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Abstract 16 

Local adaptation can lead to elevated genetic differentiation at the targeted genetic variant and 17 

nearby sites.  Selective sweeps come in different forms, and depending on the initial and final 18 

frequencies of a favored variant, very different patterns of genetic variation may be produced.  If 19 

local selection favors an existing variant that had already recombined onto multiple genetic 20 

backgrounds, then the width of elevated genetic differentiation (high FST) may be too narrow to 21 

detect using a typical windowed genome scan, even if the targeted variant becomes highly 22 

differentiated.  We therefore used a simulation approach to investigate the power of SNP-level FST 23 

(specifically, the maximum SNP FST value within a window, or FST_MaxSNP) to detect diverse 24 

scenarios of local adaptation, and compared it against whole-window FST and the Comparative 25 

Haplotype Identity statistic.  We found that FST_MaxSNP had superior power to detect complete or 26 

mostly complete soft sweeps, but lesser power than full-window statistics to detect partial hard 27 

sweeps.  Nonetheless, the power of FST_MaxSNP depended highly on sample size, and confident 28 

outliers depend on robust precautions and quality control.  To investigate the relative enrichment 29 

of FST_MaxSNP outliers from real data, we applied the two FST statistics to a panel of Drosophila 30 

melanogaster populations.  We found that FST_MaxSNP had a genome-wide enrichment of outliers 31 

compared to demographic expectations, and though it yielded a lesser enrichment than window 32 

FST, it detected mostly unique outlier genes and functional categories.  Our results suggest that 33 

FST_MaxSNP is highly complementary to typical window-based approaches for detecting local 34 

adaptation, and merits inclusion in future genome scans and methodologies. 35 
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 39 

Significance statement 40 

Studies that use genetic variation to search for genes evolving under population-specific natural 41 

selection tend to analyze data at the level of genomic windows that may each contain hundreds of 42 

variable sites.  However, some models of natural selection (e.g. favoring an existing genetic variant) 43 

may result in genetic signals of local adaptation that are too narrow to be detected by such 44 

approaches.  Here we use both simulations and empirical data analysis to show that searching for 45 

a site-specific signal of elevated genetic differentiation can find instances of local adaptation that 46 

other approaches miss, and therefore the integration of this signal into future studies may 47 

significantly improve our understanding of adaptive evolution and its genetic targets. 48 

  49 
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Introduction 50 

Geographically distinct populations are exposed to different selective pressures, which may result 51 

in local adaptation.  The detection of genomic regions under positive selection specific to one 52 

population is essential to uncovering the genetic basis of locally adaptive trait variation.  Local 53 

adaptation can exist between populations with low genome-wide genetic differentiation, and 54 

comparing genetic variation between these closely-related populations can allow for much more 55 

powerful detection of positive selection than is possible from a single population.  In light of that 56 

advantage, as well as the potential applicability of genetic mapping and functional approaches to 57 

locally adaptive traits, local adaptation has played a key role in our increasing understanding of 58 

adaptive evolution at the genetic level (Kawecki and Ebert 2004; Yeaman 2015; Tigano and 59 

Friesen 2016).  In addition to its importance for evolutionary biology and ecology, the 60 

identification of regions under selection has implications for applied fields such as health sciences 61 

and agriculture because it can also pinpoint regions of the genome that hold functional diversity 62 

(Bamshad and Wooding 2003; Ross-Ibarra et al. 2007).  There has also been increasing 63 

recognition of the importance of local adaptation for a species’ future adaptive potential, with 64 

implications for conservation genetics and adaptation to climate change (Funk et al. 2012; Aitken 65 

and Whitlock 2013; Fitzpatrick and Keller 2015). 66 

Population genomic scans for local adaptation compare genetic variation between two or 67 

more populations, often searching for specific genomic windows that depart from genome-wide 68 

patterns of differentiation in a manner consistent with population-specific natural selection.  69 

Positive selection has traditionally been conceptualized and modeled as a selective sweep, which 70 

traditionally involves a new beneficial mutation rising to fixation, with strong effects on genetic 71 

variation at linked sites (Maynard Smith and Haigh 1974; Kaplan et al. 1989).  However, there 72 
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are different kinds of selective sweeps, depending on the initial and final frequencies of the favored 73 

variant, and different statistical tests for deviations from neutrality vary in their power to detect 74 

them. 75 

 First, selective sweeps can be classified as hard or soft sweeps.  In a hard sweep, only a 76 

single original haplotype carrying the advantageous allele is boosted by natural selection.  This 77 

situation might be expected if selection favors either a newly occurring mutation or else a variant 78 

at low enough frequency that only one copy contributes to the sweep by chance.  In a soft sweep, 79 

two or more distinct haplotypes carrying the beneficial variant increase in frequency.  In some 80 

cases, soft sweeps occur because the advantageous allele was present in the population, 81 

segregating neutrally, prior to the onset of selection (Hermisson and Pennings 2005).  But they 82 

can also be the result of recurrent mutations or influx of new alleles through migration (Pennings 83 

and Hermisson 2006a, 2006b).   84 

Selective sweeps can also be classified as complete or partial sweeps.  In a complete sweep, 85 

the advantageous allele has reached fixation in the population.  In a partial sweep, the 86 

advantageous allele is at an intermediary frequency.  This may occur either because the sweep is 87 

still ongoing, because positive selection ended prior to fixation, or (in the context of local 88 

adaptation) because migration continues to supply the non-favored variant.  Situations in which a 89 

sweep might terminate prematurely include an environmental change, a polygenic trait reaching 90 

its new optimum or threshold value, or an allele reaching a balanced equilibrium in a scenario 91 

such as heterozygote advantage.   92 

Different kinds of selective sweeps leave different signatures of local adaptation and our 93 

power to detect them will differ depending on which methods we use (Lange and Pool 2016).  94 

Some common approaches to scanning the genome for population-specific selective sweeps use 95 
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FST (or FST-based) statistics to quantify genetic differentiation between populations.  Local 96 

adaptation is expected to create genomic regions with more extreme differentiation than what 97 

would be expected under neutrality, since allele frequencies in these regions will change faster as 98 

the beneficial allele increases in frequency (Lewontin and Krakauer 1973).  Neutral expectations 99 

can be inferred either with demographic simulations or an outlier approach.  Demographic 100 

simulations, based on a previously estimated model of population history, can be used to mimic 101 

the history of the populations being studied in the absence of natural selection.  Outlier 102 

approaches rely on the genome-wide distribution of FST as a proxy for the neutral distribution, 103 

since neutral forces (including those due to demographic history) can broadly be expected to 104 

affect the whole genome similarly.  Genome scans for regions under selection have typically 105 

focused on measuring FST or other statistics in windows of the genome of some predefined size to 106 

search for highly differentiated genomic regions.  107 

A motivating empirical example for the present study comes from an investigation of the 108 

genetic basis of locally adaptive melanism in high altitude Drosophila melanogaster populations.  109 

Here, the authors used QTL mapping to identify genomic regions associated with derived dark 110 

pigmentation traits, and then used FST to scan these regions for signatures of selection (Bastide et 111 

al. 2016).  One very narrow and strong QTL for highland Ethiopian melanism contained the 112 

well-known pigmentation gene ebony, which also contributed to melanic evolution in a Uganda 113 

population (Pool and Aquadro 2007; Rebeiz et al. 2009).  Assessing genetic differentiation 114 

between the Ethiopia and Zambia populations for the window containing ebony, although full-115 

window FST was only marginally elevated, it had a SNP with extremely high FST (0.85).  116 

Compared to demographic simulations, this window’s maximum SNP FST value was among the 117 

top 1% of all windows, while its full-window FST was only among the 7% highest (Bastide et al. 118 
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2016).  Simulated scenarios of soft sweeps from standing variation replicated this pattern of 119 

extremely high maximum SNP FST and only moderately high window FST, suggesting that some 120 

kinds of selective sweeps that may not be detected using full-window FST could potentially be 121 

detected with a SNP-level FST approach.  Further potential support for the use of SNP-level FST 122 

signals to detect adaptive events in this same species was demonstrated by much stronger parallel 123 

signatures of selection seen at the SNP level compared to the window level in fly populations that 124 

independently adapted to cold environments (Pool et al. 2017). 125 

Challenges of using SNP-level FST values to detect selection include their variability due to 126 

random sampling effects (Weir et al. 2005) and the large number of tests that need to be made 127 

against a null distribution.  Therefore, larger sample sizes are needed than for window FST.  By 128 

using the highest SNP FST value within a window as a summary statistic for that window, and 129 

comparing it against null simulations with demography and recombination, we may somewhat 130 

improve the multiple testing issue, since here we are not treating all tightly linked SNPs as fully 131 

independent tests.  Another advantage of this approach is that the maximum value summarizes 132 

each window of the genome, making it more comparable to any other window-based metric in 133 

terms of the number of tests and units of the genome analyzed.  If full-window FST and maximum 134 

SNP FST are able to detect different types of selective events, then using both metrics could result 135 

in a more comprehensive scan for signatures of local adaptation.  The genome-wide distribution 136 

of these statistics in natural populations, compared to their neutral expectations, might also shed 137 

light on the contribution of different kinds of selective sweeps to local adaptation. 138 

