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We develop a Poisson geometric framework for studying the 
representation theory of all contragredient quantum super 
groups at roots of unity. This is done in a uniform fashion by 
treating the larger class of quantum doubles of bozonizations 
of all distinguished pre-Nichols algebras [9] belonging to a 
one-parameter family; we call these algebras large quantum 
groups. We prove that each of these quantum algebras has 
a central Hopf subalgebra giving rise to a Poisson order 
in the sense of [13]. We describe explicitly the underlying 
Poisson algebraic groups and Poisson homogeneous spaces in 
terms of Borel subgroups of complex semisimple algebraic 
groups of adjoint type. The geometry of the Poisson algebraic 
groups and Poisson homogeneous spaces that are involved 
and its applications to the irreducible representations of 
the algebras Uq ⊃ U

�
q ⊃ U+

q
are also described. Besides 

all (multiparameter) big quantum groups of De Concini–
Kac–Procesi and big quantum super groups at roots of 
unity, our framework also contains the quantizations in 
characteristic 0 of the 34-dimensional Kac-Weisfeiler Lie 
algebras in characteristic 2 and the 10-dimensional Brown 
Lie algebras in characteristic 3. The previous approaches to 
the above problems relied on reductions to rank two cases and 
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direct calculations of Poisson brackets, which is not possible 
in the super case since there are 13 kinds of additional Serre 
relations on up to 4 generators. We use a new approach that 
relies on perfect pairings between restricted and non-restricted 
integral forms.

© 2023 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Quantum groups and Poisson orders

Let g be a complex finite-dimensional simple Lie algebra and let ξ ∈ C be a root of 1 

with some restrictions on its order depending on g. In the papers [17,18,20] a quantized 

enveloping algebra Uξ(g) at ξ was introduced and studied; it is a version of the Drinfeld-

Jimbo quantized universal enveloping algebra different from the one defined in [38,39].

The algebra Uξ(g) is module-finite over a central Hopf subalgebra Zξ(g) and the 

corresponding small quantum group of Lusztig [38,39] arises as the quotient Uξ(g)/ /Zξ(g)

in the sense of Hopf algebras. A geometric approach to the representation theory of Uξ(g)

was proposed in [20], based on these facts. The key ingredients of this approach are:

◦ The existence of a Poisson structure on Zξ(g) so that the algebraic group M corre-

sponding to this algebra is a Poisson algebraic group, whose Lie bialgebra is dual to 

the standard Lie bialgebra structure on g.

◦ The Hamiltonian vector fields on M extend to (explicit) derivations of Uξ(g).

The approach consists in packing the irreducible finite-dimensional representations of 

Uξ(g) along the symplectic leaves of M and predicting their dimensions. These ideas were 
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distilled in the notion of Poisson order in [13], see Section 2. The construction of a Poisson 

order structure on an algebra has substantial applications to the representation theory of 

the algebra: using this route the irreducible representations of quantum function algebras 

were studied in [19], the Azumaya loci of symplectic reflection algebras were described 

in [13], the irreducible representations of the 3 and 4-dimensional PI Sklyanin algebras 

were fully classified in [47,48], the Azumaya loci of the multiplicative quiver varieties and 

quantum character varieties were studied in [24]. See [14, Part III] for a comprehensive 

exposition of the applications of the notion of Poisson order to the representation theory 

of quantum algebras at roots of unity.

1.2. Large quantum groups and pre-Nichols algebras

The main goal of this paper is to study by means of Poisson orders the representation 

theory of a larger class of Hopf algebras introduced by the second author in [8] and 

studied in [9]. They contain as special cases

◦ all big quantum groups of De Concini–Kac–Procesi,

◦ all big contragredient quantum super groups,

◦ and exceptional families that can be viewed as quantizations of the universal en-

veloping algebras of simple Lie algebras in positive characteristic.

The keystone of the definition of these Hopf algebras is the notion of distinguished 

pre-Nichols algebra. It allows us to treat all of the above families uniformly without 

case-by-case considerations and computational arguments with quantum Serre relations. 

Additionally, unlike [17,18,20], we do not place any assumptions on the order of the roots 

of unity, e.g., it can be even.

Nichols algebras of diagonal type are essential for various classification problems of 

Hopf algebras. Those of finite dimension were classified in the celebrated paper [29] while 

the defining relations were provided in [7,8]. Let q be a braiding matrix as in the list of 

[29] and let Bq be the corresponding finite-dimensional Nichols algebra of diagonal type. 

The distinguished pre-Nichols algebra B̃q of Bq is a covering of the latter defined by 

excluding the powers of the root vectors of Cartan type from its defining ideal. The Hopf 

algebras dealt with in the present paper are Drinfeld doubles of the bosonizations of the 

distinguished pre-Nichols algebras; they are denoted Uq, see §4.3. They are shown to be 

module-finite over canonical central Hopf subalgebras Zq, which are the ones defined in 

[9] if q is not of type super A and a one-dimensional extension of those in the super A

case, see §4.5.

On the other hand, the graded dual of B̃q gives rise to a Lie algebra nq, which is either 

0 or the nilpotent part of a semisimple Lie algebra gq that is explicitly determined [5].

We focus on Hopf algebras Uq with a further restriction: the related Nichols algebra 

Bq is deformable, i.e., belongs to a one-parameter family of Nichols algebras. We call 

them large quantum groups. By inspection, the matrix q is of one of three types:
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(a) Cartan type (multiparameter versions of the quantum groups from [18] without 

restrictions on ξ);

(b) super type (multiparameter quantum groups associated to finite dimensional simple 

contragredient Lie superalgebras at roots of unity);

(c) modular types wk(4) or br(2) (quantizations at a root of unity in characteristic 0 of 

some simple Lie algebras in characteristics 2 and 3 respectively).

But it stems from the list in [29] that there are finite-dimensional Nichols algebras of 

diagonal type that do not belong to such one-parameter families.

Remark. To be precise we need three technical assumptions:

(i) The base field is C to have on hand symplectic leaves [49]. (For other algebraically 

closed fields of characteristic 0, one can use symplectic cores [13] and argue as in 

[47, §6.4]). See Appendix C for a brief discussion of symplecitc leaves and cores.

(ii) Condition (4.26) is needed for the centrality of Zq in Uq.

(iii) The Non-degeneracy Assumption 7.5 is used to identify some dual vector spaces in 

order to compute some Lie bialgebras. However this is not a constraint; each of the 

Hopf algebras Uq that we consider can be obtained as a specialization from a family 

in many different ways. We prove in Proposition A.3 that there always exist ways 

that satisfy Assumption 7.5 and we choose one such way.

See the Appendix A and the survey [2] for full details on these algebras. We consider 

the chain of subalgebras U+
q ⊂ U�

q ⊂ Uq where

◦ U�
q , the large quantum Borel subalgebra, is identified with the bosonization of B̃q;

◦ U+
q , the large quantum unipotent subalgebra, is identified with B̃q.

Intersecting the central subalgebra Zq of Uq gives the chain of central Hopf subalgebras

Z+
q ⊂ Z�

q ⊂ Zq. (1.1)

Each of these central Hopf subalgebras is actually isomorphic to a tensor product of 

a polynomial algebra and a Laurent polynomial algebra. We introduce the algebraic 

groups Mq, M�
q and M+

q as the maximal spectra of the Hopf algebras Zq, Z�
q and Z+

q , 

respectively. We shall also need the opposite Borel U�
q and its central Hopf subalgebra 

Z�
q with maximal spectrum M�

q and correspondingly U−
q , Z−

q and M−
q .

1.3. Main results

As said, this paper deals with the geometry of the Poisson algebraic group Mq towards 

understanding the representation theory of large quantum groups. This last question 
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contains the description of the irreducible representations of contragredient quantum 

supergroups at roots of unity, an important problem which is wide open even in the 

simplest case of Uq(sl(m|n)). We present a foundation for a thorough investigation of 

these representations. We first summarize the main results in the following statement. 

Define the reductive Lie algebra

g̃q :=

{
gq ⊕ C, if q is of type super A

gq, otherwise.

Type super A has the peculiarity that the rank of the Lie algebra gq is one less than the 

rank of Nichols algebra Bq. Hence we need to enlarge the central subalgebra originally 

defined in [9] adding an extra group-like element in order to have a central subalgebra 

Zq such that Uq is module-finite over Zq.

Our first main result is the following:

Theorem A. Let Uq be a large quantum group as above. Then

(a) The pair (Uq, Zq) has the structure of a Poisson order in the sense of [13].
(b) The algebraic Poisson group Mq is solvable. The Lie bialgebra of Mq is dual to 

a Lie bialgebra structure on g̃q coming from an empty Belavin–Drinfeld triple; the 

symplectic leaves of Mq can be classified and related to conjugacy classes of the 

adjoint Lie group of g̃q.
(c) Every z ∈ Mq with corresponding maximal ideal Mz gives rise to a finite-dimensional 

algebra Hz = Uq/UqMz. Then Hz ≃ Hz′ whenever z and z′ belong to the same sym-
plectic leaf S. By abuse of notation we set HS = Hz. Every irreducible representation 

of Uq is finite-dimensional and

IrrUq =
⋃

S symplectic leaf of M

Irr HS .

Furthermore, we have analogous results for the pairs (U�
q , Z�

q ) and (U+
q , Z+

q ). Next 

we make more precise the claims of Theorem A. We fix a large quantum group Uq.

1.3.1. Poisson orders
We denote by Z(A) the center of an algebra A. Because of the assumption that Bq

is deformable in the class of Nichols algebras as mentioned above, we get Poisson order 

structures on the pairs (Uq, Z(Uq)), (U�
q , Z(U�

q )) and (U+
q , Z(U+

q )) by specialization. 

As these centers are singular, it is more convenient to look at the central subalgebras in 

(1.1). Part (a) of Theorem A is included in the following result, see Theorem 6.2.

Theorem B. The pairs (Uq, Zq), (U�
q , Z�

q ) and (U+
q , Z+

q ) have Poisson order structures 
in the sense of [13] obtained from specialization.
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The Cartan type case includes, as mentioned earlier, the big quantum groups of De 

Concini–Kac–Procesi Uν(g) for ν a root of unity and g a finite-dimensional semisimple 

Lie algebra. Even in this case our theorem contains new results: unlike [17,18,20], no 

restrictions are imposed on the order of the root of unity in Theorem B. The same 

technique allows us to deal with the case where the order is even for types Bθ, Cθ and F4, 

or divisible by 3 for type G2. To work in this uniform way we consider a central subalgebra 

Zq where the powers of the PBW generators may have different exponents. In [17,18,20]

smaller central subalgebras are considered consisting of the same powers of all root 

vectors, for the exponent equal to the order of the root of unity. This causes the central 

subalgebras in [17,18,20] not to be closed under the canonical Poisson bracket when the 

coprime to 2 and 3 condition is not satisfied, while in our picture the central subalgebras 

are always closed under the canonical Poisson bracket without any assumptions. Because 

of this generality, the Lie algebra of the corresponding algebraic group is not exactly g

when the order of ν is as before, see Table 1.

Presently it is not known whether for the remaining braiding matrices q in the list 

of [29] the pair (Uq, Zq) has the structure of a Poisson order. Indeed the other Nichols 

algebras of diagonal type with arithmetic root system in the classification given in [29]

do not admit such a one-parameter family and for instance our proof of Theorem 6.2

does not generalize to them.

1.3.2. Poisson algebraic groups and Lie bialgebras
Let hq be a Cartan subalgebra of the semisimple Lie algebra gq and extend it to a 

Cartan subalgebra h̃q of the reductive Lie algebra g̃q. We consider a Lie bialgebra struc-

ture on gq that corresponds to the empty Belavin–Drinfeld triple [11] and is explicitly 

defined in Theorem 7.8 and let mq be the Lie bialgebra dual to g̃q ⊕ h̃q, cf. Eq. (7.11).

Let Gq be the semisimple algebraic group of adjoint type with LieGq ≃ gq. Denote

G̃q :=

{
Gq × C

×, if q is of type super A

Gq, otherwise.

For instance, when Uq = Uq(sl(m|n)), G̃q ≃ PSLm(C) × PSLn(C) × C
×. Let B̃±

q be a 

pair of opposite Borel subgroups of G̃q, T̃q = B̃+
q ∩ B̃−

q be the corresponding maximal 

torus and N±
q be the unipotent radicals of B̃+

q ; we identify N+
q ≃ B̃+

q /T̃q.

Here is a more precise statement of Theorem A Part (b), see Theorems 7.10 and 8.2.

Theorem C. (a) The Poisson algebraic group Mq is isomorphic to the product of two 

Borel subgroups of G̃q and LieMq ≃ mq as Lie bialgebras.

(b) The symplectic leaves of Mq are in bijective correspondence with the conjugacy 

classes of G̃q × (T̃q/ exp(Q̃q)), where Q̃q is a lattice in h̃q; each leaf is isomorphic to an 

open dense subset of the corresponding conjugacy class.
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Note that the symplectic leaves are not algebraic varieties in general. The lattice Q̃q is 

related to the continuous parameter of the corresponding Lie bialgebra, see Appendix B. 

In the case considered in [20] the Poisson structure is the standard one and Q̃q coincides 

with the kernel of the exponential map restricted to the Cartan subalgebra.

Here are the promised versions for M�
q and M+

q .

Theorem D. (a) The Poisson algebraic group M�
q is isomorphic to the Borel subgroup 

B̃+
q . The Poisson structure is invariant under the left and right actions of T̃q.

(b) The torus orbits of symplectic leaves of M�
q are the double Bruhat cells of G̃q that 

lie in B̃+
q .

(c) The algebraic group M+
q is isomorphic to the unipotent radical N+

q of B̃+
q . It has a 

Poisson structure arising from the identification N+
q ≃ B̃+

q /T̃q which is invariant under 

the left action of T̃q and is a reduction of the Poisson structure on B̃+
q from (a) under 

the right action of T̃q.

(d) The torus orbits of symplectic leaves of M+
q are the open Richardson varieties of 

the flag variety G̃q/B̃
+
q that lie inside an open Schubert cell identified with Ñ+

q .

See Theorems 8.4 and 8.7. We refer to [23,36] for information on double Bruhat cells 

and open Richardson varieties. Here we recall briefly the definitions.

Let v, w ∈ W . The corresponding double Bruhat cell is G̃v,w
q := B̃+

q vB̃+
q ∩ B̃−

q wB̃−
q . 

These cells form a partition: G̃q = ⊔v,w∈W G̃v,w
q .

In turn the corresponding open Richardson variety is X̊v
w = X̊v ∩X̊w ⊂ G̃q/B̃

+
q where 

X̊w = B̃−
q w/B̃+

q and X̊v = B̃+
q v/B̃+

q are the Schubert cell and the opposite Schubert 

cell corresponding to w and v respectively.

We conjecture that the statements in Theorem C(b) and Theorem D(a,c) on algebraic 

groups (not Poisson structures) hold even without the assumption that q belongs to a 

one-parameter family, where G̃q is taken to be a direct product of Gq and an abelian 

algebraic group.

1.3.3. Representations
Since Uq is a free Zq-module of finite rank, it is a PI-algebra. Let V be an irreducible 

representation of Uq. By the above, V is finite-dimensional, and by Schur’s Lemma, Zq

acts on V by some z ∈ Mq (a central character) with corresponding maximal ideal Mz. 

Now the algebra Hz = Uq/UqMz is non-zero and finite-dimensional and V becomes a 

Hz-module. In other words the irreps of Uq with central character z are in bijective 

correspondence with the irreps of Hz. Thus

IrrUq = ⊔
z∈Mq

Irr Hz.

This circle of ideas is already present in [20]. In this way, Part (c) of Theorem A boils 

down to the following statement.
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Theorem E. For every two points z, z′ in the same symplectic leaf of Mq, the algebras Hz

and Hz′ are isomorphic. In particular there is a dimension preserving bijection between 

the irreps of Uq with central characters z and z′.

See Theorem 8.2. For instance, let z = e be the identity of Mq. Then its symplectic 

leaf is S = {e} and HS = He is the Drinfeld double of a suitable bosonization of the 

Nichols algebra Bq. Assume that the matrix q is of Cartan type. Then He is a variation 

of the small quantum group of Lusztig (with an extra copy of the finite torus), with 

a notoriously difficult representation theory treated intensively in the literature. Also, 

arguing as in [20] one concludes that Uq is a maximal order. It is a domain, hence a prime 

algebra. It follows that for generic z, Hz is semisimple by [14, Theorem III.1.7]. But for 

super and modular types, the representation theory of He is largely unknown, except 

for the somewhat standard fact that simple modules are classified by highest weights 

(but there is not even a conjecture for their characters). Also, Uq is not a maximal order 

because it has nilpotent elements.

We next write down the corresponding formulations for M�
q , M�

q , M+
q and M−

q . Let 

⋆ ∈ {�, �, +, −}. If z ∈ M⋆
q , then we denote by M⋆

z its maximal ideal in Z⋆
q and

H⋆
z = U⋆

q /U
⋆
q (M⋆

z) . (1.2)

Clearly these are finite-dimensional algebras.

Theorem F. (a) For every z, z′ in the same double Bruhat cell inside B̃+
q , the algebras 

H�
z and H�

z′ are isomorphic. Analogously for H�
z and H�

z′ .

(b) For every z, z′ in the same open Richardson variety, the algebras H+
z and H+

z′ are 

isomorphic. Analogously for H−
z and H−

z′ .

See Theorems 8.4 and 8.7.

Notice also that Hz is a Hopf-Galois He-object since Uq is a cleft Hε-comodule algebra, 

see §3.1. Analogously, H⋆
z is a Hopf-Galois H⋆

e-object for ⋆ ∈ {�, �}.

1.4. Strategy and organization

Our proofs of Theorems C–F follow a different strategy from that of [17,18,20]. These 

papers rely on direct computations of Poisson brackets in terms of coordinates coming 

from Cartesian products of one-parameter unipotent groups and subsequent reductions 

to the rank 2 case. This approach does not work in the more general context of §1.2 for 

several reasons, the simplest of which is that the quantum Serre relations for quantum 

supergroups or for quantum groups at −1 involve more than two Chevalley generators.

Instead our approach is based on intrinsic properties of pairings between restricted 

and non-restricted integral forms of Hopf algebras. It does not rely on reduction to low 

rank cases. In particular, this approach provides new proofs of results in [17,18,20]. We 

expect that these ideas could be applied to other situations not covered in this paper.
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Next we overview briefly the main steps of the strategy:

Step 1. Let C(ν) be the field of rational functions on ν and A the subalgebra defined in 

(5.1). Since q belongs to a family, there exists a chain of C(ν)-algebras

U+
q ⊂ U�

q ⊂ Uq

and non-restricted integral forms over A

U+
q,A ⊂ U�

q,A ⊂ Uq,A

such that the algebras U+
q ⊂ U�

q ⊂ Uq arise as specializations from these integral forms. 

This provides Poisson order structures on the pairs (U+
q , Z(U+

q )), (U�
q , Z(U�

q )) and 

(Uq, Z(Uq)). This step is carried out in Section 5 in the framework of [20,13] evoked in 

Section 2.

Step 2. We use Theorem 2.4 (on the restriction of Poisson order structures obtained 

from specialization to central subalgebras) to prove that the Poisson order structures 

on (U+
q , Z(U+

q )) and (U�
q , Z(U�

q )) restrict to (U+
q , Z+

q ) and (U�
q , Z�

q ). To get a Poisson 

order structure on (Uq, Zq) by restriction from (Uq, Z(Uq)), we need first to establish in 

Theorem 4.7 that the Weyl groupoid action preserves the central subalgebras Zq. Along 

the way we also obtain that these Poisson structures on the algebras Zq are equivariant 

under the Weyl groupoid. This step is carried out in Section 6.

Step 3. This is the matter of Section 7. We introduce in §5.4 restricted integral forms 

U res ±
q,A of U±

q and A-linear perfect pairings U res ±
q,A × U∓

q,A → A, where U∓
q,A denote the 

nonrestricted integral forms of U∓
q introduced earlier. We prove that

(i) the specializations of U res ±
q,A are isomorphic to the Lusztig algebras defined in [3], see 

Proposition 5.9, and

(ii) the cobrackets of the tangent Lie bialgebras to M�
q and M�

q are linearizations of 

those specializations, see Proposition 7.1.

In this way we control tangent Lie bialgebras intrinsically and consequently we compute 

in Theorems 7.4 and 7.8 the tangent Lie bialgebras of the Poisson algebraic groups Mq, 

M�
q and M�

q by means of a Manin pair. Since these algebraic groups are connected 

we describe them as Poisson algebraic groups in terms of Borel subgroups of complex 

semisimple algebraic groups of adjoint type. Also, M±
q are presented as Poisson homo-

geneous spaces.

Finally, we discuss in Section 8 the Poisson geometry of the Poisson algebraic groups 

Mq, M�
q and the Poisson homogeneous space M+

q , and the applications to the irreducible 

representations of Uq, U�
q and U+

q .
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Besides, we discuss in Section 2 Poisson orders and their restrictions to central sub-

algebras, see Theorem 2.4; Section 3 is devoted to preliminaries on Hopf algebra theory 

while we present the main actors of this paper in Section 4.

