

equilibria, this does not imply uniqueness of the equilibrium. Thus both (LL) and (σ), 

when they hold in a strict (or strong) sense, do imply uniqueness of the value function, 

but not necessarily of the equilibrium distribution.

As a consequence, we can conclude in particular that even the strong version of the 

Lasry–Lions monotonicity does not imply in general the uniqueness of MFG Nash equi-

libria. This observation seems to be new in the literature. Let us comment more on the 

literature to date regarding the strong version of the LL monotonicity in connection to 

the uniqueness of MFG Nash equilibria. As [12, Theorem 1.4] states, we can see that 

when non-degenerate idiosyncratic noise is present, under Lasry–Lions monotonicity we 

have uniqueness of MFG Nash equilibria if either the data which depend on the measure 

variable (the running and the final costs) are strongly LL monotone, or the Hamiltonian 

is strongly convex in the momentum variable.

We consider two examples below. In one of them the final datum is nontrivially 

strongly LL monotone, while the running cost does not depend on the measure (hence 

trivially strongly LL monotone, cf. Remark 2.3). In the second one the running cost is 

nontrivially strongly LL monotone, while the final datum is trivially strongly LL mono-

tone. In both cases the Hamiltonian is purely quadratic in the momentum variable, and 

therefore strongly convex in this variable. These examples would fit into the setting of 

[12, Theorem 1.4], except that we do not have noise. Therefore, the message we would 

like to convey is that regularity of the measure variable (for instance, as a consequence 

of the regularizing effect of the noise), or some other sufficient assumptions (for instance 

the uniqueness of optimal feedback strategies in the single agent optimization problems) 

need to be imposed in addition to the strong monotonicity of the running and final costs 

or strong convexity of the Hamiltonian, otherwise uniqueness of MFG Nash equilibria 

might fail. For deterministic problems, such an additional sufficient assumption is that 

the measure component of the MFG system stays essentially bounded, as we can see in 

[12, Theorem 1.8]. In our examples the measure component is in fact a singular measure.

Under (2.6), these difficulties can be obviated if one assumes a priori that the min-

imizers of the cost functional Jm are unique for each m. Such an assumption makes 

it almost inevitable that x �→ G(x, m) should be convex (independently of m), as the 

following result shows:



P.J. Graber, A.R. Mészáros / Journal of Functional Analysis 285 (2023) 110095 15

Theorem 3.1. Let φ : R
d → R be continuous, non-constant, and bounded below, and let it 

have sub-quadratic growth at infinity, i.e. assume there exist C > 0 and α ∈ (0, 1) such 

that φ(x) ≤ C(1 + |x|1+α) for all x ∈ R
d. Assume φ is not convex. Then there exists 

t∗ > 0 such that for every t ≥ t∗, there exists x ∈ R
d such that Rd ∋ y �→ |x−y|2

2t + φ(y)

has at least two distinct minimizers.

See Appendix A for the proof. Theorem 3.1 proves that the Cauchy problem for the 

Hamilton–Jacobi equation

{
∂tu + 1

2 |∇u|2 = 0, in (0, +∞) × R
d,

u(0, x) = φ(x), x ∈ R
d,

(3.1)

necessarily develops a shock at a certain time t∗ > 0 depending only on φ, where φ is 

any non-convex function having sub-quadratic growth at infinity. Although the result is 

stated only for quadratic Lagrangians, it underscores how common it is to have more 

than one minimizer for a given optimal control problem.

In the light of these observations, let us now proceed to state precisely our main results 

concerning uniqueness. Our first main result establishes the uniqueness of MFG Nash 

equilibria under our newly proposed monotonicity condition (Σ) (or (σ)).

Proposition 3.2. Let T > 0 be a given arbitrary large time horizon. Suppose that G :

R
d × P2(Rd) → R and L : [0, T ] × R

d × R
d × P2(Rd) → R have the decomposition 

(2.4) for some given Hilbert space X , g : R
d × X → R, ℓ : [0, T ] × R

d × R
d × X → R

and Σ : AC([0, T ]; P2(Rd)) → C([0, T ]; X ). Suppose that the strict version of (Σ) holds. 

Last, suppose that g and ℓ are such that the Hamilton–Jacobi equation

{
−∂tu + h(t, x, −∇xu, σs) = 0, in (0, T ) × R

d,

u(T, x) = g(x, σT ), x ∈ R
d,

(3.2)

has a unique classical solution for all σ = (σs)s∈[0,T ] in range(Σ). Suppose also that the 

vector field Dph(·, ·, −∇xu, σ) has a globally defined flow. Here h : [0, T ] ×R
d ×R

d ×X →
R is defined in the standard way as h(t, x, p, σ) := supv∈Rd

{
p · v − ℓ(t, x, v, σ)

}
. Then 

the corresponding mean field game starting at any m0 ∈ P2(Rd) has at most one Nash 

equilibrium.

Suppose in addition that L satisfies the reduced form (2.6) and that (σ) holds in a 

strict sense. Then we can again conclude that the corresponding mean field game has at 

most one Nash equilibrium.

Remark 3.3. The existence of a mean field game Nash equilibrium can be obtained under

mild assumptions on the data L and G, and this is relatively well documented in the 

literature. In the particular setting when the problem (3.2) has a regular enough classical 

solution, this existence question was established in [33, Theorem 3.6].
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Proof of Proposition 3.2. Let η be an equilibrium (in particular (e0)♯η = m0), and set 

ms = (es)♯η and σs = Σ(m)s. Then it follows that the curve σ belongs to E(σ), as 

defined in (2.5), i.e. σ is a fixed point of E . By the strict monotonicity condition (Σ), 

this fixed point σ is unique. To establish the uniqueness of the measure η, it is enough 

to establish that η is completely determined by σ. Indeed, by our assumptions, we have 

the uniqueness of characteristics associated to (3.2), which are also given by the flow of 

the vector field Dph(·, ·, −∇xu, σ), i.e.

{
∂sγs(x) = Dph(s, γs(x), −∇xu(s, γs(x)), σs), s ∈ (0, T ),

γ0(x) = x, x ∈ R
d.

It follows that the set of optimal curves is a singleton, i.e. Γη[x] consists only of the 

solution to this initial value problem. Hence the measures ηx are Dirac masses determined 

entirely by σ, whereupon η itself is determined by σ, as well.

The case where L satisfies (2.6) and (σ) is satisfied is entirely analogous and therefore 

omitted. Under this reduction, in particular h will also be independent of t and σ. �

3.1. An example of data satisfying (Σ)

Let us pause for a moment to present data that fulfill the monotonicity condition (Σ). 

As we demonstrate below, our proposed monotonicity condition (Σ) is well-suited for a 

rich class of MFG, including so-called MFG of controls.

In this example, we take both x and σ in R
d, where d is arbitrary. Let T > 0 be 

a time horizon, which can be taken to be arbitrarily long. Let us assume that H, L :

(0, T ) × R
d × R

d → R have the standard connection between them, via the Legendre–

Fenchel transform, i.e.

H = H(t, p, π) = sup
v∈Rd

[v · p − L(t, v, π)].

In the case of both H, L, the last coordinate π ∈ R
d will play the role of a special 

parameter, that we will describe below. For simplicity, we will assume that the final cost 

depends only on the position variable x, i.e. g : R
d → R.

In this MFG of controls, x denotes the position/state of individual agents. m0 ∈
P(Rd) represents their initial distribution with respect to their positions, while the 

flow of measures m : (0, T ) → P2(Rd) is on the velocity variable (in the Lagrangian 

coordinate; i.e. on the controls) of the individual agents. Therefore the parameter curve 

π : [0, T ] → R
d, defined as π(t) =

´

Rd v dmt(v) represents the barycenter of these 

measures, and both the Hamiltonian and Lagrangian depend on this finite dimensional 

quantity.

Given a trajectory π : [0, T ] → R
d, we will define σ : [0, T ] → R

d as σ(t) =
´ t

0
π(s) ds, 

which satisfies σ(0) = 0. Our main assumption in this subsection will be
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π �→ DpH(t, p, π) − π is strictly monotone with respect to π. (3.3)

This monotonicity is understood in the classical sense of vector fields defined on finite 

dimensional spaces, i.e. for any t, p ∈ (0, T ) × R
d fixed we impose

[
DpH(t, p, π1) − DpH(t, p, π2)

]
· (π1 − π2) > |π1 − π2|2 , ∀ π1, π2 ∈ R

d, π1 �= π2.

(3.4)

As in our consideration, the direction of the monotonicity can be swapped, we can assume 

also the opposite sign instead, i.e.

[
DpH(t, p, π1) − DpH(t, p, π2)

]
· (π1 − π2) < |π1 − π2|2 , ∀ π1, π2 ∈ R

d, π1 �= π2.

(3.5)

A typical example for the H would be

H(t, p, π) = sup
v∈Rd

{
v · p − ℓ

(
v + a(t)π

)}
= ℓ∗(p) − a(t)p · π, (3.6)

where a : [0, T ] → R is a smooth curve, and where ℓ : R
d → R is a given function whose 

Legendre transform is denoted ℓ∗. If a(t) < −1, then we have the first inequality (3.4), 

while if a(t) > −1, we have the second (3.5).

For a given path π : [0, T ] → R
d and initial condition z ∈ R

d, the optimal trajectory 

x(t; π, z) is given by solving

ẋ(t) = DpH(t, −Dg(x(T )), π(t)), x(0) = z. (3.7)

We remark that this is because the classical forward-backward Hamiltonian system sim-

plifies as H does not depend on the position variable.

We note that we have an MFG Nash equilibrium m : (0, T ) → P2(Rd) if and only if 

by defining π(t) =
´

Rd v dmt(v), we have that

mt = ẋ(t; π, ·)♯m0.

