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The kernel of industrial advanced process control (APC) lies in the formulation and solution of model
predictive control (MPC) problems, which specify the controller moves according to the solution of an optimal
control problem at each sampling time. A significant challenge is the online computation for large-scale
industrial systems. As the state-of-the-art APC technology, the Shell-Yokogawa Platform for Advanced Control
and Estimation (PACE) has adopted a systematic framework of handling dynamic optimization of large-
scale systems, where an automatic decomposition procedure generates subsystems for distributed MPC. The
decomposition is implemented on network representations of the MPC models that capture interactions among
process variables, with community detection used to maximize the statistical significance of the subnetworks
with preferred internal interconnections. This paper introduces the fundamentals of such a decomposition
approach and this functionality in PACE, followed by a case study on a crude distillation process to showcase

its industrial application.

1. Introduction

The deployment of advanced process control (APC) in the chemical
process industry since the 1970s has brought significant benefits (Qin
and Badgwell, 2003). An APC platform adopts a model predictive con-
trol (MPC) formulation to handle multi-input-multi-output constrained
systems. That is, the control decisions are made according to the solu-
tion of an optimal control problem, where a cost function is minimized
subject to model dynamics and constraints (Rawlings et al., 2017). As
such, APC allows stable process operations, increases economic profits,
reduces carbon emissions, and decreases the frequency of alarms and
operator intervention. Shell’s heralding APC technology, from Dynamic
Matrix Control (DMC) (Cutler and Ramaker, 1979), Quadratic Dynamic
Matrix Control (QDMC) (Garcia and Morshedi, 1986), Shell Multi-
variable Optimizing Control (SMOC) (Marquis and Broustail, 1988),
SMOCPro (Cott, 2007), to the Platform for Advanced Control and
Estimation (PACE) developed in alliance with Yokogawa (Amrit et al.,
2015), has been continually evolving with advances in computing and
software capabilities.

The integration of mass and energy in process designs results in
the common existence of large-scale chemical plants comprising of
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interconnected units, also referred to as process networks (Baldea and
Daoutidis, 2012). A key challenge to the control of such large-scale pro-
cesses is that a centralized paradigm of optimizing over the monolithic
system is undesirable, either due to the computational time needed
by the optimization solver or due to its inflexibility. On the other
hand, simply partitioning the system into multiple parts and controlling
each of them as if they do not interact with each other (decentralized
control) usually will not retain the benefits of a system-wide MPC.
Therefore, decomposition and coordination are needed to achieve large-
scale optimal control decisions on the basis of interacting subsystems.
This idea can be traced back to Morari et al. (1980); in recent research,
this frequently goes under the name of “distributed MPC” (Scattolini,
2009; Christofides et al., 2013).

We also remark that recently, pre-training neural networks as an ex-
plicit MPC solver (Katz et al., 2020; Chen et al., 2022) has been consid-
ered as a useful approach to ease the online dynamic optimization. The
work of Kumar et al. (2021) applied neural-explicit MPC to a process
at realistic industrial scale with orders-of-magnitude computational
acceleration. It will be of interest to investigate the synergy between
distributed control (which remains model-based, requires little tun-
ing, and keeps the deployment workflow) and data-driven approaches
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(which is semi-model-based or model-free, depends strongly on hyper-
parameters, and tends to restructure the control technology) (Tang and
Daoutidis, 2022a).

Two key questions to the implementation of distributed MPC are
how to decompose the process model and how to coordinate the subsystem
controllers. These two aspects are tightly interconnected and have a
complex effect on the computational and control performance of the
system, which are overall open questions for future investigations.
Ideally, the coordination scheme should be designed in such a way that
guarantees the convergence to the monolithic optimum regardless of
the decomposition configuration, provided sufficiently many iterations
among the distributed controllers. In a more realistic setting for large-
scale systems, as very few iterations can be allowed for each sampling
time, decompositions that results from different couplings among sub-
systems should have a major effect on the convergence speed and thus
the practical control performance obtained under early termination.
Furthermore, while some distributed optimization algorithms (espe-
cially the primal-dual ones Sun and Sun, 2019; Tang and Daoutidis,
2022b) guarantees the convergence to stationary or local optima in the
presence of nonconvex structures, some commonly used coordination
schemes such as those based on block coordinate descent cannot pro-
vide this guarantee. In such a case, the dependence of performance on
decomposition has been disclosed in the literature (Pourkargar et al.,
2017, 2018; Pourkargar and Jogwar, 2021).