An in depth study of the restricted and nonrestricted integral forms of multiparameter 

quantum groups of Cartan type at roots of unity was carried out in [25], based on the 

interpretation of those algebras as cocycle twists of the standard ones [17,18]. The authors 

completely describe the specialization at 1 as the Poisson algebra of regular functions 

on an explicit Poisson algebraic group and construct a Frobenius map which amounts 

to a Hopf algebra isomorphism between the specialization at 1 and a central subalgebra 

of the specialization at a root of unity. Our results show that this is an isomorphism 

of Poisson algebras and that in the root of unity case it gives rise to a Poisson order 

structure.
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Notations

The base field is C; all algebras, Hom’s and tensor products are over C. If t ∈ N0, 

n ∈ N and t < n, then It,n := {t, t + 1, . . . , n}, In := I1,n.

For each integer N > 1, let GN be the group of N -th roots of unity in C and let G′
N

be its subset of primitive roots (of order N). Also G∞ =
⋃

N∈N
GN , G′

∞ = G∞ − {1}.

We shall use the notation for q-factorial numbers: for q ∈ C
×, n ∈ N,

(0)q! = 1, (n)q = 1 + q + . . . + qn−1, (n)q! = (1)q(2)q · · · (n)q.

2. Poisson orders and restrictions to central subalgebras

This section contains background on Poisson orders, their construction from special-

izations, and their relations to Hopf algebras. We prove a general result on restrictions 

of Poisson orders to central subalgebras, Theorem 2.4, which plays a key role later.

2.1. Poisson orders

Here we follow the exposition in [20, Chapter 3, §11]. Consider
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◦ a commutative C-algebra A and h ∈ A such that A/h ≃ C,

◦ an A-algebra U such that h is not a zero divisor of U . The natural map U → U/(h)

is denoted by x 
→ x.

For any u ∈ U such that u ∈ Z(U/(h)) there is a linear map Du ∈ HomU/(h) given by

Du(y) =
[u, v]

h
, if y = v. (2.1)

Proposition 2.1. [20, 11.7] Let u ∈ U such that u ∈ Z(U/(h)).

(a) Du ∈ DerU/(h).
(b) Let w ∈ U . If u′ = u + hw so that u = u′, then Du − Du′ = adw is an inner 

derivation. Conversely the inner derivation adw coincides with Dhw.
(c) Let ϕ ∈ AutA−alg(U) and let ϕ be the induced automorphism of U/(h). Then

ϕ ◦ Du ◦ ϕ−1 = Dϕ(u).

(d) There is natural Poisson structure on Z := Z(U/(h)) given by

{x, y} = Du(y) =
[u, v]

h
, if x = u, y = v. (2.2)

(e) The map ϕ 
→ ϕ gives a group homomorphism AutA−alg(U) → AutPoisson(Z).
(f) L = {Dv : v ∈ U, v ∈ Z} is a Lie subalgebra of DerU/(h). Indeed

[Du, Dv] = D [u,v]
h

, v ∈ U, v ∈ Z.

(g) The Poisson structure gives rise to a Lie subalgebra L′ of Der Z that fits into the 

complex

0 Innder(U/(h)) L L′ 0. (2.3)

The sequence (2.3) is exact if and only if the Poisson center of Z is trivial (i.e., 
there are no Casimir elements except 0). �

Brown and Gordon [13] axiomatized the ingredients of the above setting as follows:

Definition 2.2. A pair of C-algebras (R, Z) is called a Poisson order if Z is a central 

subalgebra of R, R is a finitely generated Z-module and the following conditions hold:

(a) Z is equipped a structure of Poisson algebra {·, ·};

(b) There exists a linear map D : Z → DerC(R) such that Dz|Z = {z, −} for all z ∈ Z.
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Reshetikhin, Voronov and Weinstein defined earlier a related notion of a Poisson 

fibered algebra, see [42, Definition 2.1]. In the above terminology, such an algebra is a 

Poisson order with the additional property that

Dz1z2
(r) = z1Dz2

(r) + z2Dz1
(r) for all z1, z2 ∈ Z, r ∈ R.

Proposition 2.1 proves that the pair (U/(h), Z(U/(h))) has a canonical structure 

of Poisson order when U/(h) is module finite over Z(U/(h)). The Poisson bracket on 

Z(U/(h)) is given by (2.2). The linear map D is the map induced from the one in (2.1)

by taking a linear section of the canonical projection U → U/(h).

The main application of Poisson orders for us is the following result, inspired by [20, 

Cor. 11.8], [19, Cor. 9.2]. Assume that R is affine, i.e., it is a finitely generated algebra 

(hence also Z is affine).

Theorem 2.3. [13, Theorem 4.1] Let (R, Z) be a Poisson order and M := MaxSpecZ. 
Given x ∈ M with maximal ideal Mx, let Rx := R/MxR, a finite dimensional algebra. 
If x and y belong to the same symplectic core, then Rx ≃ Ry as algebras.

2.2. Restrictions of Poisson orders from specializations

In the setting of Proposition 2.1 the center Z = Z(U/(h)) can be singular and is 

more useful to work with suitable subalgebras Z ′. Next we prove a general fact for 

the construction of Poisson orders on pairs (U/(h), Z ′) for subalgebras Z ′ defined from 

algebra automorphisms and skew-derivations. For this purpose we fix:

• A-algebra endomorphisms ςi : U → U , i ∈ I. We denote by ςi the corresponding 

C-algebra endomorphisms of U/(h) induced by ςi.

• A-linear (id, ςi)-derivations ∂i : U → U , i ∈ I. We denote by ∂i the corresponding 

C-linear (id, ςi)-derivations induced by ∂i.

Theorem 2.4. In the setting of Proposition 2.1, denote

Z ′ := Z ∩
(
∩i∈I ker ∂i

)
∩ (∩i∈I ker(ςi − id)) . (2.4)

If U/(h) is module finite over Z ′, then the Poisson order structure on (U/(h), Z(U/(h)))

restricts to a Poisson order structure on (U/(h), Z ′).

Proof. Clearly Z ′ is a subalgebra of Z. We have to check that {Z ′, Z ′} ⊂ Z ′. Let xj ∈ Z ′

and uj ∈ U such that xj = uj , j = 1, 2. Fix i ∈ I. As ςi(xj) = xj and ∂i(xi) = 0, there 

are vj , wj ∈ U such that

ςi(uj) = uj + h vj , ∂i(uj) = hwj , j = 1, 2.
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Now we compute

ςi{x1, x2} = ςi

(
[u1, u2]

h

)
=

[ςi(u1), ςi(u2)]

h

=
[u1, u2]

h
+ [u1, v2] + [v1, u2] = {x1, x2} + [x1, v2] + [v1, x2] = {x1, x2},

∂i{x1, x2} = ∂i

(
[u1, u2]

h

)
=

∂i(u1)ςi(u2) + u1∂i(u2) − ∂i(u2)ςi(u1) − u2∂i(u1)

h

= w1(u2 + h v2) + u1w2 − w2(u1 + h v1) − u2w1 = [x1, w2] + [w1, x2] = 0.

Hence {x1, x2} ∈ ker ∂i ∩ ker(ςi − id) for all i ∈ I so {x1, x2} ∈ Z. �

2.3. Poisson-Hopf algebras

Assume that in the above setting U is a Hopf algebra over A. Then U/(h) has a 

canonical structure of Hopf algebra over C.

Let u ∈ U such that u ∈ Z(U/(h)) and furthermore Δ(u) ∈ Z (U/(h) ⊗ U/(h)). Then

DΔ(u)Δ(y) = Δ(Du(y)), y ∈ U/(h). (2.5)

Proposition 2.5. [20, 11.7] Let B be a central Hopf subalgebra of U/(h). Then

T := minimal subalgebra of Z containing B and closed under the Poisson bracket

is a central Hopf subalgebra of U/(h), hence a Poisson-Hopf algebra.

We recall the elegant proof of [20].

Proof. Apply (2.5) to y ∈ Z and x = u to get Δ({x, y}) = {Δ(x), Δ(y)} for all x, y ∈ Z. 

Hence T̃ = {t ∈ T : Δ(t) ∈ T ⊗ T}, which is a subalgebra containing B, is also closed 

under Poisson bracket; thus T̃ = T . Finally T is stable under the antipode S, which is 

assumed to be bijective. Indeed, because of the formula {S(x), S(y)} = S({y, x}) that 

follows from (2.1), S(T ) and S−1(T ) are subalgebras containing B and closed under the 

Poisson bracket, thus T = S(T ). �

3. Hopf algebras

In this section we collect preliminaries on (braided) Hopf algebras (always with bijec-

tive antipode S), bosonizations, braided vectors spaces of diagonal type, Nichols algebras, 

Weyl groupoids, distinguished pre-Nichols algebras and Lusztig algebras. We refer to 

[40,1] for more information on Hopf algebras, Nichols algebras, Nichols algebras of diag-

onal type, respectively.
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3.1. Cleft comodule algebras

Let H be a Hopf algebra with a central Hopf subalgebra Z. Given z ∈ G = Alg(Z, C)

(the pro-algebraic group defined by Z), let

Mz = ker z, Iz = HMz, Hz = H/Iz;

thus Hz is an algebra (with multiplication mz and unit uz) and the natural projection 

pz : H → Hz is an algebra map. Then Hε is a quotient Hopf algebra of H and there 

is an exact sequence of Hopf algebras Z →֒ H ։ Hε. Also for any z, z′ ∈ G there are 

well-defined algebra morphisms Δz,z′ : Hzz′ → Hz ⊗ H′
z and in particular the maps

̺z := Δz,ε : Hz → Hz ⊗ Hε, λz := Δε,z : Hz → Hε ⊗ Hz,

make Hz a Hε-bicomodule algebra for z ∈ G. Clearly

̺zpz = (pz ⊗ pε)ΔH, λzpz = (pε ⊗ pz)ΔH. (3.1)

Recall that a right K-comodule algebra A (over a Hopf algebra K) is cleft if there 

exists a convolution-invertible morphism of K-comodules χ : K → A.

Lemma 3.1. If the Hε-comodule algebra H with coaction ̺ = (id ⊗pε)ΔH is cleft, then 

so is Hz for any z ∈ G. In particular Hz is a Hopf-Galois object over Hε.
If H is a pointed Hopf algebra, then Hz is Hε-cleft for all z ∈ G.

Proof. If χ : Hε → H is a morphism of H-comodules, then so is χz := pzχ : Hε → Hz:

(χz ⊗ id)̺ε = (pz ⊗ id)(χ ⊗ id)ΔHε

= (pz ⊗ id)(id ⊗pε)ΔHχ = ̺zpzχ = ̺zχz.

If χ is convolution-invertible, then so is χz since pz is an algebra map.

For the last statement, H is Hε-cleft by [44, 4.3], and then we apply the first part. �

We refer to [43] for Hopf-Galois objects. In the setting of Cayley–Hamilton Hopf 

algebras, which is a refinement of the above setting for the pair (H, Z), a tensor product 

decomposition of the irreducible representations of Hz was obtained in [21].

3.2. Braided Hopf algebras and bosonization

Recall that a braided vector space is a pair (V, c) where V is a vector space and 

c ∈ GL(V ⊗ V) is a solution of the braid equation: (c ⊗ id)(id ⊗c)(c ⊗ id) = (id ⊗c)(c ⊗

id)(id ⊗c). There are natural notions of morphisms of braided vector spaces and braided 

Hopf algebras (braided vector spaces with compatible algebra and coalgebra structures), 
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see [46] for details. To distinguish comultiplications of braided Hopf algebras from those 

of Hopf algebras, we use a variation of the Sweedler notation for the former: Δ(r) =

r(1) ⊗ r(2).

Let H be a Hopf algebra. Then the category of (left) Yetter-Drinfeld modules HHYD is 

a braided tensor category and there is a forgetful functor from H
HYD to the category of 

braided vector spaces, namely V ∈ H
HYD goes to (V, c) where c ∈ GL(V ⊗ V) is given by 

c(v⊗w) = v(−1) ·w⊗v(0) in Sweedler notation. This forgetful functor sends Hopf algebras 

in HHYD to braided Hopf algebras. In turn Hopf algebras in HHYD are noteworthy because 

of the Radford-Majid bosonization that provides a bijective correspondence between their 

collection and the collection of triples (A, π, ι) where A 
π
⇄
ι

H are morphisms of Hopf 

algebras with πι = idH . See [40] for an exposition. More precisely, the correspondence 

sends the Hopf algebra R ∈ H
HYD to the bosonization R#H and the triple (A, π, ι) to 

the algebra of right coinvariants R = Aco π.

Similar notions and results hold for the category of (right) Yetter-Drinfeld modules 

YDH
H consisting of right H-modules and right H-comodules V satisfying the compatibility

(v · h)(0) ⊗ (v · h)(1) = v(0) · h(2) ⊗ S(h(1))v(1)h(3), v ∈ V, h ∈ H.

For convenience of the reader we spell out the precise definitions. First, any V ∈ YDH
H

becomes a braided vector space with c ∈ GL(V ⊗ V) and its inverse given by

c(v ⊗ w) = w(0) ⊗ v · w(1), c−1(v ⊗ w) = w · S−1(v(1)) ⊗ v(0), v, w ∈ V. (3.2)

Let (A, π, ι) be a triple as before. Then the subalgebra of left coinvariants

S = co πA = {s ∈ A : (π ⊗ id)Δ(s) = 1 ⊗ s}

becomes a Hopf algebra in YDH
H with right action ·, right coaction ρ and comultiplication 

Δ given by

s · h = S(h(1))sh(2), ρ(s) = (id ⊗π)Δ(s), Δ(s) = s(1) ⊗ ϑ(s(2)), s ∈ S, h ∈ H,

where ϑ : A → S is given by ϑ(a) = π(S(a(1)))a(2), a ∈ A. Conversely, the bosonization 

H#S of a Hopf algebra S in YDH
H is the vector space H⊗S with the right smash product 

and coproduct. That is, given s, ̃s ∈ S and h, ̃h ∈ H,

(h#s)(h̃#s̃) = hh̃(1)#(s · h̃(2))s̃, Δ(h#s) = h(1)#(s(1))(0) ⊗ h(2)(s
(1))(1)#s(2).

3.3. Nichols algebras

Let V ∈ H
HYD. Then the tensor algebra T (V) is naturally a Hopf algebra in H

HYD. A 

pre-Nichols algebra of V is a quotient of T (V) by a graded Hopf ideal in HHYD supported 
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in degrees � 2. The maximal Hopf ideal among those is denoted by J (V); the Nichols 

algebra of V is the quotient B(V) = T (V)/J (V).

The tensor algebra of a braided vector space (V, c) is also a braided Hopf algebra in 

the sense of [46]; a pre-Nichols algebra of V is a quotient of T (V) by a braided graded 

Hopf ideal supported in degrees � 2. The maximal Hopf ideal among those is denoted 

J̃ (V); the Nichols algebra of V is the quotient B(V) = T (V)/J̃ (V).

These two structures are compatible, i.e., if V ∈ H
HYD and (V, c) is the corresponding 

braided vector space, then J (V) = J̃ (V). But a pre-Nichols algebra of (V, c) does not 

necessarily come as the forgetful functor applied to a pre-Nichols algebra of V ∈ H
HYD.

Remark 3.2. Let H be cosemisimple, V ∈ H
HYD and G = B(V)#H = ⊕n∈N0

Gn, where 

Gn = Bn(V)#H. By other characterizations of Nichols algebras, we know that

(a) B(V) is coradically graded and generated in degree 1;

(b) G is coradically graded and generated in degree 1.

Since the projection π : G → H is graded, the subalgebra of left coinvariants S = co πG

inherits the grading of G; by a standard argument it is also coradically graded and 

generated in degree 1. Thus S is a Nichols algebra in YDH
H .

3.4. Hopf skew-pairings of bosonizations

Let 〈·, ·〉 : M × V → C be a bilinear form between two vector spaces M and V . We 

denote by 〈·, ·〉 : (M ⊗ M) × (V ⊗ V ) → C the bilinear form determined by

〈m ⊗ m′, v ⊗ v′〉 = 〈m, v′〉〈m′, v〉, m,m′ ∈ M, v, v′ ∈ V. (3.3)

Let H and K be two Hopf algebras. A bilinear form 〈·, ·〉 : K × H → C is a Hopf 
skew-pairing (or skew-pairing of Hopf algebras) if for all k, k′ ∈ K, h, h′ ∈ H,

〈k, hh′〉 = 〈Δop(k), h ⊗ h′〉, 〈kk′, h〉 = 〈k ⊗ k′,Δ(h)〉,

〈k, 1〉 = ε(k), 〈1, h〉 = ε(h), 〈S(k), h〉 = 〈k,S(h)〉.
(3.4)

A skew-pairing of braided Hopf algebras is defined by (3.4) but with the convention

Δop = c−1Δ.

Let us fix a Hopf skew-pairing 〈·, ·〉 : K × H → C. A YD-pairing between M ∈ YDK
K

and V ∈ H
HYD is a bilinear form 〈·, ·〉 : M × V → C such that

〈m · k, v〉 = 〈k, v(−1)〉〈m, v(0)〉,

〈m,h · v〉 = 〈m(1), h〉〈m(0), v〉,
m ∈ M, k ∈ K, v ∈ V, h ∈ H. (3.5)
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We recall the following well-known result, whose proof is straightforward.

Lemma 3.3. Let R be a Hopf algebra in H
HYD, S be a Hopf algebra in YDK

K and 〈·, ·〉 :

(K#S) × (R#H) → C be a bilinear form such that

〈ky, xh〉 = 〈k, h〉〈y, x〉, y ∈ S, k ∈ K, x ∈ R, h ∈ H. (3.6)

Then the following are equivalent:

(a) 〈·, ·〉 is a Hopf skew-pairing.
(b) The restriction of 〈·, ·〉 to K × H is a Hopf skew-pairing and the restriction of 〈·, ·〉

to S × R is both a skew-pairing of braided Hopf algebras and a YD-pairing. �

A YD-pairing between M ∈ YDK
K and V ∈ H

HYD extends canonically to a YD-pairing 

〈·, ·〉 : T (M) × T (V) → C. This extension is actually a braided Hopf skew-pairing, i.e., 

it satisfies (3.4) with respect to the braided comultiplications. The bilinear form

〈·, ·〉 :(K#T (M)) × (T (V)#H) → C, 〈k#y, x#h〉 := 〈k, h〉〈y, x〉,

y ∈ T (M), k ∈ K, x ∈ T (V), h ∈ H is a Hopf skew-pairing by Lemma 3.3.

Assume that dim M < ∞. Then the radical T (M∗)⊥ with respect to 〈·, ·〉 coincides 

with J (M). Hence, for any V YD-paired with M we have

T (V)⊥ ⊇ J (M).

Consequently, if dim M < ∞ and dim V < ∞, B is a pre-Nichols algebra of M in YDK
K

and E is a pre-Nichols algebra of V in H
HYD, then 〈·, ·〉 descends to Hopf skew-pairings 

〈·, ·〉 : B × E → C and 〈·, ·〉 : (K#B) × (E#H) → C.

3.5. Nichols algebras of diagonal type

We fix θ ∈ N and set I = Iθ. Let (V, c) be a (complex) braided vector space of diagonal 

type with braiding matrix

q = (qij) ∈
(
C

×
)I×I

(3.7)

with respect to a basis (xi)i∈I, i.e., c(xi ⊗ xj) = qijxj ⊗ xi for all i, j ∈ I. We assume 

that dim B(V ) < ∞. These Nichols algebras are classified in [29]. Throughout the paper 

we will also assume that the Dynkin diagram of q is connected, for simplicity of the 

exposition. As in page 3, we use the notation Bq := B(V ).

The canonical basis of ZI is denoted α1, . . . , αθ. The algebra T (V ) is ZI-graded, with 

grading deg xi = αi, i ∈ I. This grading naturally specializes to the standard N0-grading.
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Let q : Z
I × Z

I → C
× be the Z-bilinear forms associated to the matrix q, i.e., 

q(αj , αk) := qjk, j, k ∈ I. If α, β ∈ Z
I and i ∈ I, then we set

qαβ = q(α, β), qαα = q(α, α), Nα = ord qαα, Ni = ord qαiαi
= Nαi

. (3.8)

Remark 3.4. Every ZI-graded pre-Nichols algebra of V admits algebra automorphisms 

ςqi and (id, ςqi )-derivations ∂q
i for each i ∈ I; that is,

∂q
i (xy) = ∂q

i (x)ςqi (y) + x∂q
i (y), x, y ∈ T (V ).

Indeed the algebra automorphism ςqi : T (V ) → T (V ) is given by

ςqi (x) = q(αi, β)x, x ∈ T (V ) homogeneous of degree β ∈ Z
I.

The linear endomorphisms ∂q
i : T (V ) → T (V ) are defined as follows. Let Δm,n(x) be 

the homogeneous component of Δ(x) ∈ T (V ) ⊗ T (V ) of degree (m, n) ∈ N
2
0 . Then

Δn−1,1(x) =
∑

i∈I

∂q
i (x) ⊗ xi, x ∈ Tn(V ).

It is easy to see that ∂q
i is a (id, ςqi )-derivation. If B is a quotient of T (V ) by a Z

I-

homogeneous ideal, then ςqi induces an algebra automorphism of B, also denoted by ςqi , 

and ∂q
i induces a (id, ςqi )-derivation of B, also denoted by ∂q

i .

