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A B S T R A C T

This paper provides a perspective on the major challenges and directions in academic process control research
over the next 5–10 years, and its industrial implementation. Large-scale systems control and identification,
nonlinear model-based and model-free control, and controller performance monitoring and diagnosis are
discussed as major directions for future research, along with control technology and industry workforce
challenges and opportunities.
1. Introduction

This perspective will focus on assessment of the current state-of-
the-art and promising future research and development directions on
the control of process systems (chemical and petrochemical plants, oil
refineries, biorefineries, pharmaceutical manufacturing plants, etc.). As
we look back, the following major themes of academic process control
research emerged over the last three decades:

• Nonlinear Control
• Model Predictive Control (MPC)
• Integration of operations and control

he advances have been impressive. Model-based nonlinear controller
ynthesis and estimation have reached a level of technical maturity that
as hard to imagine 30 years ago. Optimization is firmly embedded
n advanced process control (APC) methods. Process and controller
erformance monitoring methods have proliferated. The concept of
nterprise-wide optimization (Grossmann, 2005) has tied advanced pro-
ess control into a wide and holistic paradigm of optimizing integrated
ystems up to the supply chain level. Such progress is largely the
esult of higher computing and communication capacity, as well as the
doption of optimization algorithms and data analytics in the modeling
nd decision making of process systems engineering, including system
dentification, MPC, scheduling, planning, and supply chain problems.
On the other hand, linear MPC technology continues to be the

ackbone of industrial control technology for more than three decades.
here has been progress towards incorporating nonlinear components
n plant-wide dynamic models, incorporating more efficient solvers for
ptimization problems at the advanced control layer, and implementing
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E-mail address: daout001@umn.edu (P. Daoutidis).

improved identification/estimation and controller performance mon-
itoring methods. However, nonlinear modeling at a plant-wide scale
remains a far-reaching goal, and so does the implementation of cen-
tralized nonlinear MPC technology. The quest for new technologies that
will lead the next wave of innovation and enable step changes rather
than incremental improvements is wide open.

Evidently, the gap between academic research and industrial needs
persists and may even be growing. Academic research aims to push the
technical boundaries towards improving performance and providing
robustness and safety guarantees; it does so by employing increasingly
sophisticated mathematical methods and formulations. Industry may
be less interested in getting that next couple of percent of optimality.
What is typically observed in the industrial pursuit of ‘‘digitalization’’
or ‘‘digital transformation’’ is a focus on how to implement and sustain
solutions in an automated fashion and reduce reliance on available ex-
perts. As shown in a recent paper from the glass industry, the ‘‘adaptive
enterprise’’ strategy mainly focuses on adopting in-Cloud data storage,
data reconciliation and cleaning, and advanced operation management
systems (Jiao et al., 2022).

Moving forward, major business and industry trends include:

• Increased emphasis on environmental sustainability, which puts
greater demands on process control systems to enforce environ-
mental regulations, with minimum overhead cost.

• Supply chain uncertainty putting a greater emphasis on automa-
tion to maintain optimality under dynamic conditions in raw
material quality and availability.

• The (re-)emergence of artificial intelligence and machine learning
which holds renewed promise for improved data utilization across
industrial applications.
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These trends further reinforce what have been the key drivers for
process control research and development over the last few decades:

• Scale
• Nonlinearity
• Data
Large scale and complexity continue to be key features of industrial-

cale process control problems, due to material and energy integration
ithin a plant, increased integration of operations (planning, schedul-
ng, real-time optimization) with control, and integration at the busi-
ess/enterprise level (systems-of-systems). Dealing with them requires
he solution of large-scale optimization problems, often with discrete
nd continuous variables. The solution of such problems to optimality
nd at scale remains a challenge.
Nonlinearity becomes especially important when the plant operates

ver a wide range of conditions, for example due to transitions between
ifferent operating conditions dictated by supply chain decisions. Such
ransitions will become more prevalent as the timescales between
lanning/scheduling and real-time control continue to converge. This
hould increase in the future as supply chain challenges are likely to
emain.
Finally, the big data revolution we are currently witnessing across

cience, technology, and society at-large is bound to challenge our
hinking on the role of data in automatic control and motivate intense
esearch in this direction. More data may become available through im-
roved sensing capabilities but the quality and information carried by
he data may not justify the extra cost of obtaining it. Several additional
uestions arise: What will be the role of data in process modeling? How
an data fuse with fundamental models for control and optimization?
ow can we quantify stability, performance, and robustness (the cor-
erstones of control) within a data-driven (or data-assisted) modeling
nd control framework? How are we taking advantage of the strides
eing made in Artificial Intelligence to improve the robustness and
ustainability of control systems? These questions will undoubtedly
rame future research.
This paper will provide a perspective on future developments that

ave the potential to address these challenges. As exemplified by the
erging of the FOCAPO/CPC series since 2012, the continued fusion
f optimization and control will be a key enabler to this end. Examples
here such a fusion is essential from a control perspective include
he solution of plant-wide control problems, the explicit handling of
ncertainties in robust or stochastic MPC (Mesbah, 2016; Paulson et al.,
2020), and the application of MPC formulations in supply chain opti-
mization (Perea-Lopez et al., 2001; Subramanian et al., 2012; Risbeck
et al., 2019). Another major enabler in our view will be the adoption
of modular, structured (e.g., distributed) modeling, optimization, and
control architectures and platforms (Ydstie, 2004; Christofides et al.,
2007), which can help mitigate the challenges of large scale, provide
flexibility, agility, and robustness, and ultimately enable a transition
from process automation to process autonomy.

In the backdrop of this discussion is the need to have the proper
workforce that will be able to adopt and implement state-of-the-art
control solutions in industry. Specifically:

• Expertise to develop and, equally importantly, maintain APC
systems remains at a premium. To do so effectively requires
both intimate process knowledge and an increasing mathematical
expertise.

• An increasingly transient workforce makes it more difficult to
cultivate and sustain this expertise in house. In addition, we will
likely continue to see a hybrid workforce, which will create new
challenges in recruiting and training the workforce that will lead
the next wave of innovation.

The next sections further expand on these challenges and present our
view towards future developments. We first focus on specific academic
research directions that we view as particularly promising and then
discuss industrial control technology and workforce training consider-
2

ations and challenges for the next 5–10 years.
2. Large-scale systems control and identification

Due to the integration of mass, energy, and information, optimal
decision making over large-scale systems are of increasing importance
in modern process systems engineering practice. The pursuit for scal-
ability is also a distinctive feature of process control research and an
indispensable criterion for the effectiveness of process control methods.