To understand the utility of using the highest FST value of any SNP within a window 139 

(hereafter FST_MaxSNP) as a local adaptation summary statistic, we performed power analyses based 140 

on extensive simulations, and then applied these results to empirical data from natural 141 
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populations of D. melanogaster.  We focused on comparisons between two populations and 142 

calculated the power of FST_MaxSNP to detect signatures of local adaptation under a wide range of 143 

different selective scenarios (including partial and/or soft sweeps) and demographic histories 144 

(including population bottlenecks and scenarios with ongoing migration).  We performed 145 

demographic simulations and compared the power of FST_MaxSNP to both full-window FST based on 146 

all variable sites (herein, FST_FullWin) and a comparative haplotype-based statistic (χMD, Lange and 147 

Pool 2016).  Then, we investigated the genome-wide distribution of FST_MaxSNP and FST_FullWin 148 

among several natural populations of D. melanogaster, to determine whether either statistic was 149 

enriched genome-wide in empirical data compared to neutral expectations.  Finally, we used an 150 

outlier approach to perform a genome scan for regions potentially under local adaptation 151 

between the Ethiopia and Zambia populations mentioned above, using FST_MaxSNP, FST_FullWin, and 152 

χMD (Lange and Pool 2016), and we determined the extent of overlap between candidate regions 153 

identified according to these different methods.  These analyses allowed us to both identify the 154 

parameter space in which FST_MaxSNP outperforms other statistics, and to assess the utility and 155 

complementarity of applying these approaches to real data. 156 

 157 

Results 158 

 159 

Maximum SNP FST and full-window summaries have complementary power to 160 

detect local adaptation 161 

We performed power analyses of FST_MaxSNP, FST_FullWin, and χMD using population genetic 162 

simulations with and without natural selection.  We used msms (Ewing and Hermisson 2010) to 163 

simulate a two-population isolation model with positive selection in one population but not the 164 
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other.  with constrained initial and final allele frequencies, yielding local sweeps that could be 165 

hard or soft, and partial or complete.  Beyond the simple isolation model, demographic scenarios 166 

with population size bottlenecks or migration were simulated as well (simulation commands in 167 

Table S1).  For each scenario, we simulated both a low effective population size (Ne) model with 168 

mutation and recombination parameters based on estimates for humans, and a high Ne model 169 

with parameters motivated by Drosophila melanogaster (see Materials and Methods), following  the 170 

design of a previous power analysis study that did not include FST_MaxSNP (Lange and Pool 2016).  171 

These low and high Ne scenarios entail very different levels of diversity and scales of linkage 172 

disequilibrium (motivating contrasting window sizes of 100 kb versus 5 kb in most of our 173 

analyses), and they may therefore provide useful reference points for a range of taxa beyond the 174 

motivating species themselves.  For the low Ne simulations, we focused on sweeps with a selection 175 

coefficient of s = 0.01.  In high Ne species, many successful sweeps may have weaker advantages.  176 

Here, we focused on results with s = 0.001.  High Ne results with s = 0.01 gave similar results 177 

except where noted below (Supplementary Table 1).  FST_MaxSNP, FST_Fullwin, and χMD were 178 

calculated between the selected and non-selected populations at the end of the simulation.  Power 179 

was defined in a locus-specific context, based on the proportion of selection simulations giving a 180 

more extreme value of the summary statistic than the 95th quantile of its distribution from neutral 181 

simulations. 182 

Unsurprisingly, all three statistics were found to have high power for the case of complete 183 

hard sweeps (Figure 1; Table S1).  These simulations were conditioned on fixation of a beneficial 184 

new mutation in one population that had not occurred in the other population.  In light of this 185 

fixed difference, FST_MaxSNP in all replicates had its maximum value (FST_MaxSNP = 1).  In such cases, 186 

the power of FST_MaxSNP was binary, either zero or one, depending on whether or not 5% of the 187 
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corresponding neutral replicates had an allele that reached fixation.  In our simple isolation 188 

model, the likelihood that a neutral allele can reach fixation increases with the split time (Table 189 

S1; Figure S1).  Stronger bottlenecks also boost the likelihood of having neutral alleles reach 190 

fixation (Table S1; Figure S2, Figure S3).  Hence, power for FST_MaxSNP to detect complete hard 191 

sweeps goes from high, for recent splits and weaker bottlenecks, to zero for histories in which 192 

more than 5% of neutral replicates contain a fixed difference.  Similarly, FST_FullWin and χMD had 193 

higher power to detect signatures of local adaptation following recent splits and in weaker 194 

bottlenecks, but their change in power was gradual and continuous instead of binary. 195 

In the case of complete or nearly complete soft sweeps, FST_MaxSNP showed a clear power 196 

advantage over FST_FullWin and χMD.  Notably, for sweeps ending between 80% and 100% 197 

frequency, FST_MaxSNP had high power to detect local adaptation, even for cases with rather high 198 

initial frequencies of the beneficial allele (e.g. 10%; Figure 1; Figure 2).  In contrast, FST_FullWin and 199 

χMD showed rapidly diminishing performance as sweeps became softer (Figure 1; Figure 2).  These 200 

results make sense, in that beneficial alleles that drift to higher pre-selection frequencies have 201 

more time to recombine onto multiple haplotypes, and recombination events will have happened 202 

closer to the selected site on average.  Therefore, soft sweeps are generally narrower in width and 203 

may not substantially alter full-window statistics (Catania et al. 2004; Schlenke and Begun 2004; 204 

Hermisson and Pennings 2005).  Although the two full-window statistics maintained good power 205 

for lower initial frequencies, some of the replicates of those scenarios are actually generating hard 206 

sweeps due to the chance survival of a single haplotype carrying the favored variant (Jensen 2014), 207 

as shown by an average number of beneficial haplotypes lower than two in these simulations 208 

(Figure 2).  Moreover, as the average number of haplotypes carrying the favored variant 209 
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increased, the power of the full-window statistics decreased (Figure 2), while the power of 210 

FST_MaxSNP was unchanged.  211 

Contrasting results were obtained for partial, harder sweep scenarios.  In cases where new 212 

mutations or rare standing variants were only boosted to intermediate frequencies, FST_FullWin and 213 

χMD had fairly strong power, whereas FST_MaxSNP declined sharply in effectiveness at around 60% 214 

final frequency for hard sweeps (Figure 1).  These results are also intuitive, in that partial hard 215 

sweeps can meaningfully alter allele frequencies across a whole window and generate a class of 216 

identical haplotypes, even though no single SNP traverses an extreme range of frequencies.  The 217 

broadly similar power profiles of FST_FullWin and χMD are somewhat surprising in light of their 218 

distinct basis (albeit consistent with Lange and Pool, 2016).  Less surprising is that for the 219 

challenging scenario of partial soft sweeps, none of the three statistics showed strong power in the 220 

scenarios examined (Figure 1).   221 

Whereas the above simulations had no migration, we also wondered if FST_MaxSNP might 222 

prove useful in detecting targets of local adaptation for which genetic differentiation had been 223 

whittled down in width by recombination with migrant alleles over time (Sakamoto & Innan 224 

2019).  We therefore simulated scenarios with varying combinations of migration rate and 225 

population split time, while assuming symmetric migration rates and equal but opposing selective 226 

pressures.  Overall, FST_MaxSNP and FST_FullWin performed very similarly to each other and better 227 

than χMD.  Particularly in the high Ne scenarios (which feature a higher ratio of recombination to 228 

mutation events) with intermediate migration rates, there was a narrow space of parameters in 229 

which FST_MaxSNP performed slightly better than FST_FullWin (Figure S4).  The split time between the 230 

populations greatly affected the power of χMD, which performed better on recent splits.  The 231 

power of the FST statistics showed a small improvement for more recent splits and intermediate 232 
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migration rates.  Although small, the effect of split time also seemed more pronounced on 233 

FST_FullWin than FST_MaxSNP (Figure  S4).  Overall, these analyses provide only modest support for the 234 

notion that FST_MaxSNP could help detect peaks of genetic differentiation driven by local adaptation 235 

that have been narrowed by migration and recombination. 236 

In the above simulations, we used a sample size of 50 chromosomes per population.  We 237 

generally expect statistical power to be correlated with sample size and understanding the effect of 238 

sample size on the power of each statistic is relevant when designing an experiment or choosing 239 

which statistics to use.  We analyzed the power of FST_MaxSNP, FST_FullWin, and χMD in three scenarios 240 

for high Ne and three for low Ne.  We chose scenarios in which FST_MaxSNP and the window wide 241 

statistics performed differently:  a mostly complete soft sweep, a complete soft sweep with a 242 

bottleneck, and a partial hard sweep.  We found that sample size had a stronger effect on 243 