3.6. Weyl groupoids

The notions of Weyl groupoid and generalized root systems were introduced in [28,31]. 

We recall the main features needed later. Let (cqij)i,j∈I ∈ Z
I×I be the (generalized 

Cartan) matrix defined by cqii := 2 and

cqij := − min {n ∈ N0 : (n + 1)qii
(1 − qn

iiqijqji) = 0} , i �= j. (3.9)

Let i ∈ I. First, the reflection sqi ∈ GL(ZI) is given by

sqi (αj) := αj − cqijαi, j ∈ I. (3.10)

Second, the matrix ρi(q) is given by

(ρi(q))jk := q(sqi (αj), sqi (αk)) = qjkq
−cqij

ik q
−cqik

ji q
cqijcqik

ii , j, k ∈ I. (3.11)

Finally, the braided vector space ρi(V ) is of diagonal type with matrix ρi(q). Set

X := {ρj1
. . . ρjn

(q) : j1, . . . , jn ∈ I, n ∈ N}.
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The set X is called the Weyl-equivalence class of q. The set Δq
+ of positive roots consists 

of the ZI-degrees of the generators of a PBW-basis of Bq, counted with multiplicities. 

Let Δq := Δq
+ ∪ −Δq

+. Then the generalized root system of q is the fibration Δ → X , 

where the fiber of ρj1
. . . ρjN

(q) is Δρj1 ...ρjN
(q). The Weyl groupoid Wq of Bq acts on 

this fibration, generalizing the classical Weyl group. Here is another characterization 

of Δq
+, valid because it is finite. Let ωq

0 ∈ Wq be an element of maximal length and 

ωq
0 = sqi1

si2
· · · siℓ

be a reduced expression. Then

βk := sqi1
· · · sik−1

(αik
), k ∈ Iℓ (3.12)

are pairwise different vectors and Δq
+ = {βk : k ∈ Iℓ} [16, Prop. 2.12], so |Δq

+| = ℓ.

3.7. Cartan roots [9]

This important notion is crucial for our purposes. First, i ∈ I is a Cartan vertex of q

if

qijqji = q
cqij

ii , for all j �= i. (3.13)

Then the set of Cartan roots of q is

Oq = {sqi1
si2

. . . sik
(αi) ∈ Δq : i ∈ I is a Cartan vertex of ρik

. . . ρi2
ρi1

(q)}.

Set Oq
+ = Oq ∩ N

θ
0 . Recall (3.8) and set Ñβ := Nβ , if β /∈ Oq, or else ∞ if β ∈ Oq.

The set of Cartan roots gives rise to a root system up to a rescaling. Set

Oq = {Nq
ββ : β ∈ Oq}, O

q
+ = Oq ∩ N

θ
0 , β = Nq

ββ, β ∈ Oq. (3.14)

Theorem 3.5. [5, Theorem 3.6] The set Oq is either empty or a root system inside the 

real vector space generated by Oq. The set Πq of all indecomposable elements of Oq
+ is 

a basis of this root system. �

Here γ ∈ O
q
+ is indecomposable if it can not be represented as a non-trivial positive 

linear combination of elements of Oq
+. Let gq be either 0 or the semisimple Lie algebra 

with root system as in Theorem 3.5, accordingly. We fix a triangular decomposition

gq = n+
q ⊕ hq ⊕ n−

q (3.15)

and the Borel subalgebras b±
q = hq ⊕ n±

q ⊂ gq; if gq = 0, then n+
q = hq = n−

q = 0. We 

denote the root lattice of gq by

Qq :=
∑

γ∈O
q

+

Zγ =
⊕

γ∈Πq

Zγ. (3.16)
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3.8. Distinguished pre-Nichols algebras

The finite-dimensional Nichols algebras of diagonal type admit distinguished pre-

Nichols algebras introduced in [8,9]. An ideal I(V ) of T (V ) was introduced in [9]; it 

is generated by all the defining relations of Bq in [8, Theorem 3.1], but excluding the 

power root vectors xNα
α , α ∈ Oq, and adding some quantum Serre relations, see [9] for 

the precise list of relations.

Definition 3.6. [9] The distinguished pre-Nichols algebra B̃q of V is the quotient B̃q =

T (V )/I(V ). Since I(V ) is a Hopf ideal, B̃q is a braided Hopf algebra.

By Remark 3.4, there are automorphisms ςqi and skew-derivations ∂q
i of B̃q, i ∈ I.

3.9. Lusztig algebras

The Lusztig algebra Lq associated to q is the graded dual of B̃q [3]. Thus Lq is a 

braided Hopf algebra equipped with a bilinear form ( , ) : Lq × B̃q → C, which satisfies

(y, xx′) = (y(2), x)(y(1), x′) and (yy′, x) = (y, x(2))(y′, x(1)) (3.17)

for all x, x′ ∈ B̃q, y, y′ ∈ Lq. Let Z+
q = co ̟B̃q be the subalgebra of coinvariants of the 

canonical projection

̟ : B̃q → Bq.

Then Z+
q is a normal Hopf subalgebra of B̃q [9, Theorem 29] and we have an extension of 

braided Hopf algebras Z+
q

ι
→֒ B̃q

̟
։ Bq. Taking graded duals, we obtain a new extension 

of braided Hopf algebras, cf. [4, Proposition 3.2]:

Bqt

̟∗

→֒ Lq

ι∗

։ Zq, (3.18)

Remark 3.7. Assume that (4.26) below holds. Then the braided Hopf algebra Zq is a 

Hopf algebra, isomorphic to the enveloping algebra of the Lie algebra P(Zq) [4, 3.3]. 

Moreover P(Zq) ≃ n−
q as in (3.15) [5].

4. Large quantum groups

In this section we describe the large quantum groups, i.e., Drinfeld doubles of bosoniza-

tions of the distinguished pre-Nichols algebras belonging to a one-parameter family; these 

are the main focus of the paper. The large quantum Borel and unipotent subalgebras are 

also introduced here. Throughout the rest of the paper Γ+ and Γ− denote free abelian 

groups of rank θ with bases denoted respectively (Ki)i∈I and (Li)i∈I. Let Γ = Γ+ × Γ−.
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4.1. Families of Nichols algebras

From now on we assume that q belongs to a one-parameter family (except when 

explicitly stated otherwise). This means that there exists an indecomposable matrix

q = (qij) ∈
(
C[ν±1]×

)I×I
(4.1)

such that:

◦ The Nichols algebra of the C(ν)-braided vector space of diagonal type VC(ν) with 

basis (xi)i∈I and braiding matrix (4.1) has finite root system; thus q is in the list of 

[29].

◦ There exists an open subset ∅ �= O ⊆ C
× such that for any x ∈ O, the matrix q(x)

obtained by evaluation ν 
→ x has the same finite root system as q.

◦ There exists ξ ∈ G
′
∞ ∩ O such that q = q(ξ).

By inspection in [29], all one-parameter families are listed in Appendix A. We denote 

the Nichols algebras of V and VC(ν), with braidings given by q, respectively q, by

Bq := B(V ) and Bq := B(VC(ν)).

The defining relations and PBW-basis of Bq and Bq are described in [2] over an alge-

braically closed field of characteristic 0 but the same presentation and PBW-basis are 

valid over C(ν). Indeed, apply to F = C(ν), K = C(ν) the following remarks:

◦ Let K/F be a field extension and (V, c) a braided F -vector space. Then (V ⊗F K, c ⊗

id) is a braided K-vector space and B(V ) ⊗F K ≃ B(V ⊗F K); use e.g. quantum 

symmetrizers.

◦ Let K/F be a faithfully flat extension of commutative rings. Let U be an F -algebra 

with generators (yj)j∈J and UK = U ⊗F K which is also generated by (yj)j∈J . Let 

(rt)t∈T be a set of elements in the tensor algebra over F of the free module F (J). 

Then these are defining relations of U if and only if they are defining relations of 

UK.

The discussions in §3.5 and §3.6 apply to the matrix q. Let q : Z
I × Z

I → (C[ν±1])×

as in §3.5; we also have the notation qαβ for α, β ∈ Z
I as in (3.8). We denote by Wq

the corresponding Weyl groupoid, by ρi(q) the related braiding matrices, etc. As in 

Remark 3.4, there are ςq
i ∈ Autalg(Bq) and (id, ςq

i )-derivations ∂q
i : Bq → Bq, for every 

i ∈ I.

Remark 4.1. Let β ∈ Δq. Crucially, β is a Cartan root of q if and only if ord qββ = ∞.
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4.2. The quantum group Uq

Here we work over C(ν). Let WC(ν) be the C(ν)-vector space with basis (yi)i∈I. The 

group Γ acts on VC(ν) ⊕ WC(ν) by

Ki · xj = qijxj , Ki · yj = q−1
ij yj , Li · xj = qjixj , Li · yj = q−1

ji yj , (4.2)

i, j ∈ I. The vector space VC(ν) ⊕ WC(ν) is Γ-graded by

deg xi = Ki, deg yi = Li, i ∈ I. (4.3)

Thus VC(ν) ⊕WC(ν) ∈
C(ν)Γ
C(ν)ΓYD with coaction given by the grading. In particular, WC(ν)

is a braided vector space with braiding matrix q′ where q′
ij = q−1

ji , i, j ∈ I.

Let Uq be the quotient Hopf algebra of the bosonization T (VC(ν) ⊕ WC(ν))#C(ν)Γ

modulo the ideal generated by

J (VC(ν)), J (WC(ν)), xiyj − q−1
ij yjxi − δij(KiLi − 1), i, j ∈ I.

The images of xi, yi, Ki and Li in Uq will again be denoted by the same symbols. Let 

Ei := xi, Fi := yiL
−1
i in Uq, i ∈ I. Then for all i, j ∈ I we have

KiEj = qijEjKi, LiEj = qjiEjLi, (4.4)

KiFj = q−1
ij FjKi, LiFj = q−1

ji FjLi, (4.5)

EiFj − FjEi = δij(Ki − L−1
i ), (4.6)

Δ(Ei) = Ki ⊗ Ei + Ei ⊗ 1, Δ(Fi) = 1 ⊗ Fi + Fi ⊗ L−1
i . (4.7)

We consider the following subalgebras of Uq:

U+0
q = C(ν)[K±1

i : i ∈ I], U−0
q = C(ν)[L±1

i : i ∈ I], U0
q = C(ν)[K±1

i , L±1
i : i ∈ I],

U+
q = C(ν)〈Ei : i ∈ I〉, U−

q = C(ν)〈Fi : i ∈ I〉,

U�
q = C(ν)〈Ei,K

±1
i : i ∈ I〉, U�

q = C(ν)〈Fi, L
±1
i : i ∈ I〉.

The multiplication map induces linear isomorphisms

Uq ≃ U+
q ⊗C(ν) U

0
q ⊗C(ν) U

−
q ≃ U�

q ⊗C(ν) U
�
q . (4.8)

We have canonical isomorphisms of Hopf algebras

U+0
q ≃ C(ν)Γ+, U−0

q ≃ C(ν)Γ−, U0
q ≃ C(ν)Γ.

The algebra U+
q has a canonical structure of a Hopf algebra in 

C(ν)Γ+

C(ν)Γ+YD and there are 

isomorphisms of (braided) Hopf algebras



N. Andruskiewitsch et al. / Advances in Mathematics 428 (2023) 109134 23

U+
q ≃ Bq, U�

q ≃ U+
q #U+0

q ,

see e.g. [6] for details.

Define the module V ∗
C(ν) ∈ YD

C(ν)Γ−

C(ν)Γ− with basis {x∗
i : i ∈ I} by

x∗
j · Li = qjix

∗
j , deg x∗

i = L−1
i , i, j ∈ I.

Let π− : U�
q → U−0

q be the canonical Hopf algebra morphism; then co π−

U�
q = U−

q , cf. 

[6, Corollary 3.9 (2)]. Hence U−
q has a canonical structure of a Hopf algebra in YD

C(ν)Γ−

C(ν)Γ− . 

By Remark 3.2, we have isomorphisms of (braided) Hopf algebras

U−
q ≃ B(V ∗

C(ν)) ≃ Bq(−1) , U�
q ≃ U−0

q #U−
q .

Here q(−1) means the matrix obtained by inverting every entry of q.

Now there is a unique Hopf skew-pairing 〈·, ·〉 : U�
q × U�

q → C(ν) determined by

〈Li,Kj〉 = q−1
ji , 〈Fi, Ej〉 = δij , 〈Li, Ej〉 = 〈Fi,Kj〉 = 0, i, j ∈ I,

see [6, Theorem 3.7]. By [6, Theorem 3.11 (1)], we have

〈x−g−, x+g+〉 = 〈x−, x+〉〈g−, g+〉, x± ∈ U±
q , g± ∈ Γ±.

The restriction 〈·, ·〉 : U−
q × U+

q → C(ν) is non-degenerate by [6, Theorem 3.11 (3)] and 

is a Hopf skew-pairing of braided Hopf algebras by Lemma 3.3.

4.3. The large quantum group Uq

Recall that q ∈
(
C

×
)I×I

belongs to a one parameter family given by a matrix q, cf. 

§4.1.

Definition 4.2. The large quantum group Uq is the Drinfeld double of the bosonization 

of the distinguished pre-Nichols algebra B̃q.

The complex Hopf algebra Uq was defined in [9] for arbitrary q with dim Bq < ∞. 

Explicitly, let W be the C-vector space with basis (yi)i∈I. The group Γ acts on V ⊕ W

by

Ki · xj = qijxj , Ki · yj = q−1
ij yj , Li · xj = qjixj , Li · yj = q−1

ji yj , i, j ∈ I.

Now V ⊕ W is Γ-graded by (4.3), so W is a braided vector space with braiding matrix 

q′ with entries q′
ij = q−1

ji for i, j ∈ I. Recall the defining ideal I(V ) of B̃q. Then Uq is 

the bosonization T (V ⊕ W )#CΓ modulo the ideal generated by
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I(V ), I(W ), xiyj − q−1
ij yjxi − δij(KiLi − 1), i, j ∈ I.

The images of xi, yi, Ki and Li in Uq will again be denoted by the same symbols. Let 

ei = xi, fi = yiL
−1
i in Uq, i ∈ I. Then for all i, j ∈ I we have

Kiej = qijejKi, Liej = qjiejLi, (4.9)

Kifj = q−1
ij fjKi, Lifj = q−1

ji fjLi, (4.10)

eifj − fjei = δij(Ki − L−1
i ), (4.11)

Δ(ei) = Ki ⊗ ei + ei ⊗ 1, Δ(fi) = 1 ⊗ fi + fi ⊗ L−1
i . (4.12)

We consider the following subalgebras of Uq:

U+0
q = C[K±1

i : i ∈ I], U−0
q = C[L±1

i : i ∈ I], U0
q = C[K±1

i , L±1
i : i ∈ I],

U+
q = C〈ei : i ∈ I〉, U−

q = C〈fi : i ∈ I〉,

U�
q = C〈ei,K

±1
i : i ∈ I〉, U�

q = C〈fi, L
±1
i : i ∈ I〉.

Definition 4.3. The algebras U�
q and U�

q will be called large quantum Borel algebras

and the algebras U±
q large quantum unipotent algebras.

The multiplication map induces the linear isomorphisms

Uq ≃ U+
q ⊗C U0

q ⊗C U
(−)
q ≃ U�

q ⊗C U�
q . (4.13)

We have canonical isomorphisms of Hopf algebras

U+0
q ≃ CΓ+, U−0

q ≃ CΓ−, U0
q ≃ CΓ.

The algebra U+
q has a canonical structure of a Hopf algebra in CΓ+

CΓ+YD. We have isomor-

phisms of (braided) Hopf algebras:

U+
q ≃ B̃q, U�

q ≃ U+
q #U+0

q ,

see [9]. Define the module V ∗ ∈ YDCΓ−

CΓ− with basis {x∗
i : i ∈ I} by

x∗
j · Li = qjix

∗
j , deg x∗

i = L−1
i , i, j ∈ I.

Let π− : U�
q → U−0

q be the canonical Hopf algebra projection; then co π−

U�
q = U−

q as in 

[6, Corollary 3.9 (2)]. Hence U−
q is a Hopf algebra in YDCΓ−

CΓ− and because of the defining 

relations of U−
q , it is isomorphic to the distinguished pre-Nichols algebra of V ∗ ∈ YDCΓ−

CΓ− . 

Combining the above, we get isomorphisms of (braided) Hopf algebras:
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U−
q ≃ B̃q(−1) , U�

q ≃ U−0
q #U−

q . (4.14)

Here, again, q(−1) denotes the matrix obtained by inverting every entry of q.

4.4. Lusztig isomorphisms and root vectors

As in [30, §3] we consider

λq
ij = (q

−cq

ij

ii qijqji)
cq

ij (−cq
ij)qii

!
∏

0≤s<−cq

ij

(qs
iiqijqji − 1) ∈ C[ν±1]×, i �= j ∈ I. (4.15)

Notice that λq
ij �= 0 by the definition (3.9).

By [30, Proposition 6.8], there exist algebra isomorphisms Tq
i : Uρi(q) → Uq such that

Tq
i (Kj) = KjK

−cq

ij

i ; Tq
i (Ei) =

{
FiLi, j = i,

(adc Ei)
−cq

ijEj , j �= i,

Tq
i (Lj) = LjL

−cq

ij

i ; Tq
i (F i) =

{
K−1

i Ei, j = i,

(λq
ij)−1(adc Fi)

−cq

ijFj , j �= i,

(4.16)

where the underlined letters denote the generators of Uρi(q).

Let ωq
0 be the element of Wq of maximal length ending at q and ωq

0 = sq
i1
si2

· · · siℓ

be a reduced expression. By [30, Theorem 6.20], we have that

Eβk
:= Tq

i1
. . . Tik−1

(Eik
) ∈ U+

q , Fβk
:= Tq

i1
. . . Tik−1

(Fik
) ∈ U−

q , k ∈ Iℓ. (4.17)

By [32, Theorem 4.5] the sets

{
En1

β1
En2

β2
. . . Enℓ

βℓ
: 0 ≤ nj < Ñβj

, j ∈ Iℓ

}
,
{
Fm1

β1
Fm2

β2
. . . Fmℓ

βℓ
: 0 ≤ mj < Ñβj

, j ∈ Iℓ

}

(4.18)

are bases of U+
q and U−

q , respectively. Indeed, this follows from Property (c) in the 

Appendix A and Remark 4.1. Thus the following set is a basis of Uq:

{Em1

β1
. . . Emℓ

βℓ
Ka1

1 . . .Kaθ

θ Lb1
1 . . . Lbθ

θ Fn1

β1
. . . Fnℓ

βℓ
: 0 ≤ mj , nj < Ñβ , ai, bi ∈ Z}. (4.19)

We now turn to the algebras Uq. Let λq
ij be defined as (4.15) with q in place of q. 

Notice that λq
ij �= 0 by the definition (3.9). By [9, Proposition 10], there exist algebra 

isomorphisms T q
i : Uρi(q) → Uq such that



26 N. Andruskiewitsch et al. / Advances in Mathematics 428 (2023) 109134

T q
i (Kj) = KjK

−cqij

i ; T q
i (ei) =

{
fiLi, j = i,

(adc ei)
−cqijej , j �= i,

T q
i (Lj) = LjL

−cqij

i ; T q
i (f

i
) =

{
K−1

i ei, j = i,

(λq
ij)−1(adc fi)

−cqijfj , j �= i.

(4.20)

The underlined letters denote the generators of Uρi(q).

Analogously, eβk
= T q

i1
. . . Tik−1

(eik
) and fβk

= T q
i1

. . . Tik−1
(fik

) belong to U+
q and 

U−
q , respectively and by [9, Theorem 11] the sets

{
en1

β1
en2

β2
. . . enℓ

βℓ
: 0 ≤ ni < Ñβi

}
and

{
fm1

β1
fm2

β2
. . . fmℓ

βℓ
: 0 ≤ mj < Ñβj

}
(4.21)

are bases of U+
q and U−

q , respectively. Thus the following set is a basis of Uq:

{
em1

β1
. . . emℓ

βℓ
Ka1

1 . . .Kaθ

θ Lb1
1 . . . Lbθ

θ fn1

β1
. . . fnℓ

βℓ
: 0 ≤ mj , nj < Ñβj

, ai, bi ∈ Z
}
. (4.22)

4.5. The central subalgebras Zq, Z±
q , Z�

q , Z�
q

In this subsection and the next q does not need to be in a family, just dim Bq < ∞ is 

assumed. Set

N = lcm{Nβ : β ∈ Δq
+}. (4.23)

To start with, we consider a subalgebra Zq of Uq. Then Zq is generated by

e
Nβ

β , f
Nβ

β , K
±Nβ

β , L
±Nβ

β , β ∈ O
q
+, (4.24)

K±N

β , L±N

β , β ∈ Δq
+; (4.25)

this is a normal Qq-graded Hopf subalgebra of Uq, [9, Proposition 21, Theorem 33], which 

may be different from the one in [9, p. 18] since we add the generators in (4.25) what 

actually only affects the types A(k − 1|θ −k), see Proposition 4.8. These new generators 

are necessary for Uq to be finitely generated as Zq-module.

