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In this paper we propose two new monotonicity conditions
that could serve as sufficient conditions for uniqueness of
Nash equilibria in mean field games. In this study we aim for
unconditional uniqueness that is independent of the length of
the time horizon, the regularity of the starting distribution
of the agents, or the regularization effect of a non-degenerate
idiosyncratic noise. Through a rich class of simple examples we
show that these new conditions are not only in dichotomy with
each other, but also with the two widely studied monotonicity
conditions in the literature, the Lasry—Lions monotonicity and
displacement monotonicity conditions.
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1. Introduction

Mean field games were introduced in the seminal papers [29,27] to model Nash equi-

libria among a continuum of players in stochastic or deterministic differential games.

A fundamental mathematical question is whether such equilibria are unique. Lasry and
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Lions introduced a convenient criterion, referred to as the Lasry—Lions monotonicity con-
dition, that can guarantee uniqueness of equilibria for a large class of mean field games.
Since then, the Lasry—Lions (LL) monotonicity condition has been the most popular cri-
terion used to establish uniqueness in the mathematical literature on mean field games.
Conversely, various non-uniqueness results have been recently obtained in the literature
in the absence of LL monotonicity on the data (see [3,8,16]). Indeed, the state of the art
circa 2019 could be justly represented by the following comment by Cardaliaguet and
Porretta in their notes on mean field games [12, Section 1.3.2]:

“Let us mention that there are no general criteria for the uniqueness of solutions to
(1.29) [a generic mean field game system] in arbitrary time horizon T, except for the
Lasry—Lions monotonicity condition...”

Nevertheless, more recently, several other authors have brought to light another crite-
rion known as displacement monotonicity [1,5,6,18,19,33], which is a sufficient condition
on the data to ensure uniqueness of Nash equilibria for a general class of games. Impor-
tantly, displacement monotonicity and LL monotonicity are in dichotomy, meaning that
neither one necessarily implies the other (see [18,19]). These findings revealed that not
only the LL monotonicity condition is not a necessary condition regarding uniqueness
issues for mean field games, but there might be other regimes of sufficient conditions on
the data which could ensure the uniqueness of Nash equilibria.

Given this brief history, a natural question arises:

Are there other monotonicity conditions under which uniqueness of the mean field
equilibrium is guaranteed?

The main purpose of this note is to provide a strong affirmative answer to this question.
In what follows, we establish two new general monotonicity conditions, in addition to LL
and displacement monotonicity, such that all four types of conditions are in dichotomy
with one another—none of them implies any of the others. We do not claim that these four
conditions constitute a definitive list. On the contrary, we conjecture that other general
criteria guaranteeing the uniqueness of equilibria wait to be discovered. Throughout the
paper we will consider deterministic problems. However, we expect the newly proposed
monotonicity conditions to translate naturally to models subject to noise, thought not
without additional challenges (see Remark 2.1). These issues will be the subject of future
research.

In this paper, by “uniqueness” we generally mean that the Nash equilibrium is unique
for arbitrary initial measures and arbitrary time horizons, without any particular help
from the regularization effect of idiosyncratic noise. In particular, our focus here will
always be on deterministic models. It is well-known that uniqueness tends to hold under
more or less arbitrary structural assumptions on the data, so long as the time horizon is
sufficiently small ([14,17,20,32]). By contrast, in this investigation, we will always insist
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that the time horizon be arbitrarily large. We may occasionally restrict our attention
to only certain classes of initial measures—for example, those having an upper bound
on one or more of their moments—but generally speaking, “uniqueness” is taken to be
synonymous with “unconditional uniqueness.” In this setting, it is natural to appeal
to monotonicity as a general criterion for uniqueness. Indeed, mathematical analysis
offers virtually no other generic tools to guarantee uniqueness of a fixed point. Neverthe-
less, for a sufficiently rich mathematical model, we can always ask, “Monotone in what
sense?” This will be the crucial point in our investigation. It turns out that a mean
field game can be construed as a fixed point problem in several alternative parameter
spaces, all of which involve radically different sensitivity analyses. By turning our atten-
tion to each parameter separately, we derive new monotonicity conditions to establish
uniqueness.

1.1. Our contributions in this paper

The main results of this paper are as follows. In Section 2.2, we state four types of
monotonicity conditions on the data, two of which, labeled (¥) and (L?(L?)), are new.
The main idea behind the condition (X) is as follows. If we assume that the measure
dependence of the data (the Lagrangian and final cost functions) has a specific factoriza-
tion, we can rewrite the classical fixed point formulation of the mean field game, using
the new structure imposed by this factorization. This will then lead to a new fixed point
formulation of the game not in the space of probability measures, but rather in new
parameter spaces given by this factorization. This idea was initiated in our parallel work
[23], where our motivation was to find new quantities that are transported through the
flow of the feedback strategies in the corresponding mean field games, which in particular
gave a new perspective in the study of the associated master equations. In specific situ-
ations, the condition (¥) reduces to (o). This reduction happens when the Lagrangian
function does not depend on the measure variable, and so the mean field interaction in
the game is though the final data only. Condition (L.?(L?)) was initially inspired by (%),
but in fact it can be seen as more natural: rather than factorizing through an arbitrary
parameter space, we replace measures with representative L? random variables, on which
monotonicity has a clear interpretation thanks to the inner product.

The main results of Section 3 are two-fold. On the positive side, we establish that both
of our newly proposed monotonicity conditions can be used to prove uniqueness under
suitable hypotheses on the Hamiltonian and final datum. In the same time, we revisit
the sufficiency of the LL and displacement monotonicity conditions in connection with
the question of uniqueness of Nash equilibria. On the negative side, we point to coun-
terexamples showing that the Lasry—Lions monotonicity condition and (o), in general
do not necessarily provide uniqueness of Nash equilibria in mean field games.

Let us give some comments regarding the philosophy behind these negative results.
First, the Lasry—Lions monotonicity condition seems to be inspired from a PDE analysis
perspective, i.e. characterizing the Nash equilibrium via the solution to the coupled
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system of Hamilton—Jacobi and Fokker—Planck equations. More precisely, its essence
relies on a procedure of “cross-multiplying the variables and integrating by parts”. This
procedure can be carried out successfully, as long as we have enough regularity to justify
the formal computations. This is typically the case in the presence of the regularizing
effect of a non-degenerate idiosyncratic noise. However, as long as the solutions are too
weak (which is the case for instance when the intensity of the noise is degenerate), such
a method breaks down, and there is a good reason to believe that uniqueness might fail.
Instead of the presence of a non-degenerate idiosyncratic noise, an alternative framework
which yields the sufficiency of the LL monotonicity condition for uniqueness of MFG Nash
equilibria (as explained in [13, Section 3.4]) is the uniqueness of optimizers in optimal
control problems for representative agents. Such a condition (independently of the length
of the time horizon, and in case when the dynamics of the representative agents are given
by a linear control system) can be morally guaranteed only in the case of fully convex
problems, i.e. when the Lagrangian is jointly convex in the position and velocity variables,
while the final datum is convex in the position variable (cf. Theorem 3.1). However,
such convexity assumptions together with the LL monotonicity will enforce the final
datum to become displacement monotone (see the discussion in [19, Remark 2.8]). It is
worth mentioning that displacement monotonicity of non-separable Lagrangians implies
in particular that the Lagrangian is jointly convex in the position and velocity variables
(see [33, Lemma 2.5]). Therefore the uniqueness of optimizers in the optimal control
problems for representative agents is philosophically more related to the displacement
monotonicity of the Hamiltonian and the final datum.

A general phenomenon which underlies both the LL monotonicity and (¥) is that these
monotonicity conditions typically ensure uniqueness of the optimal value of the game,
i.e. the value function; however, uniqueness of Nash equilibria (i.e. the flow of measures
describing the distributions of the agents) in general does not follow from uniqueness of
the value function, unless the cost functional is injective on the set of Nash equilibria.
Such non-injectivity properties pose indeed great issues for instance in the case when the
value function fails to be differentiable, and so there are potentially multiple optimal feed-
back strategies. From the PDE perspective, it is again at such scenarios when the above
described method fails. Interestingly, both the displacement monotonicity and the condi-
tion (L?(L?)) prevent such non-injectivity issues, and if they are present, the uniqueness
of Nash equilibria is a generic property. Again, philosophically, the LL monotonicity con-
dition is intimately linked to PDE arguments, the displacement monotonicity condition
is strongly connected to optimal control arguments, while the monotonicity conditions
() and (L?(L?)) are inspired from game theoretic arguments.

The next natural question which arises in this study is whether there are any possible
connections between all these monotonicity conditions. For our main results in Section 4,
we show that all four monotonicity conditions are completely distinct: there does not
exist any necessary implication from one to another (although we give some examples
for which two or more of these monotonicity conditions may hold at the same time).
Taken together, these results establish that the uniqueness question in mean field games
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is significantly richer than has been previously shown in the literature, and we believe
they provide a starting point for new avenues of research.

2. The setting

Let us introduce first some notations and preliminaries that will be used throughout
the paper. If X and ) are topological spaces, then for a Borel measurable map f: X — Y
and a measure m supported on X', we denote by fym the push-forward measure supported
on Y given by the relation (fym)(E) := m (f~'(E)). For p > 1, we use the notation
2,(R%) to denote the space of nonnegative Borel probability measures supported in R?
with finite p-order moments. On &2, (R?) we define the standard p-Wasserstein distance
W, : Z,(RY) x 2,(RY) — [0, +00) as,

W (s, v) = inf / jz—yPdy: vy e PR xRY), (p)yy = p, (0" )y =
RdxRd

Classical results imply (cf. [2]) that there exists at least one optimizer v in the previous
problem. We denote by II,(u, v) the set of all optimal plans ~.

Let (€2, A,P) be an atomless probability space. We use the notation H := L?(Q; R?).
It is a well-known result that if P has no atoms, then for each m € 2, (R?) there exists
X € H such that Xy = m. In this case, m is the law of the random variable X and we
use the notation m = Lx.

Using the terminology from [2] (see also [13, Chapter 5]), we say that a function
U: ﬁz(Rd)2—> R has a Wasserstein gradient at m € P5(R?), if there exists D,,,U(m,-) €
VC’gO(Rd)Lm (the closure of gradients of C2°(R%) function in L2 (R%;R%)) such that
for all m’ € Z25(R%) in any small neighborhood of m we have the first order Taylor
expansion

U(m')=U(m)+ / D, U(m,z) - (y — x)dy(z,y) + o(Wa(m,m')), Vy € U,(m,m’).
RdxRd

We say that U is differentiable on 225(R%) if its Wasserstein gradient exists at any
point.

For U : 25(R%) — R, we can define its ‘lift’ U : H — R by U(X) := U(X;P). By the
results from [21] and [13, Chapter 5] (cf. [31]), U is differentiable at m, if and only if U
is Fréchet differentiable at X for any X € H, such that X3P = m. In this case we can
write the decomposition

DU(X)=D,U(m,)oX inH, VX cH: X;P =nm,

where DU (X) € H stands for the Fréchet derivative of U at X.
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2.1. Mild solutions to a mean field game

Let T > 0 be a given time horizon, let L : [0,7] x R? x R? x #,(RY) — R and
G : R4 x P,(R?) — R be given continuous functions. Let mg € Z5(R?) be the initial
agent distribution.

