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Abstract

Motivation: DNA-based data storage is a quickly growing field that hopes to harness the massive theoretical

information density of DNA molecules to produce a competitive next-generation storage medium suitable

for archival data. In recent years, many DNA-based storage system designs have been proposed. Given that

no common infrastructure exists for simulating these storage systems, comparing many different designs

along with many different error models is increasingly difficult. To address this challenge we introduce

FrameD, a simulation infrastructure for DNA storage systems that leverages the underlying modularity of

DNA storage system designs to provide a framework to express different designs while being able to reuse

common components.

Results: We demonstrate the utility of FrameD and the need for a common simulation platform using a

case study. Our case study compares designs that utilize strand copies differently, some that align strand

copies using Multiple Sequence Alignment (MSA) algorithms and others that do not. We found that the

choice to include MSA in the pipeline is dependent on the error rate and the type of errors being injected

and is not always beneficial. In addition to supporting a wide range of designs, FrameD provides the user

with transparent parallelism to deal with a large number of reads from sequencing and the need for many

fault injection iterations. We believe that FrameD fills a void in the tools publicly available to the DNA

storage community by providing a modular and extensible framework with support for massive parallelism.

As a result, it will help accelerate the design process of future DNA-based storage systems.

Availability and implementation: The source code for FrameD along with the data generated during the

demonstration of FrameD is available in a public Github repository at https://github.com/dna-storage/

framed (10.5281/zenodo.7757762)

Contact: kvolkel@ncsu.edu or jtuck@ncsu.edu
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Introduction

The world is generating data faster and in larger quantities than

ever before, raising concerns that traditional storage technologies

will not scale to keep up with demand. In the search for new

technologies, DNA has gained broad interest due to its superior

density and longevity compared to magnetic tape and hard disk

drives. Since the early work of Church et al. (2012) and Goldman

et al. (2013) demonstrating the ability to store information in

DNA strands using modern DNA technology, there have been

a range of studies answering important questions such as data

addressability (Tomek et al., 2019; Bornholt et al., 2016; Tomek

et al., 2021; Lin et al., 2020; Organick et al., 2018, 2020), synthesis

efficiency (Antkowiak et al., 2020; Choi et al., 2019; Anavy et al.,

2019), DNA reusability (Tomek et al., 2019; Lin et al., 2020),

error rates associated with a variety of techniques (Organick et al.,

2018; Tomek et al., 2019; Grass et al., 2015; Matange et al.,

2021), and the density that can be achieved in DNA molecules

(Goldman et al., 2013; Erlich and Zielinski, 2017; Choi et al.,

2019; Anavy et al., 2019; Antkowiak et al., 2020). This vast

knowledge base of DNA-based data storage comes with an equally
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expansive space of possible implementation approaches for which

little if any consensus has been reached. Compounding the problem

of choosing any one approach is the fact that there is a lack

of common infrastructure that enables the comparison of these

designs in a fair and reproducible manner.

To address the growing need for tools to analyze and compare

DNA storage systems, we present FrameD, a software framework

for designing, verifying, and validating DNA storage system

designs. FrameD is not a library of every conceivable error

correction algorithm, instead, it provides a fault-injection-based

test bed in which DNA storage systems can be evaluated.

Constructing FrameD requires several considerations. One being

FrameD’s flexibility in terms of what DNA storage systems can

be represented. To address this issue, we use current literature

to inform the construction of a model that can be used as a

basis in which a range of DNA storage systems can be expressed.

With this model, we are able to implement an execution back-end

that executes a set of encoding steps that adhere to the model’s

interfaces. Thus, for an encoding to be used in FrameD, a user need

only follow the interface specification. This execution model back-

end also provides transparent support for necessary bookkeeping

steps like DNA strand indexing and dropout inference, allowing

the user to focus on the details of their algorithms.

Another issue that needs to be considered when simulating

DNA storage systems is computational scale issues that arise

from several sources. One source is the size of the possible

parameter space of interest with regards to an encoding/decoding

algorithm, as exploring combinations of parameters can easily lead

to exponential growth in the number of experiments. Another

source of computational scale arises from the necessity to perform

fault injection experiments 1000’s of times to achieve narrow

confidence intervals on key outcomes such as strand and file decode

rates. Compounding each source of computational overhead is

the scale of sequencing data that needs to be processed. To

support scalability, FrameD utilizes batch jobs to parallelize

individual configuration simulations and MPI to parallelize units

of work within those batch jobs like strand decoding and

fault injection iterations. FrameD implements the parallelization

support transparently such that users do not need to manage

parallelization communication. Instead, the user just specifies their

configurations and the computational resources to allocate to each.

We demonstrate the utility of FrameD by performing a

comparison between three designs across two error models

representing different sequencing technology. We evaluate 240 total

configurations, generating a total of 654 million fault-injected

DNA strands, and analyze the read and write density trade-off

between the three designs. Our results show that the optimal

design approach depends on the designer’s read and write cost

targets and the target sequencing technology, and bolsters our

claim that a common simulation infrastructure is needed.

The Case for DNA Storage Simulation Infrastructure

Before discussing details of FrameD, we present a study of current

literature to further motivate the need for a DNA simulation

infrastructure and to understand the basic components that

such an infrastructure will need to support. For our review, we

choose 13 previous works that implement end-to-end DNA storage

systems. We selected these works because they are representative

of different approaches that have been taken since the revival of

DNA data storage started by Goldman et al.’s work. Thus, we

should be able to make conclusions about consistent approaches

taken in DNA storage design, while also being able to account

for the inclusion of novel techniques from each individual work.

Detailed organization of these works is presented in Supplementary

Table 1.

We find that transformations applied to information can be

organized hierarchically in two levels. At the first level we identify

two broad categories we refer to as Single strand and Multi-

Strand transformations. Single Strand transformations focus

on processing information stored in a single molecule of DNA,

while theMulti Strand processes relate to processing information

stored within a group of molecules.

Under the Single Strand category, we found 3 typical

transformation steps: Binary Transformation, Transcoding,

and Functional Site Encoding. Each of these sub-categories

modify the data present on a single DNA molecule in their

own way. A Binary Transformation modifies the raw digital

information before it is represented as DNA molecule. Such

modifications typically included parity checks (Bornholt et al.,

2016), Reed-Solomon codes (Grass et al., 2015; Antkowiak et al.,

2020), and base conversions from the typical Base-2 binary

representation of digital information to a numerical base that may

be more convenient for a certain Reed-Solomon field (Grass et al.,

2015; Anavy et al., 2019). The Transcoding category consists of

processes that represent the digital source information in terms of

a DNA molecule. While transcoding can be as simple as a base-

conversion to base-4 (Antkowiak et al., 2020), approaches typically

consider constraints such as GC balance (Press et al., 2020; Yazdi

et al., 2017) and homopolymers (Bornholt et al., 2016; Tomek

et al., 2019; Goldman et al., 2013; Organick et al., 2018), yielding

a range of options with different error correction and density

properties. The final Single Strand pass, Functional Site

Encoding, is not inherently dependent on the raw information

stored but instead includes DNA substrings in the stored molecules

to facilitate functionality. Functionality encoding includes adding

primers for polymerase chain reaction (PCR) random access

(Tomek et al., 2019; Bornholt et al., 2016; Organick et al., 2018),

T7 promotor sites for RNA transcription (Lin et al., 2020), and

restriction sites for DNA fragmentation (Tomek et al., 2021).

