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‘We develop a Poisson geometric framework for studying the
representation theory of all contragredient quantum super
groups at roots of unity. This is done in a uniform fashion by
treating the larger class of quantum doubles of bozonizations
of all distinguished pre-Nichols algebras [9] belonging to a
one-parameter family; we call these algebras large quantum
groups. We prove that each of these quantum algebras has
a central Hopf subalgebra giving rise to a Poisson order
in the sense of [13]. We describe explicitly the underlying
Poisson algebraic groups and Poisson homogeneous spaces in
terms of Borel subgroups of complex semisimple algebraic
groups of adjoint type. The geometry of the Poisson algebraic
groups and Poisson homogeneous spaces that are involved
and its applications to the irreducible representations of
the algebras Ug D U,? D Uf are also described. Besides
all (multiparameter) big quantum groups of De Concini—
Kac—Procesi and big quantum super groups at roots of
unity, our framework also contains the quantizations in
characteristic 0 of the 34-dimensional Kac-Weisfeiler Lie
algebras in characteristic 2 and the 10-dimensional Brown
Lie algebras in characteristic 3. The previous approaches to
the above problems relied on reductions to rank two cases and
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direct calculations of Poisson brackets, which is not possible
in the super case since there are 13 kinds of additional Serre
relations on up to 4 generators. We use a new approach that
relies on perfect pairings between restricted and non-restricted
integral forms.

© 2023 Elsevier Inc. All rights reserved.
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1. Introduction
1.1. Quantum groups and Poisson orders

Let g be a complex finite-dimensional simple Lie algebra and let £ € C be a root of 1
with some restrictions on its order depending on g. In the papers [17,18,20] a quantized
enveloping algebra Ug(g) at £ was introduced and studied; it is a version of the Drinfeld-
Jimbo quantized universal enveloping algebra different from the one defined in [38,39].

The algebra Ug(g) is module-finite over a central Hopf subalgebra Z¢(g) and the
corresponding small quantum group of Lusztig [38,39] arises as the quotient Ue(g)/Z¢(g)
in the sense of Hopf algebras. A geometric approach to the representation theory of Ue(g)
was proposed in [20], based on these facts. The key ingredients of this approach are:

o The existence of a Poisson structure on Z¢(g) so that the algebraic group M corre-
sponding to this algebra is a Poisson algebraic group, whose Lie bialgebra is dual to
the standard Lie bialgebra structure on g.

o The Hamiltonian vector fields on M extend to (explicit) derivations of Ug(g).

The approach consists in packing the irreducible finite-dimensional representations of
Ue(g) along the symplectic leaves of M and predicting their dimensions. These ideas were
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distilled in the notion of Poisson order in [13], see Section 2. The construction of a Poisson
order structure on an algebra has substantial applications to the representation theory of
the algebra: using this route the irreducible representations of quantum function algebras
were studied in [19], the Azumaya loci of symplectic reflection algebras were described
in [13], the irreducible representations of the 3 and 4-dimensional PI Sklyanin algebras
were fully classified in [47,48], the Azumaya loci of the multiplicative quiver varieties and
quantum character varieties were studied in [24]. See [14, Part III] for a comprehensive
exposition of the applications of the notion of Poisson order to the representation theory
of quantum algebras at roots of unity.

1.2. Large quantum groups and pre-Nichols algebras

The main goal of this paper is to study by means of Poisson orders the representation
theory of a larger class of Hopf algebras introduced by the second author in [8] and
studied in [9]. They contain as special cases

o all big quantum groups of De Concini—-Kac—Procesi,

o all big contragredient quantum super groups,

o and exceptional families that can be viewed as quantizations of the universal en-
veloping algebras of simple Lie algebras in positive characteristic.

The keystone of the definition of these Hopf algebras is the notion of distinguished
pre-Nichols algebra. It allows us to treat all of the above families uniformly without
case-by-case considerations and computational arguments with quantum Serre relations.
Additionally, unlike [17,18,20], we do not place any assumptions on the order of the roots
of unity, e.g., it can be even.

Nichols algebras of diagonal type are essential for various classification problems of
Hopf algebras. Those of finite dimension were classified in the celebrated paper [29] while
the defining relations were provided in [7,8]. Let q be a braiding matrix as in the list of
[29] and let By be the corresponding finite-dimensional Nichols algebra of diagonal type.
The distinguished pre-Nichols algebra gq of By is a covering of the latter defined by
excluding the powers of the root vectors of Cartan type from its defining ideal. The Hopf
algebras dealt with in the present paper are Drinfeld doubles of the bosonizations of the
distinguished pre-Nichols algebras; they are denoted Uy, see §4.3. They are shown to be
module-finite over canonical central Hopf subalgebras Z;, which are the ones defined in
[9] if g is not of type super A and a one-dimensional extension of those in the super A
case, see §4.5.

On the other hand, the graded dual of Eq gives rise to a Lie algebra ng, which is either
0 or the nilpotent part of a semisimple Lie algebra gq that is explicitly determined [5].

We focus on Hopf algebras Uy with a further restriction: the related Nichols algebra
By is deformable, i.e., belongs to a one-parameter family of Nichols algebras. We call
them large quantum groups. By inspection, the matrix q is of one of three types:
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(a) Cartan type (multiparameter versions of the quantum groups from [18] without
restrictions on &);

(b) super type (multiparameter quantum groups associated to finite dimensional simple
contragredient Lie superalgebras at roots of unity);

(¢) modular types wk(4) or br(2) (quantizations at a root of unity in characteristic 0 of
some simple Lie algebras in characteristics 2 and 3 respectively).

But it stems from the list in [29] that there are finite-dimensional Nichols algebras of
diagonal type that do not belong to such one-parameter families.

Remark. To be precise we need three technical assumptions:

(i) The base field is C to have on hand symplectic leaves [49]. (For other algebraically
closed fields of characteristic 0, one can use symplectic cores [13] and argue as in
[47, §6.4]). See Appendix C for a brief discussion of symplecitc leaves and cores.

(ii) Condition (4.26) is needed for the centrality of Z; in Uj.

(iii) The Non-degeneracy Assumption 7.5 is used to identify some dual vector spaces in
order to compute some Lie bialgebras. However this is not a constraint; each of the
Hopf algebras U, that we consider can be obtained as a specialization from a family
in many different ways. We prove in Proposition A.3 that there always exist ways
that satisfy Assumption 7.5 and we choose one such way.

See the Appendix A and the survey [2] for full details on these algebras. We consider
the chain of subalgebras Uq+ C Uq2 C Uq where

o Uf , the large quantum Borel subalgebra, is identified with the bosonization of Eq;
o U;‘, the large quantum unipotent subalgebra, is identified with B.

Intersecting the central subalgebra Z,; of U, gives the chain of central Hopf subalgebras
>
Ztf CZZ C Z. (1.1)

Each of these central Hopf subalgebras is actually isomorphic to a tensor product of
a polynomial algebra and a Laurent polynomial algebra. We introduce the algebraic
groups M, Mq} and M;‘ as the maximal spectra of the Hopf algebras Zg, Zq; and Z;‘ ,
respectively. We shall also need the opposite Borel U(f and its central Hopf subalgebra
qu with maximal spectrum ng and correspondingly Uy, Z; and M .

1.3. Main results

As said, this paper deals with the geometry of the Poisson algebraic group M, towards
understanding the representation theory of large quantum groups. This last question
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contains the description of the irreducible representations of contragredient quantum
supergroups at roots of unity, an important problem which is wide open even in the
simplest case of Uy(sl(m|n)). We present a foundation for a thorough investigation of
these representations. We first summarize the main results in the following statement.
Define the reductive Lie algebra
i {gq @ C, if qis of type super A
9=

9q> otherwise.

Type super A has the peculiarity that the rank of the Lie algebra g4 is one less than the
rank of Nichols algebra B,. Hence we need to enlarge the central subalgebra originally
defined in [9] adding an extra group-like element in order to have a central subalgebra
Zq such that Uy is module-finite over Zj.

Our first main result is the following:

Theorem A. Let Uy be a large quantum group as above. Then

(a) The pair (Uq, Zq) has the structure of a Poisson order in the sense of [13].

(b) The algebraic Poisson group M, is solvable. The Lie bialgebra of My is dual to
a Lie bialgebra structure on gq coming from an empty Belavin—Drinfeld triple; the
symplectic leaves of My can be classified and related to conjugacy classes of the
adjoint Lie group of gq.

(c) Every z € My with corresponding maximal ideal M. gives rise to a finite-dimensional
algebra H, = Uq/UsM,. Then H, ~ M. whenever z and 2z’ belong to the same sym-
plectic leaf S. By abuse of notation we set Hg = H,. Every irreducible representation
of Uy is finite-dimensional and

Irr U, = U Irr Hg.
S symplectic leaf of M

Furthermore, we have analogous results for the pairs (U7, Z7 ) and (US, Z7). Next
we make more precise the claims of Theorem A. We fix a large quantum group U.

1.3.1. Poisson orders

We denote by Z(A) the center of an algebra A. Because of the assumption that By
is deformable in the class of Nichols algebras as mentioned above, we get Poisson order
structures on the pairs (Ug, Z(Uy)), (Uq?,Z(Uf)) and (U}, Z(U)) by specialization.
As these centers are singular, it is more convenient to look at the central subalgebras in
(1.1). Part (a) of Theorem A is included in the following result, see Theorem 6.2.

Theorem B. The pairs (Uq, Zg), (Uq>, Zq>) and (U, ZF) have Poisson order structures
in the sense of [13] obtained from specialization.
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The Cartan type case includes, as mentioned earlier, the big quantum groups of De
Concini-Kac—Procesi U, (g) for v a root of unity and g a finite-dimensional semisimple
Lie algebra. Even in this case our theorem contains new results: unlike [17,18,20], no
restrictions are imposed on the order of the root of unity in Theorem B. The same
technique allows us to deal with the case where the order is even for types By, Cyp and Fy,
or divisible by 3 for type G2. To work in this uniform way we consider a central subalgebra
Zq where the powers of the PBW generators may have different exponents. In [17,18,20]
smaller central subalgebras are considered consisting of the same powers of all root
vectors, for the exponent equal to the order of the root of unity. This causes the central
subalgebras in [17,18,20] not to be closed under the canonical Poisson bracket when the
coprime to 2 and 3 condition is not satisfied, while in our picture the central subalgebras
are always closed under the canonical Poisson bracket without any assumptions. Because
of this generality, the Lie algebra of the corresponding algebraic group is not exactly g
when the order of v is as before, see Table 1.

Presently it is not known whether for the remaining braiding matrices q in the list
of [29] the pair (Ug, Z4) has the structure of a Poisson order. Indeed the other Nichols
algebras of diagonal type with arithmetic root system in the classification given in [29]
do not admit such a one-parameter family and for instance our proof of Theorem 6.2
does not generalize to them.

1.8.2. Poisson algebraic groups and Lie bialgebras
Let by be a Cartan subalgebra of the semisimple Lie algebra g, and extend it to a
Cartan subalgebra Hq of the reductive Lie algebra gq. We consider a Lie bialgebra struc-
ture on gq that corresponds to the empty Belavin-Drinfeld triple [11] and is explicitly
defined in Theorem 7.8 and let my be the Lie bialgebra dual to gq ® Eq, cf. Eq. (7.11).
Let G4 be the semisimple algebraic group of adjoint type with Lie Gy ~ g4. Denote

Gq =

~ Gq x C*, if qis of type super A
{ Gq, otherwise.
For instance, when U, = U,(sl(m|n)), éq ~ PSL,,(C) x PSL,(C) x C*. Let Eat be a
pair of opposite Borel subgroups of Gy, Ty = B;‘ N By be the corresponding maximal
torus and NqﬂE be the unipotent radicals of E;r; we identify Ny ~ E;{/ﬁ,.
Here is a more precise statement of Theorem A Part (b), see Theorems 7.10 and 8.2.

Theorem C. (a) The Poisson algebraic group Mg is isomorphic to the product of two
Borel subgroups of Gy and Lie My ~ my as Lie bialgebras.

(b) The symplectic leaves of Mg are in bijective correspondence with the conjugacy
classes of Gq x (Ty/ exp(Qq)), where Qq is a lattice in bhy; each leaf is isomorphic to an
open dense subset of the corresponding conjugacy class.
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Note that the symplectic leaves are not algebraic varieties in general. The lattice éq is
related to the continuous parameter of the corresponding Lie bialgebra, see Appendix B.
In the case considered in [20] the Poisson structure is the standard one and @q coincides
with the kernel of the exponential map restricted to the Cartan subalgebra.

Here are the promised versions for Mq> and M;r .

Theorem D. (a) The Poisson algebraic group Mf s isomorphic to the Borel subgroup
B;‘. The Poisson structure is invariant under the left and right actions of T}.

(b) ~The torus orbits of symplectic leaves of Mq> are the double Bruhat cells of éq that
lie in By .

(c) The algebraic group M is isomorphic to the unipotent radical N of E;I“ It has a
Poisson structure arising from the identification NcT ~ B‘;"/Tq which is invariant under
the left action of Ty and is a reduction of the Poisson structure on BCJIr from (a) under
the right action of Ty.

(d) The torus orbits of symplectic leaves of M;‘ are the open Richardson varieties of
the flag variety éq/é‘;" that lie inside an open Schubert cell identified with N;‘

See Theorems 8.4 and 8.7. We refer to [23,36] for information on double Bruhat cells
and open Richardson varieties. Here we recall briefly the definitions.

Let v,w € W. The corresponding double Bruhat cell is ég’w = E;'vé;' N Eq_wéq_
These cells form a partition: éq = Ly wew éZ’w.

In turn the corresponding open Richardson variety is X}j, = X"NX, C éq / EC‘I“ where
Xy = Eq_w/é‘;" and XV = Ea"v/éc‘r are the Schubert cell and the opposite Schubert
cell corresponding to w and v respectively.

We conjecture that the statements in Theorem C(b) and Theorem D(a,c) on algebraic
groups (not Poisson structures) hold even without the assumption that q belongs to a
one-parameter family, where C:'q is taken to be a direct product of G4 and an abelian
algebraic group.