FST_MaxSNP than on the window wide statistics (Figure 3).  FST_MaxSNP is based on allele frequencies at 244 

a single site, so it is more sensitive to the increased sampling variance at lower sample sizes than 245 

window wide statistics.  The sampling variance in each SNP in a window should fluctuate around 246 

the mean, so when information from each SNP is combined the full-window FST statistic suffers 247 

less from the reduced sample size.  Demographic history also affected the effect of sample size on 248 

each statistic:  in scenarios with a population bottleneck, which also increases sampling variance, 249 

the power of FST_MaxSNP changed from near 1 at sample size 50 or higher to 0 at sample sizes 250 

smaller than 50 (Figure 3C, 3D).  More generally, FST_MaxSNP  was found to perform much better 251 

with 50 chromosomes than with 20, but showed relatively less improvement for sample sizes 252 

larger than 50. 253 

We also analyzed the effect of window size on the power of each statistic, with the aim of 254 

determining whether there would be a window size for which a single statistic would perform well 255 
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in contrasting scenarios.  For example, one might hope that FST_FullWin for a narrower window 256 

might retain good performance for partial hard sweeps, while also capturing the advantages of 257 

FST_MaxSNP for complete soft sweeps.  We explored four scenarios of partial sweeps, two for the high 258 

Ne and two for the low Ne.  For each population size, we chose one scenario in which the power of 259 

FST_MaxSNP outperformed FST_FullWin and χMD, and one in which it underperformed.  In practice, a 260 

reduction in window size would result in an increase in the number of tests performed in a 261 

genome scan.  Therefore, we applied a Bonferroni correction to the p-value proportional to the 262 

reduction in size.  The correction for window size equal to one site (a single SNP) was 263 

proportional to average number of SNPs in the largest window (the default window size used in 264 

our analyses).  Our results showed that, for the two scenarios in which FST_MaxSNP outperformed 265 

FST_FullWin and χMD, the power of each statistic remained mostly constant (Figure 4).  For the 266 

scenarios in which FST_FullWin and χMD had an advantage, the power of each statistic, as well as the 267 

difference among them, declined with smaller window sizes.  Overall, there was no window size in 268 

which a single statistic performed well for all scenarios, and hence it may be preferable to apply 269 

FST_MaxSNP and full-window statistics separately to empirical data. 270 

 271 

Outliers for FST_MaxSNP and FST_FullWin are enriched in empirical data 272 

In light of the above results, we were interested in applying both FST_MaxSNP and FST_FullWin to an 273 

empirical data set, in part with an interest in quantifying the relative enrichment of outliers for 274 

each statistic and what that might hint about the modes of selection active in these populations.  275 

We chose to focus on data from the Drosophila Genome Nexus (Lack et al. 2015, 2016), because it 276 

contained several populations of D. melanogaster that were linked by an estimated model of 277 

population history (Sprengelmeyer et al. 2020) and had at least minimal sample sizes available for 278 
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studying genome-wide patterns of FST (Table S2).  We included six natural populations of flies.  279 

From the ancestral range in Zambia, we included one town population (Siavonga) and one 280 

wilderness population (Kafue).  We also included four additional town populations:  from 281 

Rwanda, South Africa, Ethiopia, and France (the latter three having independently colonized 282 

colder environments; Pool et al. 2017). 283 

We calculated a p-value for each empirical window in each pairwise population 284 

comparison, based on neutral distributions of FST_MaxSNP or FST_FullWin generated using coalescent 285 

simulations of the estimated demographic history (Sprengelmeyer et al. 2020; simulation 286 

commands in Table S2).  Under neutrality, a uniform distribution of p-values is expected.  In 287 

general, for most population pairs, the distribution of p-values for FST_MaxSNP and FST_FullWin showed 288 

a U-shape instead of a uniform distribution (e.g. Figure 5A-B).  The deviation from the expected 289 

uniform distribution could be attributed to the action of natural selection producing windows with 290 

higher and lower FST than expected (e.g. by local adaptation and shared sweeps respectively) or by 291 

a misspecification of the neutral demographic model.  However, average FST values of simulated 292 

data from this model were found to align well with empirical measurements (Sprengelmeyer et al. 293 

2020), and similar results were found with other summary statistics.  The enrichment of high FST 294 

(defined as p-values from 0 to 0.05) and low FST (p-values from 0.95 to 1) varied for each statistic 295 

and across the population comparisons (Figure 5C-D).  Particularly for high FST_FullWin, the 296 

strongest enrichments were often observed for more geographically proximate, closely related 297 

population pairs, perhaps reflecting reduced noise from neutral genetic differentiation. 298 

All population pair comparisons showed an enrichment for windows with high FST_FullWin.  299 

The smallest enrichment was found between the Zambia (town) and France populations, for 300 

which there were 3.29 more windows with high FST_FullWin than expected by chance.  The highest 301 
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enrichment was found in the comparison between the South Africa and Kafue (Zambia 302 

wilderness) populations, with an enrichment factor of 9.06.  For FST_MaxSNP, eight population pairs 303 

had an enrichment value > 2, the highest being 5.41 (between the Zambian town and wilderness 304 

populations, and between South Africa and Rwanda).  On the other hand, one population pair 305 

was slightly depleted of windows with high FST_MaxSNP (enrichment to 0.87 between France and 306 

Ethiopia).  In nearly all comparisons, FST_FullWin showed higher enrichment than FST_MaxSNP (Figure 307 

5).  However, this difference in enrichment could be influenced by single local sweeps that 308 

generate multiple linked outlier windows.  We therefore pursued a complementary analysis in 309 

which nearby outlier windows were merged into “outlier regions”, which were then removed one 310 

at a time until the observed enrichment was erased (see Materials and Methods).  For almost 311 

every population pair, we had to remove a larger number of regions to erase the signal of 312 

enrichment of FST_FullWin than the signal of FST_MaxSNP (Figure 5E-F).  Hence, the greater 313 

enrichment of FST_FullWin relative to FST_MaxSNP does not appear to be a product of broader linkage 314 

signals of FST_FullWin outliers alone.  Instead, this pattern could hint that sweeps in the unique 315 

detection parameter space of FST_FullWin (i.e. partial harder sweeps) are more common among these 316 

populations than sweeps in the unique space of FST_MaxSNP (i.e. more complete softer sweeps).  317 

However, these results may be influenced by other evolutionary forces as well, and they do not 318 

offer definitive conclusions about the prevalence of different models of selection (see Discussion). 319 

Our simulation results above suggested that high FST_MaxSNP and FST_FullWin outliers might 320 

be capturing different kinds of selective sweeps.  To assess this possibility from the empirical data, 321 

we focused on high FST_MaxSNP and FST_FullWin outlier regions (as described above) from the Ethiopia 322 

vs. Zambia comparison.  We calculated the frequency of the most common haplotype, haplotype 323 

homozygosity, and the H2/H1 statistic (Garud et al. 2015) for the outlier regions exclusively 324 
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detected with FST_MaxSNP and those exclusively detected with FST_FullWin.  Congruent with FST_MaxSNP 325 

exclusive outliers mainly detecting cases of soft sweeps and FST_FullWin exclusive outliers detecting 326 

hard partial sweeps, we found that for both the Ethiopian and the Zambian populations, the 327 

frequency of the most common haplotype and haplotype homozygosity was lower in the 328 

FST_MaxSNP outliers, while H2/H1 was higher (meaning the haplotype homozygosity calculated 329 

with and without the most common haplotype was more similar to each other) in the FST_MaxSNP 330 

exclusive outliers than FST_FullWin (Figure S5). 331 

We also performed an outlier removal analysis for windows with high p-values (low FST), 332 

which could reflect shared sweeps or other processes.  Similar to the low p-value enrichment 333 

analysis, we found varied results for each statistic and population pair (Figure S6).   334 

 335 

Genome Scan for Signatures of Selection 336 

We chose to complement the above multi-population analysis of genome-wide patterns with a 337 

closer analysis of a single population pair.  We chose to compare the Ethiopia and Zambia town 338 

populations because (1) Their relatively large sample sizes of 129-181 and 60-76 respectively for 339 

each chromosome arm (Table S2) are more conducive to the analysis of specific FST_MaxSNP 340 

outliers, (2) These populations showed enrichments of both FST_MaxSNP and FST_FullWin (Figure 5), 341 

and (3) Past results from these populations helped motivate the present study (e.g. Bastide et al. 342 

2016).  We performed genome scans for regions potentially under population-specific selection 343 

between these populations using FST_MaxSNP, FST_FullWin, and χMD.  For each statistic, we obtained a 344 

list of outlier windows (top 1%), and as above, we merged nearby outlier windows into regions 345 

(Materials and Methods).  We obtained 138 outlier regions for FST_MaxSNP, 138 for FST_FullWin, and 346 

155 for χMD.  Our results showed an overlap of just 39% between the outlier regions detected with 347 
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FST_MaxSNP and FST_FullWin.  Perhaps surprisingly in light of the above power results, there was a 348 

smaller overlap of either FST metric with χMD (Figure 6A), although the overlap of the haplotype 349 

statistic with FST_FullWin was indeed slightly greater.  In regions that were outliers for FST_MaxSNP but 350 

not FST_FullWin, the distribution of individual SNP FST values often had a narrow sharp FST peak, 351 

with most of the other SNPs having low FST values.  On the contrary, in regions there were 352 

outliers for FST_FullWin but not FST_MaxSNP, often no single SNP had a large FST value, but there was a 353 

broad moderate FST plateau with many SNPs showing intermediate FST values (Figure 7). 354 