In this paper, we focus on the decomposition problem. Specifically,
to best maintain the control performance under decomposition and
reduce the computational time, the subsystems should be configured in
such a way that the overall interactions across the subsystems are much
weaker than inside. To this end, a network-theoretic framework is used:
the structure of the dynamic system to be controlled is first represented
as a network (graph) and a community detection procedure is applied
to the network representation to generate a desirable decomposition.
This approach was proposed by the authors of this paper and their
coworkers in their academic research (Daoutidis et al., 2018, 2019;
Tang et al., 2023), and this paper reports its implementation on our
industrial process control platform with a refined community detection
algorithm that is more suitable in a practical setting. By developing
this decomposition feature, the subsystem configuration is assigned
automatically based on the plant model, thus accelerating the APC
deployment workflow and avoiding the unsystematic or erratic manual
decompositions.

In this paper, we give a conceptual introduction of the design of
our PACE technology and briefly review the relevant literature to eluci-
date the fundamental ideas underlying the decomposition strategy. We
outline how community detection has been successfully implemented
in PACE, and also use a challenging problem from our petrochemical
processes to demonstrate the benefit of decomposition and coordination
in handling large-scale systems. We believe that this exposition will,
from a specific angle, contribute to better appreciation of the contem-
porary theory and practice of APC, of which Shell-Yokogawa’s PACE
technology is representative, as well as the benefits of synergy between
industry and academia towards shortening the gap between theory and
practice.

2. Literature review on automatic decomposition

The fact that chemical processes are multi-input-multi-output
(MIMO) systems has motivated the development of input-output pair-
ing methods in process control theory for a long time. The idea
of designing multiple PID controllers for MIMO systems considering
the interactions among inputs and outputs dates back to Rosenbrock
(1962). The idea of relative gain array (RGA) (Bristol, 1966) has
become an influential approach in process control practice and has
been extended to a family of approaches, known as interaction analy-
sis (McAvoy, 1983). From a robust control perspective, the interactions
among the single-input-single-output (SISO) loops can be viewed as
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model uncertainties whose effect on closed-loop stability and perfor-
mance can be quantified (Grosdidier and Morari, 1986; Yu and Fan,
1990). Hence, interaction analysis has been used to develop guide-
lines for synthesizing base-layer control loops (typically controllers
in the PID form) on plantwide scales (Ng and Stephanopoulos, 1996;
Skogestad, 2004).

In parallel to the interaction analysis research in the process con-
trol community, many works in the context of decentralized control
of nonlinear systems focused on determining graph decompositions of
state-space models (Michel et al., 1978; Vidyasagar, 1980). These stud-
ies are especially interested in the closed-loop Lyapunov stability of
the entire system under separate controllers for subsystems. Graph-
theoretic concepts such as connected components and acyclic directed
graphs were found to be relevant (Siljak, 1991). However, due to the
structural complexities of chemical processes (with large models and
recycle streams), these methods are restrictive for realistic process con-
trol applications, although in principle, the desired decomposition for
plantwide optimal control should indeed be a graph-theoretic partition
on the state space. Hence, for a significant period after distributed MPC
was proposed (Camponogara et al., 2002), the decomposition of large-
scale systems in the sense of partitioning into several MPC subsystems
had not been well addressed (Christofides et al., 2013).