Let T' := AC(0,T;R%) be the space of absolutely continuous curves on [0,7] with
values in R9. For t € [0,7], e; : I — R? stands for the evaluation map, i.e. e;(y) = ¥(t).

Here we give a Lagrangian formulation of the mean field equilibrium problem (cf. [4,
Section 3] in the case of potential mean field games with local couplings and [10] in the
case of mean field games with state constraints). In this informal discussion, the data
L and G are supposed to satisfy suitable assumptions, as imposed in the mentioned
references.

We define an equilibrium to be a measure

N € Pmo(l) :={iie PT): (eo)sii =myp},

such that it is supported on a set of curves I' C I and the functional J" : T' — R,

T
/L S 787787 es)ﬁn) d8+G(7T7(6T)ﬁT/)
0

satisfies
J'H < Ty, Yy e, ¥y €T, 7(0) = 5(0).

We can recast this definition as a fixed point problem. The set Z2,,,(I') denotes the
set of all n € Z(I") such that (eg)yn = mo. For any n € &, ('), there exists a unique
Borel measurable family of probabilities {1, },crae on T' that disintegrates n in the sense
that

dy) = f]Rd Nz (dy) dmo(z),
spt(n.) C T[z] mo —a.e. x € RY,

(2.1)

where I'[z] := {’y el :~(0) = x} We define the set-valued map E : 2,,, (') — 27mo(D)
by

B(n) = {1 € Py () : 5Dt(i) S T[] mo — ave. v € R (2:2)
where

IMa] := {5 €T[x] : 7] < J"[y], ¥y € T[]} . (2.3)
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An equilibrium corresponding to the initial measure my is simply a fixed point of FE,
ie.ne E(n).

In this manuscript we exploit additional structural assumptions on the terminal cost
G and the Lagrangian, namely that for any given curve (ms)sejo,r) in AC([0, T]; 22(R%))

G(z,mr) = g(x,X(m)r) and L(s,z,v,m)=~L(s,z,v,5(m)s), (2.4)

for some ¥ : AC([0,T]; Z2(R%)) — C([0,T]; X), and g : RY x X = R, £:[0,T] x R% x
R? x X — R, where X is a given Hilbert space. We emphasize that the space X’ has
nothing to do with the Hilbert space H of L? random variables, defined above. Such
structure will let us investigate new monotonicity properties associated to the mean field
game, which will be useful to establish uniqueness of Nash equilibria.

This is quite a natural assumption, as in many applications the dependence on the
measure variables is through a generalized moment, a finite dimensional projection, etc.
A typical example is for instance when X R” is a ﬁnite dimensional space, ¥(m)s =
Jra¥(s, ) dmg(z), for s € [0,T] or B(m)s = [ga(¥(s,-) * ms)(x) dmg(z), etc. where
¥ 1 [0,T] x RY — RF is given. When X’ is finite d1mens1ona1, such dependence on the
measure variable can be also seen as a sort of “dimension reduction”, cf. [30,36].

For o : [0,T] — X given, we can now consider the cost

T
/f 5, %, V51 05) ds + g(yr, o7),
0

where if 3 ( ((es)sn)se0.11 ) = o, then J[y] = J"[v|. Likewise, we replace I'7[x] with
t'1)s€l0,T)]

(2] == {3 € T[z] : J7[3] < J7}] ¥y € Ta]} .

Finally, we replace E(n) with the set-valued map £ : C([0,T]; X) — C([0,T]; X) given
by

E(o) := {z (((e)sisctom) : 1 € Py (T), spt(a) S T7[a] g — ave. @ € Rd} .
(2.5)
We consider 0 = (0s)se[o,r] to be an equilibrium provided that o € £(0). If 0 €
C([0,T); X) is an equilibrium, then o = % (((es)ﬁn)se[oﬂ), for some equilibrium 7 €

P, (I). Conversely, if 7 is an equilibrium in &, (') then 0 =% (((es)rﬂ?)se[o,T]) is an
equilibrium in C([0, T]; X).

At this point, it is worth noticing that the question of uniqueness of mean field game
Nash equilibria could be linked to uniqueness of the fixed point of the operator £ de-
fined over C([0,T7; X). In particular, as X is a Hilbert space, for convenience we embed
C([0,T]; X) into L?([0,T); X), which is a Hilbert space on its own, and so the existence
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and uniqueness of a fixed point will be ensured by a particular monotonicity condition
in a Hilbert space. This is what we will investigate later.

Remark 2.1. At this point the reader may notice that it is easier to analyze deterministic
games from this point of view. For a stochastic game, the set-valued maps E and £ would
be defined in terms of a stochastic flow rather than a measure on curves.

Let us present some particular cases now to demonstrate the richness of phenom-
ena generated by the structural assumption described above. If one assumes that the
Lagrangian does not depend on the measure and time variables, i.e.

L(t,,0,m) = L(z,v), (2.6)
then only the final measure (er)sn figures into the cost J"[n].

Under the condition (2.6), in the structural assumption (2.4) only X1 appears, and
so the cost has the form

T
/LPYS7’78 d3+g(’7T7 )7
0

where if X7 ((er)sn) = o, then J7[y] = J"[y]. I'?[z] will have the form
[7(o] i= {5 € Tfal : J7[5] < J7[1] ¥y € Tlal}.
Finally, the operator £ reduces to & : X — X given by
Er(o) = {zT ((ex)s) : 1 € Pony (L), spt(ie) CT7[z] mo — ace. x € Rd}. (2.7)

So, again o € X is an equilibrium provided that o € Er(0). If 0 € X is an equilibrium,
then o = Y7 (m) for some equilibrium measure m € £5(R%), and as before m = (er)sn
for some equilibrium n € Z,,(I'). Conversely, if 1 is an equilibrium in 2,,,(I") then
o = YXr((er)sn) is an equilibrium in X' In this case, supposing that X is a Hilbert space
will allow us to use a monotonicity condition relying on the Hilbert space structure.

We may now notice that under the condition (2.6), not necessarily imposing special
factorization via X, we are free to redefine the cost as

T
/L Vs, ¥s) ds + G(yr, m),
0

where if (er)yn = m, then J™[y] = J"[7]. Likewise, we replace I'?[z] with

I"z] == {5 €Tla] : J™[F] < J"[y], ¥y € T[]} .
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Finally, we replace E(n) with the set-valued map Er : Z5(RY) — 27 2(R) given by
Er(m) = {(eT)m {1 € Py (D), spt(f1n) CT™[x] mo — ace. z € Rd} . (28)

We say that m € Z5(R?) is an equilibrium in its own right provided m € Ez(m). To
justify this definition, suppose m € Ep(m). Then there exists /) € P, (I") such that
m = (er)yf) and spt(f,) C I'™[z] = ['[z] for mo-a.e. z, which implies 7 is an equilibrium.
Conversely, if 1 is an equilibrium, then we observe that m = (er)yn € Ep(m).

We will make use of the following “lifted version” of Ep, namely Ep : H — 2H given
by

Ep(X):={Y eH: Ly € Ep(Lx)}. (2.9)

In fact, one can study the “lifted version” of the operator E itself, namely we can
introduce E : C([0,T); H) — 2¢(0TEH) defined as

B(X) = {Y = (Vreor) € C(0, T H) : (2.10)

Ly, = (e))yn, t € [0,T],n € Py (T),spt(n:) CT¥[x], mg —ae. v € Rd},

t

where
we redefine the cost as

T
JX[’Y] ::/L(&W’m%,ﬁxt)ds+G(’YT,£XT)»
0

where if (e;)yn = Lx,, then JX[y] = J"[y]. Likewise, we replace I'7[z] with
P¥[a] = {7 € Tlo] - 7¥[3] < T¥ 3], vy € Tl

We can notice that under the assumption (2.6), the operator E reduces in fact to the
operator E'T.

2.2. Four types of monotonicity conditions

We now introduce four monotonicity conditions, whose implications for uniqueness will
be explored in this manuscript. Unless specified otherwise, the data functions G and L
are supposed to have sufficient regularity (they are at least continuously differentiable).
Precise hypotheses will be assumed on them in the statements of the specific results.
First, let us recall the Lasry—Lions and displacement monotonicity conditions, studied
intensively in the literature.
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Definition 2.2 (Lasry—Lions monotonicity). We say that condition (LL) holds for the
function G provided that G satisfies the Lasry—Lions monotonicity condition, namely

/ (G(z,m1) — G(x,m2)) d(my —m2)(z) >0 VYmy,my € Po(RY). (LL)
Rd

We say that condition (LL) holds strongly if the inequality is strict whenever G(-,m1)
and G(-,mgy) are not identical. In other words, equality in (LL) implies that G(-,my)
and G(-, mg) are identical.

This condition was introduced in the seminal paper [29], and was the first one in the
literature that guaranteed uniqueness of sufficiently regular solutions to MFG systems.
The LL condition for the function L can be stated in an analogous way. Typically, this
is done if L can be “separated” as follows:

L(t,z,v,m) = £(t,z,v) + f(t,x,m),

so that Definition 2.2 applies directly to f(,-,-). We refer to e.g. [11, Section 5, condition
3] and to [28] for a more general statement for Lagrangians appearing in so-called mean
field games of controls; see also the discussion below in Section 3.1.

Remark 2.3. We would like to emphasize that the strong version of LL monotonicity in
Definition 2.2 does not rule out the scenario when the function G is independent of the
measure variable. Indeed, if G(x, m) = G(z), for all (x,m) € RY x 2,(R%), we have that
the left hand side of (LL) is zero for any mj, mo, but then G(-,m1) = G(-,m2) for any
m1 = my. In particular, this means that even the constant zero function is strongly LL
monotone. Therefore, we say that the strong LL monotonicity condition is non-trivially
satisfied provided there exist my, my € Po(R?) for which G(-,m;) and G(-,mz) are not
identical.

Definition 2.4 (Displacement monotonicity). We say that condition (D) holds for the
function G provided that G satisfies the displacement monotonicity condition, namely

E [(DzG(Xl,LZXl) — D.G(Xa,Lx,)) - (X1 — X2)| >0 VX, X, €eH. (D)

The condition (D) naturally extends to Hamiltonians which are not necessarily sepa-
rated (cf. [19,33]).

Displacement monotonicity was first considered in the work [1] (although under a
different name) to study the uniqueness of solutions to MFG with common noise. It
became evident later in the works [18,19,33] that this condition can serve as an alternative
sufficient condition both for the uniqueness of solutions to MFG systems and the well-
posedness of the corresponding master equations. The discussions in Subsection 2.1 let
us define the following monotonicity conditions.
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Assuming the decomposition of G and L via ¥ as in (2.4), we can formulate the
following condition.

