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Abstract—A number of applications including crowd-
sourced labeling and peer review require aggregation of
labels or evaluations sourced from multiple evaluators.
There is often additional information available pertaining
to the evaluators’ expertise. A natural approach for
aggregation is to consider the widely studied Dawid-Skene
model (or its extensions incorporating evaluators’ expertise),
and employ the standard maximum likelihood estimator
(MLE). While MLE is in general widely used in practice and
enjoys a number of appealing theoretical guarantees, in this
work we provide a negative result for the MLE. Specifically,
we prove that the MLE is asymptotically inadmissible for
a special case of evaluation aggregation with expertise level
information. We show this by constructing an alternative
estimator that we show is significantly better than the MLE
in certain parameter regimes and at least as good elsewhere.
Finally, simulations reveal that our findings may hold in
more general conditions than what we theoretically analyze.

Index Terms—MLE, admissibility, crowdsourcing

I. INTRODUCTION

A number of applications involve evaluations from
multiple people with varying levels of expertise, and an
eventual objective of aggregating the different evaluations
to obtain a final decision. For instance, in peer-review,
multiple reviewers provide their evaluation regarding
the acceptance of the submission and their expertise
on the submission matter. Another instance is found
in crowdlabeling, where multiple crowdworkers provide
labels for the same question. Additionally, one often
has access to the evaluators’ level of expertise, for
instance, from their known expertise [15], self-reported
confidence [17] or their prior approval rating [20]. Other
such applications include decision-making in university
admissions, grant allotments etc., where the quality of
individual decisions obtained generally varies across
individuals because of varying levels of expertise. Each
of the aforementioned problems involves aggregation of
multiple evaluations with varying expertise.

Moreover, in such settings, it is frequently the case that
the set of evaluators are deliberately chosen in a certain
manner based on their expertise levels. As an example,
in the peer-review process of the AAAI conference on
Artificial Intelligence in 2022 [3], due to lack of sufficient
senior reviewers, each paper was assigned one senior
and one junior reviewer. Similarly, in crowdlabeling,
budget constraints impose the need for balancing out
high expertise (but more expensive) and low expertise
(but cheaper) crowdworkers.

There is a vast literature on the problem of aggregation
of multiple evaluations in crowdsourcing [1], [5], [6], [9],
[10], [16], [18], [23], [25]. The bulk of this past work is
based on the classical Dawid-Skene model [2], in which
each evaluator is associated with a single scalar parameter
corresponding to their probability of correctness. While
the Dawid-Skene model does not incorporate expertise
levels, a natural extension [13] incorporates them with
separate parameters for each expertise level.

Dawid and Skene [2] propose the maximum likelihood
estimator (MLE) for estimation. They use the Expectation-
Maximization algorithm to approximately compute the
MLE. The correct answers and the evaluator’s parameter
for correctness are jointly estimated by maximizing the
likelihood of the observed evaluations. This MLE-based
approach has had huge empirical success [14], [19], [24].
Moreover, theoretical analyses [5] have shown that global
optimal solutions of the MLE can achieve minimax rates
of convergence in simplified scenarios such as “one-
coin” Dawid-Skene. Paralelly, computationally efficient
approximations of the MLE have proven to be useful for
crowdlabelling, with many of the desired properties of
the MLE [23]. Prior work on crowdlabeling with multiple
expertise levels [13] also uses MLE for label estimation.
With this motivation, we focus on analyzing the MLE
in our problem of aggregating evaluations with multiple
expertise levels. Our work contributes to the body of
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Fig. 1: Pictorial illustration of the main theoretical results:
risk of MLE minus risk of our proposed estimator for
different parameter values. The two axes represent the
two latent (nuisance) parameters. The MLE performs
significantly worse than our constructed estimator in the
light gray region enclosed within the red lines, whereas
everywhere else above the diagonal our estimator is
asymptotically as good as the MLE.

literature on Neyman-Scott problems [7], [12] that focus
on the behavior of MLE where the number of nuisance
parameters grows with the size of the problem.