Under the Multi-strand category, we determined 3

distinct processing steps: Outer Code, Consolidation, and

Reconstruction. The Outer Code step is similar to the Binary

Transformation step of the single strand category, except error

correction codes like Reed-Solomon are applied using the data

of a group of strands so that errors can be corrected using

information dispersed across DNA molecules (Press et al., 2020;

Tomek et al., 2021; Organick et al., 2018). This error correction

technique is crucial for dealing with the occurrence of missing

DNA molecules, a common error mode of DNA storage systems

(Press et al., 2020; Organick et al., 2018; Bornholt et al., 2016).

Another issue that a DNA storage system design must address

is the reconstruction of the order of information. Representing

arbitrarily large sets of information requires storing subsets of

information on individual DNA molecules because synthetic DNA

of arbitrary length is not feasible to synthesize. Provided mixtures

of DNA molecules are not guaranteed to be sequenced in any

particular order, a Reconstruction strategy is needed to map

a DNA molecule to its place in the complete data set. Because

of its optimality regarding density (Heckel et al., 2017), an

indexing strategy that stores an ordering integer in each strand is

a common approach (see Supplementary Table 1). Lastly, because
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DNA storage systems typically generate multiple copies of each

transcoded DNA molecule by way of synthesis, sequencing, or

amplification (Organick et al., 2018; Bornholt et al., 2016; Yazdi

et al., 2017; Tomek et al., 2019), a processing step which we call

Consolidation is required to generate 1 final representative of

the information of a stored DNA molecule. This can be as simple

as detecting and removing bad strands using error correction until

finding a valid strand (Bornholt et al., 2016; Goldman et al., 2013;

Tomek et al., 2019; Press et al., 2020), or bioinformatics tools such

as multiple sequence alignment (MSA) algorithms can be employed

to determine a consensus sequence (Yazdi et al., 2017; Antkowiak

et al., 2020; Organick et al., 2018).

From this discussion, we can immediately see that the

transformation of information within a DNA storage system

can be described by a small set of general categories. This

indicates that an infrastructure which provides support for routing

this information between these categories can be effective in

representing many unique DNA storage systems.

Given this observation, we consider how prior works in

DNA storage simulation support general encoding and simulation

environments. DNA-Storalator is a DNA storage system

simulator that focuses on evaluating clustering and reconstruction

algorithms that work to construct a representative DNA strand

from a cluster of noisy versions. However, DNA-Storalator does not

offer support for the evaluation of Outer, Binary Transformation,

or Transcoding codecs Chaykin et al. (2022). Furthermore, the

only error models supported are those which are generated by wet-

lab experiments Sabary et al. (2021). While these may be accurate

for a given DNA storage system implementation, allowing for user-

defined error models allows for testing codecs over a wider set of

cases. DNAssim offers flexible fault and coverage models, along

with outer code evaluation. However, DNAssim does not consider

the complex space of inner code design and chooses to only use

binary to base-4 conversion as its transcoding method Marelli et al.

(2023). Another simulator is DeSP, however it is only a tool that

provides error injections and strand distribution changes, and so it

is not a framework for evaluating different encoding designs Yuan

et al. (2022). In the following sections we discuss how FrameD

provides a framework in which a rich space of encodings can be

evaluated using flexible error models in a scalable environment.

FrameD

We leverage categorical overlap of designs by understanding that

there is a logical ordering in which the information transformations

can be applied. This ordering is illustrated in Figure 1, where

information flows from left to right. First, information in a file

is broken into contiguous pieces called packets. Packets serve

as the scope for the outer encoding, allowing for designers to

choose a granularity for the outer error correction algorithm.

Before the outer code is applied, the packet is broken down

into base-sequences, contiguous sections of information that

will be stored on each DNA molecule. A packet’s base-

sequences are then processed by the outer code, which generates

indices automatically for each base-sequence while also adding

additional error correction base-sequences. FrameD defaults to

basic incremental integers for indexing, but provides the designer

the interface to implement special indexes like the Luby Seed for

Fountain codes. Each indexed base-sequence is passed through the

inner-encoder, a series of steps consisting of the Single Strand

operations.

The decode phase is mostly identical to encoding, except that

the transformations made by each pass are reversed. However,

decoding must have a mechanism to deal with multiple copies per

encoded strand. We found two approaches that can be taken.

One is to first cluster the DNA strands input to the decoder

based on similarity scores like edit distance or using a MinHash-

based approaches (Antkowiak et al., 2020; Organick et al., 2018;

Rashtchian et al., 2017). Then MSA algorithms, such as Muscle,

can be used to aggregate information across strands and help

resolve errors through consensus voting (Antkowiak et al., 2020;

Edgar, 2004; Yazdi et al., 2017). To account for these approaches,

we provide users the ability to add MSA and clustering steps to

the pipeline before the inner encoding is reversed. This process

is outlined in the Supplementary Information. Another approach

is to consolidate the strands after completing the inner code,

throwing out strands that may violate error checks, and coming to

a consensus on the digital representation of information. FrameD

supports the use of either approach, or even both.

The pipelined approach of FrameD provides DNA storage

system designers several benefits. By implementing the routing

of information between components, the designer can focus

on their algorithms as long as it adheres to the pipeline’s

information transformation interface. Further, by breaking larger

steps, e.g. inner code, down into smaller sub-components, a
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Fig. 1: Model used by FrameD to represent encoding for DNA storage systems. Included in this figure is an example of the state of

information throughout the pipeline, where initially data is in its original byte representation, then converted to base-3 and subsequently

DNA, and finally stored with prepend/appended DNA strings typically done for PCR primer functionality.
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new unique inner code can be constructed by modifying just

a single component without needing to re-implement the other

algorithms that constitute the inner code. For example, one could

change their Binary Transformation pass while keeping the same

implementations of the Transcoding and Functional Site Encoding

passes. As long as the new component adheres to its prescribed

interface given the type of transformation it performs, no other

work is required outside of implementing the new algorithm.

Figure 1 shows only 3 components within the inner encoding

and 1 outer code component, however, we point out that both

can consist of an arbitrary number. That is, Outer Codes,

Binary Transformations, and Functional Site Encoding can be

cascaded an arbitrary amount. For example, one may have

two binary transformations, one to modify the numerical base

representation of data and another one to convert to a Reed-

Solomon code. We leave out Transcoding from this list, since

transcoding binary information to DNA can only occur once.

Details on how indexing is supported in cascaded Outer Codes

is discussed in the Supplementary Information. FrameD also

leverages transformation type interfaces to provide validation

checks for the designer to ensure that there is a logical arrangement

of components.

Fault Injection Workflow

FrameD includes a simulation tool based on a fault injection

methodology for evaluating DNA storage system designs. Fault

injection simulation provides several benefits over the analytical

model. Fault injection experiments provide the ability to quickly

estimate properties of specific steps of the encoding/decoding

processes. For example, fault injection experiments can determine

a rate at which strands can be successfully decoded using a

specified error model. This information can be used to verify

analytical results or to derive parameters for a full-scale DNA

storage system. Fault injection models are also more flexible,

where changing an encoding or error model can make deriving a

new analytical model difficult. Lastly, a fault injection framework

exercises actual algorithm implementations against strands with

errors in them, allowing for benchmarking and debugging that an

analytical model cannot provide.