 The SNP with the highest FST value in each outlier region for FST_MaxSNP could potentially 355 

represent the target of selection; therefore we asked whether they were enriched for functional site 356 

annotations generally associated with greater evidence for positive and negative selection.  We 357 

classified these SNPs into five different classes: nonsynonymous, synonymous, untranslated region 358 

of the mRNA (UTR), intronic, and intergenic.  We then compared the proportion of “top SNPs” 359 

(i.e. having the highest SNP FST within a FST_MaxSNP outlier region) in each functional site category 360 

against that category’s genome-wide proportion, based on SNPs with similar allele 361 

frequencies.  We found the biggest enrichment among nonsynonymous (protein-altering) sites, 362 

with an enrichment of 3.2, followed by UTR sites (Figure 8).  The remaining classes were not 363 

enriched, and the intronic class was the most depleted class, with an enrichment of 0.8 (Figure 364 

8).  Previous studies have found evidence of selection on noncoding sites in Drosophila, especially 365 

on UTR sites - which have shown more selective constraints and proportionally more adaptive 366 

substitutions than intronic and intergenic sites (Andolfatto 2005, Lange and Pool 2018).  The 367 

enrichment of nonsynonymous and UTR sites in our analysis also mirrors results from human FST 368 

outliers (Barreiro et al. 2008).  Overall, there is a strong tendency for our top SNPs to occur in site 369 

categories more likely to affect fitness, as we would predict if some of them are actual targets of 370 
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selection.  If a beneficial mutation in these sites was already present as standing variation in the 371 

population before the onset of selection, the increase in frequency of beneficial mutation in a 372 

single population could result in a narrow sharp FST peak within the genomic region (Figure 7). 373 

We then performed Gene Ontology (GO) term enrichment analysis separately for each 374 

statistic’s list of outlier regions.  Considering only GO terms with raw p-value < 0.01 from each 375 

list, we found mostly lower overlaps between enriched GO terms compared to the spatial overlap 376 

between outlier regions (Figure 6B; Table S3).  The three statistics differed substantially in the 377 

number of enriched GO terms by this criterion:  357 for FST_FullWin, 133 for FST_MaxSNP, and 71 for 378 

χMD (out of 47,496 total GO terms tested).  We emphasize that enriched terms in each set are not 379 

necessarily independent and any given list of enriched GO terms will contain overlapping 380 

categories.  The relative overlap between GO terms enriched for each statistic largely followed 381 

the relative numbers of enriched GO terms for each (Figure 6B).  Mirroring the outlier region 382 

results, most enriched GO terms were detected for only one of the three statistics, highlighting the 383 

complementarity of each statistic described above.  Different categories of genes have different 384 

mutational target sizes and may also vary in their ability to harbor potentially functional 385 

variation.  Hence, the supply of standing genetic variation to generate soft (as opposed to hard) 386 

sweeps may differ between GO categories, as hinted by our results.  Here, a number of the most 387 

enriched GO terms for FST_FullWin involved nucleotide/ribonucleotide binding (Table S3).  388 

Whereas, many of the most enriched GO terms for FST_MaxSNP pertained to ion channels, a finding 389 

concordant with previously-reported parallel signals of positive selection in cold-adapted D. 390 

melanogaster populations, based on SNP-level genetic differentiation outliers (Pool et al. 2017).     391 

 392 

Discussion 393 
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 394 

FST_MaxSNP complements other statistics by detecting soft sweeps 395 

Identifying regions under selection can help us answer further questions about the evolution of 396 

local adaptation, such as which biological functions are under selective pressure, the number of 397 

loci underlying adaptive events, the source of the adaptive variation, and the kinds of genetic 398 

changes that might be under selection.  Our results underscore the importance of deploying 399 

methods capable of capturing different kinds of selective sweeps when the aim of the study is to 400 

identify as many genes potentially under local adaptation as possible.  401 

FST_MaxSNP in particular, seems to be especially useful to detect soft sweeps with relatively 402 

large initial and final frequencies of the beneficial allele.  Instances of mostly complete soft sweeps, 403 

as simulated here, represent regions in which a beneficial allele was present in several different 404 

haplotypes that might have increased in frequency along with the beneficial allele.  While the 405 

selected SNP itself changed in frequency drastically, resulting in a large FST_MaxSNP, the alleles 406 

around it must have changed in frequency to a lesser degree because many background 407 

haplotypes were hitchhiking along with the beneficial allele.  Therefore, while the beneficial 408 

variant can have an extreme FST value, the lower allele frequency changes in the other SNPs in 409 

that window would result in a FST_FullWin that is not statistically significant, and thus a low power to 410 

detect a selective sweep under these conditions.  411 

The full-window metrics, FST_FullWin and χMD, had greater power than FST_MaxSNP to detect 412 

relatively harder, partial sweeps that had intermediate final allele frequencies.  In these sweeps, no 413 

individual SNP changed dramatically in frequency, so none have FST values higher than what 414 

could be obtained randomly in the genome.  However, the increase in frequency of one or a few 415 

haplotypes resulted in many SNPs in the same region with intermediate FST, producing a window-416 
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wide pattern that is too extreme to be generated by chance - even if each single marker 417 

individually did not have an extreme FST value. 418 

We note that Kimura et al. (2007) also compared the power of a maximum SNP FST 419 

statistic against a haplotype statistic, in the context of detecting hard sweeps from SNP genotyping 420 

data.  Consistent with our study, they found that the haplotype statistic performed better than 421 

maximum SNP FST in this hard sweep context.  They also found that among simulation 422 

replicates, these two statistics were inversely correlated.  These results are congruent with our 423 

general findings of complementary power between maximum SNP FST and either a comparative 424 

haplotype identity statistic or a full-window FST statistic. 425 

 426 

The power of each statistic depends on population history 427 

 Importantly, the relative utility of each statistic to detect local adaptation was found to 428 

vary as a function of demographic history.  For example, although FST_MaxSNP is generally much 429 

better than the studied full-window statistics at detecting complete soft sweeps, this advantage can 430 

be reversed if demography, in conjunction with sample sizes, yields fixed differences in at least 5% 431 

of windows under neutrality (in which case the power of FST_MaxSNP as we have defined it becomes 432 

zero).  We demonstrated this phenomenon in cases with elevated genetic drift between 433 

populations, resulting from either a more ancient population split (Figure S1) or else a strong 434 

population bottleneck in the adapting population (Figure S2; Figure S3).  These results 435 

underscore the importance of performing simulations to test whether FST_MaxSNP is expected to be a 436 

useful metric for any given population pair of interest. 437 

 There was little difference in the power of FST_MaxSNP and FST_FullWin to detect regions under 438 

selection in scenarios with varying migration rates.  We had wondered if FST_MaxSNP would 439 
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outperform FST_FullWin in scenarios with older splits, as selection might only maintain a narrow 440 

window of differentiation between the two populations in the presence of long-term 441 

recombination with migrant haplotypes (Sakamoto & Innan 2019).  Nonetheless, differences in 442 

the time of population divergence and local adaptation only had a small effect in a very narrow 443 

space of parameters (intermediate migration rates for high Ne populations, Figure S1), suggesting 444 

that even in scenarios with recent divergence, the populations had already reached a state of 445 

equilibrium and the balance between migration, selection, and recombination, which did not 446 

result in contrasting signatures of selection between FST_MaxSNP and FST_FullWin.  However, both 447 

metrics outperformed χMD on the simulated scenarios, indicating that selection could not maintain 448 

long shared haplotypes in the presence of migration. 449 

 For simplicity, we have limited our focus to the detection of local adaptation from two-450 

population isolation models (with and without migration).  Such histories may be generally 451 

relevant for many taxa, including species that have recently invaded novel ranges, comparisons 452 

between domestic organisms and wild relatives, and island-dwelling taxa.  Still, it is worth keeping 453 

in mind that many species exist as geographically complex mosaics of populations connected by 454 

migration.  Patterns of genetic variation produced by positive selection (and by neutral processes) 455 

in spatially explicit contexts involve additional nuance not reflected in our study (e.g. Ralph and 456 

Coop 2015; Lee and Coop 2017).  For example, a hard sweep in a subdivided population is 457 

expected to be narrower than it would otherwise be, as recombination events continue to whittle 458 

down the sweeping haplotype as it spreads from one deme to another (Santiago and Caballero 459 

2005), which might further support the analysis of FST at the level of SNPs or narrower windows.  460 

However, more detailed study is needed to fully document the expected genomic scale of FST 461 

outliers in spatially complex population models.   462 
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 463 

Consideration must be given to window size, sample size, and multiple testing 464 

In this study, we have used neutral demographic simulations to estimate statistical power 465 

at the single window level, only penalizing multiple tests when comparing between window sizes.  466 

Clearly, our results do not imply the power to identify genome-wide significant loci, which is only 467 

rarely attainable for population genomic scans.  Instead, most genome scans aim to identify good 468 

candidates for downstream study, and our results are best interpreted in terms of the relative 469 

utility of these summary statistics to identify local adaptation candidates.  Similar interpretations 470 

should apply to genome scan outliers based on FST_MaxSNP versus other window-based summary 471 

statistics, unless it can be shown (e.g. via neutral demographic simulations) that an extreme 472 

observed value of FST_MaxSNP would not be expected anywhere in the genome. 473 

In light of the complementary performance of FST_MaxSNP and FST_FullWin for the non-474 

migration cases, we tested whether FST_FullWin across shorter windows could yield a balance of 475 

reasonable power to detect both complete soft sweeps and partial hard sweeps.  However, the 476 

relationship between window size and the power - while accounting for the increase in the 477 

number of tests in smaller windows - did not follow this prediction.  Our results suggest that 478 

applying both FST_MaxSNP and FST_FullWin to conventionally-sized windows is preferable to shrinking 479 

the window size in an effort to identify narrower soft sweeps.  Nevertheless, window size remains 480 

a challenging decision in genome scans including those searching for local adaptation.  481 