Large-scale processes, or process networks, can be viewed as a
collection of topologically interconnected process units from a physical
perspective, or interrelated variables and constraints from a computa-
tional perspective. To control process networks, it is necessary to de-
compose the physical process (as represented by its dynamical model)
or the mathematical problem of interest into (interacting) subsystems.
Such a decomposition approach dates to the classical interaction analy-
sis for pairing inputs and outputs into multiple control loops (McAvoy,
1983) developed since the 1960s, and D-stability analysis in the context
of robust control (Yu and Fan, 1990). It is also embodied in the re-
search on the control of multi-time-scale systems (Baldea and Daoutidis,
2007), where fast dynamics are separable from the slow ones on an
approximate inertial manifold, and dissipative systems (Hioe et al.,
2013), where the dissipativity of any interconnected system can be
inferred from the subsystems’ dissipativity.

2.1. Distributed optimization and coordination

Distributed control (Christofides et al., 2013) offers a structured
and flexible architecture for large-scale process control. On one hand,
control is performed based on subsystems, invoking subsystem solvers
for the decision making. On the other hand, communication is allowed
among the subsystems, so that the optimal decision can be reached with
less or no compromise. Hence, distributed control continually benefits
from the development of communication infrastructure that allows
higher bandwidth and is less restricted by spatial constraints (Ydstie,
2002).

In general, one can consider the problem of distributed control
in the form of nonconvex constrained optimization (e.g., Tang and
Daoutidis (2022b)). The formulation involves 𝑛 blocks of decision
variables 𝑥1, 𝑥2, … , 𝑥𝑛 (corresponding to the subsystems) and a small
block of auxiliary variables 𝑧 (arising from the interactions among the
subsystems):

min
𝑛
∑

𝑖=1
𝑓𝑖(𝑥𝑖) + 𝑔(𝑧)

s.t. 𝐴𝑖𝑥𝑖 + 𝐶𝑖𝑧 = 𝑏𝑖, 𝑖 = 1,… , 𝑛

𝑥𝑖 ∈ 𝑖, 𝑖 = 1,… , 𝑛, 𝑧 ∈ .

(1)

In formulation (1), the set constraints 1, 2, … , 𝑛 are generally
nonconvex, comprising of nonlinear equality and inequality constraints
in algebraic expressions, and the objective terms 𝑓1, 𝑓2,… , 𝑓𝑛 can also
be nonconvex. The constraints and objective term on 𝑧 can be assumed
to be simple without loss of generality. For problem (1), when 𝑧 is
fixed, the subsystem problems can be separated and solved through
dedicated nonlinear programming solvers (or simpler linear/quadratic
programming solvers). Therefore, the key question for distributed opti-
mization (Boyd et al., 2011; Yang et al., 2019) is to find a coordination
scheme to iterate 𝑧 so that the subsystem solutions approach an optimal
(in fact, what can usually be guaranteed is stationary) solution of the
monolithic problem (1).

The first distributed optimization that guarantees the convergence
under nonconvex constraints was proposed in Sun and Sun (2023),
where a two-layer scheme is used to guarantee the convergence of 𝑥
through the inner-layer iterations and decay of 𝑧 through outer-layer
iterations. The algorithm was further refined in Tang and Daoutidis
(2022b) to improve the computational efficiency, where an Anderson
acceleration scheme (Zhang et al., 2020) is used to reduce the inner

iterations, and adaptive tolerances are set to terminate the subsystem
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solver in a timely manner during the intermediate iterations. An al-
ternative single-layer algorithm was proposed in Subramanyam et al.
(2021), where a large penalty parameter for ‖𝑧‖2 is chosen according
to the desired ultimate error and fixed.

Noting that the real-time implementation of MPC usually cannot
allow many iterations but instead must be early terminated, the recent
work of Tang and Daoutidis (2021a) proposed a primal algorithm,
where suitably defined 𝓁1 and squared 𝓁2 penalty of 𝑧 are added to the
objective function to define a robust upper estimation of the control-
Lyapunov function (called the Lyapunov envelope). The upper bound
property is derived from the incremental dissipativity of subsystems.
In such a way, the primal iterations that reduce the envelope value can
guarantee closed-loop stability even when early terminated. Evidently,
there are still only very few algorithms for distributed optimization
of nonlinear processes, and the development of well-performing and
efficient algorithms will be an important future direction.

The complexity of these algorithms and the narrowing of expertise
available to truly understand them may exceed industry’s ability to
manage them. The self-sustainability of these solutions will become a
critical factor in industry’s ability to get value from these solutions.
As a result, research direction and funding entities should include
the adaptability and sustainability of these solutions as key research
elements. Tesla does not expect the driver to continuously retune the
algorithm in a self-driving car so why should the process industry think
differently?

2.2. Network structure analysis for decomposition

For distributed control and optimization, one first needs to decom-
pose the system. By representing the dynamic model as a network
(i.e., a graph of nodes and edges), extensive works have proposed to
decompose the network through detecting the underlying community
structures in the network topology (Daoutidis et al., 2018, 2019).
pecifically, communities refer to the blocks of nodes that interconnect
ensely inside but loosely in-between (Fortunato and Hric, 2016). Typ-
cally, community detection is performed by an approximate algorithm
o maximize a modularity or likelihood index, which captures the
tatistical difference between inter- and intra-community connection
ropensities (Newman, 2016).
The community detection-based approaches for decomposition have

een examined by several case studies to benchmark processes
Pourkargar et al., 2019) and extended to take into consideration the
estriction on subsystems’ observability (Yin and Liu, 2019; Masooleh
t al., 2022). Community detection as an effective method of generating
igh-quality subsystem configurations for distributed control is sup-
orted by the studies on sparse optimal control of Laplacian dynamics
ssociated with networks, where the sparsity of the feedback controller
s rewarded due to the cost on feedback channels (Lin et al., 2013;
ovanović and Dhingra, 2016). It was found that the community struc-
ures of modular networks result in lower control cost with a modular
ontroller, and that when the control cost is used as the fitness in-
ex, modularity emerges throughout simulated evolution (Constantino
t al., 2019; Tang et al., 2019). Such decomposition approaches have
lso been extended to optimization (Mitrai et al., 2022). We note
hat the community detection approach has been implemented in the
ndustrial advanced process control software of Shell and Yokogawa
nd was applied to an industrial-scale crude distillation process (Tang
t al., 2023).
On the other hand, the community detection-based methods, as a

ractable simplification of the combinatorial problem of finding the
ecomposition with rigorously certifiable optimal performance, neglect
he details of the dynamics and may not guarantee a clear interpretation
f the resulting systems. The development of network decomposition
pproaches that can accommodate prior process knowledge, process
ncertainty and controller robustness, user-defined logic rules, or even
3

erformance specifications, is highly needed. f
.3. Network topology identification