Definition 2.5 (Monotonicity condition in L?(0,T;X)). Suppose that (2.4) holds and
¥ AC([0,T]; Z2(R%)) — C([0,T); X)

is given. Suppose furthermore that X is a Hilbert space.

We say that the monotonicity condition (X) holds provided that, for all initial mea-
sures my € Po(R%) and all time horizons T' > 0, I — £ is a monotone vector field on
range Y, i.e.

(11 — 72,01 — 02>L2([0,T];x) <llor — 02||2L2([0,T];X)

Yo1,09 € range 3, V11 € E(01), V12 € E(02). (%)
We say that condition () holds strictly if the inequality is strict for o1 # o.

Remark 2.6. We remark that the Hilbert space L2([0,T]; X') appearing in condition ()
could be replaced by other Hilbert spaces, which could appear naturally in particular
problems. We refer to the discussion in Subsection 3.1, in the case of mean field games
of controls.

Definition 2.7 (Monotonicity condition in L*(0,T;H)). We say that the monotonicity
condition (L.?(L.?)) holds provided that, for all initial measures my € Z;(R?) and all
time horizons T > 0, I — E is a monotone vector field on range E, i.e.

/TIE V) (X} - XQ)} dt</TIE‘X1 XQ‘ d, (L2(L2))
0 0

VX1 X2 € C([0,T;H), VY! € E(X"),VY? € E(X?). We say that condition (L*(L?))
holds strictly if the inequality is strict for X! # X2,

Remark 2.8.

(1) Let us notice that the choice of the inner product in the definition of () is for
convenience. As L?([0,T]; X) is Hilbert space, the terminology of monotonicity is
used in the standard sense of the word, as for operators between Hilbert spaces.
This condition could be rephrased in a different non-Hilbertian setting, but we do
not want to deviate the attention of the reader from the main message by further
technical constructions.

(2) We emphasize that the conditions (3) and (L*(L?)) are significantly different
from each other, as we will see later. Philosophically, one might be able to say



12 P.J. Graber, A.R. Mészdros / Journal of Functional Analysis 285 (2023) 110095

that (L?(L?)) is a particular case of (X)), by setting X = H. As the operation
H > X — Lx is not invertible, one would need to define ¥ as a multivalued oper-
ator, ¥ : AC%([0,T]; P2(R%)) — 2C0THH) a5 S3(m) = {X € C([0,T);H) : Lx, =
mye, YVt € [0,T]}. In this case, the definition of £(o) would also need to be modified
accordingly. However, the main difference between the conditions (L*(L?)) and ()
is that the former exploits the ‘full’ probability measure, while the latter one regards
only at some specific features of the measure in a given parameter space.

It is worth mentioning that if L is independent of the measure and time variables,
i.e. if (2.6) holds, then the previous monotonicity conditions may be replaced with the
following ones.

Definition 2.9 (Monotonicity condition in X ). Suppose that (2.6) holds and suppose
that X is a Hilbert space. We say that condition (o) holds provided that, for all initial
measures mg € Po(R%) and all time horizons T > 0, I — Er is a monotone vector field
on range X, i.e.

(11 —To,01 —09)x < |01 —0a||5  Voi,00 € range Np, Y71y € Ep(01),¥m € Er(02). (0)
We say that condition (o) holds strictly if the inequality is strict for o1 # os.

Definition 2.10 (Monotonicity condition in H ). Suppose that (2.6) holds (but (2.4) does
not necessarily). We say that condition (L?) holds provided that, for all initial measures
mo € P5(R%) and all time horizons T' > 0, [ — Er is a monotone vector field on H, i.e.

E[(Yi - Ya) - (X1 — X2)] <E|X; — Xof
VX1, Xy € H, VY] € Ep(X1),VYs € Ep(Xy). (L?)

We say that condition (I.?) holds strictly if the inequality is strict for X; # Xo.
Some comments about these definitions are in order.
Remark 2.11.

(1) Conditions (L?(L?)), (¥) (and (L?) and (o)) are supposed to hold uniformly with
respect to the initial measure mg and the time horizon T'. The reason for this is two-
fold. For one, the conditions (LL) and (D) are also uniform with respect to these
data. More importantly, in this manuscript we are concerned with wunconditional
uniqueness, i.e. uniqueness that does not depend on the time horizon or the initial
measure.

(2) Monotonicity can go either direction, and we could have easily insisted on the op-
posite sign in conditions (L*(L?)), (£) (and (o) and (L?)); we will give the names
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-(L*(L?)), -(%) (and -(L?) and -(¢)) to the analogous conditions with the inequalities
reversed. Formally, conditions (LL), (D), (L?), and (o) all have the “same sign”, as
the example below in Section 4.5 illustrates. Even for conditions (LL) and (D) it
is known that a form of “anti-monotonicity” can also lead to uniqueness; see [34].
Note, however, that for these it is not enough to simply “reverse the sign”, but one
must have sufficiently large anti-monotonicity and impose some specific structural
assumptions on the Hamiltonian.

(3) It is worth noticing that conditions (L?(L?)) and (¥) (and (L) and (o)) take into
account the actual game itself, i.e. monotonicity is imposed ‘after’ we have access
to the global-in-time optimal response to an arbitrary crowd trajectory. In contrast
to this, the conditions (LL) and (D) are imposed in some sense ‘ocally’, without
having access to the global-in-time optimal response. This is one of the major dif-
ferences between the philosophy behind our newly proposed conditions compared to
the existing ones from the literature.

In the following sections, we will first address the question of uniqueness of MFG
equilibria. Namely, which of these conditions guarantee that the equilibrium measure
is unique? Second, we address the question of the logical connection between different
conditions. We will see that in general, these conditions are independent and do not
imply one another.

3. Monotonicity conditions and uniqueness

In this section we investigate the following question: in what cases is there at most
one MFG Nash equilibrium, i.e. at most one fixed point of E7

We begin with a simple observation: under (2.6), if (L) or -(L?) holds strictly, then
uniqueness is immediate! Indeed, this means there is at most one fixed point X € E‘T(X ),
and m = Ly is thereby the unique Nash equilibrium. By the same argument, if (L?(L?)),
-(L?(L?)) holds strictly, we again have uniqueness. Examples where (L?) or -(I.?) can be
checked will be given below in Section 4. Examples where (1%(L%)) or -(L%(L?)) holds
could be constructed in a similar spirit as in Section 3.1.

Next, we observe that, under suitable assumptions on the Lagrangian (which, if it
depends on the measure variable, satisfies the corresponding displacement monotonicity
condition) (D) also implies uniqueness. This follows directly from the results of [33] (see
Theorem 4.5 and Corollary 4.6 in this reference). It is remarkable that the condition
need not be strict. On the other hand, unlike (L*(L?)) (or (L.?)), a condition of the form
-(D), i.e. with the inequality reverse, certainly does not imply uniqueness. Indeed, to
satisfy -(D), it would be sufficient to have a function G(x,m) = G(x) that is concave
with respect to z, i.e. D2, G(x) < 0, and independent of m. Suppose also that (2.6)
holds and L is convex in the v variable. In that case, the cost is independent of the final
measure m, which implies that m is an equilibrium whenever it is the push-forward of
myg through an optimal flow at time T. However, since G is concave, there can easily be
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more than one optimal flow, which implies more than one equilibrium. See the discussion
below for more details.

Suppose that (2.6) is in force. The situation is different and quite interesting for
conditions (LL) and (¢). In the case of Lasry—Lions monotonicity (LL), an inspection
of the proof of [10, Theorem 4.1], for example, implies that when (LL) holds strictly,
then the final cost G(x,m) gives the same value for all equilibria m. However, unless
m — G(xz,m) is injective on the set of equilibria, this does not imply uniqueness of the
equilibrium. (Here we are referring only to the final measure; let alone the whole flow of
measures!) Likewise, when (o) holds strictly, we see that the parameter X7 (m) has the
same value for all equilibria m. However, unless m — Xr(m) is injective on the set of
equilibria, this does not imply uniqueness of the equilibrium. Thus both (LL) and (o),
when they hold in a strict (or strong) sense, do imply uniqueness of the value function,
but not necessarily of the equilibrium distribution.

As a consequence, we can conclude in particular that even the strong version of the
Lasry—Lions monotonicity does not imply in general the uniqueness of MFG Nash equi-
libria. This observation seems to be new in the literature. Let us comment more on the
literature to date regarding the strong version of the LL monotonicity in connection to
the uniqueness of MFG Nash equilibria. As [12, Theorem 1.4] states, we can see that
when non-degenerate idiosyncratic noise is present, under Lasry—Lions monotonicity we
have uniqueness of MFG Nash equilibria if either the data which depend on the measure
variable (the running and the final costs) are strongly LL monotone, or the Hamiltonian
is strongly convex in the momentum variable.

We consider two examples below. In one of them the final datum is nontrivially
strongly LL monotone, while the running cost does not depend on the measure (hence
trivially strongly LL monotone, cf. Remark 2.3). In the second one the running cost is
nontrivially strongly LL monotone, while the final datum is trivially strongly LL mono-
tone. In both cases the Hamiltonian is purely quadratic in the momentum variable, and
therefore strongly convex in this variable. These examples would fit into the setting of
[12, Theorem 1.4], except that we do not have noise. Therefore, the message we would
like to convey is that regularity of the measure variable (for instance, as a consequence
of the regularizing effect of the noise), or some other sufficient assumptions (for instance
the uniqueness of optimal feedback strategies in the single agent optimization problems)
need to be imposed in addition to the strong monotonicity of the running and final costs
or strong convexity of the Hamiltonian, otherwise uniqueness of MFG Nash equilibria
might fail. For deterministic problems, such an additional sufficient assumption is that
the measure component of the MFG system stays essentially bounded, as we can see in
[12, Theorem 1.8]. In our examples the measure component is in fact a singular measure.

Under (2.6), these difficulties can be obviated if one assumes a priori that the min-
imizers of the cost functional J™ are unique for each m. Such an assumption makes
it almost inevitable that = — G(x,m) should be convex (independently of m), as the
following result shows:
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Theorem 3.1. Let ¢ : R* — R be continuous, non-constant, and bounded below, and let it
have sub-quadratic growth at infinity, i.e. assume there exist C > 0 and « € (0,1) such
that ¢(x) < C(1 + |z|*T®) for all x € R Assume ¢ is not convexr. Then there erists
t* > 0 such that for every t > t*, there exists € R? such that R > y s 2280 yl + o(y)
has at least two distinct minimizers.

See Appendix A for the proof. Theorem 3.1 proves that the Cauchy problem for the
Hamilton—Jacobi equation

w(0,2) = ¢(x), xR (3.1)

{ Oyu+ 3|Vul> =0, in (0,400) x RY,
necessarily develops a shock at a certain time ¢* > 0 depending only on ¢, where ¢ is
any non-convex function having sub-quadratic growth at infinity. Although the result is
stated only for quadratic Lagrangians, it underscores how common it is to have more
than one minimizer for a given optimal control problem.

