Journal Title Here, 2022, 1-6

doi: DOl HERE

Advance Access Publication Date: Day Month Year
Paper

FrameD: Framework for DNA-based Data Storage

Design, Verification, and Validation

Kevin D. Volkel,1* Kevin N. Lin,2 Paul W. Hook,3 Winston Timp,?
Albert J. Keung® and James M. Tuck®*

16Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North
Carolina, USA, 2°Department of Chemical and Biomolecular Engineering, North Carolina State University,
Raleigh, North Carolina, USA and 34Department of Biomedical Engineering, Johns Hopkins University,
Baltimore, Maryland, USA

FOR PUBLISHER ONLY Received on Date Month Year; revised on Date Month Year; accepted on Date Month Year

Abstract

Motivation: DNA-based data storage is a quickly growing field that hopes to harness the massive theoretical
information density of DNA molecules to produce a competitive next-generation storage medium suitable
for archival data. In recent years, many DNA-based storage system designs have been proposed. Given that
no common infrastructure exists for simulating these storage systems, comparing many different designs
along with many different error models is increasingly difficult. To address this challenge we introduce
FrameD, a simulation infrastructure for DNA storage systems that leverages the underlying modularity of
DNA storage system designs to provide a framework to express different designs while being able to reuse
common components.

Results:
case study. Our case study compares designs that utilize strand copies differently, some that align strand
copies using Multiple Sequence Alignment (MSA) algorithms and others that do not. We found that the

We demonstrate the utility of FrameD and the need for a common simulation platform using a

choice to include MSA in the pipeline is dependent on the error rate and the type of errors being injected
and is not always beneficial. In addition to supporting a wide range of designs, FrameD provides the user
with transparent parallelism to deal with a large number of reads from sequencing and the need for many
fault injection iterations. We believe that FrameD fills a void in the tools publicly available to the DNA
storage community by providing a modular and extensible framework with support for massive parallelism.
As a result, it will help accelerate the design process of future DNA-based storage systems.

Availability and implementation: The source code for FrameD along with the data generated during the
demonstration of FrameD is available in a public Github repository at https://github.com/dna-storage/
framed (10.5281/zenodo.7757762)

Contact: kvolkel@ncsu.edu or jtuck@ncsu.edu

Key words: DNA data storage, fault injection, storage systems, error correction, simulation

Introduction

The world is generating data faster and in larger quantities than
ever before, raising concerns that traditional storage technologies
will not scale to keep up with demand. In the search for new
technologies, DNA has gained broad interest due to its superior
density and longevity compared to magnetic tape and hard disk
drives. Since the early work of Church et al. (2012) and Goldman
et al. (2013) demonstrating the ability to store information in
DNA strands using modern DNA technology, there have been
a range of studies answering important questions such as data

addressability (Tomek et al., 2019; Bornholt et al., 2016; Tomek
et al., 2021; Lin et al., 2020; Organick et al., 2018, 2020), synthesis
efficiency (Antkowiak et al., 2020; Choi et al., 2019; Anavy et al.,
2019), DNA reusability (Tomek et al., 2019; Lin et al., 2020),
error rates associated with a variety of techniques (Organick et al.,
2018; Tomek et al., 2019; Grass et al., 2015; Matange et al.,
2021), and the density that can be achieved in DNA molecules
(Goldman et al., 2013; Erlich and Zielinski, 2017; Choi et al.,
2019; Anavy et al., 2019; Antkowiak et al., 2020). This vast
knowledge base of DN A-based data storage comes with an equally

(© The Author 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

https://github.com/dna-storage/framed
https://github.com/dna-storage/framed

Volkel et al.

expansive space of possible implementation approaches for which
little if any consensus has been reached. Compounding the problem
of choosing any one approach is the fact that there is a lack
of common infrastructure that enables the comparison of these
designs in a fair and reproducible manner.

To address the growing need for tools to analyze and compare
DNA storage systems, we present FrameD, a software framework
for designing, verifying, and validating DNA storage system
designs. FrameD is not a library of every conceivable error
correction algorithm, instead, it provides a fault-injection-based
test bed in which DNA storage systems can be evaluated.
Constructing FrameD requires several considerations. One being
FrameD'’s flexibility in terms of what DNA storage systems can
be represented. To address this issue, we use current literature
to inform the construction of a model that can be used as a
basis in which a range of DNA storage systems can be expressed.
With this model, we are able to implement an execution back-end
that executes a set of encoding steps that adhere to the model’s
interfaces. Thus, for an encoding to be used in FrameD, a user need
only follow the interface specification. This execution model back-
end also provides transparent support for necessary bookkeeping
steps like DNA strand indexing and dropout inference, allowing
the user to focus on the details of their algorithms.

Another issue that needs to be considered when simulating
DNA storage systems is computational scale issues that arise
from several sources. Omne source is the size of the possible
parameter space of interest with regards to an encoding/decoding
algorithm, as exploring combinations of parameters can easily lead
to exponential growth in the number of experiments. Another
source of computational scale arises from the necessity to perform
fault injection experiments 1000’s of times to achieve narrow
confidence intervals on key outcomes such as strand and file decode
rates. Compounding each source of computational overhead is
the scale of sequencing data that needs to be processed. To
support scalability, FrameD utilizes batch jobs to parallelize
individual configuration simulations and MPI to parallelize units
of work within those batch jobs like strand decoding and
fault injection iterations. FrameD implements the parallelization
support transparently such that users do not need to manage
parallelization communication. Instead, the user just specifies their
configurations and the computational resources to allocate to each.

We demonstrate the utility of FrameD by performing a
comparison between three designs across two error models
representing different sequencing technology. We evaluate 240 total
configurations, generating a total of 654 million fault-injected
DNA strands, and analyze the read and write density trade-off
between the three designs. Our results show that the optimal
design approach depends on the designer’s read and write cost
targets and the target sequencing technology, and bolsters our
claim that a common simulation infrastructure is needed.

The Case for DNA Storage Simulation Infrastructure

Before discussing details of FrameD, we present a study of current
literature to further motivate the need for a DNA simulation
infrastructure and to understand the basic components that
such an infrastructure will need to support. For our review, we
choose 13 previous works that implement end-to-end DNA storage
systems. We selected these works because they are representative
of different approaches that have been taken since the revival of
DNA data storage started by Goldman et al.’s work. Thus, we

should be able to make conclusions about consistent approaches
taken in DNA storage design, while also being able to account
for the inclusion of novel techniques from each individual work.
Detailed organization of these works is presented in Supplementary
Table 1.

We find that transformations applied to information can be
organized hierarchically in two levels. At the first level we identify
two broad categories we refer to as Single strand and Multi-
Strand transformations. Single Strand transformations focus
on processing information stored in a single molecule of DNA,
while the Multi Strand processes relate to processing information
stored within a group of molecules.

Under the Single Strand category, we found 3 typical
transformation steps: Binary Transformation, Transcoding,
and Functional Site Encoding. Each of these sub-categories
modify the data present on a single DNA molecule in their
own way. A Binary Transformation modifies the raw digital
information before it is represented as DNA molecule. Such
modifications typically included parity checks (Bornholt et al.,
2016), Reed-Solomon codes (Grass et al., 2015; Antkowiak et al.,
2020), and base conversions from the typical Base-2 binary
representation of digital information to a numerical base that may
be more convenient for a certain Reed-Solomon field (Grass et al.,
2015; Anavy et al., 2019). The Transcoding category consists of
processes that represent the digital source information in terms of
a DNA molecule. While transcoding can be as simple as a base-
conversion to base-4 (Antkowiak et al., 2020), approaches typically
consider constraints such as GC balance (Press et al., 2020; Yazdi
et al., 2017) and homopolymers (Bornholt et al., 2016; Tomek
et al., 2019; Goldman et al., 2013; Organick et al., 2018), yielding
a range of options with different error correction and density
properties. The final Single Strand pass, Functional Site
Encoding, is not inherently dependent on the raw information
stored but instead includes DNA substrings in the stored molecules
to facilitate functionality. Functionality encoding includes adding
primers for polymerase chain reaction (PCR) random access
(Tomek et al., 2019; Bornholt et al., 2016; Organick et al., 2018),
T7 promotor sites for RNA transcription (Lin et al., 2020), and
restriction sites for DNA fragmentation (Tomek et al., 2021).