The following subalgebras of Zq are also needed:

Z+
q = C〈e

Nβ

β : β ∈ O
q
+〉, Z−

q = C〈f
Nβ

β : β ∈ O
q
+〉.

Notice that Z+
q coincides with the subalgebra introduced right after (3.17), see [9, The-

orem 29]. For Zq to be central in Uq we need the following condition that we assume 

from now on:

q
Nβ

αβ = 1, α ∈ Δq, β ∈ Oq. (4.26)
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Remark 4.4.

(a) If (4.26) holds, then q
Nβ

βα = 1 [9, Lemma 24].

(b) Condition (4.26) is equivalent to the following one:

q
Nβ

αiβ = 1, for all i ∈ I, β ∈ Πq. (4.27)

The reduction to simple roots is clear. Since q
Nβ

αβ = qαβ and Πq is a basis of the root 

system Oq, the reduction from Oq
+ to Πq holds.

(c) Let i ∈ I. Condition (4.26) holds for q if and only if it holds for ρi(q).

Indeed, ρi(q)αβ = qsq

i (α)sq

i (β) for all α, β ∈ Z
θ by (3.11), and by [5, Lemma 2.3] we 

have sqi (Oq) = Oρi(q), N
ρi(q)

sq

i (β)
= Nq

β for all β.

When q is symmetric, we can quotient the large quantum group by a central group 

subalgebra to remove the extra Cartan generators as in quantum groups. However the 

condition of q being symmetric is not always compatible with (4.26) as we see next.

Example 4.5. Assume that q has Dynkin diagram 
−1
◦

ξ −1
◦ , ξ ∈ G

′
N , N > 2: it is of 

super type A(1|0). In this case,

Δq
+ = {α1, α1 + α2, α2}, O

q
+ = {α1 + α2}.

Condition (4.27) becomes

1 = (q11q12)N = (−q12)N , 1 = (q21q22)N = (−q21)N ⇐⇒ qN
12 = (−1)N = qN

21.

We have two possibilities: if N is even, then q12 = ξk for some k ∈ IN , so q21 = ξ1−k, 

and q is not symmetric. If N is odd, then q12 = −ξk for some k ∈ IN , so q21 = −ξ1−k. 

In this case q is symmetric only when k = N+1
2 .

We consider also the Hopf subalgebras

Z+0
q = C〈{K

±Nβ

β : β ∈ O
q
+} ∪ {K±N

β : β ∈ Δq
+}〉, Z�

q = Z+
q Z+0

q ,

Z−0
q = C〈{L

±Nβ

β : β ∈ O
q
+} ∪ {L±N

β : β ∈ Δq
+}〉, Z�

q = Z−
q Z−0

q .

Z0
q = Z+0

q Z−0
q .

Remark 4.6. The following properties hold:

(a) [9, Th. 23]. Z±
q is a polynomial ring in variables e

Nβ

β , respectively f
Nβ

β , β ∈ O
q
+.
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(b) The multiplication gives linear isomorphisms Z+
q ⊗Z+0

q ⊗Z−0
q ⊗Z−

q ≃ Zq ≃ Z�
q ⊗Z�

q .

(c) Recall the skew-derivations ∂q
i , ∂q(−1)

i of U±
q , cf. (4.14). By [9, Theorem 31],

Z+
q =

⋂

i∈I

ker ∂q
i , Z−

q =
⋂

i∈I

ker ∂q(−1)

i . (4.28)

(d) The algebras Uq, U�
q , U�

q and U±
q are module finite over their central subalgebras 

Zq, Z�
q , Z�

q and Z±
q ; just consider the PBW-bases in §4.4.

4.6. Action of the Weyl groupoid on Zq

Next we prove invariance of the central Hopf subalgebras Zq under the Lusztig iso-

morphisms T q
i : Uρi(q) → Uq, cf. §4.4.

Theorem 4.7. Let i ∈ I. Then T q
i restricts to an algebra isomorphism T q

i : Zρi(q) → Zq.

Proof. By (4.28), Zq (defined in terms of the root vectors which depend on the expression 

of ωq
0) is indeed independent of such expression; in particular we may choose ωq

0 =

sqi1
. . . siℓ

such that i1 = i. For simplicity we set p = ρi(q). As spi2
. . . siℓ

is reduced, we 

may extend it to a reduced expression of ωp
0 [31, Corollary 3]:

ωp
0 = spi2

. . . siℓ
sj for some j ∈ I.

We set β′
k = si1

(βk) = spi2
. . . sik−1

(αik
), k ∈ I2,ℓ. Hence

{β′
k : k ∈ I2,ℓ} = spi

(
Δq

+ − {αi}
)

= Δp
+ − {αi}.

As spi2
. . . siℓ

(αj) ∈ Δp
+, spi2

. . . siℓ
(αj) �= β′

k for k ∈ I2,ℓ, we have that spi2
. . . siℓ

(αj) = αi. 

Then {Nβ′ : β′ ∈ Δp
+} = {Nβ : β ∈ Δq

+}, so lcm{Nβ′ : β′ ∈ Δp
+} = N, and

T q
i

(
K±N

i

)
= K∓N

i ∈ Zq, T q
i

(
K±N

β′
k

)
= K±N

sq

i (β′
k)

= K±N

βk
∈ Zq, k > 1,

T q
i

(
K±N

i

)
= K∓N

i ∈ Zq, T q
i

(
K±N

β′
k

)
= K±N

sq

i (β′
k)

= K±N

βk
∈ Zq, k > 1.

Let β ∈ Oρi(q). If β = β′
k for some k ∈ I2,ℓ, then sqi (β′

k) = βk and Nβ′
k

= Nβk
, hence

T q
i

(
K

±Nβ′
k

β′
k

)
= K

±Nβ′
k

sq

i (β′
k)

= K
±Nβk

βk
∈ Zq, T q

i

(
e

Nβ′
k

β′
k

)
= T q

i1
Ti2

. . . Tik−1
(e

Nβk

ik
) = e

Nβk

βk
∈ Zq.

Otherwise β = αi, so i is a Cartan vertex and

T q
i (K

±Nβ

β ) = K
∓Nαi

i ∈ Zq, T q
i (e

Nβ

β ) = T q
i (e

Nαi

i ) = (fiLi)
Nαi = q

(Nαi
2

)
ii f

Nαi

i L
Nαi

i ∈ Zq.

Analogously, T q
i (L

±Nβ

β ), T q
i (f

Nβ

β ) ∈ Zq for all β ∈ Oρi(q), so T q
i (Zρi(q)) ⊆ Zq. Applying 

T p
i we get the opposite inclusion. �



N. Andruskiewitsch et al. / Advances in Mathematics 428 (2023) 109134 29

Let Λ′
q be the subgroup of Γ generated by K

±Nβ

β , L
±Nβ

β , β ∈ O
q
+ and let Λq be the 

subgroup generated by Λ′
q and K±N

β , L±N

β , β ∈ Δq
+: we have that Z0

q = CΛq.

Next we check that Λ′
q = Λq for q as in the Appendix, not of type super A, so the 

subalgebra Zq is generated by (4.24) and coincides with the one in [9, p. 18].

Proposition 4.8. Assume that q belongs to one of the families in the Appendix A.

(a) If q is not of type A(k − 1|θ − k), k ∈ I⌊ θ+1
2 ⌋, then Λ′

q = Λq and Z0
q is generated by 

(4.24).
(b) Let q be of type A(k−1|θ−k), k ∈ I⌊ θ+1

2 ⌋, η ∈ Δq
+−Oq

+. Then Λq ≃ Λ′
q×〈KN

η〉 ×〈LN

η〉, 

and Z0
q is generated by {K

±Nβ

β , L
±Nβ

β : β ∈ Δq
+} and K±N

η , L±N

η .

Proof. First we notice that T q
i restricts to group isomorphisms Λq ≃ Λρiq, Λ′

q ≃ Λ′
ρiq

since the restrictions (T q
i )|U+0

ρiq
: U+0

ρiq
→ U+0

q and (T q
i )|U−0

ρiq
: U−0

ρiq
→ U−0

q are given by 

sqi . Hence it is enough to consider one matrix for each Weyl equivalence class.

Assume that q is as in the Appendix A and is not of type A(k − 1|θ − k). If q is of 

Cartan type, then Δq
+ = O

q
+, hence Λ′

q = Λq. For the other types we check the equality 

Λ′
q = Λq case-by-case when the Dynkin diagram is the one in Tables 2 and 3.

Let q be of type A(k − 1|θ − k) with Dynkin diagram in Table 2, η ∈ Δq
+ −O

q
+. Then 

Oq
+ = {αij |i ≤ j < k or k < i ≤ j}, Nβ = N for all β ∈ Oq

+, Λ′
q = 〈KN

i , LN
i |i �= k〉, 

η = αij for some i ≤ k ≤ j and N = N if N is even while N = 2N if N is odd. Hence 

KN

k, LN

k belong to the subgroup generated by Λ′
q, KN

η and LN

η. On the other hand, Λq is 

generated by Λ′
q, KN

k and LN

k, thus the statement follows. �

5. The specialization setting for large quantum groups

In this section we introduce the non-restricted integral form of Uq and prove that the 

large quantum group Uq is a specialization of it. We also introduce restricted integral 

forms of the subalgebras U±
q and establish pairing results for the corresponding special-

izations. The latter integral forms will play a key role in our treatment of Poisson order 

structures on the large quantum groups Uq and their Borel and unipotent subalgebras.

5.1. Integral forms

In order to implement the ideas of Section 2, we need to consider forms over suitable 

rings, generalizing [20]. For simplicity, we set

A := C[ν±1, (qs
iiqijqji − 1)−1 : i �= j ∈ I, 0 ≤ s < −cq

ij ] ⊂ C(ν). (5.1)

By (3.9), qs
iiqijqji �= 0 for 0 ≤ s < −cq

ij .

We now define the (non-restricted) integral forms as the A-subalgebras

U+
q,A = A〈Ei : i ∈ I〉 ⊂ U+

q , U0
q,A = A[K±1

i , L±1
i : i ∈ I] ⊂ U0

q,
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U−
q,A = A〈Fi : i ∈ I〉 ⊂ U−

q , Uq,A = A〈K±1
i , L±1

i , Ei, Fi : i ∈ I〉 ⊂ Uq,

U�

q,A = U+
q,A ⊗A A[K±1

i : i ∈ I], U�

q,A = U−
q,A ⊗A A[L±1

i : i ∈ I].

These are crucial for our purposes. We have again a triangular decomposition

U+
q,A ⊗A U0

q,A ⊗A U−
q,A ≃ Uq,A. (5.2)

The surjectivity of this multiplication map follows from the cross relations (4.4), (4.5)

and (4.6), while the injectivity follows from (4.8). Recall (4.15) for the next result.

Lemma 5.1. For all i �= j in I, (λq
ij)−1 ∈ A.

Proof. If q
−cq

ij

ii qijqji = 1, then using that qii ∈ C[ν±1]× we have

(λq
ij)−1 = (−1)cq

ijq
cq

ij(cq

ij−1)

ii (qii − 1)−cq

ij

∏

0≤s<−cq

ij

(qs
iiqijqji − 1)−2 ∈ A

Otherwise qii is a root of unity of order 1 − cq
ij , so because (−cq

ij)qii
! ∈ C

×, we have

(λq
ij)−1 =

(q−1
ii qijqji)

−cq

ij

(−cq
ij)qii

!

∏

0≤s<−cq

ij

(qs
iiqijqji − 1)−1 ∈ A. �

Example 5.2. Let q be of modular type br(2), respectively wk(4), see §A.3. Then A =

C[ν±1, (ν − 1)−1, (ν − ζ)−1], respectively A = C[ν±1, (ν − 1)−1, (ν + 1)−1].

Recall the Hopf skew-pairing from §4.2. We now define the restricted integral forms, 
that also play a central role in this paper, as the A-submodules

U res −
q,A := {y ∈ U−

q |〈y, U+
q,A〉 ⊂ A}, U res +

q,A := {x ∈ U+
q |〈U−

q,A, x〉 ⊂ A}. (5.3)

Indeed, these are A-subalgebras of U−
q and U+

q , respectively. This follows from the fact 

that U±
q,A are braided Hopf subalgebras of U±

q over A and the properties of Hopf skew-

pairings.

5.2. PBW-bases of integral forms

Recall the Lusztig isomorphisms Tq
i from §4.4.

Lemma 5.3.

(a) Tq
i restricts to an A-algebra isomorphism Tq

i : Uρi(q),A → Uq,A, i ∈ I.
(b) Let β ∈ Δ+. Then Eβ , Fβ ∈ Uq,A.
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Proof. (a) follows from (4.20) and Lemma 5.1, while (b) from (a) and (4.17). �

Proposition 5.4. The sets (4.18) and (4.19) are A-bases of U±
q,A and Uq,A, respectively.

Proof. We consider the case of U+
q,A, the other being analogous. Let Y be the set of 

PBW monomials of U+
q from (4.18). By Lemma 5.3, Y ⊂ U+

q,A. The defining relations of 

U+
q involve products of Ei with coefficients in A, hence we may prove recursively that, 

for j > k, Eβj
Eβk

∈ AY , the A-module generated by Y , where each monomial in the 

expansion has letters Eβt
, j > t > k; see the proof of [32, Theorem 4.8]. Thus AY is 

a left ideal containing 1, so AY = U+
q,A. This fact and the direct sum decomposition 

U+
q = ⊕y∈Y C(ν)y imply that U+

q,A = ⊕y∈Y Ay. �

Recall the notation Ñβ in §3.7. Next we consider the quantum divided powers

F
(n)
βj

=
Fn

βj

(n)qβj βj
!
, E

(n)
βj

=
En

βj

(n)qβj βj
!
, 0 ≤ n < Ñβj

.

Proposition 5.5. For j ∈ Iℓ, let nj , mj be such that 0 ≤ nj , mj < Ñβj
. Then

〈F
(n1)
β1

. . . F
(nℓ)
βℓ

, Em1

β1
. . . Emℓ

βℓ
〉 = δn1m1

. . . δmℓnℓ
.

Proof. Let ηj = 〈Fβj
, Eβj

〉, j ∈ Iℓ. The same proof as [10, Proposition 4.6] shows that

〈F
(n1)
β1

. . . F
(nℓ)
βℓ

, Em1

β1
. . . Emℓ

βℓ
〉 = δn1m1

. . . δmℓnℓ
ηn1

1 · · · ηnℓ

ℓ .

As in [10, 4.7], we see that ηj = 1: here 〈Fi, Ei〉 = 1, there 〈Fi, Ei〉 = −1 for i ∈ I. �

Propositions 5.4 and 5.5 imply the following:

Corollary 5.6. The following sets are A-basis of U res −
q,A and U res +

q,A , respectively:

{
F

(n1)
β1

. . . F
(nℓ)
βℓ

: 0 ≤ nj < Ñβj

}
and

{
E

(m1)
β1

. . . E
(mℓ)
βℓ

: 0 ≤ mj < Ñβj

}
. (5.4)

5.3. The specialization of Uq,A

As explained in Property (c) of the Appendix, there exists ξ ∈ G
′
∞ such that q(ξ) = q; 

we fix one such ξ.

We consider the setting in Section 2 assuming R = A, h = ν − ξ and the R-algebra A

being either Uq,A or its subalgebras U±
q,A. We claim that the map C[ν±1] → C, ν 
→ ξ

extends to an isomorphism A/(ν − ξ) ≃ C. For, if

qs
iiqijqji − 1 
→ qs

iiqijqji − 1 = 0 for some i �= j, 0 ≤ s < −cq
ij ,
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then 0 ≤ −cqij ≤ s < −cq
ij , which contradicts Property (c) of the Appendix A. Here and 

below we will use the bar notation x 
→ x for specializations.

Theorem 5.7. There are Hopf algebra (respectively, braided Hopf algebra) isomorphisms

Ξq : Uq → Uq,A/(ν − ξ) and Ξq|U±
q

: U±
q → U±

q,A/(ν − ξ)

given by ei 
→ Ei, fi 
→ F i, K
±1
i 
→ K

±1

i , L±1
i 
→ L

±1

i for all i ∈ I. For each i ∈ I, the 

following diagram is commutative:

Uρi(q)

Ξρi(q)

Tq

i

Uρi(q)f,A/(ν − ξ)

T q

i

Uq

Ξq

Uq,A/(ν − ξ).

(5.5)

Proof. The defining relations of Uq hold in Uq,A/(ν−ξ) by the definition of Uq in [9] and 

the presentation of Uq in [8]. Therefore, the map Ξq as above is well-defined. Moreover 

Ξq is surjective, since Ei, F i, K
±1

i , L
±1

i generate Uq,A/(ν − ξ) as C-algebra.

Now we check that (5.5) is a commutative diagram. Indeed, since Property (c) in the 

Appendix A holds and q 
→ q under the evaluation map, we have that

Ξq ◦ T q
i (ej) = (adc Ei)

−cq

ijEj = Tq
i ◦ Ξρi(q)(ej),

Ξq ◦ T q
i (fj) = (adc F i)

−cq

ijF j = Tq
i ◦ Ξρi(q)(fj)

for j �= i. Since Ξq◦T q
i (X) = Tq

i ◦Ξρi(q)(X) for X ∈ {ei, fi, K
±1
j , L±1

j }, the claim follows. 

By (5.5), Ξq(Eβ) = Eβ and Ξq(Fβ) = F β for all β ∈ Δ+. Hence Ξq sends the PBW 

basis of Uq to that of Uq,A/(ν − ξ), so Ξq, and its restrictions to U±
q , are isomorphisms. 

Clearly Ξq (and its restrictions) are isomorphisms of (braided) Hopf algebras. �

5.4. The specialization of U res ±
q,A

Recall the Lusztig algebra Lq §3.9 and the identification of B̃q with U+
q as in §4.3. 

For β ∈ Oq, n ∈ N0, define η
(n)
β ∈ Lq such that

(η
(n)
βj

, em1

β1
. . . emℓ

βℓ
) =

{
1, mj = n, mk = 0 for k �= j,

0, otherwise.
(5.6)

By [3, Proposition 4.6], the set

{η
(n1)
β1

· · · η
(nℓ)
βℓ

: 0 ≤ nj < Ñβj
}



N. Andruskiewitsch et al. / Advances in Mathematics 428 (2023) 109134 33

is a basis of Lq and the algebra Lq is generated by

{ηαi
: i ∈ I} ∪ {η

(Nβ)
β : β ∈ Πq}.

The Lie algebra n−
q from (3.15) has a C-basis {ι∗(η

(Nβ)
β ) : β ∈ Oq} and set of simple 

root vectors {ι∗(η
(Nβ)
β ) : β ∈ Πq}. Similar results hold for the Lusztig algebra Lq(−1)

associated to B̃q(−) ≃ U−
q . The corresponding elements of Lq(−1) , defined as in (5.6)

using fm
β instead of em

β , will be denoted by θ
(n)
β , where β ∈ Oq and n ∈ N0.

Remark 5.8. The Lie algebras associated to Lq and Lq(−1) as in Remark 3.7 are iso-

morphic to each other, see the list in the Appendix A. Hence we have a Lie algebra 

isomorphism

n−
q(−1) ≃ n+

q (5.7)

where ι∗(θ
(Nβ)
β ) ∈ n+

q(−1) , β ∈ Πq are mapped to the simple root vectors of n−
q .

For a braided Hopf algebra B denote the braided opposite algebra Bop with product 

μop := μc−1 where μ : B × B → B is the product in B.

Proposition 5.9. There are C-algebra anti-isomorphisms

φ− : U res −
q,A /(ν − ξ) → Lq,

φ+ :
(
U res +

q,A /(ν − ξ)
)op

→ Lq(−1) ,
given by

F
(n)
β 
→ η

(n)
β ,

E
(n)
β 
→ θ

(n)
β ,

β ∈ Oq, n ∈ N0.

Proof. We prove the statement in the minus case, the plus case is analogous. By Propo-

sition 5.5 the Hopf skew-pairing 〈 , 〉 : U−
q × U+

q → C(ν) restricts to a perfect pairing

〈 , 〉 : U res −
q,A × U+

q,A → A.

Since U+
q,A/(ν − ξ) ≃ U+

q as braided Hopf algebras, the latter pairing induces a non-

degenerate pairing 〈 , 〉 :
(
U res −

q,A /(ν − ξ)
)

× U+
q → C such that

〈yy′, x〉 = 〈y ⊗ y′,Δ(x)〉, y, y′ ∈ U res −
q,A /(ν − ξ), x ∈ U+

q (5.8)

and we have the commutative diagram

U res −
q,A × U+

q,A A

(
U res −

q,A /(ν − ξ)
)

× U+
q C
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By the definition of Lq, we have a canonical vector space isomorphism

φ− : U res −
q,A /(ν − ξ) → Lq such that 〈Y, x〉 = (φ−(Y ), x)

for all Y ∈ U res −
q,A /(ν − ξ), x ∈ U+

q . Comparing (3.17) and (5.8), we see that φ− is an 

algebra anti-isomorphism. Using again Proposition 5.5 and the definition (5.6) of η
(n)
β , 

we get that φ− is given by F
(n)
β 
→ η

(n)
β for β ∈ Oq, n ∈ N0. �

6. Poisson orders on large quantum groups

By Theorem 5.7, the large quantum group Uq fits in the context of Section 2 and 

consequently the pair (Uq, Z(Uq)) inherits a structure of Poisson order from deformation 

theory. However the Poisson algebra Z(Uq) is often singular. We prove that the central 

Hopf subalgebra Zq introduced in §4.5 (which is of course regular) is a Poisson subalgebra 

of Z(Uq) of the same dimension. Thus (Uq, Zq) has a structure of Poisson order that 

restricts to the corresponding large quantum Borel and unipotent algebras.