The emergence of network science has brought the perspective of
understanding the organization of large-scale networks by investigating
their macroscopic, statistical, topological features and the dynamics
associated with them (Barabasi, 2016). Community structure is a typ-
ical block structure existing in many biological networks (Girvan and
Newman, 2002), which refers to blocks with significantly denser inter-
connections inside these blocks than between them. As pointed out in
a number of studies (Tang and Daoutidis, 2018b; Constantino et al.,
2019; Constantino and Daoutidis, 2019; Tang et al., 2019), the benefi-
ciary role of community structures in the control of networks lies in that
they lend themselves naturally to the adoption of modular controllers
which promote the feedback sparsity (i.e., reduce complexity) while
preserving the control performance. This paves the way for a systematic
framework for large-scale process decomposition. That is, a network
representation is first constructed for the system and then community
detection is applied to generate the subsystems.

A versatile range of network representations of dynamical systems
has been proposed, which flexibly capture the interactions among
process variables under different characterizations. These include di-
rected graphs (digraphs) for the interactions among manipulated in-
puts, states, and controlled outputs (Jogwar and Daoutidis, 2017) and
bipartite graphs for input-output relations, which can be weighted
by appropriately defined interaction measures (Tang and Daoutidis,
2018a; Tang et al., 2018b). In Tang et al. (2018a), network repre-
sentations were proposed to directly capture the variable-constraint
interactions in the optimization formulation of the MPC problem, an ap-
proach that is applicable to the decomposition of optimization problems
in general (Allman et al., 2019; Mitrai and Daoutidis, 2020).

A wide range of algorithms has been proposed in the vast literature
on community detection (Fortunato and Hric, 2016). The mainstream
of community detection algorithms considers the problem as that of
maximizing a metric called modularity, which is interpreted as the
difference between the intra-community interconnection density and
such a density in a randomized network (Newman and Girvan, 2004).
According to Newman (2016), the modularity metric can be derived
through a generative probabilistic modeling approach as equivalent to
the log-likelihood function. As such, modularity captures the statistical
significance of community structures. In the works on network de-
composition for distributed control mentioned in the above paragraph,
two algorithms of modularity-based community detection were mainly
used. These include the spectral algorithm of Newman (2006) and the
Louvain algorithm (also known as fast unfolding) (Blondel et al., 2008).

The main difference between the spectral algorithm and the fast un-
folding algorithm is the path through which the maximum of modular-
ity is searched for. Since the decomposition problem is combinatorial,
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both algorithms are local and path-dependent. The former algorithm
is divisive — it iteratively splits larger communities into smaller ones;
specifically, in each iteration, a large community is tentatively cut
into two (bisectioned) with maximal modularity increase, and such
bisectioning is repeated until the modularity is no longer increasing.
The latter algorithm is conducted in the reverse direction and is thus
agglomerative — it is initiated from single-node clusters and in each
iteration merges smaller communities into larger ones. Compared to
the spectral method, the Louvain algorithm tends to reach at a higher
modularity value and be more computationally efficient (Blondel et al.,
2008). However, for application in distributed control, the subsystems
are usually not orders-of-magnitude smaller than the entire system; it
is unlikely that the number of subsystems to be used is very large,
e.g., larger than 20. Therefore, the divisive algorithm results in a shorter
path, while the agglomerative algorithm has a longer one where the
later steps are more important than the earlier iterations. Moreover,
the Louvain algorithm often generates extremely small and discon-
nected communities that are associated with very small incremental
benefit in modularity (Traag et al., 2019). In this work, we adopt
Newman'’s spectral algorithm and seek to refine it, as will be explained
in Section 4.

The advantage of community detection-based network decompo-
sition has been well demonstrated in the literature through simula-
tions (Pourkargar et al., 2017, 2019). In these studies, the subsystem
controllers in a distributed MPC scheme iterate their decisions accord-
ing to a block coordinate descent algorithm in sequential or parallel
orders. It was noted that community-based decompositions tend to
result in significant decrease in computational time without sacrificing
the control performance significantly. With these observations, we
assert that community detection can be leveraged as a method of
decomposing large-scale systems in PACE.