We focus on objective tasks involving binary choices,
meaning that each question or task is associated with a
single correct binary answer. We consider the extension
of the Dawid-Skene model from prior work [13] which
incorporates multiple expertise levels, in a simplified form.
Our main contribution is a surprising negative result of
asymptotic inadmissibility of the MLE in this context.
Specifically, we consider a setting wherein each question
is evaluated by exactly two low-level experts (or non-
experts) and one (high-level) expert. We prove that MLE
is asymptotically inadmissible even in this simplified
setting. To prove this result, we construct an alternative
polynomial-time-computable estimator and show that for
all possible parameter values, the alternative estimator
is as good as or better than the MLE. Importantly, for
some parameter values, we show that the risk of MLE is
higher than that of our estimator by a positive constant.

We pictorially illustrate this in Figure 1. For parameter
values in the light gray region our estimator is signifi-
cantly better than MLE, and for parameter values lying in
the dark gray region our estimator is as good as MLE. We
subsequently provide simulations to qualitatively show
that this finding extends to other combinations of expertise
evaluations in a finite sample setting.

II. PROBLEM SETUP

Let m denote the number of questions. We assume
every question has two possible answers, denoted by O
and 1, of which exactly one is correct. Each question is
answered by multiple evaluators, and for each question-
answer pair, we have access to the evaluator’s level of
expertise in the corresponding question; examples of
such expertise level include the evaluator’s self-reported
confidence or their seniority in the application domain.
We assume there are two expertise levels, which we refer
to as low, denoted by L, and high, denoted by H. Under
this expertise-level information, we model the question-
answering as follows.

We will show that MLE is asymptotically inadmissible
even in a simplified setting: we consider the setting where
each question has exactly two evaluators with a low
level of expertise and one evaluator with a high level
of expertise, and that the probability of correctness is
governed only by the expertise level. For each question
without loss of generality, we assume that the first two
evaluators have low expertise level and the third evaluator
has a high expertise level. For any question ¢ € [m)],
we let 7 denote the correct answer. The evaluation of
the j™ evaluator (j € {1,2,3}) for the i question is
denoted by y;;. The probability of correctness, P(y;; =
x}) depends on the associated expertise level of the
evaluator, and is independent of all else. Specifically, we
assume existence of two unknown values p} ,pj; € [0,1]
that govern the correctness probabilities of low and high
expertise evaluators respectively. We assume that

_ )T wpp,
= 1—2f wp1l-—p,

where p = p} for j € {1,2} and p = pj; for j = 3. We
further assume that 0.5 < p7 < p}; < 1, which indicates
that the evaluators are not adversarial [4], [16], [22],
and that the high-expertise evaluator answers correctly
with a probability at least as high as that for a low-
expertise evaluator [8], [11], [21]. We make the standard
assumption that for all ¢ € [m] and j € [3], given the
values of x7 and pj, pF;, the evaluations y;; are mutually
independent.

For ease of exposition subsequently in the paper, for
all ¢ € [m] we introduce the notation yr,; := yi1 + Yiz €
{0,1,2} and yp; == yi3 € {0,1}.

Evaluation metric: Consider any estimator T
{0,1}3*™ — {0,1}™ as a function that maps the
received evaluations to answers for all questions. We
let Z; denote the output of the estimator for question
i € [m] wherein we drop the dependence on y from the

(D

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 27,2023 at 15:31:40 UTC from IEEE Xplore. Restrictions apply.

3169



2022 IEEE International Symposium on Information Theory (ISIT)

notation for brevity. We then evaluate any estimator Z in
terms of the 0-1 loss, and focus on the risk:

A 1 m - %
R(I) = E{y”}(i,j)e[m]x[fﬂ |f”l’L § I (CCL 75 Z; )] . (@
i=1

Note that the risk for any estimator lies in the interval
[0, 1].