The modeling of large-scale systems is also not trivial. While multi-
nput–multi-output (MIMO) approaches for system identification can
sually be directly deployed on small-scale systems, for large-scale
rocesses, it is difficult to obtain high-quality models without first
etermining the topological structure of the model. Specifically, since
ach output is typically affected by only a few local inputs, it is
esirable to specify a candidate set of inputs, forcing the effect of any
ther input to be zero, before modeling the detailed dynamics of the
ystem. As seen in the previous subsection, such topology information
s also useful for determining the decomposition for distributed control.
The model structure specification based on engineers’ manual se-

ection, however, can be time-consuming and error prone. The aim of
opology identification algorithms is to determine the unknown net-
ork structure of the dynamics automatically based on data. The typ-
cal representation of the structure is a linear dynamic graph, i.e., the
dges between the nodes (variables) 𝑥𝑖 and 𝑥𝑗 correspond to nonzero
ransfer functions 𝐻𝑖𝑗 (𝑧) (Materassi and Salapaka, 2012).

𝑖(𝑡) =
∑

𝑗
𝐻𝑖𝑗 (𝑧)𝑥𝑖(𝑡) + 𝑒𝑖(𝑡). (2)

ach node 𝑥𝑖 is possibly associated with an exogenous excitation signal
𝑖. Depending on whether the graph is cyclic and whether there exist
nobservable hidden nodes, a variety of methods have been proposed
n the literature (Sepehr and Materassi, 2019; Subramanian et al.,
020; Veedu et al., 2021), and theoretical proofs have been given
ased on conditions on graph-theoretic conditions. Process networks
re expected to be cyclic with hidden nodes, which fit into the recent
dvances in topology identification. However, restrictive assumptions
re typically made on the excitation of variables, which may be nec-
ssary to uniquely determine the topology but may not be practically
atisfied due to the correlations between variables that cannot be
ndependently manipulated. The incorporation of first-principles prior
nowledge in topology identification is an important future step.

. Nonlinear model-based and model-free control

Chemical processes are intrinsically nonlinear. For processes with
trongly nonlinear behavior, local linear model approximations are not
alid and nonlinear control methods are needed. An early review of
onlinear control algorithms and applications was given in Bequette
1991). With the development of nonlinear programming algorithms,
onlinear MPC has become the most representative method in the
ecent decades (Grüne and Pannek, 2017).
The development of machine learning and data-driven techniques

nd the integration of them into control theory have resulted in novel
ethods and perspectives for nonlinear process control. In the next
hree subsections, we discuss three different types of approaches to
andle nonlinearity in dynamics and control, respectively. In short, the
hree ideas are (i) to model nonlinearity, (ii) to linearize nonlinearity,
nd (iii) to enclose nonlinearity, with decreasing reliance on the di-
ect characterization of nonlinearity and increasing commonality with
inear systems.

.1. Black-box approximation of nonlinearity

Since first-principles nonlinear models are difficult to establish
nd guarantee to be accurate, it is then a straightforward idea to
eek data-driven black-box approximations of the nonlinearity in dy-
amics, e.g., by allowing the model to have higher-order expansion
erms (Doyle III et al., 1995). Neural networks, due to their universal
pproximation property, have been extensively used for modeling static
onlinearity appended to linear dynamics in Hammerstein–Wiener
odels (Su and McAvoy, 1993). While the vanilla multi-layer feed-

orward neural networks do not consider dynamics, recurrent neural
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networks can be used for dynamical modeling; a recent review can
be found in Ren et al. (2022). The development of deep learning
echniques have provided wisdom to the design and tuning of such
etworks, using long-short-term memory (LSTM) and gated recurrent
nits (GRUs) to take into account complex interactions across time.
any recent works in the process systems engineering community
ave been devoted to enabling optimization solvers to handle neural
etworks (Schweidtmann and Mitsos, 2019; Ceccon et al., 2022), which
are beneficial for online MPC computation.

In a different vein, Gaussian processes, as nonparametric statisti-
cal models, can be inferred from data along with an accompanying
probabilistic quantification of uncertainty based on Bayesian learning,
and hence have the advantage of providing robust stability guarantee
in predictive control (Bradford et al., 2020). Bayesian optimization,
which performs Gaussian process modeling and optimization searches
simultaneously, can be used for online decision making that directly
improves the closed-loop performance (del Rio Chanona et al., 2021;
Makrygiorgos et al., 2022).

The black-box approximators have not only been used for modeling
the dynamics itself, but also extensively for solving many relevant
problems to control, such as learning the control law determined by
explicit MPC (Kumar et al., 2021; Chen et al., 2022), modeling plant-
model mismatch for offset-free control (Son et al., 2022), finding
Koopman eigenfunctions (as discussed in the next subsection) (Lusch
et al., 2018; Yeung et al., 2019), and synthesizing nonlinear state
bservers (Peralez and Nadri, 2021). The combination of reinforcement
earning and neural networks, adopted as parametric approximators
f the policy and/or value functions, known as deep reinforcement
earning, has become a prevalent use of neural networks (Li, 2017;
pielberg et al., 2019; Bao et al., 2021).
Despite the capacity of function approximation, the criticism that

lack-box fitting gives little physical insight has become common.
owever, this may not be entirely justified since these approaches are
ntended to avoid modeling from first principles or keeping the human
n the loop. We argue that the essential problem is how to constrain
he input–output behavior of black-box models to ensure their stability
r robustness, or to reconcile them with prior knowledge. Multiple
tudies (Fazlyab et al., 2019; Pauli et al., 2021) have formulated
he problem of constraining Lipschitz constants (incremental gains) of
eural networks as semidefinite programming (SDP), which is non-
calable. The recent work of Revay et al. (2020, 2021) proposed the
ecurrent equilibrium network (REN) architecture as the feedback inter-
onnection of a linear dynamics and element-wise activation functions,
hich can provably incorporate incremental stability and dissipativity
onstraints without invoking SDP; instead, the constraints are used to
efine a new unconstrained parameterization of the REN and can be
ptimized with (stochastic) gradient search.

