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AbstractÐA number of applications including crowd-
sourced labeling and peer review require aggregation of
labels or evaluations sourced from multiple evaluators.
There is often additional information available pertaining
to the evaluators’ expertise. A natural approach for
aggregation is to consider the widely studied Dawid-Skene
model (or its extensions incorporating evaluators’ expertise),
and employ the standard maximum likelihood estimator
(MLE). While MLE is in general widely used in practice and
enjoys a number of appealing theoretical guarantees, in this
work we provide a negative result for the MLE. Specifically,
we prove that the MLE is asymptotically inadmissible for
a special case of evaluation aggregation with expertise level
information. We show this by constructing an alternative
estimator that we show is significantly better than the MLE
in certain parameter regimes and at least as good elsewhere.
Finally, simulations reveal that our findings may hold in
more general conditions than what we theoretically analyze.

Index TermsÐMLE, admissibility, crowdsourcing

I. INTRODUCTION

A number of applications involve evaluations from

multiple people with varying levels of expertise, and an

eventual objective of aggregating the different evaluations

to obtain a final decision. For instance, in peer-review,

multiple reviewers provide their evaluation regarding

the acceptance of the submission and their expertise

on the submission matter. Another instance is found

in crowdlabeling, where multiple crowdworkers provide

labels for the same question. Additionally, one often

has access to the evaluators’ level of expertise, for

instance, from their known expertise [15], self-reported

confidence [17] or their prior approval rating [20]. Other

such applications include decision-making in university

admissions, grant allotments etc., where the quality of

individual decisions obtained generally varies across

individuals because of varying levels of expertise. Each

of the aforementioned problems involves aggregation of

multiple evaluations with varying expertise.

Moreover, in such settings, it is frequently the case that

the set of evaluators are deliberately chosen in a certain

manner based on their expertise levels. As an example,

in the peer-review process of the AAAI conference on

Artificial Intelligence in 2022 [3], due to lack of sufficient

senior reviewers, each paper was assigned one senior

and one junior reviewer. Similarly, in crowdlabeling,

budget constraints impose the need for balancing out

high expertise (but more expensive) and low expertise

(but cheaper) crowdworkers.

There is a vast literature on the problem of aggregation

of multiple evaluations in crowdsourcing [1], [5], [6], [9],

[10], [16], [18], [23], [25]. The bulk of this past work is

based on the classical Dawid-Skene model [2], in which

each evaluator is associated with a single scalar parameter

corresponding to their probability of correctness. While

the Dawid-Skene model does not incorporate expertise

levels, a natural extension [13] incorporates them with

separate parameters for each expertise level.

Dawid and Skene [2] propose the maximum likelihood

estimator (MLE) for estimation. They use the Expectation-

Maximization algorithm to approximately compute the

MLE. The correct answers and the evaluator’s parameter

for correctness are jointly estimated by maximizing the

likelihood of the observed evaluations. This MLE-based

approach has had huge empirical success [14], [19], [24].

Moreover, theoretical analyses [5] have shown that global

optimal solutions of the MLE can achieve minimax rates

of convergence in simplified scenarios such as ªone-

coinº Dawid-Skene. Paralelly, computationally efficient

approximations of the MLE have proven to be useful for

crowdlabelling, with many of the desired properties of

the MLE [23]. Prior work on crowdlabeling with multiple

expertise levels [13] also uses MLE for label estimation.

With this motivation, we focus on analyzing the MLE

in our problem of aggregating evaluations with multiple

expertise levels. Our work contributes to the body of
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Fig. 1: Pictorial illustration of the main theoretical results:

risk of MLE minus risk of our proposed estimator for

different parameter values. The two axes represent the

two latent (nuisance) parameters. The MLE performs

significantly worse than our constructed estimator in the

light gray region enclosed within the red lines, whereas

everywhere else above the diagonal our estimator is

asymptotically as good as the MLE.

literature on Neyman-Scott problems [7], [12] that focus

on the behavior of MLE where the number of nuisance

parameters grows with the size of the problem.

We focus on objective tasks involving binary choices,

meaning that each question or task is associated with a

single correct binary answer. We consider the extension

of the Dawid-Skene model from prior work [13] which

incorporates multiple expertise levels, in a simplified form.

