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Abstract

Local adaptation can lead to elevated genetic differentiation at the targeted genetic variant and
nearby sites. Selective sweeps come in different forms, and depending on the initial and final
frequencies of a favored variant, very different patterns of genetic variation may be produced. If
local selection favors an existing variant that had already recombined onto multiple genetic
backgrounds, then the width of elevated genetic differentiation (high Fs7) may be too narrow to
detect using a typical windowed genome scan, even if the targeted variant becomes highly
differentiated. We therefore used a simulation approach to investigate the power of SNP-level Fsr
(specifically, the maximum SNP Fs7 value within a window, or Fs7 auwsye) to detect diverse
scenarios of local adaptation, and compared it against whole-window Fs7 and the Comparative
Haplotype Identity statistic. We found that Fs7 awsve had superior power to detect complete or
mostly complete soft sweeps, but lesser power than full-window statistics to detect partial hard
sweeps. Nonetheless, the power of Fs7 aasve depended highly on sample size, and confident
outliers depend on robust precautions and quality control. To investigate the relative enrichment
of Fs7 mawsye outliers from real data, we applied the two Fs7 statistics to a panel of Drosophila
melanogaster populations. We found that Fs7 aasve had a genome-wide enrichment of outliers
compared to demographic expectations, and though it yielded a lesser enrichment than window
Fyr, 1t detected mostly unique outlier genes and functional categories. Our results suggest that
Fs7 amavsye 1s highly complementary to typical window-based approaches for detecting local

adaptation, and merits inclusion in future genome scans and methodologies.

Key words

Local adaptation, soft sweeps, partial sweeps, population genomics, Drosophila melanogaster
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Significance statement

Studies that use genetic variation to search for genes evolving under population-specific natural
selection tend to analyze data at the level of genomic windows that may each contain hundreds of
variable sites. However, some models of natural selection (e.g. favoring an existing genetic variant)
may result in genetic signals of local adaptation that are too narrow to be detected by such
approaches. Here we use both simulations and empirical data analysis to show that searching for
a site-specific signal of elevated genetic differentiation can find instances of local adaptation that
other approaches miss, and therefore the integration of this signal into future studies may

significantly improve our understanding of adaptive evolution and its genetic targets.
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Introduction

Geographically distinct populations are exposed to different selective pressures, which may result
in local adaptation. The detection of genomic regions under positive selection specific to one
population is essential to uncovering the genetic basis of locally adaptive trait variation. Local
adaptation can exist between populations with low genome-wide genetic differentiation, and
comparing genetic variation between these closely-related populations can allow for much more
powerful detection of positive selection than is possible from a single population. In light of that
advantage, as well as the potential applicability of genetic mapping and functional approaches to
locally adaptive traits, local adaptation has played a key role in our increasing understanding of
adaptive evolution at the genetic level (Kawecki and Ebert 2004; Yeaman 2015; Tigano and
Friesen 2016). In addition to its importance for evolutionary biology and ecology, the
identification of regions under selection has implications for applied fields such as health sciences
and agriculture because it can also pinpoint regions of the genome that hold functional diversity
(Bamshad and Wooding 2003; Ross-Ibarra et al. 2007). There has also been increasing
recognition of the importance of local adaptation for a species’ future adaptive potential, with
implications for conservation genetics and adaptation to climate change (Funk et al. 2012; Aitken
and Whitlock 2013; Fitzpatrick and Keller 2015).

Population genomic scans for local adaptation compare genetic variation between two or
more populations, often searching for specific genomic windows that depart from genome-wide
patterns of differentiation in a manner consistent with population-specific natural selection.
Positive selection has traditionally been conceptualized and modeled as a selective sweep, which
traditionally involves a new beneficial mutation rising to fixation, with strong effects on genetic

variation at linked sites (Maynard Smith and Haigh 1974; Kaplan et al. 1989). However, there



73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

are different kinds of selective sweeps, depending on the initial and final frequencies of the favored
variant, and different statistical tests for deviations from neutrality vary in their power to detect
them.

First, selective sweeps can be classified as hard or soft sweeps. In a hard sweep, only a
single original haplotype carrying the advantageous allele is boosted by natural selection. This
situation might be expected if selection favors either a newly occurring mutation or else a variant
at low enough frequency that only one copy contributes to the sweep by chance. In a soft sweep,
two or more distinct haplotypes carrying the beneficial variant increase in frequency. In some
cases, soft sweeps occur because the advantageous allele was present in the population,
segregating neutrally, prior to the onset of selection (Hermisson and Pennings 2005). But they
can also be the result of recurrent mutations or influx of new alleles through migration (Pennings
and Hermisson 2006a, 2006b).

Selective sweeps can also be classified as complete or partial sweeps. In a complete sweep,
the advantageous allele has reached fixation in the population. In a partial sweep, the
advantageous allele is at an intermediary frequency. This may occur either because the sweep is
still ongoing, because positive selection ended prior to fixation, or (in the context of local
adaptation) because migration continues to supply the non-favored variant. Situations in which a
sweep might terminate prematurely include an environmental change, a polygenic trait reaching
its new optimum or threshold value, or an allele reaching a balanced equilibrium in a scenario
such as heterozygote advantage.

Different kinds of selective sweeps leave different signatures of local adaptation and our
power to detect them will differ depending on which methods we use (Lange and Pool 2016).

Some common approaches to scanning the genome for population-specific selective sweeps use
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Fyr(or Fsr-based) statistics to quantify genetic differentiation between populations. Local
adaptation is expected to create genomic regions with more extreme differentiation than what
would be expected under neutrality, since allele frequencies in these regions will change faster as
the beneficial allele increases in frequency (Lewontin and Krakauer 1973). Neutral expectations
can be inferred either with demographic simulations or an outlier approach. Demographic
simulations, based on a previously estimated model of population history, can be used to mimic
the history of the populations being studied in the absence of natural selection. Outlier
approaches rely on the genome-wide distribution of Fs7 as a proxy for the neutral distribution,
since neutral forces (including those due to demographic history) can broadly be expected to
affect the whole genome similarly. Genome scans for regions under selection have typically
focused on measuring Fs7or other statistics in windows of the genome of some predefined size to
search for highly differentiated genomic regions.

A motivating empirical example for the present study comes from an investigation of the
genetic basis of locally adaptive melanism in high altitude Drosophila melanogaster populations.
Here, the authors used QTL mapping to identify genomic regions associated with derived dark
pigmentation traits, and then used Fs7 to scan these regions for signatures of selection (Bastide et
al. 2016). One very narrow and strong Q'T'L for highland Ethiopian melanism contained the
well-known pigmentation gene ebony, which also contributed to melanic evolution in a Uganda
population (Pool and Aquadro 2007; Rebeiz et al. 2009). Assessing genetic differentiation
between the Ethiopia and Zambia populations for the window containing ebony, although full-
window Fs7 was only marginally elevated, it had a SNP with extremely high Fs7(0.85).
Compared to demographic simulations, this window’s maximum SNP Fs7 value was among the

top 1% of all windows, while its full-window Fs7 was only among the 7% highest (Bastide et al.
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2016). Simulated scenarios of soft sweeps from standing variation replicated this pattern of
extremely high maximum SNP Fs7 and only moderately high window Fs7, suggesting that some
kinds of selective sweeps that may not be detected using full-window Fst could potentially be
detected with a SNP-level Fs7 approach. Further potential support for the use of SNP-level Fsr
signals to detect adaptive events in this same species was demonstrated by much stronger parallel
signatures of selection seen at the SNP level compared to the window level in fly populations that
independently adapted to cold environments (Pool et al. 2017).

Challenges of using SNP-level Fs7 values to detect selection include their variability due to
random sampling effects (Weir et al. 2005) and the large number of tests that need to be made
against a null distribution. Therefore, larger sample sizes are needed than for window Fs7. By
using the highest SNP Fg7 value within a window as a summary statistic for that window, and
comparing it against null simulations with demography and recombination, we may somewhat
improve the multiple testing issue, since here we are not treating all tightly linked SNPs as fully
independent tests. Another advantage of this approach is that the maximum value summarizes
each window of the genome, making it more comparable to any other window-based metric in
terms of the number of tests and units of the genome analyzed. If full-window Fs7 and maximum
SNP Fisr are able to detect different types of selective events, then using both metrics could result
in a more comprehensive scan for signatures of local adaptation. The genome-wide distribution
of these statistics in natural populations, compared to their neutral expectations, might also shed
light on the contribution of different kinds of selective sweeps to local adaptation.