.2. Linearization of nonlinear dynamics

The idea of treating nonlinear dynamics as a linear one by seeking
global transformation of coordinates was extensively used in input–
utput linearization for nonlinear model-based control (Kravaris and
antor, 1990). In a data-driven setting, recent control-theoretic re-
earch focused on the construction of Koopman operators from data
Brunton and Kutz, 2022). Specifically, the Koopman operator for an
utonomous system (assuming to be discrete-time for simplicity) 𝑥(𝑡 +
) = 𝑓 (𝑥(𝑡)) is a linear, usually infinite-dimensional operator  defined
n the space of state-dependent functions:

𝜙 = 𝜙◦𝑓, ∀𝜙 ∶  → C. (3)

n the above definition,  is the set of states, C is the set of complex
umbers, and ◦ represents composition, i.e., (𝜙◦𝑓 )(𝑥) = 𝜙(𝑓 (𝑥)).
To find a tractable, finite-dimensional approximation of , one may

se a finite number of linear, polynomial, and/or radial basis functions
4

f states 𝑥 or measurable output snapshots 𝑦(𝑡), 𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝐿) as
he observer functions to seek a linear dynamics. The methods using
utput snapshots are called dynamic mode decomposition (DMD) or
xtended DMD if nonlinear transformations are used (Williams et al.,
015). Noting that the existence of disturbances poses a robustness
ssue in the identification of Koopman operator, Sinha et al. (2020)
ormulated the DMD problem under bounded disturbances as a robust
ptimization (min–max) problem and converted it into a least-squares
ne under Frobenius norm regularization. To ensure that the finite-
imensional linear dynamics is closed, data-driven construction of the
igenfunctions of Koopman operator was proposed (Kaiser et al., 2021).
The data-driven construction of the Koopman operator or its eigen-

unctions, however, apparently suffers from the ‘‘curse of dimension-
lity’’ due to its goal of linearizing the dynamics globally. Despite
reliminary discussions for systems with special structures (Schlosser
nd Korda, 2022), the practical use of Koopman operator theory on
arge-scale systems is still lacking. Also, whether the Koopmanist ap-
proach can fully recover the complex stability/instability characteris-
tics of nonlinear systems and provide a control performance guarantee
remains an open question.

3.3. Model-free characterization of system behavior

If we consider the question of whether a complete and accurate
model is indeed necessary for control, the answer may be negative.
First, correct models barely exist. In a famous quote of George E. P.
Box that people often refer to, ‘‘All models are wrong, but some are
useful’’. Second, in terms of validating nonlinear or more complex
physical models, you are practically limited by the measurements you
have available. Does a fully nonlinear model of a distillation tower have
value if we only have measurements at the top and bottom to validate
the model? Third, it is possible to obtain the controller or control
decisions based on some properties or information from the system
without a full model. Such control-relevant information can be learned
from the analysis of process data that reflects the underlying dynamics,
possibly complex. We refer to this paradigm of learning-based control
as model-free control (Tang and Daoutidis, 2022a).

For nonlinear systems, the dynamic behaviors can be characterized
based on inputs and outputs in terms of 𝐿2-gain, passivity, and in
general, dissipativity (Kottenstette et al., 2014). Dissipativity refers to
the existence of a input- and output-dependent supply rate function
𝑠(𝑢, 𝑦) that bounds the rate of change of a storage function 𝑉 (𝑥),
i.e., 𝑑𝑉 (𝑥)∕𝑑𝑡 ≤ 𝑠(𝑢, 𝑦). For process systems driven by irreversible
thermodynamics under the second law, dissipativity is an intrinsic
structure underlying the dynamics. As established by the seminal works
of Alonso and Ydstie (e.g., Alonso and Ydstie, 2001, see also Georgakis,
1986; Hangos et al., 2001), the dissipative structure can be strictly
derived from the thermodynamic analysis and utilized in the design
of PID-type controllers. The detailed, internal models of process units
are not involved in this analysis; instead, only thermodynamic variables
at the inlet and outlet ports are needed. In this sense, the dissipativity
concept naturally entails a model-free paradigm.

While the thermodynamic approach to dissipativity requires input
and output variable selections (that correspond to the conjugate vari-
ables in the fundamental thermodynamic relations, i.e., temperature to
entropy, molar flow rates to chemical potentials, etc.), it appears more
convenient to learn dissipativity from data, i.e., trajectory samples.
To this end, the dissipativity verification for linear systems has been
discussed based on Hankel matrices (Romer et al., 2019; Koch et al.,
2021), which was further extended to (weakly) nonlinear systems
using Taylor approximation (Martin and Allgöwer, 2021). Essentially,
dissipativity captures an enclosure of the system’s nonlinearity. The
simplest case of a dissipative nonlinear system is a sector nonlinearity
as in Lur’e systems (Brogliato et al., 2020). In Tang and Daoutidis
(2019, 2021b), the framework of dissipativity learning control (DLC)

was proposed. DLC entails the following steps.
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(i) A linear parameterization of the supply rate is used, e.g., by
restricting 𝑠(𝑢, 𝑦) to be a quadratic function so that it is parame-
terized by a symmetric matrix. The resulting parameters 𝑀 are
called dissipativity parameters and their range  need to be
inferred from data.

(ii) The remaining part in 𝑠(𝑢, 𝑦) depending on u and y, integrated on
any given trajectory, are called the dual dissipativity parameters
𝛤 . With trajectory samples, the range of 𝛤 , denoted as , can be
estimated through machine learning techniques.

(iii) According to the definition of dissipativity,  = ∗ (dual cone
of ) can be subsequently estimated and used as the information
for controller synthesis.

So far, the DLC framework is restricted to small-scale processes and
simple forms of controllers, and the learning of dissipativity requires
large offline trajectory samples with zero initial conditions. An online
estimation scheme was recently proposed in Welikala et al. (2022),
where the dissipativity parameter is in a one-dimensional simplified
form; a generalization to general dissipativity parameters was proposed
in Tang and Woelk (2023). In general, DLC with minimal sample
complexity and verifiable control performance is yet to establish. We
believe that model-free control, due to its potential to largely reduce
the effort of modeling, is a promising direction for further development.
Extensions of model-free control methods and comparison studies ver-
sus identification-based control are needed to facilitate their practical
implementation.

4. Controller performance monitoring and diagnosis

Monitoring of controller performance and diagnosing the cause for
performance deterioration is a practically important part of control
technology, which provides the information about controllers under
abnormal conditions, facilitates in-time controller maintenance, and
improves the system reliability (Gao et al., 2016). The classical ap-
proach of Harris (1989) to score the control loops, by comparing
the variance of the measured data and that under an ideal minimum
variance controller (MVC) as the benchmark, has been widely used
in practice. For multivariable systems, Yu and Qin (2008) proposed
rigorous statistical approach to identify the subspaces of severe
erformance deterioration and correlate them to individual variables or
ontrol loops. Generally, a wide range of machine learning techniques
an be used for this purpose (Qin and Chiang, 2019).
It can be argued that the suitability of monitoring and diagnosis