In the light of these observations, let us now proceed to state precisely our main results
concerning uniqueness. Our first main result establishes the uniqueness of MFG Nash
equilibria under our newly proposed monotonicity condition (X) (or (0)).

Proposition 3.2. Let T > 0 be a given arbitrary large time horizon. Suppose that G :
R? x 23(R?) — R and L : [0,T] x RY x R? x 25(R?) — R have the decomposition
(2.4) for some given Hilbert space X, g : R x X — R, £:]0,T] x R x R x ¥ — R
and ¥ : AC([0,T]; Z22(R%)) — C([0,T]; X). Suppose that the strict version of () holds.
Last, suppose that g and { are such that the Hamilton—Jacobi equation

{ —Ou + h(t,z,—Vyu,04) =0, in (0,T) x RY, (3.2)
w(T,z) = g(z,0r), x € R, '

has a unique classical solution for all o = (0s)seo,1) i range(X). Suppose also that the
vector field Dyh(-,+, —Vu, ) has a globally defined flow. Here h : [0, T] x RIxRIx X —
R is defined in the standard way as h(t,z,p,o) := sup,cga {p-v — {(t,2,v,0)}. Then
the corresponding mean field game starting at any mo € P2(R?) has at most one Nash
equilibrium.

Suppose in addition that L satisfies the reduced form (2.6) and that (o) holds in a
strict sense. Then we can again conclude that the corresponding mean field game has at
most one Nash equilibrium.

Remark 3.3. The existence of a mean field game Nash equilibrium can be obtained under
mild assumptions on the data L and G, and this is relatively well documented in the
literature. In the particular setting when the problem (3.2) has a regular enough classical
solution, this existence question was established in [33, Theorem 3.6].
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Proof of Proposition 3.2. Let 1 be an equilibrium (in particular (eg)sn = my), and set
ms = (es)yn and o, = 3(m)s. Then it follows that the curve o belongs to £(o), as
defined in (2.5), i.e. o is a fixed point of £. By the strict monotonicity condition (%),
this fixed point ¢ is unique. To establish the uniqueness of the measure 7, it is enough
to establish that 7 is completely determined by o. Indeed, by our assumptions, we have
the uniqueness of characteristics associated to (3.2), which are also given by the flow of
the vector field Dyh(-, -, —Vyu,0), ie.

{ 057s(x) = Dph(s,7s(x), —Vou(s, 7s(x)), 05), s € (0,T),
Yo(z) = x, z € R9,

It follows that the set of optimal curves is a singleton, i.e. I'""[z] consists only of the
solution to this initial value problem. Hence the measures 7, are Dirac masses determined
entirely by o, whereupon 7 itself is determined by o, as well.

The case where L satisfies (2.6) and (o) is satisfied is entirely analogous and therefore
omitted. Under this reduction, in particular h will also be independent of ¢t and ¢. O

3.1. An example of data satisfying (3)

Let us pause for a moment to present data that fulfill the monotonicity condition ().
As we demonstrate below, our proposed monotonicity condition (¥) is well-suited for a
rich class of MFG, including so-called MFG of controls.

In this example, we take both 2z and ¢ in R?, where d is arbitrary. Let T > 0 be
a time horizon, which can be taken to be arbitrarily long. Let us assume that H, L :
(0,7) x R? x R? — R have the standard connection between them, via the Legendre-
Fenchel transform, i.e.

H=H(t,p,m) = sup [v-p— L(t,v,m)].
veERE

In the case of both H, L, the last coordinate # € R? will play the role of a special
parameter, that we will describe below. For simplicity, we will assume that the final cost
depends only on the position variable z, i.e. g : R — R.

In this MFG of controls, « denotes the position/state of individual agents. mgy €
P (R?) represents their initial distribution with respect to their positions, while the
flow of measures m : (0,7) — Z(R%) is on the velocity variable (in the Lagrangian
coordinate; i.e. on the controls) of the individual agents. Therefore the parameter curve
7 : [0,T] — R, defined as m(t) = [pavdmy(v) represents the barycenter of these
measures, and both the Hamiltonian and Lagrangian depend on this finite dimensional
quantity.

Given a trajectory 7 : [0, T] — R?, we will define o : [0,7] — R as o(t) = fg 7(s)ds,
which satisfies ¢(0) = 0. Our main assumption in this subsection will be
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m— D,H(t,p,m) — 7 is strictly monotone with respect to 7. (3.3)

This monotonicity is understood in the classical sense of vector fields defined on finite
dimensional spaces, i.e. for any t,p € (0,T) x R? fixed we impose

[D,H(t,p,m) — DyH(t,p,m2)] - (1 — m2) >|m — ml?, V¥ m,m € R, m # m.
(3.4)

As in our consideration, the direction of the monotonicity can be swapped, we can assume
also the opposite sign instead, i.e.

[DpH(t,p,m1) — DpH(t,p,m3)] - (1 — m2) <|m — ml?, V¥ mi,me € RY,m # m.
(3.5)

A typical example for the H would be

Htpm) = sup {v-p = (v +a(m) | = £0) —ap-m. (3.6)

where a : [0,7] — R is a smooth curve, and where £ : R? — R is a given function whose
Legendre transform is denoted ¢*. If a(t) < —1, then we have the first inequality (3.4),
while if a(t) > —1, we have the second (3.5).

For a given path 7 : [0, 7] — R? and initial condition z € R?, the optimal trajectory
x(t;m, 2) is given by solving

i(t) = D, H(t,—Dg(z(T)), 7(t)), x(0)= =. (3.7)

We remark that this is because the classical forward-backward Hamiltonian system sim-
plifies as H does not depend on the position variable.

We note that we have an MFG Nash equilibrium m : (0,T) — Z5(R?) if and only if
by defining 7(t) = [ga vdmy(v), we have that

my = (&7, - )ymo.

We then define, for a given initial measure mg € Z(R%), I : C((0,T);R?Y) —
C((0,T);RY) as
(m); = /i(t;ﬂ',z) dmg(2). (3.8)
Rd

The MFG equilibrium is now related to the fixed point problem

m = II(7).
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We can now define ¥ : Y — Y as

S(o)e = [ altid2)dmo(z) - [ zdmo),

R4 R4

where Y = {y € C'((0,T);R?) : ~(0) = 0}. The subtraction of the constant
fRd zdmg(z) in the definition of ¥ is performed in order to ensure that ¥ maps Y
into itself. We realize that II(r), = £-(0),.

To keep this exposition brief, let us assume that g is linear, so that Dg(x) = ¢ is a
constant in R%; this will allow us to quickly arrive at a result for this class of examples.
Then (3.8) becomes

I(r): = /DpH(t7 —c,m(t)) dmo(z).
We notice that by (3.3), II(w) — 7 is monotone in the sense that

<H(m)t — () — (T(ma)e — ma(t)) , ma(t) — ﬁ2(t)> >0 (or <0) WVt

hence
T
/<H(7r1)t — () — (H(ma)e — ma(t)) , mo(t) — 7r2(t)> dt >0 (or <0).
0

As a consequence of this, we have that ¥ is monotone on Y, in the sense of the H([0, T))
inner product for trajectories beginning at ¢(0) = 0. This corresponds exactly to the
monotonicity condition () (where the parameter space X = R? and we have changed
the inner product from the L? inner product to an H! inner product).

The economic interpretation of (3.3) is readily available. Consider the case of compet-
itive production of a given resource, cf. [15,26]. The control can be the quantity sold at a
given moment, i.e. the derivative of the stock (state). Then m would represent the total
quantity on offer by the market. Condition (3.3) simply means that one must sell more
if the market has more to offer. Assumptions under which such a condition holds can
be found, for example, by looking at [25, Lemma 4.1] for the scalar case; for the vector
case, it is enough to assume it holds in each coordinate.

Let us compare condition (3.3), which leads immediately to the monotonicity (%)
in our sense, with the Lasry—Lions type monotonicity studied in [11,28]. Under our
restrictions, this condition would become

/ L, / sdm(@) | - L |t / 3dua(®) | | —p)w) =0 (3.9)

Rd Rd Rd
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for all measures ju1, o € P2(R?). Equation (3.9) is not in general equivalent to (3.3).
For instance, in the case of the example (3.6), we have that

L(t,v,m) =L (v+a(t)T),

from which we get

[lelee [oam® |~ |te [odu@ | | dom - mw)

R4 Rd Rd

=/ ‘ v+a(t)/17du1(ﬁ) ¢ v+a(t)/@duz(@) (1 — pi2)(w)
R4 Rd Rd

Claim. In general, the expression (3.10) will not always have the same sign for all prob-
ability measures p1 and ps.

Proof of Claim. To see this, let us assume for simplicity the dimension d = 1, a(t) =1
is constant, and let us restrict our attention to measures with [p odu;(?) = 1 and
Jg ©dpu2(0) = 0. Then the expression reduces to

/ (C(v+1) = £(v)) d(p1 — p2)(v). (3.11)
R
We take, for example, £(v) = v*. The expression (3.11) reduces to
/ (4113 + 602 + 4o + 1) d(pr — pe)(v) = / (41)3 + 61}2) d(pr — p2)(v) +4.  (3.12)
R R

We can simplify even further by taking us = dg, the Dirac mass at zero, so that (3.12)
becomes

/ (4113 + 6@2) dpq (v) + 4. (3.13)

R

It suffices to show that this may be positive or negative, depending on the choice of ;.
Take

H1 = béz + (1 - b)é%, (314)

where b € (0,1) and x is some real number. Note that [vdu;(v) = 1, as desired. We
also have
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/(41,3 +6v2) dp1 (v) = (423 +622)b+ (4 (11__”;)3 +6 (%)3 (1-b), (3.15)

R

which, so long as b # 1/2, is a cubic polynomial in 2 whose leading term is computed to
be

46° 5 4b(1—2b)

4b® — =
B T N R P

As a cubic polynomial can take any value in R, we deduce that (3.13) may be positive
or negative, as desired.

It turns out that the LL condition holds in this case for purely quadratic functions,
i.e. £(v) =|v|>. In this case, by subtracting the squares and making a cancellation, one
finds that the expression (3.10) reduces to

2

2a(t) [ vl ) ()] (3.16)

Rd

which can have a definite sign if a(¢) is chosen to be positive or negative. Because of this
fact, one can use the standard PDE approach a la Lasry—Lions to prove uniqueness in the
study of exhaustible resource models for which the demand schedule is linear and hence
the Hamiltonian is purely quadratic, cf. [25,22] (see also [28,24,7], where the Lagrangian
has a different structure allowing LL monotonicity to hold). It was noticed in [25,22] that
the case of a nonlinear demand schedule makes it considerably more difficult to prove
uniqueness, and this was done only under a certain smallness assumption. Although in
the present article we do not wish to address the many technicalities that arise in such
models, we believe that in future work the approach proposed here could help generalize
those uniqueness results.