The goal of any estimator is to minimize the risk (2).
In this setting, a widely studied and used estimator is
the MLE. In this work, we provide a negative result for
the MLE. We first formally describe the MLE for our
problem.

Maximum likelihood estimator (MLE): The val-
ues p7,py are unknown, and thus MLE simultane-
ously estimates the correct answers z* and the values
p;,py. Given answers §; € {0,1,2}™ and ¥y €
{0, 1}™, under our model (1), the negative log-likelihood
W(fapL»pHa g[n gH) is given by

7 TR - PH
W(x7pLapH7 Y, yH) :Z((sz - -Ti)2 log 17
i=1 —PH
—logpr + (yr;+2(1-yr;)zi)log prL - 210gpL)~
3)

The MLE minimizes the negative log-likelihood func-
tion (3) to obtain an estimate of the probability values,
denoted by pr,py and estimator of the correct answers
denoted by Zmig : {0,1,2}™ x {0,1}"™ — {0,1}™,
where Zyig, denotes the estimate for the ¢t question.
Thus, we have

arg min W(I7pL7pH7yL7yH)a
7e{0,1}™;
pr,pr€[0.5,1]%;
PLSPH

IMLE, PL,PH €

4)

where for concreteness we assume that for all ¢ € [m]
the estimator Zyg, breaks ties in favour of y;.

III. MAIN RESULT

In this section, we provide our main result that the
MLE is asymptotically inadmissible. In order to prove
this result, we construct another estimator which we call
the plug-in estimator.

A. Proposed estimator

As an intermediary in constructing the plug-in estima-
tor, we first introduce and analyze an estimator we call
the oracle MLE.

Oracle MLE: The oracle MLE is an estimator that
is assumed to have access to the true values p7 and pj;
(and is hence not realizable in our problem setting). It
computes the maximum likelihood estimate Tomig given
pr, and py; as:

®)

ZomLe € arg min W (&, pL, 0y U1, U m)-
ze{0,1}m

Observe that with the true p7, p3;, the objective function
for each question can be treated separately. In the
following lemma, we characterise the estimation by
oracle MLE. We will see that, for all questions, it either
goes with the high expertise evaluation or goes with the
majority vote of the three evaluators.

Lemma 1. For any given value of p},p% € [0.5,1]2
with p; < pi; the solution of (5), for all i € [m] is
given by Tomre, = ft«(Yr;, yu;), defined as follows. For
any question i, let a; € {0,1,2} denote the number
of low expertise evaluations that agree with the high
expertise evaluation, that is, a; = 232:1 Wyi; = ym,)-
Let t* € {1,2} be defined for p%,py € (0.5,1)2 as
lo p*H*
v —max | L[ 2- 28 i

o) 41, ©
logk;z

and, if p; = 0.5 or p3; = 1 we set t* = 1. Now, we have

ifa;+1<t*
otherwise.

1—ym,
YH;

ft*(yLivyHi) = { @)

We pictorially illustrate the operation of the oracle
MLE in Figure 1, where for (p},p%;) to the left of the
red dashed line it picks ¢t* = 1 and to the right of this
line it picks t* = 2.

Next, we present our constructed estimator, the plug-in
estimator using the functional form derived in Lemma 1.

Plug-in estimator: This is a two-stage polynomial-time-
computable estimator and is described in Algorithm 1.
In the first stage (steps 1, 2 and 3 of Algorithm 1),
the probability values p; and pj; are estimated (with
estimates denoted as p; and py) by measuring the
agreement between the two low expertise evaluations, and
one low and one high expertise evaluation respectively,
for \/m questions. In the second stage (step 4 and
output of Algorithm 1), p and py are plugged-in to
the MLE objective function (3) to get the estimator Zpy.
The functional form of the output of Algorithm 1 —
specifically, (10) and Zp; — is based on the form of the
oracle MLE derived in Lemma 1. We note that purpose of
sample-splitting in Algorithm 1 is for showing theoretical

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 27,2023 at 15:31:40 UTC from IEEE Xplore. Restrictions apply.