pproaches depend on the method used by the controller to be moni-
ored and diagnosed. As pointed out in the review of Gao et al. (2016),
or model-based control such as MPC, the detection of plant-model
ismatch is central to monitoring and diagnosis. The key question
n such a detection task is to distinguish or separate the effect of
lant-model mismatch from that of disturbances (and noises) in the
losed-loop data. In the literature, diverse approaches have been pro-
osed to this end, e.g., by (i) assuming prior knowledge of disturbance
haracteristics and obtaining a statistic that shows significance of a
onzero mismatch (Sun et al., 2013) or by (ii) correlating the input and
utput measurements with exogenous setpoint signals, thus removing
he disturbance terms (Badwe et al., 2009). The latter type of approach
s conceptually close to closed-loop identification (Van den Hof, 1998).
owever, in mismatch detection it is usually not required to re-identify
corrected model; instead, it suffices to judge whether the actual
ynamics significantly differs from the nominal model.
An accompanying problem with mismatch detection is the model-

ng of disturbances and noises. In addition to their use in offset-free
PC (Maeder et al., 2009; Morari and Maeder, 2012), system identifica-
ion, and filter design, the disturbance and noise models are necessary
or mismatch detection when the exogenous signals to decorrelate
isturbances and noises are absent. However, the question of how
5

o optimally determine their models based on historical data has not t
een well answered, although there exist methods for estimating the
nvolved parameters under given model structures (Odelson et al.,
006; Rajamani and Rawlings, 2009). Recently, Caspari et al. (2021)
roposed a semi-infinite programming formulation for optimizing the
tructure of disturbance models with maximum observable set subject
o the rank condition for observability, which was applied to a small
STR unit.
A final point is that the self-tuning and sustainability aspects of the

eveloped monitoring methods will be critical in order for industry to
ake full advantage of these methods. These systems in practice need
o work 99% of the time and do so without human intervention.

. Control technology and industry workforce

We close this paper with some thoughts and open questions on the
uture of control systems technology and the role of automation and
uman involvement in this future.

orkforce availability. The COVID-19 epidemic has led to major supply
hain disruptions and changes in workforce modalities. We expect these
mpacts to persist and bring forth challenges in workforce availability
n industry, both at the level of engineers as well as that of operators.
key question that is critical to the future of control technology
evelopment and deployment is whether the process industries will
e able to continue to attract and retain the best engineering talent
vailable.

utomation vs. human intervention. As planning and scheduling deci-
ions are integrated with control systems, human decision-making is
ncreasingly brought into the loop (pun intended). At the same time,
utomation and ultimately autonomy are major goals of industry. So
ow do we quantify the right balance between automation and human
ntervention? Making the control algorithm work symbiotically with
he human (who is not an MPC expert) will be critical to success.

owering the maintenance burdens. New advances in control technology
re often justified by a demonstrated reduced deviation from the set-
oint in the face of setpoint changes or disturbances. However, there is
need for metrics on the maintainability of these solutions in the face
f changing feedstocks, failing sensors, differing demands, and other
ractical factors that impact industrial processes. As part of this, we
ack concrete measures on the level of human intervention required
o makes these solutions continuously derive value in the field. Yet
ithout such measures, there is a risk of letting academic advances go
o waste.

he role of AI. Given the hype on big data and the increasing penetra-
ion of AI and machine learning in industry, it is natural to ask how
est to take advantage of these advancements in control technology.
n previous sections, we discussed aspects of this question, especially
elated to the role of data in deriving models for control and design-
ng feedback control laws. The development of new AI-driven virtual
ensors, which take advantage of audio, video, and other forms of
ignals as additional information to improve performance, and their
ntegration with the control algorithms will also be vital.

caling down APC systems. A lot of the discussion in this paper focused
n the future of process control for established, large companies. How-
ver, major technological innovation is often seen in smaller companies
with a few hundred employees). If we want to raise the impact of
rocess control, we must scale its deployment down to companies
eyond the Fortune 500, which may not have large teams of control
ngineering experts. The development of APC systems and modules that
re more portable and easier to implement on novel process systems
ill be necessary to make process control a more readily accessible

echnology.



Computers and Chemical Engineering 178 (2023) 108365P. Daoutidis et al.

L

L

M

M

M

M

M

M
M

M

M

N

O

P

P

P

P

P

Q

R

CRediT authorship contribution statement

Prodromos Daoutidis: Conceptualization, Funding acquisition,
Project administration, Writing – original draft, Writing – review &
editing. Larry Megan: Conceptualization, Investigation, Writing – orig-
inal draft. Wentao Tang: Conceptualization, Investigation, Writing –
original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article

Acknowledgments

This work was supported by NSF-CBET Award 1926303.

References

Alonso, A.A., Ydstie, B.E., 2001. Stabilization of distributed systems using irreversible
thermodynamics. Automatica 37 (11), 1739–1755.

Badwe, A.S., Gudi, R.D., Patwardhan, R.S., Shah, S.L., Patwardhan, S.C., 2009.
Detection of model-plant mismatch in MPC applications. J. Process Control 19 (8),
1305–1313.

Baldea, M., Daoutidis, P., 2007. Control of integrated process networks – A multi-time
scale perspective. Comput. Chem. Eng. 31 (5–6), 426–444.

Bao, Y., Zhu, Y., Qian, F., 2021. A deep reinforcement learning approach to improve the
learning performance in process control. Ind. Eng. Chem. Res. 60 (15), 5504–5515.

Bequette, B.W., 1991. Nonlinear control of chemical processes: A review. Ind. Eng.
Chem. Res. 30 (7), 1391–1413.

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., 2011. Distributed optimization
and statistical learning via the alternating direction method of multipliers. Found.
Trend. Mach. Learn. 3 (1), 1–122.

Bradford, E., Imsland, L., Zhang, D., del Rio Chanona, E.A., 2020. Stochastic data-
driven model predictive control using Gaussian processes. Comput. Chem. Eng.
139, 106844.

Brogliato, B., Lozano, R., Maschke, B., Egeland, O., 2020. Dissipative Systems Analysis
and Control: Theory and Applications, second ed. Springer.

Brunton, S.L., Kutz, J.N., 2022. Data-Driven Science and Engineering: Machine Learning,
Dynamical Systems, and Control. Cambridge University Press.

Caspari, A., Djelassi, H., Mhamdi, A., Biegler, L.T., Mitsos, A., 2021. Semi-infinite
programming yields optimal disturbance model for offset-free nonlinear model
predictive control. J. Process Control 101, 35–51.

Ceccon, F., Jalving, J., Haddad, J., Thebelt, A., Tsay, C., Laird, C.D., Misener, R.,
2022. OMLT: Optimization & machine learning toolkit. J. Mach. Learn. Res. 23
(1), 15829–15836.

Chen, S.W., Wang, T., Atanasov, N., Kumar, V., Morari, M., 2022. Large scale model
predictive control with neural networks and primal active sets. Automatica 135,
109947.