Remark 3.4. Recently, in [35] the authors introduced monotonicity conditions of dis-
placement type (“Assumption 5.1”) for Hamiltonians appearing in mean field games of
controls. In principle, one could check whether our condition (3.3) implies Assumption
5.1 in that work. However, this would require introducing a large amount of additional
notation and making a number of quite delicate calculations. In our context, one would
first need to verify that the fixed point problem

¢ = DyH (t,—n,E[(])

has a unique fixed point in the space of L? random variables, given an arbitrary L2
random variable 7. One can show this much by using condition (3.3). After this one would
need to define ¢ implicitly as a function of 1 and analyze its derivative in order to check
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that [35, Assumption 5.1] holds; this would require additional smoothness assumptions
on H and a lot of subtle implicit differentiation (unless L is, say, quadratic with respect
to the velocity). Although such a calculation is potentially illuminating, we have chosen
not to include it for the sake of brevity.

For the rest of the paper, in order to present the richness of phenomena behind
the monotonicity conditions in a simple way, we will assume that the Lagrangian is
independent of the time and measure variables, i.e. (2.6) holds. In this context, the
monotonicity condition (3) will simply reduce to the condition (o) and (L.?(L?)) reduces
to (L?). Furthermore, we restrict our attention to the case X = R*, and most often we
set k= 1.

3.2. Strong Lasry—Lions monotonicity or the strict (o) in general do not imply
uniqueness of Nash equilibria

We now give a family of examples for which (LL) holds, but uniqueness of MFG Nash
equilibria does not hold.

Proposition 3.5. Let ¢ : RY — R be any positive, bounded, function for which there
exists some xg such that ¢(xo+y) = ¢(xg —y) for all y. Assume, moreover, that
d(xo + 2) < ¢(zg) for some z. Define the data as follows:

1
G(z,m) = ¢(x)or(m), or(m)= /(;Sdm, L(z,v) = §|v\2. (3.17)
Rd
Then (LL) is satisfied strongly for G, but uniqueness of the MFG equilibria does not hold
for the initial measure my = d,.

Proof. To see that (LL) is satisfied strongly, notice that

2

/ (G(z,m1) — G(x,m2)) d(m1 — my)(x) = /(;5(3:) d(m; —mse)(x) | . (3.18)
R4 R

For the initial measure my = d,, the mean field game boils down to finding measures
m such that

2
spt(m) C argmin |% + o(y) /¢dm cyeRY Y. (3.19)
R4

Now with z as above, there exists 7 large enough such that ‘;—lj + ¢(zo + 2) < P(zo). It

lyl*
2T

follows that we can find some y* that minimizes '2—+¢(xo+y), hence so does —y* because
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d(ro+y*) = ¢p(xo—y*). We emphasize that y* # 0, since we have —|—¢(m0—|—z) < ¢(z0).

Set T = m Then

2
+y" € argmin {|% +oW)od(zoLy"):y € Rd} . (3.20)

It follows that m = d4,~ are both Nash equilibria. O

The example given in Proposition 3.5 is a game where the measure-dependence occurs
only in the final cost. However, the basic idea holds even when the running cost depends
on the measure, as well. We give a simple example to illustrate the general idea.

Proposition 3.6. Let ¢ : R? — R be given by ¢(x) = /2|z| and set F(x,m) =
¢(x) [ga @dm. Fiz a final time T. Set the final coupling G(x,m) = —T|xz|, and set
the Lagrangian to be

Le,0,m) = 3ol + Fl,m) = 3[of + 6(2) [ odm, (3.21)
R4

Then (LL) is satisfied strongly for F', but uniqueness of the MFG equilibria does not hold
for the initial measure mg = &g.

Proof. The proof that (LL) is satisfied strongly for F' is the same argument as in Propo-
sition 3.5. To prove that Nash equilibria are not unique for mqg = dg, set

“a, tel0,T) (3.22)

for any fixed unit vector a € R%. Set m(t) = d¢(;). We claim that m(t) is an equilibrium.
It suffices to show that £(t) is an optimal trajectory for any player starting from x = 0
and seeking to minimize

T
/ % * + (a ())/¢dm(t) dt — T'|(T) (3.23)
0

Rd

which, given m(t) = d¢(), can be written

T
[ (HF + otenotewn) ar - 7la(r)]. (324
0

The Euler-Lagrange equations for this optimal control problem are
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B(t) = Do(x(t))p(E(1)), #(T) =Tr—— (3.25)

Then we observe that £(t) itself satisfies (3.25), because

1 &) £() :
D(E)P(E(H) = ——=177\/2/60)| = 27 = a = £(1) (3.26)
V2060 £@)] £(1)]
and
T|§((—§))| =Ta = &(T). (3.27)

Since a is arbitrary, the equilibrium is not unique. O

We turn back now to the setting of Proposition 3.5. By a similar construction, we
can give a family of examples for which both (LL) and (o) hold, but uniqueness of the
equilibrium still does not hold.

Proposition 3.7. Assume the dimension d = 1. Let ¢ be as in Proposition 3.5. In addition,
assume that ¢ is decreasing for xo < x < xo + z and increasing for x > xg + z (where
z > 0). Then for the initial measure mg = 8, (o) holds strictly, and (LL) is satisfied
strongly, but uniqueness does not hold.

We emphasize that, in the statement of Proposition 3.7, the condition (o) holds only
under the restriction that the initial condition must satisfy mg = d,,. In the proof, we
will use the following elementary lemma;:

Lemma 3.8. Let F,G : I — R be continuous functions on an interval I C R such that
G is strictly increasing and let 3 € argmin F' # (). Then argmin(F + G) C I N (—o0, f].
Hence all the minimizers of F'+ G are less than or equal to the minimizers of F'.

Proof. If > f3, then F(x) > F(B) because § minimizes F, and G(z) > G(5) because
G is strictly increasing, so F'(z) + G(x) > F(8) 4+ G(8). Thus no minimizer of F + G can
lie in (B,00). O

Proof of Proposition 3.7. By Proposition 3.5, we have only to show that (o) holds (here

we have that X = R and X7 (m) = or(m)). For this, observe that with initial measure
mgy = 0,, We have

&r(o) = {¢(zo +y) 1y € Ao)},
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where

2

(o) = argmin{g—T +d(xo+y)o:y > 0} . (3.28)

Note that we only need to consider y > 0 because ¢(xo+y) is even. Since ¢ > 0, we can
take only o > 0 and thus

2

Qo) = argmin{ﬁ,—g +¢(zwo+y) 1y > 0}.

By the assumptions on ¢, it is obvious that Q(co) # 0. We claim that (o) is increasing
in o, ie. if 09 > o1 and y; € Q(0;) for i = 1,2, then yo > y;. Indeed, since

y2 y2 1 1 y2
= — -z 3.29
oy T A0t Y) = g, T él@ty)+ <01 02> 2T (3:29)
and y — (—011 — —012) —g; is a strictly increasing function on [0, 00), the claim follows from

Lemma 3.8.

We also claim that if Q(o1) 3 z for some o1 > 0, then Q(0) = {z} for all ¢ > o;.
Indeed, if y € Q(o) for o > o1, then since Q(o) is increasing we must have y > z. On
the other hand, since y — % + ¢(xo + y) is strictly increasing on the interval y > z, it
follows that y ¢ (o) if y > 2. The claim follows.

Finally, we deduce that £r(o) is decreasing in o. Indeed, let 0 < o1 < o2 and let
yi € Q(o;) for i = 1,2. It follows that y; < y2 < z. Since ¢(z¢+y) is decreasing on [0, z],
it follows that ¢(zo + y2) < ¢(zo + y1), as desired.

Now since (0, +00) 3 o — Er(0) is decreasing, it follows that (0, +o0) 3 0 — c—E7(0)
is strictly increasing, i.e. (o) holds strictly. The remaining conclusions follow directly from
Proposition 3.5. O

Propositions 3.5, 3.6, and 3.7 show that Lasry—Lions and even (o) type monotonicity
conditions do not necessarily imply uniqueness of the measure, even if the cost is unique.
In terms of game theory, this implies that the payoffs may be uniquely determined, but
the actions of the crowd are not. One may ask whether this phenomenon is generic.
That is, when the optimal control problem does not always have a unique solution, must
there always be more than one equilibrium? We conclude this section by showing an
example where this is not the case: although the optimal control problem for individuals
may sometimes have more than one solution, nevertheless there is only one possible
equilibrium in the game.
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3.83. Non-uniqueness of feedback strategies in general does not imply non-uniqueness of
Nash equilibria

We again work in dimension d = 1. For the data, let us take
1
G(z,m) = ¢(z)or(m), or(m)= /@[Jdm, L(z,v) = 5112, (3.30)
R

where v is any function that is strictly increasing and continuous, and where ¢ is given
by

T, if z <0,
o(x) = { 2z, ifo<ze<l, (3.31)
r+1, ifx>1.

Remark 3.9. Although ¢ and 1 are both increasing functions, nevertheless it does not
generally follow that G is LL monotone. Indeed, since ¢(x) = x for z < 0, one may take
any increasing function ¢ that is nonlinear on (—oo, 0], then apply the argument found
in the proof of Proposition 4.10 below to conclude that G is not LL monotone.

Theorem 3.10. Let mg € P(R) be any initial measure, and let the data be given by (3.30)
and (3.31). Then there exists a unique equilibrium measure m, i.e. there is a unique fized
point m € Er(m).

Remark 3.11. It seems to us that the conclusion of Theorem 3.10 holds for a much more
general class of increasing functions ¢. We have chosen to keep the structure simple so
as not to obscure the main idea of the proof.

Proof of Theorem 3.10. Define

(z—y)? _ .
T + ¢(y)o, Y(x,0)=argmin ®(z,-, o), (3.32)

Yu(z,0) =minY(z,0), y*(z,0)=maxY(z, o).

O(x,y,0) =

Using Lemma 3.8, the strict convexity of the square, and the fact that ¢ is strictly
increasing, we deduce that

Yy (x,02) Syulw,01) Voo 201, Y (2,0) 2 yu(z1,0) Var > (3.33)

We claim that there is at most one x such that ®(z,-, o) has two minimizers. To see
this, we first compute
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1 Jy—(x—20T) ifye(0,1),

0y2(w,y,0) = y—(z—oT) ifyéel0,1].

(3.34)

We divide into two cases. By examining the sign of the derivative, we can deduce intervals
of increase and decrease to identify candidates for minimizers.