To understand the utility of using the highest Fs7 value of any SNP within a window
(hereafter Fs7 amasip) as a local adaptation summary statistic, we performed power analyses based

on extensive simulations, and then applied these results to empirical data from natural
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populations of D. melanogaster. We focused on comparisons between two populations and
calculated the power of Fs7 aavsye to detect signatures of local adaptation under a wide range of
different selective scenarios (including partial and/or soft sweeps) and demographic histories
(including population bottlenecks and scenarios with ongoing migration). We performed
demographic simulations and compared the power of Fs7- aavsye to both full-window Fs7 based on
all variable sites (herein, Fs7 muwin) and a comparative haplotype-based statistic (yaun, Lange and
Pool 2016). Then, we investigated the genome-wide distribution of Fs7 aawsye and Fs7-_ruuwin
among several natural populations of D. melanogaster, to determine whether either statistic was
enriched genome-wide in empirical data compared to neutral expectations. Finally, we used an
outlier approach to perform a genome scan for regions potentially under local adaptation
between the Ethiopia and Zambia populations mentioned above, using Fs7- aasve, Fs7_rauwin, and
yump (Lange and Pool 2016), and we determined the extent of overlap between candidate regions
identified according to these different methods. These analyses allowed us to both identify the
parameter space in which Fs7 aasve outperforms other statistics, and to assess the utility and

complementarity of applying these approaches to real data.

Results

Maximum SNP Fsr and full-window summaries have complementary power to
detect local adaptation

We performed power analyses of Fs7 aasve, Fs1_rmuwin, and yyp using population genetic
simulations with and without natural selection. We used msms (Ewing and Hermisson 2010) to

simulate a two-population isolation model with positive selection in one population but not the
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other. with constrained initial and final allele frequencies, yielding local sweeps that could be
hard or soft, and partial or complete. Beyond the simple isolation model, demographic scenarios
with population size bottlenecks or migration were simulated as well (simulation commands in
Table SI). For each scenario, we simulated both a low effective population size (V) model with
mutation and recombination parameters based on estimates for humans, and a high N, model
with parameters motivated by Drosophila melanogaster (see Materials and Methods), following the
design of a previous power analysis study that did not include Fs7 anwsye (Lange and Pool 2016).
These low and high JV, scenarios entail very different levels of diversity and scales of linkage
disequilibrium (motivating contrasting window sizes of 100 kb versus 5 kb in most of our
analyses), and they may therefore provide useful reference points for a range of taxa beyond the
motivating species themselves. For the low N, simulations, we focused on sweeps with a selection
coeflicient of s = 0.01. In high N, species, many successful sweeps may have weaker advantages.
Here, we focused on results with s = 0.001. High N, results with s = 0.01 gave similar results
except where noted below (Supplementary Table 1). Fs7 vasve, Fs1_Fuiwin, and yap were
calculated between the selected and non-selected populations at the end of the simulation. Power
was defined in a locus-specific context, based on the proportion of selection simulations giving a
more extreme value of the summary statistic than the 95th quantile of its distribution from neutral
simulations.

Unsurprisingly, all three statistics were found to have high power for the case of complete
hard sweeps (Figure 1; Table S1). These simulations were conditioned on fixation of a beneficial
new mutation in one population that had not occurred in the other population. In light of this
fixed difference, Fis7 sy n all replicates had its maximum value (Fs7 aasye = 1). In such cases,

the power of Fs7 amasyve was binary, either zero or one, depending on whether or not 5% of the
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corresponding neutral replicates had an allele that reached fixation. In our simple isolation
model, the likelihood that a neutral allele can reach fixation increases with the split time (Table
S1; Figure S1). Stronger bottlenecks also boost the likelihood of having neutral alleles reach
fixation (Table S1; Figure S2, Figure S3). Hence, power for Fs7 aawsyp to detect complete hard
sweeps goes from high, for recent splits and weaker bottlenecks, to zero for histories in which
more than 5% of neutral replicates contain a fixed difference. Similarly, Fs7 muwin and yayp had
higher power to detect signatures of local adaptation following recent splits and in weaker
bottlenecks, but their change in power was gradual and continuous instead of binary.

In the case of complete or nearly complete soft sweeps, Fs7 masye showed a clear power
advantage over Fs7_muwin and yup. Notably, for sweeps ending between 80% and 100%
frequency, Fs7 aasve had high power to detect local adaptation, even for cases with rather high
initial frequencies of the beneficial allele (e.g. 10%; Figure 1; Figure 2). In contrast, Fs7_muwin and
ymp showed rapidly diminishing performance as sweeps became softer (Figure 1; Figure 2). These
results make sense, in that beneficial alleles that drift to higher pre-selection frequencies have
more time to recombine onto multiple haplotypes, and recombination events will have happened
closer to the selected site on average. Therefore, soft sweeps are generally narrower in width and
may not substantially alter full-window statistics (Catania et al. 2004; Schlenke and Begun 2004;
Hermisson and Pennings 2005). Although the two full-window statistics maintained good power
for lower initial frequencies, some of the replicates of those scenarios are actually generating hard
sweeps due to the chance survival of a single haplotype carrying the favored variant (Jensen 2014),
as shown by an average number of beneficial haplotypes lower than two in these simulations

(Figure 2). Moreover, as the average number of haplotypes carrying the favored variant
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increased, the power of the full-window statistics decreased (Figure 2), while the power of
Fs7 Macsve was unchanged.

Contrasting results were obtained for partial, harder sweep scenarios. In cases where new
mutations or rare standing variants were only boosted to intermediate frequencies, Fs7_paumwin and
ymp had fairly strong power, whereas Fs7 aaesye declined sharply in effectiveness at around 60%
final frequency for hard sweeps (Figure 1). These results are also intuitive, in that partial hard
sweeps can meaningfully alter allele frequencies across a whole window and generate a class of
identical haplotypes, even though no single SNP traverses an extreme range of frequencies. The
broadly similar power profiles of Fs7 rumwin and yup are somewhat surprising in light of their
distinct basis (albeit consistent with Lange and Pool, 2016). Less surprising is that for the
challenging scenario of partial soft sweeps, none of the three statistics showed strong power in the
scenarios examined (Figure 1).

Whereas the above simulations had no migration, we also wondered if Fs7 azwsye might
prove useful in detecting targets of local adaptation for which genetic differentiation had been
whittled down in width by recombination with migrant alleles over time (Sakamoto & Innan
2019). We therefore simulated scenarios with varying combinations of migration rate and
population split time, while assuming symmetric migration rates and equal but opposing selective
pressures. Overall, 57 aavsve and Fs7_ruwin performed very similarly to each other and better
than yap. Particularly in the high N, scenarios (which feature a higher ratio of recombination to
mutation events) with intermediate migration rates, there was a narrow space of parameters in
which Fs7 aasve performed slightly better than Fs7 rpuwin (Figure S4). The split time between the
populations greatly affected the power of yan, which performed better on recent splits. The

power of the Fi7 statistics showed a small improvement for more recent splits and intermediate
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migration rates. Although small, the effect of split time also seemed more pronounced on

Fs1 muwin than Fs7_aasve (Figure S4). Overall, these analyses provide only modest support for the
notion that Fs7 ymasye could help detect peaks of genetic differentiation driven by local adaptation
that have been narrowed by migration and recombination.

In the above simulations, we used a sample size of 50 chromosomes per population. We
generally expect statistical power to be correlated with sample size and understanding the effect of
sample size on the power of each statistic is relevant when designing an experiment or choosing
which statistics to use. We analyzed the power of Fs7 aavsve, FST_ruwin, and Yap in three scenarios
for high N, and three for low V.. We chose scenarios in which Fs7- aavsyve and the window wide
statistics performed differently: a mostly complete soft sweep, a complete soft sweep with a
bottleneck, and a partial hard sweep. We found that sample size had a stronger effect on
Fs7 amavsve than on the window wide statistics (Figure 3). Fs7_aasye 1s based on allele frequencies at
a single site, so it is more sensitive to the increased sampling variance at lower sample sizes than
window wide statistics. The sampling variance in each SNP in a window should fluctuate around
the mean, so when information from each SNP is combined the full-window Fis7 statistic suffers
less from the reduced sample size. Demographic history also affected the effect of sample size on
each statistic: in scenarios with a population bottleneck, which also increases sampling variance,
the power of Fs7_amasve changed from near 1 at sample size 50 or higher to 0 at sample sizes
smaller than 50 (Figure 3C, 3D). More generally, Fs7 masyve was found to perform much better
with 50 chromosomes than with 20, but showed relatively less improvement for sample sizes
larger than 50.