1.3.3. Representations

Since Uy is a free Zg-module of finite rank, it is a PI-algebra. Let V' be an irreducible
representation of Uy. By the above, V' is finite-dimensional, and by Schur’s Lemma, Z
acts on V by some z € M, (a central character) with corresponding maximal ideal 1.
Now the algebra H. = Uy /Uy is non-zero and finite-dimensional and V' becomes a
‘H.-module. In other words the irreps of U, with central character z are in bijective
correspondence with the irreps of H,. Thus

IrUy = || Iir ..

z€Mg4

This circle of ideas is already present in [20]. In this way, Part (c¢) of Theorem A boils
down to the following statement.
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Theorem E. For every two points z, 2’ in the same symplectic leaf of My, the algebras H.
and H, are isomorphic. In particular there is a dimension preserving bijection between
the irreps of Uq with central characters z and 2'.

See Theorem 8.2. For instance, let z = e be the identity of M,. Then its symplectic
leaf is S = {e} and Hgs = H. is the Drinfeld double of a suitable bosonization of the
Nichols algebra By. Assume that the matrix q is of Cartan type. Then H, is a variation
of the small quantum group of Lusztig (with an extra copy of the finite torus), with
a notoriously difficult representation theory treated intensively in the literature. Also,
arguing as in [20] one concludes that Uy is a maximal order. It is a domain, hence a prime
algebra. It follows that for generic z, H, is semisimple by [14, Theorem III.1.7]. But for
super and modular types, the representation theory of H, is largely unknown, except
for the somewhat standard fact that simple modules are classified by highest weights
(but there is not even a conjecture for their characters). Also, Uy is not a maximal order
because it has nilpotent elements.

We next write down the corresponding formulations for Mq> , ng, M q+ and M. Let
xe{>, <+, -} Ifze My, then we denote by 907 its maximal ideal in Z; and

H =Uy/Us (7). (1.2)
Clearly these are finite-dimensional algebras.

Theorem F. (a) For every z,z' in the same double Bruhat cell inside E;r, the algebras
HZ and ’Hf, are isomorphic. Analogously for HS and Hf,

(b) For every z, 2" in the same open Richardson variety, the algebras H} and ’Hj/ are
isomorphic. Analogously for H, and H_,.

See Theorems 8.4 and 8.7.
Notice also that H is a Hopf-Galois H.-object since Uy is a cleft H.-comodule algebra,
see §3.1. Analogously, H} is a Hopf-Galois H}-object for » € {>, <}.

1.4. Strategy and organization

Our proofs of Theorems C—F follow a different strategy from that of [17,18,20]. These
papers rely on direct computations of Poisson brackets in terms of coordinates coming
from Cartesian products of one-parameter unipotent groups and subsequent reductions
to the rank 2 case. This approach does not work in the more general context of §1.2 for
several reasons, the simplest of which is that the quantum Serre relations for quantum
supergroups or for quantum groups at —1 involve more than two Chevalley generators.

Instead our approach is based on intrinsic properties of pairings between restricted
and non-restricted integral forms of Hopf algebras. It does not rely on reduction to low
rank cases. In particular, this approach provides new proofs of results in [17,18,20]. We
expect that these ideas could be applied to other situations not covered in this paper.
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Next we overview briefly the main steps of the strategy:

Step 1. Let C(v) be the field of rational functions on v and A the subalgebra defined in
(5.1). Since q belongs to a family, there exists a chain of C(v)-algebras

+ o
Uy CUg CUqy
and non-restricted integral forms over A
+ >
Uga CUGA CUqga

such that the algebras U;r cU, q> C U, arise as specializations from these integral forms.
This provides Poisson order structures on the pairs (U, Z(U;")), ( f,Z(Uf)) and
(Uq, Z(Uy)). This step is carried out in Section 5 in the framework of [20,13] evoked in
Section 2.

Step 2. We use Theorem 2.4 (on the restriction of Poisson order structures obtained
from specialization to central subalgebras) to prove that the Poisson order structures
on (U, Z(U[)) and (UZ, Z(U7)) restrict to (Uf,Z;) and (UZ,Z2). To get a Poisson
order structure on (Ug, Zy) by restriction from (Ug, Z(Uy)), we need first to establish in
Theorem 4.7 that the Weyl groupoid action preserves the central subalgebras Z,. Along
the way we also obtain that these Poisson structures on the algebras Z, are equivariant
under the Weyl groupoid. This step is carried out in Section 6.

Step 3. This is the matter of Section 7. We introduce in §5.4 restricted integral forms

U é‘fzi of Uét and A-linear perfect pairings Ué‘?f\i X Ui A — A, where U, i A denote the

nonrestricted integral forms of Ug introduced earlier. We prove that

(i) the specializations of U(;‘jf\i are isomorphic to the Lusztig algebras defined in [3], see
Proposition 5.9, and

(ii) the cobrackets of the tangent Lie bialgebras to Mf and Mf are linearizations of
those specializations, see Proposition 7.1.

In this way we control tangent Lie bialgebras intrinsically and consequently we compute
in Theorems 7.4 and 7.8 the tangent Lie bialgebras of the Poisson algebraic groups M,
Mf and Mf by means of a Manin pair. Since these algebraic groups are connected
we describe them as Poisson algebraic groups in terms of Borel subgroups of complex
semisimple algebraic groups of adjoint type. Also, M:E are presented as Poisson homo-
geneous spaces.

Finally, we discuss in Section 8 the Poisson geometry of the Poisson algebraic groups
My, Mq> and the Poisson homogeneous space M;‘*‘ , and the applications to the irreducible
representations of Uy, U? and U;‘ .
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Besides, we discuss in Section 2 Poisson orders and their restrictions to central sub-
algebras, see Theorem 2.4; Section 3 is devoted to preliminaries on Hopf algebra theory
while we present the main actors of this paper in Section 4.

An in depth study of the restricted and nonrestricted integral forms of multiparameter
quantum groups of Cartan type at roots of unity was carried out in [25], based on the
interpretation of those algebras as cocycle twists of the standard ones [17,18]. The authors
completely describe the specialization at 1 as the Poisson algebra of regular functions
on an explicit Poisson algebraic group and construct a Frobenius map which amounts
to a Hopf algebra isomorphism between the specialization at 1 and a central subalgebra
of the specialization at a root of unity. Our results show that this is an isomorphism
of Poisson algebras and that in the root of unity case it gives rise to a Poisson order
structure.
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Notations

The base field is C; all algebras, Hom’s and tensor products are over C. If ¢t € Ny,
n€ N and ¢t <n, then I, :={t,t +1,...,n}, [, :=1y .

For each integer N > 1, let Gy be the group of N-th roots of unity in C and let G

be its subset of primitive roots (of order N). Also Goo = Jyen Gn, G, = Goo — {1}.
We shall use the notation for g-factorial numbers: for ¢ € C*, n € N,

(0)g! =1, (n)g=1+q+...+¢" ", (n)g! = (1)q(2)q - -~ (n)q-
2. Poisson orders and restrictions to central subalgebras
This section contains background on Poisson orders, their construction from special-
izations, and their relations to Hopf algebras. We prove a general result on restrictions
of Poisson orders to central subalgebras, Theorem 2.4, which plays a key role later.

2.1. Poisson orders

Here we follow the exposition in [20, Chapter 3, §11]. Consider
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o a commutative C-algebra A and h € A such that A/h ~C,
o an A-algebra U such that h is not a zero divisor of U. The natural map U — U/(h)
is denoted by x — T.

For any w € U such that w € Z(U/(h)) there is a linear map D,, € Hom U/(h) given by

D.(y) = ) ify=1. (2.1)
Proposition 2.1. [20, 11.7] Let uw € U such that w € Z(U/(h)).

(a) D, € DerU/(h).

(b) Let w € U. If W' = u + hw so that w = v/, then D, — D,y = adw is an inner
derivation. Conversely the inner derivation adw coincides with Dy, .

(c) Let ¢ € Autg_a15(U) and let @ be the induced automorphism of U/(h). Then

@oDu O@il = Dw(u)

(d) There is natural Poisson structure on Z := Z(U/(h)) given by

[u, v]
h )

{z,y} = Du(y) = if v =7,y =". (2.2)

(e) The map ¢ — @ gives a group homomorphism Auta_a1s(U) = Autpeisson(Z).
(f) L={D,:veU7ve Z} is a Lie subalgebra of DerU/(h). Indeed

[Du,Dv]:D[u,u], velU veZ.

h

(g) The Poisson structure gives rise to a Lie subalgebra L' of Der Z that fits into the
complex

0 —— Innder(U/(h)) L L' 0. (2.3)

The sequence (2.3) is exact if and only if the Poisson center of Z is trivial (i.e.,
there are no Casimir elements except 0). O

Brown and Gordon [13] axiomatized the ingredients of the above setting as follows:

Definition 2.2. A pair of C-algebras (R, Z) is called a Poisson order if Z is a central
subalgebra of R, R is a finitely generated Z-module and the following conditions hold:

(a) Z is equipped a structure of Poisson algebra {-,-};
(b) There exists a linear map D : Z — Derc (R) such that D,|z = {z,—} for all z € Z.
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Reshetikhin, Voronov and Weinstein defined earlier a related notion of a Poisson
fibered algebra, see [42, Definition 2.1]. In the above terminology, such an algebra is a
Poisson order with the additional property that

D, ..,(r)=21D,,(r) + 22D, (r) forall z1,290 € Z,r € R.

Proposition 2.1 proves that the pair (U/(h), Z(U/(h))) has a canonical structure
of Poisson order when U/(h) is module finite over Z(U/(h)). The Poisson bracket on
Z(U/(h)) is given by (2.2). The linear map D is the map induced from the one in (2.1)
by taking a linear section of the canonical projection U — U/(h).

The main application of Poisson orders for us is the following result, inspired by [20,
Cor. 11.8], [19, Cor. 9.2]. Assume that R is affine, i.e., it is a finitely generated algebra
(hence also Z is affine).

Theorem 2.3. [13, Theorem 4.1] Let (R, Z) be a Poisson order and M := MaxSpec Z.
Given x € M with mazimal ideal M, let R, = R/M, R, a finite dimensional algebra.
If x and y belong to the same symplectic core, then R, ~ R, as algebras.

2.2. Restrictions of Poisson orders from specializations

In the setting of Proposition 2.1 the center Z = Z(U/(h)) can be singular and is
more useful to work with suitable subalgebras Z’. Next we prove a general fact for
the construction of Poisson orders on pairs (U/(h), Z’) for subalgebras Z’ defined from
algebra automorphisms and skew-derivations. For this purpose we fix:

e A-algebra endomorphisms ¢; : U — U, i € I. We denote by ; the corresponding
C-algebra endomorphisms of U/(h) induced by ;.

e A-linear (id,¢;)-derivations 8; : U — U, i € 1. We denote by 9; the corresponding
C-linear (id, 5;)-derivations induced by 9.

Theorem 2.4. In the setting of Proposition 2.1, denote
2’ = Z N (Nier ker ;) N (Nyer ker(5; — id)) . (2.4)

IfU/(h) is module finite over Z', then the Poisson order structure on (U/(h), Z(U/(h)))
restricts to a Poisson order structure on (U/(h), Z").

Proof. Clearly Z’ is a subalgebra of Z. We have to check that {Z, 2’} C Z’. Let z; € Z’

and u; € U such that z; =4;, j = 1,2. Fix i € I. As 5;(z;) = «; and 0;(x;) = 0, there
are v, w; € U such that

(Z‘(Uj) =u; + h’l)j, &(uj) = hwj, j=172.
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Now we compute

Si{zi, 22} =7 <[u1]’1u2]> - [gi(ul);l%(mﬂ

_ Il T B = Lo, aa) + o, + ] = L)

([Uh U2]> ai(u1)§i(u2) + Ulai('UQ) - 51‘(%62)9‘(“1) - U23i(ul)

O0i{z1, 2} = 0; ; = ;

= w1 (uz + hve) + uywe — wa(uy + hvy) — ugwy = [21, W3] + [Wr, 22] = 0.
Hence {x1, 22} € ker d; Nker(5; — id) for all i € [ so {z1, 22} € Z. O
2.8. Poisson-Hopf algebras

Assume that in the above setting U is a Hopf algebra over A. Then U/(h) has a
canonical structure of Hopf algebra over C.
Let w € U such that w € Z(U/(h)) and furthermore A(w) € Z (U/(h) ® U/(h)). Then

DawA) = ADu(y), v € U/(h). (2.5)
Proposition 2.5. [20, 11.7] Let B be a central Hopf subalgebra of U/(h). Then

T := minimal subalgebra of Z containing B and closed under the Poisson bracket
is a central Hopf subalgebra of U/(h), hence a Poisson-Hopf algebra.

We recall the elegant proof of [20].

Proof. Apply (2.5) toy € Z and z = u to get A({z,y}) = {A(x),A(y)} for all z,y € Z.
Hence T = {t e T : A(t) € T ® T}, which is a subalgebra containing B, is also closed
under Poisson bracket; thus T="T. Finally T is stable under the antipode S, which is
assumed to be bijective. Indeed, because of the formula {S(z),S(y)} = S({y,z}) that
follows from (2.1), S(T') and S~(T') are subalgebras containing B and closed under the
Poisson bracket, thus T'=S(T). O

3. Hopf algebras

In this section we collect preliminaries on (braided) Hopf algebras (always with bijec-
tive antipode §), bosonizations, braided vectors spaces of diagonal type, Nichols algebras,
Weyl groupoids, distinguished pre-Nichols algebras and Lusztig algebras. We refer to
[40,1] for more information on Hopf algebras, Nichols algebras, Nichols algebras of diag-
onal type, respectively.
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3.1. Cleft comodule algebras

Let ‘H be a Hopf algebra with a central Hopf subalgebra Z. Given z € G = Alg(Z,C)
(the pro-algebraic group defined by Z), let

M, = ker z, T, =HM,, H,=H/T.;

thus H, is an algebra (with multiplication m, and unit u,) and the natural projection
p, : H — H, is an algebra map. Then H. is a quotient Hopf algebra of H and there
is an exact sequence of Hopf algebras Z «— H —» H.. Also for any z,2’ € G there are
well-defined algebra morphisms A, ./ : H,,» — H, ® H’, and in particular the maps

0z = Az,a:Hz‘},Hz ® He, Az = AE,Z M. = He @M,
make H, a H.-bicomodule algebra for z € G. Clearly

0zPz = (pz ®pE)AH7 Apz = (pe ®pz)AH- (3'1)

Recall that a right K-comodule algebra A (over a Hopf algebra K) is cleft if there
exists a convolution-invertible morphism of K-comodules x : K — A.

Lemma 3.1. If the H.-comodule algebra H with coaction o = (id ®p:)Ay is cleft, then
so is H, for any z € G. In particular H, is a Hopf-Galois object over H..
If H is a pointed Hopf algebra, then H. is Hc-cleft for all z € G.