3. Overview of Platform for Advanced Control and Estimation
(PACE)

In this section we give a high-level overview of our current tech-
nology platform, PACE, highlighting the distinctive features that dif-
ferentiates it from its counterparts. Fig. 1 shows a historical roadmap
of APC technology since the 1970s. The development of PACE since the
2010s at Shell is driven by the needs of improving the performance and
operational acceptance, facilitating migrations and new deployments,
and reducing the cost and time for software maintenance. So far, PACE
has been applied to most of the refining, chemical, liquified natural
gas, and gas-to-liquid plants in Shell as well as processes outside Shell
through partnership with Yokogawa.

In a nutshell, PACE is an APC platform for all-in-one solution of data
analysis, system identification and model building, model calibration,
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Fig. 2. Illustration of PACE model structure.

disturbance estimation and Kalman filtering, and static, dynamic, and
economic optimization, and automatic step testing. The PACE software
is divided into a “Design-Time” part, responsible for offline procedures
including identification, controller design, simulations, and a ‘“Run-
Time” part for online controller configuration and tuning, step tests,
and performance reporting (Carrette, 2020).

3.1. Modeling and step testing

PACE enables the modeling of rich cause-and-effect structures. As
illustrated in Fig. 2, the skeleton of a PACE model is constituted of
dynamics (transfer functions) from manipulated variables (MVs) and
disturbance variables (DVs) to intermediate variables (IVs) to process
output variables (POVs). The involvement of IVs allows the modeling
of complex systems convoluted from simpler transfer functions, easier
maintenance, and the feedforward of non-output measurements as
calibration contributions. It also facilitates the incorporation of base-
layer control (BLC) models, ranging from simple BLC loops, saturated,
coupled, to cascaded ones, in a highly flexible manner. Nonlinear
blocks can also be specified for POVs based on equations.

The step test is a crucial yet expensive prerequisite procedure of
collecting the necessary data for model identification. In PACE, the
step test becomes automated with an internal package integrated with
control, thus simplifying the transition between control and automated
testing. The exciting signals for the auto-step are designed such that
the information content contained in data is optimized. During the
step test, constraints are well managed, which is combined with the
planning of subsequent experiments.

3.2. Controller tuning and calibration

The way that static and dynamic optimization problems are handled
in PACE improves both the operational flexibility and accuracy. First, in
static optimization, multiple economic functions (EFs) specified by lin-
ear or nonlinear equations, together with controlled variable (CV) spec-
ifications, can be user-defined with a hierarchy of priorities. Second,
the dynamic optimization formulation is generated from the controller
tuning parameters. Instead of tuning the weighting matrices (Q, R) as in
usual MPC, the PACE users specify speeds of MV response, CV response
and dynamic tracking of the EFs. Such a tuning strategy allows more
consistent and accurate responses, management of overshooting, and
also adaptation to activation/inactivation of CVs. Moreover, a state-of-
the-art commercial nonlinear optimization solver replaces traditional
linear programming (LP) solvers for handling nonlinear processes and
obtaining the rigorous optimal solution.

To achieve offset-free control (Muske and Badgwell, 2002; Pan-
nocchia and Rawlings, 2003), the optimization formulations involve
a calibration mechanism, which accounts for and aims at eliminating
the discrepancies between model prediction and actual POV values.
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PACE calibration is a combination of (i) event detection for detecting
fast significant disturbances and (ii) Kalman filter for handling usual
white noise sources (with the filtering speed tuned by the user). The
calibration is furthermore de-tuned for robustness, by assuming un-
certainty factors on the transfer function models. In its unmeasured
disturbance modeling, PACE incorporates both input and output dis-
turbances, whose shape parameters are tunable. Such flexible designs,
along with the use of IVs in the model structure, allows the calibration
algorithm to better capture the disturbances than the classical bias
estimation and update scheme (e.g., Cutler and Ramaker (1979)).