Our main contribution is a surprising negative result of

asymptotic inadmissibility of the MLE in this context.

Specifically, we consider a setting wherein each question

is evaluated by exactly two low-level experts (or non-

experts) and one (high-level) expert. We prove that MLE

is asymptotically inadmissible even in this simplified

setting. To prove this result, we construct an alternative

polynomial-time-computable estimator and show that for

all possible parameter values, the alternative estimator

is as good as or better than the MLE. Importantly, for

some parameter values, we show that the risk of MLE is

higher than that of our estimator by a positive constant.

We pictorially illustrate this in Figure 1. For parameter

values in the light gray region our estimator is signifi-

cantly better than MLE, and for parameter values lying in

the dark gray region our estimator is as good as MLE. We

subsequently provide simulations to qualitatively show

that this finding extends to other combinations of expertise

evaluations in a finite sample setting.

II. PROBLEM SETUP

Let m denote the number of questions. We assume

every question has two possible answers, denoted by 0
and 1, of which exactly one is correct. Each question is

answered by multiple evaluators, and for each question-

answer pair, we have access to the evaluator’s level of

expertise in the corresponding question; examples of

such expertise level include the evaluator’s self-reported

confidence or their seniority in the application domain.

We assume there are two expertise levels, which we refer

to as low, denoted by L, and high, denoted by H . Under

this expertise-level information, we model the question-

answering as follows.

We will show that MLE is asymptotically inadmissible

even in a simplified setting: we consider the setting where

each question has exactly two evaluators with a low

level of expertise and one evaluator with a high level

of expertise, and that the probability of correctness is

governed only by the expertise level. For each question

without loss of generality, we assume that the first two

evaluators have low expertise level and the third evaluator

has a high expertise level. For any question i ∈ [m],
we let x∗

i denote the correct answer. The evaluation of

the jth evaluator (j ∈ {1, 2, 3}) for the ith question is

denoted by yij . The probability of correctness, P(yij =
x∗
i ) depends on the associated expertise level of the

evaluator, and is independent of all else. Specifically, we

assume existence of two unknown values p∗L, p
∗
H ∈ [0, 1]

that govern the correctness probabilities of low and high

expertise evaluators respectively. We assume that

yij =

{
x∗
i wp p,

1− x∗
i wp 1− p,

(1)

where p = p∗L for j ∈ {1, 2} and p = p∗H for j = 3. We

further assume that 0.5 ≤ p∗L ≤ p∗H ≤ 1, which indicates

that the evaluators are not adversarial [4], [16], [22],

and that the high-expertise evaluator answers correctly

with a probability at least as high as that for a low-

expertise evaluator [8], [11], [21]. We make the standard

assumption that for all i ∈ [m] and j ∈ [3], given the

values of x∗
i and p∗L, p

∗
H , the evaluations yij are mutually

independent.

For ease of exposition subsequently in the paper, for

all i ∈ [m] we introduce the notation yLi := yi1 + yi2 ∈
{0, 1, 2} and yHi := yi3 ∈ {0, 1}.

Evaluation metric: Consider any estimator x̂ :
{0, 1}3×m → {0, 1}m as a function that maps the

received evaluations to answers for all questions. We

let x̂i denote the output of the estimator for question

i ∈ [m] wherein we drop the dependence on y from the

2
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notation for brevity. We then evaluate any estimator x̂ in

terms of the 0-1 loss, and focus on the risk:

R(x̂) = E{yij}(i,j)∈[m]×[3]

[
1

m

m∑

i=1

I (x̂i ̸= x∗
i )

]
. (2)

Note that the risk for any estimator lies in the interval

[0, 1].

The goal of any estimator is to minimize the risk (2).

In this setting, a widely studied and used estimator is

the MLE. In this work, we provide a negative result for

the MLE. We first formally describe the MLE for our

problem.

Maximum likelihood estimator (MLE): The val-

ues p∗L, p
∗
H are unknown, and thus MLE simultane-

ously estimates the correct answers x∗ and the values

p∗L, p
∗
H . Given answers y⃗L ∈ {0, 1, 2}m and y⃗H ∈

{0, 1}m, under our model (1), the negative log-likelihood

W (x⃗, pL, pH , y⃗L, y⃗H) is given by

W(x⃗, pL, pH , y⃗L, y⃗H)=

m∑

i=1

(
(yHi − xi)

2 log
pH

1− pH

− log pH + (yLi+2(1−yLi)xi)log
pL

1− pL
− 2 log pL

)
.