Under the Multi-strand
distinct processing steps: Outer Code, Consolidation, and

category, we determined 3
Reconstruction. The Outer Code step is similar to the Binary
Transformation step of the single strand category, except error
correction codes like Reed-Solomon are applied using the data
of a group of strands so that errors can be corrected using
information dispersed across DNA molecules (Press et al., 2020;
Tomek et al., 2021; Organick et al., 2018). This error correction
technique is crucial for dealing with the occurrence of missing
DNA molecules, a common error mode of DNA storage systems
(Press et al., 2020; Organick et al., 2018; Bornholt et al., 2016).
Another issue that a DNA storage system design must address
is the reconstruction of the order of information. Representing
arbitrarily large sets of information requires storing subsets of
information on individual DNA molecules because synthetic DNA
of arbitrary length is not feasible to synthesize. Provided mixtures
of DNA molecules are not guaranteed to be sequenced in any
particular order, a Reconstruction strategy is needed to map
a DNA molecule to its place in the complete data set. Because
of its optimality regarding density (Heckel et al., 2017), an
indexing strategy that stores an ordering integer in each strand is
a common approach (see Supplementary Table 1). Lastly, because

FrameD: Framework for DNA-based Data Storage

DNA storage systems typically generate multiple copies of each
transcoded DNA molecule by way of synthesis, sequencing, or
amplification (Organick et al., 2018; Bornholt et al., 2016; Yazdi
et al., 2017; Tomek et al., 2019), a processing step which we call
Consolidation is required to generate 1 final representative of
the information of a stored DNA molecule. This can be as simple
as detecting and removing bad strands using error correction until
finding a valid strand (Bornholt et al., 2016; Goldman et al., 2013;
Tomek et al., 2019; Press et al., 2020), or bioinformatics tools such
as multiple sequence alignment (MSA) algorithms can be employed
to determine a consensus sequence (Yazdi et al., 2017; Antkowiak
et al., 2020; Organick et al., 2018).

From this discussion, we can immediately see that the
transformation of information within a DNA storage system
This
indicates that an infrastructure which provides support for routing

can be described by a small set of general categories.

this information between these categories can be effective in
representing many unique DNA storage systems.

Given this observation, we consider how prior works in
DNA storage simulation support general encoding and simulation
DNA-Storalator a DNA

simulator that focuses on evaluating clustering and reconstruction

environments. is storage system
algorithms that work to construct a representative DNA strand
from a cluster of noisy versions. However, DNA-Storalator does not
offer support for the evaluation of Outer, Binary Transformation,
or Transcoding codecs Chaykin et al. (2022). Furthermore, the
only error models supported are those which are generated by wet-
lab experiments Sabary et al. (2021). While these may be accurate
for a given DNA storage system implementation, allowing for user-
defined error models allows for testing codecs over a wider set of
cases. DNAssim offers flexible fault and coverage models, along
with outer code evaluation. However, DNAssim does not consider
the complex space of inner code design and chooses to only use
binary to base-4 conversion as its transcoding method Marelli et al.
(2023). Another simulator is DeSP, however it is only a tool that
provides error injections and strand distribution changes, and so it
is not a framework for evaluating different encoding designs Yuan
et al. (2022). In the following sections we discuss how FrameD
provides a framework in which a rich space of encodings can be
evaluated using flexible error models in a scalable environment.

FrameD

We leverage categorical overlap of designs by understanding that
there is a logical ordering in which the information transformations
can be applied. This ordering is illustrated in Figure 1, where
information flows from left to right. First, information in a file
is broken into contiguous pieces called packets. Packets serve
as the scope for the outer encoding, allowing for designers to
choose a granularity for the outer error correction algorithm.
Before the outer code is applied, the packet is broken down
into base-sequences, contiguous sections of information that
will be stored on each DNA molecule. A packet’s base-
sequences are then processed by the outer code, which generates
indices automatically for each base-sequence while also adding
additional error correction base-sequences. FrameD defaults to
basic incremental integers for indexing, but provides the designer
the interface to implement special indexes like the Luby Seed for
Fountain codes. Each indexed base-sequence is passed through the
inner-encoder, a series of steps consisting of the Single Strand
operations.

The decode phase is mostly identical to encoding, except that
the transformations made by each pass are reversed. However,
decoding must have a mechanism to deal with multiple copies per
encoded strand. We found two approaches that can be taken.
One is to first cluster the DNA strands input to the decoder
based on similarity scores like edit distance or using a MinHash-
based approaches (Antkowiak et al., 2020; Organick et al., 2018;
Rashtchian et al., 2017). Then MSA algorithms, such as Muscle,
can be used to aggregate information across strands and help
resolve errors through consensus voting (Antkowiak et al., 2020;
Edgar, 2004; Yazdi et al., 2017). To account for these approaches,
we provide users the ability to add MSA and clustering steps to
the pipeline before the inner encoding is reversed. This process
is outlined in the Supplementary Information. Another approach
is to consolidate the strands after completing the inner code,
throwing out strands that may violate error checks, and coming to
a consensus on the digital representation of information. FrameD
supports the use of either approach, or even both.

The pipelined approach of FrameD provides DNA storage
system designers several benefits. By implementing the routing
of information between components, the designer can focus
on their algorithms as long as it adheres to the pipeline’s
information transformation interface. Further, by breaking larger
steps, e.g. inner code, down into smaller sub-components, a

ile Numerical Information Inner Encoding DNA Information
\ I
\ g Binary . Functional
Packet| ™ . base-sequence| D DNA
Cl €ll \base selquence / 1 Transformation Transcoding Site Encoding
4
’
1
Outer Encoding |/ base-sequence Binary : Functional
\ - - > —.l I—;
\‘ Pass I\ M Transformation lighecolie Site Encoding DNA
\
\ \
Packet| \ base-sequence k
- \ . .
N M Y base-sequence| Binary . Transcoding Functional | JFoNA
M+E Transformation Site Encoding
(0,1,255,32...) (2,1,2,...) TCA... AG..TCA..TA...
Base-256 Base-3 Prepend/Append

Fig. 1: Model used by FrameD to represent encoding for DNA storage systems. Included in this figure is an example of the state of

information throughout the pipeline, where initially data is in its original byte representation, then converted to base-3 and subsequently
DNA, and finally stored with prepend/appended DNA strings typically done for PCR primer functionality.

Volkel et al.

new unique inner code can be constructed by modifying just
a single component without needing to re-implement the other
algorithms that constitute the inner code. For example, one could
change their Binary Transformation pass while keeping the same
implementations of the Transcoding and Functional Site Encoding
passes. As long as the new component adheres to its prescribed
interface given the type of transformation it performs, no other
work is required outside of implementing the new algorithm.

Figure 1 shows only 3 components within the inner encoding
and 1 outer code component, however, we point out that both
can consist of an arbitrary number. That is, Outer Codes,
Binary Transformations, and Functional Site Encoding can be
cascaded an arbitrary amount. For example, one may have
two binary transformations, one to modify the numerical base
representation of data and another one to convert to a Reed-
Solomon code. We leave out Transcoding from this list, since
transcoding binary information to DNA can only occur once.
Details on how indexing is supported in cascaded Outer Codes
is discussed in the Supplementary Information. FrameD also
leverages transformation type interfaces to provide validation
checks for the designer to ensure that there is a logical arrangement
of components.

Fault Injection Workflow

FrameD includes a simulation tool based on a fault injection
methodology for evaluating DNA storage system designs. Fault
injection simulation provides several benefits over the analytical
model. Fault injection experiments provide the ability to quickly
estimate properties of specific steps of the encoding/decoding
processes. For example, fault injection experiments can determine
a rate at which strands can be successfully decoded using a
specified error model. This information can be used to verify
analytical results or to derive parameters for a full-scale DNA
storage system. Fault injection models are also more flexible,
where changing an encoding or error model can make deriving a
new analytical model difficult. Lastly, a fault injection framework
exercises actual algorithm implementations against strands with
errors in them, allowing for benchmarking and debugging that an
analytical model cannot provide.

Figure 2 overviews the workflow of using FrameD for fault
injection. First, a user develops a JSON configuration file which
includes a path to the binary data to be converted to DNA,
along with details of three general categories of parameters that
control simulation behaviour. 1) Encoder/decoder parameters
that configure the behavior of encoding/decoding components.
2) Fault distribution parameters that configure the simulated
channel’s error model. 3) Copy distribution parameters that
configure the model used to represent strand copies that arise in
the storage system. Within this configuration file, users can specify
a parameter sweep to explore combinations of parameters such as
error rate and inner code rates, and the fault injection tool will
generate individual simulation jobs (batch jobs) for each unique
parameter combination.

During the evaluation of a simulation job, the input binary data
is passed through the encoder to generate a library of synthetic
DNA strands that subsequently sample the copy and error model
distributions. The noisy set of strands passes through decoding,
during which an attempt to reconstruct the original file is made,
and information on errors and their locations are captured.