Figure 2 overviews the workflow of using FrameD for fault

injection. First, a user develops a JSON configuration file which

includes a path to the binary data to be converted to DNA,

along with details of three general categories of parameters that

control simulation behaviour. 1) Encoder/decoder parameters

that configure the behavior of encoding/decoding components.

2) Fault distribution parameters that configure the simulated

channel’s error model. 3) Copy distribution parameters that

configure the model used to represent strand copies that arise in

the storage system. Within this configuration file, users can specify

a parameter sweep to explore combinations of parameters such as

error rate and inner code rates, and the fault injection tool will

generate individual simulation jobs (batch jobs) for each unique

parameter combination.

During the evaluation of a simulation job, the input binary data

is passed through the encoder to generate a library of synthetic

DNA strands that subsequently sample the copy and error model

distributions. The noisy set of strands passes through decoding,

during which an attempt to reconstruct the original file is made,

and information on errors and their locations are captured.

The output of fault injection consists of a set of files placed

in a unique directory for each unique parameter combination.

This set of files specifies the parameters that were used for the

experiment. This allows us to keep records of all parameters used

for all experiments easily. In addition to these files, a statistics file

is output by the simulation, aggregating counters that are used to

track events during simulation such as decode failures, location of

byte errors within strands, location of base errors within strands,

etc. FrameD allows statistics to be largely user-defined so that

appropriate statistics can be chosen for a given experiment. 1 In

the following section, we outline how this is done in FrameD. Our

documentation provides a tutorial on fault injection using FrameD.

.JSON
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Batch 
Job 0

Compute Cluster
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Binary  
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Job Distribution

Fault/Copy 
Distributions, 
Encoding 
Params

DNA 
Encoding

Fault Injection Environment
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Distribution
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Fault
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Params
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Fault 
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Rate

Experiment1 Entries

ExperimentN Entries

Compiled DataFrame

Fig. 2: End to end workflow of performing fault injection

simulation using FrameD.

Generating Statistics

The fault injection tool of FrameD captures general system-level

information out of the box such as file decode rate and total byte-

errors in the final file. Designers can also further leverage FrameD

to generate custom statistics of a strand’s information at various

points of the pipeline. The mechanism to achieve this is called

a probe. A probe is a special pipeline component that does not

modify information, but can interrogate the state of strands as

they are encoded/decoded. To calculate error rates, a probe can

capture the state of the information as it is encoded. This snapshot

of the information can then be used as a comparison point during

decoding to calculate statistics. Such statistics can be versatile and

cover a wide range of error types including errors within the bases

of a strand and the errors within bytes after decoding strands. A

detailed example is provided in the Supplementary Information.

1 We do not list every statistic collected, since they are easy to
change.
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Analyzing NGS Data

While this paper focuses on the in-silico fault simulation tool

of FrameD, we recognize that users of this framework would

likely want to leverage the probes they created for fault injection

simulation to analyze sequencing data from real experiments.

In addition to the fault injection tool, we provide a tool that

evaluates FrameD pipelines against NGS data. This additional

tool allows developers the opportunity to determine which encoded

DNA strand that a sequencing read originated from. This is

something that is not known a priori and has to be computed

since determining errors and their positions requires baseline

information to compare against. Computing this mapping can be

as simple as pairing a decoded index with the sequencing read

identifier, or by computing the best alignments to a known set of

strands Sabary et al. (2021). Our codebase includes a mapping

probe to perform this analysis along with detailed documentation

on how to leverage it within FrameD for NGS data analysis.

Handling Computational Scale

When performing fault injection simulations, and decoding strands

from real sequencing data, computational scalability quickly

becomes an issue. FrameD enables scalability by identifying

parallel units of work within the general flow of information in

the framework. This allows any design to leverage paralellization

transparently since FrameD can handle all communication of data.

FrameD identifies parallelizaiton at three levels shown in Figure 3.

In the first level, FrameD creates and submits individual batch

jobs that can be processed by HPC workload managers like Slurm

or LSF. Within each batch job, FrameD can be be configured

to allocate compute resources in the form of MPI ranks to both

fault injection iterations (second level) and work done during fault

injection simulations like decoding individual strands, packet outer

codes, and sequence alignment (third level). Allocation is up to

the user. A user may allocate more MPI ranks to fault injection

iterations if individual decode tasks are small, or the user may

allocate most ranks to decoding to deal with sequencing data or

to benchmark their pipeline. We utilize MPI at these levels due

to its ease of communication and scalability. By targeting these

clear large-grain units of work we can reach large numbers of

computational cores while also keeping those resources busy.

We recognize that there may be other user-defined opportunities

for parallelization. For example, consolidating DNA strands using

a clustering approach may benefit from MPI-based parallelization

(Rashtchian et al., 2017). Because communication patterns are

specific to such algorithms, we provide the user with the MPI

communicator that is allocated to the given fault injection

iteration. This allows the user to implement their own custom

parallelization if so desired. See Supplemental Figure 4 for

FrameD’s communication patterns.

While FrameD aids in scaling the number of strands and

fault injection experiments performed, we point out that the rate

in which information will be decoded/encoded will be greatly

influenced by the chosen algorithms and their implementation

details. A major implementation detail impacting performance

is the chosen language, and while FrameD is fully implemented

in Python, the implementation of a component can be in any

language as long as it has an interface to Python. We find this

to be an acceptable strategy since the infrastructure of FrameD

is only focused on moving information between components that

perform a bulk of the computation, which can be handled by a

higher performing language.

Configuration Space
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Configuration 
Combination K

Batch Job 1 Batch Job K

MPI Rank 1
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NI

MPI Rank NI
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NJ
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Packet Outer Decode
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Inner Decode NS −
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Configuration 
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Fault Injection 
Sample Parallelism

Decode 
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Fig. 3: Hierarchical parallelism leveraged by FrameD. Items

grouped in the same level, e.g. MSA and inner decode, represent

work that can be done in parallel using the same MPI ranks.

NF , NC , NS , NP represent the total number of fault injection

iterations, clusters, strands, and packets.

Choosing Designs with FrameD

To demonstrate FrameD we perform an analysis that serves as

an example of how a DNA storage system designer may use

the framework to determine the most cost-effective approach

from a set of choices. In our example, we consider three

different pipelines and two different error channel models, which

are detailed in Table 1. Our encoder configurations are based

on approaches taken in existing literature, and each leverages

sequencing depth and resolves errors within a strand differently.

The RS pipeline is representative of approaches that utilize

conventional Reed-Solomon inner-error correction that deal with

errors within strands post clustering and MSA (Antkowiak

et al., 2020). Pipeline HEDGES contrasts with RS by directly

resolving base errors within a strand with a convolutional code

(HEDGEs) without applying MSA first (Press et al., 2020).

Lastly, we consider an approach, HEDGES-MSA, that combines

information aggregation of MSA with the convolutional inner

encoding to remove remaining errors. For all MSA operations, we

utilize Muscle (Edgar, 2004). Provided each approach leverages

error correction and sequencing depth differently, we are interested

in studying whether or not there are benefits as the sequencing

depth and error rate of the system evolve.