6.1. Poisson structure on Zq

We show that Zq, Z�
q , Z�

q , Z+
q and Z−

q are Poisson subalgebras of Z(Uq), respectively 

Z(U�
q ), Z(U�

q ), Z(U+
q ) and Z(U−

q ).

The coefficients of Poisson brackets that we use will be expressed in terms of a square 

matrix Pq ∈ C
Πq×Πq

. Furthermore, in the next section we will show that the Cartan 

matrix of the semisimple Lie algebra gq is also expressed in terms of the entries of this 

matrix. The matrix Pq is defined as follows. Let β, γ ∈ O
q
+. As qβγ = qβγ(ξ), (4.26)

implies that there exists ℘q
βγ(ν) ∈ A such that

1 − q
NβNγ

βγ = (ν − ξ)℘q
βγ(ν). (6.1)

Recall the notation β from (3.14) and the set Oq from Theorem 3.5. Define

P
q := (℘q

βγ(ξ))β,γ∈Πq . (6.2)

We distinguish two cases, namely whether q is of type A(k − 1|θ − k) or not. In the 

first case we need one more generator to have finite type of Uq as Zq-module, and a 

fortiori as Z(Uq)-module.

Case 1. q is of type A(k − 1|θ − k) with Dynkin diagram as in Table 2. Set

η :=
∑

1≤i≤k

αi +
∑

k<i≤θ

(i − k + 1)αi, η := Nηη, (6.3)

recall (3.12). It is easy to see that Nη = N, recall (4.23). Denote
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Π̃q := Πq ⊔ {η} = {αi|i �= k} ⊔ {η}. (6.4)

We have the following:

(I) By Proposition 4.8, Zq is generated by (4.24) and K
±Nη
η , L

±Nη
η .

(II) By direct computation, qαiη = qηαi
= 1. Arguing as in (6.1), there exist ℘q

αiη(ν), 

℘q
ηαi

(ν) ∈ A such that

1 − qαiη = (ν − ξ)℘q
αiη(ν), 1 − qηαi

= (ν − ξ)℘q
ηαi

(ν).

We check that the following equality holds:

℘q
αiη(ξ) + ℘q

ηαi
(ξ) = 0, i �= k. (6.5)

(III) Similarly, qηη = 1, so there exist ℘q
ηη(ν) ∈ A such that 1 − qηη = (ν − ξ)℘q

ηη(ν). By 

direct computation,

℘q
ηη(ξ) = −N2

η ξ
(
θ − k + (θ − k + 1)2

)
�= 0. (6.6)

Case 2. q is not of type A(k − 1|θ − k). Set

Π̃q := Πq. (6.7)

It follows from Proposition 4.8 that

Z+0
q = C[KNμ

μ : μ ∈ Π̃q], Z−0
q = C[LNμ

μ : μ ∈ Π̃q]. (6.8)

Lemma 6.1. Let i ∈ I. Then Pρi(q) = Pq.

Proof. First, Πρi(q) = sqi (Πq). Thus ℘
ρi(q)

sq

i (β)sq

i (γ)
(ν) = ℘q

βγ(ν) for β, γ ∈ Πq by (3.11). �

The next theorem is the main result of this section.

Theorem 6.2. There are structures of Poisson order on the pairs

(Uq, Zq), (U�
q , Z�

q ), (U�
q , Z�

q ), (U+
q , Z+

q ) and (U−
q , Z−

q ) (6.9)

arising by restriction from the Poisson order on the corresponding algebra and its center 

with Poisson bracket (2.2). The central algebras Zq, Z�
q and Z�

q are Poisson-Hopf while 

Z±
q are coideal Poisson subalgebras over the former.

In each of the pairs in (6.9) the second algebra is central to the first. Using PBW 

bases one easily shows that in each case the first algebra is a finitely generated module 

over the second one in the pair; here the introduction of the generators (4.25) for super 

type A is essential. Because of Theorem 5.7 and Proposition 2.5 we are reduced to prove:
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Proposition 6.3. The subalgebras Z±
q , Z�

q , Z�
q and Zq are Poisson subalgebras of Z(U±

q ), 
Z(U�

q ), Z(U�
q ) and Z(Uq), respectively, under the Poisson bracket (2.2).

Observe that Z±
q , Z�

q and Z�
q are Poisson subalgebras of Zq.

Proof. We apply Theorem 2.4 to the algebra U+
q,A, the automorphisms ςq

i and the (id, ςq
i )-

derivations ∂q
i , i ∈ I to conclude that Z ′ defined as in (2.4) is a Poisson subalgebra of 

Z(U+
q ). Now we have that

ς q
i

⋆
= ςqi , ∂

q

i
∗
= ∂q

i , Z+
q ⊂ ∩i∈I ker(ςqi − id).

The equality ⋆ holds since q = q(ξ), while ∗ holds because both skew-derivations act in 

the same way on the generators of U+
q . The inclusion holds since Z+

q ⊂ Z(Uq): indeed 

ςqi (x) = KixK
−1
i = x for all x ∈ Z+

q . From this inclusion and (4.28), it follows that 

Z ′ = Z+
q . The proof for Z−

q is analogous. The restriction of the Poisson structure to Z0±
q

vanishes by the definition (2.2).

Next we prove the statement for Z�
q . Let β, γ ∈ O

q
+. We have

{e
Nβ

β ,KNγ
γ } =

[E
Nβ

β ,K
Nγ
γ ]

ν − ξ
=

1 − q
NβNγ

βγ

ν − ξ
E

Nβ

β K
Nγ
γ

(6.1)
= ℘q

βγ(ξ)e
Nβ

β KNγ
γ ∈ Z�

q .

If q is of type A(k − 1|θ − k) and η is as in (6.3), then K
Nη
η ∈ Z(Uq) and {e

Nβ

β , K
Nη
η } ∈

Ce
Nβ

β K
Nη
η ⊂ Z�

q . This proves the claim in light of Proposition 4.8 and Property (I) in 

§6.1. Similarly, one shows that

{e
Nβ

β , LNμ
μ } ∈ Ce

Nβ

β LNμ
μ , {f

Nβ

β ,KNμ
μ } ∈ Ce

Nβ

β KNμ
μ , {f

Nβ

β , LNμ
μ } ∈ Cf

Nβ

β LNμ
μ ,

for all β ∈ O
q
+, μ ∈ Π̃q. This finishes the proof for Z�

q and reduces that of Zq to proving 

that {e
Nβ

β , f
Nγ
γ } ∈ Zq for all β, γ ∈ O

q
+. For this we use the enumeration of the positive 

roots using the longest element of the Weyl groupoid. First we assume that β = βj , 

γ = βk for 1 ≤ j < k ≤ ℓ. Let p = ρij
. . . ρi1

(q), γ′ = spij
. . . si1

(γ), so Nγ′ = Nγ . We have 

that

{e
Nβ

β , fNγ
γ } =

[E
Nβ

β , F
Nγ
γ ]

ν − ξ
=

Tq
i1

. . . Tij
([K

−Nij

ij
F

Nij

ij
, F

Nγ′

γ′ ])

ν − ξ

(5.5)
= T q

i1
. . . Tij

⎛
⎝ [K

−Nij

ij
F

Nij

ij
, F

Nγ′

γ′ ]

ν − ξ

⎞
⎠ = T q

i1
. . . Tij

({
K

−Nij

ij
f

Nij

ij
, f

Nγ′

γ′

})
.

By the statements already proved, 
{
K

−Nij

ij
f

Nij

ij
, f

Nγ′

γ′

}
∈ Zp. Hence
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{e
Nβ

β , fNγ
γ } ∈ T q

i1
. . . Tij

(Zp)
Theorem 4.7

= Zq.

The case j > k is proved analogously. Now assume that β = γ. We start with the case 

β = αi for some i ∈ I (a simple Cartan root). Using (4.6) we prove recursively that

[EN
i , FN

i ] =

N∑

t=1

(t)qii
!

(
N

t

)2

qii

FN−t
i

t−1∏

s=0

(
Kiq

2t−2N−s
ii − L−1

i

)
EN−t

i , N ∈ N. (6.10)

Let t ∈ INi−1. As qii is a primitive Ni-th root of unity and qii = qii,

℘q
αiαi

(ξ) =
1 − q

N2
i

ii

ν − ξ
=

(1 − qNi

ii )(1 + qNi

ii + · · · + q
Ni(Ni−1)
ii )

ν − ξ
= Ni

1 − qNi

ii

ν − ξ
.

Hence,

(Ni)qii
!

ν − ξ
=

1 − qNi

ii

ν − ξ
·

(1 − qii) . . . (1 − qNi−1
ii )

(1 − qii)Ni
=

℘q
αiαi

(ξ)

(1 − qii)Ni
· (6.11)

From this we obtain,

{eNi

i , fNi

i } =
[ENi

i , FNi

i ]

ν − ξ
=

(Ni)qii
!

ν − ξ

Ni−1∏

s=0

(Kiq
−s
ii − Li) =

−℘q
αiαi

(ξ)

(qii − 1)Ni
(KNi

i − L−Ni

i ) ∈ Zq.

Next, if β is not simple, say β = βj for some j ∈ Iℓ, then using Theorem 4.7 and (5.5)

again

{e
Nβ

β , f
Nβ

β } = T q
i1

. . . Tij−1

( [E
Nij

ij
, F

Nij

ij
]

ν − ξ

)
=

−℘q
ββ(ξ)

(qββ − 1)Nβ
(K

Nβ

β − L
Nβ

β ) ∈ Zq. �

(6.12)

7. The associated Poisson algebraic groups

In this section we describe the Poisson algebraic groups that correspond to the Poisson-

Hopf algebras Zq, Z�
q and Z�

q . We prove that, as algebraic groups, they are isomorphic to 

Borel subgroups of connected semisimple algebraic groups but of adjoint type (and not of 

simply connected type as in previous works) and direct products of such Borel subgroups. 

The dual Lie bialgebras of the three tangent Lie algebras are proved to constitute a 

Manin triple, the ample Lie algebra in which is reductive. It is shown that the resulting 

Lie bialgebra structures are the ones from the Belavin–Drinfeld classification [11] for 

the empty BD-triple and arbitrary choice of the continuous parameters. The results 

completely determine the Poisson structures on the three kinds of algebraic groups in 

question.
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7.1. The positive and negative parts of the dual tangent Lie bialgebra of Mq

Let Mq, M±
q , M±0

q , M�
q and M�

q be the complex algebraic groups which are equal 

to the maximal spectra of the commutative Hopf algebras Zq, Z±
q , Z±0

q , Z�
q and Z�

q , 

respectively. Here the Hopf algebra structures on Z±
q are the restrictions of the braided 

Hopf algebra structures on U±
q to Z±

q [9].

Since Zq is a finitely generated Poisson-Hopf algebra which is an integral domain, 

Mq is a connected Poisson algebraic group (see §B.2 for background). Analogously, M�
q , 

M�
q and M±0

q are connected Poisson algebraic groups, and M±
q are connected unipotent 

algebraic groups. The latter are not Poisson algebraic groups; they are isomorphic to 

certain Poisson homogeneous spaces for M�
q and M�

q (see §8.3). The tensor product 

decompositions Zq ≃ Z�
q ⊗ Z�

q from §4.5 give rise to the decomposition of algebraic 

groups

Mq ≃ M�
q × M�

q . (7.1)

This is not a direct product decomposition of Poisson algebraic groups (because Zq ≃

Z�
q ⊗ Z�

q is a tensor product decomposition of commutative but not Poisson algebras). 

However, the canonical projections Mq ։ M�
q and Mq ։ M�

q are homomorphisms of 

Poisson algebraic groups because Z�
q and Z�

q are Poisson-Hopf subalgebras of Zq.

Denote by mq, m�
q and m�

q the tangent Lie bialgebras of Mq, M�
q and M�

q (see 

the Appendix B for background and notations). Eq. (7.1) gives rise to the direct sum 

decomposition of Lie algebras

mq ≃ m�
q ⊕ m�

q .

The Lie coalgebra structure on mq, fully described below, has cross terms. The dual of 

the tangent Lie bialgebra m∗
q = T ∗

1 Mq is computed as the linearization at the identity 

element 1 of Mq of its Poisson structure by using (B.1). The maximal ideal M1 of 

C[Mq] ≃ Zq of functions vanishing at 1 coincides with the augmentation ideal of Zq. In 

the proofs below we will use the identification T ∗
1 M ≃ M1/M

2
1 where the differential 

d1(g) of a function g ∈ C[Mq] at 1 ∈ Mq is sent to the class of g − g(1) in M1/M
2
1 for 

g ∈ C[Mq]. The Lie algebra m∗
q has the C-basis:

{
d1(e

Nβ

β ), d1(f
Nβ

β ), d1(KNμ
μ ), d1(LNμ

μ ) : β ∈ O
q
+, μ ∈ Π̃q

}
. (7.2)

By Proposition 6.3, the subspaces

(m+
q )∗ := ⊕β∈O

q

+
C d1(e

Nβ

β ) and (m−
q )∗ := ⊕β∈O

q

+
C d1(f

Nβ

β )

are Lie subalgebras of m∗
q. The dual Lie bialgebras (m�

q )∗ and (m�
q )∗ are canonically 

identified with the Lie sub-bialgebras of m∗
q
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(m+
q )∗ ⊕

(
⊕

μ∈Π̃q d1(KNμ
μ )
)

and (m−
q )∗ ⊕

(
⊕

μ∈Π̃q d1(LNμ
μ )
)
. (7.3)

Recall the notation from §5.4. It follows from the triangular decomposition (3.15) of 

the semisimple Lie algebra gq associated to q that the set of simple roots of gq can be 

identified with Πq. Denote the entries of the Cartan matrix of gq by

cβ γ , β, γ ∈ Πq.

Throughout the section we will assume the identification n−
q(−1) ≃ n+

q from (5.7), so 

gq = n+
q ⊕ hq ⊕ n−

q will be identified with n−
q(−1) ⊕ hq ⊕ n−

q . By the definitions of n−
q(−1)

and n−
q , gq has a set of Chevalley generators

{xβ, yβ , hβ : β ∈ Πq}

such that xβ ∈ C
×ι∗(θβ) and yβ ∈ C

×ι∗(ηβ), respectively (here ηβ and θβ are defined in 

(5.6) and the subsequent paragraph). In this way the root lattice of gq is identified with 

Qq by setting deg xβ = − deg yβ = Nββ, deg hβ = 0 for β ∈ Πq.

We will need the following reductive Lie algebra

g̃q :=

{
gq ⊕ C, if q is of type A(k − 1|θ − k)

gq, otherwise.

See the comments after Theorem 6.2. By (3.15), it has the triangular decomposition

g̃q = n+
q ⊕ h̃q ⊕ n−

q

where the Cartan subalgebra is given by

h̃q :=

{
hq ⊕ C, if q is of type A(k − 1|θ − k)

hq, otherwise.

In the A(k − 1|θ − k) case denote by hη a non-zero central element of g̃q. In that case 

we have g̃q = gq ⊕ Chη and h̃q = hq ⊕ Chη.

Proposition 7.1. We have a Qq-graded Lie algebra isomorphism (m±
q )∗ ≃ n±

q given by

d1(e
Nβ

β ) 
→ sβι
∗(θ

(Nβ)
β ), respectively d1(f

Nβ

β ) 
→ −sβι
∗(η

(Nβ)
β )

for all β ∈ O
q
+, where sβ :=

℘q
ββ(ξ)

(1 − qββ)Nβ
. In the plus case we use the identification (5.7).
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Proof. First we prove the minus case. Let β, γ ∈ O
q
+. Since F

Nβ

β = f
Nβ

β , F
Nγ
γ = f

Nγ
γ ∈ Zq

and the subalgebra Zq is closed under the Poisson bracket {·, ·} by Proposition 6.3, using 

Proposition 5.4 we obtain

[F
Nβ

β , FNγ
γ ] ≡

∑

δ∈O
q

+

(ν − ξ)aδ
βγ(ν)FNδ

δ + (ν − ξ)gβγ mod (ν − ξ)2U−
q,A, (7.4)

where aδ
βγ(ν) ∈ A and gβγ is a non-commutative polynomial in {FNδ

δ : δ ∈ O
q
+} involving 

monomials of degree ≥ 2. Since Uq is ZI-graded, the sum in the right-hand side has at 

most one non-zero term, when Nββ + Nγγ = Nδδ for some δ ∈ O
q
+. Therefore

[d1(f
Nβ

β ), d1(fNγ
γ )] = d1

(
{f

Nβ

β , fNγ
γ }
)

= d1

(
[F

Nβ

β , F
Nγ
γ ]

ν − ξ

)
(7.5)

=
∑

δ∈O
q

+

aδ
βγ(ξ)d1(fNδ

δ ) + d1(gβγ) =
∑

δ∈O
q

+

aδ
βγ(ξ)d1(fNδ

δ ),

because gβγ ∈ M1
2. From (7.4) and since U−

q,A is N0-graded connected, we see that

[F
(Nβ)
β , F (Nγ)

γ ] ≡
∑

δ∈O
q

+

aδ
βγ(ν)

(ν − ξ)(Nδ)qδδ
!

(Nβ)qββ
!(Nγ)qγγ

!
F

(Nδ)
δ mod (ν − ξ)U res −

q,A .

It follows from (6.11) that

(Nβ)qββ
!

ν − ξ
=

℘q
ββ(ξ)

(1 − qββ)Nβ
= sβ .

Hence in U res −
q,A /(ν − ξ) we have

[sβF
(Nβ)
β , sγF

(Nγ)
γ ] =

∑

δ∈O
q

+

aδ
βγ(ξ)sδF

(Nδ)
δ

=

⎧
⎨
⎩

aδ
βγ(ξ)sδF

(Nδ)
δ if ∃δ ∈ O

q
+ : δ = β + γ,

0, otherwise.

(7.6)

The statement of the lemma follows from this identity, (7.5) and Proposition 5.9. The 

plus case is proved analogously, using Remark 5.8 and that qβγ = 1 for all β, γ ∈ Oq
+. �

The last part of the proof gives the following fact about the structure of Lusztig 

algebras which is of independent interest. Recall ηβ defined in (5.6).

Corollary 7.2. The braided Hopf algebra projection ι∗ : Lq ։ U(n−
q ) (recall (3.18)) has 

an algebra section U(n−
q ) → Lq given by
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ι∗(η
(Nβ)
β ) 
→ η

(Nβ)
β , β ∈ O

q
+.

Proof. By Proposition 5.9 and (7.6),

[η
(Nβ)
β , η(Nγ)

γ ] =

⎧
⎨
⎩

aδ
βγ(ξ)sδ

sβsγ
η

(Nδ)
δ , if ∃δ ∈ O

q
+ : δ = β + γ,

0, otherwise.
(7.7)

On the other hand, set xβ := ι∗(η
(Nβ)
β ). As n−

q is the positive part of gq and each xβ

has weight β, there exist aβ γ ∈ k, β, γ ∈ O
q
+, such that

[xβ , xγ ] =

{
aβ γxβ+γ , β + γ ∈ O

q
+,

0, β + γ /∈ O
q
+.

(7.8)

Applying ι∗ to (7.7) we obtain that aβ γ =
aδ

βγ(ξ)sδ

sβsγ
for each pair β, γ ∈ O

q
+ such that β+

γ ∈ O
q
+. Therefore the existence of the algebra map U(n−

q ) → Lq as above follows since 

U(n−
q ) is presented by generators xβ, β ∈ O

q
+, and relations (7.8), and the corresponding 

relations for η
(Nβ)
β hold in Lq by (7.7). �

7.2. The dual tangent Lie bialgebra of Mq

Lemma 7.3. The following equalities hold in the Lie algebra m∗
q:

[d1(e
Nβ

β ), d1(fNγ
γ )] = −δβγ

℘q
ββ(ξ)

(qββ − 1)Nβ
(d1(K

Nβ

β ) + d1(L
Nβ

β )), β, γ ∈ Πq,

and

[d1(KNμ
μ ), d1(e

Nβ

β )] = −℘q
μβ(ξ)d1(e

Nβ

β ), [d1(KNμ
μ ), d1(f

Nβ

β )] = ℘q
μβ(ξ)d1(f

Nβ

β ),

[d1(LNμ
μ ), d1(e

Nβ

β )] = −℘q
βμ(ξ)d1(e

Nβ

β ), [d1(LNμ
μ ), d1(f

Nβ

β )] = ℘q
βμ(ξ)d1(f

Nβ

β )

for all β ∈ O
q
+, μ ∈ Π̃q.