We also analyzed the effect of window size on the power of each statistic, with the aim of

determining whether there would be a window size for which a single statistic would perform well
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in contrasting scenarios. For example, one might hope that Fs7_muwin for a narrower window
might retain good performance for partial hard sweeps, while also capturing the advantages of
Fs1 amavsve for complete soft sweeps. We explored four scenarios of partial sweeps, two for the high
N. and two for the low V.. For each population size, we chose one scenario in which the power of
Fs1 smavsve outperformed Fs7 muwin and yayp, and one in which it underperformed. In practice, a
reduction in window size would result in an increase in the number of tests performed in a
genome scan. Therefore, we applied a Bonferroni correction to the p-value proportional to the
reduction in size. The correction for window size equal to one site (a single SNP) was
proportional to average number of SNPs in the largest window (the default window size used in
our analyses). Our results showed that, for the two scenarios in which Fs7 yasye outperformed
Fs1 muwin and yuvp, the power of each statistic remained mostly constant (Figure 4). For the
scenarios in which Fs7 muwin and yyp had an advantage, the power of each statistic, as well as the
difference among them, declined with smaller window sizes. Overall, there was no window size in
which a single statistic performed well for all scenarios, and hence it may be preferable to apply

Fs1 mavsve and full-window statistics separately to empirical data.

Outliers for Fst smaxsne and Fst runwin are enriched in empirical data

In light of the above results, we were interested in applying both Fs7 aaesve and Fs7_ruuwin to an
empirical data set, in part with an interest in quantifying the relative enrichment of outliers for
each statistic and what that might hint about the modes of selection active in these populations.
We chose to focus on data from the Drosophila Genome Nexus (Lack et al. 2015, 2016), because it
contained several populations of D. melanogaster that were linked by an estimated model of

population history (Sprengelmeyer et al. 2020) and had at least minimal sample sizes available for

13



279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

studying genome-wide patterns of Fs7 (T'able S2). We included six natural populations of flies.
From the ancestral range in Zambia, we included one town population (Siavonga) and one
wilderness population (Kafue). We also included four additional town populations: from
Rwanda, South Africa, Ethiopia, and France (the latter three having independently colonized
colder environments; Pool et al. 2017).

We calculated a p-value for each empirical window in each pairwise population
comparison, based on neutral distributions of Fs7- awsve or Fs7_ruwin generated using coalescent
simulations of the estimated demographic history (Sprengelmeyer et al. 2020; simulation
commands in Table S2). Under neutrality, a uniform distribution of p-values is expected. In
general, for most population pairs, the distribution of p-values for Fs7 susye and Fs7 rumwin showed
a U-shape instead of a uniform distribution (e.g. Figure 5A-B). The deviation from the expected
uniform distribution could be attributed to the action of natural selection producing windows with
higher and lower Fs7 than expected (e.g. by local adaptation and shared sweeps respectively) or by
a misspecification of the neutral demographic model. However, average Fs7 values of simulated
data from this model were found to align well with empirical measurements (Sprengelmeyer et al.
2020), and similar results were found with other summary statistics. The enrichment of high Fsr
(defined as p-values from 0 to 0.05) and low Fs7 (p-values from 0.95 to 1) varied for each statistic
and across the population comparisons (Figure 5C-D). Particularly for high Fs7 rmuwin, the
strongest enrichments were often observed for more geographically proximate, closely related
population pairs, perhaps reflecting reduced noise from neutral genetic differentiation.

All population pair comparisons showed an enrichment for windows with high Fs7 muwin.
The smallest enrichment was found between the Zambia (town) and France populations, for

which there were 3.29 more windows with high Fs7 muwin than expected by chance. The highest
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enrichment was found in the comparison between the South Africa and Kafue (Zambia
wilderness) populations, with an enrichment factor of 9.06. For Fs7 aasye, eight population pairs
had an enrichment value > 2, the highest being 5.41 (between the Zambian town and wilderness
populations, and between South Africa and Rwanda). On the other hand, one population pair
was slightly depleted of windows with high Fs7 awsve (enrichment to 0.87 between France and
Ethiopia). In nearly all comparisons, Fs7 rumwin showed higher enrichment than Fs7 ausye (Figure
5). However, this difference in enrichment could be influenced by single local sweeps that
generate multiple linked outlier windows. We therefore pursued a complementary analysis in
which nearby outlier windows were merged into “outlier regions”, which were then removed one
at a time until the observed enrichment was erased (see Materials and Methods). For almost
every population pair, we had to remove a larger number of regions to erase the signal of
enrichment of Fs7 ruwin than the signal of Fs7 auwsye (Figure SE-F). Hence, the greater
enrichment of Fs7 ruwin relative to Fs7_aasve does not appear to be a product of broader linkage
signals of Fs7 ruwin outliers alone. Instead, this pattern could hint that sweeps in the unique
detection parameter space of Fs7 rumwin (1.e. partial harder sweeps) are more common among these
populations than sweeps in the unique space of Fs7_asve (.e. more complete softer sweeps).
However, these results may be influenced by other evolutionary forces as well, and they do not
offer definitive conclusions about the prevalence of different models of selection (see Discussion).
Our simulation results above suggested that high Fs7 asyve and Fsz_ruwin outliers might
be capturing different kinds of selective sweeps. To assess this possibility from the empirical data,
we focused on high Fs7 aaesve and Fs7_rauwin outlier regions (as described above) from the Ethiopia
vs. Zambia comparison. We calculated the frequency of the most common haplotype, haplotype

homozygosity, and the H2/H1 statistic (Garud et al. 2015) for the outlier regions exclusively
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325  detected with Fs7 amaesye and those exclusively detected with Fs7 mumwin. Congruent with Fs7-azasve
326  exclusive outliers mainly detecting cases of soft sweeps and Fs7 ruwin exclusive outliers detecting
327  hard partial sweeps, we found that for both the Ethiopian and the Zambian populations, the
328  frequency of the most common haplotype and haplotype homozygosity was lower in the

329  Fs7 masye outliers, while H2/H1 was higher (meaning the haplotype homozygosity calculated
330  with and without the most common haplotype was more similar to each other) in the Fs7 aavsye
331  exclusive outliers than Fs7 pumwin (Figure S5).

332 We also performed an outlier removal analysis for windows with high p-values (low Fs7),
333  which could reflect shared sweeps or other processes. Similar to the low p-value enrichment
334 analysis, we found varied results for each statistic and population pair (Figure S6).

335

336 Genome Scan for Signatures of Selection

337  We chose to complement the above multi-population analysis of genome-wide patterns with a
338  closer analysis of a single population pair. We chose to compare the Ethiopia and Zambia town
339  populations because (1) Their relatively large sample sizes of 129-181 and 60-76 respectively for
340  each chromosome arm (Table S2) are more conducive to the analysis of specific Fs7 arasve

341  outliers, (2) These populations showed enrichments of both Fs7 aasyve and Fsr ruwin (Figure 5),
342  and (3) Past results from these populations helped motivate the present study (e.g. Bastide ez al.
343  2016). We performed genome scans for regions potentially under population-specific selection
344  between these populations using Fs7 yaswe, Fs1_rmuwi, and yup. For each statistic, we obtained a
345  list of outlier windows (top 1%), and as above, we merged nearby outlier windows into regions
346  (Materials and Methods). We obtained 138 outlier regions for Fs7 amasve, 138 for Fsr rumwin, and

347 155 for yup. Our results showed an overlap of just 39% between the outlier regions detected with
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Fs1 mavsve and Fs7_pauwin. Perhaps surprisingly in light of the above power results, there was a
smaller overlap of either Fs7 metric with yap (Figure 6A), although the overlap of the haplotype
statistic with Fs7-muwin was indeed slightly greater. In regions that were outliers for Fs7- amavsve but
not Fs7_rmuwim, the distribution of individual SNP Fs7 values often had a narrow sharp Fsr peak,
with most of the other SNPs having low Fs7 values. On the contrary, in regions there were
outliers for Fs7_muwin but not Fs7 aasye, often no single SNP had a large Fs7 value, but there was a
broad moderate Fs7 plateau with many SNPs showing intermediate Fs7 values (Figure 7).