Christofides, P.D., Davis, J.F., El-Farra, N.H., Clark, D., Harris, K.R.D., Gipson, J.N.,
2007. Smart plant operations: Vision, progress and challenges. AiChE J. 53 (11),
2734–2741.

Christofides, P.D., Scattolini, R., Muñoz de la Peña, D., Liu, J., 2013. Distributed model
predictive control: A tutorial review and future research directions. Comput. Chem.
Eng. 51, 21–41.

Constantino, P.H., Tang, W., Daoutidis, P., 2019. Topology effects on sparse control of
complex networks with Laplacian dynamics. Sci. Rep. 9, 9034.

Daoutidis, P., Tang, W., Allman, A., 2019. Decomposition of control and optimization
problems by network structure: concepts, methods and inspirations from biology.
AIChE J. 65 (10), e16708.

Daoutidis, P., Tang, W., Jogwar, S.S., 2018. Decomposing complex plants for distributed
control: perspectives from network theory. Comput. Chem. Eng. 114, 43–51.

del Rio Chanona, E.A., Petsagkourakis, P., Bradford, E., Graciano, J.A., Chachuat, B.,
2021. Real-time optimization meets Bayesian optimization and derivative-free
optimization: A tale of modifier adaptation. Comput. Chem. Eng. 147, 107249.

Doyle III, F.J., Ogunnaike, B.A., Pearson, R.K., 1995. Nonlinear model-based control
using second-order Volterra models. Automatica 31 (5), 697–714.

Fazlyab, M., Robey, A., Hassani, H., Morari, M., Pappas, G.J., 2019. Efficient and
accurate estimation of Lipschitz constants for deep neural networks. In: Proceedings
of the 33rd International Conference on Neural Information Processing Systems. pp.
11427–11438.
6

Fortunato, S., Hric, D., 2016. Community detection in networks: A user guide. Phys.
Rev. 659, 1–44.

Gao, X., Yang, F., Shang, C., Huang, D., 2016. A review of control loop monitoring
and diagnosis: Prospects of controller maintenance in big data era. Chin. J. Chem.
Eng. 24 (8), 952–962.

Georgakis, C., 1986. On the use of extensive variables in process dynamics and control.
Chem. Eng. Sci. 41 (6), 1471–1484.

Grossmann, I., 2005. Enterprise-wide optimization: A new frontier in process systems
engineering. AIChE J. 51 (7), 1846–1857.

Grüne, L., Pannek, J., 2017. Nonlinear Model Predictive Control. Springer.
Hangos, K.M., Bokor, J., Szederkényi, G., 2001. Hamiltonian view on process systems.

AIChE J. 47 (8), 1819–1831.
Harris, T.J., 1989. Assessment of control loop performance. Can. J. Chem. Eng. 67 (5),

856–861.
Hioe, D., Bao, J., Ydstie, B.E., 2013. Dissipativity analysis for networks of process

systems. Comput. Chem. Eng. 50, 207–219.
Jiao, Y., Finley, J.J., Ydstie, B.E., Polcyn, A., Figueroa, H., 2022. Digital transformation

of glass industry: The adaptive enterprise. Comput. Chem. Eng. 157, 107579.
Jovanović, M.R., Dhingra, N.K., 2016. Controller architectures: Tradeoffs between

performance and structure. Eur. J. Control 30, 76–91.
Kaiser, E., Kutz, J.N., Brunton, S.L., 2021. Data-driven discovery of Koopman

eigenfunctions for control. Mach. Learn. Sci. Technol. 2 (3), 035023.
Koch, A., Berberich, J., Allgöwer, F., 2021. Provably robust verification of dissipativity

properties from data. IEEE Trans. Automat. Control 67 (8), 4248–4255.
Kottenstette, N., McCourt, M.J., Xia, M., Gupta, V., Antsaklis, P.J., 2014. On rela-

tionships among passivity, positive realness, and dissipativity in linear systems.
Automatica 50 (4), 1003–1016.

Kravaris, C., Kantor, J.C., 1990. Geometric methods for nonlinear process control. 1.
Background. Ind. Eng. Chem. Res. 29 (12), 2295–2310.

Kumar, P., Rawlings, J.B., Wright, S.J., 2021. Industrial, large-scale model predictive
control with structured neural networks. Comput. Chem. Eng. 150, 107291.

Li, Y., 2017. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.
07274.

in, F., Fardad, M., Jovanović, M.R., 2013. Design of optimal sparse feedback gains
via the alternating direction method of multipliers. IEEE Trans. Automat. Control
58 (9), 2426–2431.

usch, B., Kutz, J.N., Brunton, S.L., 2018. Deep learning for universal linear embeddings
of nonlinear dynamics. Nat. Commun. 9 (1), 4950.

aeder, U., Borrelli, F., Morari, M., 2009. Linear offset-free model predictive control.
Automatica 45 (10), 2214–2222.

akrygiorgos, G., Bonzanini, A.D., Miller, V., Mesbah, A., 2022. Performance-oriented
model learning for control via multi-objective Bayesian optimization. Comput.
Chem. Eng. 162, 107770.

artin, T., Allgöwer, F., 2021. Dissipativity verification with guarantees for polynomial
systems from noisy input-state data. In: 2021 American Control Conference (ACC).
IEEE, pp. 3963–3968.

asooleh, L.S., Arbogast, J.E., Seider, W.D., Oktem, U., Soroush, M., 2022. Distributed
state estimation in large-scale processes decomposed into observable subsystems
using community detection. Comput. Chem. Eng. 156, 107544.

aterassi, D., Salapaka, M.V., 2012. On the problem of reconstructing an unknown
topology via locality properties of the Wiener filter. IEEE Trans. Automat. Control
57 (7), 1765–1777.

cAvoy, T.J., 1983. Interaction Analysis: Principles and Applications. ISA.
esbah, A., 2016. Stochastic model predictive control: An overview and perspectives
for future research. IEEE Control Syst. 36 (6), 30–44.

itrai, I., Tang, W., Daoutidis, P., 2022. Stochastic blockmodeling for learning the
structure of optimization problems. AIChE J. 68 (6), e17415.

orari, M., Maeder, U., 2012. Nonlinear offset-free model predictive control.
Automatica 48 (9), 2059–2067.

ewman, M.E.J., 2016. Equivalence between modularity optimization and maximum
likelihood methods for community detection. Phys. Rev. E 94 (5), 052315.

delson, B.J., Rajamani, M.R., Rawlings, J.B., 2006. A new autocovariance least-squares
method for estimating noise covariances. Automatica 42 (2), 303–308.