(1) First assume oT < 1. If < 20T, then ®(z,-,0) has a unique minimizer, min{x —
oT,0}, while if 207 < x < 1+ o7, then the unique minimizer is x — 207. If
x > 1+ 20T, then the unique minimizer is ¢ — oT.
In the remaining case where 1 + 07T < z < 14 207, both « — 20T and x — T
are candidates for minimizer. We compute

®(z,x — 20T, 0) = 200 — 2T5?,
To? (3.35)
O(z,2 — oT,0) = oz +1) — T"

and these are equal if and only if z =1+ %, in which case it follows that 1 + %
are both minimizers.
(2) Now assume, to the contrary, that o7 > 1. If © < 20T, then the unique minimizer
is min{x — oT,0}. If © > 1 + 207, then the unique minimizer is z — o7
In the remaining case where 26T < x < 1+ 20T, both x — 20T and x — ¢T are

candidates for minimizer. We get the same values as in (3.35).
We conclude that there are exactly two distinct minimizers, 1 + %, if and only if z =

1+ %; otherwise, there is only one minimizer. In other words, for = # 1 + %7
y«(z,0) = y*(z,0), but on the other hand

30T oT oT
Y(].-l-T,O') —{14—7,1—7}
In what follows it will be useful to note that in all cases,

)

|y« (2, 0)| |y (z,0)| < || + 2T o] . (3.36)

Let 2, := 1+ 222 If mg({z,}) = 0 or o = 0 (in which case one has that y.(zo,0) =
y*(20,0)) all points = from the support of my have a unique destination y.(z,0) =
y*(x,0). In such case the target measure has the form y,(-,0)smo and so

Er(o) = /z/J (y«(x,0)) dmg ().
R

As 9 is strictly increasing and o — y.(z, o) is decreasing for any x (cf. (3.33)), we have
that &p is decreasing.
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If mo({z,}) > 0 and o # 0, then from the point z,, emo({z,}) amount of mass
can travel to 1 + 2= while all the remaining (1 — ¢)mo({z,}) amount of mass travels to
1- %, for an arbitrary ¢ € [0,1]. All the remaining points x from the support of mg
have a unique destination y.(x, o). Therefore the target measure has the form

m=y.(,0) (moL (R\ {o})) + mo({wo}) (eByop + (1= )dy_oz ), (3.37)

where mg L E denotes the measure mg restricted to a set E and §, is a Dirac mass
concentrated at z. Therefore, as 1) is strictly increasing, Er (o) becomes set valued, i.e.

Er(0) = / ¥ (4. (2, 0)) dmo(z)
R\{zs }

+mo({zo}) [cd) (1 + "2T> + (1= (1 _ "2T) cce0,1]

- / (cz/; (yi(2,0)) + (1 = )¢ (y*(a, 0))) dmg(z) : c € [0,1] p,

R

which can be written more simply as the interval

Er(0) = / ¥ (s (z, 0)) dmo(z), / ¥ (,0)) dmo(2) | |
R R

where we have used the fact that ¢ (y.(z,0)) = ¢ (y*(z,0)) for @ # z,. Again, by
(3.33), we see that Er(o) is decreasing. We claim also that it is maximal, i.e. if (o, 7) is
any pair satisfying

(F—71)(0—0)<0 V5eR,7eé&r(s), (3.38)

then it follows that 7 € Er (o). Thus suppose (3.38) holds. Let o, be a sequence that
increases to o as n — 00. Since 7, = [p ¥ (y«(x,05)) dmo(z) € Er(0y), (3.38) implies

(th = 7)(op,—0)<0Vn =71<m,n

Let us show that lig}rnf Tn < /¢ (y*(z,0)) dmg(x). By (3.36) and the dominated con-

R
vergence theorem, it is enough to show that

liminf ¢ (y.(z,0,)) < ¢ (y*(2,0)) (3.39)

n—-+oo



28 P.J. Graber, A.R. Mészdros / Journal of Functional Analysis 285 (2023) 110095

for all x, and since v is strictly increasing this is equivalent to

liminf y.(x, 0,) < y*(z,0). (3.40)
n—-+oo
(In fact, we get equality, the opposite inequality being trivial.) Let y, = y.(z,0,) for
some fixed x; since o, — o, y, is bounded by (3.36). Without relabeling, we pass to a
subsequence y,, that converges to some y.,. Observe that, since y,, € Y(z,0,) (i-e. y, is
a minimizer of ®(x, -, 0,)),

(I)(x,yna U) = (I)(xvyn»an) - <I>(x7yn, Un) + (I)(x,yna U)
< ®(2,y,00) — P(T,Yn, 0n) + (2, yn,0) Yy, (3.41)

hence, letting n — oo and using the continuity of ®, we get
(2, Yoo, 0) < O(x,y,0) Vy. (3.42)

It follows that yoo € Y (2,0), 50 Yoo < y*(2,0). The claim (3.40) follows, from which we
deduce, in turn, that

7 < liminf 7, < /w (y*(z,0)) dmg(z). (3.43)

We next need to prove 7 > [p ¥ (y(z, 0)) dmg(z). This is entirely analogous. We take
o decreasing to o, then let 7, = [ ¥ (y* (¢, 0,)) dmo(z) and are able to prove, by the
mirror image of the same arguments, that

7 > limsup 7, > /1/) (y«(z,0)) dmo (), (3.44)

as desired. It follows that 7 € Er(o), which is what we wanted to show. Since &r is a
maximal decreasing set-valued function, it has a unique fixed point o € Er (o). From
now on, we take o to be this fixed point.

If m is any equilibrium measure, i.e. if m € Ep(m), then it must have the form (3.37)
for some ¢ € [0, 1]. We now show that the equilibrium measure is unique. In particular
the constant ¢ € [0, 1] in (3.37) is uniquely determined by the equilibrium condition.

(1) First consider the case o = 0. In this case, there is in fact no mass splitting, and the
formula (3.37) is independent of ¢ and completely determines m.

(2) We now suppose o # 0, and we show that the constant ¢ is uniquely determined by
the equilibrium condition. We must have

m) = [ (@) dm(a),
R
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which by (3.37) implies

o= / U(ys(z,0)) dmo(z) + mo ({zo}) (cz/) <1 + %) +(1-c) (1 - %)) .
{zo}e
(3.45)
Since 9 is strictly increasing and o # 0, it follows that 1 (1 + %) and 1) (1 — %)
are distinct. Therefore (3.45) uniquely defines ¢, which in turn uniquely defines the
equilibrium measure m. 0O

Remark 3.12. The proof of Theorem 3.10 relies on a special construction of the data to
make minimizers of the optimal control problem explicit. More abstractly, we have used
the following scheme:

(1) prove that there is a unique equilibrium point o € Er(0);
(2) prove that, for this o, the equation o7 (m) = o has only one solution.

To prove the second point, it was useful to assume a sort of monotonicity property;
in this case, or(m) = fR 1 dm with 1 monotone. Note, however, that this is generally
insufficient; we also needed the fact that for every = but one, there was a unique optimal
trajectory starting from z. Thus one can see that in general, the issue of uniqueness can
be rather complex, but not insurmountable.

4. No implications between conditions

The purpose of this section is to highlight simple examples in which each of the four
conditions given in Section 2.2 might hold, and to show that none of them necessarily
implies any of the others. For simplicity, let us assume L(z,v) = %|U|2, so that optimal
trajectories starting from x are straight lines ending up at a point y satisfying

y+TD,G(y,m) ==z, (4.1)

1

where m is the final measure. If we consider (I + T'D,G(-,m))~! as a multi-valued

function, where I is the identity map, then (2.9) and (2.7) can be rewritten now as
follows. For a given initial random variable Xy whose law is mg, we have

Br(X) = {Y €H:Y € (I+TD,G(-Lx)) " (Xo) a.s.} (4.2)

Similarly, if G(x, m) = g(z,o7(m)), recalling the definition (3.28), we can write

o) = {or(Ly) : Y €MLY € (I+TDug(0)) " (Xo) a5} (4.3)
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In each of the examples below, we construct a function G(x,m) such that at least one
of the conditions given in Section 2.2 holds, but at least one another does not. Through
these formulas we can understand (%) and () as truly being properties of G itself, as
is evident in the case of conditions (LL) and (D). Our task now is to show that these
properties have no necessary implications between them. First of all, we can formulate
the following well-known theorem.

Theorem 4.1. The condition (LL) in general does not imply (D), nor does (D) in general
imply (LL).

Proof. The proof of this result is well-known now in the literature, we refer to [18,19,33]
for the details. O

4.1. (LL) does not imply (1%) or (o)

Here we show that (L) can hold even when neither (L?) nor (o) holds. Actually,
we show that none of the conditions (L?), -(L?), (o), and -(¢) hold. In other words,
changing monotonicity to “anti-monotonicity” does not affect the overall result, which is
that Lasry—Lions monotonicity does not imply either of these other kinds of monotonicity.
We will abide by this same pattern in the following subsection: to say that a condition
does not imply (%) (resp. (o)) is also to say that it does not imply -(L°) (resp. -(7)).

Proposition 4.2. Let d = 1, let f : R — R be given, with at most cubic growth at
too. Let g : R x R — R be given by g(z,0) = f(z)o, o : P3(R) — R is defined as
op(m) = [g fdm, and let G : R x P3(R) = R be given G(x,m) = g(z,op(m)).

(1) Then G is always Lasry—Lions monotone, regardless of the choice of f.
2) Let f(x) = La3. Then G satisfies neither +(L?) nor (o).
3

Proof. (1) this is immediate, using the definition. Indeed,

2

/ (G(m,ml) — G(x,mg)) d(mi — me)(x) = /fd(m1 —mg) | >0.
R R

(2) We note that the first order condition (4.1) becomes
y+ Toy? =z, (4.4)

whose solution set is

—1++1+4Tox
y:
2T o
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whenever 1+4Tox > 0. Let us fix mg to be the Dirac mass §1, and let Xq = 1 a.s. Then
Ep(X) consists of the set of all random variables Y such that for a.s. w, we have

—1+\/1+HATE [1X3] Xo(w) —1—/1+4TE [1X3] X (w)
2TE [$X3] ’ 2TE [$X3]

Y(w) € (4.6)

Now for each o > 0 define X, to be the constant random variable o, and set

—1£,/1+ 4T03
vE = A (4.7)

o 2.3
3T0'

Note that Yai € ET(XU). Observe that

3,/1+ %T03
lim Y~y =2

> 0.
G—0o TO'3

Therefore, for & > o small enough, we have
E [(M+ v

o o

J(Xs — Xo)| = (¥ = ¥,)(6 —0) > (5 - 0)* =E|X5 — X, [,

Therefore (L.?) does not hold. Likewise -(L?) does not hold, because for ¢ > o small
enough

E (V7 —Y) (X = Xo)| = (0 = ¥;H)(E - o) <.