We then define, for a given initial measure m0 ∈ P2(Rd), Π : C((0, T ); Rd) →
C((0, T ); Rd) as

Π(π)t =

ˆ

Rd

ẋ(t; π, z) dm0(z). (3.8)

The MFG equilibrium is now related to the fixed point problem

π = Π(π).
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We can now define Σ : Y → Y as

Σ(σ)t =

ˆ

Rd

x(t; σ̇, z) dm0(z) −
ˆ

Rd

z dm0(z),

where Y :=
{

γ ∈ C1((0, T ); Rd) : γ(0) = 0
}

. The subtraction of the constant 
´

Rd z dm0(z) in the definition of Σ is performed in order to ensure that Σ maps Y
into itself. We realize that Π(π)t = d

dt Σ(σ)t.

To keep this exposition brief, let us assume that g is linear, so that Dg(x) = c is a 

constant in Rd; this will allow us to quickly arrive at a result for this class of examples. 

Then (3.8) becomes

Π(π)t =

ˆ

DpH(t, −c, π(t)) dm0(z).

We notice that by (3.3), Π(π) − π is monotone in the sense that

〈
Π(π1)t − π1(t) −

(
Π(π2)t − π2(t)

)
, π1(t) − π2(t)

〉
> 0 (or < 0) ∀t

hence

T̂

0

〈
Π(π1)t − π1(t) −

(
Π(π2)t − π2(t)

)
, π1(t) − π2(t)

〉
dt > 0 (or < 0).

As a consequence of this, we have that Σ is monotone on Y, in the sense of the H1([0, T ])

inner product for trajectories beginning at σ(0) = 0. This corresponds exactly to the 

monotonicity condition (Σ) (where the parameter space X = R
d and we have changed 

the inner product from the L2 inner product to an H1 inner product).

The economic interpretation of (3.3) is readily available. Consider the case of compet-

itive production of a given resource, cf. [15,26]. The control can be the quantity sold at a 

given moment, i.e. the derivative of the stock (state). Then π would represent the total 

quantity on offer by the market. Condition (3.3) simply means that one must sell more 

if the market has more to offer. Assumptions under which such a condition holds can 

be found, for example, by looking at [25, Lemma 4.1] for the scalar case; for the vector 

case, it is enough to assume it holds in each coordinate.

Let us compare condition (3.3), which leads immediately to the monotonicity (Σ)

in our sense, with the Lasry–Lions type monotonicity studied in [11,28]. Under our 

restrictions, this condition would become

ˆ

Rd

⎛
⎜⎜⎝L

⎛
⎜⎝t, v,

ˆ

Rd

ṽ dμ1(ṽ)

⎞
⎟⎠− L

⎛
⎜⎝t, v,

ˆ

Rd

ṽ dμ2(ṽ)

⎞
⎟⎠

⎞
⎟⎟⎠ d(μ1 − μ2)(v) ≥ 0 (3.9)
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for all measures μ1, μ2 ∈ P2(Rd). Equation (3.9) is not in general equivalent to (3.3). 

For instance, in the case of the example (3.6), we have that

L(t, v, π) = ℓ
(
v + a(t)π

)
,

from which we get

ˆ

Rd

⎛
⎜⎜⎝L

⎛
⎜⎝t, v,

ˆ

Rd

ṽ dμ1(ṽ)

⎞
⎟⎠− L

⎛
⎜⎝t, v,

ˆ

Rd

ṽ dμ2(ṽ)

⎞
⎟⎠

⎞
⎟⎟⎠d(μ1 − μ2)(v)

=

ˆ

Rd

⎛
⎜⎜⎝ℓ

⎛
⎜⎝v + a(t)

ˆ

Rd

ṽ dμ1(ṽ)

⎞
⎟⎠− ℓ

⎛
⎜⎝v + a(t)

ˆ

Rd

ṽ dμ2(ṽ)

⎞
⎟⎠

⎞
⎟⎟⎠d(μ1 − μ2)(v)

(3.10)

Claim. In general, the expression (3.10) will not always have the same sign for all prob-

ability measures μ1 and μ2.

Proof of Claim. To see this, let us assume for simplicity the dimension d = 1, a(t) = 1

is constant, and let us restrict our attention to measures with 
´

R
ṽ dμ1(ṽ) = 1 and 

´

R
ṽ dμ2(ṽ) = 0. Then the expression reduces to

ˆ

R

(
ℓ(v + 1) − ℓ(v)

)
d(μ1 − μ2)(v). (3.11)

We take, for example, ℓ(v) = v4. The expression (3.11) reduces to

ˆ

R

(
4v3 + 6v2 + 4v + 1

)
d(μ1 − μ2)(v) =

ˆ

R

(
4v3 + 6v2

)
d(μ1 − μ2)(v) + 4. (3.12)

We can simplify even further by taking μ2 = δ0, the Dirac mass at zero, so that (3.12)

becomes
ˆ

R

(
4v3 + 6v2

)
dμ1(v) + 4. (3.13)

It suffices to show that this may be positive or negative, depending on the choice of μ1. 

Take

μ1 = bδx + (1 − b)δ 1−bx
1−b

, (3.14)

where b ∈ (0, 1) and x is some real number. Note that 
´

v dμ1(v) = 1, as desired. We 

also have
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ˆ

R

(
4v3 + 6v2

)
dμ1(v) = (4x3+6x2)b+

(
4

(
1 − bx

1 − b

)3

+ 6

(
1 − bx

1 − b

)2
)

(1−b), (3.15)

which, so long as b �= 1/2, is a cubic polynomial in x whose leading term is computed to 

be

4bx3 − 4b3

(1 − b)2
x3 =

4b(1 − 2b)

(1 − b)2
x3.

As a cubic polynomial can take any value in R, we deduce that (3.13) may be positive 

or negative, as desired.

It turns out that the LL condition holds in this case for purely quadratic functions, 

i.e. ℓ(v) = |v|2. In this case, by subtracting the squares and making a cancellation, one 

finds that the expression (3.10) reduces to

2a(t)

∣∣∣∣∣∣∣

ˆ

Rd

v d(μ1 − μ2) (v)

∣∣∣∣∣∣∣

2

, (3.16)

which can have a definite sign if a(t) is chosen to be positive or negative. Because of this 

fact, one can use the standard PDE approach à la Lasry–Lions to prove uniqueness in the 

study of exhaustible resource models for which the demand schedule is linear and hence 

the Hamiltonian is purely quadratic, cf. [25,22] (see also [28,24,7], where the Lagrangian 

has a different structure allowing LL monotonicity to hold). It was noticed in [25,22] that 

the case of a nonlinear demand schedule makes it considerably more difficult to prove 

uniqueness, and this was done only under a certain smallness assumption. Although in 

the present article we do not wish to address the many technicalities that arise in such 

models, we believe that in future work the approach proposed here could help generalize 

those uniqueness results.

Remark 3.4. Recently, in [35] the authors introduced monotonicity conditions of dis-

placement type (“Assumption 5.1”) for Hamiltonians appearing in mean field games of 

controls. In principle, one could check whether our condition (3.3) implies Assumption 

5.1 in that work. However, this would require introducing a large amount of additional 

notation and making a number of quite delicate calculations. In our context, one would 

first need to verify that the fixed point problem

ζ = DpH
(
t, −η, E[ζ]

)

has a unique fixed point in the space of L2 random variables, given an arbitrary L2

random variable η. One can show this much by using condition (3.3). After this one would 

need to define ζ implicitly as a function of η and analyze its derivative in order to check 
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that [35, Assumption 5.1] holds; this would require additional smoothness assumptions 

on H and a lot of subtle implicit differentiation (unless L is, say, quadratic with respect 

to the velocity). Although such a calculation is potentially illuminating, we have chosen 

not to include it for the sake of brevity.

For the rest of the paper, in order to present the richness of phenomena behind 

the monotonicity conditions in a simple way, we will assume that the Lagrangian is 

independent of the time and measure variables, i.e. (2.6) holds. In this context, the 

monotonicity condition (Σ) will simply reduce to the condition (σ) and (L2(L2)) reduces 

to (L2). Furthermore, we restrict our attention to the case X = R
k, and most often we 

set k = 1.

3.2. Strong Lasry–Lions monotonicity or the strict (σ) in general do not imply 

uniqueness of Nash equilibria

We now give a family of examples for which (LL) holds, but uniqueness of MFG Nash 

equilibria does not hold.

Proposition 3.5. Let φ : R
d → R be any positive, bounded, function for which there 

exists some x0 such that φ(x0 + y) = φ(x0 − y) for all y. Assume, moreover, that 

φ(x0 + z) < φ(x0) for some z. Define the data as follows:

G(x, m) = φ(x)σT (m), σT (m) =

ˆ

Rd

φ dm, L(x, v) =
1

2
|v|2 . (3.17)

Then (LL) is satisfied strongly for G, but uniqueness of the MFG equilibria does not hold 

for the initial measure m0 = δx0
.

Proof. To see that (LL) is satisfied strongly, notice that

ˆ

Rd

(
G(x, m1) − G(x, m2)

)
d(m1 − m2)(x) =

⎛
⎜⎝
ˆ

Rd

φ(x) d(m1 − m2)(x)

⎞
⎟⎠

2

. (3.18)

For the initial measure m0 = δx0
, the mean field game boils down to finding measures 

m such that

spt(m) ⊂ argmin

⎧
⎪⎨
⎪⎩

|x0 − y|2
2T

+ φ(y)

ˆ

Rd

φ dm : y ∈ R
d

⎫
⎪⎬
⎪⎭

. (3.19)

Now with z as above, there exists τ large enough such that |z|2

2τ + φ(x0 + z) < φ(x0). It 

follows that we can find some y∗ that minimizes |y|2

2τ +φ(x0+y), hence so does −y∗ because 
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φ(x0+y∗) = φ(x0−y∗). We emphasize that y∗ �= 0, since we have |z|2

2τ +φ(x0+z) < φ(x0). 