3170



2022 IEEE International Symposium on Information Theory (ISIT)

Input: m and {y;; }ic[m),je[3), Where recall that
Yr; = Y + Yi2,ym,; = yis for all ¢ € [m].

(1) Define pu;, = \/QE Zﬁ/zﬂ(%l = Yi2)-
Compute py, as

B =05 (1 + Vmax{2ur — 1, 0}) L ®

(2) Define pug = % Z@E/Hl I(yi1 = ya3)-
Compute py as

§L+HH1}. )

= i1 t
b mln{ ) 2pL ~1
(3) If pr, > pH, then reset
pL =Dpr = (PL +DPr)/2.
(4) Define tp; as follows. For pr,py € (0.5,1)2
set

1
tpl = max <’72 <2

For p;, = 0.5 or pyg = 1 set tp; = 1.
Output: For each question ¢ € [m], output

&"\Pli = ftPI(yLi’ sz) with ftPI as defined in (7)
Algorithm 1: The proposed plug-in estimator.

log

pH
_ 2 V) 4.
log 15%1 ’

(10)

results. In practice, one may use all m questions for
estimating pr,py in step 1 and 2.

B. Asymptotic inadmissibility of MLE

Let R,,(Zmie) and R,,(Zp1) denote the risk of the
MLE and the plug-in estimator respectively, as defined
in (2). To prove that the MLE is asymptotically inadmis-
sible in our setting, we show that there exist no values
of pr,pm such that the MLE has a lower risk than the
constructed plug-in estimator, described in Algorithm 1.
We do this in two steps. First we show that there exist
D7, Py such that the risk of MLE is higher than the risk
of plug-in estimator, by more than a positive constant.
Second, we show that asymptotically the risk of the plug-
in estimator is as good as or better than that of MLE for
all p7,p%.

a) Negative result: Through the following theorem,
we show that for some p7 , pj; the risk of MLE is worse
than that of the plug-in estimator by a constant.

Theorem 1. There exist p} , pl; € [0.5,1)% with p; < p%;
and myg such that for all m > mg, we have R, (Tyre) >
R,.(Zpr) + ¢, where ¢ > 0 is a universal constant.

We provide a sketch of the proof of Theorem 1 in
Section III-C(a).

Remark 1. Theorem I holds true for a set of pj,Dpj;,
in the light gray region in Figure 1, enclosed by a red
boundary. This set has a non-zero measure.

Thus, there are many p7j , p7; for which the risk of MLE
is worse than the risk of plug-in by a constant.

b) Positive result: We now present a positive result
for the plug-in estimator.

Theorem 2. For any p},p}; € [0.5,1]? such that p} <
Dy there exists mq such that for all m > mo, we have

/

Rm(i‘\i’l) S Rm(/x\MLE) + \/Cma (11)
where ¢’ is a universal constant. Thus, we have

m— 00

We provide a sketch of the proof of Theorem 2 in
Section III-C(b). Theorem 2 provides a positive result for
the plug-in estimator by stating that asymptotically it is
as good as the MLE or better, pointwise, for all p7, p3;.
Finally, by combining Theorem 1 and Theorem 2, we see
that our constructed plug-in estimator deems the MLE
asymptotically inadmissible for our setting.

C. Proof sketch for Theorem 1 and Theorem 2

Our proofs rely on the certain structure of both MLE
and plug-in estimators. Specifically, we show that both
algorithms operate by picking one of the decision rules
defined in (7) (i.e., t = 1 for high-level expert-based
or t = 2 for majority vote-based) and applying it to all
the questions i € [m] to obtain Z;. The choice of the
decision rule (7) is fully determined by the estimates of
true probabilities p7 , p7; obtained in the inner-workings
of the estimators. With these preliminaries, we separately
show negative and positive results.

a) Negative result: The crux of the proof is to find
P71, Py such that with high probability (i) MLE picks
t = 1, (ii) the plug-in estimator picks ¢t = 2, and (iii) the
choice of ¢t = 2 leads to a smaller risk than ¢ = 1. We
approach the proof in three steps and the key challenge is
to get a handle on the sample-level behavior of estimators
(steps 1 and 2).