The SNP with the highest Fs7 value in each outlier region for Fs7 asyve could potentially
represent the target of selection; therefore we asked whether they were enriched for functional site
annotations generally associated with greater evidence for positive and negative selection. We
classified these SNPs into five different classes: nonsynonymous, synonymous, untranslated region
of the mRNA (UTR), intronic, and intergenic. We then compared the proportion of “top SNPs”
(z.e. having the highest SNP Fg7 within a Fs7- aawsyp outlier region) in each functional site category
against that category’s genome-wide proportion, based on SNPs with similar allele
frequencies. We found the biggest enrichment among nonsynonymous (protein-altering) sites,
with an enrichment of 3.2, followed by UTR sites (Figure 8). The remaining classes were not
enriched, and the intronic class was the most depleted class, with an enrichment of 0.8 (Figure
8). Previous studies have found evidence of selection on noncoding sites in Drosophila, especially
on UTR sites - which have shown more selective constraints and proportionally more adaptive
substitutions than intronic and intergenic sites (Andolfatto 2005, Lange and Pool 2018). The
enrichment of nonsynonymous and U'TR sites in our analysis also mirrors results from human Fsr
outliers (Barreiro et al. 2008). Overall, there is a strong tendency for our top SNPs to occur in site

categories more likely to affect fitness, as we would predict if some of them are actual targets of
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selection. If a beneficial mutation in these sites was already present as standing variation in the
population before the onset of selection, the increase in frequency of beneficial mutation in a
single population could result in a narrow sharp Fs7 peak within the genomic region (Figure 7).
We then performed Gene Ontology (GO) term enrichment analysis separately for each
statistic’s list of outlier regions. Considering only GO terms with raw p-value < 0.01 from each
list, we found mostly lower overlaps between enriched GO terms compared to the spatial overlap
between outlier regions (Figure 6B; Table S3). The three statistics differed substantially in the
number of enriched GO terms by this criterion: 357 for Fs7 rmuwin, 133 for Fsz amawsye, and 71 for
yup (out of 47,496 total GO terms tested). We emphasize that enriched terms in each set are not
necessarily independent and any given list of enriched GO terms will contain overlapping
categories. The relative overlap between GO terms enriched for each statistic largely followed
the relative numbers of enriched GO terms for each (Figure 6B). Mirroring the outlier region
results, most enriched GO terms were detected for only one of the three statistics, highlighting the
complementarity of each statistic described above. Different categories of genes have different
mutational target sizes and may also vary in their ability to harbor potentially functional
variation. Hence, the supply of standing genetic variation to generate soft (as opposed to hard)
sweeps may differ between GO categories, as hinted by our results. Here, a number of the most
enriched GO terms for Fs7 ruwin involved nucleotide/ribonucleotide binding (Table S3).
Whereas, many of the most enriched GO terms for Fs7 auwsye pertained to ion channels, a finding
concordant with previously-reported parallel signals of positive selection in cold-adapted D.

melanogaster populations, based on SNP-level genetic differentiation outliers (Pool et al. 2017).

Discussion

18



394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

Fs1 maxsne complements other statistics by detecting soft sweeps

Identifying regions under selection can help us answer further questions about the evolution of
local adaptation, such as which biological functions are under selective pressure, the number of
loci underlying adaptive events, the source of the adaptive variation, and the kinds of genetic
changes that might be under selection. Our results underscore the importance of deploying
methods capable of capturing different kinds of selective sweeps when the aim of the study is to
identify as many genes potentially under local adaptation as possible.

Fs1 mavsye In particular, seems to be especially useful to detect soft sweeps with relatively
large initial and final frequencies of the beneficial allele. Instances of mostly complete soft sweeps,
as simulated here, represent regions in which a beneficial allele was present in several different
haplotypes that might have increased in frequency along with the beneficial allele. While the
selected SNP itself changed in frequency drastically, resulting in a large Fs7_amasve, the alleles
around it must have changed in frequency to a lesser degree because many background
haplotypes were hitchhiking along with the beneficial allele. Therefore, while the beneficial
variant can have an extreme Fs7 value, the lower allele frequency changes in the other SNPs in
that window would result in a Fs7_muwin that 1s not statistically significant, and thus a low power to
detect a selective sweep under these conditions.

The full-window metrics, Fs7_muwin and yup, had greater power than Fs7 aasye to detect
relatively harder, partial sweeps that had intermediate final allele frequencies. In these sweeps, no
individual SNP changed dramatically in frequency, so none have Fs7 values higher than what
could be obtained randomly in the genome. However, the increase in frequency of one or a few

haplotypes resulted in many SNPs in the same region with intermediate Fs7, producing a window-
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wide pattern that is too extreme to be generated by chance - even if each single marker
individually did not have an extreme Fg7 value.

We note that Kimura et al. (2007) also compared the power of a maximum SNP Fsr
statistic against a haplotype statistic, in the context of detecting hard sweeps from SNP genotyping
data. Consistent with our study, they found that the haplotype statistic performed better than
maximum SNP Fs7in this hard sweep context. They also found that among simulation
replicates, these two statistics were inversely correlated. These results are congruent with our
general findings of complementary power between maximum SNP Fs7 and either a comparative

haplotype identity statistic or a full-window Fs7 statistic.

The power of each statistic depends on population history

Importantly, the relative utility of each statistic to detect local adaptation was found to
vary as a function of demographic history. For example, although Fs7 sy is generally much
better than the studied full-window statistics at detecting complete soft sweeps, this advantage can
be reversed if demography, in conjunction with sample sizes, yields fixed differences in at least 5%
of windows under neutrality (in which case the power of Fs7 asye as we have defined it becomes
zero). We demonstrated this phenomenon in cases with elevated genetic drift between
populations, resulting from either a more ancient population split (Figure S1) or else a strong
population bottleneck in the adapting population (Figure S2; Figure S3). These results
underscore the importance of performing simulations to test whether Fs7 amsye 1s expected to be a
useful metric for any given population pair of interest.

There was little difference in the power of Fs7- aavsve and Fs7_muwin to detect regions under

selection in scenarios with varying migration rates. We had wondered if F57 asavsye would
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outperform Fs7-muwin in scenarios with older splits, as selection might only maintain a narrow
window of differentiation between the two populations in the presence of long-term
recombination with migrant haplotypes (Sakamoto & Innan 2019). Nonetheless, differences in
the time of population divergence and local adaptation only had a small effect in a very narrow
space of parameters (intermediate migration rates for high N, populations, Figure S1), suggesting
that even in scenarios with recent divergence, the populations had already reached a state of
equilibrium and the balance between migration, selection, and recombination, which did not
result in contrasting signatures of selection between Fs7 aawsve and Fs7_rauwin. However, both
metrics outperformed yup on the simulated scenarios, indicating that selection could not maintain
long shared haplotypes in the presence of migration.

For simplicity, we have limited our focus to the detection of local adaptation from two-
population isolation models (with and without migration). Such histories may be generally
relevant for many taxa, including species that have recently invaded novel ranges, comparisons
between domestic organisms and wild relatives, and island-dwelling taxa. Still, it is worth keeping
in mind that many species exist as geographically complex mosaics of populations connected by
migration. Patterns of genetic variation produced by positive selection (and by neutral processes)
in spatially explicit contexts involve additional nuance not reflected in our study (e.g. Ralph and
Coop 2015; Lee and Coop 2017). For example, a hard sweep in a subdivided population 1s
expected to be narrower than it would otherwise be, as recombination events continue to whittle
down the sweeping haplotype as it spreads from one deme to another (Santiago and Caballero
2005), which might further support the analysis of Fs7 at the level of SNPs or narrower windows.
However, more detailed study is needed to fully document the expected genomic scale of Fsr

outliers in spatially complex population models.

21



463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

Consideration must be given to window size, sample size, and multiple testing

In this study, we have used neutral demographic simulations to estimate statistical power
at the single window level, only penalizing multiple tests when comparing between window sizes.
Clearly, our results do not imply the power to identify genome-wide significant loci, which is only
rarely attainable for population genomic scans. Instead, most genome scans aim to identify good
candidates for downstream study, and our results are best interpreted in terms of the relative
utility of these summary statistics to identify local adaptation candidates. Similar interpretations
should apply to genome scan outliers based on Fs7 axsype versus other window-based summary
statistics, unless it can be shown (e.g. via neutral demographic simulations) that an extreme
observed value of Fs7 amawsye would not be expected anywhere in the genome.