auli, P., Koch, A., Berberich, J., Kohler, P., Allgöwer, F., 2021. Training robust neural
networks using Lipschitz bounds. IEEE Control Syst. Lett. 6, 121–126.

aulson, J.A., Buehler, E.A., Braatz, R.D., Mesbah, A., 2020. Stochastic model predictive
control with joint chance constraints. Internat. J. Control 93 (1), 126–139.

eralez, J., Nadri, M., 2021. Deep learning-based Luenberger observer design for
discrete-time nonlinear systems. In: 60th IEEE Conference on Decision and Control
(CDC). IEEE, pp. 4370–4375.

erea-Lopez, E., Grossmann, I.E., Ydstie, B.E., Tahmassebi, T., 2001. Dynamic mod-
eling and decentralized control of supply chains. Ind. Eng. Chem. Res. 40 (15),
3369–3383.

ourkargar, D.B., Moharir, M., Almansoori, A., Daoutidis, P., 2019. Distributed estima-
tion and nonlinear model predictive control using community detection. Ind. Eng.
Chem. Res. 58 (30), 13495–13507.

in, S.J., Chiang, L.H., 2019. Advances and opportunities in machine learning for
process data analytics. Comput. Chem. Eng. 126, 465–473.

ajamani, M.R., Rawlings, J.B., 2009. Estimation of the disturbance structure from
data using semidefinite programming and optimal weighting. Automatica 45 (1),
142–148.

http://refhub.elsevier.com/S0098-1354(23)00235-1/sb1
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb1
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb1
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb2
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb2
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb2
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb2
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb2
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb3
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb3
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb3
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb4
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb4
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb4
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb5
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb5
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb5
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb6
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb6
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb6
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb6
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb6
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb7
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb7
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb7
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb7
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb7
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb8
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb8
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb8
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb9
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb9
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb9
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb10
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb10
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb10
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb10
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb10
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb11
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb11
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb11
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb11
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb11
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb12
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb12
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb12
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb12
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb12
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb13
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb13
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb13
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb13
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb13
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb14
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb14
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb14
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb14
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb14
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb15
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb15
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb15
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb16
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb16
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb16
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb16
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb16
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb17
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb17
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb17
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb18
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb18
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb18
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb18
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb18
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb19
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb19
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb19
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb20
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb20
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb20
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb20
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb20
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb20
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb20
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb21
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb21
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb21
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb22
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb22
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb22
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb22
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb22
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb23
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb23
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb23
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb24
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb24
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb24
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb25
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb26
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb26
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb26
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb27
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb27
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb27
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb28
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb28
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb28
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb29
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb29
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb29
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb30
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb30
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb30
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb31
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb31
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb31
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb32
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb32
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb32
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb33
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb33
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb33
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb33
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb33
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb34
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb34
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb34
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb35
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb35
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb35
http://arxiv.org/abs/1701.07274
http://arxiv.org/abs/1701.07274
http://arxiv.org/abs/1701.07274
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb37
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb37
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb37
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb37
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb37
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb38
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb38
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb38
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb39
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb39
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb39
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb40
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb40
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb40
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb40
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb40
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb41
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb41
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb41
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb41
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb41
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb42
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb42
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb42
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb42
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb42
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb43
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb43
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb43
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb43
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb43
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb44
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb45
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb45
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb45
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb46
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb46
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb46
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb47
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb47
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb47
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb48
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb48
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb48
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb49
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb49
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb49
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb50
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb50
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb50
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb51
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb51
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb51
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb52
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb52
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb52
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb52
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb52
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb53
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb53
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb53
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb53
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb53
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb54
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb54
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb54
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb54
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb54
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb55
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb55
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb55
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb56
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb56
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb56
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb56
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb56


Computers and Chemical Engineering 178 (2023) 108365P. Daoutidis et al.
Ren, Y.M., Alhajeri, M.S., Luo, J., Chen, S., Abdullah, F., Wu, Z., Christofides, P.D.,
2022. A tutorial review of neural network modeling approaches for model
predictive control. Comput. Chem. Eng. 107956.

Revay, M., Wang, R., Manchester, I.R., 2020. A convex parameterization of robust
recurrent neural networks. IEEE Control Syst. Lett. 5 (4), 1363–1368.

Revay, M., Wang, R., Manchester, I.R., 2021. Recurrent equilibrium networks: Un-
constrained learning of stable and robust dynamical models. In: 2021 60th IEEE
Conference on Decision and Control (CDC). IEEE, pp. 2282–2287.

Risbeck, M.J., Maravelias, C.T., Rawlings, J.B., 2019. Unification of closed-loop
scheduling and control: State-space formulations, terminal constraints, and nominal
theoretical properties. Comput. Chem. Eng. 129, 106496.

Romer, A., Berberich, J., Köhler, J., Allgöwer, F., 2019. One-shot verification of
dissipativity properties from input–output data. IEEE Control Syst. Lett. 3 (3),
709–714.

Schlosser, C., Korda, M., 2022. Sparsity structures for Koopman and Perron-Frobenius
operators. SIAM J. Appl. Dyn. Syst. 21 (3), 2187–2214.

Schweidtmann, A.M., Mitsos, A., 2019. Deterministic global optimization with artificial
neural networks embedded. J. Optim. Theor. Appl. 180 (3), 925–948.

Sepehr, F., Materassi, D., 2019. An algorithm to learn polytree networks with hidden
nodes. In: Proc. 33rd Conf. Adv. Neur. Inform. Process. Syst. (NeurIPS 2019).

Sinha, S., Huang, B., Vaidya, U., 2020. On robust computation of Koopman operator
and prediction in random dynamical systems. J. Nonlinear Sci. 30 (5), 2057–2090.

Son, S.H., Kim, J.W., Oh, T.H., Jeong, D.H., Lee, J.M., 2022. Learning of model-plant
mismatch map via neural network modeling and its application to offset-free model
predictive control. J. Process Control 115, 112–122.

Spielberg, S., Tulsyan, A., Lawrence, N.P., Loewen, P.D., Bhushan Gopaluni, R., 2019.
Toward self-driving processes: A deep reinforcement learning approach to control.
AIChE J. 65 (10), e16689.

Su, H.T., McAvoy, T.J., 1993. Integration of multilayer perceptron networks and linear
dynamic models: a Hammerstein modeling approach. Ind. Eng. Chem. Res. 32 (9),
1927–1936.

Subramanian, V.R., Lamperski, A., Salapaka, M.V., 2020. Network structure iden-
tification from corrupt data streams. IEEE Trans. Automat. Control 66 (11),
5314–5325.

Subramanian, K., Maravelias, C.T., Rawlings, J.B., 2012. A state-space model for
chemical production scheduling. Comput. Chem. Eng. 47, 97–110.