3.3. Subsystems in PACE

At the present time, equipped with the decomposition and coordina-
tion strategies, PACE is developing its capability of handling large-scale
challenging problems. In PACE, the configuration of subsystems can
be either directly and manually user-specified (i.e., the user assigns all
MVs and POVs or part of them into several subsystems), or preferably
determined automatically by community detection. With the subsystem
configuration specified, the process variables and model blocks are
contained in the subsystems, and hence the optimization variables,
constraints, and objectives in the dynamic optimization problems of
the subsystems are automatically formulated. The distributed MPC
essentially applies an iterative algorithm where in each iteration, the
subsystem problems are solved through parallel computing. For online
implementation, the computational time allowed for distributed opti-
mization computation is highly restricted. In practice, we are typically
limited to a single or a few iteration in every sampling period. The
solutions obtained from such early termination should be tested before
commissioning, and ad hoc measures can be taken to ensure that the
closed-loop dynamic behavior is satisfactory.

The iterative algorithm that we currently use involves the following
treatment:

+ For the dynamic optimization problem of each subsystem, the MV
and CV weights are tuned based on the subsystem model alone.
In addition, quadratic terms associated with the shared variables
(i.e., the variables that affect other subsystems) are added to
the subsystem’s objective function, and such quadratic terms are
tuned as if they are CVs.

After each iteration, the solutions associated with the predicted
trajectories of the shared variables are fed forward to their down-
stream subsystems (i.e., those that they affect), as if such shared
variables were DVs. In this way, the optimization problems are
restricted to the variables inside subsystems.
The convex combination scheme of Stewart et al. (2011) is used,
e., if (1)l**1 is the optimal solution for MV ; at predicted time
t in iteration k + 1, only a fraction g; € [0, 1] of the update will be
actually taken:

2,0 = 2,0 + g, (a7 — 4,0 . €h)

Here, the coefficients f;, dependent only on the MV indices, are

rationally chosen based on a Hessian approximation procedure.
In the literature, relevant progress has been made for real-time it-
erations in centralized MPC (Diehl et al.,, 2005; Yang and Biegler,
2013) and acceleration techniques in distributed optimization (Tang
and Daoutidis, 2022b, 2021). For PACE, we are developing a new
scheme of coordinating subsystem controllers that aims to account
for the effect of each controller’s actions on other subsystems. This
helps to use few iterations to reach a close-to-centralized coordinated
performance under automatic decomposition. It is beyond the scope
of this paper to disclose its details. We believe that the development
of more efficient and real-time implementable distributed optimization
algorithms with guaranteed performance is an important direction of
future research.
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4. Community detection in PACE

In the above sections, we have reviewed the literature about decom-
posing large-scale systems through community detection in networks
and introduced the main technical features of PACE. Now we present
how automatic decomposition is realized in PACE.

4.1. Network representation

As described previously, the main body of the model structure in
PACE comprises model blocks (transfer functions) from MVs, IVs, and
POVs. This naturally allows the construction of a directed network G =
(V, €), where the set of nodes V = {1,2,...,n} represent the variables,
and each directed edge (i,j) in the edge set & corresponds to the
model block from variable i to variable j, if such a model block exists.
The topology of the directed network can be represented by a sparse
adjacency matrix A, where its (i, j)th entry a; =1 if (i,j) € £ and a; =0
if (i, j) ¢ €. In our current implementation, we do not assign the edges
with weights due to the following reasons.

1. During the system identification procedure, the variables should
have been properly re-scaled, and the weak interactions are
pruned. In other words, the system identification procedure is
responsible for scaling and discriminating interaction strengths.

2. The decomposition should be such that the subsystems have
minimal number of interactions among them rather than total
weights, since the number of coupling interactions may require
more iterative coordination and thus affect the computational
performance more significantly.