Importantly, the scale of elevated genetic differentiation depends on multiple factors, including 482 

the magnitudes of selection, recombination, and migration, the timing of the onset of adaptation, 483 

and as we highlight, the initial frequency of a favored variant.  In general, we suggest that genetic 484 

differentiation on both SNP and broader scales should be incorporated into scans for local 485 
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adaptation, whether using the specific summary statistics described here, or attempting to develop 486 

a single statistic or integrated analysis framework that encompasses the advantages of both.   487 

An important caveat of using FST_MaxSNP is that it requires a greater sample size than 488 

FST_FullWin.  With smaller samples, it is easy to get a large FST_MaxSNP at one of the many analyzed 489 

SNPs through sampling variance alone, whereas an extreme FST_FullWin value is less likely in this 490 

scenario.  It is difficult to provide any universal advice regarding sample size, because the neutral 491 

variance of FST_MaxSNP also depends strongly on demographic history, as shown above.  492 

Nonetheless, we have shown that in two scenarios in which FST_MaxSNP outperformed FST_FullWin, its 493 

power declined considerably when we decreased the sample size from 50 to 20 chromosomes. 494 

Although the relationship between sample size and power will depend on the specific populations 495 

being studied, the utility of FST_MaxSNP seems most promising when sample sizes are around 100 496 

alleles per population or more.  However, it would be advisable to conduct neutral simulations 497 

based on estimated or suspected demography, in order to identify sample sizes for which it is very 498 

unlikely to get extreme single-SNP FST values in the absence of local adaptation. 499 

  500 

Both FST_FullWin and FST_MaxSNP outliers are enriched among Drosophila populations 501 

When we applied FST_FullWin and FST_MaxSNP to empirical data from D. melanogaster populations, we 502 

found that enrichment patterns of FST_FullWin and FST_MaxSNP varied among population pairs, both 503 

for high and low FST values.  The excess of windows with high FST observed could be explained by 504 

local adaptation: unique selective sweeps in one population increase the differentiation between 505 

two populations in that region.  Not all population pairs showed the same degree of enrichment 506 

for high FST.  A larger enrichment could be due to a higher number of selective sweeps between 507 

two populations, stronger selective events that impacted a larger region of the genome, or a 508 
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neutral history more conducive to outlier detection.  The populations we studied cover a large 509 

geographical scale, most are located in sub-Saharan Africa and one in Europe.  These 510 

populations are exposed to a variety of environments, ranging from warm tropical lowlands to 511 

cool high latitude and high altitude regions, in addition to commensal versus wilderness settings 512 

(Sprengelmeyer et al. 2020).  Hence, they are most likely exposed to several unique selective 513 

pressures that could be underlying local adaptation and an enrichment of high FST values.   514 

Alternatively, enrichment for high FST could also be explained by background selection, 515 

which is expected to reduce genetic diversity and therefore result in lower effective population 516 

sizes in that genomic region.  Genetic drift is stronger in regions of low Ne, which could increase 517 

the differentiation between two populations and produce high FST (Charlesworth et al. 1993). 518 

However, a simulation study of background selection targeting stickleback exons found no 519 

evidence for background selection increasing FST outliers (Matthey-Doret and Whitlock 2019).  520 

On the other extreme, the existence of enrichment for low values of FST suggests that 521 

many regions of the genome maintained unexpectedly similar allele frequencies between two 522 

populations.  Following a population split, neutral evolutionary forces such as genetic drift are 523 

expected to increase the genetic differences between two populations.  The fact that many regions 524 

seemed to have changed less than what was expected due to neutral forces could also be 525 

explained by the action of natural selection.  This pattern could be the product of shared selective 526 

sweeps (i.e. similar selective pressures) taking place in both populations, instead of local 527 

adaptation.  Shared balancing selection could also be acting at some loci to maintain allele 528 

frequencies constant between two populations, perhaps even from before their split time.   529 

We should also acknowledge that the demographic models applied here are simply the 530 

best available estimates of population history, and no demographic model fully accounts for the 531 
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complexity of natural populations.  Demographic model misspecification could result in some 532 

enrichment of high and/or low FST values.  One potential source of error in demographic 533 

estimation is natural selection.  The demographic models were estimated based on tentatively 534 

neutral regions of the genome (Sprengelmeyer et al. 2020).  However, these regions could be 535 

under the influence of linked positive and negative selection, with the potential to bias 536 

demographic estimation.  For example, if the presumed neutral data was substantially affected by 537 

either local adaptation or shared sweeps, it could bias the neutral distribution of FST towards 538 

higher or lower values, respectively, making it more difficult to detect FST outliers in that 539 

direction. Nonetheless, previous work suggests that this effect might be weak on demographic 540 

inference in D. melanogaster (Lange and Pool 2018).   541 

Having hundreds of FST outlier regions (high or low) between recently diverged population 542 

pairs is not unreasonable in light of previous estimates of adaptive divergence.  It has been 543 

estimated that 19% of substitutions between D. melanogaster and D. simulans were driven by positive 544 

selection (Lange and Pool 2018).  Individual genomes from these two species differ at about 5% of 545 

sites, although roughly 1% is expected to be driven by segregating polymorphism rather than 546 

fixed differences.  Given a genome of 120 million bases, this implies an estimated 120,000,000 × 547 

(0.05 – 0.01) × 0.19 = 912,000 selectively-driven differences between species.  These species are 548 

estimated to have diverged about 13,000,000 generations ago (with some uncertainty; Obbard et 549 

al. 2012), whereas our studied populations are all estimated to have diverged within the past 550 

195,000 generations (Sprengelmeyer et al. 2020).  Crudely then, we might predict as many as 551 

912,000 × (195,000 / 13,000,000) = 13,680 selectively-driven differences between a population 552 

pair such as Ethiopia and Zambia D. melanogaster.  Hence, although any outlier set may contain 553 

both true and false positives for local adaptation, our finding of hundreds of potential targets of 554 
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adaptation between pairs of D. melanogaster populations does not exceed the potentially-expected 555 

number of selection-driven differences between them. 556 

 In nearly all population pairs, FST_FullWin showed a larger enrichment than FST_MaxSNP.  The 557 

greater enrichment of FST_FullWin persisted when we instead pursued an outlier region removal 558 

strategy.  In light of the complementary zones of power shown in Figure 1, these results suggest 559 

that roughly speaking, there might be a larger contribution of partial hard sweeps than complete 560 

soft sweeps to local adaptation among these populations.  Furthermore, the importance of partial 561 

sweeps in populations of D. melanogaster has been proposed previously, including for some of the 562 

populations studied here (Pool and Aquadro 2007; Bastide et al. 2016; Garud and Petrov 2016; 563 

Vy et al. 2017).  Therefore, seeing fairly low levels of overlap between FST_MaxSNP and FST_FullWin 564 

outliers, alongside particularly strong enrichment for FST_FullWin outliers, is congruent with the 565 

suggested predominance of partial sweeps in the species. 566 

 567 

Precautions are needed to ensure high quality FST_MaxSNP outliers 568 

A critically important caveat of using FST_MaxSNP is that this statistic should be more 569 

sensitive to bioinformatic errors than a metric that uses information from all the SNPs in a 570 

window.  A sequencing or mapping error could cause a single SNP in a window to have a high 571 

FST value, while in a full-window approach such errors are often minimized by being localized to 572 

only one or few of the SNPs being aggregated.  To reduce false positives from data artifacts, 573 

particular consideration should be given to multiple aspects of data preparation and analysis 574 

when using FST_MaxSNP.  Prior to population genetic analysis, it is worth considering whether 575 

enhanced genotype calling filters are called for, such as increased quality score or depth of 576 

coverage thresholds.  Excluding sites within a few bp of called indels may also be helpful in 577 
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reducing erroneous site calls (Lack et al. 2015).  Furthermore, it is important to ensure that data 578 

from all population samples have been collected and assembled the same way.  For example, 579 

Lange et al. (2022) found that a set of SNP-level genetic differentiation outliers from a comparison 580 

between individually-sequenced and pool-sequenced population samples were not reliable until 581 

genomes from the individually-sequenced population were reassembled using a pipeline 582 

analogous to the pool-seq data.   583 

Precautions should also apply to the population genetic analysis itself.  Given that 584 