Subramanyam, A., Kim, Y., Schanen, M., Pacaud, F., Anitescu, M., 2021. A globally
convergent distributed Jacobi scheme for block-structured nonconvex constrained
optimization problems. arXiv preprint arXiv:2112.09027.

Sun, Z., Qin, S.J., Singhal, A., Megan, L., 2013. Performance monitoring of model-
predictive controllers via model residual assessment. J. Process Control 23 (4),
473–482.

Sun, K., Sun, X.A., 2023. A two-level distributed algorithm for nonconvex constrained
optimization. Comput. Optim. Appl. 84 (2), 609–649.

Tang, W., Carrette, P., Cai, Y., Williamson, J.M., Daoutidis, P., 2023. Automatic
decomposition of large-scale industrial processes for distributed MPC on the Shell-
Yokogawa platform for advanced control and estimation (PACE). In: Foundations
of Computer Aided Process Operations / Chemical Process Control (FOCAPO/CPC
2023). p. 2, (A journal manuscript has been submitted to the Computers and
Chemical Engineering special issue).
7

Tang, W., Constantino, P.H., Daoutidis, P., 2019. Optimal sparse network topology
under sparse control in Laplacian networks. IFAC-PapersOnLine 52 (20), 273–278.

Tang, W., Daoutidis, P., 2019. Dissipativity learning control (DLC): A framework of
input–output data-driven control. Comput. Chem. Eng. 130, 106576.

Tang, W., Daoutidis, P., 2021a. Coordinating distributed MPC efficiently on a plantwide
scale: The Lyapunov envelope algorithm. Comput. Chem. Eng. 155, 107532.

Tang, W., Daoutidis, P., 2021b. Dissipativity learning control (DLC): theoretical foun-
dations of input–output data-driven model-free control. Systems Control Lett. 147,
104831.

Tang, W., Daoutidis, P., 2022a. Data-driven control: Overview and perspectives. In:
2022 American Control Conference (ACC). IEEE, pp. 1048–1064.

Tang, W., Daoutidis, P., 2022b. Fast and stable nonconvex constrained distributed
optimization: the ELLADA algorithm. Optim. Eng. 23 (1), 259–301.

Tang, W., Woelk, M., 2023. Dissipativity learning control through estimation from
online trajectories. In: 2023 American Control Conference (ACC). IEEE, pp.
3036–3041.

Van den Hof, P., 1998. Closed-loop issues in system identification. Ann. Rev. Control
22, 173–186.

Veedu, M., Harish, D., Salapaka, M.V., 2021. Topology learning of linear dynamical
systems with latent nodes using matrix decomposition. IEEE Trans. Automat.
Control 67 (11), 5746–5761.

Welikala, S., Lin, H., Antsaklis, P.J., 2022. On-line estimation of stability and passivity
metrics. In: 2022 IEEE 61st Conference on Decision and Control (CDC). IEEE, pp.
267–272.

Williams, M.O., Kevrekidis, I.G., Rowley, C.W., 2015. A data-driven approximation of
the Koopman operator: Extending dynamic mode decomposition. J. Nonlinear Sci.
25, 1307–1346.

Yang, T., Yi, X., Wu, J., Yuan, Y., Wu, D., Meng, Z., Hong, Y., Wang, H., Lin, Z.,
Johansson, K.H., 2019. A survey of distributed optimization. Ann. Rev. Control 47,
278–305.

Ydstie, B.E., 2002. New vistas for process control: Integrating physics and
communication networks. AIChE J. 48 (3), 422–426.

Ydstie, B.E., 2004. Distributed decision making in complex organizations: the adaptive
enterprise. Comput. Chem. Eng. 29 (1), 11–27.

Yeung, E., Kundu, S., Hodas, N., 2019. Learning deep neural network representations
for Koopman operators of nonlinear dynamical systems. In: 2019 American Control
Conference (ACC). IEEE, pp. 4832–4839.

Yin, X., Liu, J., 2019. Subsystem decomposition of process networks for simultaneous
distributed state estimation and control. AIChE J. 65 (3), 904–914.

Yu, C.-C., Fan, M.K.H., 1990. Decentralized integral controllability and D-stability.
Chem. Eng. Sci. 45 (11), 3299–3309.

Yu, J., Qin, S.J., 2008. Statistical MIMO controller performance monitoring. Part I:
Data-driven covariance benchmark. J. Process Control 18 (3–4), 277–296.

Zhang, J., O’Donoghue, B., Boyd, S., 2020. Globally convergent type-I Ander-
son acceleration for nonsmooth fixed-point iterations. SIAM J. Optim. 30 (4),
3170–3197.

http://refhub.elsevier.com/S0098-1354(23)00235-1/sb57
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb57
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb57
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb57
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb57
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb58
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb58
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb58
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb59
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb59
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb59
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb59
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb59
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb60
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb60
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb60
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb60
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb60
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb61
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb61
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb61
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb61
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb61
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb62
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb62
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb62
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb63
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb63
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb63
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb64
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb64
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb64
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb65
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb65
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb65
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb66
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb66
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb66
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb66
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb66
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb67
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb67
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb67
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb67
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb67
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb68
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb68
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb68
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb68
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb68
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb69
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb69
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb69
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb69
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb69
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb70
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb70
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb70
http://arxiv.org/abs/2112.09027
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb72
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb72
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb72
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb72
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb72
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb73
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb73
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb73
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb74
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb74
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb74
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb74
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb74
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb74
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb74
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb74
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb74
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb74
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb74
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb75
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb75
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb75
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb76
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb76
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb76
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb77
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb77
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb77
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb78
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb78
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb78
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb78
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb78
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb79
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb79
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb79
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb80
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb80
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb80
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb81
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb81
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb81
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb81
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb81
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb82
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb82
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb82
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb83
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb83
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb83
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb83
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb83
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb84
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb84
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb84
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb84
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb84
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb85
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb85
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb85
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb85
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb85
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb86
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb86
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb86
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb86
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb86
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb87
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb87
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb87
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb88
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb88
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb88
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb89
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb89
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb89
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb89
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb89
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb90
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb90
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb90
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb91
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb91
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb91
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb92
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb92
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb92
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb93
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb93
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb93
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb93
http://refhub.elsevier.com/S0098-1354(23)00235-1/sb93

	The future of control of process systems
	Introduction
	Large-Scale Systems Control and Identification
	Distributed optimization and coordination
	Network structure analysis for decomposition
	Network topology identification

	Nonlinear Model-Based and Model-Free Control
	Black-box approximation of nonlinearity
	Linearization of nonlinear dynamics
	Model-free characterization of system behavior

	Controller Performance Monitoring and Diagnosis
	Control Technology and Industry Workforce
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