3. There does not exist a rigorous and clearly defined way of defin-
ing edge weights that guarantees any property of the resulting
distributed MPC, although a few reasonable heuristic metrics
exist, e.g., in Jogwar (2019), Pourkargar and Jogwar (2021) and
Wang et al. (2023). In PACE, we tested a few different options of
edge weighting, none of which showed a clear advantage over
undirected network. We are aware that such a conclusion may
vary with different operating conditions or system models and
controller tuning.

We also perform some pre-processing steps on the network represen-
tation. These procedures are necessary to ensure that the complexity
(i.e., the internal heterogeneity in the nature of variables and their
interactions) of the PACE model is resolved before the decomposition
and that the result can be better understood and accepted by the user.

« The variables that do not participate in the dynamic optimization,
including disturbance variables and inactivated MVs, are removed
from the network and unassigned in the end. If such removal
results in isolated nodes (which does not connect to any other
node), then the isolated nodes are not considered for community
detection, but only assigned to a separate subsystem afterwards.
For each BLC loop, the variables involved should be assigned to
the same subsystem. Hence, these BLC variables are considered
as indivisible groups and first agglomerated as a single node.
The same is carried out for the variables involved in each static
nonlinear transformation.

4.2. Modularity and resolution parameter tuning

The community detection in a directed network aims at maximizing
the modularity (Leicht and Newman, 2008), which is a function of all
possible partitions g = (g;, ..., g,):

WL Ktk
1
Q(g)=22—<a,-,—y—’>ag,gj, @
- m m
where k" is the out-degree of node i, k7 is the in-degree of node j, and
m is the total number of edges:

n

n n n
kK=Y a; k=Y a;, m=Y ki=Yk. 3)
i=1 j=1

j=1 i=1
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g; is the index of the community to which node i belongs, and § is
Kronecker’s delta, i.e., 8, g = 1 if nodes i and j are in the same
community and 0 otherwise. Thus, k,frkjf /m is regarded as the expected
number of edges between nodes i and j in a randomized network and
therefore a “standard threshold” whose difference with g;; is the extent
to which these two nodes are preferred to be in the same community.
The parameter y > 0 here, called the resolution parameter, offers a tuning
of this threshold (Reichardt and Bornholdt, 2006). When y is increased,
the community detection tends to find a larger number of smaller
communities, while smaller y promotes a coarser decomposition.

For the user’s convenience, we allow the user to simply specify
the desired number of communities K and an algorithm is used to
adaptively find the resolution y such that the resulting decomposition
is into K subsystems.

« If it is known that at y; and y,, the maximization of Q leads to

K, < K and K, > K communities, respectively, then assuming
that In K and Iny have a linear relation approximately,' we update
y by

InK, -InK InK -InK,

Iny = ny; +
v InK, —InK; n InK, —InK;

ny;. ()]

At the first iteration, y = 1 is used. When either y, and y, is
not known (without loss of generality, say that only y, is known,
giving a K; < K), then by assuming that K « y, we update the
resolution parameter by

K

= —y,. 5
4 K]J’l )

After the update, if under y the number of communities is exactly
K, then we terminate the iterations. Otherwise we update y, and
K, or y, and K, according to the rules above.

Empirically, we found that the above rules allow us to find the correct
resolution parameter for a given K within 10 iterations.

4.3. Spectral algorithm for recursive bisectioning

Under a given y, the maximization of modularity Q follows a recur-
sive bisectioning procedure. Defining ¢;; = a;; — yk;'k]T /m, as pointed
out in Newman (2006), when a community S is partitioned into two
sub-communities S, and S_, the resulting modularity increase is

40(s) = % XD (sis;=1)¢; =

i€S jes

1 (STCSS - eTCse) s 6)
m
where s = (s;);es, 5; = +1if i € S, and —1ifi € S_, Cg = [¢;]; jes, and
e is a vector (of length |S|) whose all elements are equal to 1.
To maximize AQ(s) with respect to s € {—1,1}I5], the following
techniques are used.
+ An approximate solution s = sign(ul(C;)) is taken first, in which
C; =(Cg + C;) /2, v,(-) refers to the unit vector associated with
the largest eigenvalue of the matrix, and sign(-) is element-wise
sign function.
+ The vector s is further fine-tuned by tentatively flipping the sign
of each component, and the flipping with the maximum increase
in AQ is accepted each time.