In light of the complementary performance of Fs7 awsyve and Fs7_ruwin for the non-
migration cases, we tested whether Fs7_muwin across shorter windows could yield a balance of
reasonable power to detect both complete soft sweeps and partial hard sweeps. However, the
relationship between window size and the power - while accounting for the increase in the
number of tests in smaller windows - did not follow this prediction. Our results suggest that
applying both Fs7 aavsve and Fs7_ruwin to conventionally-sized windows is preferable to shrinking
the window size in an effort to identify narrower soft sweeps. Nevertheless, window size remains
a challenging decision in genome scans including those searching for local adaptation.
Importantly, the scale of elevated genetic differentiation depends on multiple factors, including
the magnitudes of selection, recombination, and migration, the timing of the onset of adaptation,
and as we highlight, the initial frequency of a favored variant. In general, we suggest that genetic

differentiation on both SNP and broader scales should be incorporated into scans for local

22



486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

adaptation, whether using the specific summary statistics described here, or attempting to develop
a single statistic or integrated analysis framework that encompasses the advantages of both.

An important caveat of using Fs7 amasye 1s that it requires a greater sample size than
Fs1 mauwin. With smaller samples, it 1s easy to get a large Fs7_ masve at one of the many analyzed
SNPs through sampling variance alone, whereas an extreme Fs7 ruwin value s less likely in this
scenario. Itis difficult to provide any universal advice regarding sample size, because the neutral
variance of Fs7 amasye also depends strongly on demographic history, as shown above.
Nonetheless, we have shown that in two scenarios in which Fs7 ausye outperformed Fs7mumwin, 1ts
power declined considerably when we decreased the sample size from 50 to 20 chromosomes.
Although the relationship between sample size and power will depend on the specific populations
being studied, the utility of Fs7- savsyve seems most promising when sample sizes are around 100
alleles per population or more. However, it would be advisable to conduct neutral simulations
based on estimated or suspected demography, in order to identify sample sizes for which it is very

unlikely to get extreme single-SNP Fs7 values in the absence of local adaptation.

Both Fsr puuwin and Fst pmaxsnp outliers are enriched among Drosophila populations
When we applied Fs7_rumwin and Fs7_aasye to empirical data from D. melanogaster populations, we
found that enrichment patterns of Fs7 rmuwin and Fs7 amasye varied among population pairs, both
for high and low Fs7 values. The excess of windows with high Fs7 observed could be explained by
local adaptation: unique selective sweeps in one population increase the differentiation between
two populations in that region. Not all population pairs showed the same degree of enrichment
for high Fs7. Alarger enrichment could be due to a higher number of selective sweeps between

two populations, stronger selective events that impacted a larger region of the genome, or a
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neutral history more conducive to outlier detection. The populations we studied cover a large
geographical scale, most are located in sub-Saharan Africa and one in Europe. These
populations are exposed to a variety of environments, ranging from warm tropical lowlands to
cool high latitude and high altitude regions, in addition to commensal versus wilderness settings
(Sprengelmeyer et al. 2020). Hence, they are most likely exposed to several unique selective
pressures that could be underlying local adaptation and an enrichment of high Fs7 values.

Alternatively, enrichment for high Fs7 could also be explained by background selection,
which is expected to reduce genetic diversity and therefore result in lower effective population
sizes in that genomic region. Genetic drift is stronger in regions of low N, which could increase
the differentiation between two populations and produce high Fs7 (Charlesworth et al. 1993).
However, a simulation study of background selection targeting stickleback exons found no
evidence for background selection increasing Fs7 outliers (Matthey-Doret and Whitlock 2019).

On the other extreme, the existence of enrichment for low values of Fs7 suggests that
many regions of the genome maintained unexpectedly similar allele frequencies between two
populations. Following a population split, neutral evolutionary forces such as genetic drift are
expected to increase the genetic differences between two populations. The fact that many regions
seemed to have changed less than what was expected due to neutral forces could also be
explained by the action of natural selection. This pattern could be the product of shared selective
sweeps (1.e. similar selective pressures) taking place in both populations, instead of local
adaptation. Shared balancing selection could also be acting at some loci to maintain allele
frequencies constant between two populations, perhaps even from before their split time.

We should also acknowledge that the demographic models applied here are simply the

best available estimates of population history, and no demographic model fully accounts for the
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complexity of natural populations. Demographic model misspecification could result in some
enrichment of high and/or low Fs7 values. One potential source of error in demographic
estimation is natural selection. The demographic models were estimated based on tentatively
neutral regions of the genome (Sprengelmeyer ¢t al. 2020). However, these regions could be
under the influence of linked positive and negative selection, with the potential to bias
demographic estimation. For example, if the presumed neutral data was substantially affected by
either local adaptation or shared sweeps, it could bias the neutral distribution of Fs7 towards
higher or lower values, respectively, making it more difficult to detect Fs7 outliers in that
direction. Nonetheless, previous work suggests that this effect might be weak on demographic
inference in D. melanogaster (Lange and Pool 2018).

Having hundreds of Fs7 outlier regions (high or low) between recently diverged population
pairs is not unreasonable in light of previous estimates of adaptive divergence. It has been
estimated that 19% of substitutions between D. melanogaster and D. simulans were driven by positive
selection (Lange and Pool 2018). Individual genomes from these two species differ at about 5% of
sites, although roughly 1% 1s expected to be driven by segregating polymorphism rather than
fixed differences. Given a genome of 120 million bases, this implies an estimated 120,000,000 %
(0.05—-0.01) x 0.19 = 912,000 selectively-driven differences between species. These species are
estimated to have diverged about 13,000,000 generations ago (with some uncertainty; Obbard et
al. 2012), whereas our studied populations are all estimated to have diverged within the past
195,000 generations (Sprengelmeyer et al. 2020). Crudely then, we might predict as many as
912,000 % (195,000 / 13,000,000) = 13,680 selectively-driven differences between a population
pair such as Ethiopia and Zambia D. melanogaster. Hence, although any outlier set may contain

both true and false positives for local adaptation, our finding of hundreds of potential targets of
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adaptation between pairs of D. melanogaster populations does not exceed the potentially-expected
number of selection-driven differences between them.

In nearly all population pairs, Fs7_muwin showed a larger enrichment than Fs7 awsyve. The
greater enrichment of Fs7- muwin persisted when we instead pursued an outlier region removal
strategy. In light of the complementary zones of power shown in Figure 1, these results suggest
that roughly speaking, there might be a larger contribution of partial hard sweeps than complete
soft sweeps to local adaptation among these populations. Furthermore, the importance of partial
sweeps in populations of D. melanogaster has been proposed previously, including for some of the
populations studied here (Pool and Aquadro 2007; Bastide et al. 2016; Garud and Petrov 2016;
Vy et al. 2017). Therefore, seeing fairly low levels of overlap between Fs7- aavsve and Fs7_ruuwin
outliers, alongside particularly strong enrichment for Fs7 muwin outliers, is congruent with the

suggested predominance of partial sweeps in the species.

Precautions are needed to ensure high quality Fsr amaxsnvp outliers

A critically important caveat of using Fs7 amaesye 1s that this statistic should be more
sensitive to bioinformatic errors than a metric that uses information from all the SNPs in a
window. A sequencing or mapping error could cause a single SNP in a window to have a high
Fsrvalue, while in a full-window approach such errors are often minimized by being localized to
only one or few of the SNPs being aggregated. To reduce false positives from data artifacts,
particular consideration should be given to multiple aspects of data preparation and analysis
when using Fs7 amaesye. Prior to population genetic analysis, it 18 worth considering whether
enhanced genotype calling filters are called for, such as increased quality score or depth of

coverage thresholds. Excluding sites within a few bp of called indels may also be helpful in
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reducing erroneous site calls (Lack ef al. 2015). Furthermore, it is important to ensure that data
from all population samples have been collected and assembled the same way. For example,
Lange et al. (2022) found that a set of SNP-level genetic differentiation outliers from a comparison
between individually-sequenced and pool-sequenced population samples were not reliable until
genomes from the individually-sequenced population were reassembled using a pipeline
analogous to the pool-seq data.