DNA storage system designers are also faced with various

technologies for writing/reading DNA, each with different error

characteristics which can impact decoder choice. To demonstrate

the evaluation of multiple error channels for the same pipelines,

we consider two commonly used error models. One is a simple

i.i.d model for insertions, substitutions, and deletions. This model
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Table 1. Table of simulated parameters. For RS pipelines, the inner configuration tuples (x, y) indicate a RS(28) configuration of x redundant bytes

per strand and y data bytes per strand. Similarly, for the HEDGES configurations, an (x, y) tuple indicates a code rate of x and bytes per strand of y.

Name
Index

Length

Binary

Transformation
Transcoding

Outer

Code
MSA Depth

Inner

Configuration

Error

Model

RS 4 bytes
Randomize,

RS(28)
Ψ(B1

2 ;D1
4) RS(28) Muscle [3-30]

(1,55), (9,47)

(14,42),(28,28)

i.i.d(1,5,10%),

DNArSim

HEDGES 4 bytes N/A HEDGES RS(28) N/A N/A
(0.167,4),(0.25,9)

(0.5,24),(0.75,39)

i.i.d(1,5,10%),

DNArSim

HEDGES-MSA 4 bytes N/A HEDGES RS(28) Muscle [3-30]
(0.167,4),(0.25,9)

(0.5,24),(0.75,39)

i.i.d(1,5,10%),

DNArSim

is typically used when considering NGS DNA readout (Yuan

et al., 2022; Press et al., 2020). However, it has been shown that

an i.i.d channel does not well represent nanopore errors due to

the lack of support for burst errors (Hamoum et al., 2021). To

study whether burst errors may change the choice of decoder,

we also consider a publicly available model, DNArSim (https:

//github.com/BHam-1/DNArSim), which describes conditional error

probabilities that are derived from real sequencing data.

A key piece of FrameD that enables our analysis is parallelism

support which allows us to simulate 240 unique pipeline

configurations, totaling over 650M fault-injected DNA strands,

in a reasonable time frame on a High-Performance Computing

(HPC) cluster. All simulations were completed within 4 days on

an HPC cluster with specs outlined in Table 2. To verify that

our infrastructure aids in scaling to larger simulations, we perform

scalability experiments on one pipeline configuration with the core

type fixed to Intel Xeon Gold6226R. We picked the RS (9,47)

pipeline with read depth 25x and fault rate 10%. For this study

we simulate the pipeline only 368 times, and for a single core,

we measured 20325s to complete the simulation. Because 1 MPI

rank is allocated for scheduling, 31 additional compute ranks will

populate all cores of a node. In this case the experiment finishes

in 802s (25.3x speedup). In the previous cases, we are able to

exclusively use a node with no outside job interference, however

for multiple node runs we are not due to our cluster being a shared

system. For 92 compute ranks, we measured a 65.99x speedup.

These speedups indicate that FrameD is scalable.

We note that FrameD only provides the infrastructure for

scalability, and that efficiently executing parallel units of work

requires understanding the computational resources required

needed by each rank. For example, developers should be aware if

utilizing all cores of a node exhausts all memory when parallelizing

multiple instances of the inner code, and thus allocate ranks to

their compute system appropriately. In our studied pipelines we

did not observe this need, however.

This experiment also relies on other properties of FrameD.

Importantly, the error model modularity allows us to apply

multiple error models to each pipeline, and allows us to adopt

significant portions of DNArSim with minor modifications to

fit FrameD’s interface. This demonstrates FrameD’s ability to

incorporate existing model implementations. Probes also play a

major role in this analysis by providing decoding success rates of

inner error correction algorithms, a key value when determining

storage system cost.

In all experiments, we control for strand length by modulating

the number of bits of each base-sequence when we change the

density of the encoding. This ensures that all designs fall in

Table 2. Overview of HPC system used for simulations, parallelization

parameters, and simulation characteristics. MPI parallelization was utilized

for only fault injection iterations.

Node Architecture
2 Intel Gold 6226/6130

192 GB RAM per node

Number of Batch Jobs 240

MPI Ranks to Parallelize

Fault Injection Iterations
128

Fault Injection Iterations/Pipeline 1024

Total Strands Generated 654.7 Million

Binary Data/Fault Injection Run 2.78 kB

Minimum Inner Code Samples 51,200

a strand length space that is reasonable given the practical

limitations of DNA synthesis technologies (Bishop et al., 2017).

In our experiments, strand lengths fall in the range of 240-242 bp.

We use ideal clustering in our experiments to isolate MSA error

correction from approximations made by clustering algorithms

(Antkowiak et al., 2020; Rashtchian et al., 2017).

Comparing Pipelines

We compare pipelines by calculating the read and write code

rates required for each pipeline to meet a target Mean Time

to Failure (MTTF) of 109 accesses on 1 MB of data. We refer

to these rates in terms of read and write density, each with

units bits/base, and calculate them as the ratio of total bits

read/written to the total number of bases read/written. Given

that synthesis and sequencing cost is proportional to the number

of bases, these metrics allow for technology-independent cost

comparisons. A higher density is better. Write density is derived

from the redundancy allocated to the inner and outer code. While

read density considers encoding redundancy, it also considers the

number of copies for each strand that were sequenced. We point

out that the densities used for comparison are different from those

provided in Table 1 for the inner codes. While the rate of the inner

code influences the success rate of decoding individual strands for

a given channel error, additional outer code error correction is

required to develop a robust system to meet reliability targets.

Thus, our final code rate is a single metric that factors in both

the code rate of the inner codes shown in Table 1, and the code

rate necessary for the outer code after measuring strand decode

probabilities from fault injection. Detailed calculations can be

found in the Supplementary Information section.

With this analysis relying on estimating the decode rate of

strands through the inner code, there must be enough inner code

https://github.com/BHam-1/DNArSim
https://github.com/BHam-1/DNArSim
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Fig. 4: Optimal density design points for the three studied pipelines across the three studied i.i.d error rates, 1%, 5%, and 10%. The

dotted black line represents the total frontier composed of points from all of the studied pipelines. Each pipeline configuration is labeled

by its inner-code redundancy.

samples to build reasonable confidence for these rates. Controlling

for a consistent strand length across inner encoding densities leads

to some pipelines simulating more strands given a constant input

binary file. However, we ensure that each inner code is simulated

against at least 51k fault-injected strands.

Lastly, our analysis does not consider the impact on the outer

code from physical strand dropouts that can arise throughout

the DNA storage life cycle (Tomek et al., 2019; Organick et al.,

2018; Bornholt et al., 2016). FrameD supports dropout modeling,

but our focus in this case study is on the inner code’s ability to

cope with errors in the channel. Thus, the outer code is entirely

provisioned based on how well each inner-code is able to decode

strands without error. However, our design choices hold when

factoring in dropouts if assuming a fixed dropout rate per pipeline.

Results

To visualize the comparison of pipeline designs across sequencing

depths, we plot the Pareto front for each pipeline with respect to

read and write density. A Pareto front provides the design points

that optimally trade off one cost for another such that a point

is included if it provides an improvement in at least one cost. If

a configuration offers no benefit, it is left out. Thus, every point

in Table 1 will not make it to the frontier. The pipeline frontiers

for the i.i.d error model for three error rates are shown in Figure

4. In this Figure, each pipeline has a different color, and a point

shape represents a configuration of the inner code of the pipeline.

The black line connecting points represents the complete frontier

across all pipelines.