1 According to the statistical interpretation of Newman (2006), the resolu-
tion y should be chosen as y = (v, — w,)/(Inw, — Inw,), where the “propensity
parameters” @, and w, are such that if g, = g;, the expectation of g; is
wok; k7 /m, and if g; # g;, the expectation of a;; is @,k k} /m. Suppose that we
have K communities, and the fraction of edges across communities is ¢ < 1,
then we should have w, + (K — )w;, = K and (1 — ¢)/w, + ¢/w, = 1, which
results in y ~ K/In(1/€). Therefore, y is proportional to K, i.e., Iny and In K
has a linear relation.
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In the end, if the maximized AQ(s) is above a threshold value a = 1073,
then the bisectioning is accepted. Such a threshold value prevents the
production of extremely small communities.? Also, to guarantee the
numerical stability of fine-tuning, we require that for the sign flipping
to be accepted, its resulting modularity increase must be at least a/10
and the total number of such flippings in each bisectioning should not
exceed the number of nodes in S.

4.4. Connectedness restoration and load balancing

It is possible that after the spectral method, the communities found
are not connected inside themselves, in which case the subsystems
cannot be considered as physically coherent portions of the process.
Also, the sizes of communities may differ significantly, which is un-
desirable from the perspective of parallel computing in distributed
MPC. Therefore, we carry out two major post-processing steps after
modularity maximization.

First, in every community detected, a depth-first search (DFS) is
performed to characterize all its connected components (i.e., subgraphs in
which every pair of nodes are connected by at least an undirected path).
Except for the largest connected component, which will preserve the
identity of the community, every remaining connected component is
moved into another community. This destination community is chosen
as the one with which the connected components have most connec-
tions, and in the case that the connected component has no connection
with any other community, i.e., is isolated, a new community is created
for the isolated component. Such adjustment steps are repeated until no
community has more than 1 connected components. An illustration of
this connectedness restoration step is given in Fig. 3(a).

Load balancing is then performed by recursively merging the small-
est community into a larger one.

» Suppose that before balancing, the largest community has »n;
nodes. Then we consider the “effective” number of communities
as K, = |n/n;| and merging should be done for the communities
smaller than the K, th one.

For each small community to be merged, we look for a destination
community whose size, when added to the size of this small
community, is closest to n/K,.

We also require the two communities to merge to be connected.
If a community does not connect to any other one, then this
criterion is not applied.

This procedure is illustrated in Fig. 3(b). Note that the number of
communities K under the y should be comprehended as the K, here
after load balancing.

The post-processing steps have a minor effect on modularity, typi-
cally resulting in a small decrement within 0.02. This is in accordance
with the observation in network science studies that by perturbing
the community structures on the macroscopic level, there are often
degenerate community configurations that correspond to similar mod-
ularity values (Good et al., 2010). The study of Riolo (2020) revealed
that when such degeneracy appears, the network can have essential,
lower-scale community structures that are not affected by high-level
rearrangements, although such true communities are not explicitly and
directly exposed by modularity maximization. We implicitly accept
such a postulate as the modularity-based community detection ap-
proach is adopted. A deeper analysis on the consistency of community
landscape and its relation with the network properties can be found
in Peixoto (2021), and robust community detection has been the theme
of some more recent studies, e.g., Silva et al. (2022).

2 Consider a large network with n nodes in which there are « - n nodes
(a < 1) not connected to the rest of the network. Assigning this group of nodes,
denoted as S, into a separate community leads to 40 = ¥, ¥ o kf*kjf /m? =
mg/m. Here mg is the number of edges inside S. If the edge distributions in
and out of S are uniform, then 40 = mg/m ~ a.
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Fig. 4. Model structure of the crude distillation column process. (A black pixel stands
for the presence of a model block. The dashed lines separate non-IVs (upper among
inputs, left among outputs) and IVs (lower among inputs, right among outputs).