Set T = τ
φ(x0+y∗) . Then

±y∗ ∈ argmin

{
|x0 − y|2

2T
+ φ(y)φ(x0 ± y∗) : y ∈ R

d

}
. (3.20)

It follows that m = δ±y∗ are both Nash equilibria. �

The example given in Proposition 3.5 is a game where the measure-dependence occurs 

only in the final cost. However, the basic idea holds even when the running cost depends 

on the measure, as well. We give a simple example to illustrate the general idea.

Proposition 3.6. Let φ : R
d → R be given by φ(x) =

√
2|x| and set F (x, m) =

φ(x) 
´

Rd φ dm. Fix a final time T . Set the final coupling G(x, m) = −T |x|, and set 

the Lagrangian to be

L(x, v, m) =
1

2
|v|2 + F (x, m) =

1

2
|v|2 + φ(x)

ˆ

Rd

φ dm. (3.21)

Then (LL) is satisfied strongly for F , but uniqueness of the MFG equilibria does not hold 

for the initial measure m0 = δ0.

Proof. The proof that (LL) is satisfied strongly for F is the same argument as in Propo-

sition 3.5. To prove that Nash equilibria are not unique for m0 = δ0, set

ξ(t) =
t2

2
a, t ∈ [0, T ] (3.22)

for any fixed unit vector a ∈ R
d. Set m(t) = δξ(t). We claim that m(t) is an equilibrium. 

It suffices to show that ξ(t) is an optimal trajectory for any player starting from x = 0

and seeking to minimize

T̂

0

⎛
⎜⎝

1

2

∣∣ẋ(t)
∣∣2 + φ(x(t))

ˆ

Rd

φ dm(t)

⎞
⎟⎠dt − T

∣∣x(T )
∣∣ , (3.23)

which, given m(t) = δξ(t), can be written

T̂

0

(
1

2

∣∣ẋ(t)
∣∣2 + φ(x(t))φ(ξ(t))

)
dt − T

∣∣x(T )
∣∣ . (3.24)

The Euler-Lagrange equations for this optimal control problem are
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ẍ(t) = Dφ(x(t))φ(ξ(t)), ẋ(T ) = T
x(T )∣∣x(T )

∣∣ . (3.25)

Then we observe that ξ(t) itself satisfies (3.25), because

Dφ(ξ(t))φ(ξ(t)) =
1√

2
∣∣ξ(t)

∣∣
ξ(t)∣∣ξ(t)
∣∣
√

2
∣∣ξ(t)

∣∣ =
ξ(t)∣∣ξ(t)
∣∣ = a = ξ̈(t) (3.26)

and

T
ξ(T )∣∣ξ(T )

∣∣ = Ta = ξ̇(T ). (3.27)

Since a is arbitrary, the equilibrium is not unique. �

We turn back now to the setting of Proposition 3.5. By a similar construction, we 

can give a family of examples for which both (LL) and (σ) hold, but uniqueness of the 

equilibrium still does not hold.

Proposition 3.7. Assume the dimension d = 1. Let φ be as in Proposition 3.5. In addition, 

assume that φ is decreasing for x0 < x < x0 + z and increasing for x > x0 + z (where 

z > 0). Then for the initial measure m0 = δx0
, (σ) holds strictly, and (LL) is satisfied 

strongly, but uniqueness does not hold.

We emphasize that, in the statement of Proposition 3.7, the condition (σ) holds only 

under the restriction that the initial condition must satisfy m0 = δx0
. In the proof, we 

will use the following elementary lemma:

Lemma 3.8. Let F, G : I → R be continuous functions on an interval I ⊂ R such that 

G is strictly increasing and let β ∈ argmin F �= ∅. Then argmin(F + G) ⊂ I ∩ (−∞, β]. 

Hence all the minimizers of F + G are less than or equal to the minimizers of F .

Proof. If x > β, then F (x) ≥ F (β) because β minimizes F , and G(x) > G(β) because 

G is strictly increasing, so F (x) + G(x) > F (β) + G(β). Thus no minimizer of F + G can 

lie in (β, ∞). �

Proof of Proposition 3.7. By Proposition 3.5, we have only to show that (σ) holds (here 

we have that X = R and ΣT (m) = σT (m)). For this, observe that with initial measure 

m0 = δx0
, we have

ET (σ) =
{

φ(x0 + y) : y ∈ Ω(σ)
}

,
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where

Ω(σ) := argmin

{
y2

2T
+ φ(x0 + y)σ : y ≥ 0

}
. (3.28)

Note that we only need to consider y ≥ 0 because φ(x0 + y) is even. Since φ > 0, we can 

take only σ > 0 and thus

Ω(σ) = argmin

{
y2

2Tσ
+ φ(x0 + y) : y ≥ 0

}
.

By the assumptions on φ, it is obvious that Ω(σ) �= ∅. We claim that Ω(σ) is increasing 

in σ, i.e. if σ2 > σ1 and yi ∈ Ω(σi) for i = 1, 2, then y2 ≥ y1. Indeed, since

y2

2Tσ1
+ φ(x0 + y) =

y2

2Tσ2
+ φ(x0 + y) +

(
1

σ1
− 1

σ2

)
y2

2T
(3.29)

and y �→
(

1
σ1

− 1
σ2

)
y2

2T is a strictly increasing function on [0, ∞), the claim follows from 

Lemma 3.8.

We also claim that if Ω(σ1) ∋ z for some σ1 > 0, then Ω(σ) = {z} for all σ > σ1. 

Indeed, if y ∈ Ω(σ) for σ ≥ σ1, then since Ω(σ) is increasing we must have y ≥ z. On 

the other hand, since y �→ y2

2T σ + φ(x0 + y) is strictly increasing on the interval y ≥ z, it 

follows that y /∈ Ω(σ) if y > z. The claim follows.

Finally, we deduce that ET (σ) is decreasing in σ. Indeed, let 0 < σ1 < σ2 and let 

yi ∈ Ω(σi) for i = 1, 2. It follows that y1 ≤ y2 ≤ z. Since φ(x0 + y) is decreasing on [0, z], 

it follows that φ(x0 + y2) ≤ φ(x0 + y1), as desired.

Now since (0, +∞) ∋ σ �→ ET (σ) is decreasing, it follows that (0, +∞) ∋ σ �→ σ−ET (σ)

is strictly increasing, i.e. (σ) holds strictly. The remaining conclusions follow directly from 

Proposition 3.5. �

Propositions 3.5, 3.6, and 3.7 show that Lasry–Lions and even (σ) type monotonicity 

conditions do not necessarily imply uniqueness of the measure, even if the cost is unique. 

In terms of game theory, this implies that the payoffs may be uniquely determined, but 

the actions of the crowd are not. One may ask whether this phenomenon is generic. 

That is, when the optimal control problem does not always have a unique solution, must 

there always be more than one equilibrium? We conclude this section by showing an 

example where this is not the case: although the optimal control problem for individuals 

may sometimes have more than one solution, nevertheless there is only one possible 

equilibrium in the game.
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3.3. Non-uniqueness of feedback strategies in general does not imply non-uniqueness of 

Nash equilibria

We again work in dimension d = 1. For the data, let us take

G(x, m) = φ(x)σT (m), σT (m) =

ˆ

R

ψ dm, L(x, v) =
1

2
v2, (3.30)

where ψ is any function that is strictly increasing and continuous, and where φ is given 

by

φ(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

x, if x ≤ 0,

2x, if 0 < x < 1,

x + 1, if x ≥ 1.

(3.31)

Remark 3.9. Although φ and ψ are both increasing functions, nevertheless it does not 

generally follow that G is LL monotone. Indeed, since φ(x) = x for x ≤ 0, one may take 

any increasing function ψ that is nonlinear on (−∞, 0], then apply the argument found 

in the proof of Proposition 4.10 below to conclude that G is not LL monotone.

Theorem 3.10. Let m0 ∈ P2(R) be any initial measure, and let the data be given by (3.30)

and (3.31). Then there exists a unique equilibrium measure m, i.e. there is a unique fixed 

point m ∈ ET (m).

Remark 3.11. It seems to us that the conclusion of Theorem 3.10 holds for a much more 

general class of increasing functions φ. We have chosen to keep the structure simple so 

as not to obscure the main idea of the proof.

Proof of Theorem 3.10. Define

Φ(x, y, σ) =
(x − y)2

2T
+ φ(y)σ, Y (x, σ) = argmin Φ(x, ·, σ),

y∗(x, σ) = min Y (x, σ), y∗(x, σ) = max Y (x, σ).

(3.32)

Using Lemma 3.8, the strict convexity of the square, and the fact that φ is strictly 

increasing, we deduce that

y∗(x, σ2) ≤ y∗(x, σ1) ∀σ2 ≥ σ1, y∗(x2, σ) ≥ y∗(x1, σ) ∀x2 ≥ x1. (3.33)

We claim that there is at most one x such that Φ(x, ·, σ) has two minimizers. To see 

this, we first compute
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∂yΦ(x, y, σ) =
1

T

⎧
⎨
⎩

y − (x − 2σT ) if y ∈ (0, 1),

y − (x − σT ) if y /∈ [0, 1].
(3.34)

We divide into two cases. By examining the sign of the derivative, we can deduce intervals 

of increase and decrease to identify candidates for minimizers.

(1) First assume σT < 1. If x ≤ 2σT , then Φ(x, ·, σ) has a unique minimizer, min{x −
σT, 0}, while if 2σT < x ≤ 1 + σT , then the unique minimizer is x − 2σT . If 

x ≥ 1 + 2σT , then the unique minimizer is x − σT .