Proof. If x : H. — H is a morphism of H-comodules, then so is x, := p.x : He — H.:
(x: ®id)o- = (p. ®id)(x @ id) Ay,
= (pz ® ld)(ld ®pE)A7-LX = 02P2X = 02Xz-

If x is convolution-invertible, then so is x, since p, is an algebra map.
For the last statement, #H is H.-cleft by [44, 4.3], and then we apply the first part. O

We refer to [43] for Hopf-Galois objects. In the setting of Cayley-Hamilton Hopf
algebras, which is a refinement of the above setting for the pair (H, Z), a tensor product
decomposition of the irreducible representations of H, was obtained in [21].

3.2. Braided Hopf algebras and bosonization

Recall that a braided vector space is a pair (V,c) where V is a vector space and
c € GL(V ®YV) is a solution of the braid equation: (¢ ® id)(id ®c)(c ® id) = (id ®c)(c ®
id)(id ®c). There are natural notions of morphisms of braided vector spaces and braided
Hopf algebras (braided vector spaces with compatible algebra and coalgebra structures),
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see [46] for details. To distinguish comultiplications of braided Hopf algebras from those
of Hopf algebras, we use a variation of the Sweedler notation for the former: A(r) =
r) @ r@,

Let H be a Hopf algebra. Then the category of (left) Yetter-Drinfeld modules £YD is
a braided tensor category and there is a forgetful functor from Z£YD to the category of
braided vector spaces, namely V € £YD goes to (V,c) where ¢ € GL(V ® V) is given by
c(v®w) = v(_1)-wRv (g in Sweedler notation. This forgetful functor sends Hopf algebras
in £YD to braided Hopf algebras. In turn Hopf algebras in £ YD are noteworthy because
of the Radford-Majid bosonization that provides a bijective correspondence between their

collection and the collection of triples (A, 7, t) where A & H are morphisms of Hopf

algebras with m¢ = idgy. See [40] for an exposition. More pL)recisely, the correspondence
sends the Hopf algebra R € YD to the bosonization R#H and the triple (A,7,¢) to
the algebra of right coinvariants R = A®™.

Similar notions and results hold for the category of (right) Yetter-Drinfeld modules
nyI consisting of right H-modules and right H-comodules V satisfying the compatibility

(v- h)(o) ® (v- h)(l) = V() - h(g) ® S(h(l))v(l)h(g), veV, heH.

For convenience of the reader we spell out the precise definitions. First, any V € J)Dg
becomes a braided vector space with ¢ € GL(V ® V) and its inverse given by

c(v®@w) = wey @V - wa), clvew) = w'Sfl(U(l))(X)U(O), v,we V. (3.2)
Let (A,7,t) be a triple as before. Then the subalgebra of left coinvariants
S=TA={seA: (n®id)A(s) =1 s}

becomes a Hopf algebra in yDZ with right action -, right coaction p and comultiplication
A given by

s-h=38(h))sh), p(s)=>1dem)A(s), A(s) =sq) @0(s@z)), s€S, hel,
where ¥ : A — S is given by ¥(a) = 7(S(a(1)))a(z), a € A. Conversely, the bosonization

H+#S of a Hopf algebra S in y@ﬁ is the vector space H® S with the right smash product
and coproduct. That is, given s,5 € S and h,h € H,

(h#ts) (h#3) = hhy#(s - hez))3, A(h#ts) = hay#(sM) ) @ hiay(sW) 1y #s?.
3.3. Nichols algebras

Let V € £YD. Then the tensor algebra T(V) is naturally a Hopf algebra in ZYD. A
pre-Nichols algebra of V is a quotient of T'(V) by a graded Hopf ideal in £YD supported
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in degrees > 2. The maximal Hopf ideal among those is denoted by J(V); the Nichols
algebra of V is the quotient B(V) = T(V)/J (V).

The tensor algebra of a braided vector space (V,¢) is also a braided Hopf algebra in
the sense of [46]; a pre-Nichols algebra of V is a quotient of T(V) by a braided graded
Hopf ideal supported in degrees > 2. The maximal Hopf ideal among those is denoted
J (V); the Nichols algebra of V is the quotient B(V) = T(V)/J (V).

These two structures are compatible, i.e., if V € gyD and (V, ¢) is the corresponding

braided vector space, then J(V) = J (V). But a pre-Nichols algebra of (V,¢) does not
necessarily come as the forgetful functor applied to a pre-Nichols algebra of V € £YD.

Remark 3.2. Let H be cosemisimple, V € #YD and G = B(V)#H = $,en,G", where
G™ = B"(V)#H. By other characterizations of Nichols algebras, we know that

(a) B(V) is coradically graded and generated in degree 1;
(b) G is coradically graded and generated in degree 1.

Since the projection 7 : G — H is graded, the subalgebra of left coinvariants S = "G
inherits the grading of G; by a standard argument it is also coradically graded and
generated in degree 1. Thus S is a Nichols algebra in yDg.

3.4. Hopf skew-pairings of bosonizations

Let (-,-) : M x V — C be a bilinear form between two vector spaces M and V. We
denote by (-,-) : (M @ M) x (V ® V) — C the bilinear form determined by

mem',vev) = (m,v)(m, v), m,m’ € M, v,0' € V. (3.3)

Let H and K be two Hopf algebras. A bilinear form (-,-) : K x H — C is a Hopf
skew-pairing (or skew-pairing of Hopf algebras) if for all k, k' € K, h,h' € H,

(k,hI) = (AP(k),h @ b'), (kK h) = (k@ K, A(h)), o)
(k,1) = e(k), (1,h) = e(h), (S(k),h) = (k,S(h)).

A skew-pairing of braided Hopf algebras is defined by (3.4) but with the convention
AP =clA

Let us fix a Hopf skew-pairing (-,-) : K x H — C. A YD-pairing between M € YD
and V € YD is a bilinear form (-,-) : M x ¥V — C such that

m.]gva = ]{,'U_ m,v ’
( ) = (k,v_1))(m, v)) meM, keK, veV, he H  (3.5)

(m, h-v) = (my, h)(m,v),
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We recall the following well-known result, whose proof is straightforward.

Lemma 3.3. Let R be a Hopf algebra in BYD, S be a Hopf algebra in ypﬁ and (-,-) :
(K#S) x (R#H) — C be a bilinear form such that

(ky, xh) = (k, h)(y, z), yeS, ke K, x€R, he H. (3.6)
Then the following are equivalent:

(a) (-,-) is a Hopf skew-pairing.
(b) The restriction of (-,-) to K x H is a Hopf skew-pairing and the restriction of (-,-)
to S x R is both a skew-pairing of braided Hopf algebras and a YD-pairing. O

A YD-pairing between M € yD§ and V € BYD extends canonically to a YD-pairing
(,-y : T(M) x T(V) — C. This extension is actually a braided Hopf skew-pairing, i.e.,
it satisfies (3.4) with respect to the braided comultiplications. The bilinear form

() (K#T(M)) x (T(V)#H) = C, (k#ty, agth) = (k, h){y, ),

yeT(M), ke K,zeT(V), he€ H is a Hopf skew-pairing by Lemma 3.3.
Assume that dim M < oo. Then the radical T(M*)+ with respect to (-,) coincides
with J(M). Hence, for any V YD-paired with M we have

TV)*: 2 J(M).

Consequently, if dim M < oo and dimV < oo, B is a pre-Nichols algebra of M in ypﬁ
and & is a pre-Nichols algebra of V in #YD, then (-,-) descends to Hopf skew-pairings
(,y:BxE&—=Cand () : (K#B) x (E#H) — C.

3.5. Nichols algebras of diagonal type

We fix § € N and set I = Iy. Let (V, ¢) be a (complex) braided vector space of diagonal
type with braiding matrix

q=(qij) € (CX)HXH

(3.7)
with respect to a basis (z;)cr, i€., c(z; ® x;) = ¢;jz; @ x; for all i,j € I. We assume
that dim B(V') < co. These Nichols algebras are classified in [29]. Throughout the paper
we will also assume that the Dynkin diagram of q is connected, for simplicity of the
exposition. As in page 3, we use the notation B := B(V).

The canonical basis of Z! is denoted as, ..., . The algebra T(V) is Z!-graded, with
grading deg x; = «;, 7 € I. This grading naturally specializes to the standard Ny-grading.
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Let q : Z! x Z' — C* be the Z-bilinear forms associated to the matrix q, i.e.,
q(aj, ar) =gk, j,k € L. If a, 8 € Z' and i € I, then we set

dap = Q(Oévﬁ), oo = CI(OZ,Oé% N, = Ordqoc()m N; = Oraniai = Nozi- (38)

Remark 3.4. Every Z!-graded pre-Nichols algebra of V admits algebra automorphisms
i and (id,s]')-derivations 9} for each i € I; that is,

o (xy) = 0} ()] (y) + x0] (y), z,y € T(V).
Indeed the algebra automorphism ¢;' : T(V) — T(V) is given by
i (x) = q(ay, B), z € T(V) homogeneous of degree 3 € Z.

The linear endomorphisms 9] : T(V) — T(V) are defined as follows. Let A,, ,(z) be
the homogeneous component of A(z) € T(V) @ T(V) of degree (m,n) € N2. Then

An 1) = 0f(x) @ i, zeT(V).

i€l

It is easy to see that 9 is a (id,s])-derivation. If B is a quotient of T(V) by a ZI-
homogeneous ideal, then ¢ induces an algebra automorphism of B, also denoted by ¢,
and 9] induces a (id, ¢;')-derivation of B, also denoted by ;.

3.6. Weyl groupoids

The notions of Weyl groupoid and generalized root systems were introduced in [28,31].
We recall the main features needed later. Let (C?j)@jeﬂ € Z™T be the (generalized
Cartan) matrix defined by ¢}, := 2 and

¢l i=—min{n € No: (n+ 1), (1 — ¢fiqijq;i) =0}, i #J. (3.9)

Let i € I. First, the reflection s] € GL(Z") is given by

si(a;) == aj — chai, jel (3.10)
Second, the matrix p;(q) is given by

q .4
CijCik

76?, —c9 .
(pi(0)jx == a(s] (), 87 (an)) = aiwaiy a5 “ @i’ ™, j kel (3.11)

Finally, the braided vector space p;(V') is of diagonal type with matrix p;(q). Set

X :=A{pj,...pj. (@) : J1,-- -, jn €L,n e N}
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The set X is called the Weyl-equivalence class of ¢. The set Ai of positive roots consists
of the ZI-degrees of the generators of a PBW-basis of B, counted with multiplicities.
Let A% := A} U—A%. Then the generalized root system of q is the fibration A — X,
where the fiber of pj, ...pjy (q) is APs1-Pin (@) The Weyl groupoid W, of B, acts on
this fibration, generalizing the classical Weyl group. Here is another characterization

of AL, valid because it is finite. Let w] € Wy be an element of maximal length and

wg = 83 iy -+ Si, be a reduced expression. Then

B = 8?1 s sikfl(aik), kel (3.12)
are pairwise different vectors and A} = {f, : k € I} [16, Prop. 2.12], so [A] | = ¢.
3.7. Cartan roots [9]

This important notion is crucial for our purposes. First, ¢ € I is a Cartan vertex of q
if

q o
4 i = qici”7 for all j # 1. (3.13)
Then the set of Cartan roots of q is
O = {s] 54, ... 51, () € AV: i €1 is a Cartan vertex of p;, ... pi,pi, ()}

Set O = D9 N Nf. Recall (3.8) and set Nj := Ng, if B ¢ D9, or else oo if § € O
The set of Cartan roots gives rise to a root system up to a rescaling. Set

OT={Njs: €0, D} =9"NNj, F=Nj feOt  (3.14)

Theorem 3.5. [5, Theorem 3.6] The set 99 is either empty or a root system inside the
real vector space generated by D9. The set IT9 of all indecomposable elements of Qi i
a basis of this root system. 0O

Here v € Qi is indecomposable if it can not be represented as a non-trivial positive
linear combination of elements of Qi. Let gq be either 0 or the semisimple Lie algebra
with root system as in Theorem 3.5, accordingly. We fix a triangular decomposition

gq =ng ®bg dny (3.15)

and the Borel subalgebras bé‘ =bhy D né‘ C gq; if g = 0, then n;]* =bhg=n; =0. We
denote the root lattice of gq by

Qq = Z Z~y = @ Z~. (3.16)

venl YEId
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3.8. Distinguished pre-Nichols algebras

The finite-dimensional Nichols algebras of diagonal type admit distinguished pre-
Nichols algebras introduced in [8,9]. An ideal Z(V') of T(V) was introduced in [9]; it
is generated by all the defining relations of By in [8, Theorem 3.1], but excluding the

power root vectors e, a € O, and adding some quantum Serre relations, see [9] for

o ) =q»
the precise list of relations.

Definition 3.6. [9] The distinguished pre-Nichols algebra Eq of V is the quotient Eq =
T(V)/Z(V). Since Z(V) is a Hopf ideal, By is a braided Hopf algebra.

By Remark 3.4, there are automorphisms ¢;' and skew-derivations 9; of gq, 1€ 1.
3.9. Lusztig algebras

The Lusztig algebra L4 associated to q is the graded dual of Eq [3]. Thus L4 is a
braided Hopf algebra equipped with a bilinear form (, ) : £4 x By — C, which satisfies

(y,z2’) = (P, 2)y™M,2')  and  (yy,2) = (y,2®)(y,2Y)  (3.17)

for all z,2’ € gq, Y,y € Lq. Let Zf = Cowgq be the subalgebra of coinvariants of the
canonical projection

w: By — By.

Then Zq+ is a normal Hopf subalgebra of gq [9, Theorem 29] and we have an extension of

braided Hopf algebras ZJ < gq 5 B,. Taking graded duals, we obtain a new extension
of braided Hopf algebras, cf. [4, Proposition 3.2]:

By 5 Ly 5 3, (3.18)

Remark 3.7. Assume that (4.26) below holds. Then the braided Hopf algebra 34 is a
Hopf algebra, isomorphic to the enveloping algebra of the Lie algebra P(34) [4, 3.3].
Moreover P(34) =~ n as in (3.15) [5].