The output of fault injection consists of a set of files placed
in a unique directory for each unique parameter combination.
This set of files specifies the parameters that were used for the
experiment. This allows us to keep records of all parameters used
for all experiments easily. In addition to these files, a statistics file
is output by the simulation, aggregating counters that are used to
track events during simulation such as decode failures, location of
byte errors within strands, location of base errors within strands,
etc. FrameD allows statistics to be largely user-defined so that
appropriate statistics can be chosen for a given experiment. ' In
the following section, we outline how this is done in FrameD. Our
documentation provides a tutorial on fault injection using FrameD.

Simulation Config Experiments

Fault/Copy
Dlstrlbytlons, »| JSON > Job]
Encoding Generation
Params I
Compute Specification
Compute Cluster _____________________
i (-)\ (- 4
| [=X=N=]| :
'
N =N =01 | [E00l| | Job Distribution
i oo~ ooo|
N ((=N=N=]| ooog ooo]) |
p —— T T .
e] Fault Injection Environment____ 7~~~
= % TTAA > TCAA
Bany | DN iy|sample Copy| N7 Isample Fautt| !
Data Encoding [\ ! | Distribution % Distribution | !
i '
s N I—;_
Compiled DataFrame
— DNA
Fault Coverage Decode Idata_root Decoding
Rate Rate /\

Experiment, Entries experiment, experimenty

Experimenty Entries | Fault Encoder
Params | | params

Fig. 2: End to end workflow of performing fault injection
simulation using FrameD.

Generating Statistics

The fault injection tool of FrameD captures general system-level
information out of the box such as file decode rate and total byte-
errors in the final file. Designers can also further leverage FrameD
to generate custom statistics of a strand’s information at various
points of the pipeline. The mechanism to achieve this is called
a probe. A probe is a special pipeline component that does not
modify information, but can interrogate the state of strands as
they are encoded/decoded. To calculate error rates, a probe can
capture the state of the information as it is encoded. This snapshot
of the information can then be used as a comparison point during
decoding to calculate statistics. Such statistics can be versatile and
cover a wide range of error types including errors within the bases
of a strand and the errors within bytes after decoding strands. A
detailed example is provided in the Supplementary Information.

1 We do not list every statistic collected, since they are easy to
change.

FrameD: Framework for DNA-based Data Storage

Analyzing NGS Data

While this paper focuses on the in-silico fault simulation tool
of FrameD, we recognize that users of this framework would
likely want to leverage the probes they created for fault injection
simulation to analyze sequencing data from real experiments.
In addition to the fault injection tool, we provide a tool that
evaluates FrameD pipelines against NGS data. This additional
tool allows developers the opportunity to determine which encoded
DNA strand that a sequencing read originated from. This is
something that is not known a priori and has to be computed
since determining errors and their positions requires baseline
information to compare against. Computing this mapping can be
as simple as pairing a decoded index with the sequencing read
identifier, or by computing the best alignments to a known set of
strands Sabary et al. (2021). Our codebase includes a mapping
probe to perform this analysis along with detailed documentation
on how to leverage it within FrameD for NGS data analysis.

Handling Computational Scale

When performing fault injection simulations, and decoding strands
from real sequencing data, computational scalability quickly
becomes an issue. FrameD enables scalability by identifying
parallel units of work within the general flow of information in
the framework. This allows any design to leverage paralellization
transparently since FrameD can handle all communication of data.
FrameD identifies parallelizaiton at three levels shown in Figure 3.

In the first level, FrameD creates and submits individual batch
jobs that can be processed by HPC workload managers like Slurm
or LSF. Within each batch job, FrameD can be be configured
to allocate compute resources in the form of MPI ranks to both
fault injection iterations (second level) and work done during fault
injection simulations like decoding individual strands, packet outer
codes, and sequence alignment (third level). Allocation is up to
the user. A user may allocate more MPI ranks to fault injection
iterations if individual decode tasks are small, or the user may
allocate most ranks to decoding to deal with sequencing data or
to benchmark their pipeline. We utilize MPI at these levels due
to its ease of communication and scalability. By targeting these
clear large-grain units of work we can reach large numbers of
computational cores while also keeping those resources busy.

We recognize that there may be other user-defined opportunities
for parallelization. For example, consolidating DNA strands using
a clustering approach may benefit from MPI-based parallelization
(Rashtchian et al., 2017). Because communication patterns are
specific to such algorithms, we provide the user with the MPI
communicator that is allocated to the given fault injection
iteration. This allows the user to implement their own custom
parallelization if so desired. See Supplemental Figure 4 for
FrameD’s communication patterns.

While FrameD aids in scaling the number of strands and
fault injection experiments performed, we point out that the rate
in which information will be decoded/encoded will be greatly
influenced by the chosen algorithms and their implementation
details. A major implementation detail impacting performance
is the chosen language, and while FrameD is fully implemented
in Python, the implementation of a component can be in any
language as long as it has an interface to Python. We find this
to be an acceptable strategy since the infrastructure of FrameD
is only focused on moving information between components that

perform a bulk of the computation, which can be handled by a
higher performing language.

[Configuration Space]

Batch Job 1 Batch Job K . .
Configuration
Configuration | ______| Configuration Parallelism
Combination 1 Combination K | == 7777777777777"
o MPI| Rank 1 MPI Rank N;
Fault Injection) FI Iterations FI Iterations
Sample Parallelism
------------------ L et (T L
v Fong] F
MPI Rank Ny

MPI Rank 1

[Cluster MSA 1 : li—?]] [Cluster MSA N¢ — lNﬁJ :Nc]

[Inner Decode 1 : l%]] [Inner Decode Ng — l:—j] :NS]
I

3 4 3

[Packet Outer Decode Packet Outer Decode

. IN Np
1: N—‘;J Np — |—|:Np

Fig. 3: Hierarchical parallelism leveraged by FrameD. Items
grouped in the same level, e.g. MSA and inner decode, represent
work that can be done in parallel using the same MPI ranks.
Np, Nco, Ns, Np represent the total number of fault injection
iterations, clusters, strands, and packets.

Choosing Designs with FrameD

To demonstrate FrameD we perform an analysis that serves as
an example of how a DNA storage system designer may use
the framework to determine the most cost-effective approach
from a set of choices. In our example, we consider three
different pipelines and two different error channel models, which
are detailed in Table 1. Our encoder configurations are based
on approaches taken in existing literature, and each leverages
sequencing depth and resolves errors within a strand differently.
The RS pipeline is representative of approaches that utilize
conventional Reed-Solomon inner-error correction that deal with
errors within strands post clustering and MSA (Antkowiak
et al., 2020). Pipeline HEDGES contrasts with RS by directly
resolving base errors within a strand with a convolutional code
(HEDGEs) without applying MSA first (Press et al., 2020).
Lastly, we consider an approach, HEDGES-MSA, that combines
information aggregation of MSA with the convolutional inner
encoding to remove remaining errors. For all MSA operations, we
utilize Muscle (Edgar, 2004). Provided each approach leverages
error correction and sequencing depth differently, we are interested
in studying whether or not there are benefits as the sequencing
depth and error rate of the system evolve.

DNA storage system designers are also faced with various
technologies for writing/reading DNA, each with different error
characteristics which can impact decoder choice. To demonstrate
the evaluation of multiple error channels for the same pipelines,
we consider two commonly used error models. One is a simple
i.i.d model for insertions, substitutions, and deletions. This model

Volkel et al.

Table 1. Table of simulated parameters. For RS pipelines, the inner configuration tuples (x,y) indicate a RS(2%) configuration of = redundant bytes
per strand and y data bytes per strand. Similarly, for the HEDGES configurations, an (z, y) tuple indicates a code rate of = and bytes per strand of y.

Name szjgfh Tranlgfi(r)lrarflyation Transcoding C()?the(: MSA Depth Conflirgnlll:,tion 15‘[:;;
RS 4 bytes Rﬁg‘z;i)ze’ U(BL; DY) RS(2%) Muscle [3-30] ((11’252))” ((29;22) i‘igl(\;fr’;?f)’
HEDGES 4 bytes N/A HEDGES RS(2%) N/A N/A 28:;?22;17)(’5.07';5?;33 i'i'gl(\llfr’é??’
HEDGES-MSA 4 bytes N/A HEDGES RS(2%) Muscle [3-30] 28;627 Lii)(’égizgi i'i'gl(\%ir’;?f)’

is typically used when considering NGS DNA readout (Yuan
et al., 2022; Press et al., 2020). However, it has been shown that
an i.i.d channel does not well represent nanopore errors due to
the lack of support for burst errors (Hamoum et al., 2021). To
study whether burst errors may change the choice of decoder,
we also consider a publicly available model, DNArSim (https:
//github.com/BHam-1/DNArSim), which describes conditional error
probabilities that are derived from real sequencing data.