In the remaining case where 1 + σT < x < 1 + 2σT , both x − 2σT and x − σT

are candidates for minimizer. We compute

Φ(x, x − 2σT, σ) = 2σx − 2Tσ2,

Φ(x, x − σT, σ) = σ(x + 1) − Tσ2

2
,

(3.35)

and these are equal if and only if x = 1 + 3σT
2 , in which case it follows that 1 ± σT

2

are both minimizers.

(2) Now assume, to the contrary, that σT ≥ 1. If x ≤ 2σT , then the unique minimizer 

is min{x − σT, 0}. If x ≥ 1 + 2σT , then the unique minimizer is x − σT .

In the remaining case where 2σT ≤ x < 1 + 2σT , both x − 2σT and x − σT are 

candidates for minimizer. We get the same values as in (3.35).

We conclude that there are exactly two distinct minimizers, 1 ± σT
2 , if and only if x =

1 + 3σT
2 ; otherwise, there is only one minimizer. In other words, for x �= 1 + 3σT

2 , 

y∗(x, σ) = y∗(x, σ), but on the other hand

Y

(
1 +

3σT

2
, σ

)
=

{
1 +

σT

2
, 1 − σT

2

}
.

In what follows it will be useful to note that in all cases,

∣∣y∗(x, σ)
∣∣ ,
∣∣y∗(x, σ)

∣∣ ≤|x| + 2T |σ| . (3.36)

Let xσ := 1 + 3σT
2 . If m0({xσ}) = 0 or σ = 0 (in which case one has that y∗(x0, 0) =

y∗(x0, 0)) all points x from the support of m0 have a unique destination y∗(x, σ) =

y∗(x, σ). In such case the target measure has the form y∗(·, σ)♯m0 and so

ET (σ) =

ˆ

R

ψ
(
y∗(x, σ)

)
dm0(x).

As ψ is strictly increasing and σ �→ y∗(x, σ) is decreasing for any x (cf. (3.33)), we have 

that ET is decreasing.
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If m0({xσ}) > 0 and σ �= 0, then from the point xσ, cm0({xσ}) amount of mass 

can travel to 1 + σT
2 while all the remaining (1 − c)m0({xσ}) amount of mass travels to 

1 − σT
2 , for an arbitrary c ∈ [0, 1]. All the remaining points x from the support of m0

have a unique destination y∗(x, σ). Therefore the target measure has the form

m = y∗(·, σ)♯

(
m0 (R \ {xσ})

)
+ m0({xσ})

(
cδ1+ σT

2

+ (1 − c)δ1− σT
2

)
, (3.37)

where m0 E denotes the measure m0 restricted to a set E and δz is a Dirac mass 

concentrated at z. Therefore, as ψ is strictly increasing, ET (σ) becomes set valued, i.e.

ET (σ) =

⎧
⎪⎨
⎪⎩

ˆ

R\{xσ}

ψ
(
y∗(x, σ)

)
dm0(x)

+ m0({xσ})

[
cψ

(
1 +

σT

2

)
+ (1 − c)ψ

(
1 − σT

2

)]
: c ∈ [0, 1]

⎫
⎪⎬
⎪⎭

=

⎧
⎪⎨
⎪⎩

ˆ

R

(
cψ
(
y∗(x, σ)

)
+ (1 − c)ψ

(
y∗(x, σ)

))
dm0(x) : c ∈ [0, 1]

⎫
⎪⎬
⎪⎭

,

which can be written more simply as the interval

ET (σ) =

⎡
⎢⎣
ˆ

R

ψ
(
y∗(x, σ)

)
dm0(x),

ˆ

R

ψ
(
y∗(x, σ)

)
dm0(x)

⎤
⎥⎦ ,

where we have used the fact that ψ
(
y∗(x, σ)

)
= ψ

(
y∗(x, σ)

)
for x �= xσ. Again, by 

(3.33), we see that ET (σ) is decreasing. We claim also that it is maximal, i.e. if (σ, τ) is 

any pair satisfying

(τ̃ − τ)(σ̃ − σ) ≤ 0 ∀σ̃ ∈ R, τ̃ ∈ ET (σ̃), (3.38)

then it follows that τ ∈ ET (σ). Thus suppose (3.38) holds. Let σn be a sequence that 

increases to σ as n → ∞. Since τn =
´

R
ψ
(
y∗(x, σn)

)
dm0(x) ∈ ET (σn), (3.38) implies

(τn − τ)(σn − σ) ≤ 0 ∀n ⇒ τ ≤ τn ∀n.

Let us show that lim inf
n→+∞

τn ≤
ˆ

R

ψ
(
y∗(x, σ)

)
dm0(x). By (3.36) and the dominated con-

vergence theorem, it is enough to show that

lim inf
n→+∞

ψ
(
y∗(x, σn)

)
≤ ψ

(
y∗(x, σ)

)
(3.39)
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for all x, and since ψ is strictly increasing this is equivalent to

lim inf
n→+∞

y∗(x, σn) ≤ y∗(x, σ). (3.40)

(In fact, we get equality, the opposite inequality being trivial.) Let yn = y∗(x, σn) for 

some fixed x; since σn → σ, yn is bounded by (3.36). Without relabeling, we pass to a 

subsequence yn that converges to some y∞. Observe that, since yn ∈ Y (x, σn) (i.e. yn is 

a minimizer of Φ(x, ·, σn)),

Φ(x, yn, σ) = Φ(x, yn, σn) − Φ(x, yn, σn) + Φ(x, yn, σ)

≤ Φ(x, y, σn) − Φ(x, yn, σn) + Φ(x, yn, σ) ∀y, (3.41)

hence, letting n → ∞ and using the continuity of Φ, we get

Φ(x, y∞, σ) ≤ Φ(x, y, σ) ∀y. (3.42)

It follows that y∞ ∈ Y (x, σ), so y∞ ≤ y∗(x, σ). The claim (3.40) follows, from which we 

deduce, in turn, that

τ ≤ lim inf τn ≤
ˆ

R

ψ
(
y∗(x, σ)

)
dm0(x). (3.43)

We next need to prove τ ≥
´

R
ψ
(
y∗(x, σ)

)
dm0(x). This is entirely analogous. We take 

σn decreasing to σ, then let τn =
´

R
ψ
(
y∗(x, σn)

)
dm0(x) and are able to prove, by the 

mirror image of the same arguments, that

τ ≥ lim sup τn ≥
ˆ

R

ψ
(
y∗(x, σ)

)
dm0(x), (3.44)

as desired. It follows that τ ∈ ET (σ), which is what we wanted to show. Since ET is a 

maximal decreasing set-valued function, it has a unique fixed point σ ∈ ET (σ). From 

now on, we take σ to be this fixed point.

If m is any equilibrium measure, i.e. if m ∈ ET (m), then it must have the form (3.37)

for some c ∈ [0, 1]. We now show that the equilibrium measure is unique. In particular 

the constant c ∈ [0, 1] in (3.37) is uniquely determined by the equilibrium condition.

(1) First consider the case σ = 0. In this case, there is in fact no mass splitting, and the 

formula (3.37) is independent of c and completely determines m.

(2) We now suppose σ �= 0, and we show that the constant c is uniquely determined by 

the equilibrium condition. We must have

σ = σT (m) =

ˆ

R

ψ(x) dm(x),
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which by (3.37) implies

σ =

ˆ

{xσ}c

ψ(y∗(x, σ)) dm0(x) + m0

(
{xσ}

)
(

cψ

(
1 +

σT

2

)
+ (1 − c)ψ

(
1 − σT

2

))
.

(3.45)

Since ψ is strictly increasing and σ �= 0, it follows that ψ
(

1 + σT
2

)
and ψ

(
1 − σT

2

)

are distinct. Therefore (3.45) uniquely defines c, which in turn uniquely defines the 

equilibrium measure m. �

Remark 3.12. The proof of Theorem 3.10 relies on a special construction of the data to 

make minimizers of the optimal control problem explicit. More abstractly, we have used 

the following scheme:

(1) prove that there is a unique equilibrium point σ ∈ ET (σ);

(2) prove that, for this σ, the equation σT (m) = σ has only one solution.

To prove the second point, it was useful to assume a sort of monotonicity property; 

in this case, σT (m) =
´

R
ψ dm with ψ monotone. Note, however, that this is generally 

insufficient; we also needed the fact that for every x but one, there was a unique optimal 

trajectory starting from x. Thus one can see that in general, the issue of uniqueness can 

be rather complex, but not insurmountable.

4. No implications between conditions

The purpose of this section is to highlight simple examples in which each of the four 

conditions given in Section 2.2 might hold, and to show that none of them necessarily 

implies any of the others. For simplicity, let us assume L(x, v) = 1
2 |v|2, so that optimal 

trajectories starting from x are straight lines ending up at a point y satisfying

y + TDxG(y, m) = x, (4.1)

where m is the final measure. If we consider (I + TDxG(·, m))−1 as a multi-valued 

function, where I is the identity map, then (2.9) and (2.7) can be rewritten now as 

follows. For a given initial random variable X0 whose law is m0, we have

ẼT (X) =
{

Y ∈ H : Y ∈
(
I + TDxG(·, LX)

)−1
(X0) a.s.

}
(4.2)

Similarly, if G(x, m) = g(x, σT (m)), recalling the definition (3.28), we can write

Ω(σ) =
{

σT (LY ) : Y ∈ H, Y ∈
(
I + TDxg(·, σ)

)−1
(X0) a.s.

}
. (4.3)
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In each of the examples below, we construct a function G(x, m) such that at least one 

of the conditions given in Section 2.2 holds, but at least one another does not. Through 

these formulas we can understand (L2) and (σ) as truly being properties of G itself, as 

is evident in the case of conditions (LL) and (D). Our task now is to show that these 

properties have no necessary implications between them. First of all, we can formulate 

the following well-known theorem.

Theorem 4.1. The condition (LL) in general does not imply (D), nor does (D) in general 

imply (LL).