Precautions should also apply to the population genetic analysis itself. Given that
Fs1 mavsye 1s very sensitive to sample size (Figure 3), variation in missing data among the sequences
of each individual may result in heterogeneous sample sizes for different SNPs in a given window,
and therefore using a relatively high minimum sample size threshold for each population is
essential. Finally, additional quality control assessment of Fs7 awsve outliers following population
genetic analysis 1s desirable. For example, it may be worth confirming that outlier SNPs do not
appear to be impacted by depth anomalies suggestive of cryptic structural variation, and are not
associated with alignment uncertainty or sub-optimal quality scores. When depth or alignment
issues are present, the outlier SNP could potentially be tagging a structural variant under local
selection as opposed to representing a pure false positive. In other cases, soft sweeps targeting
structural variants might be missed entirely if they fail to strongly alter frequencies at linked SNPs.

The enrichment of nonsynonymous (and UTR) sites among our “top SNPs” in Fs7 aasve
outlier regions (Figure 8) offers hope that at least in our empirical analysis, many Fs7- aavsye outlier
regions may represent true positives for local adaptation, and that top SNPs may sometimes even
reflect causative variants. However, we emphasize that even for true cases of local adaptation, a

non-causative SNP may sometimes have a slightly higher Fs7 value than the causal SNP, simply
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by chance. And in light of the data quality concerns described above, it makes sense to interpret
1solated high Fs7 SNPs with caution.

Overall then, Fs7_amasye outliers may have a wide range of potential significance, ranging
from false positives to indicating strong hypotheses for specific variants under selection.
Functional experiments may hold particular appeal for Fs7 amsye outliers, both to confirm their
validity and to investigate the variants they implicate. First, methods such as reciprocal
hemizygosity tests (Stern 2014; Turner 2014) may confirm that the implicated genes are
associated with detectable trait differences between populations, which would support the outlier
Frsignal representing a true positive. Further molecular or transgenic experiments could then
assess the consequences of modifying individuals high-Fs7 variants, to improve our understanding

of the precise genetic changes targeted by natural selection.

Summary and future prospects

Here, we have shown that SNP-level Fs7 (Fs7_aasye) offers strong power to detect soft
sweeps, and 1s highly complementary to full-window frequency and haplotype statistics for
detecting local adaptation. These results stress the importance of taking into account the different
signatures left by different kinds of selective sweeps in the genome when deciding how to perform
a genome scan. The raw summary statistics evaluated here can either be applied in parallel, or
their signals can be integrated into frameworks such as approximate Bayesian computation and
machine learning. Thus far, the latter methodologies have been used more extensively to detect
and classify selective sweeps within a single population (Peter ef al. 2012; Sheehan and Song 2016;
Schrider and Kern 2016, 2017). However, such approaches are equally applicable to the study of

local adaptation (Key et al. 2014). Future work could investigate whether methods that combine
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623 multiple statistics would benefit from including Fs7- aavsve, potentially increasing their power to
624  detect soft sweeps and their accuracy in classifying different types of sweeps. Because studies of
625  genetic differentiation between populations inherently control for evolutionary variance in the
626  shared ancestral population, local adaptation may offer a better “signal to noise ratio” regarding
627  the types of positive selection acting in natural populations, compared to single population studies.
628  Hence, our results may contribute toward not only an improved ability to detect local adaptation,
629  but also a clearer understanding of adaptation in nature more generally.

630

631 Methods

632 Simulation Power Analysis

633  To generate adaptive and neutral distributions of genetic diversity, we performed simulations of
634  demographic history scenarios with and without natural selection using msms (Ewing and

635  Hermisson 2010). Our simulations consisted of two populations with a population split, and

636  population-specific selective sweeps in the scenarios with natural selection. For each model, we
637  obtained 10,000 replicates from which we calculated the statistics of interest. Power was

638  calculated as the proportion of replicates under selection with a statistical value larger than 95%
639  of the values obtained in its corresponding replicates without selection. We investigated the

640  power of three different statistics: Fs7_aaxsvp, Fs7_ruwin and yaup (Lange and Pool 2016), which

641 were calculated on windows of fixed size. Fs7 aavsye is based on the SNP within a window with
642  the highest Fsrvalue. Fs7 ruwin was calculated as the ratio of the average between population
643  variance for of all SNPs in a window over the average total (between + within population)

644  variance for all SNPs (Reynolds e/ al. 1983). No minor allele frequency filter was applied for SNP

645 calling in the power analysis — but see below for criteria used to reject or accept any simulation
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replicate based on the allele frequency of the beneficial allele in particular. yup stands for
Comparative Haplotype Identity; it compares the average length of identical haplotypes in a
window between two populations, and was calculated following Lange and Pool (2016). Our
simulations used two general sets of parameters, following Lange and Pool (2016). One set with
high effective population size (N, = 2,500,000) was based on parameters from Drosophila
melanogaster (with a population mutation rate of 0.01 and a population recombination rate of 0.03).
The other set with a low N, was based on parameters from humans (with population mutation
and recombination rates of 0.001). To maintain similar scales of diversity and linkage between
these scenarios, the default window size used in our simulations was 5,000 bp for simulations of
populations with high N, and 100,000 bp for simulations of populations with low V.. The
different window sizes for each population size reflect the amount of genetic diversity in high and
low N, populations. Except where otherwise stated, the sample size was 50 chromosomes.

We initially used scenarios of constant population size and a simple population split to
simulate scenarios of selective sweeps with varying initial and final allele frequencies, representing
hard and soft sweeps as well as complete and partial sweeps. We also simulated scenarios of
population bottlenecks and population splits for complete selective sweeps, and for scenarios with
varying migration rates for hard sweeps (not constrained by ending allele frequency). For
bottlenecks, the population that will experience local adaptation underwent a period of reduced
population size for the first 0.01 coalescent units after the population split (which in most
scenarios including these, occurred 0.05 coalescent units ago; Table S1).

The simulations of populations with high N, were done for two different selection
coeflicients (s = 0.01 and s = 0.001) and simulations of populations with low JV, only included s =

0.01 (Table S1). Simulations of complete sweeps only used replicates in which the beneficial allele
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went to fixation. Simulations of partial sweeps only accepted replicates in which the beneficial
allele stayed within 4% of the targeted ending frequency. Selection initiation time was adjusted in
each case to maximize the proportion of accepted replicates. Moreover, in the scenarios with
initial allele frequencies larger than 1/2),, both the selected and non-selected populations had the
same initial frequency.

For models that included migration (gene flow), selection of equal magnitudes but in
opposite directions was imposed on each population. Per generation migration rates varied from
0.0004 to 0.004 in simulations with high N, populations and from 0.01 to 0.10 in simulations with
low V. populations. For each migration rate, split times varied from 0.1 to 1 coalescent unit.

We calculated the effect of sample size on the power of each statistic in six different
scenarios: four models with demographic history of a simple isolation between two populations
and two models with population size bottleneck. Of the simple isolation models, two models for
high N, populations were considered: one in which Fs7 ruwin outperformed Fs7- aasye (initial
allele frequency of 1/2), and final allele frequency of 0.4) and another where Fs7- aravsve
outperformed Fs7 ruwin (initial frequency of 0.005 and final frequency of 0.7). Two scenarios for
low V. populations were also considered: one in which Fs7 puwin outperformed Fs7 azasve (initial
allele frequency of 1/2), and final allele frequency of 0.5) and another where Fs7- aravsve
outperformed Fs7 ruwin (initial frequency of 0.05 and final frequency of 0.8). For the bottleneck
models, we used models with a bottleneck of 5% (i.e. a reduction to 5% of the prior JV, for 0.01
coalescent units in the adapting population immediately following the population split) and only
models in which Fs7 aaesye outperformed the window wide statistics were considered: one model

for high N; population (initial allele frequency from 0.5% to 100%) and one for low JV, populations
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(initial allele frequency from 1% to 100%). For all the six scenarios, we used sample sizes of 10,
20, 50 (original sample size), 100, and 200 chromosomes.