4. Large quantum groups

In this section we describe the large quantum groups, i.e., Drinfeld doubles of bosoniza-
tions of the distinguished pre-Nichols algebras belonging to a one-parameter family; these
are the main focus of the paper. The large quantum Borel and unipotent subalgebras are
also introduced here. Throughout the rest of the paper I'T and I'~ denote free abelian
groups of rank 6 with bases denoted respectively (K;);cr and (L;)ser. Let T =TF x T~
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4.1. Families of Nichols algebras

From now on we assume that q belongs to a one-parameter family (except when
explicitly stated otherwise). This means that there exists an indecomposable matrix

IxI

q=(q;;) € (Cv™'1¥) (4.1)

such that:

o The Nichols algebra of the C(v)-braided vector space of diagonal type V() with
basis (x;);ecr and braiding matrix (4.1) has finite root system; thus q is in the list of
[29].

o There exists an open subset () # O C C* such that for any = € O, the matrix q(z)
obtained by evaluation v — z has the same finite root system as q.

o There exists £ € G, N O such that q = q(¢&).

By inspection in [29], all one-parameter families are listed in Appendix A. We denote
the Nichols algebras of V' and V¢ (,), with braidings given by q, respectively q, by

By :=B(V) and By := B(Vc )

The defining relations and PBW-basis of By and Bq are described in [2] over an alge-
braically closed field of characteristic 0 but the same presentation and PBW-basis are

valid over C(v). Indeed, apply to F = C(v), K = C(v) the following remarks:

o Let K/F be a field extension and (V, ¢) a braided F-vector space. Then (V @p K, c®
id) is a braided K-vector space and B(V) @ K ~ B(V @ K); use e.g. quantum
symmetrizers.

o Let K/F be a faithfully flat extension of commutative rings. Let U be an F-algebra
with generators (y;)jes and Ux = U ®F K which is also generated by (y;);es. Let
(r¢)ier be a set of elements in the tensor algebra over F of the free module F (7).

Then these are defining relations of U if and only if they are defining relations of
Uk.

The discussions in §3.5 and §3.6 apply to the matrix q. Let q : Z! x ZT — (C[p*!])*
as in §3.5; we also have the notation q.s for a, 5 € Z" as in (3.8). We denote by Waq
the corresponding Weyl groupoid, by p;(q) the related braiding matrices, etc. As in
Remark 3.4, there are ¢! € Autyz(Bq) and (id, ¢;')-derivations 93 : By — By, for every
1€l

Remark 4.1. Let 8 € A9. Crucially, 5 is a Cartan root of q if and only if ord qgg = oco.
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4.2. The quantum group Uq

Here we work over C(v). Let W,y be the C(v)-vector space with basis (y;)ic1. The
group I' acts on V() @ We() by

K; - z; = qijz;, Ki-y; = q;'yj, L; - z; = qjiz;, Li -y = q;;'y;, (4.2)
i, j € I. The vector space V¢ () @ We(,) is I'-graded by

Thus Ve ,) ®Wew) € ggzgﬁyp with coaction given by the grading. In particular, W¢(,)
is a braided vector space with braiding matrix q’ where qgj = qj_il, i,7 € 1.

Let Uq be the quotient Hopf algebra of the bosonization T'(Vc () @ W) #C(v)T
modulo the ideal generated by

I Vew))s T Wewy), xiYj — qglyjmi — 04 (KL — 1), i,j €L

The images of z;, y;, K; and L; in Uq will again be denoted by the same symbols. Let
E;, :=x;, F;, .= yl-L;1 in Uq, ¢ € II. Then for all ¢, 7 € I we have

K,E; = qi; E; K, LiE; = q;;E;L;, (4.4)
KF; = q;;'F; K, LiF; = q;; F;L;, (4.5)
E,Fj — F;E; = 6;;(K; — L; '), (4.6)
AE)=K,QE +E;®1, AF) =10 F+F oL (4.7)

We consider the following subalgebras of Ug:

WL ciel)], U=C)K, L ieT),

q i

0 _ £1 -0
U’ = CwK;™ :iel], Uq

Ui = Cw)(E; i €l),

Z +1 .,
Ug = Cw)(E;, K- :iel), U,

a3
[

C
C(v)(F;:iel),
Cw)(Fi, L' :iel).

N
|

Q

The multiplication map induces linear isomorphisms
+ 0 - > <
Uq >~ Uq ®c ) Uq Ac ) U, ~ Uq Ac(v) Uq . (4.8)
We have canonical isomorphisms of Hopf algebras

0 —0 — 0
U’ ~C(v)I, Uy =Cr, Ug = C(v)T.

The algebra U;‘ has a canonical structure of a Hopf algebra in ggz;?iyp and there are
isomorphisms of (braided) Hopf algebras
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~ Z ~ [t 0
Ut =By,  UZ~UF#US,

see e.g. [6] for details.

Define the module V(C(z/ € yDC(U

_ with basis {«] : i € I} by

x; - Li = qjix], degz; = L, i,j el

Let m7 : Uq< — Uq’o be the canonical Hopf algebra morphism; then ™ Uq< =Uyg, ct.

C)r-

[6, Corollary 3.9 (2)]. Hence Uy has a canonical structure of a Hopf algebra in VD¢ (-

By Remark 3.2, we have isomorphisms of (braided) Hopf algebras

Ug =BV, = Byn,  Us ~U"#Uq

q

Here q(~Y means the matrix obtained by inverting every entry of q.
Now there is a unique Hopf skew-pairing (-,-) : US x UZ — C(v) determined by

<L17KJ>ZQ;17 <F’L7Ej>:5’bju <LZ7E]>:<F17KJ>:07 Z7]€]Ia
see [6, Theorem 3.7]. By [6, Theorem 3.11 (1)], we have

(T—g-249+) = (- 24 )(9—, 94 ) xt € Uojﬁ gs €TE

The restriction (-,-) : Uy x Ul — C(v) is non-degenerate by [6, Theorem 3.11 (3)] and
is a Hopf skew-pairing of braided Hopf algebras by Lemma 3.3.

4.8. The large quantum group U,

Recall that g € (C X)HX]I belongs to a one parameter family given by a matrix q, cf.
§4.1.

Definition 4.2. The large quantum group U, is the Drinfeld double of the bosonization
of the distinguished pre-Nichols algebra B;.

The complex Hopf algebra Uy was defined in [9] for arbitrary q with dim B, < occ.
Explicitly, let W be the C-vector space with basis (y;);er. The group I" acts on V@& W
by

Ki-x;=qyz;, Ki-yj=q;'y, Li-x;=qiz;, Li-y;=q;'y;, ijel.
Now V @ W is I'-graded by (4.3), so W is a braided vector space with braiding matrix

q" with entries ¢;; = qj_i1 for ¢,j € I. Recall the defining ideal Z(V') of Eq. Then Uy is
the bosonization T'(V @ W)#CT modulo the ideal generated by
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V), (W), ziy; — q;; Y — 05 (KL — 1), i,j €1

The images of z;, y;, K; and L; in Uy will again be denoted by the same symbols. Let
e =, fi = yiLi_1 in Uy, 7 € I. Then for all 7,5 € I we have

Kiej = qije; Ky, Liej = qjie; L, (4.9)
Kifj = q;;' fiK;, Lifj = q;;' f; Li, (4.10)
eifj — fiei = 0i(K; — L), (4.11)
Ale)) =Ki®e;+e®1, Alf))=1® fi+ fi® L7 (4.12)

We consider the following subalgebras of Uy:

U =C[Kf' rieT], U7 =C[LF' i €], Ul =C[KF LF i eT],
U(T:C<€Z‘S7:€]I>, U7:C<sz€]I>,

Z _ ol L < xS

Ui =Clei, K;— i e1), Ug =C(fi, Li7 i e1).

Definition 4.3. The algebras Uf and Uf will be called large quantum Borel algebras
and the algebras U, ;‘ large quantum unipotent algebras.

The multiplication map induces the linear isomorphisms
Uy~ Uf @c Ul @c Uy ~UZ c US. (4.13)

We have canonical isomorphisms of Hopf algebras

2

U’ ~Crt, U’ ~Cr-, U) ~CT.
The algebra U‘j has a canonical structure of a Hopf algebra in %11:1 YD. We have isomor-
phisms of (braided) Hopf algebras:

Uf ~By,  UZ ~US#U,

see [9]. Define the module V* € YDEL" with basis {2} : i € I} by

%

x; - Ly = qj,x7, dega; = L; 1, 1,5 € L.

Let 77 : Uq< — Uq’0 be the canonical Hopf algebra projection; then 7 Uq< =U; asin
[6, Corollary 3.9 (2)]. Hence U, is a Hopf algebra in YDEL” and because of the defining
relations of U, it is isomorphic to the distinguished pre-Nichols algebra of V* € YDER-.
Combining the above, we get isomorphisms of (braided) Hopf algebras:
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Ub =By,  US=~U'#U;. (4.14)

Here, again, q—) denotes the matrix obtained by inverting every entry of g.
4.4. Lusztig isomorphisms and root vectors
As in [30, §3] we consider

—ci a . .
AL = (i i) (—c)an! [ (ahaiai — 1) € CE, i#j el (4.15)

0§s<7cg7.

Notice that Af; # 0 by the definition (3.9).
By [30, Proposition 6.8], there exist algebra isomorphisms T} : U, q) — Uq such that

FiLi7 .] = 7:’
(ad. B;) "5 E;, j#14,

2 J

TA(K;) = KK, 5 TI(E,) = {
(4.16)

K[ 'E;, j=1i

() ~Nade F) 5 F;, j#1,

3 1 \—1

THL,) = LI TAE) = {

where the underlined letters denote the generators of U,,(q)-

Let wg be the element of Wy of maximal length ending at q and wg = si i, -+ 54,

be a reduced expression. By [30, Theorem 6.20], we have that

Eg, =T ... T, _(By,) €U, Fg =T .. T, (F,) €Uy

21 q’

ke l,. (4.17)

By [32, Theorem 4.5] the sets

(BB By 0<n; <Ny jel}, {FREp .  Fe0<m; <Ny, jel}
(4.18)

are bases of Uf and U, respectively. Indeed, this follows from Property (c) in the
Appendix A and Remark 4.1. Thus the following set is a basis of Uq:

{Ep . EFKY Kg LY LY FR . F 0 <my, n; < N, a;, b € Z}. (4.19)
We now turn to the algebras U,. Let )\?j be defined as (4.15) with q in place of q.

Notice that )\?j # 0 by the definition (3.9). By [9, Proposition 10], there exist algebra
isomorphisms T} : Uy, gy — Uq such that
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fiLia J =1,

q
THEK,) = KK 5 Ti(e;) =
! ! (adc ei)ic?jeja j?é iv

(4.20)

—c. Ki_leia .]: ia

TZH(L]_) = LjLz' i, Tzfl(iz) — { A iy . '
(A Hade fi) 9 5, J#1.

The underlined letters denote the generators of U, (4)-
(ei,) and fz, = T} ... T;,_,(fi,) belong to U and
Uy , respectively and by [9, Theorem 11] the sets

Analogously, eg, = T ... T,

i1 Tg—1

{egieg;’ e 0<n; < Ng,} and {fif5e. S fat i 0<m; < Ng,} (4.21)
are bases of U;r and U, respectively. Thus the following set is a basis of Uy:
{egr e Ky KLY LY fR 5 0<my,n; < Ngag, b €2}, (4.22)
4.5. The central subalgebras Z, Z;t, Zq>, Zf

In this subsection and the next q does not need to be in a family, just dim By < oo is
assumed. Set

N =lem{Ng: 3 e AL} (4.23)
To start with, we consider a subalgebra Z,; of Uy. Then Z; is generated by

N, N, +N, +N,
eﬂB7 fBB) Kﬁ 6’ LB ﬂ, ﬂEDi, (424)
K3", L3", Be Al (4.25)

this is a normal Q4-graded Hopf subalgebra of Uy, [9, Proposition 21, Theorem 33], which
may be different from the one in [9, p. 18] since we add the generators in (4.25) what
actually only affects the types A(k — 1]60 — k), see Proposition 4.8. These new generators
are necessary for U, to be finitely generated as Z;-module.
The following subalgebras of Z; are also needed:
N - N
ij(C(eﬁﬁzﬁeDfU, Zyg :(C<f63:ﬁ€}3i>.

Notice that ZCJIr coincides with the subalgebra introduced right after (3.17), see [9, The-

orem 29|. For Z, to be central in U, we need the following condition that we assume
from now on:

ang =1, a€ Al Be D (4.26)
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Remark 4.4.

(a) If (4.26) holds, then qévo/j =1 [9, Lemma 24].
(b) Condition (4.26) is equivalent to the following one:

=1, for all i € I, 8 € 119, (4.27)

The reduction to simple roots is clear. Since qgg = gap and II% is a basis of the root
system 99, the reduction from Di to IT9 holds.

(¢) Let ¢ € I. Condition (4.26) holds for q if and only if it holds for p;(q).

Indeed, pi(q)ap = ds9(a)s3(p) for all a, 8 € 7% by (3.11), and by [5, Lemma 2.3] we
q _ i pi(a) _ ara
have s} (O%) = O (@), ng(m = N for all 3.
When ¢ is symmetric, we can quotient the large quantum group by a central group
subalgebra to remove the extra Cartan generators as in quantum groups. However the
condition of q being symmetric is not always compatible with (4.26) as we see next.

Example 4.5. Assume that q has Dynkin diagram o o , €€ Gy, N> 2:itis of

super type A(1|0). In this case,
AL = {1, a1 +ag, a2}, 01 = {o + az}.

Condition (4.27) becomes

1= (quqg2)" = (—q12)", 1= (g21g22)" = (—gu) = g = ()N =¢gJ.

We have two possibilities: if NV is even, then g2 = &* for some k € Iy, so ga1 = £ 7F,

and q is not symmetric. If N is odd, then g5 = —£* for some k € Iy, so gz = —&17F.
. . . N
In this case q is symmetric only when k = T'H
We consider also the Hopf subalgebras
+N,
Z0=C{K; " : e 01 U{K;": e Al}), 2z =2tz3°,
270 =C({L;™  pe DIYU{LE"  pe ALY, 75 =12;27°.

0 _ 74+07,-0
Zy=2"7Z".
Remark 4.6. The following properties hold:

(a) [9, Th. 23]. Zglt is a polynomial ring in variables egﬁ, respectively févﬁ, B e Di.



28 N. Andruskiewitsch et al. / Advances in Mathematics 428 (2023) 10913/

(b) The multiplication gives linear isomorphisms Zf ® Z'® Z; '@ Z; ~ Zy ~ ZZ QIS
(c) Recall the skew-derivations 9y, 8;'(_1) of U, cf. (4.14). By [9, Theorem 31],

zZf = ﬂker[‘)q, Zy = ﬂker@f(il). (4.28)

i
i€l i€l

(d) The algebras Uy, Uq> , Uf and Uét are module finite over their central subalgebras
Zg, Zq}, qu and th; just consider the PBW-bases in §4.4.