Proof. The proof of this result is well-known now in the literature, we refer to [18,19,33]

for the details. �

4.1. (LL) does not imply (L2) or (σ)

Here we show that (LL) can hold even when neither (L2) nor (σ) holds. Actually, 

we show that none of the conditions (L2), -(L2), (σ), and -(σ) hold. In other words, 

changing monotonicity to “anti-monotonicity” does not affect the overall result, which is 

that Lasry–Lions monotonicity does not imply either of these other kinds of monotonicity. 

We will abide by this same pattern in the following subsection: to say that a condition 

does not imply (L2) (resp. (σ)) is also to say that it does not imply -(L2) (resp. -(σ)).

Proposition 4.2. Let d = 1, let f : R → R be given, with at most cubic growth at 

±∞. Let g : R × R → R be given by g(x, σ) = f(x)σ, σ : P3(R) → R is defined as 

σT (m) =
´

R
f dm, and let G : R × P3(R) → R be given G(x, m) = g(x, σT (m)).

(1) Then G is always Lasry–Lions monotone, regardless of the choice of f .

(2) Let f(x) = 1
3x3. Then G satisfies neither ±(L2) nor ±(σ).

Proof. (1) this is immediate, using the definition. Indeed,

ˆ

R

(
G(x, m1) − G(x, m2)

)
d(m1 − m2)(x) =

⎛
⎜⎝
ˆ

R

f d(m1 − m2)

⎞
⎟⎠

2

≥ 0.

(2) We note that the first order condition (4.1) becomes

y + Tσy2 = x, (4.4)

whose solution set is

y =
−1 ±

√
1 + 4Tσx

2Tσ
(4.5)
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whenever 1 + 4Tσx ≥ 0. Let us fix m0 to be the Dirac mass δ1, and let X0 = 1 a.s. Then 

ẼT (X) consists of the set of all random variables Y such that for a.s. ω, we have

Y (ω) ∈

⎧
⎪⎨
⎪⎩

−1 +
√

1 + 4TE
[

1
3X3

]
X0(ω)

2TE
[

1
3X3

] ,
−1 −

√
1 + 4TE

[
1
3X3

]
X(ω)

2TE
[

1
3X3

]

⎫
⎪⎬
⎪⎭

. (4.6)

Now for each σ > 0 define Xσ to be the constant random variable σ, and set

Y ±
σ =

−1 ±
√

1 + 4
3Tσ3

2
3Tσ3

. (4.7)

Note that Y ±
σ ∈ ẼT (Xσ). Observe that

lim
σ̃→σ

Y +
σ̃ − Y −

σ =
3
√

1 + 4
3Tσ3

Tσ3
> 0.

Therefore, for σ̃ > σ small enough, we have

E

[
(Y +

σ̃ − Y −
σ )(Xσ̃ − Xσ)

]
= (Yσ̃ − Y −

σ )(σ̃ − σ) > (σ̃ − σ)2 = E|Xσ̃ − Xσ|2 .

Therefore (L2) does not hold. Likewise -(L2) does not hold, because for σ̃ > σ small 

enough

E

[
(Y −

σ̃ − Y +
σ )(Xσ̃ − Xσ)

]
= (Y −

σ̃ − Y +
σ )(σ̃ − σ) < 0.

We argue in similar fashion to see that neither (σ) nor -(σ) holds. Indeed, if we let

y±
σ =

−1 ±
√

1 + 4Tσ

2Tσ

and consider the Dirac masses δy±
σ

, we see that each is simply a push-forward of the 

initial mass δ1 onto an optimal point. Thus,

σT (δy±
σ

) ∈ Ω(σ).

We compute

σT (δy±
σ

) =
1

3

ˆ

R

x3 dδy±
σ

(x) =
1

3
(y±

σ )3 =
±(1 + Tσ)

√
1 + 4Tσ − 3Tσ − 1

6(Tσ)3
=: ψ±(σ).

Again we have
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lim
σ̃→σ

ψ+(σ̃) − ψ−(σ) =
(1 + Tσ)

√
1 + 4Tσ

3(Tσ)3
> 0.

Hence for σ̃ > σ sufficiently small, we have

ψ+(σ̃) − ψ−(σ) > σ̃ − σ and ψ−(σ̃) − ψ+(σ) < 0.

It follows that neither (σ) nor -(σ) holds. �

4.2. (D) does not imply (L2) or (σ)

In this subsection, we will consider cases where G is displacement monotone, i.e. 

it satisfied (D). It is well-known (see [19, Lemma 2.6] and [33, Lemma 2.3]) that this 

property implies that x �→ G(x, m) is convex for all m ∈ P2(Rd), and thus (4.1) can be 

uniquely solved by

y =
(
I + TDxG(·, m)

)−1
(x).

It follows that ẼT is a single-valued function; for a given initial random variable X0

whose law is m0 it is given by

ẼT (X) =
(
I + TDxG(·, LX)

)−1
(X0). (4.8)

Assuming the structure G(x, m) = g(x, σT (m)), we likewise have that Ω(σ) is single-

valued with

Ω(σ) = σT

((
I + TDxg(·, σ)

)−1

♯
m0

)
. (4.9)

Equations (4.8) and (4.9) provide explicit formulas for ẼT and Ω in terms of g (or G).

Let us take d = k = 1. Recall [19,33] that G is displacement monotone if and only if

ˆ

R

∂2
xxG(x, m)v(x)2 dm(x) +

¨

R×R

∂2
xmG(x, m, y)v(x)v(y) dm(x) dm(y) ≥ 0, (4.10)

∀m ∈ P2(R), ∀v ∈ L2
m(R). We suppose G has the structure G(x, m) = g(x, σT (m))

where σT : P2(R) → R. Then (4.10) becomes

ˆ

R

∂2
xxg(x, σT (m))v(x)2 dm(x) +

ˆ

R

∂2
xσg(x, σT (m))v(x) dm(x)

ˆ

R

DmσT (m, y)v(y) dm(y)

≥ 0, (4.11)

∀m ∈ P2(R), ∀v ∈ L2
m(R). In the view of this, we can state the following result.
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Proposition 4.3. Let g : R × R → R given by g(x, σ) = 1
2x2φ(σ) and let σT : P2(R) → R

defined as σT (m) = 1
2

´

R
x2 dm(x), where φ : R → R is a smooth, non-negative function 

that satisfies

φ(σ) ≥ −2σφ′(σ). (4.12)

Then, G : R × P2(R) → R given by G(x, m) = g(x, σT (m)) satisfies (D); however, in 

general it does not satisfy ±(L2) or ±(σ).

Proof. With our specific structural condition, the inequality (4.11) that we need to check, 

becomes

φ

⎛
⎜⎝

1

2

ˆ

R

x2 dm(x)

⎞
⎟⎠
ˆ

R

v(x)2 dm(x) + φ′

⎛
⎜⎝

1

2

ˆ

R

x2 dm(x)

⎞
⎟⎠

⎛
⎜⎝
ˆ

R

xv(x) dm(x)

⎞
⎟⎠

2

≥ 0,

∀m ∈ P2(R), ∀v ∈ L2
m(R). (4.13)

Now we claim that (4.12) implies (4.13). To see this, note that if φ′
(

1
2

´

R
x2 dm(x)

)
≥

0 then there is nothing to show because both terms are non-negative. If φ′
(

1
2

´

R
x2 dm(x)

)

< 0, then by (4.12) and the Cauchy–Schwarz inequality, we obtain

φ

⎛
⎜⎝

1

2

ˆ

R

x2 dm(x)

⎞
⎟⎠
ˆ

R

v(x)2 dm(x) ≥ −φ′

⎛
⎜⎝

1

2

ˆ

R

x2 dm(x)

⎞
⎟⎠
ˆ

R

x2 dm(x)

ˆ

R

v(x)2 dm(x)

≥ −φ′

⎛
⎜⎝

1

2

ˆ

R

x2 dm(x)

⎞
⎟⎠

⎛
⎜⎝
ˆ

R

xv(x) dm(x)

⎞
⎟⎠

2

,

which implies (4.13).

Let us now show that, even if (4.12) and therefore (D) hold, (L2) may not hold. Now 

(4.8) becomes

ẼT (X) =
X0

1 + Tφ
(

1
2E[X2]

) .

We differentiate to get

DẼT (X)Y = − X0(
1 + Tφ

(
1
2E[X2]

))2 Tφ′
(

1

2
E[X2]

)
E[XY ].

Let φ be any smooth non-negative function on [0, ∞) that satisfies (4.12) and equals 

σ−1/2 on [1, ∞). Then as long as 1
2E[X2] ≥ 1 we have
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E

[(
DẼT (X)Y

)
Y

]
=

√
2TE[X0Y ]E[XY ]

(
E[X2]1/2 +

√
2T
)2

E[X2]1/2

. (4.14)

Choose X0 (i.e. choose m0 with LX0
= m0) and T such that

(E[X2
0 ])

1

2 >

√
2(1 + T )2

T
.

Let X = α X0

E[X2
0

]1/2
for some parameter α ≥

√
2, and let Y = X0

E[X2
0

]1/2
. Then we have

E

[(
DẼT (X)Y

)
Y

]
=

√
2T (E[X2

0 ])
1

2

(
α +

√
2T
)2 .

Since

lim
α→

√
2

√
2T (E[X2

0 ])
1

2

(
α +

√
2T
)2 =

T (E[X2
0 ])

1

2√
2(1 + T )2

> 1,

we see that for some X and Y , we have E 

[(
DẼT (X)Y

)
Y

]
> 1 = E[Y 2]. Thus (L2) does 

not hold. On the other hand, by taking α large we can also have E 

[(
DẼT (X)Y

)
Y

]
<

E[Y 2], and thus -(L2) does not hold, either.