We calculated the effect of window sizes on the power of each statistic in four different
scenarios, the same scenarios of simple isolation used to calculate the power of sample sizes above.
For the high N, scenarios, we used window sizes of 5 kb (original size), 2 kb, 1 kb, 0.5 kb, 0.2 kb,
0.1 kb, and 1 bp. For the low .V, scenarios, we used window sizes of 100 kb (original size), 50 kb,
20 kb, 10 kb, 5 kb, 1 kb, and 1 bp. For the 1 bp (one single SNP) windows, we only calculated Fsr
(here Fs1 maxsve = Fs1_ruwin). To calculate yap, we used a minimum haplotype threshold of 10%
of the window size (as was used for the original analyses). For each window size smaller than the
original, we applied a p-value Bonferroni multiple testing correction proportional to the reduction
in size (or equivalently, the increased number of windows needed to cover a given genomic
region) to calculate power. That is, while for the standard window size power is the number of
replicates with a p-value of 0.05 or lower, for a window half the size of the original the p-value
would need to be 0.025 or lower. Except for the window size of 1 bp, in which the correction was
the average number of SNPs in the window with the largest size (the default window size used in

our other analyses).

Empirical Enrichment of Fst ymaxsve and Fst ruiwin - data and simulations

Our data set consists of individual fly strain genomes from six natural populations of D.
melanogaster: one non-human commensal population from Kafue, Zambia (KF) and five human
commensal populations from different countries: Zambia (ZI), South Africa (SD), Rwanda (RG),
Ethiopia (EF) and France (FR), using data from Lack et al. (2016) and Sprengelmeyer et al. (2020).

From each population, for each chromosome arm (ChrX, Chr2L, Chr2R, Chr3L, Chr3R), we

32



714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

excluded genomes from lines with a known inversion for that arm. To boost the sample size of
two populations with genomes from partially inbred lines (Ethiopia and France), instead of only
using homozygous regions of the genome (as in the original filtering of the published data set) we
also included heterozygous regions identified by Lack et al. (2016), and therefore counted two
alleles at each site from these regions. For any pair of lines with excess identity by descent (IBD)
between them (defined as more than 10 megabases of IBD outside previously defined regions of
low recombination; Lack et al., 2016), we excluded one member of the pair from this data set.
Non-African admixture was filtered out from haploid data from African populations based on
data from Lack et al. (2016). For each population sample and each chromosome arm, we chose a
sample size to jointly maximize the number of analyzable sites and the sample size itself. Our
resulting sample sizes are shown on Table S2. For sites with more than that number of alleles
called, we downsampled to match the chosen sample size.

We calculated pairwise Fs7 muwin and Fs7aavsve for all populations using diversity-scaled
window sizes designed to contain 250 non-singleton SNPs in the ZI sample. Fs7 aavsye and
Fs1 muwin were calculated using each SNP with minor allele count larger than two, using the same
approach described in the power analysis. To compare empirical and null distributions for
similar recombination rates, each window was assigned to one of five recombination rates bins
based on estimates from Comeron e al. (2012); the bins corresponded to recombination rates
from 0.5-1, 1-1.5, 1.5-2, 2-3, and greater than 3. Windows with recombination rates lower than
0.5 were not used due to low spatial resolution for localizing signatures of selection in low
recombination regions. We obtained p-values for each window using neutral demographic
simulations performed using ms (Hudson 2002). Demographic simulations were performed using

parameters estimated for the evolutionary history of nine populations of D. melanogaster, including
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all the populations we analyzed (Sprengelmeyer et al. 2020). The other three populations were
lowland Ethiopia (EA), Cameroon (CO), and Egypt (EG). We did not use those three populations
in our empirical analyses due to their lower sample sizes. Nonetheless, they were included in the
simulations in order to accurately reflect the estimated patterns of migration.

Each demographic model had been estimated based on tentatively neutral genetic
markers (short introns and 4-fold synonymous sites from regions with sex-averaged recombination
rates of at least 1 cM/Mb) from inversion-free chromosome arms (Sprengelmeyer et al. 2020). A
model was estimated for each of three chromosome arms that had lower inversion frequencies (X,
2R, and 3L), and the history was inferred iteratively, such that not all population samples were
present in the same model. To better approximate genetic diversity in all populations, we used
two sets of demographic models: Northern model (containing ZI, RG, CO, EF, FR, EG, EA) and
Southern model (containing ZI, RG, CO, SD, and KF). The Northern model for the
chromosome X was subdivided into two sub-models (one with ZI, RG, CO, EF, EA and another
with ZI, RG, CO, FR, EG). Hence, we simulated four Northern models and three Southern
models (command lines in Table S2). The models for the autosomal chromosome arms (2R and
3L) were simulated using the highest sample sizes for any autosomal arm of each population
(Table S2). Simulated sample sizes were downsampled to match the sample sizes of each specific
arm when comparing empirical and simulated Fs7 patterns for any given arm. A minor allele
count of three or greater was also applied to the simulated data, mimicking the same filtering used
on the empirical data. The window size and crossing over rate used in each replicate were based
on a random sampling with replacement from the empirical windows, and the single gene
conversion rate and mean tract length were based on the estimates of Comeron et al. (2012).

Therefore, a null distribution was generated for each model and each recombination bin
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(described above). For each model and each recombination bin, 50,000 replicates were

simulated.

Enrichment calculation

Fs1 muwin and Fs7 aavsve were calculated for each population pair and each chromosome arm. Fgr
was calculated for the simulated data using the same sample sizes as the empirical data (Table S2).
For sites with more than two alleles, only the two most common alleles were kept. Sites with
minor allele counts lower than two were discarded from empirical and simulated analyses.

P-values were calculated for each window based on the neutral distribution of its
corresponding recombination group. Windows from chromosome X were compared to neutral
distributions based on the model for chromosome X. For autosomal loci, we determined that
simulations from the 3L model yielded somewhat milder outlier enrichments than the 2R model,
and therefore we conservatively focused on results from the 3L model.

We calculated p-value enrichments for Fs7muwin and Fs7_aasve using p-value bins of width
equal to 0.05, resulting in 20 bins of p-value 0 to 1. We counted how many windows had a given
p-value for each bin and divided the observed number by how many windows we expected to
have with a p-value in that bin based on simulated data.

Neighboring windows with low p-value could be showing the effect of a single selective sweep.
Therefore, we complemented this outlier window enrichment analysis with one based on “outlier
regions”. We intentionally defined outlier regions generously, preferring to falsely lump two
sweeps versus splitting a single sweep into two or more regions. Formally, starting with the
window containing the lowest p-values, we extended the region surrounding it until we reached a

stretch of five consecutive windows with p > 0.1 to create an outlier region. We removed the
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outlier regions from our analysis and repeated the process until the signal of enrichment was
erased (defined as the p < 0.05 bin having no more enrichment than the 0.05 <p < 0.1 bin). For
each of Fs7 aasve and Fs1_rumwin, we recorded the total number of outlier regions that had to be
removed for a given population pair. On the other hand, since neighboring windows with high p-
values (low Fs7) could be showing shared sweeps, we repeated the process described above for
outlier regions based on high p-values. For high p-value windows, we defined enrichment as the

p > 0.95 bin having no more windows than the 0.9 <p < 0.95 bin.

Genome scan for regions under selection - Ethiopia vs. Zambia

We performed a genome scan for candidate regions under selection between the Ethiopia (EF)
and Zambia (ZI) populations. We calculated Fs7_ruwin, Fs1_amavsve, and yap for each window of
the genome. We used an outlier approach and considered windows in the top 1% of each statistic
to be the candidate regions under selection. Here, we combined multiple outlier windows into
the same outlier region if they were separated by no more than five windows with p-value > 0.01.
To investigate whether the candidate regions detected with each statistic were the same or
unique, we calculated how many regions overlapped between the different statistics. We
considered that two regions were overlapping if at least 50% of the smaller region overlapped the
larger one.

For each list of candidate regions under selection, we performed a GO term enrichment
analysis using a method initially described by Pool et al. 2012. For each gene within a candidate
region, we obtained GO term annotations from FlyBase. The GO terms for each gene also
included all the parents of each term. GO terms that appeared repeatedly in a candidate region

were counted only once for that region. We calculated the p-values for each GO term based on
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10,000 permutations of the genomic locations of the outlier regions. This procedure allows genes
to have different null probabilities of being outliers, particularly based on their length. We
obtained a list of enriched GO terms for each statistic defined as the GO terms with raw p-values
less than or equal or to 0.01. We then determined the overlap between the three lists of enriched
GO terms.