4.6. Action of the Weyl groupoid on Z,

Next we prove invariance of the central Hopf subalgebras Z; under the Lusztig iso-
morphisms T} : U, (q) = Uy, cf. §4.4.

Theorem 4.7. Let i € 1. Then T} restricts to an algebra isomorphism T} : Z,, (q) — Zq.

Proof. By (4.28), Z, (defined in terms of the root vectors which depend on the expression

of wg) is indeed independent of such expression; in particular we may choose wj =

q
i1 " e
may extend it to a reduced expression of wf [31, Corollary 3]:

s . 8;, such that i; = i. For simplicity we set p = p;(q). As sz ...8;, is reduced, we

£

wh :sfz...si,zsj for some j € 1.

We set 3], = si, (Bk) = s, ... s, (), k € Ia. Hence
{ﬂ;e ke ]Igj} = Sf (Al — {Otl}) = Aﬂ_ — {ozl}

As sb sy (o) € AN ST s, (o) # By, for k € L, we have that s ... s;, (o) = ;.
Then {Ng : 8 € AL} ={Ngz: B € AL}, solem{Ny : 3’ € A%} =N, and

+N N +N +N +N

THEK™) = K™ € Z,, ﬂq(Kﬁg):ng(ﬁ@:Kﬂk € Zy, k>1,
+N N +N +N +N

THK™) = K™ e Z,, Tiq(Kﬁ;):Ks?(ﬁ;):K,@k € Zy, k> 1.

Let € Ori(®) If B = By, for some k € I 4, then s7(8;) = Bx and Ng; = Np,, hence

+Ng/ +Ng, Ny
q B _ B _ :I:Nﬁ q B _ q N[g _ N;g‘
TH(Ky %) = Kaph = Kj, € Zgy Ti(eg ) =TT Ty, (6,7) = e € Zq.

(3

Otherwise 8 = «;, so i is a Cartan vertex and

+N Na, N, Na, _ Nei) \Na,
THK; ") = K e Zg, Ti(ep”)=Tj(e; ™) = (fiLi)Ni = qi(i : )f

2 ?

LY € Z,.
Analogously, Tiq(L;ENﬁ)7TZ—q(féVB) € Zq for all f € O,,(q), 50 T;(Z,,(q) S Zq- Applying
Tip we get the opposite inclusion. O
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Let Aj be the subgroup of T' generated by K;Nﬁ, L;Nﬁ7 B e O and let Ay be the

subgroup generated by A} and Kﬁﬂ, L§N, B € AL : we have that Z] = CA,.
Next we check that A’q = Aq for g as in the Appendix, not of type super A, so the
subalgebra Z; is generated by (4.24) and coincides with the one in [9, p. 18].

Proposition 4.8. Assume that q belongs to one of the families in the Appendiz A.

(a) If q is not of type A(k — 1|0 — k), k € HL%J’ then Ay = Aq and Zg is generated by
(4.24).
(b) Let q be of type A(k—1|0—k), k € [osy,ne AL =909 Then Ag =~ Apx (K)) < (L}),

and Z3 is generated by {KﬁiNﬁ, L;Nﬁ 1B e A%} and KFV, LV

Proof. First we notice that T} restricts to group isomorphisms Aq >~ A,q, Ay~ AL,
since the restrictions (Tiq)wji‘; (U = USY and (Tiq)‘U;i(‘)] U0 — Uy ? are given by
sJ. Hence it is enough to consider one matrix for each Weyl equivalence class.

Assume that q is as in the Appendix A and is not of type A(k — 1|0 — k). If q is of
Cartan type, then A} = 9%, hence A; = A4. For the other types we check the equality
Ay = A4 case-by-case when the Dynkin diagram is the one in Tables 2 and 3.

Let q be of type A(k — 1|0 — k) with Dynkin diagram in Table 2, n € A% —O%. Then
0% ={ayjli <j<kork<i<j}, Ng=N foral g €O, Ay = (KY,LY]i # k),
1N = ay; for some i <k < jand N = N if N is even while N = 2N if N is odd. Hence
K}, Lj belong to the subgroup generated by A}, K} and Ly. On the other hand, A4 is
generated by Ay, K} and L, thus the statement follows. O

5. The specialization setting for large quantum groups

In this section we introduce the non-restricted integral form of Uq and prove that the
large quantum group U is a specialization of it. We also introduce restricted integral
forms of the subalgebras qu and establish pairing results for the corresponding special-
izations. The latter integral forms will play a key role in our treatment of Poisson order
structures on the large quantum groups Uy and their Borel and unipotent subalgebras.

5.1. Integral forms

In order to implement the ideas of Section 2, we need to consider forms over suitable
rings, generalizing [20]. For simplicity, we set

A:=Clt (qhaia; — 1) i #Ajel,0<s< —cis] C C(w). (5.1)

By (3.9), af;qi;qi # 0 for 0 < s < —cf}.
We now define the (non-restricted) integral forms as the A-subalgebras

Ufa=A(Ei:iel)CcUS, Ula=AK L iiel] C U,
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Uga=A(Fi:iel) C U, Uga = AKFL LEL B Fr i€ 1) C Uy,
> . < - .
UZa=Ufa®@aAIK i €ll],  USa=Uia@aAL i el
These are crucial for our purposes. We have again a triangular decomposition
Udn @aUga @aUgp = Uga. (5.2)

The surjectivity of this multiplication map follows from the cross relations (4.4), (4.5)
and (4.6), while the injectivity follows from (4.8). Recall (4.15) for the next result.

Lemma 5.1. For alli # j in 1, (\;)™" € A.

—ea
Proof. If q,, " q;jq;j; = 1, then using that q;; € C[v*1]* we have
— a cd(c—1) —ca _
)= (=1)% g (qu — 1)~ H (qhqijq —1) 2 €A
0§s<—ciqj

Otherwise q;; is a root of unity of order 1 — %, so because (—cf})q;,! € C*, we have

a
IR C P UL T B
W™ = % I (aaga:—D'eA o
17/ Dii* 0§S<—C?j

Example 5.2. Let q be of modular type br(2), respectively wk(4), see §A.3. Then A =
Clv*!, (v — 1), (v — )71, respectively A = C[v*!, (v — 1)~ (v + 1)71].

Recall the Hopf skew-pairing from §4.2. We now define the restricted integral forms,
that also play a central role in this paper, as the A-submodules

Ugn =1y € Ugly, Uga) € A}, Ugn " ={z € Ug[(Uga.2) CA}. (5.3)

Indeed, these are A-subalgebras of Uy and U;r , respectively. This follows from the fact
that Ui A are braided Hopf subalgebras of qu over A and the properties of Hopf skew-
pairings.

5.2. PBW-bases of integral forms

Recall the Lusztig isomorphisms 7; from §4.4.

Lemma 5.3.

(a) T; restricts to an A-algebra isomorphism T;' : Uy, (q).a — Uqa, i € 1.
(b) Let B € A+. Then Eﬂ,FB S Uq,A.
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Proof. (a) follows from (4.20) and Lemma 5.1, while (b) from (a) and (4.17). O
Proposition 5.4. The sets (4.18) and (4.19) are A-bases of UiA and Uq,p, respectively.

Proof. We consider the case of U(I a» the other being analogous. Let Y be the set of
PBW monomials of Uy from (4.18). By Lemma 5.3, Y C U;A. The defining relations of
U(;“ involve products of F; with coefficients in A, hence we may prove recursively that,
for j > k, Eg, Eg, € AY, the A-module generated by Y, where each monomial in the
expansion has letters Eg,, j > t > k; see the proof of [32, Theorem 4.8]. Thus AY is
a left ideal containing 1, so AY = U:} a- This fact and the direct sum decomposition
Ud = @yeyC(v)y imply that U(IA = ®yevAy. O

Recall the notation N, 5 in §3.7. Next we consider the quantum divided powers

Fp B3 .
P =B B = % 0<n<Ng,.
’ (n)QBjﬁj ° ’ (n)qﬁjﬁj :

Proposition 5.5. For j € Iy, let nj, m; be such that 0 < nj,m; < Z\Nfﬁj. Then
<F(n1) F(ne) Em1 Emg> — 5 5
5, .- Fg, 0 ERt . ER nymy - - - Omgng-
Proof. Let 1; = (Fj;, Eg;), j € I;. The same proof as [10, Proposition 4.6] shows that

(FOD F B UER) = Snymy - S 11

As in [10, 4.7], we see that n; = 1: here (F}, E;) = 1, there (F;, E;) = —1foriel. O

Propositions 5.4 and 5.5 imply the following:

Ures +

Corollary 5.6. The following sets are A-basis of Ué?f\_ and U™,

respectively:
{Fi P s0<n; < Nobooand {BS™ B s0<my < Ny, b (54)
5.8. The specialization of Uga

As explained in Property (c¢) of the Appendix, there exists £ € G/ such that q(§) = g;
we fix one such &.

We consider the setting in Section 2 assuming R = A, h = v — £ and the R-algebra A
being either Uqa or its subalgebras UiA. We claim that the map C[v*!] — C, v — &
extends to an isomorphism A/(v — ¢§) ~ C. For, if

a

q45;9:;9;5: — 1 — ¢5;i;¢;: — 1 =0 for some i # j, 0 < s < —¢;3,
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then 0 < —c?j <s< —c?j, which contradicts Property (c) of the Appendix A. Here and
below we will use the bar notation x — T for specializations.

Theorem 5.7. There are Hopf algebra (respectively, braided Hopf algebra) isomorphisms
Eq:Uq = Uga/(v —£) and  Eqlyx US> Uga/(v =€)

= = = -+ . .
given by e; — E;, fi — Fi,KijEl — Kijﬂ,Liil — L, ' for alli € 1. For each i € 1, the
following diagram is commutative:

Epi(a)

Upi(q) UPi(ﬂ)fyA/(V B 6)
- l lT? (5.5)
U, e Uga/(v - £).

Proof. The defining relations of Uy hold in Ug,a/(v —&) by the definition of Uy in [9] and
the presentation of Uqg in [8]. Therefore, the map = as above is well-defined. Moreover
2, is surjective, since E;, F, Fiﬂ, fiﬂ generate Ug a/(v — &) as C-algebra.

Now we check that (5.5) is a commutative diagram. Indeed, since Property (c) in the
Appendix A holds and q + q under the evaluation map, we have that

_— a

Eq o Tiq(ej) = (adc Ei>_CJEj =T Epi(q)(ej),
Eqo0 Tiq(fj) = (ad,. Fi)ic

for j # i. Since EqoT;/(X) = T 0E,, (q)(X) for X € {e;, fi, K]il, L}H}, the claim follows.
By (5.5), 2q(Eg) = Es and Z4(F3) = Fjg for all B € A,. Hence Z, sends the PBW
basis of Uy to that of Uga/(v — &), so 24, and its restrictions to qu, are isomorphisms.

Clearly =, (and its restrictions) are isomorphisms of (braided) Hopf algebras. O
C . +
5.4. The specialization of U;‘?Z

Recall the Lusztig algebra £, §3.9 and the identification of gq with UCT as in §4.3.
For 3 € 99, n € Ny, define 0" € Lg such that

1, m; =mn, my =0 for k #j,

(n) my mey __
Ng. ,€ R -
( B B Be ) {0, otherwise.

By [3, Proposition 4.6], the set

{nglll) .. .7](52”) :0<n; < NB]}
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is a basis of L4 and the algebra L is generated by
{Na; 11 €T}U {néNﬁ) (B eIl

The Lie algebra ng from (3.15) has a C-basis {L*(’UéNB)) : B € 99} and set of simple
root vectors {L*(T]éNB)) : B € 117}, Similar results hold for the Lusztig algebra Lg-1)
associated to By =~ Uy . The corresponding elements of Ly-1), defined as in (5.6)
using fz" instead of eff', will be denoted by 9;707 where 8 € 99 and n € Ny.

Remark 5.8. The Lie algebras associated to £4 and £q<71> as in Remark 3.7 are iso-
morphic to each other, see the list in the Appendix A. Hence we have a Lie algebra
isomorphism

no, ~ng (5.7)

o
where L*(OéNB)) € n;'(,l), B € 11" are mapped to the simple root vectors of ng .

For a braided Hopf algebra B denote the braided opposite algebra B2 with product
1°P := pc~! where u: B x B — B is the product in B.

Proposition 5.9. There are C-algebra anti-isomorphisms

6 U= 6 Lo 7 s g,
N op given by Be D% ne N
ot (U /=) = Lo, B0 s g,

Proof. We prove the statement in the minus case, the plus case is analogous. By Propo-
sition 5.5 the Hopf skew-pairing (, ) : Uy X U(Jlr — C(v) restricts to a perfect pairing

(,):USA™ xUgp = A

Since U;: A (V=& ~ UqJr as braided Hopf algebras, the latter pairing induces a non-
degenerate pairing (, ) : (Ué?if/(z/ —¢)) x U — C such that

(', 2) = oy, Al@),  yy €U /(v—8,xeUy (5.8)

and we have the commutative diagram

Tes — =+
—_—
ULea™ xUla A

l

(Uga™ /(v =€) x U
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By the definition of L4, we have a canonical vector space isomorphism
o7 USA (v =€) — Lq such that Y,z) = (¢~ (YV),x)

for all Y € USA™ /(v — §), 2 € Uy . Comparing (3.17) and (5.8), we see that ¢~ is an

algebra anti-isomorphism. Using again Proposition 5.5 and the definition (5.6) of nén),

we get that ¢~ is given by F/g") — né”) for € D9, neNy. O
6. Poisson orders on large quantum groups

By Theorem 5.7, the large quantum group Uy fits in the context of Section 2 and
consequently the pair (Uq, Z(Uy)) inherits a structure of Poisson order from deformation
theory. However the Poisson algebra Z(U,) is often singular. We prove that the central
Hopf subalgebra Z; introduced in §4.5 (which is of course regular) is a Poisson subalgebra
of Z(Uq) of the same dimension. Thus (Uy, Z4) has a structure of Poisson order that
restricts to the corresponding large quantum Borel and unipotent algebras.

6.1. Poisson structure on Zg

We show that Zg, Zq? , qu, Z;L and Z; are Poisson subalgebras of Z(Uy), respectively
Z(U7), Z(Ug), Z(Ug) and Z(Uy ).