A key piece of FrameD that enables our analysis is parallelism
support which allows us to simulate 240 unique pipeline
configurations, totaling over 650M fault-injected DNA strands,
in a reasonable time frame on a High-Performance Computing
(HPC) cluster. All simulations were completed within 4 days on
an HPC cluster with specs outlined in Table 2. To verify that
our infrastructure aids in scaling to larger simulations, we perform
scalability experiments on one pipeline configuration with the core
type fixed to Intel Xeon Gold6226R. We picked the RS (9,47)
pipeline with read depth 25x and fault rate 10%. For this study
we simulate the pipeline only 368 times, and for a single core,
we measured 20325s to complete the simulation. Because 1 MPI
rank is allocated for scheduling, 31 additional compute ranks will
populate all cores of a node. In this case the experiment finishes
in 802s (25.3z speedup). In the previous cases, we are able to
exclusively use a node with no outside job interference, however
for multiple node runs we are not due to our cluster being a shared
system. For 92 compute ranks, we measured a 65.99x speedup.
These speedups indicate that FrameD is scalable.

We note that FrameD only provides the infrastructure for
scalability, and that efficiently executing parallel units of work
requires understanding the computational resources required
needed by each rank. For example, developers should be aware if
utilizing all cores of a node exhausts all memory when parallelizing
multiple instances of the inner code, and thus allocate ranks to
their compute system appropriately. In our studied pipelines we
did not observe this need, however.

This experiment also relies on other properties of FrameD.
Importantly, the error model modularity allows us to apply
multiple error models to each pipeline, and allows us to adopt
significant portions of DNArSim with minor modifications to
fit FrameD’s interface. This demonstrates FrameD’s ability to
incorporate existing model implementations. Probes also play a
major role in this analysis by providing decoding success rates of
inner error correction algorithms, a key value when determining
storage system cost.

In all experiments, we control for strand length by modulating
the number of bits of each base-sequence when we change the
density of the encoding. This ensures that all designs fall in

Table 2. Overview of HPC system used for simulations, parallelization
parameters, and simulation characteristics. MPI parallelization was utilized
for only fault injection iterations.

2 Intel Gold 6226/6130

192 GB RAM per node
Number of Batch Jobs 240

MPI Ranks to Parallelize

Node Architecture

L. . 128
Fault Injection Iterations
Fault Injection Iterations/Pipeline 1024
Total Strands Generated 654.7 Million
Binary Data/Fault Injection Run 2.78 kB
Minimum Inner Code Samples 51,200

a strand length space that is reasonable given the practical
limitations of DNA synthesis technologies (Bishop et al., 2017).
In our experiments, strand lengths fall in the range of 240-242 bp.
We use ideal clustering in our experiments to isolate MSA error
correction from approximations made by clustering algorithms
(Antkowiak et al., 2020; Rashtchian et al., 2017).

Comparing Pipelines
We compare pipelines by calculating the read and write code
rates required for each pipeline to meet a target Mean Time
to Failure (MTTF) of 10° accesses on 1 MB of data. We refer
to these rates in terms of read and write density, each with
units bits/base, and calculate them as the ratio of total bits
read/written to the total number of bases read/written. Given
that synthesis and sequencing cost is proportional to the number
of bases, these metrics allow for technology-independent cost
comparisons. A higher density is better. Write density is derived
from the redundancy allocated to the inner and outer code. While
read density considers encoding redundancy, it also considers the
number of copies for each strand that were sequenced. We point
out that the densities used for comparison are different from those
provided in Table 1 for the inner codes. While the rate of the inner
code influences the success rate of decoding individual strands for
a given channel error, additional outer code error correction is
required to develop a robust system to meet reliability targets.
Thus, our final code rate is a single metric that factors in both
the code rate of the inner codes shown in Table 1, and the code
rate necessary for the outer code after measuring strand decode
probabilities from fault injection. Detailed calculations can be
found in the Supplementary Information section.

With this analysis relying on estimating the decode rate of
strands through the inner code, there must be enough inner code

https://github.com/BHam-1/DNArSim
https://github.com/BHam-1/DNArSim

FrameD: Framework for DNA-based Data Storage

Frontier Comparison over i.i.d Channel

Fault Rate 0.01

Fault Rate 0.05

Fault Rate 0.1

..... . HEDGES:0.75 1.6 4 HEDGES:0.75 1.2 ~ HEDGES:0.5
G 184 R RS:1 HEDGES:0.5 HEDGES:0.25
3 . HEDGES-MSA:0.75 RS:1 1.0 RS:1
T R S total frontier : L HEDGES-MSA:0.75 HEDGES-MSA:0.75
- HEDGES-MSA:0.5 HEDGES-MSA:0.5
> 124 e total frontier 0.8 q *lhdbpps o 2 e total frontier
» 1.4 -
&
O el 1.0 H 0.6 -
g2 TR
e 084 * eoo—te 0.4
= e e
040~
T T T T T T T T T T T T T T T T
02 04 06 08 10 01 02 03 04 05 06 005 010 015 020 025

Read Density bits/base

Fig. 4: Optimal density design points for the three studied pipelines across the three studied i.i.d error rates, 1%, 5%, and 10%. The

dotted black line represents the total frontier composed of points from all of the studied pipelines. Each pipeline configuration is labeled

by its inner-code redundancy.

samples to build reasonable confidence for these rates. Controlling
for a consistent strand length across inner encoding densities leads
to some pipelines simulating more strands given a constant input
binary file. However, we ensure that each inner code is simulated
against at least 51k fault-injected strands.

Lastly, our analysis does not consider the impact on the outer
code from physical strand dropouts that can arise throughout
the DNA storage life cycle (Tomek et al., 2019; Organick et al.,
2018; Bornholt et al., 2016). FrameD supports dropout modeling,
but our focus in this case study is on the inner code’s ability to
cope with errors in the channel. Thus, the outer code is entirely
provisioned based on how well each inner-code is able to decode
strands without error. However, our design choices hold when
factoring in dropouts if assuming a fixed dropout rate per pipeline.

Results

To visualize the comparison of pipeline designs across sequencing
depths, we plot the Pareto front for each pipeline with respect to
read and write density. A Pareto front provides the design points
that optimally trade off one cost for another such that a point
is included if it provides an improvement in at least one cost. If
a configuration offers no benefit, it is left out. Thus, every point
in Table 1 will not make it to the frontier. The pipeline frontiers
for the i.i.d error model for three error rates are shown in Figure
4. In this Figure, each pipeline has a different color, and a point
shape represents a configuration of the inner code of the pipeline.
The black line connecting points represents the complete frontier
across all pipelines.

For the lowest fault rate (1%), we find that the RS pipeline
with 1 redundancy byte for error detection provides the best
write density. This configuration indicates that MSA is able to
resolve a majority of errors. However, at a read density of 0.4 this
pipeline’s write density drops and gets overtaken in optimality
by the HEDGES pipeline. This happens because MSA alone is
not able to keep up with HEDGES’ error correction at lower read
depths, requiring the RS pipeline to use considerably more outer
encoding overhead. Interestingly, adding MSA to an inner code is

not always best as shown by HEDGES enveloping HEDGES-
MSA. The reason stems from the HEDGEs code high decode rate
of single strands at this error rate such that it is more likely to
decode a strand by applying the code multiple times rather than
aggregating the information in MSA.

As the i.i.d rate increases, MSA-based approaches become
more prominent. For example, when the error rate is 5%,
HEDGES-MSA outperforms HEDGES for the same inner code
configuration. This is because it is now more cost-effective to use
sequencing depth to reduce the per-base error rate with MSA,
rather than applying HEDGEs individually to each sequenced
copy. The same occurs for a 10% error rate. Still, a pattern
emerges where a non-optimal HEDGES-MSA approach becomes
enveloped again by the HEDGES pipeline with the same
configuration. We conclude from this that the optimality of using
HEDGES with or without MSA is highly dependent on the error
rate of the storage system, a conclusion a designer will not be able
to come to without a simulation framework like FrameD.

A pattern that emerges for HEDGES configurations is that
when read density is increased by decreasing sequencing depth, at
a certain point it no longer becomes cost-effective due to ballooning
outer code overhead, making lower density inner codes preferred.
This can be seen for a fault rate of 5% between HEDGES:0.75
and HEDGES:0.5. However, this is not the case for RS, as no
configurations that utilize less dense Reed-Solomon codes for error
correction appear in Figure 4. This indicates that Reed-Solomon
as an inner code is ineffective against insertions and deletions. We
demonstrate this further in the Supplementary Information.