FST_MaxSNP is very sensitive to sample size (Figure 3), variation in missing data among the sequences 585 

of each individual may result in heterogeneous sample sizes for different SNPs in a given window, 586 

and therefore using a relatively high minimum sample size threshold for each population is 587 

essential.  Finally, additional quality control assessment of FST_MaxSNP outliers following population 588 

genetic analysis is desirable.  For example, it may be worth confirming that outlier SNPs do not 589 

appear to be impacted by depth anomalies suggestive of cryptic structural variation, and are not 590 

associated with alignment uncertainty or sub-optimal quality scores.  When depth or alignment 591 

issues are present, the outlier SNP could potentially be tagging a structural variant under local 592 

selection as opposed to representing a pure false positive.  In other cases, soft sweeps targeting 593 

structural variants might be missed entirely if they fail to strongly alter frequencies at linked SNPs.  594 

The enrichment of nonsynonymous (and UTR) sites among our “top SNPs” in FST_MaxSNP 595 

outlier regions (Figure 8) offers hope that at least in our empirical analysis, many FST_MaxSNP outlier 596 

regions may represent true positives for local adaptation, and that top SNPs may sometimes even 597 

reflect causative variants.  However, we emphasize that even for true cases of local adaptation, a 598 

non-causative SNP may sometimes have a slightly higher FST value than the causal SNP, simply 599 
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by chance.  And in light of the data quality concerns described above, it makes sense to interpret 600 

isolated high FST SNPs with caution.   601 

Overall then, FST_MaxSNP outliers may have a wide range of potential significance, ranging 602 

from false positives to indicating strong hypotheses for specific variants under selection.  603 

Functional experiments may hold particular appeal for FST_MaxSNP outliers, both to confirm their 604 

validity and to investigate the variants they implicate.  First, methods such as reciprocal 605 

hemizygosity tests (Stern 2014; Turner 2014) may confirm that the implicated genes are 606 

associated with detectable trait differences between populations, which would support the outlier 607 

FST signal representing a true positive.  Further molecular or transgenic experiments could then 608 

assess the consequences of modifying individuals high-FST variants, to improve our understanding 609 

of the precise genetic changes targeted by natural selection. 610 

 611 

Summary and future prospects 612 

 Here, we have shown that SNP-level FST (FST_MaxSNP) offers strong power to detect soft 613 

sweeps, and is highly complementary to full-window frequency and haplotype statistics for 614 

detecting local adaptation.  These results stress the importance of taking into account the different 615 

signatures left by different kinds of selective sweeps in the genome when deciding how to perform 616 

a genome scan. The raw summary statistics evaluated here can either be applied in parallel, or 617 

their signals can be integrated into frameworks such as approximate Bayesian computation and 618 

machine learning.  Thus far, the latter methodologies have been used more extensively to detect 619 

and classify selective sweeps within a single population (Peter et al. 2012; Sheehan and Song 2016; 620 

Schrider and Kern 2016, 2017).  However, such approaches are equally applicable to the study of 621 

local adaptation (Key et al. 2014).  Future work could investigate whether methods that combine 622 
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multiple statistics would benefit from including FST_MaxSNP, potentially increasing their power to 623 

detect soft sweeps and their accuracy in classifying different types of sweeps.  Because studies of 624 

genetic differentiation between populations inherently control for evolutionary variance in the 625 

shared ancestral population, local adaptation may offer a better “signal to noise ratio” regarding 626 

the types of positive selection acting in natural populations, compared to single population studies.  627 

Hence, our results may contribute toward not only an improved ability to detect local adaptation, 628 

but also a clearer understanding of adaptation in nature more generally. 629 

  630 

Methods 631 

Simulation Power Analysis 632 

To generate adaptive and neutral distributions of genetic diversity, we performed simulations of 633 

demographic history scenarios with and without natural selection using msms (Ewing and 634 

Hermisson 2010).  Our simulations consisted of two populations with a population split, and 635 

population-specific selective sweeps in the scenarios with natural selection.  For each model, we 636 

obtained 10,000 replicates from which we calculated the statistics of interest.  Power was 637 

calculated as the proportion of replicates under selection with a statistical value larger than 95% 638 

of the values obtained in its corresponding replicates without selection.  We investigated the 639 

power of three different statistics: FST_MaxSNP, FST_FullWin and χMD (Lange and Pool 2016), which 640 

were calculated on windows of fixed size.  FST_MaxSNP is based on the SNP within a window with 641 

the highest FST value.  FST_FullWin was calculated as the ratio of the average between population 642 

variance for of all SNPs in a window over the average total (between + within population) 643 

variance for all SNPs (Reynolds et al. 1983).  No minor allele frequency filter was applied for SNP 644 

calling in the power analysis – but see below for criteria used to reject or accept any simulation 645 
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replicate based on the allele frequency of the beneficial allele in particular.  χMD stands for 646 

Comparative Haplotype Identity; it compares the average length of identical haplotypes in a 647 

window between two populations, and was calculated following Lange and Pool (2016).  Our 648 

simulations used two general sets of parameters, following Lange and Pool (2016). One set with 649 

high effective population size (Ne = 2,500,000) was based on parameters from Drosophila 650 

melanogaster (with a population mutation rate of 0.01 and a population recombination rate of 0.05).  651 

The other set with a low Ne was based on parameters from humans (with population mutation 652 

and recombination rates of 0.001).  To maintain similar scales of diversity and linkage between 653 

these scenarios, the default window size used in our simulations was 5,000 bp for simulations of 654 

populations with high Ne and 100,000 bp for simulations of populations with low Ne.  The 655 

different window sizes for each population size reflect the amount of genetic diversity in high and 656 

low Ne populations.  Except where otherwise stated, the sample size was 50 chromosomes.   657 

 We initially used scenarios of constant population size and a simple population split to 658 

simulate scenarios of selective sweeps with varying initial and final allele frequencies, representing 659 

hard and soft sweeps as well as complete and partial sweeps.  We also simulated scenarios of 660 

population bottlenecks and population splits for complete selective sweeps, and for scenarios with 661 

varying migration rates for hard sweeps (not constrained by ending allele frequency).  For 662 

bottlenecks, the population that will experience local adaptation underwent a period of reduced 663 

population size for the first 0.01 coalescent units after the population split (which in most 664 

scenarios including these, occurred 0.05 coalescent units ago; Table S1). 665 

The simulations of populations with high Ne were done for two different selection 666 

coefficients (s = 0.01 and s = 0.001) and simulations of populations with low Ne only included s = 667 

0.01 (Table S1).  Simulations of complete sweeps only used replicates in which the beneficial allele 668 
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went to fixation.  Simulations of partial sweeps only accepted replicates in which the beneficial 669 

allele stayed within 4% of the targeted ending frequency.  Selection initiation time was adjusted in 670 

each case to maximize the proportion of accepted replicates.  Moreover, in the scenarios with 671 

initial allele frequencies larger than 1/2Ne, both the selected and non-selected populations had the 672 

same initial frequency.  673 

For models that included migration (gene flow), selection of equal magnitudes but in 674 

opposite directions was imposed on each population.  Per generation migration rates varied from 675 

0.0004 to 0.004 in simulations with high Ne populations and from 0.01 to 0.10 in simulations with 676 

low Ne populations.  For each migration rate, split times varied from 0.1 to 1 coalescent unit. 677 

We calculated the effect of sample size on the power of each statistic in six different 678 

scenarios:  four models with demographic history of a simple isolation between two populations 679 

and two models with population size bottleneck.  Of the simple isolation models, two models for 680 

high Ne populations were considered:  one in which FST_FullWin outperformed FST_MaxSNP (initial 681 

allele frequency of 1/2Ne and final allele frequency of 0.4) and another where FST_MaxSNP 682 

outperformed FST_FullWin (initial frequency of 0.005 and final frequency of 0.7).  Two scenarios for 683 

low Ne populations were also considered:  one in which FST_FullWin outperformed FST_MaxSNP (initial 684 

allele frequency of 1/2Ne and final allele frequency of 0.5) and another where FST_MaxSNP 685 

outperformed FST_FullWin (initial frequency of 0.05 and final frequency of 0.8).  For the bottleneck 686 

models, we used models with a bottleneck of 5% (i.e. a reduction to 5% of the prior Ne for 0.01 687 

coalescent units in the adapting population immediately following the population split) and only 688 

models in which FST_MaxSNP outperformed the window wide statistics were considered:  one model 689 

for high Ne population (initial allele frequency from 0.5% to 100%) and one for low Ne populations 690 
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(initial allele frequency from 1% to 100%).  For all the six scenarios, we used sample sizes of 10, 691 

20, 50 (original sample size), 100, and 200 chromosomes. 692 

We calculated the effect of window sizes on the power of each statistic in four different 693 

scenarios, the same scenarios of simple isolation used to calculate the power of sample sizes above.  694 

For the high Ne scenarios, we used window sizes of 5 kb (original size), 2 kb, 1 kb, 0.5 kb, 0.2 kb, 695 

0.1 kb, and 1 bp.  For the low Ne scenarios, we used window sizes of 100 kb (original size), 50 kb, 696 

20 kb, 10 kb, 5 kb, 1 kb, and 1 bp.  For the 1 bp (one single SNP) windows, we only calculated FST 697 