We argue in similar fashion to see that neither (o) nor -(o) holds. Indeed, if we let

+ —1xV1+4To
ya -
2T o

and consider the Dirac masses 6+, we see that each is simply a push-forward of the
initial mass d; onto an optimal point. Thus,

O'T((Sy}) € Qo).
We compute

1 )3 _ +t(1+To)v1+4To —3To —1

or(d,:) = %/xg o, (z) = g(ya 6(To)? = 9% (0).
R

Again we have
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lim ¢ (6) — v (0) = (1+ fl;:f(ng N

Hence for 6 > o sufficiently small, we have

YpT(F) =9y (0) >G5 —0 and ¥ (5)—¢t (o) <O0.
It follows that neither (o) nor -(o) holds. O
4.2. (D) does not imply (L*) or (o)

In this subsection, we will consider cases where G is displacement monotone, i.e.
it satisfied (D). It is well-known (see [19, Lemma 2.6] and [33, Lemma 2.3]) that this
property implies that = — G(z,m) is convex for all m € Z,(R?), and thus (4.1) can be
uniquely solved by

It follows that Erp is a single-valued function; for a given initial random variable Xg
whose law is mg it is given by

Br(X) = (I +TD,G(- Lx)) ™" (Xp). (4.8)

Assuming the structure G(z,m) = g(x,or(m)), we likewise have that Q(o) is single-
valued with

Qo) = o ((I—I—TDwg(.,U))ﬁ_lmO. (4.9)

Equations (4.8) and (4.9) provide explicit formulas for E7 and Q in terms of g (or G).
Let us take d = k = 1. Recall [19,33] that G is displacement monotone if and only if

/ail.G(x,m)v(:c)Q dm(z) + / 02,.G(x,m,y)v(x)v(y) dm(z)dm(y) >0,  (4.10)
R RxR

vm € P3(R), Vv € L2 (R). We suppose G has the structure G(z,m) = g(z,o7(m))
where op 1 Z3(R) — R. Then (4.10) becomes

/ 82, 9(z, o (m))u()? dm(x) + / 82, gz, o (m))v(z) dmfz) / Doz (m, y)o(y) dm(y)
R R R

>0, (4.11)

Vm € P5(R), Vv € L2 (R). In the view of this, we can state the following result.
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Proposition 4.3. Let g : R xR — R given by g(z,0) = $22¢(c) and let o : P5(R) — R

defined as orp(m) = 5 [ > dm(z), where ¢ : R — R is a smooth, non-negative function

that satisfies

(o) > —20¢ (o). (4.12)

Then, G : R x P5(R) — R given by G(xz,m) = g(x,or0(m)) satisfies (D); however, in
general it does not satisfy +(1.°) or +(o).

Proof. With our specific structural condition, the inequality (4.11) that we need to check,
becomes

2

o %/xQ dm(x) /v(ac)2 dm(z) + ¢’ %/:}:2 dm(zx) /xv(x) dm(z) | >0,

R R R R

Vm € Z5(R), Vv € L2 (R). (4.13)

Now we claim that (4.12) implies (4.13). To see this, note that if ¢’ (% Jg 2* dm(x)) >

0 then there is nothing to show because both terms are non-negative. If ¢’ (% Jg 2? dm(as))
< 0, then by (4.12) and the Cauchy—Schwarz inequality, we obtain

0] %/xz dm(x) /v(a:)2 dm(z) > —¢' %/JcQ dm(x) /m2 dm(m)/v(m)2 dm(z)
R R R R R
2o | 5 [« dm@) | | [ao@dm) |

R R

which implies (4.13).
Let us now show that, even if (4.12) and therefore (D) hold, (L?) may not hold. Now
(4.8) becomes

. X,
Br =179 (LE[X?])

We differentiate to get

Xo 1]E[X2]> E[XY].

DY == (1 + T (%E[X2]))2T¢ (2

Let ¢ be any smooth non-negative function on [0,00) that satisfies (4.12) and equals
o1/ on [1,00). Then as long as $E[X?] > 1 we have
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V2TE[XY]E[XY]
(]E[X2]1/2 T \/§T>2 IE[XQP/Q

E {(DET(X)Y) Y] - (4.14)

Choose X (i.e. choose mg with Lx, = mg) and T such that

1 V2(1+T)?
ELxg)* >
Let X = aE[X2]1/2 for some parameter a > /2, and let Y = ]E[)‘(XW. Then we have
. 2T(E[X3])=
E [(DET(X)Y) y] — \/_(7[0])22.
(a + \/iT)
Since

iy V2T (E[X ])% _ T(E[x3))? 51
a—v/2 (a—i—\/_T) \/é(l—‘,—T)Q )

we see that for some X and Y, we have E {(DEﬂX)Y) Y} > 1 = E[Y?]. Thus (L?) does

not hold. On the other hand, by taking « large we can also have E [ DEp(X )Y) Y] <

E[Y?], and thus -(L?) does not hold, either.
Similarly, let us now show that, even if (4.12) and therefore (D) hold, (¢) may not
hold. Now (4.9) becomes

1 x?
Qo) = iﬂzmdmo(z).

Differentiating, we get

/ v*1¢'(0) 3 dmo(z).

2 1+ T¢(o)
Let us choose mg and T such that
T / 2dmg(x) > 1 (4.15)
REAE z*dmg(zx . .
R

Recall that ¢ is any smooth non-negative function on [0,00) that satisfies (4.12) and

1/2

equals o~ n [1,00), which can be made even smaller if necessary. We have
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V(o) = T 3 /wQ dmo(z) Vo >1. (4.16)

2(c/241T)
Since

T T
oy | € ) > gy [ @ 21w o1k @

we have Q'(0) > 1 for o close to 1. It follows that (o) does not hold. On the other hand,
we will also have lim,_, o, Q'(0) = 0, so Q'(c) < 1 for all o large enough. Thus -(o) does
not hold either. O

4.3. (L?) does not imply (LL) or (D)

Assume G(x,m) = f(z)h(m) for some f : R? — R and h : P5(R%) — R. We will
assume that f and h are smooth, and that f is convex. Equation (4.8) becomes

Br(X) = (I+Th(Lx)Df(-)) ™" (Xo)- (4.18)

By the implicit function theorem, one deduces that Ep : H — H is differentiable, and
by implicit differentiation, one derives that

DEp(X)Y = —T (I + Th(Lx)D2f (ET(X))) - Df (ET(X)) E [Dph(Lx, X)Y]
VX,Y € H. (4.19)

Proposition 4.4. Suppose that G(z,m) = f(x)h(m) for some f : R — R and h :
Py (R?) — R. Assume that h is continuously differentiable, and that for some a,b > 0
the following estimates hold:

h(m) > a, |Dph(m,z)| <b, Vme Po(RY),Vz € R (4.20)

Assume that f : R* — R is C? smooth and convex, and that the following estimate holds:
2 b d

D?f(x) > E‘Df(x)] vz € R (4.21)

Then (L?) is satisfied.
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Proof. Using (4.19) and the estimates on h and f, we get

E [(DET(X)Y) -Y]
— _TE ((I+Th(£X)D2f(ET(X))>1Df (ET(X)>> Y| E [Dyh(Lx, X)Y]

<E <<I+Tab
a

<E'<E|YP] vX,YeH,

Df (Er(x)) Dl T‘Df (Br(x)) D ¥I|E [y ]

(4.22)

from which we deduce (L°). O

Remark 4.5. Let us now remark on the applicability of Proposition 4.4. The assumptions
of this proposition, namely (4.21), imply that Df and D?f grow exponentially and are
therefore unbounded.

If one wishes to impose other type of potential assumptions (that are more natural in
the literature on mean field games), such as D, G is Lipschitz continuous or has a linear
growth at infinity, it is still possible to satisfy a conditional version of (L?). Namely, we
fix a bounded set B C R? and consider only those initial measures mg supported in
B, hence only initial random variables Xy with values in B. Then there exists another
bounded set B’ € R? such that E7(X) necessarily takes values only in B’. In this case,
the estimate (4.21) would only be required to hold for € B’, and it would still follow
that (%) holds.

We now construct an example satisfying (L?) but neither (LL) nor (D).
Proposition 4.6. Let d = 1, f(z) = e, and h(m) = 2+ [ sinzdm(z), and assume that
G : R x Z5(R) — R is given by G(z,m) = f(x)h(m). Then G satisfies (L?), but it does
not satisfy (D) and (LL).

Proof. Notice that the hypotheses of Proposition 4.4 are satisfied, with a = b =1, and
thus (L?) holds.
Let us show that (D) does not hold. Recall from [19,33] that (D) is equivalent to

E [(Dgza(x, £X)Y) -Y} +E [E [ngG(X, ch()ﬂ -Y} >0,

for any X,Y € H (where Z stands for an independent copy of a random variable Z € H).
This in this case can be written
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h(Lx)E [(DQf(X)Y) ~Y} +E [DF(X)Y]-E [Dph(Lx, X)Y] >0
or simply
(2 +E [sin(X)D E [e*XYQ] ~E [e*XY} E [cos(X)Y] > 0. (4.23)
For some n € N to be determined, let X be a random variable defined by P(X =
2n7) = P(X = —2n7) = 1/2, and let Y = X/2. Note that sin(X) = 0, cos(X) = 1, and

e XY?2=1as., and

E [e_XY] =E [e_x/z} == (e""+e ") =E [Y] = cosh(nm).

| =

Then (4.23) becomes

2 — cosh(nm) >0 (4.24)

By choosing n large enough, we derive a contradiction. Thus (D) does not hold.
To show that (LL) does not hold is even more straightforward. For this recall from
[19,33] that (LL) is equivalent to

E {]E [ngG(X, ,cX,X)?] : Y} >0, VX,Y € H, (4.25)

which now reduces to
E [e’XY} E [cos(X)Y] > 0. (4.26)

We may use the same example as above, or indeed simpler examples such as X = 0 and
Y =1, to contradict (4.26). O

4.4. (L?) does not imply (o)

Definition 2.10 makes (I.?) a rather strong condition, since it is supposed to be un-
conditional on the initial measure mg and the time horizon T'. It is unclear whether this
necessarily implies the condition (o). In this subsection, we will provide an example for
which (L?) does hold, but only if we restrict to initial measures mgo having uniformly
bounded second moment. That is, we assume that there exists a constant M > 0 such
that [p. |z|* dmo(x) < M? for all initial measures my in consideration. Equivalently, this
means that E[|X0|2] < M? for every initial random variable appearing in the definition

Proposition 4.7. Take d = k = 1 and let M > 0. Let G : R x P5(R) — R defined
as G(xz,m) = g(z,or(m)), with g : RXxR = R, op : ZR) - R and ¢ : R —
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R be given as g(xz,0) = lx2a or(m) = wadm, with ¢ continuously differentiable
satisfying V' (z)? < ﬁd’( ) and Y(x) > 1, for x € R. Then, when restricted to the set

{X e H: E[|X,|*] < M2} Er satisfies (1°) strictly. However, in general neither (o)
nor -(c) holds true on the set of measures {m € Py(R) ¢ [palzl’ dm(z) < MQ}.