Figure 5 compares the three pipelines for nanopore-based fault
injection. In contrast with the i.i.d frontier, the complete frontier
consists of points only from HEDGES-MSA. The main driving
force of this is that nanopore sequencing has a higher frequency of
burst errors compared to the i.i.d model. Burst errors generate a
decoder mismatch with HEDGEs since this algorithm relies on
guessing errors based on an i.i.d error model. Thus, HEDGEs
experiences a large decode rate decrease unless MSA is applied
before hand to help resolve bursts. Another interesting component
of Figure 5 is that there is no configuration that just relies on
MSA to resolve errors. These results showcase that with FrameD

Volkel et al.

8
Frontier Comparison over Nanopore Channel
0.7 - R e,
9 R
w064 T S
S e T
~
8 054 HEDGES:0.5
2 4 HEDGES:0.25
i HEDGES-MSA:0.5
L 034 e . e total frontier
()
O o2
]
=
— 01 -
; T T T T T
0.02 0.04 0.06 0.08 0.10

Read Density bits/base

Fig. 5: Optimal frontiers obtained when the error injection model
is based on nanopore sequencing technology.

designers are able to define weaknesses in decoding algorithms and
determine better pipeline combinations when faced with designing
for different sequencing devices.

Conclusion

We have shown that as work continues in the area of DNA
storage systems there is an increasing number of unique pipelines
that overlap in the components that they use. We introduce
FrameD to address the void of tools available to the DNA
data storage community, enabling the modularization of common
algorithms and integrating fault injection models to provide a
basis for fair system comparisons. Because of its foundation in
the literature of DNA storage systems, FrameD provides designers
with the ability to simulate a wide variety of storage systems.
FrameD also provides transparent support for the parallelization
of computational units of work such as individual strands and
fault injection iterations, enabling the use of scalable high-
performance computing systems. These features are demonstrated
in our analysis of three pipelines that utilize the same components
in different combinations across two error models representing
different sequencing devices. In our analysis, the optimal pipeline
choice and configuration depends both on the cost targets set by
the designer and the target sequencing device. This highlights
the basic need for DNA storage designers to have tools that can
compare designs across a range of environments.

Funding Information and COI

This work was funded by the National Science Foundation
[1901324 to K.V. K.L. A.K. J.T., 2027655 to K.V. K.L. AK.
J.T. PH. W.T.].]. J.T. and A.K. are co-founders of DNAIli Data
Technologies. W.T. has two patents (8,748,091 and 8,394,584)
licensed to ONT. W.T. has received travel funds to speak at
symposia organized by ONT.

References

Anavy, L. et al. (2019) Data storage in DNA with fewer synthesis
cycles using composite DNA letters, Nature Biotechnology, 37(10)
1229-1236.

Antkowiak, P. L. et al. (2020) Low cost DNA data storage
using photolithographic synthesis and advanced information
reconstruction and error correction, Nature Communications, 11
(1)5345.

Bishop, B., Mccorkle, N., and Zhirnov, V. (2017) Technology Working
Group Meeting on Future DNA Synthesis Technologies, page 39.
Bornholt, J. et al. (2016) A DNA-Based Archival Storage System.

In Proceedings of the Twenty-First International Conference on
Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’16, pages 637—649, New York, NY, USA ACM.

ISBN 978-1-4503-4091-5.

Chaykin, G. et al. (2022) DNA-Storalator: End-to-End DNA Storage
Simulator, Non-Volatile Memories Workshop 2022.

Choi, Y. et al. (2019) High information capacity DNA-based data
storage with augmented encoding characters using degenerate bases,
Scientific Reports, 9(1)1-7.

Church, G. M., Gao, Y., and Kosuri, S. (2012) Next-Generation Digital
Information Storage in DNA, Science, 337(6102)1628-1628.

Edgar, R. C. (2004) MUSCLE: a multiple sequence alignment method
with reduced time and space complexity, BMC Bioinformatics, 5
(1)113.

Erlich, Y. and Zielinski, D. (2017) DNA Fountain enables a robust and
efficient storage architecture, Science, 355(6328)950-954.

Goldman, N. et al. (2013) Towards practical, high-capacity, low-
maintenance information storage in synthesized DNA, Nature, 494
(7435)77-80.

R. N. et al
digital information on DNA in silica with error-correcting codes,
Angewandte Chemie (International Ed. in English), 54(8)2552—
2555.

Hamoum, B. et al. (2021) Channel Model with Memory for DNA Data

In 2021 11th International
Symposium on Topics in Coding (ISTC), pages 1-5.

Heckel, R. et al. (2017) Fundamental limits of DNA storage systems.
In 2017 IEEE International Symposium on Information Theory
(ISIT), pages 3130-3134. ISSN: 2157-8117.

Lin, K. N. et al. (2020) Dynamic and scalable DNA-based information
storage, Nature Communications, 11(1)2981.

Marelli, A. (2023) Integrating FPGA Acceleration in
the DNAssim Framework for Faster DNA-Based Data Storage
Simulations, Electronics, 12(12)2621.

Matange, K., Tuck, J. M., and Keung, A. J. (2021) DNA stability: a
central design consideration for DNA data storage systems, Nature
Communications, 12(1)1358.

Organick, L. et al. (2018) Random access in large-scale DNA data
storage, Nature Biotechnology, 36(3)242-248.

Organick, L. et al. (2020) Probing the physical limits of reliable DNA
data retrieval, Nature Communications, 11(1)616.

Press, W. H. et al. (2020) HEDGES error-correcting code for DNA
storage corrects indels and allows sequence constraints, Proceedings
of the National Academy of Sciences, 117(31)18489-18496.

Rashtchian, C. et al. (2017) Clustering Billions of Reads for DNA
Data Storage. In Guyon, I. et al., editors, Advances in Neural

Grass, (2015) Robust chemical preservation of

Storage with Nanopore Sequencing.

et al.

Information Processing Systems 30, pages 3360-3371 Curran
Associates, Inc.

Sabary, O. et al. (2021) SOLQC: Synthetic Oligo Library Quality
Control tool, Bioinformatics, 37(5)720-722.

Tomek, K. J. et al. (2019) Driving the Scalability of DNA-Based
Information Storage Systems, ACS Synthetic Biology, 8(6)1241—
1248.

Tomek, K. J. et al. (2021) Promiscuous molecules for smarter file
operations in DNA-based data storage, Nature Communications,
12(1)3518.

Yazdi, S. M. H. T., Gabrys, R., and Milenkovic, O. (2017) Portable
and Error-Free DNA-Based Data Storage, Scientific Reports, 7(1)
5011.

FrameD: Framework for DNA-based Data Storage

Yuan, L. et al. (2022) DeSP: a systematic DNA storage error simulation
pipeline, BMC Bioinformatics, 23(1)185.

FrameD: Framework for DNA-based Data Storage

Supplementary Information

FrameD Index Support

As previously explained, FrameD will provide automatic indexing
support for outer codes if simple incremental counting indexes
are used. To illustrate this, we provide a schematic in Figure 1
of the indexing that FrameD provides. Initially, FrameD breaks
down a file into a set of packets. These packets are broken down
into sub-packets. The number of sub-packets is determined by the
number of base-sequences in the original packet, and how many
base-sequences should be in each sub-packet, both of which can be
specified by the user. At each sub-packet level a user specifies an

outer encoding pass. The outer encoding pass provides protection
to the initial sub-packets consisting of data by generating new sub-
packets called ECC Sub-Packets. The manner in which ECC
Sub-Packets are constructed is determined by the user’s outer code
such as XOR or Reed-Solomon. The process of sub-packeting is
supported to occur an arbitrary number of times, where are each
sub-packeting level more error correction is introduced to protect
the smaller sub-packets. Once ECC sub-packets are generated,
they are treated as any other sub-packet from the same level
with respect to the following sub-packeting steps. Eventually after
splitting sub-packets from each level, there will be a point reached

Table 1. Table indicating the approach that current DNA storage systems can take in order to utilize FrameD. To condense explanation, we use notations
to generally represent the steps of information conversion that prior works take. We allow B; to represent a set of length = base y integers, e.g
Bg C {o, 1}3. To differentiate DNA information from digital domain information, we let D; to represent length © DNA strings of base y. Allowing for
bases y # 4 is necessary of composite DNA works (Choi et al., 2019; Anavy et al., 2019). We abbreviate Reed Solomon codes over field F' with RS(F'),

and represent base changes of information as ¥ (B

To
Yo

; BZ1), where W (-; -) is a bijection map between the two sets of integers. To allow for variable length
Y1

base changes used by Huffman codes, we can let = be a sequence of integers. For example, 82{3'4} C {0,1}®U{0,1}* is a set consisting of both length
3 and 4 base-2 integers. P and I indicate transformations applied to Payload/Index respectively.