Similarly, let us now show that, even if (4.12) and therefore (D) hold, (σ) may not 

hold. Now (4.9) becomes

Ω(σ) =
1

2

ˆ

R

x2

(
1 + Tφ(σ)

)2 dm0(x).

Differentiating, we get

Ω′(σ) = −
ˆ

R

x2Tφ′(σ)
(
1 + Tφ(σ)

)3 dm0(x).

Let us choose m0 and T such that

T

2(1 + T )3

ˆ

R

x2 dm0(x) > 1. (4.15)

Recall that φ is any smooth non-negative function on [0, ∞) that satisfies (4.12) and 

equals σ−1/2 on [1, ∞), which can be made even smaller if necessary. We have
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Ω′(σ) =
T

2(σ1/2 + T )3

ˆ

x2 dm0(x) ∀σ ≥ 1. (4.16)

Since

T

2(σ1/2 + T )3

ˆ

x2 dm0(x) → T

2(1 + T )3

ˆ

x2 dm0(x) > 1 as σ → 1+, (4.17)

we have Ω′(σ) > 1 for σ close to 1. It follows that (σ) does not hold. On the other hand, 

we will also have limσ→∞ Ω′(σ) = 0, so Ω′(σ) < 1 for all σ large enough. Thus -(σ) does 

not hold either. �

4.3. (L2) does not imply (LL) or (D)

Assume G(x, m) = f(x)h(m) for some f : R
d → R and h : P2(Rd) → R. We will 

assume that f and h are smooth, and that f is convex. Equation (4.8) becomes

ẼT (X) =
(
I + Th(LX)Df(·)

)−1
(X0). (4.18)

By the implicit function theorem, one deduces that ẼT : H → H is differentiable, and 

by implicit differentiation, one derives that

DẼT (X)Y = −T

(
I + Th(LX)D2f

(
ẼT (X)

))−1

Df
(

ẼT (X)
)

E
[
Dmh(LX , X)Y

]

∀X, Y ∈ H. (4.19)

Proposition 4.4. Suppose that G(x, m) = f(x)h(m) for some f : R
d → R and h :

P2(Rd) → R. Assume that h is continuously differentiable, and that for some a, b > 0

the following estimates hold:

h(m) ≥ a,
∣∣Dmh(m, x)

∣∣ ≤ b, ∀m ∈ P2(Rd), ∀x ∈ R
d. (4.20)

Assume that f : R
d → R is C2 smooth and convex, and that the following estimate holds:

D2f(x) ≥ b

a

∣∣Df(x)
∣∣ ∀x ∈ R

d. (4.21)

Then (L2) is satisfied.
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Proof. Using (4.19) and the estimates on h and f , we get

E

[
(DẼT (X)Y ) · Y

]

= −TE

⎡
⎣
((

I + Th(LX)D2f
(

ẼT (X)
))−1

Df
(

ẼT (X)
))

· Y

⎤
⎦E
[
Dmh(LX , X)Y

]

≤ E

⎡
⎣
((

I + Ta
b

a

∣∣∣∣Df
(

ẼT (X)
)∣∣∣∣
)−1

T

∣∣∣∣Df
(

ẼT (X)
)∣∣∣∣

)
|Y |

⎤
⎦E
[
b|Y |

]

≤ E
[
|Y |
]2 ≤ E

[
|Y |2

]
∀X, Y ∈ H,

(4.22)

from which we deduce (L2). �

Remark 4.5. Let us now remark on the applicability of Proposition 4.4. The assumptions 

of this proposition, namely (4.21), imply that Df and D2f grow exponentially and are 

therefore unbounded.

If one wishes to impose other type of potential assumptions (that are more natural in 

the literature on mean field games), such as DxG is Lipschitz continuous or has a linear 

growth at infinity, it is still possible to satisfy a conditional version of (L2). Namely, we 

fix a bounded set B ⊂ R
d and consider only those initial measures m0 supported in 

B, hence only initial random variables X0 with values in B. Then there exists another 

bounded set B′ ⊂ R
d such that ẼT (X) necessarily takes values only in B′. In this case, 

the estimate (4.21) would only be required to hold for x ∈ B′, and it would still follow 

that (L2) holds.

We now construct an example satisfying (L2) but neither (LL) nor (D).

Proposition 4.6. Let d = 1, f(x) = e−x, and h(m) = 2 +
´

R
sin x dm(x), and assume that 

G : R × P2(R) → R is given by G(x, m) = f(x)h(m). Then G satisfies (L2), but it does 

not satisfy (D) and (LL).

Proof. Notice that the hypotheses of Proposition 4.4 are satisfied, with a = b = 1, and 

thus (L2) holds.

Let us show that (D) does not hold. Recall from [19,33] that (D) is equivalent to

E

[(
D2

xxG(X, LX)Y
)

· Y

]
+ E

[
Ẽ

[
D2

xmG(X, LX , X̃)Ỹ
]

· Y

]
≥ 0,

for any X, Y ∈ H (where Z̃ stands for an independent copy of a random variable Z ∈ H). 

This in this case can be written
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h(LX)E

[(
D2f(X)Y

)
· Y

]
+ E

[
Df(X)Y

]
· E
[
Dmh(LX , X)Y

]
≥ 0

or simply

(
2 + E

[
sin(X)

])
E

[
e−XY 2

]
− E

[
e−XY

]
E
[
cos(X)Y

]
≥ 0. (4.23)

For some n ∈ N to be determined, let X be a random variable defined by P (X =

2nπ) = P (X = −2nπ) = 1/2, and let Y = eX/2. Note that sin(X) = 0, cos(X) = 1, and 

e−XY 2 = 1 a.s., and

E

[
e−XY

]
= E

[
e−X/2

]
=

1

2

(
enπ + e−nπ

)
= E [Y ] = cosh(nπ).

Then (4.23) becomes

2 − cosh(nπ) ≥ 0. (4.24)

By choosing n large enough, we derive a contradiction. Thus (D) does not hold.

To show that (LL) does not hold is even more straightforward. For this recall from 

[19,33] that (LL) is equivalent to

E

[
Ẽ

[
D2

xmG(X, LX , X̃)Ỹ
]

· Y

]
≥ 0, ∀X, Y ∈ H, (4.25)

which now reduces to

−E

[
e−XY

]
E
[
cos(X)Y

]
≥ 0. (4.26)

We may use the same example as above, or indeed simpler examples such as X = 0 and 

Y = 1, to contradict (4.26). �

4.4. (L2) does not imply (σ)

Definition 2.10 makes (L2) a rather strong condition, since it is supposed to be un-

conditional on the initial measure m0 and the time horizon T . It is unclear whether this 

necessarily implies the condition (σ). In this subsection, we will provide an example for 

which (L2) does hold, but only if we restrict to initial measures m0 having uniformly 

bounded second moment. That is, we assume that there exists a constant M > 0 such 

that 
´

Rd |x|2 dm0(x) ≤ M2 for all initial measures m0 in consideration. Equivalently, this 

means that E[|X0|2] ≤ M2 for every initial random variable appearing in the definition 

of ẼT (4.8).

Proposition 4.7. Take d = k = 1 and let M > 0. Let G : R × P2(R) → R defined 

as G(x, m) = g(x, σT (m)), with g : R × R → R, σT : P2(R) → R and ψ : R →
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R be given as g(x, σ) = 1
2x2σ, σT (m) =

´

R
ψ dm, with ψ continuously differentiable 

satisfying ψ′(x)2 ≤ 1
M2 ψ(x) and ψ(x) ≥ 1, for x ∈ R. Then, when restricted to the set {

X ∈ H : E[|X0|2] ≤ M2
}

, ẼT satisfies (L2) strictly. However, in general neither (σ)

nor -(σ) holds true on the set of measures 
{

m ∈ P2(R) :
´

Rd |x|2 dm(x) ≤ M2
}

.

Proof. We notice that (4.8) becomes

ẼT (X) =
X0

1 + TE[ψ(X)]
, (4.27)

and (4.9) becomes

Ω(σ) =

ˆ

R

ψ

(
x

1 + Tσ

)
dm0(x). (4.28)

Differentiate (4.27) to get

DẼT (X)Y = − X0(
1 + TE[ψ(X)]

)2 TE[ψ′(X)Y ]. (4.29)

We use the assumption E[X2
0 ] ≤ M2 to get

E

[(
DẼT (X)Y

)
Y

]
= −TE[X0Y ]E[ψ′(X)Y ]

(
1 + TE[ψ(X)]

)2 ≤ TME[ψ′(X)2]1/2

(
1 + TE[ψ(X)]

)2 E[Y 2]. (4.30)

We now use the fact that ψ′(x)2 ≤ 1
M2 ψ(x) and ψ(x) ≥ 1 to deduce

E

[(
DẼT (X)Y

)
Y

]
≤ TE[ψ(X)]1/2

(
1 + TE[ψ(X)]

)2 E[Y 2] < E[Y 2]. (4.31)

It follows that (L2) holds (strictly). Note that this is unconditional on T , and the only 

condition on m0 is the moment condition 
´

R
x2 dm0(x) ≤ M2.

We now show that (σ) need not hold in general. For this, consider ψ(x) = 1 +(
x

2M − a
)2

, where a ∈ R is a given parameter. It is immediate to see that ψ satisfies the 

assumptions. We will take m0 = δM , a Dirac mass concentrated at M . We rewrite (4.28)

and to get

Ω(σ) = 1 +

(
1

2(1 + Tσ)
− a

)2

⇒ Ω′(σ) =

(
a − 1

2(1 + Tσ)

)
T

2(1 + Tσ)2
.

Direct computation yields that when restricted to the set of measures having second 

moments uniformly bounded by M2, range σT =
[
1, max{1 + a2, 1 + (a − 1/2)2}

]
.
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Suppose that |a| ≥ |a − 1/2|, then we find that limσ→1+a2 Ω′(σ) < 1, so for values of 

σ sufficiently close to 1 + a2, we have Ω′(σ) < 1.