The coefficients of Poisson brackets that we use will be expressed in terms of a square
matrix 29 € C1"*1I"  Fyrthermore, in the next section we will show that the Cartan
matrix of the semisimple Lie algebra g4 is also expressed in terms of the entries of this
matrix. The matrix &9 is defined as follows. Let 8,y € O%. As qg, = qg,(£), (4.26)
implies that there exists gog,y(l/) € A such that

1-qy™ = (- 9pl, (). (6.1)

Recall the notation 8 from (3.14) and the set ©% from Theorem 3.5. Define
P = (95,(8)pyema- (6.2)

We distinguish two cases, namely whether ¢ is of type A(k — 1|0 — k) or not. In the
first case we need one more generator to have finite type of Uy as Z;-module, and a
fortiori as Z(Uq)-module.

Case 1. q is of type A(k — 1|0 — k) with Dynkin diagram as in Table 2. Set

n:i= Z oy + Z (i —k+1Da, n:= Nyn, (6.3)

1<i<k k<i<0

recall (3.12). It is easy to see that NN, = N, recall (4.23). Denote
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%= 119U {n} = {a;]i # k} U {n}. (6.4)
We have the following:
(I) By Proposition 4.8, Z; is generated by (4.24) and K,,iN", L,j,EN".

(IT) By direct computation, qa,y = ¢ya, = 1. Arguing as in (6.1), there exist pd , (v),
oo, (V) € A such that

1=dan=E=8pa,1),  1—ap, ==, (V)

We check that the following equality holds:

Pain(&) + 95a, (§) =0, i 7 k. (6.5)

(IIT) Similarly, g, = 1, so there exist i}, () € A such that 1 —q,, = (v —§)pf, (v). By
direct computation,

pd (&) =—N2E(O—k+(0—k+1)%) #0. (6.6)
Case 2. q is not of type A(k — 1|0 — k). Set
9 .= 119, (6.7)

It follows from Proposition 4.8 that

ZJOZC[KS‘L:HGHq]v ZJOZ(C[LN“:NGHq}' (6.8)

Lemma 6.1. Let i € . Then 27Pi(Q) = g4,

Proof. First, I77:(9) = sJ(IT). Thus pgé((?}))sg(v)(l/) = g5, (v) for B,y € I by (3.11). O

The next theorem is the main result of this section.
Theorem 6.2. There are structures of Poisson order on the pairs

(Uqs Zg), (Uz,22), (US,ZY), U, z3) and Uy, 27) (6.9)
arising by restriction from the Poisson order on the corresponding algebra and its center
with Poisson bracket (2.2). The central algebras Zg, Z? and Z‘f are Poisson-Hopf while
Zét are coideal Poisson subalgebras over the former.

In each of the pairs in (6.9) the second algebra is central to the first. Using PBW
bases one easily shows that in each case the first algebra is a finitely generated module
over the second one in the pair; here the introduction of the generators (4.25) for super
type A is essential. Because of Theorem 5.7 and Proposition 2.5 we are reduced to prove:



36 N. Andruskiewitsch et al. / Advances in Mathematics 428 (2023) 10913/

Proposition 6.3. The subalgebras Z;E, Zq>, qu and Zq are Poisson subalgebras of Z(qu),
Z(Uf), Z(Uqg) and Z(Uy), respectively, under the Poisson bracket (2.2).

Observe that Z;t, Zq> and qu are Poisson subalgebras of Z;.

Proof. We apply Theorem 2.4 to the algebra U:’ A, the automorphisms ¢;* and the (id, ¢*)-
derivations 9;!, i € I to conclude that Z’ defined as in (2.4) is a Poisson subalgebra of
Z(Uy). Now we have that

_ * 7 ad :
giq == glqa 0, ; 8?7 Z;_ C miE]I keI‘(QL-q - 1d>

The equality x holds since q = q(§), while * holds because both skew-derivations act in
the same way on the generators of U;r . The inclusion holds since Zjlr C Z(Uy): indeed
¢H(x) = KiK' = 2 for all z € ZF. From this inclusion and (4.28), it follows that
2= Z;r . The proof for Z; is analogous. The restriction of the Poisson structure to Zgi
vanishes by the definition (2.2).

Next we prove the statement for Zq2 . Let 8,7 € O1. We have

Ng N, NgN,
N (E5" K57 1-q Ng ,-N., (6.1) N
e K} = = T = D KT S e (0 K e 2

If q is of type A(k — 1|6 — k) and 7 is as in (6.3), then K,I;[” € Z(Uy) and {egﬁ,Ké\r”} €
(Celﬂvﬁ K,J,V” C Zq? This proves the claim in light of Proposition 4.8 and Property (I) in
§6.1. Similarly, one shows that

N, N, N, N, N, N,
{ey”, LY} € Cey "Ly, {f3", K"} € Cey"KJr, {57, LY} e CFP LY,

for all 8 € O, JIAS I79. This finishes the proof for qu and reduces that of Z; to proving
that {egﬁ , ff,v "} € Zg for all B,y € OF. For this we use the enumeration of the positive
roots using the longest element of the Weyl groupoid. First we assume that 3 = §;,
y=Ppfor1<j<k<{lLetp=npi...pi(q),7 = sfj ... 84, (7),s0 Ny = N,. We have
that

N;. _N;.
JFij ]’F/V,])

N, N. -
B3 P T T (K "

7 fi]»

v—¢& v—¢&

{es” 110} =

. —N;. N;. N/
J — 74 ¥ ¥ ¥
’ o T ... T, ({Ki], N })

—Ni, N;. N,
By the statements already proved, {Ki]_ ’ fi], R } € Z,. Hence
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N, Th 4.7
{eg’ [y eTd . T, (Z,) =" 2,

The case j > k is proved analogously. Now assume that g = 7. We start with the case
B = «; for some i € [ (a simple Cartan root). Using (4.6) we prove recursively that

N 2
B, BN =D (¢ qu( ) FN tH Q22N LY ENTH N eN. (6.10)
t=1 qii

Let t € In,—1. As g;; is a primitive N;-th root of unity and q;; = gii,

N2 ) ) N; (N;— - N,
PR . Vi (1-af)tay ++ay ™) 1-qf
[e7Xe 7] I/_g I/—f 7 I/_f.
Hence,
(Ni)g,! 1 —q; (I—gu)...(1—gy ™ _ 980, (6.11)
v—{§ v—¢§ (1= qii)™: (1= qi)™i
From this we obtain,
ToN: Ng TNy T _ 4
N: N (B F ] (Ni)as a8 N o,
eNi Ny = i ot 1 ! TT (g — L) = o) gene vy ¢ g
ey = B - H )= T - N )<
Next, if 5 is not simple, say § = f3; for some j € I, then using Theorem 4.7 and (5.5)
again
Ni. N,
BV 800
Ng [ Yo'y _ @[35 Ng Np
{65 7f3 y=1; . zjl( - )_(qgg—l)Nﬂ Ky —Lﬁ)EZq. a

(6.12)

7. The associated Poisson algebraic groups

In this section we describe the Poisson algebraic groups that correspond to the Poisson-
Hopf algebras Z,, Zq; and Z(f. We prove that, as algebraic groups, they are isomorphic to
Borel subgroups of connected semisimple algebraic groups but of adjoint type (and not of
simply connected type as in previous works) and direct products of such Borel subgroups.
The dual Lie bialgebras of the three tangent Lie algebras are proved to constitute a
Manin triple, the ample Lie algebra in which is reductive. It is shown that the resulting
Lie bialgebra structures are the ones from the Belavin—Drinfeld classification [11] for
the empty BD-triple and arbitrary choice of the continuous parameters. The results
completely determine the Poisson structures on the three kinds of algebraic groups in
question.
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7.1. The positive and negative parts of the dual tangent Lie bialgebra of M,

Let M,, Mqi7 Mqﬂ’, Mf and ng be the complex algebraic groups which are equal
to the maximal spectra of the commutative Hopf algebras Z, Zglt, Z;Ito, Zq> and qu,
respectively. Here the Hopf algebra structures on Z;E are the restrictions of the braided
Hopf algebra structures on qu to ZCT—L [9].

Since Zj is a finitely generated Poisson-Hopf algebra which is an integral domain,
M, is a connected Poisson algebraic group (see §B.2 for background). Analogously, Mf ,
ng and M ;‘EO are connected Poisson algebraic groups, and M, ét are connected unipotent
algebraic groups. The latter are not Poisson algebraic groups; they are isomorphic to
certain Poisson homogeneous spaces for Mq2 and Mf (see §8.3). The tensor product
decompositions Z,; ~ Zq2 ® qu from §4.5 give rise to the decomposition of algebraic
groups

My~ MZ x MS. (7.1)

This is not a direct product decomposition of Poisson algebraic groups (because Z; ~
Zq> ® qu is a tensor product decomposition of commutative but not Poisson algebras).
However, the canonical projections My — Mq> and My — ng are homomorphisms of
Poisson algebraic groups because Zq> and qu are Poisson-Hopf subalgebras of Zj,.

Denote by mg, mf and mq< the tangent Lie bialgebras of My, Mf and Mf (see
the Appendix B for background and notations). Eq. (7.1) gives rise to the direct sum
decomposition of Lie algebras

~mS >
mg > mg omy.

The Lie coalgebra structure on mg, fully described below, has cross terms. The dual of
the tangent Lie bialgebra my = T7 M, is computed as the linearization at the identity
element 1 of M, of its Poisson structure by using (B.1). The maximal ideal 9t of
C[M,] ~ Z, of functions vanishing at 1 coincides with the augmentation ideal of Z;. In
the proofs below we will use the identification 77 M =~ 9, /9M% where the differential
di(g) of a function g € C[M,] at 1 € M, is sent to the class of g — g(1) in 901, /9M? for
g € C[M,]. The Lie algebra mj has the C-basis:

{di(e§”),di(£5"), da(KN#), du(L})) : B € OF, p € I}, (72)
By Proposition 6.3, the subspaces
+y* N —\* . Ng
(mq ) = @ﬁegi(c dl(eﬁ ) and (mq ) = 695691@ dl(fﬁ )

are Lie subalgebras of mj. The dual Lie bialgebras (mf)* and (mf)* are canonically
identified with the Lie sub-bialgebras of mj
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(mi)* @ (@Ee»ﬁq di(K)*)) and (mg)* e (@Eeﬁq di(Ly")). (7.3)

Recall the notation from §5.4. It follows from the triangular decomposition (3.15) of
the semisimple Lie algebra g, associated to q that the set of simple roots of gq can be
identified with II9. Denote the entries of the Cartan matrix of g, by

CB ) B,y € 1.

Throughout the section we will assume the identification "q_<—1> ~ nq+ from (5.7), so
gq = 1 @by @ ny will be identified with N1 @ be ®ng. By the definitions of n_
and ng’, gq has a set of Chevalley generators

{xg,yg,hg :ﬁ S Hq}

such that 25 € C**(63) and yg € C*1*(np), respectively (here ng and 6z are defined in
(5.6) and the subsequent paragraph). In this way the root lattice of g4 is identified with
Qq by setting degwg = —degys = Ngf3, deghpg = 0 for 3 € II9.

We will need the following reductive Lie algebra

- {gq@(C, if q is of type A(k — 1|6 — k)
Yq 1=

9q otherwise.

See the comments after Theorem 6.2. By (3.15), it has the triangular decomposition
O =ng ©hgOny

where the Cartan subalgebra is given by
b= {f)q @ C, if qis of type A(k — 1|0 — k)
q:=

PR otherwise.

In the A(k — 1|0 — k) case denote by h, a non-zero central element of g4. In that case
we have gq = gq ® Ch,, and by = hq @ Chy,.

+

Proposition 7.1. We have a Qq-graded Lie algebra isomorphism (mq

)~ nac given by
dl(egﬁ) — s/gL*(H(ﬁN’j)), respectively dl(févﬂ) — —spL* (néNB))

@25 €3]

for all B € O, where sg :=
" P (1= gee)™

. In the plus case we use the identification (5.7).
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Proof. First we prove the minus case. Let 3,7 € 9. Since F FNe fNﬁ, = ez,
and the subalgebra Z; is closed under the Poisson bracket {-, -} by Proposmon 6.3, using
Proposition 5.4 we obtain

[F7 PN = 3 (v = 8al, () F) + (v —€)gs, mod (v =€) U s (T4
se0q

where agv(u) € A and g, is a non-commutative polynomial in {F;"* : § € 01} involving
monomials of degree > 2. Since Uy is Z!-graded, the sum in the right-hand side has at
most one non-zero term, when Ng3 + N,y = Njé for some 6 € OF. Therefore

FNﬁ’F’){V‘Y
[dl(fév ), dl(fN )] = ({ }) = dl(%) (7.5)
= 3 @O +dilgs) = Y aby Od(f),
se0] sel

because gg, € 92 From (7.4) and since Uqna is No-graded connected, we see that

(%) 00 = 3 g8 ()L OWNoa! pov e
[F ,F\N) ] = (V) F mod (v — &)U )
’ ! §€ZDq (Nﬁ)Qﬁ(g (N'Y)q’v’v! 8 a,A

It follows from (6.11) that

(Nﬁ)q/.gﬁ o pgﬁ(g) — s
v—¢  (T—qga) 7

Hence in Uy~ /(v — &) we have

> ab,(©)ssFy

seOd

N N,
[85Flg 2 stng ]

_ ) @b (@B i3 E0T6=F4,

0, otherwise.

The statement of the lemma follows from this identity, (7.5) and Proposition 5.9. The
plus case is proved analogously, using Remark 5.8 and that qg, = 1 for all 8, € Qi. O

The last part of the proof gives the following fact about the structure of Lusztig
algebras which is of independent interest. Recall ng defined in (5.6).

Corollary 7.2. The braided Hopf algebra projection v* : Lq — U(ny) (recall (3.18)) has
an algebra section U(ng) — Lq given by
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v (N N
L (né ﬁ)) »—>17/<3 ﬁ), peol.

Proof. By Proposition 5.9 and (7.6),

(JL(S,Y &)s N, .
vy 00 S5 e 15—,
[775 7777 ] - .

0, otherwise.

(7.7)

On the other hand, set x5 := L*(n(ﬁNﬁ)). As n is the positive part of gq and each xg
has weight j3, there exist ag, €k, 8,7 € Qi, such that

agXgty, Bty €D,
[, %] = { S (7.8)
0, B+v¢ 07,
)
Applying ¢* to (7.7) we obtain that ag, = %356 for each pair 8,7 € O% such that 5+

7 € 9. Therefore the existence of the algebra map U(n; ) — L, as above follows since
U(ny) is presented by generators xg, f € 9%, and relations (7.8), and the corresponding

relations for néNB) hold in L4 by (7.7). O
7.2. The dual tangent Lie bialgebra of Mg

Lemma 7.3. The following equalities hold in the Lie algebra my:

X ©35(6) ) ;
[di(ef™), d(F)] = *%wmﬁw(dlg{g )+ di(LY7),  Byedr,
and
[y (K2), di(es?)] = —p5()da(es”),  [du(KN),di(£57)) = p25()da(£57),
[y (L), di(es?)] = —p%,(E)di(es?),  [du(LN),di(f5")] = 93,(&)di(f57)

for all § € OF, HGINYC'.