(3)

The MLE minimizes the negative log-likelihood func-

tion (3) to obtain an estimate of the probability values,

denoted by p̂L, p̂H and estimator of the correct answers

denoted by x̂MLE : {0, 1, 2}m × {0, 1}m → {0, 1}m,

where x̂MLEi
denotes the estimate for the ith question.

Thus, we have

x̂MLE, p̂L, p̂H ∈ arg min
x⃗∈{0,1}m;

pL,pH∈[0.5,1]2;
pL≤pH

W (x⃗, pL, pH , y⃗L, y⃗H),

(4)

where for concreteness we assume that for all i ∈ [m]
the estimator x̂MLEi

breaks ties in favour of yHi.

III. MAIN RESULT

In this section, we provide our main result that the

MLE is asymptotically inadmissible. In order to prove

this result, we construct another estimator which we call

the plug-in estimator.

A. Proposed estimator

As an intermediary in constructing the plug-in estima-

tor, we first introduce and analyze an estimator we call

the oracle MLE.

Oracle MLE: The oracle MLE is an estimator that

is assumed to have access to the true values p∗L and p∗H
(and is hence not realizable in our problem setting). It

computes the maximum likelihood estimate x̂OMLE given

p∗L and p∗H as:

x̂OMLE ∈ arg min
x⃗∈{0,1}m

W (x⃗, p∗L, p
∗
H , y⃗L, y⃗H). (5)

Observe that with the true p∗L, p
∗
H , the objective function

for each question can be treated separately. In the

following lemma, we characterise the estimation by

oracle MLE. We will see that, for all questions, it either

goes with the high expertise evaluation or goes with the

majority vote of the three evaluators.

Lemma 1. For any given value of p∗L, p
∗
H ∈ [0.5, 1]2

with p∗L ≤ p∗H the solution of (5), for all i ∈ [m] is

given by x̂OMLEi
= ft∗(yLi, yHi), defined as follows. For

any question i, let ai ∈ {0, 1, 2} denote the number

of low expertise evaluations that agree with the high

expertise evaluation, that is, ai =
∑2

j=1 I(yij = yHi).

Let t∗ ∈ {1, 2} be defined for p∗L, p
∗
H ∈ (0.5, 1)2 as

t∗ = max





1

2


2−

log
p∗

H

1−p∗

H

log
p∗

L

1−p∗

L





, 0


+ 1, (6)

and, if p∗L = 0.5 or p∗H = 1 we set t∗ = 1. Now, we have

ft∗(yLi, yHi) =

{
1− yHi if ai + 1 < t∗

yHi otherwise.
(7)

We pictorially illustrate the operation of the oracle

MLE in Figure 1, where for (p∗L, p
∗
H) to the left of the

red dashed line it picks t∗ = 1 and to the right of this

line it picks t∗ = 2.

Next, we present our constructed estimator, the plug-in

estimator using the functional form derived in Lemma 1.

Plug-in estimator: This is a two-stage polynomial-time-

computable estimator and is described in Algorithm 1.

In the first stage (steps 1, 2 and 3 of Algorithm 1),

the probability values p∗L and p∗H are estimated (with

estimates denoted as p̃L and p̃H ) by measuring the

agreement between the two low expertise evaluations, and

one low and one high expertise evaluation respectively,

for
√
m questions. In the second stage (step 4 and

output of Algorithm 1), p̃L and p̃H are plugged-in to

the MLE objective function (3) to get the estimator x̂PI.

The functional form of the output of Algorithm 1 Ð

specifically, (10) and x̂PI Ð is based on the form of the

oracle MLE derived in Lemma 1. We note that purpose of

sample-splitting in Algorithm 1 is for showing theoretical

3
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Input: m and {yij}i∈[m],j∈[3], where recall that

yLi = yi1 + yi2, yHi = yi3 for all i ∈ [m].