Similarly, if |a| < |a − 1/2|, we find that limσ→1+(a−1/2)2 Ω′(σ) < 1, so for values of σ

sufficiently close to 1 + (a − 1/2)2, we have Ω′(σ) < 1

This shows that the monotonicity condition (σ) fails.

To show that -(σ) fails, we need to impose a condition on a and T , e.g.

a >
2(1 + T )2

T
+

1

2(1 + T )
. (4.32)

Then it follows that Ω′(σ) > 1 for σ ≥ 1 close enough to 1. From here we indeed see 

that -(σ) does not hold. �

4.5. (σ) does not imply (LL), (D), or (L2)

In this subsection we restrict our attention to a special class of data G. First, we have 

the following result.

Lemma 4.8. Consider G : R
d × P2(Rd) → R to have the form G(x, m) = x · σT (m), 

where σT : P2(Rd) → R
d. Conditions (LL), (D) and (L2) are equivalent.

Remark 4.9. In Lemma 4.8, it is crucial that (L2) be required to hold independently of 

the time horizon T . Otherwise, the equivalence may not hold.

Proof. By definition it is immediate to see that (LL) and (D) are both equivalent to the 

condition

(
σT (m1) − σT (m2)

)
·
ˆ

Rd

x d(m1 − m2)(x) ≥ 0 ∀m1, m2 ∈ P2(Rd). (4.33)

Now let us consider condition (L2). The optimal trajectory starting at x finishes at 

y = x − TσT (m), so that ET (m) is a single-valued function

ET (m) = (x �→ x − TσT (m))♯m0.

The lifted version is

ẼT (X) = X0 − TσT (LX),

where X0 is any random variable whose law is m0. Condition (L2) becomes

−T
(
σT (LX1

) − σT (LX2
)
)

· E [X1 − X2] ≤ E|X1 − X2|2 ∀X1, X2 ∈ H. (4.34)

For (4.34) to hold independently of T , as required by condition (L2), we must have
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(
σT (LX1

) − σT (LX2
)
)

· E [X1 − X2] ≥ 0 ∀X1, X2 ∈ H, (4.35)

which is the same as (4.33). �

Proposition 4.10. Let G be as in Lemma 4.8. Then, in general (σ) does not imply any of 

the conditions (LL), (D) or (L2).

Proof. For concreteness, we will assume that σT (m) =
´

Rd ψ dm for some ψ : R
d → R

d. 

Then (4.33) becomes

ˆ

Rd

ψ(x) d(m1 − m2)(x) ·
ˆ

Rd

x d(m1 − m2)(x) ≥ 0 ∀m1, m2 ∈ P2(Rd). (4.36)

Let us now examine the condition (σ). To see this, write g(x, σ) = x · σ so that 

G(x, m) = g(x, σT (m)). Observe that

Ω(σ) = σT

(
(x �→ x − Tσ)♯m0

)
=

ˆ

Rd

ψ(x − Tσ) dm0(x). (4.37)

Equation (σ) is now equivalent to

ˆ

Rd

(
ψ(x − Tσ1) − ψ(x − Tσ2)

)
· (σ1 − σ2) dm0(x) ≤|σ1 − σ2|2 ∀σ1, σ2 ∈ R

d. (4.38)

For (4.38) to hold without conditions on m0 and T , it is necessary and sufficient for ψ

to be a monotone vector field, i.e.

(
ψ(σ1) − ψ(σ2)

)
· (σ1 − σ2) ≥ 0 ∀σ1, σ2 ∈ R

d. (4.39)

To see that (4.39) is necessary, in (4.38) let m0 = δ0 be a Dirac mass at the origin, 

replace σi with − 1
T σi for i = 1, 2 and rearrange to get

(
ψ(σ1) − ψ(σ2)

)
· (σ1 − σ2) ≥ − 1

T
|σ1 − σ2|2 . (4.40)

Then let T → ∞ to get (4.39). Conversely, if (4.39) holds, then for arbitrary T and m0

we have
ˆ

Rd

(
ψ(x − Tσ1) − ψ(x − Tσ2)

)
· (σ1 − σ2) dm0(x) ≤ 0 ∀σ1, σ2 ∈ R

d, (4.41)

which implies (4.38).

We can now construct a simple example to show that the condition (σ) may be 

satisfied even when none of the conditions (LL), (D), or (L2) are satisfied. For simplicity 
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we assume the dimension d = 1. It suffices to take any increasing differentiable function 

ψ such that ψ′ is not constant. In this case the monotonicity of ψ implies (σ). On the 

other hand, (LL), (D), and (L2) are all equivalent to (4.36), which in turn implies

E
[
ψ′(X)Y

]
E[Y ] ≥ 0 ∀X, Y ∈ H. (4.42)

Let x1, x2 ∈ R satisfy ψ′(x1) �= ψ′(x2) and ψ′(x1) �= 0, and let (X, Y ) be equal to 

(x1, −ψ′(x1) −ψ′(x2)) with probability 1/2 and (x2, 2ψ′(x1)) with probability 1/2. Then

E
[
ψ′(X)Y

]
E[Y ] =

1

4

(
−ψ′(x1)2 − ψ′(x1)ψ′(x2) + 2ψ′(x2)ψ′(x1)

) (
ψ′(x1) − ψ′(x2)

)

= −1

4
ψ′(x1)

(
ψ′(x1) − ψ′(x2)

)2
< 0.

(4.43)

It follows that none of the conditions (LL), (D), or (L2) are satisfied. �
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Appendix A. Non-uniqueness for an optimal control problem

In this Section, we restate and then prove Theorem 3.1.
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Theorem A.1. Let φ : R
d → R be a continuous function. Assume that φ is not convex, 

non-constant, bounded below and has sub-quadratic growth at infinity, i.e. there exist 

C > 0 and α ∈ (0, 1) such that φ(x) ≤ C(1 + |x|1+α) for all x ∈ R
d. Then there exists 

t∗ > 0 such that for every t ≥ t∗, there exists x ∈ R
d such that |x−y|2

2t + φ(y) has at least 

two distinct minimizers.

Proof. Step 1. In this step, we show that there exists t∗ > 0 such that if t ≥ t∗, then the 

function |x|2

2t + φ(x) is not convex. Since φ is not convex, there exist x0, h ∈ R
d such that

φ(x0) >
1

2

(
φ(x0 + h) + φ(x0 − h)

)
. (A.1)

Let x ∈ R
d. If ψ(x) = |x|2

2t + φ(x), then

ψ(x0) − 1

2

(
ψ(x0 + h) + ψ(x0 − h)

)
= φ(x0) − 1

2

(
φ(x0 + h) + φ(x0 − h)

)
− |h|2

2t
.

Taking t∗ large enough, we see that the right-hand side is positive for any t ≥ t∗, which 

means that ψ is not convex.

Step 2. From now one we fix t ≥ t∗ and set ψ(x) = |x|2

2t + φ(x). Note that

|x − y|2
2t

+ φ(y) =
|x|2
2t

− 1

t
x · y + ψ(y).

To show that |x−y|2

2t +φ(y) has at least two distinct minimizers, it is enough to show that 

the same is true of −1
t x · y + ψ(y). Thus, to reach the desired conclusion, it is enough to 

prove the following claim:

There exists a ∈ R
d such that a · x + ψ(x) has at least two distinct minimizers.

Recall that ψ is not convex, so there exist x0, h ∈ R
d (the ones found before) such that

ψ(x0) >
1

2

(
ψ(x0 + h) + ψ(x0 − h)

)
.

Define

ψ̃(x) := ψ(x + x0) − ψ(x0) − b · x, b :=
ψ(x0 + h) − ψ(x0 − h)

2|h|2
h. (A.2)

Then ψ̃(0) = 0 and ψ̃(h) = ψ̃(−h) < 0. Note that x is a minimizer of a · x + ψ(x) if and 

only if x − x0 is a minimizer of (a + b) · x + ψ̃(x), so it is enough to prove the claim with 

ψ replaced with ψ̃. Thus, without loss of generality, ψ(0) = 0 and ψ(−h) = ψ(h) < 0 for 

some h ∈ R
d.
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Step 3. Define F : R
d → R

d as follows. For each i = 1, . . . , d and a ∈ R
d let

F ±
i (a) = min

{
a · x + ψ(x) : ±xi ≥ 0

}
, Fi(a) = F +

i (a) − F −
i (a).

Note that F ±
i is well-defined because a ·x +ψ(x) → ∞ as |x| → ∞, so it suffices to search 

for minimizers on a compact set. It is straightforward to see that F is continuous. We 

now claim that it is coercive, i.e.

lim
|a|→∞

F (a) · a

|a| = ∞. (A.3)

For any x ∈ R
d we will use the notation x−i to mean the vector in Rd−1 obtained by 

removing the ith coordinate from x. If ai ≥ 0, then a · x ≥ a−i · x−i whenever xi ≥ 0

and so

F +
i (a) ≥ inf φ + min

{
a−i · x−i +

|x−i|2
2t

: x−i ∈ R
d−1

}
= inf φ − t|a−i|2

2
.

On the other hand, by setting x−i = −ta−i and xi = −s |a|α, with s > 0 to be determined, 

we get the estimate

F −
i (a) ≤ C · 2α(1 + t1+α|a|1+α + s1+α|a|(1+α)α) − s|a|α ai +

s2|a|2α

2t
− t|a−i|2

2
.

Subtracting these two inequalities, we get

Fi(a) ≥ inf φ − C · 2α(1 + t1+α|a|1+α + s1+α|a|(1+α)α) − s2

2t
|a|2α

+ s|a|α ai.

If ai ≤ 0, then apply the mirror image of this argument to get

Fi(a) ≤ − inf φ + C · 2α(1 + t1+α|a|1+α + s1+α|a|(1+α)α) − s2

2t
|a|2α

+ s|a|α ai.