Single Strand

Multi Strand

Storage Binary . Transcoding Functlona.tl Site Outer Consolidation Reconstruction
System Transformation Encoding Code
Parity Check, v(BL; DY) Prepend & Append Overlap Repetition, Detect &
Bornholt o(BS: gI5:6} Rotating Cod Pri XOR R Index
et al. (2016) (BS; B3) otating Code rimers emove
Parity Check, v (BL; D} D
Goldman %Y %) N t(f?” C‘*)d N/A Overlap Repetition ") & Index
ot al. (2013) (BS; B3) otating Code emove
1.l "
Tomek et al. w(B; B§5‘6}) ‘I/(B.’3, Dy) Prepend.& Append Overlap Repetition, Detect & Index
Rotating Code Primers XOR Remove
(2019)
Lin et al N/A Byte-to-DNA Map Prepend & Append N/A N/A Index
Primers, T7 Promoter
(2020)
W(B2; B3-) Prepend & Append W(B2; B3-)
G t al. Ca v (Bi.; D3 280~ 47h N/A Ind
rass ehoa RS(47) (Bir; D) Primers RS(4739) / ndex
(2015)
Press et al. N/A HE]?GES Prepend.& Append RS(29) Detect & Index
Convolutional Code Primers Remove
(2020)
P A D i
Erlich and RS(28) U(BL; D)) repend.& ppend Fountain Code ctection & Luby Seed
e . Primers Remove
Zielinski
(2017)
Antkowiak Ra;g(();l)ZQ v(BL; D)) N/A RS(214) DNi i/gsAter Index
n
et al. (2020) a
P(¥(B3;D3) ,
Choi et al N/A Nuc. Deduction), Prepe;d.& Append RS(27) N/A Index
rimers
(2019) L(¥(Bis; D))
P(¥(B3; B3), P(¥(B3; D7),
Anavy et al. RS(7%)) Nuc. Deduction), Prepe;d.& Append Fountain N/A Luby Seed
(2019) I(RS(2Y)) I(¥(53; D})) e
U (B4, D§) GC-balance
Yazdi et al. N/A Constrained Code with N/A N/A DNA Cluster Index
and MSA
(2017) homopolymer checks
: 1.l
ot al. (2018) S; B3 otating Code rimers an
Prepend & Append
Tomek et al. RS(28) U (BS; DY) Primers RS(28) Detect Index
2774 ’ & Remove

(2021)

Restriction Enzymes

Volkel et al.

where sub-packets are individual base-sequences. While ECC base-
sequences can be added at this final level, no more sub-packeting
is possible.

| |

[Packet 0] [Packet 1 }[Packet N]

Sub-Packeting Level 0

[)
[Sub-PacketO }[Sub-Packet M } ----- JRECCSUCE
i Packets)
|
s J ~
1 1
[Arbitrarily more Sub-Packeting i
N e e e ———— J
Sub-Packeting Level X
(mmmmmmdmm—mmn

ECC Sub- |
Packets !

P ,--J--.
((\

Strand Strand | ECC Strand Strand i ECC !
""\ Strands ! Strands |
1 l
\ \

Fig. 1: Hierarchy that FrameD uses in order to allow arbitrary

Sub Packet 0 Sub Packet M fe==== i
1

S

cascading of outer codes. During the outer code encoding process,
FrameD infers index pieces to generate a complete unique identifier
for each base-sequence.

FrameD handles the communication of information between
sub-packet levels, really all the user needs to provide for an outer
code is the number of ways a packet should be divided and
algorithm to generate the ECC sub-packets given some starting
data packets. If a user does not specify a terminating sub-packet
level where the sub-packets are strands, FrameD will insert it
automatically. While information is relayed between each level of
the sub-packeting hierarchy, FrameD adds to each base-sequence
the indexing information indicating what packet or sub-packet it is
from. This indexing information is simply derived from a counter
at each level that uniquely identifies each unit of information.
Ultimately, the entire index consists of several smaller indexes,
starting with the packet index and ending with the strand index.
Consider a system that has 1 sub-packet level and a terminal
strand sub-packet level. A base-sequence is uniquely identified by
a 3-tuple of integers, with 1 integer for the packet, sub-packet, and
strand. So, in general, for a base-sequence that is the kth strand
of the jth sub-packet of the ith packet the index is (4,7, k). For
outer code schemes that do not utilize a counter but rather use
a random seed value to indicate data positions (fountain codes),
they can still be supported by FrameD given that we allow any
outer code to modify the index related to it’s sub-packet level.
However, such modification should be reversed on decoding to
ensure that FrameD can reason about the resulting sub-packets
and their ordering.

Decoding Details

For the most part, decoding in a DNA storage system is identical to
encoding with the exception that the flow of information through
passes is reversed. However, decoding has an additional problem
that needs to be rectified, and that is how to reduce the dimensions
of the input DNA data set that will typically consist of multiple
reads per encoded DNA strand. There are two general approaches
that can be taken. One is to first cluster the DNA strands input to
the decoder based on similarity scores like edit distance or using
a MinHash-based approaches (Antkowiak et al., 2020; Organick
et al., 2018; Rashtchian et al., 2017). Then MSA algorithms, such
as Muscle, can be used to aggregate information across strands and
help resolve errors through consensus voting (Antkowiak et al.,
2020; Edgar, 2004; Yazdi et al.,
alignment are usually discrete steps, we build a sub-model for

2017). Because clustering and

DNA consolidation as shown in Figure 2.

Another approach is to consolidate the strands after completing
the inner code, throwing out strands that may violate error
checks, and coming to a consensus on the digital representation
of information. FrameD supports the use of either approach, or
even both. The only real difference between this approach and a
DNA-based approach is that it would be placed after each strand
is passed through inner decoding in Figure 2. Also, the clustering
in this case is also trivial given that indexes are known after the
inner decode passes.

Detailed Probe Example

Figure 3 provides a detailed illustration of an implementation
of a probe that calculates error rate in terms of edit operations
by way of calculating the edit distance between a fault injected
DNA strand and its pre-injected version. In this illustration, we
represent the state of a strand that is being manipulated as a
Strand Object. This object holds attributes that represent pieces
of a strand’s information, such as its binary information and DNA
information representations. The DINA field is initially empty
until the strand passes through the Transcoding’s encoding pass
(top of Figure 3) which populates this field. After which, the edit
distance probe takes a snapshot of this field and generates a copy
that is placed in an attribute DN A’ that can be referenced at a
later time.

At the bottom of Figure 3 is the decoding pass which is applied
after faults have been injected into DNA strands. The injected
errors are represented by the red-highlighted letters in the Strand
Object’s DNA attribute. Note that the DNA’ is still in the
Strand Object, and not modified. When this Strand Object
passes through the Edit Dist. Probe, the probe is able to
compare the now corrupted DNA field with its non-corrupted
version in DNA’ to determine the errors and their locations. This
data can be transferred to FrameD’s statistic tracking support
which allows for the statistics to be propagated to the simulation’s
output files.

Decode Pipeline MPl Communication Pattern

In previous sections, we explained what units of work FrameD
While FrameD handles
the movement of information to facilitate parallelization for

finds for parallelization using MPI.
many steps of the decode process, clustering is a step in
which we actually provide the user the flexibility to write
their own communication pattern. For a user to write their
own communication patters, it is necessary to understand the

FrameD: Framework for DNA-based Data Storage

File base-selquence .
Packet Outer Decoding / :
1 Pass base-sequence

DNA Consolidation

M+E

I Packetize [+

Inner Y
— DNA |4 «
Decode i ’V'C/ DNA
— Clustering j#&— DNA

base-sequence
1

Packet Outer Decoding
N Pass

base-sequence
M+E

e

DNA

Inner ~,
DNA [¢4 MSA |«
Decode . V,()l

Fig. 2: Model of decoding for FrameD. Decoding is typically just the reversal of the encoding process, but DNA storage systems must

address strand copy numbers. In this example, copies are consolidated by clustering the DNA strands and performing multi-sequence-

alignment (MSA) on the result. In this figure Inner Decode represents the reverse operation of the Inner Encoding of Figure 1.

Strand Object Binary:
Binary. Binary: 0x788
0x788 »| Transcodel—y)| <788 p| Edit Dist| _ [DNA:
DNA: "|DNA: Probe GTCACA

GTCACA DNA’:
GTCACA
Binary: ED(DNA, DNA')
0x788
Decode |DNA: Edit Dist.| _:
—_— > e S(1,T,A), S(4,C,G)
GACAGA ”| Probe
DNA":
GTCACA Store edit statistics

Fig. 3: Example of generating edit rate statistics in FrameD.

surrounding communication patterns to this step so that data
is in an appropriate state for each rank. Figure 4 illustrates the
transformation and communication of information from the time of
instantiating a decode pipeline to the final point of writing packets
to a file.