(1) Define µL = 2√
m

∑√
m/2

i=1 I (yi1 = yi2).

Compute p̃L as

p̃L = 0.5
(
1 +

√
max{2µL − 1, 0}

)
. (8)

(2) Define µH = 2√
m

∑√
m

i=
√
m/2+1

I (yi1 = yi3).

Compute p̃H as

p̃H = min

{
1,

p̃L + µH − 1

2p̃L − 1

}
. (9)

(3) If p̃L > p̃H , then reset

p̃L = p̃H = (p̃L + p̃H)/2.

(4) Define tPI as follows. For p̃L, p̃H ∈ (0.5, 1)2

set

tPI = max

(⌈
1

2

(
2−

log p̃H

1−p̃H

log p̃L

1−p̃L

)⌉
, 0

)
+ 1.

(10)

For p̃L = 0.5 or p̃H = 1 set tPI = 1.

Output: For each question i ∈ [m], output

x̂PIi = ftPI
(yLi, yHi) with ftPI

as defined in (7).

Algorithm 1: The proposed plug-in estimator.

results. In practice, one may use all m questions for

estimating p̃L, p̃H in step 1 and 2.

B. Asymptotic inadmissibility of MLE

Let Rm(x̂MLE) and Rm(x̂PI) denote the risk of the

MLE and the plug-in estimator respectively, as defined

in (2). To prove that the MLE is asymptotically inadmis-

sible in our setting, we show that there exist no values

of pL, pH such that the MLE has a lower risk than the

constructed plug-in estimator, described in Algorithm 1.

We do this in two steps. First we show that there exist

p∗L, p
∗
H such that the risk of MLE is higher than the risk

of plug-in estimator, by more than a positive constant.

Second, we show that asymptotically the risk of the plug-

in estimator is as good as or better than that of MLE for

all p∗L, p
∗
H .

a) Negative result: Through the following theorem,

we show that for some p∗L, p
∗
H the risk of MLE is worse

than that of the plug-in estimator by a constant.

Theorem 1. There exist p∗L, p
∗
H ∈ [0.5, 1]2 with p∗L ≤ p∗H

and m0 such that for all m ≥ m0, we have Rm(x̂MLE) >
Rm(x̂PI) + c, where c > 0 is a universal constant.

We provide a sketch of the proof of Theorem 1 in

Section III-C(a).

Remark 1. Theorem 1 holds true for a set of p∗L, p
∗
H ,

in the light gray region in Figure 1, enclosed by a red

boundary. This set has a non-zero measure.

Thus, there are many p∗L, p
∗
H for which the risk of MLE

is worse than the risk of plug-in by a constant.

b) Positive result: We now present a positive result

for the plug-in estimator.

Theorem 2. For any p∗L, p
∗
H ∈ [0.5, 1]2 such that p∗L ≤

p∗H , there exists m0 such that for all m ≥ m0, we have

Rm(x̂PI) ≤ Rm(x̂MLE) +
c′√
m
, (11)

where c′ is a universal constant. Thus, we have

lim inf
m→∞

[Rm(x̂MLE)−Rm(x̂PI)] ≥ 0. (12)

We provide a sketch of the proof of Theorem 2 in

Section III-C(b). Theorem 2 provides a positive result for

the plug-in estimator by stating that asymptotically it is

as good as the MLE or better, pointwise, for all p∗L, p
∗
H .

Finally, by combining Theorem 1 and Theorem 2, we see

that our constructed plug-in estimator deems the MLE

asymptotically inadmissible for our setting.

C. Proof sketch for Theorem 1 and Theorem 2

Our proofs rely on the certain structure of both MLE

and plug-in estimators. Specifically, we show that both

algorithms operate by picking one of the decision rules

defined in (7) (i.e., t = 1 for high-level expert-based

or t = 2 for majority vote-based) and applying it to all

the questions i ∈ [m] to obtain x̂i. The choice of the

decision rule (7) is fully determined by the estimates of

true probabilities p∗L, p
∗
H obtained in the inner-workings

of the estimators. With these preliminaries, we separately

show negative and positive results.

a) Negative result: The crux of the proof is to find

p∗L, p
∗
H such that with high probability (i) MLE picks

t = 1, (ii) the plug-in estimator picks t = 2, and (iii) the

choice of t = 2 leads to a smaller risk than t = 1. We

approach the proof in three steps and the key challenge is

to get a handle on the sample-level behavior of estimators

(steps 1 and 2).