Proof. The case of β �= γ ∈ Πq of the first identity follows from the fact that (7.2) is 

a basis of the Lie algebra m∗
q and that the latter is Qq-graded. The case β = γ ∈ Πq

is a consequence of (6.12) since d1(L
Nβ

β ) = −d1(L
−Nβ

β ), which in turn follows since 

the value of L
Nβ

β at the identity of Mq equals 1. The other four identities follow from 

(4.4)–(4.5). �

Since the polynomials νn − a are separable over C for a �= 0, we infer from (6.1) that

℘q
ββ(ξ) �= 0 for all β ∈ O

q
+.
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Theorem 7.4.

(a) The Cartan matrix of the semisimple Lie algebra gq is given by

cβ γ =
℘q

βγ(ξ) + ℘q
γβ(ξ)

℘q
ββ(ξ)

, β, γ ∈ Πq.

(b) There is a (Qq-graded) Lie algebra isomorphism g̃q ⊕ h̃q ≃ m∗
q such that

xβ 
→ d1(f
Nβ

β ), yβ 
→
(qβ − 1)Nβ

℘q
ββ(ξ)2

d1(e
Nβ

β ), hμ 
→
1

℘q
μμ(ξ)

(d1(KNμ
μ ) + d1(LNμ

μ ))

for β ∈ Πq, μ ∈ Π̃q, and h̃q maps to the subspace

{ ∑

μ∈Π̃q

aμd1(KNμ
μ ) + bμd1(LNμ

μ ) :
∑

μ∈Π̃q

℘q
μγ(ξ)aμ + ℘q

γμ(ξ)bμ = 0,∀γ ∈ Π̃q
}

of the abelian Lie algebra ⊕
β∈Π̃q(Cd1(K

Nβ

β ) + Cd1(L
Nβ

β )).

Proof. (a) For β ∈ Πq and μ ∈ Π̃q, define the following elements of m∗
q:

x̂β := d1(fNγ
γ ), ŷβ :=

(qβ − 1)Nβ

℘q
ββ(ξ)2

d1(e
Nβ

β ), ĥμ :=
1

℘q
μμ(ξ)

(d1(KNμ
μ ) + d1(LNμ

μ ))

and the Lie subalgebra gq(β) := Cx̂β ⊕ Cĥβ ⊕ Cŷβ . Lemma 7.3 implies that, for all 

β ∈ Πq, [ĥβ , ̂xβ ] = 2x̂β , [ĥβ , ̂yβ ] = −2ŷβ , [x̂β , ̂yβ ] = ĥβ , so gq(β) ≃ sl2.

Now take β �= γ ∈ Πq and consider gq as a gq(β)-module under the adjoint action. It 

follows from Lemma 7.3 that

[x̂β , ŷγ ] = 0 and [ĥβ , ŷγ ] = −
℘q

βγ(ξ) + ℘q
γβ(ξ)

℘q
ββ(ξ)

x̂γ ,

so ŷγ is a highest weight vector for gq(β) ≃ sl2 of weight −
℘q

βγ (ξ)+℘q

γβ(ξ)

℘q

ββ(ξ)
ω where ω

denotes the fundamental weight of sl2. The isomorphism of Proposition 7.1 and the 

Serre relations in n−
q imply that

ad
−cβγ+1
ŷβ

(ŷγ) = 0 and adj
ŷβ

(ŷγ) �= 0 for j � −cβγ .

Hence, ad
−cβγ

ŷβ
(ŷγ) is the lowest weight vector of the (irreducible) gq(β)-module generated 

by ŷγ , which forces

cβ γ =
℘q

βγ(ξ) + ℘q
γβ(ξ)

℘q
ββ(ξ)

·
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This proves part (a). It also proves that the assignment xβ 
→ x̂β , yβ 
→ ŷβ , hβ 
→ ĥβ

for β ∈ Πq defines a Qq-graded Lie algebra homomorphism ϕ : gq → m∗
q which is 

an embedding by Proposition 7.1 and the linear independence of {d1(K
Nβ

β ), d1(L
Nβ

β ) :

β ∈ O
q
+}. Here we use the canonical isomorphism n±

q → n∓
q obtained by restricting the 

Chevalley involution of g±
q .

If q is of type A(k − 1|θ − k), then ĥη is in the center of m∗
q by (6.5) and Lemma 7.3. 

Furthermore, ĥη /∈ ϕ(gq) by the definition of d(K
Nμ
μ ) and d(L

Nμ
μ ) for μ ∈ Π̃q. Hence, ϕ

extends to an embedding

ϕ : g̃q → m∗
q (7.9)

by setting ϕ(hη) := ĥη if q is of type A(k − 1|θ − k). Denote

(m0
q)∗ := ⊕

μ∈Π̃q

(
Cd1(KNμ

μ ) ⊕ Cd1(LNμ
μ )
)
.

Let (m0
q)′ be the intersection of the kernels of the functionals {lγ : γ ∈ Π̃q} on (m0

q)∗

given by

lγ(d1(KNμ
μ )) := ℘q

μγ(ξ), lγ(d1(LNμ
μ )) := ℘q

γμ(ξ).

Part (a) of the theorem, the constructed embedding (7.9), and eq. (6.6) imply that 

(m0
q)′ ∩ Imϕ = 0. Hence, dim(m0

q)′ ≤ dim(m0
q)∗ − dim h̃q = dim h̃q.

Since the number of the above functionals equals |Π̃q| = dim h̃q, we have

dim(m0
q)′

� dim hq.

It follows from part (a) that dim(m0
q)′ � dim hq, Hence

dim hq ≥ dim(m0
q)∗ − dim h̃q = dim h̃q.

Therefore dim(m0
q)′ = dim h̃q = dim(m0

q)∗/2 and m∗
q = ϕ(g̃η) ⊕ (m0

q)′. Taking a vector 

space isomorphism hq ≃ (m0
q)′ and combining it with the embedding ϕ, gives the needed 

Lie algebra isomorphism for part (b). �

Let (·, ·) be the invariant symmetric bilinear form on gq for which the induced form 

on the dual of the Cartan subalgebra of gq satisfies (β, β) = 2 for short roots β ∈ Πq. 

We extend it to a non-degenerate invariant symmetric bilinear form on g̃q, where in the 

case when q is of type A(k − 1|θ − k) we let

(hη, gq) = 0, (hη, hη) = 2.

In this case we identify
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h̃q ∼= h∗
q ⊕ Cη,

where η ∈ h̃∗
q is such that 〈η, hη〉 = 2 and 〈η, hβ〉 = 0 for all β ∈ Πq.

We will identify h̃q with h̃∗
q via the bilinear form (., .). Define the scalars

κμ := 2℘q
μμ(ξ)(μ, μ)−1 for μ ∈ Π̃q.

For β ∈ Πq, the scalar κβ only depends on the simple factor of g̃q of which β ∈ Πq is a 

root, because by Theorem 7.4(a),

cβγ =
℘q

βγ(ξ) + ℘q
γβ(ξ)

℘q
ββ(ξ)

=
2(β, γ)

(β, β)
· (7.10)

If q is of type A(k − 1|θ − k), then (η, η) = 2.

Proposition A.3 (i) tells us that each large quantum group Uq is realized as a spe-

cialization of an integral form of a one-parameter quantum group Uq in infinitely many 

different ways parametrized by integers tij ∈ Z for i < j ∈ I. Furthermore, by part (ii) 

of that proposition, for a generic choice of the parameters tij ∈ Z, i < j ∈ I, the matrix 

with entries ℘q
βγ(ξ) for β, γ ∈ Πq is non-degenerate. In the remaining part of the paper 

we will assume the following:

Non-degeneracy Assumption 7.5. The specialization parameters tij ∈ Z, i < j ∈ I in 

Proposition A.3 are chosen in such a way that the matrix Pq in (6.2) is non-degenerate.

It follows from (6.5)–(6.6) that the matrix

P̃
q := (℘q

μγ(ξ))
μ,γ∈Π̃q

is invertible.

Remark 7.6. In what follows we will identify the Lie algebras

m∗
q ≃ g̃q ⊕ h̃q (7.11)

via the isomorphism from Theorem 7.4. In particular, xβ, yβ , hμ for β ∈ Πq, μ ∈ Π̃q will 

be viewed as elements of m∗
q. We also fix the identification of abelian Lie algebras

{ ∑

μ∈Π̃q

aμd1(KNμ
μ ) + bμd1(LNμ

μ ) :
∑

μ∈Π̃q

℘q
μγ(ξ)aμ + ℘q

γμ(ξ)bμ = 0,∀γ ∈ Π̃q
}

≃ h̃q (7.12)

for Theorem 7.4(b) by sending 
∑

μ∈Π̃q aμd1(K
Nμ
μ ) + bμd1(L

Nμ
μ ) 
→

∑
μ∈Π̃q bμκμμ, using 

the identification of h̃q with h̃∗
q via the form (., .). Since both Lie algebras in (7.12) have 
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the same dimensions, we only need to show that this map is injective. An element in 

its kernel has bμ = 0 for all μ ∈ Π̃q and thus, 
∑

℘q
μγ(ξ)aμ = 0 for all γ ∈ Π̃q. The 

Non-degeneracy Assumption 7.5 implies that aμ = 0 for μ ∈ Π̃q.

Consider the Borel subalgebras b̃±
q := n±

q ⊕ h̃q of g̃q. We have

(m�
q )∗ ⊂ b̃−

q ⊕ h̃q and (m�
q )∗ ⊂ b̃+

q ⊕ h̃q (7.13)

in the identification (7.3) of (m�
q )∗ and (m�

q )∗ with Lie subalgebras of m∗
q. Using the 

Non-degeneracy Assumption 7.5 one more time, we obtain that the projection into the 

first component m∗
q ≃ g̃q ⊕ h̃q → g̃q restricts to the Lie algebra isomorphisms

(m�
q )∗ ≃ b̃−

q and (m�
q )∗ ≃ b̃+

q . (7.14)

We next describe the embeddings (7.13). Denote the linear maps P̃, P̃ T ∈ End(h̃q):

P̃(μ) :=
∑

γ∈Π̃q

℘q
μγ(ξ)γ, P̃

T(μ) :=
∑

γ∈Π̃q

℘q
γμ(ξ)γ. (7.15)

Because of the Non-degeneracy Assumption 7.5, the matrix P̃q is invertible, and thus 

both endomorphisms are invertible.

Denote by ( (·, ·) ) the invariant symmetric bilinear form on g̃q, which is a rescaling of 

(·, ·) by κ−1
μ on each simple factor of g̃q and on the one-dimensional center of g̃q if q is 

of type A(k − 1|θ − k). It satisfies

((d1(KNμ
μ ) + d1(LNμ

μ ), d1(KNγ
γ ) + d1(LNγ

γ ))) = ℘q
μμ(ξ)℘q

γγ(ξ)((hμ, hγ))

= ℘q
μμ(ξ)℘q

γγ(ξ)κ−1
γ

2cμγ

(γ, γ)
= ℘q

μγ(ξ) + ℘q
γμ(ξ), ∀μ, γ ∈ Π̃q.

This implies that the form ( (·, ·) ) has a unique extension to an invariant symmetric bilinear 

form on m∗
q such that

((d1(KNμ
μ ), d1(LNγ

γ ))) = ℘q
μγ(ξ), (7.16)

((d1(KNμ
μ ), d1(LNμ

μ ))) = ((d1(KNγ
γ ), d1(LNγ

γ ))) = 0 (7.17)

for μ, γ ∈ Π̃q. The Non-degeneracy Assumption 7.5 implies that the bilinear form ( (·, ·) )

on m∗
q is non-degenerate.

One easily verifies that the orthogonal complement in m∗
q of g̃q equals h̃q.

Proposition 7.7. For all large quantum groups Uq satisfying the Non-degeneracy Assump-
tion 7.5, the subalgebras (m�

q )∗ ⊂ b̃−
q ⊕ h̃q and (m�

q )∗ ⊂ b̃+
q ⊕ h̃q are given by
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(m�
q )∗ = {(y + h,−h) : y ∈ n−

q , h ∈ h̃q},

(m�
q )∗ = {(x + h,P−1

P
T(h)) : x ∈ n+

q , h ∈ h̃q}.

Proof. Denote the first (abelian) Lie algebra in (7.12) by h̃
(2)
q . Fix

h :=
∑

μ∈Π̃q

cμ(d1(KNμ
μ ) + d1(LNμ

μ )), h1 :=
∑

μ∈Π̃q

aμd1(KNμ
μ ), h2 :=

∑

μ∈Π̃q

bμd1(LNμ
μ ).

If h1 + h2 ∈ h
(2)
q , then lγ(h1) = −lγ(h2) for all γ ∈ Π̃q, which is equivalent to

P̃
( ∑

μ∈Π̃q

aμμ
)

= −P̃
T
( ∑

μ∈Π̃q

bμμ
)
. (7.18)

By Theorem 7.4(b), in the identification (7.11), d1(K
Nμ
μ ) + d1(L

Nμ
μ ) corresponds to 

κμμ for all μ ∈ Π̃q. Hence, the first statement of the proposition is equivalent to proving 

that for all h, h1, h2 as above, if h1 + h2 ∈ h̃
(2)
q and h + h1 + h2 ∈ (m�

q )∗, then cμ = −bμ

for μ ∈ Π̃q. From the condition h1 + h2 ∈ h̃
(2)
q we obtain ( (d1(L

Nγ
γ ), h + h2) ) = 0 for all 

γ ∈ Π̃q. Thus

∑

μ∈Π̃q

℘q
μγ(ξ)(cμ + bμ) = 0, ∀γ ∈ Π̃q.

Now the first statement of the proposition follows from the Non-degeneracy Assump-

tion 7.5. The second one follows from the first by interchanging the roles of (m�
q )∗ and 

(m�
q )∗ and applying (7.18). �

We next describe the Lie coalgebra structure on m∗
q and the corresponding Manin 

triple; see §B for background.

Theorem 7.8. For every choice of the specialization parameters tij ∈ Z satisfying the 

Non-degeneracy Assumption 7.5 the following hold:

(a) The Lie coalgebra structure of the Lie bialgebra m∗
q is given by

δ(xβ) = d1(L
Nβ

β ) ∧ xβ , δ(yβ) = d1(K
Nβ

β ) ∧ yβ , δ(d1(KNμ
μ )) = δ(d1(LNμ

μ )) = 0

for all β ∈ Πq, μ ∈ Π̃q.

(b) With respect to the bilinear form ( (·, ·) ), (m∗
q, (m

�
q )∗, (m�

q )∗) is a Manin triple.
(c) The Lie coalgebra structures of (m�

q )∗ and (m�
q )∗ satisfy

((δ(y), x1 ⊗ x2)) = −((y, [x1, x2])), ((δ(x), y1 ⊗ y2)) = ((x, [y1, y2])) (7.19)

for all x, x1, x2 ∈ (m�
q )∗ and y, y1, y2 ∈ (m�

q )∗.
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Remark 7.9.

(a) Part (a) of the theorem uniquely determines the Lie coalgebra structures of m∗
q, 

(m�
q )∗ and (m�

q )∗, since the set

{xβ , yβ , d1(LNμ
μ ), d1(LNμ

μ ) : β ∈ Πq, μ ∈ Π̃q}

and its appropriate subsets generate the Lie algebras m∗
q, (m�

q )∗ and (m�
q )∗.

(b) By part (c) of the theorem, the Lie coalgebra structures of m∗
q, (m�

q )∗ and (m�
q )∗, 

are precisely the ones that are associated to a Manin triple as in Remark B.1(c). In 

particular, we have the isomorphism of Lie bialgebras

m∗
q ≃ D((m�

q )∗), (m�
q )∗ ≃ (((m�

q )∗)∗)op ≃ (m�
q )op. (7.20)

(c) The Lie bialgebra structures on the reductive Lie algebras m∗
q ≃ g̃q⊕h̃q from part (a) 

of the theorem correspond to empty Belavin–Drinfeld triples and arbitrary choice of 

the continuous parameters in their classification [11].

Proof of Theorem 7.8. Part (a) follows from Lemma B.2 and the identities

Δ(e
Nβ

β ) = K
Nβ

β ⊗ e
Nβ

β + e
Nβ

β ⊗ 1, Δ(f
Nβ

β ) = 1 ⊗ f
Nβ

β + f
Nβ

β ⊗ L
−Nβ

β . (7.21)

for β ∈ Πq and the fact that K
Nμ
μ and L

Nμ
μ for μ ∈ Π̃q are group-like elements.

(b) The subalgebras (m�
q )∗ and (m�

q )∗ are orthogonal to their nilradicals because 

of the embeddings (7.13). This, combined with (7.17), implies that they are isotropic 

subalgebras of m∗
q with respect to the form ( (·, ·) ). The direct sum decomposition mq ≃

m
�
q ⊕ m

�
q yields the desired result.

(c) Part (a) of the theorem and the isomorphism in Theorem 7.4(b) imply at once the 

validity of the identities (7.19) for y = d1(e
Nβ

β ), y = d1(K
Nμ
μ ), x = d1(f

Nβ

β ), x = d1(L
Nμ
μ ), 

where β ∈ Πq μ ∈ Π̃q, and for all possible choices of x1, x2, y2, y2. The general case 

follows by induction on root height when x, y are chosen to be root vectors by using the 

invariance of the bilinear form ( (·, ·) ). �

7.3. The Poisson algebraic groups M�
q and M�

q

Combining the isomorphisms (7.14) and (7.20), we get the Lie algebra isomorphisms

m�
q ≃ ((m�

q )∗)op ≃ (b̃+
q )op ≃ b̃+

q and m�
q ≃ (m�

q )∗ ≃ b̃−
q , (7.22)

where (.)op stands for the opposite Lie algebra structure and (b̃+
q )op ≃ b̃+

q is the stan-

dard Lie algebra isomorphism x 
→ −x. The proof of Proposition 7.7 shows that the 

corresponding pull back maps on the level of duals send
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β 
→ −d1(K
Nβ

β ), β 
→ d1(L
Nβ

β ), ∀β ∈ Πq. (7.23)

The scalars κβ do not appear here because the form ( (·, ·) ) is a rescaling of the form (·, ·)

by κ−1
μ on each simple factor of g̃q and on the one-dimensional center of g̃q if q is of type 

A(k − 1|θ − k).

Denote by Gq the adjoint semisimple algebraic group with Lie algebra gq. Let

G̃q =

{
Gq × C

×, if q is of type A(k − 1|θ − k)

Gq, otherwise.

In the former case the exponential map

exp : g̃q → G̃q is given by exp(x + chη) = (exp(x), exp(c)), (7.24)

where in the first component in the right hand side we use the exponential map exp : gq →

Gq, and x ∈ gq, c ∈ C. Denote by B̃±
q the Borel subgroups of G̃q corresponding to b̃±

q

and by B±
q the Borel subgroups of Gq corresponding to b̃±

q ∩gq. We have B̃±
q = B±

q ×C
×

if q is of type A(k − 1|θ − k), and B̃±
q = B±

q otherwise.

Let T̃q := B̃+
q ∩ B̃−

q be the corresponding maximal torus of G̃q. Denote by N±
q ⊂ Gq

the unipotent radicals of B̃±
q .

The groups of group-like elements of Z�
q and Z�

q are the free abelian groups on K
±Nμ
μ , 

β ∈ Π̃q and L
±Nμ
μ , μ ∈ Π̃q, respectively.

Theorem 7.10. For every choice of the specialization parameters tij ∈ Z satisfying the 

Non-degeneracy Assumption 7.5, the Lie algebra isomorphisms (7.22) integrate to iso-
morphisms of algebraic groups.

τ+ : M�
q

≃
−→ B̃+

q and τ− : M�
q

≃
−→ B̃−

q .

Theorem 7.10 describes explicitly the algebraic groups M�
q and M�

q . As an algebraic 

group, Mq ≃ B̃+
q × B̃−

q . The Poisson structures on M�
q , M�

q and Mq are the unique 

Poisson algebraic group structures that integrate the Lie bialgebras m�
q , m�

q and mq, 

whose dual Lie bialgebras are described in Theorem 7.8.

Proof. We prove the first statement, the second being analogous. Since Gq is of adjoint 

type, the Borel subgroup B+
q is canonically identified with the identity component of 

Aut(b+
q ). The adjoint action of M�

q on m�
q ≃ b+

q induces a surjective homomorphism 

τ1
+ : M�

q ։ B+
q . If q is of type A(k − 1|θ − k), then we also have a canonical surjective 

homomorphism τ2
+ : M�

q ։ C
×, whose pull back map C[C×] ∼= C[χ±1] → C[M�

q ] is 

given by χ 
→ K
Nη
η , where χ is the identity character of C×. Define the homomorphism 

τ+ : M�
q ։ B̃+

q given by
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τ+ :=

{
(τ1

+, τ2
+), if q is of type A(k − 1|θ − k)

τ1
+, otherwise.

It follows from (6.8) that the homomorphism τ+ is surjective. It restricts to an iso-

morphism τ+ : N(M�
q ) 

≃
−→ N+

q , where N(M�
q ) is the unipotent radical of M�

q . The 

homomorphism τ+ also restricts to a surjective homomorphism

τ+ : T (M�
q ) ։ T̃q, (7.25)

where T (M�
q ) is a maximal torus of M�

q . The tori T (M�
q ) and T̃q are connected because 

M�
q and B̃+

q are connected algebraic groups. In view of the Levi decompositions of M�
q

and B̃+
q , in order to prove that τ+ is an isomorphism, it is sufficient to show that the 

restriction (7.25) is an isomorphism. However,

C[T (M�
q )] ≃ C[M�

q /N(M�
q )] ≃ C[G(C[M�

q ])], C[T̃q] ≃ C[B̃+
q /N+

q ] ≃ C[G(C[B̃+
q ])],

where G(H) denotes the group of group-like elements of a Hopf algebra H.