In either case, we can conclude that

Fi(a)ai ≥ s|a|αa2
i −
(

− inf φ + C · 2α(1 + t1+α|a|1+α + s1+α|a|(1+α)α) +
s2

2t
|a|2α

)
|ai|

⇒ F (a) · a ≥ s|a|2+α

−
(

− inf φ + C · 2α(1 + t1+α|a|1+α + s1+α|a|(1+α)α) +
s2

2t
|a|2α

)
d1/2|a|

=
(

s − C · 2αt1+αd1/2
)

|a|2+α

−
(

− inf φ + C · 2α(1 + s1+α|a|(1+α)α) +
s2

2t
|a|2α

)
d1/2|a|
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⇒ F (a) · a

|a| ≥
(

s − C · 2αt1+αd1/2
)

|a|1+α

−
(

− inf φ + C · 2α(1 + s1+α|a|(1+α)α) +
s2

2t
|a|2α

)
d1/2.

Choosing some s > Ct1+αd1/2, and noticing that 1 + α > max
{

2α, (1 + α)α
}

, we then 

deduce (A.3).

Step 4. As each coordinate function Fi is non-decreasing in the ai variable, the map 

F is monotone. As it is also continuous and coercive, by the Browder–Minty Theorem 

(see for instance [9, Theorem 3]), there exists an a ∈ R
d such that F (a) = 0, hence 

Fi(a) = F −
i (a) for each i = 1, . . . , d. We can conclude that all of these values are in fact 

the minimum of a ·x +ψ(x), and that there exist minimizers x±,i such that ±x±,i
i ≥ 0. If 

any two of these 2d minimizers are distinct, we are done. Suppose they are all identical. 

In this case they must all be 0 (every coordinate must be both non-negative and non-

positive). Thus the minimum of a ·x +ψ(x) is attained at 0 and is therefore equal to 0 (as 

ψ(0) = 0). But notice that, since ψ(h) = ψ(−h) < 0, we must have either a ·h +ψ(h) < 0

or a · (−h) + ψ(−h) < 0. This is a contradiction. Therefore, a · x + ψ(x) must have at 

least two distinct minimizers, which is what we needed to show. �

References

[1] S. Ahuja, Wellposedness of mean field games with common noise under a weak monotonicity con-
dition, SIAM J. Control Optim. 54 (1) (2016) 30–48.

[2] L. Ambrosio, N. Gigli, G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability 
Measures, second edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008.

[3] M. Bardi, M. Fischer, On non-uniqueness and uniqueness of solutions in finite-horizon mean field 
games, ESAIM Control Optim. Calc. Var. 25 (2019) 44, 33.

[4] J.-D. Benamou, G. Carlier, F. Santambrogio, Variational mean field games, in: Active Particles, vol. 
1, Springer, 2017, pp. 141–171.

[5] A. Bensoussan, P.J. Graber, S.C.P. Yam, Stochastic control on space of random variables, arXiv 
preprint, arXiv :1903 .12602, 2019.

[6] A. Bensoussan, P.J. Graber, S.C.P. Yam, Control on Hilbert spaces and application to mean field 
type control theory, arXiv preprint, 2020.

[7] J.F. Bonnans, S. Hadikhanloo, L. Pfeiffer, Schauder estimates for a class of potential mean field 
games of controls, Appl. Math. Optim. 83 (3) (2021) 1431–1464.

[8] A. Briani, P. Cardaliaguet, Stable solutions in potential mean field game systems, NoDEA Nonlinear 
Differ. Equ. Appl. 25 (1) (2018) 1.

[9] F.E. Browder, Existence and perturbation theorems for nonlinear maximal monotone operators in 
Banach spaces, Bull. Am. Math. Soc. 73 (1967) 322–327.

[10] P. Cannarsa, R. Capuani, Existence and uniqueness for mean field games with state constraints, in: 
PDE Models for Multi-Agent Phenomena, Springer, 2018, pp. 49–71.

[11] P. Cardaliaguet, C.-A. Lehalle, Mean field game of controls and an application to trade crowding, 
Math. Financ. Econ. 12 (2018) 335–363.

[12] P. Cardaliaguet, A. Porretta, An introduction to mean field game theory, in: Mean Field Games, 
in: Lecture Notes in Math., vol. 2281, Springer, Cham, 2020, pp. 1–158, ©2020.

[13] R. Carmona, F. Delarue, Probabilistic Theory of Mean Field Games with Applications. I: Mean 
Field FBSDEs, Control, and Games, Probability Theory and Stochastic Modelling, vol. 83, Springer, 
Cham, 2018.

[14] R. Carmona, F. Delarue, Probabilistic Theory of Mean Field Games with Applications. II: Mean 
Field Games with Common Noise and Master Equations, Probability Theory and Stochastic Mod-
elling, vol. 84, Springer, Cham, 2018.



P.J. Graber, A.R. Mészáros / Journal of Functional Analysis 285 (2023) 110095 45

[15] P. Chan, R. Sircar, Fracking, renewables, and mean field games, SIAM Rev. 59 (3) (2017) 588–615.
[16] M. Cirant, On the existence of oscillating solutions in non-monotone mean-field games, J. Differ. 

Equ. 266 (12) (2019) 8067–8093.
[17] M. Cirant, R. Gianni, P. Mannucci, Short-time existence for a general backward-forward parabolic 

system arising from mean-field games, Dyn. Games Appl. 10 (1) (2020) 100–119.
[18] W. Gangbo, A.R. Mészáros, Global well-posedness of master equations for deterministic displace-

ment convex potential mean field games, Commun. Pure Appl. Math. 75 (12) (2022) 2685–2801.
[19] W. Gangbo, A.R. Mészáros, C. Mou, J. Zhang, Mean field games master equations with nonseparable 

Hamiltonians and displacement monotonicity, Ann. Probab. 50 (6) (2022) 2178–2217.
[20] W. Gangbo, A. Świech, Existence of a solution to an equation arising from the theory of mean field 

games, J. Differ. Equ. 259 (11) (2015) 6573–6643.
[21] W. Gangbo, A. Tudorascu, On differentiability in the Wasserstein space and well-posedness for 

Hamilton-Jacobi equations, J. Math. Pures Appl. 9 (125) (2019) 119–174.
[22] P.J. Graber, V. Ignazio, A. Neufeld, Nonlocal Bertrand and Cournot mean field games with general 

nonlinear demand schedule, J. Math. Pures Appl. 9 (148) (2021) 150–198.
[23] P.J. Graber, A.R. Mészáros, On mean field games and master equations through the lens of conser-

vation laws, arXiv :2208 .10360, 2022.
[24] P.J. Graber, A. Mullenix, L. Pfeiffer, Weak solutions for potential mean field games of controls, 

NoDEA Nonlinear Differ. Equ. Appl. 28 (5) (2021) 50, 34.
[25] P.J. Graber, R. Sircar, Master equation for Cournot mean field games of control with absorption, 

J. Differ. Equ. 343 (2023) 816–909.
[26] O. Guéant, J.-M. Lasry, P.-L. Lions, Mean field games and applications, in: Paris-Princeton Lectures 

on Mathematical Finance 2010, Springer, 2011, pp. 205–266.
[27] M. Huang, R.P. Malhamé, P.E. Caines, Large population stochastic dynamic games: closed-loop 

McKean-Vlasov systems and the Nash certainty equivalence principle, Commun. Inf. Syst. 6 (3) 
(2006) 221–252.

[28] Z. Kobeissi, Mean field games with monotonous interactions through the law of states and controls 
of the agents, NoDEA Nonlinear Differ. Equ. Appl. 29 (5) (2022) 52, 33.

[29] J.-M. Lasry, P.-L. Lions, Mean field games, Jpn. J. Math. 2 (1) (2007) 229–260.
[30] J.-M. Lasry, P.-L. Lions, B. Seeger, Dimension reduction techniques in deterministic mean field 

games, Commun. Partial Differ. Equ. 47 (4) (2022) 701–723.
[31] P.-L. Lions, Théorie des jeux de champ moyen et applications, in: Cours au Collège de France, 

2007–2012.
[32] S. Mayorga, Short time solution to the master equation of a first order mean field game, J. Differ. 

Equ. 268 (10) (2020) 6251–6318.
[33] A.R. Mészáros, C. Mou, Mean field games systems under displacement monotonicity, arXiv preprint, 

arXiv :2109 .06687, 2021.
[34] C. Mou, J. Zhang, Mean field game master equations with anti-monotonicity conditions, arXiv :

2201 .10762, 2022.
[35] C. Mou, J. Zhang, Mean field games of controls: propagation of monotonicities, Probab. Uncertain. 

Quant. Risk 7 (3) (2022) 247–274.
[36] L. Nurbekyan, J. Saúde, Fourier approximation methods for first-order nonlocal mean-field games, 

Port. Math. 75 (3–4) (2018) 367–396.


	On monotonicity conditions for mean field games
	1 Introduction
	1.1 Our contributions in this paper

	2 The setting
	2.1 Mild solutions to a mean field game
	2.2 Four types of monotonicity conditions

	3 Monotonicity conditions and uniqueness
	3.1 An example of data satisfying (Σ)
	3.2 Strong Lasry--Lions monotonicity or the strict (σ) in general do not imply uniqueness of Nash equilibria
	3.3 Non-uniqueness of feedback strategies in general does not imply non-uniqueness of Nash equilibria

	4 No implications between conditions
	4.1 (LL) does not imply (L2) or (σ)
	4.2 (D) does not imply (L2) or (σ)
	4.3 (L2) does not imply (LL) or (D)
	4.4 (L2) does not imply (σ)
	4.5 (σ) does not imply (LL), (D), or (L2)

	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A Non-uniqueness for an optimal control problem
	References