FrameD starts with all information in its original DNA state in
Rank 0. This information is initially scattered across all ranks
in the MPI communicator allocated for the decoding pipeline.
The strands allocated to each rank are initially passed through
a process that reverses the DNA modification steps. This is done
first so that regions like primers that may indicate a certain file
can be filtered, and so that other possible inserted DNA regions
can be removed before reverse-transcoding. There are now two
scenarios for processing the DNA strands, either clustering is done
or it is not. If it is not, timeline of Figure 4 skips the steps
in between the orange dashed lines which are only used when
clustering DNA strands. In this case, the inner decode steps are
processed in parallel for each DNA strand. After all strands are
decoded for each rank, they are gathered into Rank 0 which places
each base-sequence in its appropriate packet as indicated by the
base-sequence’s index. After packetizing the individual pieces of
information of each DNA strand, the packets are scattered across
ranks where each packet is decoded using the outer code. Finally,
all packets are gathered back at Rank 0 so that information can
be written to a file to output the information stored in DNA.

The steps in between the dashed orange line of Figure 4
correspond to the steps within the DNA-consolidation model
of clustering and subsequent multi-sequence alignment. Initially,
strands are gathered at Rank 0. We do this before clustering
begins for several reasons. One, while we allow parallel clustering

algorithms to be written for FrameD users may also want to
write serial clustering algorithms while still utilizing FrameD’s
automatic parallelization. So, all strands will need to be on a
single rank that will run the code for clustering, and in this case
we assume Rank O for that role. Second, it establishes simple
assumption that the user can make about the whereabouts of
strands when they want to distribute strands according to their
algorithm. Third, the implicit distribution of strands may not even
be appropriate for a user’s parallel clustering algorithm. Within
the clustering algorithm, developers are free to utilize the provided
MPI communicator in any way that they need to communicate
information. After clustering, clusters should be placed in Rank 0
so that they are in a location that FrameD is aware of. Finally,
given clusters represent a single DNA strand and a single piece
of independent information, FrameD scatters the clusters before
they are processed with MSA algorithms. The resulting strands at
each rank from MSA are kept at each rank before the inner decode
process since there is no need to gather and scatter again.

Read and Write Cost Methodology

We evaluate the write and read cost of all of the studied pipelines
from an information density standpoint. That is, we assume that
the read cost and write cost of the system is solely determined
by the density in which data can be sequenced and synthesized.
‘We make this assumption because at the moment, the cost
to sequence and synthesize data is the main cost factor of a
DNA storage system. We recognize that supporting infrastructure
will be necessary for a DNA storage system, like compute to
implement the decode process at a desired throughput. However,
the wide range of possible algorithms, their unique complexities,
and possibly different compute paradigms (single-thread/multi-
thread/GPU), makes it difficult to provide a complete cost analysis
that factors in compute. Furthermore, performing an information-
based analysis may provide insight into possible directions in
which future computational research should emphasize so that
approaches with good information density can be achieved
computationally efficiently.

‘While FrameD allows for parameter sweeps for encodings to
optimize error rates, it is computationally inefficient to determine
exactly the required outer code error correction for a given error
rate and sequencing depth. So, we use results from targeted fault
injection runs to build a simple analytical model that provides
the probability of decoding a file for a given outer code and a
given strand drop out rate if desired. From this, we pick outer

Volkel et al.

MPI Ranks
Ro R, Ry eeeeeeeeeseenes Ry .
1 T T T v
i i 1 1 1
Plgglr?e /’\\j > p. Strand Scatter i
] 71 1
and % i i]
DNA Filter 1 i i
____________ e —— ————— ——— ——————— ———————— ——
iy v/ A\ /|_Strand Gather
" (/] N/
Cluster i i i Custom Com. i
fmmm—————— P -E ————————————————— >

Inner /?\/ ’\}/ /*/ /\:/
Decode OTT1107 O00TTE A00Td
s = ‘ ‘
- E : i Base-Sequence !
acketize i H Gather i
] ! i
[R][P %] | i
E R Packet Scatter ,:
Packet " E
Outer .
Decode | P; | | Po | | Py |
1
1

3

i
Gather 1 Packet Gather
Packets :‘_ - - -
for File

Write Out
N

+

<4+---
<4+---
<4+---

Fig. 4: Timing diagram of the representation of information in
FrameD along with communication patterns used to parallelize
the decode process using MPI. Events are ordered vertically in
time for each MPI rank (dashed red lines) and are described on
the left side between black/orange dashed lines. Items on each red
line indicate the representation of information at a point in time.
Curved lines indicate DNA representation, rectangular boxes with
binary numbers indicate binary base-sequences, and rectangles
labeled P, indicate a packet of binary information.

code parameters that force this probability towards 1. Because
approaches that use MSA or detect and throw out erroneous
strands treat sequencing depth differently, we do two separate
analyses.

We first begin with an approach that detects erroneous
strands and removes them from decoding. Let p(drop-out) be
the probability that an encoded strand does not get sequenced,
and let p(decode|e) be the probability that a strand decodes for
a given error rate e. Assuming a constant sequencing depth d
for a given strand that does not drop out, let n be the number
of strands successfully decoded from the sequencing depth, then
p(n > 0|d, p(decodele)) = 1 — (1 — p(decodele))? is the probability
at least 1 strand is decoded successfully. Factoring in strand
drop outs,the total probability that a strand with index I makes
it to the outer decoder is p(I exists|e,d, p(drop-out)) = p(n >
0|d, p(decodele)) - (1 — p(drop-out)). Assuming an outer code like
Reed Solomon, and given D data symbols in a given encoded
codeword, and all indexes that are not decoded successfully are
correctly detected, then the outer code will succeed as long as at

least D symbols are recovered from the total N = D + E symbols
where E is the additional error correction added to the set. The
number of recovered symbols M will be distributed according to a
Binomial distribution B(N, p(I exists)). Thus the probability that
a block decodes is:

D—1

p(M>D)=1- " (]Z)p(l exists)* (1 — p(I exists))N=F (1)
k=0

So, for any file with X blocks, the probability to decode a
file is succeeding on each block that is decoded independently,
e.g. p(File decodes) = p(M > D)X. From this analysis, we can
see that there are two main unknowns. One is p(decodele) which
depends both on the error rate and the decoding algorithm used.
This value is the main target of our fault injection studies for each
given pipeline. Another unknown is d, the number of reads per
strand. In our analysis we assume that every strand that is not
dropped out has exactly d reads. This is different than modeling
some distribution over d, but we choose to assume a constant d
for each strand because this provides a more accurate assessment
of the amount of information that will need to be read during
sequencing. Furthermore, distributions on the number of reads per
strand is very process dependent (Bornholt et al., 2016; Organick
et al., 2018; Tomek et al., 2019; Organick et al., 2020), and so an
assumption of a distribution here may not provide generally useful
results. To finally determine d, we sweep over a range of values to
a get a set of p(I exists). With each of these probabilities we then
sweep over a range of Reed-Solomon configurations each with a
different value for E and D. We ultimately pick the smallest E
such that the file can be recovered with a certain mean time to
failure (MTTF). In our analyses we fix the file size to be 1M B and
MTTF to be 10° reads. The MTTF for some number of blocks and
Reed-Solomon configuration is defined as:

1
MTTF = W (2)
For an approach using MSA, the outlined approach stays
the same except that taking into account sequencing depth
becomes different. Now, instead of individual reads being
independently decoded, their information is aggregated using a
MSA algorithm, so the probability that an index exists will be
p(I exists|e, d, p(drop-out), MSA) = p(decodele, MSA,d)) - (1 —
p(drop-out)). Where p(decodele, MSA,d) is the probability of
successfully decoding d reads that have been aligned via MSA.
The outlined approaches provide a pathway to estimating the
number of strands that are encoded and also the read depth
for each encoded strand. However, to compare costs of different
approaches, we normalize to a bits/base value for both reading
and writing. This normalization is necessary because read costs
are impacted not only by depth of sequencing, but also by the
density of the encoding as well since this impacts total strands in
the set of strands read. We define the write density with Equation
3 and the read density with Equation 4, where read density can
be written as write density divided by the number of reads made
per strand d:

|F|
Total DNA Strands X Length of DNA Strand
3)

Write Density =

FrameD: Framework for DNA-based Data Storage

Write Densit
Read Density = w (4)

In Equation 3, |F| represents the total number of bits that are
encoded in some set of DNA strands.