The group of group-like elements of C[M�
q ] ≃ Z�

q is the free abelian group with 

generators K
Nβ

β , β ∈ Πq. The group of group-like elements of C[B̃+
q ] equals the character 

lattice of B̃+
q , which is canonically identified with the lattice ZΠ̃q. The differentials at the 

identity element of the two generating sets are respectively d1(K
Nμ
μ ) and μ, where μ ∈

Π̃q. Eq. (7.23) implies that τ∗
+ : G(C[B̃+

q ]) → G(C[M�
q ]) is an isomorphism. Hence, τ∗

+ :

C[T̃q] → C[T (M�
q ))] is an isomorphism and the same holds for (7.25). This completes 

the proof of the theorem. �

Example 7.11. Let q be of type wk(4) and fix N = ord q, M = ord(−q), see §A.3. Let 

γ = α1 + 2α2 + 3α3 + α4. Then Nα1
= Nα2

= N , Nα4
= Nγ = M ,

O
q
+ = {α1, α2, α1 + α2, α4, γ, α4 + γ}.

As shown previously, Δ(e
Nβ

β ) = e
Nβ

β ⊗ 1 + K
Nβ

β ⊗ e
Nβ

β for β ∈ Πq = {α1, α2, α4, γ}. We 

can check that eα1+α2
= [e1, e2]c, eα4+γ = [eγ , e4]c and

Δ(eN
α1+α2

) = eN
α1+α2

⊗ 1 + (q − 1)NeN
α1

KN
α2

⊗ eN
α2

+ KN
α1

KN
α2

⊗ eN
α1+α2

,

Δ(eM
α4+γ) = eM

α4+γ ⊗ 1 + (q + 1)MeM
γ KM

α4
⊗ eM

α4
+ KM

α4
KM

γ ⊗ eM
α4+γ .

We now construct an explicit isomorphism between Z�
q and the algebra of functions 

over the Borel subgroup of PSL3(C) × PSL3(C). We consider the Levi decomposition 

B̃3 ≃ N3 ⋊ T̃3 of the Borel subgroup of SL3(C), where

T̃3 = {t = diag(t1, t2, t3) : ti ∈ C
×, t1t2t3 = 1}, N3 =

{
n =

(
1 t12 t13

0 1 t12

0 0 1

)
: tij ∈ C

}
.
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Let ai, xij : B̃3 → C be the coordinate functions sending t 
→ ti and n 
→ tij respectively. 

The coproducts of these coordinate functions are given by Δ(ai) = ai ⊗ ai and

Δ(x12) = x12 ⊗ 1 + a1a
−1
2 ⊗ x12, Δ(x23) = x23 ⊗ 1 + a2a

−1
3 ⊗ x23,

Δ(x13) = x13 ⊗ 1 + x12a2a
−1
3 ⊗ x23 + a1a

−1
3 ⊗ x13.

Denote Z3 = 〈(ζ, ζ, ζ)〉, where ζ is a primitive 3rd root of unity. The Borel subgroup B3

of PSL3(C) has Levi decomposition B3 ≃ N3 ⋊ T3 where T3 = T̃ /Z3, so

C[B3] = C[N3] ⊗ C[T̃3]Z3 = C[x12, x23, x13, a
±1
12 , a±1

23 ],

where a12 := a1a
−1
2 and a23 = a2a

−1
3 . The coproducts of the coordinate functions on B3

are given by Δ(aii+1) = aii+1 ⊗ aii+1 and

Δ(x12) = x12 ⊗ 1 + a12 ⊗ x12, Δ(x23) = x23 ⊗ 1 + a23 ⊗ x23,

Δ(x13) = x13 ⊗ 1 + x12a23 ⊗ x23 + a12a23 ⊗ x13.

The Borel subgroup of PSL3(C) × PSL3(C) is isomorphic to B3 × B3. We denote the 

coordinate functions aii+1 and xij on the first and second copy of B3 by superscripts 1 

and 2. Now, clearly the map τ+ : Z�
q → C[B3 × B3] given by

KN
α1


→ a1
12, KN

α2

→ a1

23, KN
α3


→ a2
12, KM

γ 
→ a2
23

and

eN
α1


→ x1
12, eN

α2

→ x1

23,
eN

α1+α2

(q − 1)N

→ x1

13,

eM
α4


→ x2
12, eM

γ 
→ x2
23,

eM
α4+γ

(q + 1)M

→ x2

13

is a Hopf algebra isomorphism.

8. Poisson geometry and representations

In this section we describe the symplectic foliations and the torus orbits of symplectic 

leaves of the Poisson algebraic groups Mq, M�
q and M�

q , and the Poisson homogeneous 

spaces M+
q and M−

q . Previous work in this direction dealt with the so called standard 

Poisson structures on simple algebraic groups (and their Borel subgroups) [33], the dual 

Poisson algebraic groups [18] and the related flag varieties [27]. See also [15,19,34]. The 

Poisson structures in Remark 7.9 are not of standard type in general and the results in 

this section can not be deduced from [33,18,27]. For z ∈ Mq, respectively M�
q , M�

q , M+
q , 

M−
q , let Hz, respectively H�

z , H�
z , H+

z , H−
z be the algebra defined in Theorem A (c), 
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respectively (1.2). The Poisson geometric results described above provide information on 

the irreducible representations of the large quantum groups Uq by reduction to the sheaf 

of algebras Hz, z ∈ Mq. Analogous results hold for U�
q , U�

q , and U±
q .

8.1. Representations of the large quantum groups and symplectic foliations

The Manin triple described in Theorem 7.8 and the identification m∗
q ≃ g̃q ⊕ h̃q equip 

g̃q⊕ h̃q with a quasitriangular Lie bialgebra structure, which turns G̃q× T̃q into a Poisson 

algebraic group. The Poisson structure on G̃q × T̃q equals Lg(r) −Rg(r) for g ∈ G̃q × T̃q, 

where r ∈ ∧2(g̃q ⊕ h̃q) is the r-matrix for the Lie bialgebra structure on g̃q ⊕ h̃q, and 

Lg(−) and Rg(−) refer to the left and right-invariant bivector fields on G̃q × T̃q.

Let M̃�
q and M̃�

q be the connected Lie subgroups of G̃q × T̃q with Lie algebras (m�
q )∗

and (m�
q )∗. Proposition 7.7 implies that M̃�

q is an algebraic subgroup, while M̃�
q is not 

necessarily a closed Lie subgroup. The projection onto the first component π : G̃q× T̃q ։

G̃q gives the surjective Lie group homomorphisms

π+ : M̃�
q ։ B̃+

q , π− : M̃�
q ։ B̃−

q .

Since Gq is of adjoint type, the kernel of the exponential map exp : hq ։ Tq equals 

2πiP∨
q , where P∨

q denotes the coweight lattice of gq. It follows from (7.24) that the 

kernel of the exponential map exp : h̃q ։ T̃q equals 2πiP̃∨
q , where P̃∨

q is the coweight 

lattice of g̃q given by

P̃∨
q =

{
P̃∨
q ⊕ Zhη, if q is of type A(k − 1|θ − k)

P̃∨
q , otherwise.

Denote the subgroup

C̃q := exp
(
2πiP̃−1

P̃
T(P∨

q )
)

⊂ T̃q, (8.1)

cf. (7.15). Proposition 7.7 and the solvability of M̃�
q and M̃�

q give that

M̃�
q = (N+

q × {1}) × {exp(h, P̃−1
P̃

T(h)) : h ∈ h̃q},

M̃�
q = (N−

q × {1}) × {(t, t−1) : t ∈ T̃q},

from which one obtains that

Kerπ+ = {1}, Kerπ− = {1} × C̃q.

Composing π± with the isomorphisms from Theorem 7.10 leads to the isomorphisms

τ−1
+ π+ : M̃�

q
≃

−→ M�
q , τ−1

− π− : M̃�
q /Kerπ−

≃
−→ M�

q .



52 N. Andruskiewitsch et al. / Advances in Mathematics 428 (2023) 109134

Their inverses give the canonical embeddings

j+ : M�
q →֒ G̃q ×

(
T̃q/C̃q

)
, j− : M�

q →֒ G̃q ×
(
T̃q/C̃q

)
. (8.2)

Here we use that G̃q ×
(
T̃q/C̃q

)
≃
(
G̃q × T̃q

)
/ Kerπ− and M̃�

q ∩ Kerπ− = {1}.

Remark 8.1. If the matrix q is symmetric, then so is the matrix Pq. This implies that 

P̃ = P̃ T and that the group C̃q is trivial. Then the continuous parameter accompanying 

the BD triple is as in Example B.5 and the Poisson structure is the standard one.

Theorem 8.2. Let Uq be a large quantum group. For every choice of the specialization 

parameters tij ∈ Z satisfying the Non-degeneracy Assumption 7.5 the following hold:

(a) The symplectic leaves of the Poisson algebraic group Mq ≃ M�
q ×M�

q are the inverse 

images j−1(O × t) under the map

j : Mq → G̃q ×
(
T̃q/C̃q

)
, j(m+,m−) := j+(m+)−1j−(m−), m+ ∈ M�

q ,m− ∈M�
q ,

where O is a conjugacy class of G̃q and t ∈ T̃q/C̃q. The dimension of the symplectic 

leaf j−1(O × {t}) equals dim O.
(b) If j(z) and j(z′) are in the same conjugacy class of G̃q ×

(
T̃q/C̃q

)
, then there is an 

algebra isomorphism

Hz ≃ Hz′ .

Note that, since T̃q/C̃q is abelian, each conjugacy class of G̃q ×
(
T̃q/C̃q

)
has the form 

O × {t}, where O is a conjugacy class of G̃q and t ∈
(
T̃q/C̃q

)
.

Proof. (a) By [41], since the Poisson algebraic group G̃q×T̃q is quasitriangular, its double 

Poisson algebraic group is canonically isomorphic to

D(G̃q × T̃q) ≃
(
G̃q × T̃q

)
×
(
G̃q × T̃q

)
.

Theorem 7.8(b) implies that the dual Poisson Lie group of G̃q × T̃q is

M̃�
q × M̃�

q →֒
(
G̃q × T̃q

)
×
(
G̃q × T̃q

)

with the opposite Poisson structure to the restriction of the one of the double. Both 

M̃�
q × M̃�

q and Mq ≃ M�
q × M�

q have the same tangent Lie bialgebra, hence the map

τ := (τ−1
+ π+, τ−1

− π−) : M̃�
q × M̃�

q ։ M�
q × M�

q ≃ Mq

is a Poisson covering map. By the Semenov-Tian-Shansky dressing method [45], we get 

that the symplectic leaves of M̃�
q ×M̃�

q are the connected components of the intersections
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M̃�
q ∩
(

diag(G̃q × T̃q) · g · diag(G̃q × T̃q)
)
,

where diag
(
G̃q × T̃q

)
denotes the diagonal of (G̃q × T̃q)×2 and g ∈ (G̃q × T̃q)×2. Now 

we apply [50, Theorem 1.10] to obtain that each such intersection is a dense, open and 

connected subset of diag
(
G̃q × T̃q

)
· g · diag

(
G̃q × T̃q

)
. Consider the map

j̃ : M̃�
q × M̃�

q → G̃q × T̃q, j̃(m+,m−) := m−1
+ m−, m+ ∈ M̃�

q ,m− ∈ M̃�
q .

By a direct argument we conclude that each symplectic leaf of M̃�
q × M̃�

q is of the form

SO′ :=
(
M̃�

q × M̃�
q

)
∩ O′,

where O′ is a conjugacy class of Gq × Tq, and that

dim SO′ = dim O′.

Since τ : M̃�
q × M̃�

q ։ Mq is a covering of Poisson Lie groups, each symplectic leaf of 

Mq is of the form τ(SO′). One easily verifies that the diagram

M̃�
q × M̃�

q

j̃

τ

G̃q × T̃q

ψ

Mq

j
G̃q ×

(
T̃q/C̃q

)

commutes, where ψ : G̃q × T̃q ։ G̃q ×
(
T̃q/C̃q

)
is the canonical projection. Clearly, 

ψ(O′) = O × {t}, where O is a conjugacy class of G̃q and t ∈ T̃q/C̃q. Therefore 

all symplectic leaves of Mq are of the form τ(SO′) = j−1ψ(O′) = j−1(O × {t}) and 

dim j−1(O × {t}) = dim O′ = dim O.

Part (b) follows from part (a), and Theorems 2.3 and 6.2. �

In regard to the irreducible representations of Uq we wonder whether the De Concini–

Kac–Procesi conjecture could be extended to the setting of Theorem 8.2, see [18].

Question 8.3. Let O be a conjugacy class of G̃q, t ∈ T̃q/C̃q and z ∈ j−1(O × {t}). Does 
ℓdim O/2 divide the dimension of any irreducible representation of Hz?

8.2. The torus orbits of symplectic leaves and the representations of the large quantum 

Borel algebras

The algebras Uq, U�
q , U�

q and U±
q are ZI-graded with grading deg ei = − deg fi = αi, 

degKi = degLi = 0 for i ∈ I. This leads to a canonical action of the torus (C×)I on 



54 N. Andruskiewitsch et al. / Advances in Mathematics 428 (2023) 109134

these algebras by algebra automorphisms, which preserves the central subalgebras Zq, 

Z�
q , Z�

q and Z±
q .

By a direct comparison, one obtains that the (C×)I-action on Z�
q corresponds to the 

left action of τ−1
+ (Tq) on M�

q in the sense that every automorphism from the first one 

corresponds to an automorphism from the second and vice versa. Similarly, the (C×)I-

action on Z�
q corresponds to the left action of τ−1

− (Tq) on M�
q . Theorem 8.2(a) implies 

that the induced action of (C×)I on Mq preserves the symplectic leaves of Mq. So, in 

regard to irreps of Uq, the (C×)I-automorphisms of Uq do not provide any additional 

information to that in Theorem 8.2(a).

However, for U�
q and U�

q , we do obtain additional representation theoretic information 

from the (C×)I-action, as stated in next theorem. Let Wq be the Weyl group of Gq, i.e., 

that of G̃q.

Theorem 8.4. For every choice of the specialization parameters tij ∈ Z satisfying the 

Non-degeneracy Assumption 7.5 the following hold:

(a) The Poisson structure on M�
q is invariant under the left and right actions of τ−1

+ (T̃q). 
The τ−1

+ (T̃q)-orbits of symplectic leaves of M�
q are the double Bruhat cells

τ−1
+ (B̃+

q ∩ B̃−
q wB̃−

q ), w ∈ Wq.

(b) If τ+(z) and τ+(z′) are in the same double Bruhat cell, then there is an algebra 

isomorphism

H�
z ≃ H�

z′ .

Proof. (a) For a Lie subalgebra of g̃q ⊕ h̃q, denote by N(−) its normalizer in G̃q × T̃q. 

By [37, Lemma 2.12], the left and right actions of M̃� ∩N((m�
q )∗) on the Lie group M̃�

preserve its Poisson structure. By the definition of τ+, these actions correspond to the 

left and right actions of τ−1
+ (Tq) on M�

q , so the latter preserve the Poisson structure on 

M�
q , because M̃�

q ։ M�
q is a Poisson map.

Applying [37, Theorem 2.7 and Proposition 2.15] and the Bruhat decomposition of 

G̃q, we obtain that the M̃� ∩ N((m�
q )∗)-orbits of symplectic leaves of M̃� (with respect 

to either action) are the intersections

M̃� ∩
(
(G̃q × T̃q)w(G̃q × T̃q)

)

for w ∈ Wq. Since M̃�
q ։ M�

q is a Poisson covering map and τ+ : M�
q

≃
−→ B̃+

q is 

an isomorphism (Theorem 7.10), the τ−1
+ (T̃q)-orbits of symplectic leaves of M�

q (with 

respect to either action) are the double Bruhat cells τ−1
+ (B̃+

q ∩ B̃−
q wB̃−

q ) for w ∈ Wq.

Part (b) follows from part (a), Theorems 2.3 and 6.2, and the fact that the left action 

of τ−1
+ (T̃q) on M�

q comes from the (C×)I-action on U�
q by algebra automorphisms. �
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Example 8.5. Let q be of type wk(4). By Example 7.11, the corresponding algebraic group 

G̃q is isomorphic to PSL3(C) ×PSL3(C) whose Weyl group is S3×S3. Theorem 8.4 implies 

that among the quotients U�
q /M�

z U�
q for z in the maximal spectrum of Z�

q , there are 

at most |S3 × S3| = (3!)2 = 36 isomorphism classes of finite dimensional algebras.

Analogously to Theorem 8.4 one proves the following:

Proposition 8.6. For every choice of the specialization parameters tij ∈ Z satisfying the 

Non-degeneracy Assumption 7.5 the following hold:

(a) The Poisson structure on M�
q is invariant under the left and right actions of 

τ−1
− (T̃q). The τ−1

− (T̃q)-orbits of symplectic leaves of M�
q are the double Bruhat cells

τ−1
− (B̃−

q ∩ B̃+
q wB̃+

q ), w ∈ Wq.

(b) If τ−(z) and τ−(z′) are in the same double Bruhat cell, then H�
z ≃ H�

z′ as algebras.

8.3. Poisson homogeneous spaces and irreps of large quantum unipotent algebras

Since Z+
q is the algebra of coinvariants for the coaction of Z0+

q on Z�
q obtained by 

restricting the coaction of U0+
q on Z�

q , and analogously for the negative part, we have 

isomorphisms of Poisson algebras

Z+
q ≃ C[M�

q /τ−1
+ (T̃q)], Z−

q ≃ C[M�
q /τ−1

− (T̃q)]. (8.3)

As shown in the previous subsection, the left and right actions of τ−1
+ (T̃q) and τ−1

− (T̃q) on 

the Poisson algebraic groups M�
q and M�

q preserve their Poisson structures. The right 

hand sides of the isomorphisms (8.3) involve the coordinate rings of the resulting Poisson 

homogeneous spaces M�
q /τ−1

+ (T̃q) and M�
q /τ−1

− (T̃q) obtained by taking quotients with 

respect to the right actions. The Poisson structures on M�
q /τ−1

+ (T̃q) and M�
q /τ−1

− (T̃q)

are invariant under the induced left actions of τ−1
+ (T̃q) and τ−1

− (T̃q). By Theorem 7.10, 

τ+ restricts to the isomorphism of homogeneous spaces τ+ : M�
q /j−1

+ (T̃q) 
≃

−→ B̃+
q /T̃q. 

Denote the canonical isomorphism

υ : B̃+
q /T̃q

≃
−→ B̃+

q B̃−
q /B̃−

q ⊂ G̃q/B̃
−
q .

Theorem 8.7. For every choice of the specialization parameters tij ∈ Z satisfying the 

Non-degeneracy Assumption 7.5 the following hold:

(a) The τ−1
+ (T̃q)-orbits of symplectic leaves of M�

q /τ−1
+ (T̃q) are the open Richardson 

varieties

τ−1
+ υ−1

(
(B̃+

q B̃−
q ∩ B̃−

q wB̃−
q )/B̃−

q

)
, w ∈ Wq.
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(b) If υτ+(z) and υτ+(z′) are in the same open Richardson variety, then there is an 

isomorphism of algebras

H+
z ≃ H+

z′ .

Proof. Part (a) is proved arguing as in the proof of Theorem 8.4(a). Then (b) is a 

consequence of (a), and Theorems 2.3 and 6.2. �

An analogous result holds for the large quantum unipotent algebra U−
q and the torus 

orbits of symplectic leaves of the Poisson homogeneous space M�
q /τ−1

− (T̃q).
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Appendix A. Families of finite-dimensional Nichols algebras

Let θ ∈ N, I = Iθ. We fix a matrix q = (qij) ∈ C
I×I such that dim Bq < ∞. To insure 

centrality of Zq we require

(a). The matrix q satisfies (4.27), i.e., qNβ

αiβ = 1, for all i ∈ I, β ∈ Πq.

Remark A.1. If the Dynkin diagram of q′ is as in Tables 1, 2 and 3, then there is q with 

the same Dynkin diagram that satisfies (4.27); the proof is straightforward.

If q satisfies (4.27), then any matrix in its Weyl-equivalence class also does. Let C[ν±1]

be the algebra of Laurent polynomials; its group of units is C[ν±1]× = C
×νZ. Let

q = (qij) ∈
(
C[ν±1]×

)I×I
(A.1)

For x ∈ C
×, we denote by q(x) the matrix obtained by the evaluation ev : C[ν±1] → C, 

ev(ν) = x. We seek for matrices (A.1) with the following Properties (b) and (d).

(b). The Nichols algebra of the C(ν)-braided vector space of diagonal type with braiding 

matrix (A.1) has the same arithmetic root system as q.
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By inspection of the list in [29]–see also the exposition in [2]–we conclude that the 

only possible matrices (A.1) are those Weyl-equivalent to the ones with Dynkin diagrams 

as in Tables 1, 2 and 3 and that the following property holds.