5. Case study

For the purpose of illustration, we consider a crude distillation
process for a refinery, whose model contains 363 inputs, 381 outputs
(among which there are 246 intermediate variables that are both inputs
and outputs), and 801 model blocks, as visualized in Fig. 4. A full
formulation of its dynamic optimization problem contains 875972 rows
(constraints) and 828 016 columns (variables), with 2430226 non-zero
relations between the variables and constraints. To our best knowledge,
there has not been any work in the literature that addresses distributed
MPC on a comparable plantwide scale.

As a result, the state-of-the-art optimization solver used in PACE
takes 35.4 s to solve a single centralized dynamic optimization problem
on average, compared to the sampling time of 60 s. Such a controller
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Y

(b) A 5-subsystem decomposition

Fig. 5. Automatic decomposition of a crude distillation process. (Different colors
correspond to communities.)

implemented for online operations has been well known to suffer from
severe delays and also frequent shut-off due to computational timeout.®

The directed network of variables that represents this process sys-
tem is shown in Fig. 5(a), with 476 nodes and 787 edges. An intuitive
glance at the network topology suggests that there exists community
structure in the process, hence decomposing such a system is desirable.
By examining the computational time and control performance under
different numbers of communities K, we empirically set K = 35,
which results in a good trade-off. The resulting decomposition into 5
communities is shown in Fig. 5(b). The edges lying across communities
is 31, which is 3.9% of the total number of edges, and the number of
inputs impacting outputs in other subsystems is 29, which is 8.0% of the
total number of inputs. These indices demonstrate that the subsystems
are indeed weakly coupled.

After the decomposition by community detection, a simulation is
run for the closed-loop system. The simulated scenario considers dis-
turbances happening on several MVs and POVs. The trajectories under
centralized MPC and under distributed MPC exhibit highly similar
behaviors, which is omitted for brevity here. Before using automatic

3 The average computational time mentioned here was collected under the
simulation of a typical normal operating condition. Occasionally, due to the
parameter changes in the dynamic optimization problem, the computational
time can reach over 70 s.
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Table 1

Outcomes of automatic decomposition on benchmark processes.
Process Crude distillation GTL Hydrocracking
Number of MVs 117 68 25
Number of CVs 381 412 117
Computational time for centralized MPC (s) 35.4 16.0 10.0
Subsystems 5 4 4
Computational time with decomposition (s) 6.1 3.9 3.3
Acceleration factor 5.8 4.1 3.0

decomposition, the site engineers manually assigned a 7-subsystem
decomposition, which takes over 20 s on average for each dynamic
optimization, as the subsystems are not well balanced. The simulation
trajectories under the manual decomposition also deviates from those
under centralized control. We are therefore inclined to believe that
merely applying domain knowledge is often not sufficient to determine
a desirable decomposition within a complex plant. In contrast, with
afore-mentioned automatic decomposition, the average computational
time for solving the dynamic optimization problem at each sampling
time is now reduced down to 6.1 s,* with an acceleration factor of 5.8.

Remarkably, such significant improvement in the computational
performance of dynamic optimization is also observed in several other
benchmark processes of Shell, including a gas-to-liquid (GTL) process
and a hydrocracking process. Their model information and computa-
tional time results are shown in Table 1.

6. Conclusions

In this paper, we focus on the idea of automatic decomposition, which
is necessary for structured, systematic solution of dynamic optimization
problems arising in the MPC of large-scale systems. After a literature
review on the evolution of relevant academic research, we present
the successful implementation of an automatic decomposition method
in the Shell-Yokogawa’s new-generation APC platform — PACE, and
show its advantages through an application to a real-world large-scale
process. We thus demonstrate how this fundamental idea of decomposi-
tion, originating in the early ages of APC and enhanced with very recent
advances in academic research, is shaping and empowering modern,
leading process control technology.
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