Step 1. Starting from MLE, we use a subgaussian
argument to show that in the region of interest, the value
of the MLE objective (3) uniformly concentrates around
its expectation. We then study the corresponding expected
value to derive closed-form minimizers and describe the
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Fig. 2: Mean 0-1 error of the three estimators described in this work: Oracle MLE, MLE, and plug-in estimator
under three settings with m = 1000 questions, computed over 100 trials, with error bars to represent the standard
error. Here, xLyH indicates that each question is evaluated by x low-level experts and y high-level experts.

behavior of MLE in terms of the mapping between Dy, Dy
and the choice of decision rule (7) it makes.

Step 2. We show that Algorithm 1 obtains unbiased
estimates of the true values pj,pj;. We then establish
convergence rates, thereby characterizing the choice of
the decision rule made by the plug-in estimator.

Step 3. With these results, we carefully choose p7,pj;
that results in requested conditions (i) — (iii), leading to
a significant difference in the risks of the two estimators.

b) Positive result: To prove the positive result,
we introduce an auxiliary estimator that picks the best
decision rule (7) for each instance of ¥, . First, we
observe that this auxiliary estimator is as good as or better
than both plug-in and MLE. Hence, to prove our result,
it remains to show that the risk of plug-in asymptotically
converges to that of the auxiliary estimator.

Step 1. We study the behavior of the auxiliary estimator
which we illustrate in Figure 1. For all p7,, p}; to the left
of the red dashed line, with high probability, it chooses
the high expertise-based decision rule (¢ = 1). To the
right of the red dashed line, with high probability, it
chooses the majority vote-based decision rule (t = 2).

Step 2. To conclude the proof, we establish a convergence
result which confirms that with high probability plug-in
picks the same decision rule (¢ = 1 or ¢t = 2) as the
auxiliary estimator.

IV. SIMULATIONS

In this section, we simulate settings that relax assump-
tions in our theoretical analysis, investigating settings
where the number of questions m is finite, and under
different combinations of evaluators’ expertise. We find
that our plug-in estimator continues to outperform or
perform at least as well as the MLE.

We consider m = 1000 questions. In each of our
experiments and for each estimator, we compute the
average error over 100 trials, where in each trial we
generate ¥ € {0,1}" uniformly at random and then
generate §;,, J;; based on (1). We consider three settings
in our simulations. In Figure 2a each question is evaluated
by 2 low-level experts and 1 high-level expert, same as
the setting for our theoretical results in Section III, with
p; = 0.7,py = 0.8. In Figure 2b each question is
evaluated by 3 low-level experts and 1 high-level expert,
with p7 = 0.75,p}; = 0.85. In Figure 2c each question
is evaluated by 5 low-level experts and 1 high-level
expert, with p; = 0.72,p}; = 0.72. In each setting,
we simulate the oracle MLE, MLE and plug-in estimator
as described in (4), (5) and Algorithm 1 respectively.
Note that for our simulations of the plug-in estimator,
we use all the questions for estimation of py,py defined
in (8), (9). Observe in Figure 2 that in each setting, the
mean 0-1 error of MLE is higher than that of our plug-in
estimator. This suggests that our result on the asymptotic
inadmissibility of MLE may be true more generally.

V. CONCLUSION

In this work, we show that the widely used estimator

MLE is asymptotically inadmissible in a simplified setting
of the Dawid-Skene model with expertise information.
For this we construct an alternative estimator, the plug-
in estimator. In the future, it will be interesting to
investigate the optimality of the plug-in estimator for this
setting. More generally, finding the optimal estimator for
evaluation aggregation with expertise-level information
is an open question of interest.
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