(c). There exists an open subset ∅ �= O ⊆ C
× such that for any x ∈ O, the root systems 

and Weyl groupoids associated to q and q(x) are isomorphic. Also there exists ξ ∈ G
′
∞∩O

with N := ord ξ ∈ [2, ∞) such that q = q(ξ).

Remark A.2. (i). The Dynkin diagrams of the matrices q and q locally have the form 

qii

◦
q̃ij qjj

◦ , respectively 
qii

◦
q̃ij qjj

◦ , where q̃ij = qijqji, q̃ij = qijqji, i.e., the 

Dynkin diagram does not determine completely the braiding matrix. We deal with this 

as follows. Let p = (pij) ∈ C
I×I with the same Dynkin diagram as q. Then there exists 

p ∈
(
C[ν±1]×

)I×I
with the same Dynkin diagram as q such that p = p(ξ). For, take 

pii = qii and pij ∈ C[ν±1]× such that pij = pij(ξ) for i < j; then pji = q̃ijp−1
ij .

(ii). Assume that q satisfies (b). Let p be another matrix with the same diagram as 

(A.1). Then qij = pijν
hijN , i < j for a unique family (hij)i<j∈I with hij ∈ Z.

(d). Pq defined in (6.2) is invertible.

Let N be the diagonal matrix with entries Nβ, β ∈ Πq. The matrix Pq is invertible 

if and only if the auxiliary matrix T q is so, where

P
q = −ξ−1N T qN .

Proposition A.3. There exist matrices C = (cij) ∈ Z
I×I and (pij) ∈ (C×)I×I such that 

C is symmetric and:

(i) There are infinitely many matrices T = (tij) ∈ Z
I×I fulfilling

tii = cii, tij + tji = cij for all i �= j ∈ I (A.2)

such that the matrix q = (qij) defined by

qij = pijν
tij , for all i, j ∈ I (A.3)

satisfies (b).
(ii) Among those T in (i), there infinitely many such that q satisfies (d).

Proof. It suffices to fix one matrix for each Weyl-equivalence class, see Lemma 6.1. We 

check below (i) by case-by-case considerations computing also T q and proving that it is 

invertible for infinitely many T .
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A.1. Cartan type

Let q be in this class; then there is a Cartan matrix A = (aij)i,j∈I such that qijqji =

q
aij

ii . We fix di ∈ I3 such that diaij = djaji for all i, j ∈ I. The Lie algebra gq has the 

same type except when N is even and A is of type Bθ or Cθ, when they are interchanged. 

In this case Πq = {Niαi : i ∈ I}, so (4.27) becomes:

q
Nj

ij = 1, for all i, j ∈ I. (A.4)

The matrix q we are looking for should also satisfy qijqji = q
aij

ii for all i �= j. In all cases 

we take ξ = q11 except for Bθ, where ξ = qθθ; see Table 1. Set tii = di and qii = νtii . 

Thus qii(ξ) = qii for all i ∈ I. Recall that

(ν − ξ)℘q
αiαj

(ν) = 1 − q
NiNj

ij .

For instance ℘q
αiαi

(ν) = 1−νdiN2
i

ν−ξ hence

℘q
αiαi

(ξ) = −ξ−1diN
2
i = −ξ−1tiiN

2
i . (A.5)

Let i < j. We see that there exists dj ∈ I3 such that Nj = N/dj . By (A.4), qij

is a power of ξdj ; choose tij ∈ djZ such that qij = νtij satisfies qij(ξ) = ξtij = qij . 

Set tji = diaij − tij and qji = νtji . We have defined T satisfying (A.2) and q turns 

out to be given by (A.3) with pij = 1 for all i, j, i.e., (i) holds. Also for all i �= j, 

(ν − ξ)℘q
αiαj

(ν) = 1 − νtijNiNj and

℘q
αiαj

(ξ) = −ξ−1tijNiNj . (A.6)

Therefore T q = T . Observe that if tij = 0 for i < j, then det T q �= 0. By a standard 

argument, (ii) holds.

A.2. Super type

Assume that the braiding matrix q is of super type; see [2] for details and below for 

D(2, 1; α). Going over the list, we see that there exist

◦ ξ ∈ C
×, a root of 1 of order N > 1;

◦ a symmetric matrix B = (bij)i,j∈I ∈ Z
I×I with bij = 1 for at least one pair (i, j);

◦ a parity vector p = (p1, . . . , pθ) ∈ {±1}I with pi = −1 when bii = 0; such that

qijqji = ξbij , i �= j; qii = piξ
bii , i ∈ I.

We describe in Table 2 matrices q of super type, one for each Weyl-equivalence class 

(here α(ij) := αi + · · · + αj for i < j). Since the matrix q has an analogous shape, we 

may assume that
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Table 1
Cartan type.

Type q N gq

Aθ
ν
◦

ν−1
ν
◦

ν−1
ν
◦

ν
◦

ν−1
ν
◦ Aθ

Bθ, θ ≥ 2
ν2

◦
ν−2

ν2

◦
ν2

◦
ν−2

ν
◦ odd

even, �= 2
Bθ

Cθ

Cθ, θ ≥ 3
ν
◦

ν−1
ν
◦

ν−1
ν
◦

ν
◦

ν−2
ν2

◦ odd
even, �= 2

Cθ

Bθ

Dθ, θ ≥ 4
ν
◦

ν
◦

ν−1
ν
◦

ν
◦

ν−1
ν
◦

ν−1

ν−1
ν
◦

Dθ

Eθ, θ ∈ I6,8
ν
◦

ν
◦

ν−1
ν
◦

ν
◦

ν−1

ν−1
ν
◦

ν−1
ν
◦

Eθ

F4
ν
◦

ν−1
ν
◦

ν−2
ν2

◦
ν−2

ν2

◦ > 2 F4

G2
ν
◦

ν−3
ν3

◦ > 3 G2

◦ there exists k ∈ I such that {i ∈ I : pi = −1} = {k};

◦ there exists h ∈ I, h �= k, such that ξ = qhh.

Recall that Π̃ was defined in (6.4) and (6.7). Therefore we have:

◦ either Π̃q = {Niαi : i ∈ I, i �= k} ∪ {Nαk} (N = N if N is even and N = 2N if N is 

odd) for type A(k − 1|θ − k) or else there exists a unique positive non-simple root β

such that Π̃q = {Niαi : i ∈ I, i �= k} ∪ {Nββ};

◦ for i ∈ I, i �= k, we may (and do) choose bii ∈ {±1, ±2, ±3}. Then Ni = LCD(bii, N); 

set di = N/Ni.

We start defining the matrix q. First we take tii = bii and qii = piq
bii for all i ∈ I.

Condition (4.27) says that q
Nj

ij = 1, for all i ∈ I, j ∈ I\{k}. Let i < j with j �= k; 

choose tij ∈ djZ and set tji = bji − tij . Then qij = νtij and qji = νtji satisfy qij(ξ) =

ξtij = qij and qijqji = νbij .

Similarly, qNi

ki = 1 for k > i, so choose tik ∈ diZ and set tki = bki − tik, qki = νbki−tik

and qik = νtik so that qki(ξ) = ξtki = qki. We have defined T satisfying (A.2) and q

turns out to be given by (A.3) with pii = pi and pij = 1 for all i �= j, i.e., (i) holds.

It remains to compute the matrix T q. Arguing as in the Cartan case we see that

℘q
αiαi

(ξ) = −ξ−1pibiiN
2
i , ℘q

αiαj
(ξ) = −ξ−1tijNiNj , i, j ∈ I\{k}.

Assume that there exists γ ∈ Πq\I (a non-simple Cartan root). Then there exist 

pγ ∈ {±1} and bγγ , biγ ∈ Z such that
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Table 2
Super type.

Type q N Π̃q gq

A(k − 1|θ − k),
ν−1

◦
ν ν−1

◦
−1
◦
k

ν
◦

ν−1
ν
◦ > 2 (A.7) Ak−1 × Aθ−k

k ∈ I⌊ θ+1

2
⌋

B(k|θ − k),
ν−2

◦
ν2

ν−2

◦
−1
◦
k

ν2

◦
ν−2

ν
◦ odd (A.8) Ck × Bθ−k

k ∈ Iθ−1 even, �= 2, 4 Ck × Cθ−k

D(k|θ − k),
ν−1

◦
ν ν−1

◦
−1
◦
k

ν
◦

ν−2
ν2

◦ odd (A.9) Dk × Cθ−k

k < θ
2 even, �= 2 Dk × Bθ−k

D(2, 1; α),
νd1

◦
ν−d1 −1

◦
ν−d3 νd3

◦ (A.10) A1 × A1 × A1

d1, d3 ∈ N

F(4)
ν2

◦
ν−2

ν2

◦
ν−2

ν
◦

−1
◦

ν−1

> 2 (A.11) A1 × B3

G(3)
−1
◦

ν−1
ν
◦

ν−3
ν3

◦ , N > 3 (A.12) A1 × G2

qγγ = pγν
bγγ , qiγqγi = νbiγ .

Extend (tij) to a bilinear form t : Z
I × Z

I → Z. Then for k �= i ∈ I,

℘q
γγ(ξ) = −ξ−1pγbγγN

2
γ , ℘q

αiγ(ξ) = −ξ−1tiγNiNγ , (ν − ξ)℘q
γαi

(ν) = −ξ−1tγiNiNγ .

All in all, T q is of the form (tαβ) ∈ Z
Πq×Πq

, where tαα = pαbαα, trαβ + tβα = bαβ

for α �= β. Arguing as in the Cartan case, we conclude that (ii) holds.

{Nαj |j �= k} ∪ {Nη}, (A.7)

{Njαj |j �= k} ∪ {Nα(kθ)
α(kθ)}, (A.8)

{Njαj |j �= k} ∪ {Nα(k−1 θ)+α(k θ−1)
(α(k−1 θ) + α(k θ−1))}, (A.9)

{N1α1, N3α3, Nα1+2α2+α3
(α1 + 2α2 + α3)}, (A.10)

{N1α1, N2α2, N3α3, Nα1+2α2+3α3+2α4
(α1 + 2α2 + 3α3 + 2α4)}, (A.11)

{Nα1+2α2+α3
(α1 + 2α2 + α3), N2α2, N3α3}. (A.12)

Type D(2, 1; α)

The diagrams of this type are Weyl equivalent to the following one 
r
◦

r−1 −1
◦

s−1 s
◦, 

with r, s, rs �= 1. The corresponding Nichols algebra has finite dimension if and only if 

r, s ∈ G
′
∞, rs �= 1. Let q be a braiding matrix with this diagram satisfying (4.27). Fix 

a generator ξ of the subgroup of G∞ generated by r, s; we choose d1, d3 ∈ N minimal 

such that r = ξd1 , s = ξd3 . Then there exists a braiding matrix q as in Table 2 such that 

q = q(ξ).
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Table 3
Modular type.

Type q N Π̃q gq

wk(4)
ν
◦

ν−1
ν
◦

ν−1
−1
◦

−ν−ν−1

◦ > 2 (A.13) A2 × A2

br(2)
ζ
◦

ν−1
ν
◦, ζ ∈ G

′
3 �= 3 {2Mα1 + Mα2, Nα2} A1 × A1

A.3. Modular type

The Nichols algebras in this family could be thought of as quantizations in char 0 of 

the 34-dimensional Lie algebras in char 2 from [35], respectively the 10-dimensional Lie 

algebras in char 3 introduced in [12]. The information on this type is given in Table 3. 

The matrices T and T q are worked out as in the super case. �

{Nα1, Nα2,Mα4,Mα1 + 2Mα2 + 3Mα3 + Mα4}. (A.13)

Appendix B. Lie bialgebras and Poisson algebraic groups

We gather minimal background material on Lie bialgebras and Poisson algebraic 

groups for Sections 7 and 8. We refer to [22, Section 2-7] for a full treatment.

B.1. Lie bialgebras

Recall that a Lie bialgebra is a Lie algebra g equipped with a linear map δ : g → ∧2g

such that

(i) the dual of the map δ defines a Lie algebra structure of g∗ and

(ii) δ is a 1-cocycle, i.e., δ([a, b]) = ada(δ(b)) − adb(δ(a)) for all a, b ∈ g.

The Lie bialgebras with opposite cobracket (same bracket) and opposite bracket (same 

cobracket) will be denoted by gop and gop, respectively. The dual Lie bialgebra g∗ of g

is the Lie bialgebra with Lie bracket and cobracket given by

〈[f, g], a〉 = 〈f ⊗ g, δ(a)〉, 〈δ(f), a ⊗ b〉 = 〈f, [a, b]〉, ∀a, b ∈ g, f, g ∈ g∗.

The Drinfeld double D(g) of the Lie bialgebra g is a Lie bialgebra which is isomorphic 

to g ⊕ g∗ as a vector space and is uniquely defined by the conditions:

(a) The canonical embeddings ι : g →֒ D(g) and ι∗ : (g∗)op →֒ D(g) are embeddings of 

Lie bialgebras;

(b) For a ∈ g ⊂ D(g), f ∈ g∗ ⊂ D(g), [x, f ] = ad∗
x(f) − ad∗

f (x) in terms of the coadjoint 

actions of g and g∗.
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A quadratic Lie algebra is a Lie algebra g equipped with an non-degenerate invari-

ant symmetric bilinear form (., .). A Manin triple is a triple (g, g+, g−) consisting of a 

quadratic Lie algebra (g, (., .)) and a pair of isotropic Lie subalgebras g± ⊂ g.

Remark B.1. The notions of Drinfeld double and Manin triple are equivalent in the case 

of finite dimensional Lie algebras:

(a) Each Drinfeld double D(g) is a quadratic Lie algebra with symmetric bilinear form

(a + f, b + g) = 〈f, b〉 + 〈g, a〉, a, b ∈ g, f, g ∈ g∗.

With respect to this form, (D(g), g, g∗) is a Manin triple.

(b) For a Manin triple (g, g+, g−), g± have canonical Lie bialgebra structures given by

(δ(a), f ⊗ g) = (a, [f, g]), (δ(f), a ⊗ b) = −(f, [a, b]), ∀a, b ∈ g+, f, g ∈ g−.

Then g, equipped with the Lie cobracket δg+
+ δg− , is isomorphic to the Drinfeld 

double of g+, and g− ≃ (g∗
+)op.

Here is an important class of Lie bialgebras: (g, δ) is quasitriangular if δ(x) = adx(r)

for all x ∈ g where r =
∑

i ri ⊗ ri ∈ g ⊗ g satisfies the classical Yang-Baxter equation:

[r12, r13] + [r12, r23] + [r13, r23] = 0;

here r12 = r ⊗ 1, r13 =
∑

i ri ⊗ 1 ⊗ ri, r23 = 1 ⊗ r. In this case we set (g, r) := (g, δ). 

The Drinfled double is the archetypical example of a quasitriangular Lie bialgebra.

Let r21 =
∑

i r
i ⊗ ri. Recall that a quasitriangular Lie bialgebra (g, r) is called fac-

torizable if r + r21 ∈ S2g defines a nondegenerate inner product on g∗ [41].

B.2. Poisson algebraic groups

A (complex) Poisson algebraic group is an algebraic group G equipped with a bivector 

field π such that the product map

(G, π) × (G, π) → (G, π)

is Poisson. The coordinate ring C[G] has a canonical structure of commutative Poisson-

Hopf algebra with Poisson bracket given by

{f, g} := 〈df ⊗ dg, π〉, f, g ∈ C[G],

where df denotes the differential of f . Conversely, every finitely generated commutative 

Poisson-Hopf algebra H gives rise to the Poisson algebraic group MaxSpecH.
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The tangent Lie algebra g = T1G of every Poisson algebraic group G has a canonical 

Lie bialgebra structure. The Poisson structure π automatically vanishes at the identity 

element 1 of G. The Lie cobracket on g, or equivalently the Lie bracket on g∗ ≃ T ∗
1 G, is 

defined as the linearization of π at 1:

[d1(f), d1(g)] := d1

(
{f, g}

)
, f, g ∈ C[G]. (B.1)

In Hopf algebra situations it is advantageous to describe the tangent Lie algebra g of 

an algebraic group G by describing the corresponding Lie cobracket on g∗ = T ∗
1 G.

Lemma B.2. Let G be a complex algebraic group; as usual Δ(f) = f(1)⊗f(2) for f ∈ C[G]. 
Then the canonical Lie coalgebra structure on T ∗

1 G ≃ g∗ is given by

δ(d1f) = d1f(1) ∧ d1f(2), f ∈ C[G].

B.3. The classification of Belavin and Drinfeld

We fix a complex finite-dimensional simple Lie algebra g. Pick a Cartan subalgebra 

h ⊂ g and a set Δ ⊂ h∗ of simple roots. The Casimir element Ω ∈ g ⊗ g of g is the 

symmetric tensor associated to the Killing form of g; the component of Ω in h ⊗ h is 

denoted by Ω0.

Definition B.3. A Belavin-Drinfeld triple (BD-triple for short) is a triple (Γ1, Γ2, T ) where 

Γ1, Γ2 are subsets of Δ and T : Γ1 → Γ2 is a bijection that preserves the inner product 

and satisfies the nilpotency condition: for any α ∈ Γ1 there exists a positive integer n

for which Tn(α) belongs to Γ2 but not to Γ1.

Given a BD-triple (Γ1, Γ2, T ), we denote by Γ̂i the set of positive roots lying in the 

subgroup generated by Γi, for i = 1, 2. There is an associated partial ordering on Φ+

given by α ≺ β if α ∈ Γ̂1, β ∈ Γ̂2, and β = Tn(α) for a positive integer n.

A continuous parameter for the BD-triple (Γ1, Γ2, T ) is an element λ ∈ h⊗2 such that

(T (α) ⊗ 1)λ + (1 ⊗ α)λ = 0, for all α ∈ Γ1, (B.2)

λ + λ21 = Ω0. (B.3)

Let a1, a2 be the reductive subalgebras of g with Cartan subalgebras generated by 

hα, α in Γ1, resp. in Γ2, and with Dynkin diagrams Γ1, respectively Γ2. We extend T to 

a Lie algebra isomorphism T̂ : a1 → a2.

Theorem B.4. [11]. Let (g, r) be a factorizable Lie bialgebra with underlying simple Lie 

algebra g. Then there exist a Cartan subalgebra h, a set of simple roots Δ, a BD-triple 

(Γ1, Γ2, T ), a continuous parameter λ and t ∈ C − 0 such that the r is given by
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r = t
(
λ +

∑

α∈Φ+

x−α ⊗ xα +
∑

α,β∈Φ+,α≺β

x−α ∧ xβ

)
, (B.4)

where xβ ∈ gβ, β ∈ ±Φ+, are root vectors normalized by

(xβ |x−β) = 1, for all β ∈ Φ+, (B.5)

T̂ (xβ) = xT (β), for all β ∈ Γ1. (B.6)

Reciprocally the matrix r defined by (B.4) satisfies the classical Yang-Baxter equation, 
hence defines a factorizable Lie bialgebra structure on g. �

Example B.5. We say that a BD-triple (Γ1, Γ2, T ) is empty if Γ1 = Γ2 = ∅. In this case 

any λ ∈ h⊗2 is a continuous parameter; the choice λ = 1
2 (
∑

i hi ⊗hi), for an orthonormal 

basis hi of h, gives rise to the standard Poisson structure.

Appendix C. Symplectic cores and symplectic leaves

Let Z be an affine commutative Poisson algebra and M := MaxSpecZ. As usual the 

point x ∈ M corresponds to the ideal Mx. The material below is extracted from [13].

The largest Poisson ideal contained in an ideal I of Z is called the Poisson core of I

and denoted P(I); it exists because the sum of Poisson ideals is again a Poisson ideal. If 

I is prime, then so is P(I). If M is maximal, then we say that P(M) is Poisson primitive. 

Every prime Poisson ideal of Z is an intersection of Poisson primitive ideals.

Definition C.1. A symplectic core is a class of the equivalence relation ∼ given by

x ∼ y ⇐⇒ P(Mx) = P(My), x, y ∈ M.

The equivalence class of x ∈ M is denoted by C (x) and called the symplectic core of 

x. Any symplectic core is locally closed and smooth in its closure [13, 3.3].

Assume for simplicity that Z is regular, i.e., M is smooth, see [13, 3.5] for the general 

case. Then M becomes a complex analytic Poisson manifold. Given x ∈ M , the symplectic 

leaf L (x) is the maximal connected complex analytic submanifold of M such that x ∈

L (x) and the restriction of the Poisson bracket to L (x) is nondegenerate at every point. 

Concretely, the symplectic leaf L (x) is formed by the points which can be reached from 

x by a piecewise smooth curve, each segment of which is a trajectory of a hamiltonian 

vector field. Symplectic leaves might be not algebraic but they determine the symplectic 

cores. Below the closure is relative to the Zariski topology.

Theorem C.2. [26, Th. 7.4] Let L be a symplectic leaf. There is a unique symplectic core 

C in M with L ⊂ C ⊆ L and C is the unique symplectic core dense in L . In fact
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C = L \
⋃

K symplectic leaf
K �L

K . (C.1)

Each symplectic core C in M can be obtained as in (C.1).
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