Step 1. Starting from MLE, we use a subgaussian

argument to show that in the region of interest, the value

of the MLE objective (3) uniformly concentrates around

its expectation. We then study the corresponding expected

value to derive closed-form minimizers and describe the

4
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(a) 2L1H. p∗L = 0.7, p
∗

H = 0.8. (b) 3L1H. p∗L = 0.75, p
∗

H = 0.85. (c) 5L1H. p∗L = 0.72, p
∗

H = 0.72.

Fig. 2: Mean 0-1 error of the three estimators described in this work: Oracle MLE, MLE, and plug-in estimator

under three settings with m = 1000 questions, computed over 100 trials, with error bars to represent the standard

error. Here, xLyH indicates that each question is evaluated by x low-level experts and y high-level experts.

behavior of MLE in terms of the mapping between p̂L, p̂H
and the choice of decision rule (7) it makes.

Step 2. We show that Algorithm 1 obtains unbiased

estimates of the true values p∗L, p
∗
H . We then establish

convergence rates, thereby characterizing the choice of

the decision rule made by the plug-in estimator.

Step 3. With these results, we carefully choose p∗L, p
∗
H

that results in requested conditions (i) Ð (iii), leading to

a significant difference in the risks of the two estimators.

b) Positive result: To prove the positive result,

we introduce an auxiliary estimator that picks the best

decision rule (7) for each instance of y⃗L, y⃗H . First, we

observe that this auxiliary estimator is as good as or better

than both plug-in and MLE. Hence, to prove our result,

it remains to show that the risk of plug-in asymptotically

converges to that of the auxiliary estimator.

Step 1. We study the behavior of the auxiliary estimator

which we illustrate in Figure 1. For all p∗L, p
∗
H to the left

of the red dashed line, with high probability, it chooses

the high expertise-based decision rule (t = 1). To the

right of the red dashed line, with high probability, it

chooses the majority vote-based decision rule (t = 2).

Step 2. To conclude the proof, we establish a convergence

result which confirms that with high probability plug-in

picks the same decision rule (t = 1 or t = 2) as the

auxiliary estimator.

IV. SIMULATIONS

In this section, we simulate settings that relax assump-

tions in our theoretical analysis, investigating settings

where the number of questions m is finite, and under

different combinations of evaluators’ expertise. We find

that our plug-in estimator continues to outperform or

perform at least as well as the MLE.

We consider m = 1000 questions. In each of our

experiments and for each estimator, we compute the

average error over 100 trials, where in each trial we

generate x⃗∗ ∈ {0, 1}m uniformly at random and then

generate y⃗L, y⃗H based on (1). We consider three settings

in our simulations. In Figure 2a each question is evaluated

by 2 low-level experts and 1 high-level expert, same as

the setting for our theoretical results in Section III, with

p∗L = 0.7, p∗H = 0.8. In Figure 2b each question is

evaluated by 3 low-level experts and 1 high-level expert,

with p∗L = 0.75, p∗H = 0.85. In Figure 2c each question

is evaluated by 5 low-level experts and 1 high-level

expert, with p∗L = 0.72, p∗H = 0.72. In each setting,

we simulate the oracle MLE, MLE and plug-in estimator

as described in (4), (5) and Algorithm 1 respectively.

Note that for our simulations of the plug-in estimator,

we use all the questions for estimation of p̃L, p̃H defined

in (8), (9). Observe in Figure 2 that in each setting, the

mean 0-1 error of MLE is higher than that of our plug-in

estimator. This suggests that our result on the asymptotic

inadmissibility of MLE may be true more generally.

V. CONCLUSION

In this work, we show that the widely used estimator

MLE is asymptotically inadmissible in a simplified setting

of the Dawid-Skene model with expertise information.

For this we construct an alternative estimator, the plug-

in estimator. In the future, it will be interesting to

investigate the optimality of the plug-in estimator for this

setting. More generally, finding the optimal estimator for

evaluation aggregation with expertise-level information

is an open question of interest.
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