For the lowest fault rate (1%), we find that the RS pipeline

with 1 redundancy byte for error detection provides the best

write density. This configuration indicates that MSA is able to

resolve a majority of errors. However, at a read density of 0.4 this

pipeline’s write density drops and gets overtaken in optimality

by the HEDGES pipeline. This happens because MSA alone is

not able to keep up with HEDGEs’ error correction at lower read

depths, requiring the RS pipeline to use considerably more outer

encoding overhead. Interestingly, adding MSA to an inner code is

not always best as shown by HEDGES enveloping HEDGES-

MSA. The reason stems from the HEDGEs code high decode rate

of single strands at this error rate such that it is more likely to

decode a strand by applying the code multiple times rather than

aggregating the information in MSA.

As the i.i.d rate increases, MSA-based approaches become

more prominent. For example, when the error rate is 5%,

HEDGES-MSA outperforms HEDGES for the same inner code

configuration. This is because it is now more cost-effective to use

sequencing depth to reduce the per-base error rate with MSA,

rather than applying HEDGEs individually to each sequenced

copy. The same occurs for a 10% error rate. Still, a pattern

emerges where a non-optimal HEDGES-MSA approach becomes

enveloped again by the HEDGES pipeline with the same

configuration. We conclude from this that the optimality of using

HEDGES with or without MSA is highly dependent on the error

rate of the storage system, a conclusion a designer will not be able

to come to without a simulation framework like FrameD.

A pattern that emerges for HEDGES configurations is that

when read density is increased by decreasing sequencing depth, at

a certain point it no longer becomes cost-effective due to ballooning

outer code overhead, making lower density inner codes preferred.

This can be seen for a fault rate of 5% between HEDGES:0.75

and HEDGES:0.5. However, this is not the case for RS, as no

configurations that utilize less dense Reed-Solomon codes for error

correction appear in Figure 4. This indicates that Reed-Solomon

as an inner code is ineffective against insertions and deletions. We

demonstrate this further in the Supplementary Information.

Figure 5 compares the three pipelines for nanopore-based fault

injection. In contrast with the i.i.d frontier, the complete frontier

consists of points only from HEDGES-MSA. The main driving

force of this is that nanopore sequencing has a higher frequency of

burst errors compared to the i.i.d model. Burst errors generate a

decoder mismatch with HEDGEs since this algorithm relies on

guessing errors based on an i.i.d error model. Thus, HEDGEs

experiences a large decode rate decrease unless MSA is applied

before hand to help resolve bursts. Another interesting component

of Figure 5 is that there is no configuration that just relies on

MSA to resolve errors. These results showcase that with FrameD
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Fig. 5: Optimal frontiers obtained when the error injection model

is based on nanopore sequencing technology.

designers are able to define weaknesses in decoding algorithms and

determine better pipeline combinations when faced with designing

for different sequencing devices.

Conclusion

We have shown that as work continues in the area of DNA

storage systems there is an increasing number of unique pipelines

that overlap in the components that they use. We introduce

FrameD to address the void of tools available to the DNA

data storage community, enabling the modularization of common

algorithms and integrating fault injection models to provide a

basis for fair system comparisons. Because of its foundation in

the literature of DNA storage systems, FrameD provides designers

with the ability to simulate a wide variety of storage systems.

FrameD also provides transparent support for the parallelization

of computational units of work such as individual strands and

fault injection iterations, enabling the use of scalable high-

performance computing systems. These features are demonstrated

in our analysis of three pipelines that utilize the same components

in different combinations across two error models representing

different sequencing devices. In our analysis, the optimal pipeline

choice and configuration depends both on the cost targets set by

the designer and the target sequencing device. This highlights

the basic need for DNA storage designers to have tools that can

compare designs across a range of environments.
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Supplementary Information

FrameD Index Support

As previously explained, FrameD will provide automatic indexing

support for outer codes if simple incremental counting indexes

are used. To illustrate this, we provide a schematic in Figure 1

of the indexing that FrameD provides. Initially, FrameD breaks

down a file into a set of packets. These packets are broken down

into sub-packets. The number of sub-packets is determined by the

number of base-sequences in the original packet, and how many

base-sequences should be in each sub-packet, both of which can be

specified by the user. At each sub-packet level a user specifies an

outer encoding pass. The outer encoding pass provides protection

to the initial sub-packets consisting of data by generating new sub-

packets called ECC Sub-Packets. The manner in which ECC

Sub-Packets are constructed is determined by the user’s outer code

such as XOR or Reed-Solomon. The process of sub-packeting is

supported to occur an arbitrary number of times, where are each

sub-packeting level more error correction is introduced to protect

the smaller sub-packets. Once ECC sub-packets are generated,

they are treated as any other sub-packet from the same level

with respect to the following sub-packeting steps. Eventually after

splitting sub-packets from each level, there will be a point reached

Table 1. Table indicating the approach that current DNA storage systems can take in order to utilize FrameD. To condense explanation, we use notations

to generally represent the steps of information conversion that prior works take. We allow Bx
y to represent a set of length x base y integers, e.g

B3
2 ⊆ {0, 1}3. To differentiate DNA information from digital domain information, we let Dx

y to represent length x DNA strings of base y. Allowing for

bases y ̸= 4 is necessary of composite DNA works (Choi et al., 2019; Anavy et al., 2019). We abbreviate Reed Solomon codes over field F with RS(F ),

and represent base changes of information as Ψ(Bx0
y0

;Bx1
y1

), where Ψ(·; ·) is a bijection map between the two sets of integers. To allow for variable length

base changes used by Huffman codes, we can let x be a sequence of integers. For example, B{3,4}
2 ⊆ {0, 1}3 ∪{0, 1}4 is a set consisting of both length

3 and 4 base-2 integers. P and I indicate transformations applied to Payload/Index respectively.

Single Strand Multi Strand

Storage

System

Binary

Transformation
Transcoding

Functional Site

Encoding

Outer

Code
Consolidation Reconstruction

Bornholt

et al. (2016)

Parity Check,

Ψ(B8
2 ;B

{5,6}
3 )

Ψ(B1
3 ;D1

4)

Rotating Code

Prepend & Append

Primers

Overlap Repetition,

XOR

Detect &

Remove
Index

Goldman

et al. (2013)

Parity Check,

Ψ(B8
2 ;B

{5,6}
3 )

Ψ(B1
3 ;D1

4)

Rotating Code
N/A Overlap Repetition

Detect &

Remove
Index

Tomek et al.

(2019)

Ψ(B8
2 ;B

{5,6}
3 )

Ψ(B1
3 ;D1

4)

Rotating Code

Prepend & Append

Primers

Overlap Repetition,

XOR

Detect &

Remove
Index

Lin et al.

(2020)

N/A Byte-to-DNA Map
Prepend & Append

Primers, T7 Promoter
N/A N/A Index

Grass et al.

(2015)

Ψ(B2
28 ;B3

47),

RS(47)
Ψ(B1

47;D3
4)

Prepend & Append

Primers

Ψ(B2
28 ;B3

47),

RS(4739)
N/A Index

Press et al.