Reed Solomon Inner Codes

To demonstrate why Reed Solomon inner code configurations that
are less dense do not appear in Figure 4, we use Figure 5. In this
figure we plot the write density that can be achieved for various
strand decode probabilities. Each line represents the number of
bytes of data that are allowed in an individual strand, and there
is a line according to each configuration of RS in our experiment.
Using these lines, we plot 4 points corresponding to write density
and decode probabilities that have been observed for the 4 different
density configurations when considering an i.i.d channel of 5%
error rate. The blue star-point corresponds to configuring the Reed
Solomon inner code with just error detection for a read depth of
10 reads per strand, and the other points correspond to all studied
Reed Solomon inner code configurations for a read depth of 5 reads
per strand.

As was pointed out in Figure 4, there is typically an eventual
benefit in less dense inner encodings providing higher read
densities when the read depth is decreased. A benefit in read
density can come from 2 sources: increasing write density and
decreasing read depth, as shown in Equation 4. Thus a less dense
code can offset decreases in decode probability when read depth
decreases, lowering the amount of outer code and subsequently
increasing write density. Alternatively, a less dense code can also
make lower read depth designs attainable with respect to MTTF

metrics.
Density vs. Decode Probability
149 o Rs, d=5 e RSd=5
% RS,d=10 w42 B/strand
1.2 o == 55 B/strand e RS,d=5
T RS,d=5 = 28 B/strand
2 1.0 A 47 B/strand
3
-3 08 -
iy
2
o 0.6 1
[a]
pet
S 0.4 A
0.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Probability Strand Decodes

Fig. 5: Relationship between write density and the probability that
an index exists for different amounts of bytes/strand.

However, this is not the case for the Reed Solomon inner code.
The blue star-point of Figure 5 represents the rightmost point of
Figure 4 for the 5% i.i.d channel. For this frontier to be extended,
one of two things has to happen. Either a lower inner code density
will provide better write density for the same read depth, in this
case d = 10, or read depth is decreased. The former is not possible,
given that the points in the frontier are optimal, a point not in

the frontier that increases read and write density is not possible.
Thus, we need to look towards smaller read depths. However, we
found that as read depth decreases it is offset by extremely low
write density for this pipeline. Given read density is the ratio of
write density to read depth, an increase in read density is only
possible if the ratio increase. This is illustrated by Figure 5, where
we look at points that cut read depth in half from 10 to 5. Given a
factor of 2 decrease in read depth, the write density must be higher
than the black cut-off line that is placed at half the write density of
d = 10. It is clear that every point for d = 5 falls under this cut-off,
and thus no design is worthwhile. This showcases even more that
Reed Solomon inner codes are not suitable for insertion/deletion
channels and DNA data storage.

Additional Run Time Analysis

Here we provide more insight into the performance and runtime
characteristics of all pipelines we simulated for this work. While in
principle we could compare the parallel performance against that
obtained on a single core, it would be intractable to run every
pipeline on a single core sequentially. Instead, we analyze how
uniformly each mpi-rank executes its assigned load measured by
execution time. Each fault injection campaign logged key events
such as when an iteration began and ended, and information such
as the name of the host node where the rank executed.

Expected Speedup Distribution

120 A

100 A

80 ' S

60 - o s

&

Expected Speedup
%

40 A

20 A

T
(1024 * Avg. Latency) / Measured Run Time

Fig. 6: Distribution of expected speedups calculated between
average iteration latencies and the total measured run time. The
red horizontal line plots the 25th percentile of the distribution.

Using the information within our logs, we calculated an average
execution time across all 1024 iterations of a given pipeline. We
also determine the difference between the start of the first iteration
and the completion of the last iteration to finish and use this
as the total time to complete all iterations. Using the average
and the total difference in time for each pipeline, we calculate an
ezpected speedup by multiplying the average by 1024 (total number
of iterations) and dividing by the measured total difference in time.
The distribution of this value is plotted in Figure 6. We found that

Volkel et al.

this statistic ranges in value from 5.63 to 123.04. Our scheduler
allocated equal work to each rank at launch time (with 128 mpi-
ranks and 8 iterations per rank). Speedups close to 128 indicate
near-ideal distribution of work and performance scaling, while
speedups much lower imply that some ranks performed far worse
than average. Overall, we find that 75% have expected speedups
over 48.57, and we conclude that many simulations benefited
significantly from parallelization, but some inefficiencies remain
and may benefit from additional optimization.

Comparison of Expected Speedups and Slowest Measured Time

(1024 * Avg. Latency) / Measured Run Time

120 - { ®
128/ (Slowest Iteration / Avg. Iteration Time)

110
100
90
80
70
60
50
40
30 Ceoe y
20 o

10 H s—a ond

Expected Speedup

0 2 4 6 8 10 12 14 16 18 20 22 24
Slowest Iteration / Avg. Iteration Time

Fig. 7: Analysis of run times of all pipelines studied in this work.

The large variation in expected speedup could imply that some
specific pipeline configurations perform poorly. However, we did
not find any such correlation nor could we identify specific hosts in
the cluster that consistently under-performed. Instead, we suspect
the culprit is co-execution with other jobs on the cluster. We
ran our simulations on shared compute resources used by many
other research groups at NC State, and for our runs, we specified
to the job scheduler that our mpi-ranks could be co-scheduled
with another user’s job. This can create scenarios where our job
competes for CPU resources, such as cache, memory bandwidth,
or memory capacity with other nodes. In such scenarios, one or
both jobs scheduled on the node may be negatively impacted. To
this end, we study the ranks that have the slowest iteration and
determine its relationship with the expected speedups.

Figure 7 takes the data of Figure 6 and plots it against a
value we calculate as Average Iteration/Slowest Iteration (blue
points). From Figure 7 we can see that there is a strong
inverse relationship between the expected speedup and this ratio.
This provides evidence that slow ranks are a driving force in
low expected speedups. To further investigate this, we take

another approach to calculating an expected speedup. In this
approach, we consider the ideal speedup of 128 and estimate
how much we expect this to degrade by dividing by the ratio
of Average Iteration/Slowest Iteration. The reasoning behind this
approach is that it provides an estimate of what we expect the
speedup to look like if at least one of the ranks executes all work
at this slowest iteration pace. We plot this value in Figure 7 as a
solid orange line. We see a significant clustering of blue points to
the line, implying that slow ranks tend to stay slow.

Table 2. Analysis of the number of iterations per rank that fall in the 5% of
iterations that have the longest execution time. The 5% slowest iterations
are determined relative to each individual experiment.

Number of Iterati Rank
o e'r Ol terablons ber a.n Percentage of Total Ranks
Executing Slowest 5% Iteration

86.71
5.84
1.94
1.15
0.99
0.68
0.49
0.48
1.73

=]

0 N O U W N

Lastly, we consider whether these slow ranks are common. If
they are outliers, it will imply that inefficiencies in our experiments
are likely an artifact of the cluster we are using and that we may be
able to improve scalability in these shared compute environments
by updating the scheduler to avoid ranks that are executing
slowly. To directly determine this, we take each of the ranks of
a simulation and we determine the number of iterations within
that rank that fall within the slowest 5% of all iterations. Table
2 summarizes this analysis for every rank of every simulation.
Values in the first column indicate how many iterations that a
rank executes which fall within the slowest 5%, and it varies from
0 to 8 since 8 iterations are assigned to each rank. The values in the
second column report the percentage of all ranks that fall in that
category. This data shows that a large majority of ranks (86.71%)
do not execute any iterations that fall in the slowest 5%. However,
we do find that there is a small group of ranks (1.73%) in which
all 8 (the last row of the table) of their iterations are within the
5% slowest iterations. From this we conclude that inefficiencies in
our experiment executions are likely caused by a small set of slow
outlier ranks.

Thus, given the evidence that slow ranks tend to stay slow
and the information that the slow ranks tend to be considerable
outliers, we conclude that FrameD could see improvement by
adapting the scheduler to allocate less work to ranks running
slowly.

	Introduction
	The Case for DNA Storage Simulation Infrastructure
	FrameD
	Fault Injection Workflow
	Generating Statistics
	Analyzing NGS Data

	Handling Computational Scale

	Choosing Designs with FrameD
	Comparing Pipelines
	Results

	Conclusion
	Funding Information and COI
	Supplementary Information
	FrameD Index Support
	Decoding Details
	Detailed Probe Example
	Decode Pipeline MPI Communication Pattern
	Read and Write Cost Methodology
	Reed Solomon Inner Codes
	Additional Run Time Analysis