Proof. The case of 3 # v € II% of the first identity follows from the fact that (7.2) is
a basis of the Lie algebra mj and that the latter is Qq-graded. The case g = vy € 111

is a consequence of (6.12) since dl(LJﬁvﬁ) = —dl(LgNﬁ), which in turn follows since

the value of L]ﬁvﬁ at the identity of Mj equals 1. The other four identities follow from
(4.4)-(4.5). O

Since the polynomials v™ — a are separable over C for a # 0, we infer from (6.1) that

©55(6) #0 for all g€ OF.
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Theorem 7.4.

(a) The Cartan matriz of the semisimple Lie algebra gq is given by

@5—,(5) + @35(5)

I79.
pie o Das

By =

(b) There is a (Qq-graded) Lie algebra isomorphism gq @Eq ~my such that

_1)NB N 1
defNﬁ,yH(qﬁideB,h»—) di(KNe) 4 dy (LY
B 1( Jéi ) B 925(5)2 ( B ) H pg#(g)( 1( ) 1( ))
Jor pelf, pe ﬁq, and Hq maps to the subspace

{ Z audl +b dl( : Z p;c}'y(g)a/u—’—pgu(g)bll« :O,VZE ﬁq}

p€eIa pella

of the abelian Lie algebra & ;75 (Cdi (K g )+ Cdy (L N"))

Proof. (a) For 3 € [1% and p € 119, define the following elements of mg:

_ 1\ .
= (), T = %d(% P = e (dy (KN 4 dy (L))

and the Lie subalgebra gq(3) := CZ3 ® (Cﬁg @ Cys. Lemma 7.3 implies that, for all

B €11, [hg,Tp] = 223, [hp, Ypl = —2Us, [T, U] = hs, 50 gq(B) ~ sla.
Now take 3 # v € I and consider gq as a gq(f8)-module under the adjoint action. It
follows from Lemma 7.3 that

q q
[i‘\ﬁa@\'y] =0 and [7’[,\5’@\,),] = —MA

x )
ng () K
so ¥, is a highest weight vector for gq(f) =~ sly of weight —%w where w

denotes the fundamental weight of sl;. The isomorphism of Proposition 7.1 and the

Serre relations in n; imply that

adgﬁcB”H( ) =0 and ad] o (Uy) #0 for j < —cps.

Hence, ad;;g () is the lowest weight vector of the (irreducible) gq(3)-module generated
by ¥, which forces
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This proves part (a). It also proves that the assignment xz — Zg, yg — Y, hg — Eﬁ
for B € II7 defines a Qg-graded Lie algebra homomorphism ¢ : gq — mg which is

an embedding by Proposition 7.1 and the linear independence of {d; (Kévﬁ), dl(LJ;B) :
B € O9}. Here we use the canonical isomorphism n;t — nf obtained by restricting the
Chevalley involution of g7

If q is of type A(k — 1|0 — k), then Tz,, is in the center of mj by (6.5) and Lemma 7.3.
Furthermore, ﬁn ¢ ©(gq) by the definition of d(K,iV”) and d(Lﬁ[“) for € IT9. Hence, ¢
extends to an embedding B

¢ g = my (7.9)
by setting (h,;) = ?Ln if q is of type A(k — 1|0 — k). Denote

= 0,0 (CAUKN) ® Cdy(LY)).

el

Let (m))’ be the intersection of the kernels of the functionals {l, : 7 € 119} on (mg)*

given by

Ly (di(K))) = g, (€), Ly (di (L") = 99,(8).

Part (a) of the theorem, the constructed embedding (7.9), and eq. (6.6) imply that
(my)' NIm g = 0. Hence, dim(m))’ < dim(mq)* — dim b, = dim b.

Since the number of the above functionals equals |]~Y 9 = dimaq, we have
dim(m))" > dim b,.
It follows from part (a) that dim(m)’ < dimbg, Hence
dimbhq > dim(mg)* — dimEq = diqu.

0
q

space isomorphism b ~ (mg)’ and combining it with the embedding ¢, gives the needed

Therefore dim(m?)’ = dim b, = dim(m)*/2 and m} = ¢(g,) ® (mj)’. Taking a vector
Lie algebra isomorphism for part (b). O

Let (-,-) be the invariant symmetric bilinear form on g4 for which the induced form
on the dual of the Cartan subalgebra of g, satisfies (3, 3) = 2 for short roots 3 € I1.
We extend it to a non-degenerate invariant symmetric bilinear form on g4, where in the
case when ¢ is of type A(k — 1|6 — k) we let

(hnagq) =0, (hmhn) =2

In this case we identify
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where 7 € E; is such that (n, h,)) = 2 and (n, hg) = 0 for all g € I19.
We will identify Eq with E; via the bilinear form (.,.). Define the scalars

Ky = 2@2#(5)(&&)_1 for pe I7°.

For § € II9, the scalar rg only depends on the simple factor of gq of which § € IT% is a
root, because by Theorem 7.4(a),

_ 95, + 6556 _ 2(8,7) (7.10)

A W) 5,8

If q is of type A(k — 1|6 — k), then (1,7) = 2.

Proposition A.3 (i) tells us that each large quantum group Uy is realized as a spe-
cialization of an integral form of a one-parameter quantum group Ug in infinitely many
different ways parametrized by integers ¢;; € Z for i < j € I. Furthermore, by part (ii)
of that proposition, for a generic choice of the parameters t;; € Z, i < j € I, the matrix
with entries pgw (§) for B,y € I is non-degenerate. In the remaining part of the paper
we will assume the following:

Non-degeneracy Assumption 7.5. The specialization parameters ¢;; € Z, i < j € I in
Proposition A.3 are chosen in such a way that the matrix &9 in (6.2) is non-degenerate.

It follows from (6.5)—(6.6) that the matrix
P = (6,(©)), 11
is invertible.

Remark 7.6. In what follows we will identify the Lie algebras

mf =~ §q @ b, (7.11)

via the isomorphism from Theorem 7.4. In particular, zg, yg, h,, for 8 € 119, € 179 will
be viewed as elements of m3. We also fix the identification of abelian Lie algebras

{ > audi(EN) +b,du(L0) 2 Y7 o (E)ay + 99, ()b, = 0,y € 117} =~y (7.12)
pela Eeﬁq

for Theorem 7.4(b) by sending Zueﬁq a#dl(K,iV”) +b,dy (Lg”) — Zueﬁq bk pt, using
the identification of Hq with H;‘ via the form (.,.). Since both Lie algebras in (7.12) have
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the same dimensions, we only need to show that this map is injective. An element in
its kernel has b, = 0 for all g € 1% and thus, ) el (§)a, = 0 for all v € II9. The
Non-degeneracy Assumption 7.5 implies that a,, = 0 for p € .

Consider the Borel subalgebras Eéﬁ = nqi D Eq of gq. We have
(mZ)" Cb; @by and (m§)" C b} @b, (7.13)

in the identification (7.3) of (mf)* and (m§)* with Lie subalgebras of mj. Using the
Non-degeneracy Assumption 7.5 one more time, we obtain that the projection into the
first component my ~ gq ® bq — gq restricts to the Lie algebra isomorphisms

(m7)* ~b; and (mS)* ~bf. (7.14)

We next describe the embeddings (7.13). Denote the linear maps ﬁ 27T e End(Eq):

P =D 0L  PTw= > e (7.15)

yels yells

Because of the Non-degeneracy Assumption 7.5, the matrix P is invertible, and thus
both endomorphisms are invertible.

Denote by ((-,-)) the invariant symmetric bilinear form on gq, which is a rescaling of
(-,+) by n;l on each simple factor of g4 and on the one-dimensional center of gq if q is
of type A(k — 1|0 — k). It satisfies

(dr(K) + du (L), di(KJ7) + di (L) = 05,(6) 95, (€) (R, ha)

= 09 (€)% (rT T = 09 (€) 4 o8 (€), Y,y € ITO.

This implies that the form ((+, -)) has a unique extension to an invariant symmetric bilinear

form on mz such that

(d(K), di (L)) = o, (€), (7.16)
(i (KR, da (L)) = (di(K3™), di(LE7)) =0 (7.17)

for p,y € IT9. The Non-degeneracy Assumption 7.5 implies that the bilinear form ((-,-))

*

q ~
One easily verifies that the orthogonal complement in mj of gq equals by.

on m is non-degenerate.

Proposition 7.7. For all large quantum groups Uq satisfying the Non-degeneracy Assump-
tion 7.5, the subalgebras (mq})* C by @by and (mqg)* C by ©bg are given by
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(mZ)* = {(y+h,~h) :y € ng,h € by},

) ={(a+h, 22T (h):xenf, hebgl.

/A N\

(m
Proof. Denote the first (abelian) Lie algebra in (7.12) by b( ). Fix

hi= Y cu(di(EN) +di(L)*)), hy= Y audi(KN*), hy:= Y budi(L}*)

pella pella pella

If hy + ho € B, then 1, (hy) = —1,(ha) for all 4 € IT% which is equivalent to

55( Z ) Z bup). (7.18)

pels e

By Theorem 7.4(b), in the identification (7.11), dl(K,iV“) +dy (L,JY"') corresponds to
Ky for all p € IT9. Hence, the first statement of the proposition is equivalent to proving
that for all h, hy, ho as above, if hy + hsy € 5(2) and h+hy 4+ he € (mq )*, then ¢, = —b,
for u € I19. From the condition Ay + hy € ’62,2) we obtain ((di (L)), h + ha)) = 0 for all
7€ II%. Thus

> 0 (E)(cu+b) =0,  Vyell
geﬁq

Now the first statement of the proposition follows from the Non-degeneracy Assump-
tion 7.5. The second one follows from the first by interchanging the roles of (m?)* and
(m§)* and applying (7.18). O

We next describe the Lie coalgebra structure on m}

q and the corresponding Manin
triple; see §B for background.

Theorem 7.8. For every choice of the specialization parameters t;; € Z satisfying the
Non-degeneracy Assumption 7.5 the following hold:

(a) The Lie coalgebra structure of the Lie bialgebra my is given by

3(wp) = di(Ly%) N, S(yp) = di(K3") Ays,  S(dy(Kp™)) = (i (L)) =0

Jorall e Il pu e .
b) With respect to the bilinear form ((-,-)), (m¥, ms)* m> *) is a Manin triple.
g (Mg q
(c) The Lie coalgebra structures of (mg)* and (mg)*

*

satzsfy

(0w, r1 @ x2)) = =y, [z1,22]),  (6(x), 91 @ 92)) = (@, [y1,92]) (7.19)

for all x,xq, x5 € (mqg)* and y,Y1, Y2 € (mq})*.
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Remark 7.9.

(a) Part (a) of the theorem uniquely determines the Lie coalgebra structures of my,
(m?)* and (mf)*7 since the set

{J:g,yg,dl(Lg“),dl(Lg“) el e ﬁq}

and its appropriate subsets generate the Lie algebras mj, (mqg)* and (mq} )*.

(b) By part (c) of the theorem, the Lie coalgebra structures of mg, (mqg)* and (m?)*,
are precisely the ones that are associated to a Manin triple as in Remark B.1(c). In
particular, we have the isomorphism of Lie bialgebras

y )" = ((m$)*)")P = (mF)°P (7.20)

a~— = q = Mg/ :

(c) The Lie bialgebra structures on the reductive Lie algebras mj ~ g, @Eq from part (a)
of the theorem correspond to empty Belavin—Drinfeld triples and arbitrary choice of
the continuous parameters in their classification [11].

Proof of Theorem 7.8. Part (a) follows from Lemma B.2 and the identities
Aley") =Ky  @ey” +ey” @1, A(f3") =10 f3° +f3" @ L;"". (1.21)

for 8 € 119 and the fact that K, /]LV“ and L,]Y“ for p € II9 are group-like elements.

(b) The subalgebras (mf )* and (mqg)* are orthogonal to their nilradicals because
of the embeddings (7.13). This, combined with (7.17), implies that they are isotropic
subalgebras of my with respect to the form ((+,-)). The direct sum decomposition my =~
mq< ® mf yields the desired result.

(c) Part (a) of the theorem and the isomorphism in Theorem 7.4(b) imply at once the
validity of the identities (7.19) fory = di(e”), y = dy (Kp*), x = di(f57), z = dy (L"),
where ﬁ e 111 JIS II 9 and for all possible choices of x1,x2,y2,y2. The general case
follows by induction on root height when x, y are chosen to be root vectors by using the
invariance of the bilinear form ((-,-)). O

7.3. The Poisson algebraic groups Mq> and ng
Combining the isomorphisms (7.14) and (7.20), we get the Lie algebra isomorphisms

~ (M$) )op = (b Jop ~ b and m§ =~ (mZ)* ~ by

m q q’

A\

(7.22)

where (.)op stands for the opposite Lie algebra structure and (E;r)op ~ ECT is the stan-
dard Lie algebra isomorphism x — —=z. The proof of Proposition 7.7 shows that the
corresponding pull back maps on the level of duals send
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B —di(Ky?),  Brrdi(Ly?),  VBel. (7.23)

The scalars kg do not appear here because the form ((-,-)) is a rescaling of the form (-, )
by ﬂ;1 on each simple factor of gq and on the one-dimensional center of gq if q is of type
A(k—1|60 — k).

Denote by G the adjoint semisimple algebraic group with Lie algebra gq. Let

Gy =

~ Gq x C*, if qis of type A(k — 1|0 — k)
Gq, otherwise.

In the former case the exponential map
exp : gq — éq is given by  exp(x + chy) = (exp(z), exp(c)), (7.24)

where in the first component in the right hand side we use the expgnential map exp : gq —
G4, and = € gq, ¢ € C. Denote by BjE the Borel subgroups of G corresponding to bjE
and by Bi the Borel subgroups of G correbpondlng to bi Ngq. We have BjE Bi x C X
if q is of type A(k — 1|6 — k), and Bglt = Bgﬁ otherwise.

Let Tq = E;‘ N Eq_ be the corresponding maximal torus of éq. Denote by Nqi C Gy
the unipotent radicals of E;‘E

The groups of group-like elements of Zq> and qu are the free abelian groups on K f N’ﬂ
B e II% and LfN”, w1 € I19, respectively.