(here FST_MaxSNP = FST_FullWin).  To calculate χMD, we used a minimum haplotype threshold of 10% 698 

of the window size (as was used for the original analyses).  For each window size smaller than the 699 

original, we applied a p-value Bonferroni multiple testing correction proportional to the reduction 700 

in size (or equivalently, the increased number of windows needed to cover a given genomic 701 

region) to calculate power.  That is, while for the standard window size power is the number of 702 

replicates with a p-value of 0.05 or lower, for a window half the size of the original the p-value 703 

would need to be 0.025 or lower.  Except for the window size of 1 bp, in which the correction was 704 

the average number of SNPs in the window with the largest size (the default window size used in 705 

our other analyses). 706 

 707 

Empirical Enrichment of FST_MaxSNP and FST_FullWin - data and simulations 708 

Our data set consists of individual fly strain genomes from six natural populations of D. 709 

melanogaster:  one non-human commensal population from Kafue, Zambia (KF) and five human 710 

commensal populations from different countries: Zambia (ZI), South Africa (SD), Rwanda (RG), 711 

Ethiopia (EF) and France (FR), using data from Lack et al. (2016) and Sprengelmeyer et al. (2020).  712 

From each population, for each chromosome arm (ChrX, Chr2L, Chr2R, Chr3L, Chr3R), we 713 



 

33 

excluded genomes from lines with a known inversion for that arm.  To boost the sample size of 714 

two populations with genomes from partially inbred lines (Ethiopia and France), instead of only 715 

using homozygous regions of the genome (as in the original filtering of the published data set) we 716 

also included heterozygous regions identified by Lack et al. (2016), and therefore counted two 717 

alleles at each site from these regions.  For any pair of lines with excess identity by descent (IBD) 718 

between them (defined as more than 10 megabases of IBD outside previously defined regions of 719 

low recombination; Lack et al., 2016), we excluded one member of the pair from this data set.  720 

Non-African admixture was filtered out from haploid data from African populations based on 721 

data from Lack et al. (2016).  For each population sample and each chromosome arm, we chose a 722 

sample size to jointly maximize the number of analyzable sites and the sample size itself.  Our 723 

resulting sample sizes are shown on Table S2.  For sites with more than that number of alleles 724 

called, we downsampled to match the chosen sample size. 725 

We calculated pairwise FST_FullWin and FST_MaxSNP for all populations using diversity-scaled 726 

window sizes designed to contain 250 non-singleton SNPs in the ZI sample.  FST_MaxSNP and 727 

FST_FullWin were calculated using each SNP with minor allele count larger than two, using the same 728 

approach described in the power analysis.  To compare empirical and null distributions for 729 

similar recombination rates, each window was assigned to one of five recombination rates bins 730 

based on estimates from Comeron et al. (2012); the bins corresponded to recombination rates 731 

from 0.5-1, 1-1.5, 1.5-2, 2-3, and greater than 3.  Windows with recombination rates lower than 732 

0.5 were not used due to low spatial resolution for localizing signatures of selection in low 733 

recombination regions.  We obtained p-values for each window using neutral demographic 734 

simulations performed using ms (Hudson 2002).  Demographic simulations were performed using 735 

parameters estimated for the evolutionary history of nine populations of D. melanogaster, including 736 
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all the populations we analyzed (Sprengelmeyer et al. 2020).  The other three populations were 737 

lowland Ethiopia (EA), Cameroon (CO), and Egypt (EG).  We did not use those three populations 738 

in our empirical analyses due to their lower sample sizes.  Nonetheless, they were included in the 739 

simulations in order to accurately reflect the estimated patterns of migration.  740 

Each demographic model had been estimated based on tentatively neutral genetic 741 

markers (short introns and 4-fold synonymous sites from regions with sex-averaged recombination 742 

rates of at least 1 cM/Mb) from inversion-free chromosome arms (Sprengelmeyer et al. 2020).  A 743 

model was estimated for each of three chromosome arms that had lower inversion frequencies (X, 744 

2R, and 3L), and the history was inferred iteratively, such that not all population samples were 745 

present in the same model.  To better approximate genetic diversity in all populations, we used 746 

two sets of demographic models: Northern model (containing ZI, RG, CO, EF, FR, EG, EA) and 747 

Southern model (containing ZI, RG, CO, SD, and KF).  The Northern model for the 748 

chromosome X was subdivided into two sub-models (one with ZI, RG, CO, EF, EA and another 749 

with ZI, RG, CO, FR, EG).  Hence, we simulated four Northern models and three Southern 750 

models (command lines in Table S2).  The models for the autosomal chromosome arms (2R and 751 

3L) were simulated using the highest sample sizes for any autosomal arm of each population 752 

(Table S2).  Simulated sample sizes were downsampled to match the sample sizes of each specific 753 

arm when comparing empirical and simulated FST patterns for any given arm.  A minor allele 754 

count of three or greater was also applied to the simulated data, mimicking the same filtering used 755 

on the empirical data.  The window size and crossing over rate used in each replicate were based 756 

on a random sampling with replacement from the empirical windows, and the single gene 757 

conversion rate and mean tract length were based on the estimates of Comeron et al. (2012).  758 

Therefore, a null distribution was generated for each model and each recombination bin 759 
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(described above).  For each model and each recombination bin, 50,000 replicates were 760 

simulated. 761 

 762 

Enrichment calculation 763 

FST_FullWin and FST_MaxSNP were calculated for each population pair and each chromosome arm.  FST 764 

was calculated for the simulated data using the same sample sizes as the empirical data (Table S2).  765 

For sites with more than two alleles, only the two most common alleles were kept. Sites with 766 

minor allele counts lower than two were discarded from empirical and simulated analyses.  767 

 P-values were calculated for each window based on the neutral distribution of its 768 

corresponding recombination group.  Windows from chromosome X were compared to neutral 769 

distributions based on the model for chromosome X.  For autosomal loci, we determined that 770 

simulations from the 3L model yielded somewhat milder outlier enrichments than the 2R model, 771 

and therefore we conservatively focused on results from the 3L model.  772 

 We calculated p-value enrichments for FST_FullWin and FST_MaxSNP using p-value bins of width 773 

equal to 0.05, resulting in 20 bins of p-value 0 to 1.  We counted how many windows had a given 774 

p-value for each bin and divided the observed number by how many windows we expected to 775 

have with a p-value in that bin based on simulated data.   776 

Neighboring windows with low p-value could be showing the effect of a single selective sweep.  777 

Therefore, we complemented this outlier window enrichment analysis with one based on “outlier 778 

regions”.  We intentionally defined outlier regions generously, preferring to falsely lump two 779 

sweeps versus splitting a single sweep into two or more regions.  Formally, starting with the 780 

window containing the lowest p-values, we extended the region surrounding it until we reached a 781 

stretch of five consecutive windows with p > 0.1 to create an outlier region.  We removed the 782 
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outlier regions from our analysis and repeated the process until the signal of enrichment was 783 

erased (defined as the p < 0.05 bin having no more enrichment than the 0.05 < p < 0.1 bin).  For 784 

each of FST_MaxSNP and FST_FullWin, we recorded the total number of outlier regions that had to be 785 

removed for a given population pair.  On the other hand, since neighboring windows with high p-786 

values (low FST) could be showing shared sweeps, we repeated the process described above for 787 

outlier regions based on high p-values.  For high p-value windows, we defined enrichment as the 788 

p > 0.95 bin having no more windows than the 0.9 < p < 0.95 bin. 789 

 790 

Genome scan for regions under selection - Ethiopia vs. Zambia 791 

We performed a genome scan for candidate regions under selection between the Ethiopia (EF) 792 

and Zambia (ZI) populations.  We calculated FST_FullWin, FST_MaxSNP, and χMD for each window of 793 

the genome.  We used an outlier approach and considered windows in the top 1% of each statistic 794 

to be the candidate regions under selection.  Here, we combined multiple outlier windows into 795 

the same outlier region if they were separated by no more than five windows with p-value > 0.01.  796 

To investigate whether the candidate regions detected with each statistic were the same or 797 

unique, we calculated how many regions overlapped between the different statistics.  We 798 

considered that two regions were overlapping if at least 50% of the smaller region overlapped the 799 

larger one.  800 

 For each list of candidate regions under selection, we performed a GO term enrichment 801 

analysis using a method initially described by Pool et al. 2012.  For each gene within a candidate 802 

region, we obtained GO term annotations from FlyBase.  The GO terms for each gene also 803 

included all the parents of each term.  GO terms that appeared repeatedly in a candidate region 804 

were counted only once for that region.  We calculated the p-values for each GO term based on 805 
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10,000 permutations of the genomic locations of the outlier regions.  This procedure allows genes 806 

to have different null probabilities of being outliers, particularly based on their length.  We 807 

obtained a list of enriched GO terms for each statistic defined as the GO terms with raw p-values 808 

less than or equal or to 0.01.  We then determined the overlap between the three lists of enriched 809 

GO terms. 810 

 To investigate whether FST_MaxSNP and FST_FullWin outliers might be detecting different kinds 811 

of selective sweeps, we focused on the outlier regions that were exclusive to each statistic.  We 812 

calculated the frequency of the most common haplotype, haplotype homozygosity, and the 813 

H2/H1 statistic (Garud et al. 2015) for the window with the most extreme statistic in each region. 814 