(2020)

N/A
HEDGES

Convolutional Code

Prepend & Append

Primers
RS(28)

Detect &

Remove
Index

Erlich and

Zielinski

(2017)

RS(28) Ψ(B1
2 ;D1

4)
Prepend & Append

Primers
Fountain Code

Detection &

Remove
Luby Seed

Antkowiak

et al. (2020)

Randomize,

RS(26)
Ψ(B1

2 ;D1
4) N/A RS(214)

DNA Cluster

and MSA
Index

Choi et al.

(2019)

N/A

P(Ψ(B7
2 ;D3

6) ,

Nuc. Deduction),

I(Ψ(B1
48;D3

4))

Prepend & Append

Primers
RS(27) N/A Index

Anavy et al.

(2019)

P(Ψ(B5
2 ;B2

6),

RS(73))

I(RS(24))

P(Ψ(B2
6 ;D2

6),

Nuc. Deduction),

I(Ψ(B2
2 ;D1

4))

Prepend & Append

Primers
Fountain N/A Luby Seed

Yazdi et al.

(2017)

N/A

Ψ(B14
2 ;D8

4) GC-balance

Constrained Code with

homopolymer checks

N/A N/A
DNA Cluster

and MSA
Index

Organick

et al. (2018)

Randomize,

Ψ(B6
2 ;B4

3)

Ψ(B1
3 ;D1

4)

Rotating Code

Prepend & Append

Primers
RS(216)

DNA Cluster

and MSA
Index

Tomek et al.

(2021)

RS(28) Ψ(B8
2 ;D8

4)

Prepend & Append

Primers,

Restriction Enzymes

RS(28)
Detect

& Remove
Index
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where sub-packets are individual base-sequences. While ECC base-

sequences can be added at this final level, no more sub-packeting

is possible.

File

Sub-Packet 0

Packet 0 Packet 1 Packet N

Sub-Packet M ECC Sub-
Packets

ECC 
Strands

Strand 
0

Strand
K

Strand
0

Strand 
K

ECC 
Strands

Arbitrarily more Sub-Packeting 

Sub-Packeting Level 0

Sub-Packet 0 Sub-Packet M ECC Sub-
Packets

Sub-Packeting Level X

Fig. 1: Hierarchy that FrameD uses in order to allow arbitrary

cascading of outer codes. During the outer code encoding process,

FrameD infers index pieces to generate a complete unique identifier

for each base-sequence.

FrameD handles the communication of information between

sub-packet levels, really all the user needs to provide for an outer

code is the number of ways a packet should be divided and

algorithm to generate the ECC sub-packets given some starting

data packets. If a user does not specify a terminating sub-packet

level where the sub-packets are strands, FrameD will insert it

automatically. While information is relayed between each level of

the sub-packeting hierarchy, FrameD adds to each base-sequence

the indexing information indicating what packet or sub-packet it is

from. This indexing information is simply derived from a counter

at each level that uniquely identifies each unit of information.

Ultimately, the entire index consists of several smaller indexes,

starting with the packet index and ending with the strand index.

Consider a system that has 1 sub-packet level and a terminal

strand sub-packet level. A base-sequence is uniquely identified by

a 3-tuple of integers, with 1 integer for the packet, sub-packet, and

strand. So, in general, for a base-sequence that is the kth strand

of the jth sub-packet of the ith packet the index is (i, j, k). For

outer code schemes that do not utilize a counter but rather use

a random seed value to indicate data positions (fountain codes),

they can still be supported by FrameD given that we allow any

outer code to modify the index related to it’s sub-packet level.

However, such modification should be reversed on decoding to

ensure that FrameD can reason about the resulting sub-packets

and their ordering.

Decoding Details

For the most part, decoding in a DNA storage system is identical to

encoding with the exception that the flow of information through

passes is reversed. However, decoding has an additional problem

that needs to be rectified, and that is how to reduce the dimensions

of the input DNA data set that will typically consist of multiple

reads per encoded DNA strand. There are two general approaches

that can be taken. One is to first cluster the DNA strands input to

the decoder based on similarity scores like edit distance or using

a MinHash-based approaches (Antkowiak et al., 2020; Organick

et al., 2018; Rashtchian et al., 2017). Then MSA algorithms, such

as Muscle, can be used to aggregate information across strands and

help resolve errors through consensus voting (Antkowiak et al.,

2020; Edgar, 2004; Yazdi et al., 2017). Because clustering and

alignment are usually discrete steps, we build a sub-model for

DNA consolidation as shown in Figure 2.

Another approach is to consolidate the strands after completing

the inner code, throwing out strands that may violate error

checks, and coming to a consensus on the digital representation

of information. FrameD supports the use of either approach, or

even both. The only real difference between this approach and a

DNA-based approach is that it would be placed after each strand

is passed through inner decoding in Figure 2. Also, the clustering

in this case is also trivial given that indexes are known after the

inner decode passes.

Detailed Probe Example

Figure 3 provides a detailed illustration of an implementation

of a probe that calculates error rate in terms of edit operations

by way of calculating the edit distance between a fault injected

DNA strand and its pre-injected version. In this illustration, we

represent the state of a strand that is being manipulated as a

Strand Object. This object holds attributes that represent pieces

of a strand’s information, such as its binary information and DNA

information representations. The DNA field is initially empty

until the strand passes through the Transcoding’s encoding pass

(top of Figure 3) which populates this field. After which, the edit

distance probe takes a snapshot of this field and generates a copy

that is placed in an attribute DNA′ that can be referenced at a

later time.

At the bottom of Figure 3 is the decoding pass which is applied

after faults have been injected into DNA strands. The injected

errors are represented by the red-highlighted letters in the Strand

Object’s DNA attribute. Note that the DNA′ is still in the

Strand Object, and not modified. When this Strand Object

passes through the Edit Dist. Probe, the probe is able to

compare the now corrupted DNA field with its non-corrupted

version in DNA′ to determine the errors and their locations. This

data can be transferred to FrameD’s statistic tracking support

which allows for the statistics to be propagated to the simulation’s

output files.

Decode Pipeline MPI Communication Pattern

In previous sections, we explained what units of work FrameD

finds for parallelization using MPI. While FrameD handles

the movement of information to facilitate parallelization for

many steps of the decode process, clustering is a step in

which we actually provide the user the flexibility to write

their own communication pattern. For a user to write their

own communication patters, it is necessary to understand the
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File
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Packet
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Outer Decoding 
Pass

DNA

DNA

DNA
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MSA
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Decode
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Decode

Outer Decoding 
Pass

Packetize

base-sequence
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base-sequence
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base-sequence
1

base-sequence
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Fig. 2: Model of decoding for FrameD. Decoding is typically just the reversal of the encoding process, but DNA storage systems must

address strand copy numbers. In this example, copies are consolidated by clustering the DNA strands and performing multi-sequence-

alignment (MSA) on the result. In this figure Inner Decode represents the reverse operation of the Inner Encoding of Figure 1.

Strand Object
Binary: 
0x788
DNA: 
NULL 

Transcode
Binary: 
0x788

DNA: 
GTCACA

Edit Dist. 
Probe

Binary: 
0x788
DNA: 
GTCACA

DNA′: 
GTCACA

Binary: 
0x788
DNA: 
GACAGA

DNA′: 
GTCACA

Decode Edit Dist. 
Probe

ED(DNA, DNA′)

S(1,T,A), S(4,C,G)

Store edit statistics

Fig. 3: Example of generating edit rate statistics in FrameD.

surrounding communication patterns to this step so that data

is in an appropriate state for each rank. Figure 4 illustrates the

transformation and communication of information from the time of

instantiating a decode pipeline to the final point of writing packets

to a file.