Proof. We notice that (4.8) becomes

Er(X) o Tgfw(X)] (4.27)
and (4.9) becomes
Qo) = / " (1 J:“TU) dmo(z). (4.28)
R
Differentiate (4.27) to get
DEr(X)Y = — Xo TE[Y' (X)Y]. (4.29)

2
(1+ TE[%(X)])
We use the assumption E[XZ] < M? to get

_TE[XoYE[W (X)Y] _ TME[(X)’]'/?
(1+TE[p(X)])" (1+T1E[¢(X)])2

E [(DET(X)Y) Y] - E[Y?.  (4.30)

We now use the fact that ¢/(z)? < 53z (z) and ¥(z) > 1 to deduce

TE[(X)]'/?
(1+ TE[p(X)])*

E [(DET(X)Y) Y} < E[Y?) < E[Y?). (4.31)
It follows that (L?) holds (strictly). Note that this is unconditional on T, and the only
condition on my is the moment condition f]R 22 dmg(z) < M2,

We now show that (o) need not hold in general. For this, consider ¢(z) = 1 +
(% — a)2, where a € R is a given parameter. It is immediate to see that v satisfies the
assumptions. We will take mg = dps, a Dirac mass concentrated at M. We rewrite (4.28)
and to get

o) =1+ <2<1jfw) - “)2 = Ylo)= (“ - 2(1+1Ta)> 2(1 +TTU)2'

Direct computation yields that when restricted to the set of measures having second
moments uniformly bounded by M?, rangeor = [1, max{1 + a*,1 + (a — 1/2)?}].
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Suppose that |a| > |a — 1/2|, then we find that lim, 1142 Q' (0) < 1, so for values of
o sufficiently close to 1 + a2, we have /(o) < 1.

Similarly, if |a|] < |a —1/2], we find that lim,_,1 4 (q—1/2)2 (o) < 1, so for values of &
sufficiently close to 1 + (a — 1/2)%, we have /() < 1

This shows that the monotonicity condition (o) fails.

To show that -(o) fails, we need to impose a condition on a and T, e.g.

2(1+17)? 1

T AT (4.32)

a >

Then it follows that ©'(c) > 1 for ¢ > 1 close enough to 1. From here we indeed see
that -(o) does not hold. O

4.5. (o) does not imply (LL), (D), or (L?)

In this subsection we restrict our attention to a special class of data (. First, we have
the following result.

Lemma 4.8. Consider G : R? x 925(R%) — R to have the form G(x,m) = = - or(m),
where op + P5(R?Y) — Re. Conditions (LL), (D) and (L?) are equivalent.

Remark 4.9. In Lemma 4.8, it is crucial that (I.?) be required to hold independently of
the time horizon T'. Otherwise, the equivalence may not hold.

Proof. By definition it is immediate to see that (LL) and (D) are both equivalent to the
condition

(or(m1) — or(mz)) - /xd(ml —mg)(xz) >0 Vmy,my € Py(RY). (4.33)
R4

Now let us consider condition (I.?). The optimal trajectory starting at x finishes at
y=x — Tor(m), so that Ep(m) is a single-valued function

Er(m) = (z — x — Tor(m))ymo.
The lifted version is
Er(X) = Xo—Tor(Lx),
where Xj is any random variable whose law is mg. Condition (L?) becomes
~T (o7(Lx,) — or(Lx,)) - E[X1 — Xo] <E[X; — Xo|? VX, X, € H. (4.34)

For (4.34) to hold independently of T', as required by condition (L?), we must have
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(or(Lx,) —or(Lx,)) - E[X1 — X5] >0 VXy, X € H, (4.35)
which is the same as (4.33). O

Proposition 4.10. Let G be as in Lemma 4.8. Then, in general (o) does not imply any of
the conditions (LL), (D) or (L?).

Proof. For concreteness, we will assume that o7 (m) = [p, 1 dm for some 3 : R — R
Then (4.33) becomes

/z/J(x) d(my — ma)(x) - /xd(ml —mp)(z) >0 Vmy,my € Py(RY). (4.36)
R R
Let us now examine the condition (o). To see this, write g(z,0) = z - ¢ so that
G(z,m) = g(z,or(m)). Observe that
Qo) =or ((z+— x—To)ymg) = /w(x —To)dmo(x). (4.37)
R4
Equation (¢) is now equivalent to
/(’(/J(ZL’*TUl)f’LZJ(‘T*TO'Q)) ‘(0’170'2)(317710(1’) S|0’170’2‘2 v0'1,0'2 GRd. (438)
Rd

For (4.38) to hold without conditions on mg and T, it is necessary and sufficient for v
to be a monotone vector field, i.e.

(¢(01) - ¢(0’2)) . (0'1 — 0'2) >0 Voi,09 € R4, (439)

To see that (4.39) is necessary, in (4.38) let mg = dp be a Dirac mass at the origin,
replace o; with —%ai for + = 1,2 and rearrange to get

(¥(o1) = (02)) - (01 — 02) > —%Im — ool (4.40)

Then let T'— oo to get (4.39). Conversely, if (4.39) holds, then for arbitrary T" and myg
we have

/ (Y(x —Tor) —(x — Toz)) - (01 — 02) dmg(z) <0 Voi,03 € R, (4.41)
Rd
which implies (4.38).
We can now construct a simple example to show that the condition (o) may be
satisfied even when none of the conditions (LL), (D), or (L?) are satisfied. For simplicity
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we assume the dimension d = 1. It suffices to take any increasing differentiable function
¥ such that ¢’ is not constant. In this case the monotonicity of ¢ implies (). On the
other hand, (LL), (D), and (L?) are all equivalent to (4.36), which in turn implies

E[¢/(X)Y]E[Y] >0 VX,Y € H. (4.42)

Let z1,22 € R satisfy ¢'(z1) # ¥'(x2) and ¢'(z1) # 0, and let (X,Y) be equal to
(z1, =" (x1) — ' (x2)) with probability 1/2 and (z2, 2¢)'(x1)) with probability 1/2. Then
E[¢'(X)Y]E[Y] = i (*1/1/(%1)2 — Y (z1)¢ (22) + 2¢/($2)¢/($1)> (¢ (1) — ¢’ (22))

= ) () — ' (22))” < 0.
(4.43)

It follows that none of the conditions (LL), (D), or (L?) are satisfied. O
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Appendix A. Non-uniqueness for an optimal control problem

In this Section, we restate and then prove Theorem 3.1.
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Theorem A.l. Let ¢ : RY — R be a continuous function. Assume that ¢ is not conve,
non-constant, bounded below and has sub-quadratic growth at infinity, i.e. there exist
C >0 and o € (0,1) such that ¢p(x) < C(1 + |z|*T%) for all x € Rd Then there exists
t* > 0 such that for every t > t*, there exists x € R% such that ‘T + ¢(y) has at least
two distinct minimizers.

Proof. Step 1. In this step, we show that there exists ¢* > 0 such that if ¢ > ¢*, then the
functlon l2|” 1+ ¢(x) is not convex. Since ¢ is not convex, there exist g, h € R? such that

$(z0) > 5 (¢(xo + h) + ¢(zo — 1)) . (A.1)

DN | =

Let # € R If ¢o(x) = 20 + ¢(x), then

[R”

$lw0) = 5 (o + B) + (w0 — 1)) = 6(z0) — 5 (9o + 1) + 9o — ) — o

Taking t* large enough, we see that the right-hand side is positive for any ¢ > t*, which
means that ¢ is not convex.
Step 2. From now one we fix ¢t > t* and set ¥ (z) = ‘zl + ¢(z). Note that

2
|z — y|

o 1
. O r Y+ ().

+o(y) = T

2
To show that |I_2—f:/" + ¢(y) has at least two distinct minimizers, it is enough to show that
the same is true of —%x -y +9¥(y). Thus, to reach the desired conclusion, it is enough to
prove the following claim:

There exists a € R? such that a - x + 1(x) has at least two distinct minimizers.

Recall that v is not convex, so there exist 2o, h € R? (the ones found before) such that

U(r0) > 5 (Vo + h) +b(zo — ).
Define

P(x) = (x4 w0) — Y(wo) —b-x, b= Ylwo + h;|;|;b(xo —h)

h. (A2

Then ¢(0) = 0 and (h) = 4)(—h) < 0. Note that z is a minimizer of a - = + ¢ () if and
only if # — x¢ is a minimizer of (a + b) -z + (), so it is enough to prove the claim with
1 replaced with . Thus, without loss of generality, ¥(0) = 0 and 1/(—h) = 1 (h) < 0 for
some h € R%.
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Step 3. Define F : RY — R? as follows. For each i =1,...,d and a € R? let

Fi(a) = min{a cx+Y(x) s Ly > 0}, Fi(a) = Fj(a) — F (a).

(3 7

Note that F is well-defined because a-z+1(z) — oo as|z| — oo, so it suffices to search
for minimizers on a compact set. It is straightforward to see that F' is continuous. We
now claim that it is coercive, i.e.

Fla) -
lim (a) -a =

la]—o0 |a|

(A.3)

For any # € R? we will use the notation x_; to mean the vector in R%~! obtained by
removing the ith coordinate from z. If a; > 0, then a - > a_; - x_; whenever z; > 0
and so

2
fToy GRdl} :inqufM.

|z_|?
2t

7

F(a) > inf¢+min{a_i~m_i + 5
On the other hand, by setting x _; = —ta_; and z; = —sla|, with s > 0 to be determined,
we get the estimate

$2la**  tla_q|?
2t 2

F7(a) < C-29(1 4 t1Fea| e 4 512 |q| ) _gla|* a; +

7

Subtracting these two inequalities, we get

2
Fi(a) > inf ¢ — C - 2%(1 4 £1F%a| " 4 517 q|F)) — %Ial?a + slal” a;.
If a; <0, then apply the mirror image of this argument to get
2
Fi(a) < —inf ¢ + C - 2%(1 4 t1+]a| 1+ 4 '+ |g|IF)e) — %Mga + sla|” a;.

In either case, we can conclude that

2
Fi(a)a; > sla|®a? - <‘inf¢>+0 L2 (1 4 {11 g gl g] (el 4 Ztlaf‘") @i

= F(a)-a> s|a|2+a
2
. (—infqb O a5 o] (0 E|> @la

_ (S —C. 2at1+ad1/2) |a|2+oz

2
) (‘inf 6+ C-2°(1 4 50| 0F)) 4 gl> a"%al
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N F(a)-a

| | > (S—C'2at1+ad1/2)|a|1+a
a

2
— —inf¢+c-2a(1+sl+a|a|<1+a>a)+%|a|2“ a2,

Choosing some s > Ct17%d'/2 and noticing that 1 + a > max {2a, (1 + a)a}, we then
deduce (A.3).

Step 4. As each coordinate function Fj is non-decreasing in the a; variable, the map
F' is monotone. As it is also continuous and coercive, by the Browder—-Minty Theorem
(see for instance [9, Theorem 3]), there exists an a € R such that F(a) = 0, hence
Fi(a) = F; (a) for each i =1, ...,d. We can conclude that all of these values are in fact
the minimum of a2 +1(z), and that there exist minimizers 2% such that +23" > 0. If
any two of these 2d minimizers are distinct, we are done. Suppose they are all identical.
In this case they must all be 0 (every coordinate must be both non-negative and non-
positive). Thus the minimum of a-x +1(z) is attained at 0 and is therefore equal to 0 (as
1(0) = 0). But notice that, since ¥(h) = ¥(—h) < 0, we must have either a-h+(h) <0
or a-(—h)+¥(—h) < 0. This is a contradiction. Therefore, a - x + 9 (x) must have at
least two distinct minimizers, which is what we needed to show. 0O
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