In case of ties, one window was chosen randomly (for FST_MaxSNP, randomizations were 815 

proportional to the number of top SNPs in each window).  The expectation is for hard sweeps, a 816 

single haplotype has risen in frequency in the population, and therefore the frequency of the most 817 

common haplotype, as well as haplotype homozygosity, should be higher following a hard sweep 818 

than a soft sweep.  H2/H1 (calculated following Garud et al. 2015) calculates the ratio of the 819 

haplotype homozygosity calculated without the most common haplotype (H2) over the overall 820 

haplotype homozygosity including the most common haplotype (H1); it should be higher 821 

following soft sweeps than hard sweeps.  We calculated these statistics for all windows of the 822 

genome with recombination rates above 0.5 that had a minimum sample size of 10 chromosomes 823 

from each population.  For each window we, excluded haplotypes with an amount of missing data 824 

above the average for that window.  We did not consider sites with singletons (only one of the 825 

haplotypes had a different allele for that site) when calculating haplotype frequencies.  Ambiguous 826 

haplotypes were assigned to a matching haplotype; the assignment probability for each matching 827 

haplotype was proportional to its frequency.  828 
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 To investigate whether the sites with highest FST values in the outlier genomic regions for 829 

FST_MaxSNP potentially were the targets of selection, we calculated their enrichment across different 830 

categories of functional sites.  We classified each site into five classes: nonsynonymous, 831 

synonymous (only considering fourfold synonymous), untranslated regions of the mRNA (UTR), 832 

intronic, and intergenic.  For each outlier region, we focused on the SNP(s) with the highest FST 833 

value.  If more than one site were tied for highest FST in an outlier region, instead of counting 1 834 

for each site class we counted 1/(the number of top sites), so the total count for each region was 835 

always 1 regardless of how many SNPs were tied for highest FST value.  We then counted how 836 

many sites in each class were present across all outlier regions.  We also calculated the genome-837 

wide proportion of each site class, restricting our analysis to sites in which the average minor allele 838 

frequency between the Ethiopia and Zambia populations were within the range of average minor 839 

allele frequency for all sites with the highest FST values in the outlier regions.  Lastly, we calculated 840 

enrichment for each site class as the ratio between the proportion of sites in the outlier regions 841 

over the proportion of sites in the genome. 842 

 843 
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 981 

Fig. 1. SNP-level FST and full-window statistics show complementary power to detect local 982 

adaptation, depending on the type of selective sweep simulated.  Numbers and colors in each 983 

panel both depict statistical power to detect local adaptation, in high Ne populations (s=0.001, left 984 
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column) and low Ne populations (s=0.01, right column). In each panel, the x-axis illustrates the 985 

pre-selection frequency of a favored variant (with the left column indicating selection on newly-986 

occurring mutations) and the y-axis illustrates the final frequency of the sweep (with the top row 987 

showing complete sweeps).  Detection power is shown for (A and D) FST_MaxSNP, (B and E) 988 

FST_FullWin, and (C and F) χMD.  These results are based on a demographic history of simple 989 

isolation between two populations without change in population size, with a split time of 0.2Ne 990 

generations. 991 
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 1008 

 1009 

Fig. 2.  FST_MaxSNP shows an increasing power advantage as sweeps become softer.  For complete 1010 

sweeps with a range of initial frequencies (x-axis), the two y-axes show detection power for each 1011 

statistic (left axis, dots) and the average number of unique beneficial haplotypes present at the end 1012 

of the simulation (right axis, dashed line).  Results are shown for (A) high Ne populations (s = 1013 

0.001) and (B) low Ne populations (s = 0.01), for the same demographic history as in Figure 1. 1014 
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Fig. 3.  The power of FST_MaxSNP is particularly sensitive to sample size.  Here, the power of each 1028 

statistic (y-axis) is plotted as a function of sample size (x-axis; number of chromosomes per 1029 

population).  We found that depending on sample size, FST_MaxSNP outperforms FST_FullWin and χMD 1030 

for a simple isolation model, for:  (A) a high Ne population with initial beneficial allele frequency of 1031 

0.005 and final frequency of 0.70,and (B) a low Ne population with initial frequency 0.05 and final 1032 

frequency of 0.80.  Similar results were observed for a complete soft sweep with a population 1033 

bottleneck of 0.05, except that the loss of power for FST_MaxSNP was more immediate at lower 1034 

sample sizes, for:  (C) a high Ne population with initial frequency 0.05,  (D) a low Ne population 1035 

with initial frequency 0.01.  For partial hard sweep scenarios where FST_FullWin and χMD outperform 1036 

FST_MaxSNP, all three statistics show more gradual sample size effects, specifically for new mutations 1037 

and:  (E) a final frequency of 0.40 in a high Ne population, and (F) a final frequency of 0.50 in a 1038 

low Ne population. 1039 
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 1051 

Fig. 4. Varying window size does not reveal a single statistic with broad detection power.  The top 1052 

panels show partial hard sweeps for which FST_FullWin and χMD outperform FST_MaxSNP:  (A) a high Ne 1053 

population with a final beneficial allele frequency of 0.40, And (B) a low Ne population with a final 1054 

frequency of 0.50. The bottom panels show mostly complete soft sweeps for which FST_MaxSNP 1055 

outperforms FST_FullWin and χMD:  (C) a high Ne population with an initial beneficial allele frequency 1056 

of 0.005 and final frequency of 0.70, and (D) a low Ne population with initial frequency 0.05 and 1057 

final frequency 0.80.  These power values reflect a Bonferroni-corrected significance threshold to 1058 

reflect the relatively larger number of smaller windows needed.  Results do not suggest that any 1059 

statistic in a smaller window size captures the advantages of both FST_MaxSNP and the full-window 1060 

statistics. 1061 
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Fig. 5. FST_MaxSNP and FST_FullWin both show outlier enrichment between natural populations of D. 1063 

melanogaster. (A and B) Ethiopia-Zambia FST_MaxSNP and FST_FullWin values on (A) chromosome X and 1064 

(B) autosomes show enrichment of low (right) and especially high values (left), based on the 1065 

distribution of p-values obtained from neutral demographic simulations. (C and D) FST_MaxSNP 1066 

(lower diagonal) and FST_FullWin (upper diagonal) both show enrichment of high outliers on (C) 1067 

chromosome X and (D) combined autosome arms.  FST_FullWin shows a greater enrichment in 1068 

nearly all cases.  (E and F) Number of outlier regions that were removed to erase the signature of 1069 

enrichment for high FST_MaxSNP (lower diagonal) and FST_FullWin (upper diagonal) for each 1070 

population on (E) chromosome X and (F) the combined autosome arms.  FST_FullWin was associated 1071 

with a greater outlier region enrichment for most population pairs, reinforcing the window-level 1072 

patterns shown in (C) and (D).  Populations:  SD = South Africa. ZI = Zambia. KF = Kafue, 1073 

Zambia. RG = Rwanda. EF = Ethiopia.  Population pairs that were not present in the same 1074 

demographic model were not evaluated.  Color scale ranges from the minimum to maximum 1075 

value within each panel. 1076 

 1077 

 1078 

 1079 

 1080 

 1081 

 1082 

 1083 

 1084 

 1085 



 

53 

 1086 

 1087 

Fig. 6.  The three statistics detect mostly unique genomic regions and functional categories.  (A) 1088 

Overlap between the top 1% outlier regions detected with FST_MaxSNP, FST_FullWin, and χMD.  * 1089 

indicates the average number of outlier regions between the two statistics: 15 FST_FullWin outlier 1090 

regions exclusively overlap χMD outliers and 13 χMD outlier regions exclusively overlap FST_FullWin 1091 

outliers.  (B) Overlap between enriched GO terms with raw p-value <= 0.01, out of a total of 1092 

47,496 GO terms, based on the outlier regions detected with FST_MaxSNP, FST_FullWin, and χMD. 1093 
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 1100 

 1101 

Fig. 7. Examples of the distinct SNP-level FST landscapes associated with FST_MaxSNP versus 1102 

FST_FullWin outliers.  Each plot shows an outlier window for an Ethiopia-Zambia FST statistic, plus 1103 

its adjacent windows.  Dashed vertical lines delimit the boundaries of the windows.  Numbers 1104 

under each window are the empirical quantiles of that window’s statistic (FST_MaxSNP, FST_FullWin, 1105 

and χMD) in relation to the chromosome arm-wide distribution of the same statistic, with the 1106 

outlier (quantile < 0.01) value in red.  (A) An outlier window for FST_MaxSNP (center) shows a peak-1107 

like FST landscape with one particularly differentiated SNP.  (B) An outlier window for FST_FullWin 1108 

(center) shows a broad plateau of fairly high FST values.  Gene names and structures are shown at 1109 

the top of each plot.  Protein-coding exons are in yellow, while 5’ and 3’ untranslated regions are 1110 

in dark blue and light blue, respectively. 1111 
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 1112 

 1113 

Fig. 8. The most differentiated SNPs in FST_MaxSNP top outlier regions are strongly enriched for site 1114 

categories known to experience more frequent selection.  (A) Proportional distribution of these top 1115 

SNP among five different classes: nonsynonymous, untranslated regions (UTR), intergenic, 1116 

synonymous, and intronic. (B) Enrichment analysis of each the five classes in the outlier regions 1117 

for FST_MaxSNP in comparison to genome-wide distribution for all SNPs with similar minor allele 1118 

frequencies. 1119 
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