FrameD starts with all information in its original DNA state in

Rank 0. This information is initially scattered across all ranks

in the MPI communicator allocated for the decoding pipeline.

The strands allocated to each rank are initially passed through

a process that reverses the DNA modification steps. This is done

first so that regions like primers that may indicate a certain file

can be filtered, and so that other possible inserted DNA regions

can be removed before reverse-transcoding. There are now two

scenarios for processing the DNA strands, either clustering is done

or it is not. If it is not, timeline of Figure 4 skips the steps

in between the orange dashed lines which are only used when

clustering DNA strands. In this case, the inner decode steps are

processed in parallel for each DNA strand. After all strands are

decoded for each rank, they are gathered into Rank 0 which places

each base-sequence in its appropriate packet as indicated by the

base-sequence’s index. After packetizing the individual pieces of

information of each DNA strand, the packets are scattered across

ranks where each packet is decoded using the outer code. Finally,

all packets are gathered back at Rank 0 so that information can

be written to a file to output the information stored in DNA.

The steps in between the dashed orange line of Figure 4

correspond to the steps within the DNA-consolidation model

of clustering and subsequent multi-sequence alignment. Initially,

strands are gathered at Rank 0. We do this before clustering

begins for several reasons. One, while we allow parallel clustering

algorithms to be written for FrameD users may also want to

write serial clustering algorithms while still utilizing FrameD’s

automatic parallelization. So, all strands will need to be on a

single rank that will run the code for clustering, and in this case

we assume Rank 0 for that role. Second, it establishes simple

assumption that the user can make about the whereabouts of

strands when they want to distribute strands according to their

algorithm. Third, the implicit distribution of strands may not even

be appropriate for a user’s parallel clustering algorithm. Within

the clustering algorithm, developers are free to utilize the provided

MPI communicator in any way that they need to communicate

information. After clustering, clusters should be placed in Rank 0

so that they are in a location that FrameD is aware of. Finally,

given clusters represent a single DNA strand and a single piece

of independent information, FrameD scatters the clusters before

they are processed with MSA algorithms. The resulting strands at

each rank from MSA are kept at each rank before the inner decode

process since there is no need to gather and scatter again.

Read and Write Cost Methodology

We evaluate the write and read cost of all of the studied pipelines

from an information density standpoint. That is, we assume that

the read cost and write cost of the system is solely determined

by the density in which data can be sequenced and synthesized.

We make this assumption because at the moment, the cost

to sequence and synthesize data is the main cost factor of a

DNA storage system. We recognize that supporting infrastructure

will be necessary for a DNA storage system, like compute to

implement the decode process at a desired throughput. However,

the wide range of possible algorithms, their unique complexities,

and possibly different compute paradigms (single-thread/multi-

thread/GPU), makes it difficult to provide a complete cost analysis

that factors in compute. Furthermore, performing an information-

based analysis may provide insight into possible directions in

which future computational research should emphasize so that

approaches with good information density can be achieved

computationally efficiently.

While FrameD allows for parameter sweeps for encodings to

optimize error rates, it is computationally inefficient to determine

exactly the required outer code error correction for a given error

rate and sequencing depth. So, we use results from targeted fault

injection runs to build a simple analytical model that provides

the probability of decoding a file for a given outer code and a

given strand drop out rate if desired. From this, we pick outer
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Fig. 4: Timing diagram of the representation of information in

FrameD along with communication patterns used to parallelize

the decode process using MPI. Events are ordered vertically in

time for each MPI rank (dashed red lines) and are described on

the left side between black/orange dashed lines. Items on each red

line indicate the representation of information at a point in time.

Curved lines indicate DNA representation, rectangular boxes with

binary numbers indicate binary base-sequences, and rectangles

labeled Px indicate a packet of binary information.

code parameters that force this probability towards 1. Because

approaches that use MSA or detect and throw out erroneous

strands treat sequencing depth differently, we do two separate

analyses.

We first begin with an approach that detects erroneous

strands and removes them from decoding. Let p(drop-out) be

the probability that an encoded strand does not get sequenced,

and let p(decode|e) be the probability that a strand decodes for

a given error rate e. Assuming a constant sequencing depth d

for a given strand that does not drop out, let n be the number

of strands successfully decoded from the sequencing depth, then

p(n > 0|d, p(decode|e)) = 1− (1− p(decode|e))d is the probability

at least 1 strand is decoded successfully. Factoring in strand

drop outs,the total probability that a strand with index I makes

it to the outer decoder is p(I exists|e, d, p(drop-out)) = p(n >

0|d, p(decode|e)) · (1 − p(drop-out)). Assuming an outer code like

Reed Solomon, and given D data symbols in a given encoded

codeword, and all indexes that are not decoded successfully are

correctly detected, then the outer code will succeed as long as at

least D symbols are recovered from the total N = D+E symbols

where E is the additional error correction added to the set. The

number of recovered symbols M will be distributed according to a

Binomial distribution B(N, p(I exists)). Thus the probability that

a block decodes is:

p(M ≥ D) = 1−
D−1∑
k=0

(N
k

)
p(I exists)k(1− p(I exists))N−k (1)

So, for any file with X blocks, the probability to decode a

file is succeeding on each block that is decoded independently,

e.g. p(File decodes) = p(M ≥ D)X . From this analysis, we can

see that there are two main unknowns. One is p(decode|e) which

depends both on the error rate and the decoding algorithm used.

This value is the main target of our fault injection studies for each

given pipeline. Another unknown is d, the number of reads per

strand. In our analysis we assume that every strand that is not

dropped out has exactly d reads. This is different than modeling

some distribution over d, but we choose to assume a constant d

for each strand because this provides a more accurate assessment

of the amount of information that will need to be read during

sequencing. Furthermore, distributions on the number of reads per

strand is very process dependent (Bornholt et al., 2016; Organick

et al., 2018; Tomek et al., 2019; Organick et al., 2020), and so an

assumption of a distribution here may not provide generally useful

results. To finally determine d, we sweep over a range of values to

a get a set of p(I exists). With each of these probabilities we then

sweep over a range of Reed-Solomon configurations each with a

different value for E and D. We ultimately pick the smallest E

such that the file can be recovered with a certain mean time to

failure (MTTF). In our analyses we fix the file size to be 1MB and

MTTF to be 109 reads. The MTTF for some number of blocks and

Reed-Solomon configuration is defined as:

MTTF =
1

1− p(M ≥ D)X
(2)

For an approach using MSA, the outlined approach stays

the same except that taking into account sequencing depth

becomes different. Now, instead of individual reads being

independently decoded, their information is aggregated using a

MSA algorithm, so the probability that an index exists will be

p(I exists|e, d, p(drop-out),MSA) = p(decode|e,MSA, d)) · (1 −
p(drop-out)). Where p(decode|e,MSA, d) is the probability of

successfully decoding d reads that have been aligned via MSA.