To investigate whether Fs7 awsyve and Fs1_rawin outliers might be detecting different kinds
of selective sweeps, we focused on the outlier regions that were exclusive to each statistic. We
calculated the frequency of the most common haplotype, haplotype homozygosity, and the
H2/H]1 statistic (Garud et al. 2015) for the window with the most extreme statistic in each region.
In case of ties, one window was chosen randomly (for Fs7 aasyp, randomizations were
proportional to the number of top SNPs in each window). The expectation is for hard sweeps, a
single haplotype has risen in frequency in the population, and therefore the frequency of the most
common haplotype, as well as haplotype homozygosity, should be higher following a hard sweep
than a soft sweep. H2/H1 (calculated following Garud et al. 2015) calculates the ratio of the
haplotype homozygosity calculated without the most common haplotype (H2) over the overall
haplotype homozygosity including the most common haplotype (H1); it should be higher
following soft sweeps than hard sweeps. We calculated these statistics for all windows of the
genome with recombination rates above 0.5 that had a minimum sample size of 10 chromosomes
from each population. For each window we, excluded haplotypes with an amount of missing data
above the average for that window. We did not consider sites with singletons (only one of the
haplotypes had a different allele for that site) when calculating haplotype frequencies. Ambiguous
haplotypes were assigned to a matching haplotype; the assignment probability for each matching

haplotype was proportional to its frequency.
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To investigate whether the sites with highest Fs7 values in the outlier genomic regions for
Fs1 mavsve potentially were the targets of selection, we calculated their enrichment across different
categories of functional sites. We classified each site into five classes: nonsynonymous,
synonymous (only considering fourfold synonymous), untranslated regions of the mRNA (UTR),
intronic, and intergenic. For each outlier region, we focused on the SNP(s) with the highest Fsr
value. If'more than one site were tied for highest Fs71n an outlier region, instead of counting 1
for each site class we counted 1/(the number of top sites), so the total count for each region was
always 1 regardless of how many SNPs were tied for highest Fs7 value. We then counted how
many sites in each class were present across all outlier regions. We also calculated the genome-
wide proportion of each site class, restricting our analysis to sites in which the average minor allele
frequency between the Ethiopia and Zambia populations were within the range of average minor
allele frequency for all sites with the highest Fs7 values in the outlier regions. Lastly, we calculated
enrichment for each site class as the ratio between the proportion of sites in the outlier regions

over the proportion of sites in the genome.
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Fig. 1. SNP-level Fs7 and full-window statistics show complementary power to detect local

adaptation, depending on the type of selective sweep simulated. Numbers and colors in each

panel both depict statistical power to detect local adaptation, in high N, populations (s=0.001, left
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column) and low Ne populations (s=0.01, right column). In each panel, the x-axis illustrates the
pre-selection frequency of a favored variant (with the left column indicating selection on newly-
occurring mutations) and the y-axis illustrates the final frequency of the sweep (with the top row
showing complete sweeps). Detection power is shown for (A and D) Fs7 aasye, (B and E)

Fst ruwin, and (G and F) yup. These results are based on a demographic history of simple
1solation between two populations without change in population size, with a split time of 0.2,

generations.
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Fig. 2. Fs1 mavsve shows an increasing power advantage as sweeps become softer. For complete

sweeps with a range of initial frequencies (x-axis), the two y-axes show detection power for each

statistic (left axis, dots) and the average number of unique beneficial haplotypes present at the end

of the simulation (right axis, dashed line). Results are shown for (A) high N, populations (s =

0.001) and (B) low N, populations (s = 0.01), for the same demographic history as in Figure 1.
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Fig. 3. The power of Fs7 aasye 1s particularly sensitive to sample size. Here, the power of each
statistic (y-axis) is plotted as a function of sample size (x-axis; number of chromosomes per
population). We found that depending on sample size, Fs7 aavsye outperforms Fsr muwim and yyvn
for a simple 1solation model, for: (A) a high JV, population with initial beneficial allele frequency of
0.005 and final frequency of 0.70,and (B) a low N, population with initial frequency 0.05 and final
frequency of 0.80. Similar results were observed for a complete soft sweep with a population
bottleneck of 0.05, except that the loss of power for Fs7 awsyve was more immediate at lower
sample sizes, for: (C) a high V. population with initial frequency 0.05, (D) a low N, population
with initial frequency 0.01. For partial hard sweep scenarios where Fs7_muwin and yap outperform
Fs7 amavsyp, all three statistics show more gradual sample size effects, specifically for new mutations
and: (E) a final frequency of 0.40 in a high N, population, and (F) a final frequency of 0.50 in a

low V. population.
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Fig. 4. Varying window size does not reveal a single statistic with broad detection power. The top
panels show partial hard sweeps for which Fs7 muwin and yaup outperform Fsr aawsye: (A) a high N,
population with a final beneficial allele frequency of 0.40, And (B) a low JV, population with a final
frequency of 0.50. The bottom panels show mostly complete soft sweeps for which Fs7 azasye
outperforms Fs7 ruwin and yup: (CG) a high N, population with an initial beneficial allele frequency
of 0.005 and final frequency of 0.70, and (D) a low N, population with initial frequency 0.05 and
final frequency 0.80. These power values reflect a Bonferroni-corrected significance threshold to
reflect the relatively larger number of smaller windows needed. Results do not suggest that any
statistic in a smaller window size captures the advantages of both Fs7 auwsye and the full-window

statistics.
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Fig. 5. Fs7_amasve and Fst_rumwin both show outlier enrichment between natural populations of D.
melanogaster. (A and B) Ethiopia-Zambia Fs7 aasve and Fs7_ruwin values on (A) chromosome X and
(B) autosomes show enrichment of low (right) and especially high values (left), based on the
distribution of p-values obtained from neutral demographic simulations. (G and D) Fs7 sy
(lower diagonal) and Fs7_ruwin (upper diagonal) both show enrichment of high outliers on (C)
chromosome X and (D) combined autosome arms. Fs7 rumwin shows a greater enrichment in
nearly all cases. (E and F) Number of outlier regions that were removed to erase the signature of
enrichment for high Fs7 aasve (lower diagonal) and Fs7 rumwin (upper diagonal) for each
population on (E) chromosome X and (F) the combined autosome arms. Fs7 rmuwin was associated
with a greater outlier region enrichment for most population pairs, reinforcing the window-level
patterns shown in (C) and (D). Populations: SD = South Africa. ZI = Zambia. KF = Kafue,
Zambia. RG = Rwanda. EF = Ethiopia. Population pairs that were not present in the same
demographic model were not evaluated. Color scale ranges from the minimum to maximum

value within each panel.
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Fig. 6. The three statistics detect mostly unique genomic regions and functional categories. (A)
Overlap between the top 1% outlier regions detected with Fs7 aawsve, FST_raiwin, and yyp. *
indicates the average number of outlier regions between the two statistics: 15 Fs7- muwin outlier
regions exclusively overlap yup outliers and 13 yup outlier regions exclusively overlap Fsr rumwin
outliers. (B) Overlap between enriched GO terms with raw p-value <= 0.01, out of a total of

47,496 GO terms, based on the outlier regions detected with Fs7 aasye, FST_ruiwin, and yum.
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Fig. 7. Examples of the distinct SNP-level Fs7landscapes associated with Fs7 aaesye versus

Fs1 muwi outliers. Each plot shows an outlier window for an Ethiopia-Zambia Fs7 statistic, plus
its adjacent windows. Dashed vertical lines delimit the boundaries of the windows. Numbers
under each window are the empirical quantiles of that window’s statistic (Fs7_asasve, FST_Fuiwin,
and yup) in relation to the chromosome arm-wide distribution of the same statistic, with the
outlier (quantile < 0.01) value in red. (A) An outlier window for Fs7 amwsye (center) shows a peak-
like Fs7 landscape with one particularly differentiated SNP. (B) An outlier window for Fs7-ruuwin
(center) shows a broad plateau of fairly high Fs7 values. Gene names and structures are shown at
the top of each plot. Protein-coding exons are in yellow, while 5’ and 3’ untranslated regions are

in dark blue and light blue, respectively.
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1114 Fig. 8. The most differentiated SNPs in Fs7 ausye top outlier regions are strongly enriched for site
1115 categories known to experience more frequent selection. (A) Proportional distribution of these top
1116 SNP among five different classes: nonsynonymous, untranslated regions (UTR), intergenic,

1117  synonymous, and intronic. (B) Enrichment analysis of each the five classes in the outlier regions
1118  for Fs7 masye In comparison to genome-wide distribution for all SNPs with similar minor allele

1119  frequencies.
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