The outlined approaches provide a pathway to estimating the

number of strands that are encoded and also the read depth

for each encoded strand. However, to compare costs of different

approaches, we normalize to a bits/base value for both reading

and writing. This normalization is necessary because read costs

are impacted not only by depth of sequencing, but also by the

density of the encoding as well since this impacts total strands in

the set of strands read. We define the write density with Equation

3 and the read density with Equation 4, where read density can

be written as write density divided by the number of reads made

per strand d:

Write Density =
|F |

Total DNA Strands× Length of DNA Strand
(3)
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Read Density =
Write Density

d
(4)

In Equation 3, |F | represents the total number of bits that are

encoded in some set of DNA strands.

Reed Solomon Inner Codes

To demonstrate why Reed Solomon inner code configurations that

are less dense do not appear in Figure 4, we use Figure 5. In this

figure we plot the write density that can be achieved for various

strand decode probabilities. Each line represents the number of

bytes of data that are allowed in an individual strand, and there

is a line according to each configuration of RS in our experiment.

Using these lines, we plot 4 points corresponding to write density

and decode probabilities that have been observed for the 4 different

density configurations when considering an i.i.d channel of 5%

error rate. The blue star-point corresponds to configuring the Reed

Solomon inner code with just error detection for a read depth of

10 reads per strand, and the other points correspond to all studied

Reed Solomon inner code configurations for a read depth of 5 reads

per strand.

As was pointed out in Figure 4, there is typically an eventual

benefit in less dense inner encodings providing higher read

densities when the read depth is decreased. A benefit in read

density can come from 2 sources: increasing write density and

decreasing read depth, as shown in Equation 4. Thus a less dense

code can offset decreases in decode probability when read depth

decreases, lowering the amount of outer code and subsequently

increasing write density. Alternatively, a less dense code can also

make lower read depth designs attainable with respect to MTTF

metrics.
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Fig. 5: Relationship between write density and the probability that

an index exists for different amounts of bytes/strand.

However, this is not the case for the Reed Solomon inner code.

The blue star-point of Figure 5 represents the rightmost point of

Figure 4 for the 5% i.i.d channel. For this frontier to be extended,

one of two things has to happen. Either a lower inner code density

will provide better write density for the same read depth, in this

case d = 10, or read depth is decreased. The former is not possible,

given that the points in the frontier are optimal, a point not in

the frontier that increases read and write density is not possible.

Thus, we need to look towards smaller read depths. However, we

found that as read depth decreases it is offset by extremely low

write density for this pipeline. Given read density is the ratio of

write density to read depth, an increase in read density is only

possible if the ratio increase. This is illustrated by Figure 5, where

we look at points that cut read depth in half from 10 to 5. Given a

factor of 2 decrease in read depth, the write density must be higher

than the black cut-off line that is placed at half the write density of

d = 10. It is clear that every point for d = 5 falls under this cut-off,

and thus no design is worthwhile. This showcases even more that

Reed Solomon inner codes are not suitable for insertion/deletion

channels and DNA data storage.

Additional Run Time Analysis

Here we provide more insight into the performance and runtime

characteristics of all pipelines we simulated for this work. While in

principle we could compare the parallel performance against that

obtained on a single core, it would be intractable to run every

pipeline on a single core sequentially. Instead, we analyze how

uniformly each mpi-rank executes its assigned load measured by

execution time. Each fault injection campaign logged key events

such as when an iteration began and ended, and information such

as the name of the host node where the rank executed.
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Fig. 6: Distribution of expected speedups calculated between

average iteration latencies and the total measured run time. The

red horizontal line plots the 25th percentile of the distribution.

Using the information within our logs, we calculated an average

execution time across all 1024 iterations of a given pipeline. We

also determine the difference between the start of the first iteration

and the completion of the last iteration to finish and use this

as the total time to complete all iterations. Using the average

and the total difference in time for each pipeline, we calculate an

expected speedup by multiplying the average by 1024 (total number

of iterations) and dividing by the measured total difference in time.

The distribution of this value is plotted in Figure 6. We found that
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this statistic ranges in value from 5.63 to 123.04. Our scheduler

allocated equal work to each rank at launch time (with 128 mpi-

ranks and 8 iterations per rank). Speedups close to 128 indicate

near-ideal distribution of work and performance scaling, while

speedups much lower imply that some ranks performed far worse

than average. Overall, we find that 75% have expected speedups

over 48.57, and we conclude that many simulations benefited

significantly from parallelization, but some inefficiencies remain

and may benefit from additional optimization.
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Fig. 7: Analysis of run times of all pipelines studied in this work.

The large variation in expected speedup could imply that some

specific pipeline configurations perform poorly. However, we did

not find any such correlation nor could we identify specific hosts in

the cluster that consistently under-performed. Instead, we suspect

the culprit is co-execution with other jobs on the cluster. We

ran our simulations on shared compute resources used by many

other research groups at NC State, and for our runs, we specified

to the job scheduler that our mpi-ranks could be co-scheduled

with another user’s job. This can create scenarios where our job

competes for CPU resources, such as cache, memory bandwidth,

or memory capacity with other nodes. In such scenarios, one or

both jobs scheduled on the node may be negatively impacted. To

this end, we study the ranks that have the slowest iteration and

determine its relationship with the expected speedups.

Figure 7 takes the data of Figure 6 and plots it against a

value we calculate as Average Iteration/Slowest Iteration (blue

points). From Figure 7 we can see that there is a strong

inverse relationship between the expected speedup and this ratio.

This provides evidence that slow ranks are a driving force in

low expected speedups. To further investigate this, we take

another approach to calculating an expected speedup. In this

approach, we consider the ideal speedup of 128 and estimate

how much we expect this to degrade by dividing by the ratio

of Average Iteration/Slowest Iteration. The reasoning behind this

approach is that it provides an estimate of what we expect the

speedup to look like if at least one of the ranks executes all work

at this slowest iteration pace. We plot this value in Figure 7 as a

solid orange line. We see a significant clustering of blue points to

the line, implying that slow ranks tend to stay slow.

Table 2. Analysis of the number of iterations per rank that fall in the 5% of

iterations that have the longest execution time. The 5% slowest iterations

are determined relative to each individual experiment.

Number of Iterations per Rank

Executing Slowest 5% Iteration
Percentage of Total Ranks

0 86.71

1 5.84

2 1.94

3 1.15

4 0.99

5 0.68

6 0.49

7 0.48

8 1.73

Lastly, we consider whether these slow ranks are common. If

they are outliers, it will imply that inefficiencies in our experiments

are likely an artifact of the cluster we are using and that we may be

able to improve scalability in these shared compute environments

by updating the scheduler to avoid ranks that are executing

slowly. To directly determine this, we take each of the ranks of

a simulation and we determine the number of iterations within

that rank that fall within the slowest 5% of all iterations. Table

2 summarizes this analysis for every rank of every simulation.

Values in the first column indicate how many iterations that a

rank executes which fall within the slowest 5%, and it varies from

0 to 8 since 8 iterations are assigned to each rank. The values in the

second column report the percentage of all ranks that fall in that

category. This data shows that a large majority of ranks (86.71%)

do not execute any iterations that fall in the slowest 5%. However,

we do find that there is a small group of ranks (1.73%) in which

all 8 (the last row of the table) of their iterations are within the

5% slowest iterations. From this we conclude that inefficiencies in

our experiment executions are likely caused by a small set of slow

outlier ranks.

Thus, given the evidence that slow ranks tend to stay slow

and the information that the slow ranks tend to be considerable

outliers, we conclude that FrameD could see improvement by

adapting the scheduler to allocate less work to ranks running

slowly.
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