Theorem 7.10. For every choice of the specialization parameters t;; € 7 satisfying the
Non-degeneracy Assumption 7.5, the Lie algebra isomorphisms (7.22) integrate to iso-
morphisms of algebraic groups.

M2 = Bt CMS =g
+ M7 — B and T1_:Mg3 — B .

Theorem 7.10 describes explicitly the algebraic groups M; Z and Mg S, As an algebraic
group, My ~ B+ X B . The Poisson structures on Mq/, Mq\ and M, are the unique
Poisson algebralc group structures that integrate the Lie bialgebras mCI , mq and mg,
whose dual Lie bialgebras are described in Theorem 7.8.

Proof. We prove the first statement, the second being analogous. Since G4 is of adjoint
type, the Borel subgroup Bc‘f is canonically identified with the identity component of
Aut(b*) The adjoint action of Mg on mg =~ by induces a surjective homomorphism

M/ By . 1f q is of type A(k — 1|0 — k), then we also have a canonical surjective
homomorphlsm 7'+ Mg — C*, whose pull back map C[C*] = C[x*'] — C[MZ] is
given by x +— K,, , where x is the identity character of C*. Define the homomorphism
Ty Mf —» é;l" given by
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{(ﬁ,ﬁ), if q is of type A(k — 1|0 — k)
T4+ =

T_}_ , otherwise.

It follows from (6.8) that the homomorphism 7 is surjective. It restricts to an iso-
morphism 74 : N(Mf) — N, where N(Mf) is the unipotent radical of Mf The

q )
homomorphism 7, also restricts to a surjective homomorphism

Ty 1 T(MZ) — Ty, (7.25)

where T(Mf ) is a maximal torus of Mq> . The tori T(Mq2 ) and fq are connected because
Mq> and B;IF are connected algebraic groups. In view of the Levi decompositions of Mq>

and Ea”,

restriction (7.25) is an isomorphism. However,

in order to prove that 7, is an isomorphism, it is sufficient to show that the

CIT(M?)] ~ C[MZ /N(MZ)] = C[G(C[MZ))], C[T,]~C[B/NS]=~C[G(C[B]])],

where G(H) denotes the group of group-like elements of a Hopf algebra H.

The group of group-like elements of (C[Mf ] ~ Zf is the free abelian group with
generators K é,vﬁ, B € II%. The group of group-like elements of C [E;‘ ] equals the character
lattice of E;r , which is canonically identified with the lattice ZII9. The differentials at the
identity element of the two generating sets are respectively dq (K iv ") and p, where pu €
I19. Eq. (7.23) implies that i : G(C [E;‘]) — G(C [Mf]) is an isomorphism. Hence, 77 :
(C[Tq] — (C[T(Mf))] is an isomorphism and the same holds for (7.25). This completes
the proof of the theorem. O

Example 7.11. Let q be of type wk(4) and fix N = ordgq, M = ord(—gq), see §A.3. Let
v = ay + 203 + 3ag + a4. Then No, = Ny, = N, Ny, = Ny = M,

O ={a;, 9,01 + ay, 04,7, 04 + 7}

As shown previously, A(egﬁ) = egﬁ ®1+ Kévﬁ ® egﬁ for g € I = {a;, a5, ay,7}. We
can check that eq, +qa, = [€1,€2]c; €asty = [€4, €4 and
A(eé\[1+a2) = e(])tvl+a2 ® 1 + (q - 1)N651K(JXVQ ® 652 + KO]XK(JX\L ® eévl+052’
Al )=el @1+ @+ DMK wel + KN KM @ell, .
We now construct an explicit isomorphism between Zq2 and the algebra of functions
over the Borel subgroup of PSL3(C) x PSL3(C). We consider the Levi decomposition
Bs ~ N3 x T3 of the Borel subgroup of SL3(C), where

_ 1 tiz s
T3 = {t = diag(tl,tg,tg) : ti € (Cx,tltgtg = 1}, N3 = {I’l = 0 1 tlg : tl’j S (C}
0 0 1
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Let a;, 245 : f?g — C be the coordinate functions sending t — ¢; and n — ¢;; respectively.
The coproducts of these coordinate functions are given by A(a;) = a; ® a; and

A(r12) =212 ® 1 + ara; ' ® 712, A(T23) = 293 ® 1 + aza3 ' ® o3,

A(z13) = 213 ® 1 + 2120205 ' @ T3 + 105" @ 113,

Denote Zs = ((¢,(,()), where ( is a primitive 3rd root of unity. The Borel subgroup B3
of PSL3(C) has Levi decomposition Bs ~ N3 x T3 where T5 = T'/Z3, so

C[Bs] = C[N3] ® C[T3]% = Clz12, To3, 213, a1y, ay],

where a9 := alagl and as3 = agagl. The coproducts of the coordinate functions on By
are given by A(asi11) = Gii+1 @ a441 and

A(z12) = 212 ® 1 4+ a12 ® 212, A(23) = 23 @ 1 + az3 ® 23,

A(z13) = 13 @ 1 + T12a23 ® Ta3 + a12a23 @ T13.
The Borel subgroup of PSL3(C) x PSL3(C) is isomorphic to B3 x Bs. We denote the

coordinate functions a;;11 and x;; on the first and second copy of Bs by superscripts 1
and 2. Now, clearly the map 74 : Zq) — C[B3 x Bs] given by

N 1 N 1 N 2 M 2
KOt] —> a12? KOCZ — a23, K(Xg — a12, K’Y = a23
and
eV
N 1 N 1 atag 1
€q, F T1a, Coy FF Tag, G- 1)~ — 2713,
Mo, 2 M2 Coaty 2
€oy L2, €y T23, TEE T13

is a Hopf algebra isomorphism.
8. Poisson geometry and representations

In this section we describe the symplectic foliations and the torus orbits of symplectic
leaves of the Poisson algebraic groups My, Mf and Mf, and the Poisson homogeneous
spaces MCT and M . Previous work in this direction dealt with the so called standard
Poisson structures on simple algebraic groups (and their Borel subgroups) [33], the dual
Poisson algebraic groups [18] and the related flag varieties [27]. See also [15,19,34]. The
Poisson structures in Remark 7.9 are not of standard type in general and the results in
this section can not be deduced from [33,18,27]. For z € Mg, respectively Mf, Mf, M,
My, let H., respectively HZ, HS, H}, H, be the algebra defined in Theorem A (c),
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respectively (1.2). The Poisson geometric results described above provide information on
the irreducible representations of the large quantum groups U, by reduction to the sheaf
of algebras H,, z € M. Analogous results hold for U,? , Uqg7 and qu.

8.1. Representations of the large quantum groups and symplectic foliations

The Manin triple described in Theorem 7.8 and the identification mg ~ gy ® h g equip
9q® hq with a quasitriangular Lie blalgebra structure, which turns G X T into a Poisson
algebraic group. The Poisson structure on Gq X Tq equals Ly(r) — Rg( r) for g € Gq X Tq,
where r € A2 (gq @ Hq) is the r-matrix for the Lie bialgebra structure on gq & Eq, and
Ly(—) and Ry(—) refer to the left and right-invariant bivector fields on é X T .

Let M > and M S be the connected Lie subgroups of G X T with Lie algebras (mq )*
and (mq )*. Proposition 7.7 implies that Mq\ is an algebralc subgroup, while Mq/ is not
necessarily a closed Lie subgroup. The projection onto the first component 7 : G X T —»
éq gives the surjective Lie group homomorphisms

Y D+ A< -
+: M7 — By, m_ Mgy — By .

Since Gy is of adjoint type, the kernel of the exponential map exp : by — Ty equals
27T2PV, where qu denotes the coweight lattice of gq. It follows from (7.24) that the
kernel of the exponential map exp : Eq — Tq equals 27TZPV, where PV is the coweight
lattice of gq given by

P\/

- _{R,V@Zhn, if q is of type A(k — 1|0 — k)
Y =

jqu , otherwise.
Denote the subgroup
C~’q = exp (27”-@11@@(13‘1\/)) C fq, (8.1)

cf. (7.15). Proposition 7.7 and the solvability of Mq? and ng give that

M7 = (N x {1}) x {exp(h, "2 (h)) : h € by},

M = (Ny x {1}) x {(t,t7") : t € Ty},
from which one obtains that
Kermy = {1}, Kerm_ = {1} x éq.

Composing 7+ with the isomorphisms from Theorem 7.10 leads to the isomorphisms

e -1 .S =~ ar<
o Mg —>M/ Toomo s My /Kermo — M.
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Their inverses give the canonical embeddings
gt MZ < Gqx (T,/Cq),  jo: M <> Gq x (T,/Cy). (8.2)
Here we use that Gq x (Tq/Cq) =~ (Gy x Ty)/ Kern_ and MsNKerm = {1}.

Remark 8.1. If the matrix q is symmetric, then so is the matrix &29. This implies that
2 = 27T and that the group Cgq is trivial. Then the continuous parameter accompanying
the BD triple is as in Example B.5 and the Poisson structure is the standard one.

Theorem 8.2. Let Uq be a large quantum group. For every choice of the specialization
parameters t;; € 7 satisfying the Non-degeneracy Assumption 7.5 the following hold:

(a) The symplectic leaves of the Poisson algebraic group My ~ M‘? X ng are the inverse
images 771(O x t) under the map

Mg = Gq x (Ty/Cq), G(my,m_):=ji(my) "G (m_), my € MZ m_ €M,

where O is a conjugacy class of éq and t € fq/éq. The dimension of the symplectic
leaf j71(O x {t}) equals dim O.

(b) If j(2) and j(Z') are in the same conjugacy class of éq X (fq/éq), then there is an
algebra isomorphism

Hz ~ Hz’-

Note that, since T, a/ éq is abelian, each conjugacy class of éq X (TV a/ éq) has the form
O x {t}, where O is a conjugacy class of Gq and t € (T,/Cy).

Proof. (a) By [41], since the Poisson algebraic group C:‘q X fq is quasitriangular, its double
Poisson algebraic group is canonically isomorphic to

Theorem 7.8(b) implies that the dual Poisson Lie group of éq X Tq is
M7 x M < (Gq x Tq) x (Gq x Ty)

with the opposite Poisson structure to the restriction of the one of the double. Both
Mf X Mf and My ~ Mq> X ng have the same tangent Lie bialgebra, hence the map

(1 -1 AT o < > <~
Ti= (T M, T o) M X My - ME x My ~ M,

is a Poisson covering map. By the Semenov-Tian-Shansky dressing method [45], we get
that the symplectic leaves of M, q> x M, qg are the connected components of the intersections
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ng N (diag(éq x Tq) "9 diag(éq X Tvq))’

where diag (Gq x Ty) denotes the diagonal of (Gq x Tq)*? and g € (Gq x Ty)*>. Now
we apply [50, Theorem 1.10] to obtain that each such intersection is a dense, open and
connected subset of diag (Gq x Ty) - g - diag (G4 x Ty). Consider the map

J: Mq> X Mf — C~¥q X fq, }(m_,_,m_) = m;lm_7 my € Mf,m_ € le

By a direct argument we conclude that each symplectic leaf of ]\A/[/q) x M, q< is of the form
Sor = (Mq) X Mf) no',
where O’ is a conjugacy class of G4 x T, and that
dim Spr = dim O’

Since T : ]/\\4? X ]/\\/[/q< — My is a covering of Poisson Lie groups, each symplectic leaf of
My, is of the form 7(Sor). One easily verifies that the diagram

M x B Go x Ty

T I

Mg éq x (Tq/éq)

commutes, where ¢ : CNT'q X Tq — C:'q X (fq/éq) is the canonical projection. Clearly,
P(O') = O x {t}, where O is a conjugacy class of éq and t € Tq/éq. Therefore
all symplectic leaves of M, are of the form 7(Sp/) = j7'(0') = j=1O x {t}) and
dim j~HO x {t}) = dim O’ = dim O.

Part (b) follows from part (a), and Theorems 2.3 and 6.2. O

In regard to the irreducible representations of U, we wonder whether the De Concini-
Kac—Procesi conjecture could be extended to the setting of Theorem 8.2, see [18].

Question 8.3. Let O be a conjugacy class of éq, te fq/éq and z € 57O x {t}). Does
(dimO/2 givide the dimension of any irreducible representation of H. ?

8.2. The torus orbits of symplectic leaves and the representations of the large quantum
Borel algebras

The algebras Uy, Uq> , Uf and U;t are Z!-graded with grading dege; = — deg f; = a,
deg K; = deg L; = 0 for i € 1. This leads to a canonical action of the torus (C*)! on
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these algebras by algebra automorphisms, which preserves the central subalgebras Zg,
Z3, Zg and ZF.

By a direct comparison, one obtains that the (C ><)]I—auction on Z? corresponds to the
left action of T;l(Tq> on Mf in the sense that every automorphism from the first one
corresponds to an automorphism from the second and vice versa. Similarly, the (C*)I-
action on qu corresponds to the left action of 7~*(T},) on ng. Theorem 8.2(a) implies
that the induced action of (C*)I on M, preserves the symplectic leaves of M,. So, in
regard to irreps of Ug, the (C*)I-automorphisms of U, do not provide any additional
information to that in Theorem 8.2(a).

However, for U f and U, f, we do obtain additional representation theoretic information
from the (C*)I-action, as stated in next theorem. Let Wy be the Weyl group of Gy, i.e.,
that of éq.

Theorem 8.4. For every choice of the specialization parameters t;; € Z satisfying the
Non-degeneracy Assumption 7.5 the following hold:

(a) The Poisson structure on Mq2 is invariant under the left and right actions ofTJ?l(fq).
The T;l(Tq)-OTbitS of symplectic leaves of Mf are the double Bruhat cells

(B nBywB;),  weW,

(b) If 71(2) and 74(2') are in the same double Bruhat cell, then there is an algebra
isomorphism

Proof. (a) For a Lie subalgebra of gq & Eq, denote by N(—) its normalizer in G X T .
By [37, Lemma 2.12], the left and right actions of M> N N((mCI )*) on the Lie group M>
preserve its Poisson structure. By the definition of 7, these actions correspond to the
left and right actions of T_:l(Tq) on Mq} , so the latter preserve the Poisson structure on

> , because M Z Mf is a Poisson map.

Applymg [37, Theorem 2.7 and Prop0s1t10n 2.15] and the Bruhat decomposmon of
Gq, we obtain that the M> NN ((mq )*)-orbits of symplectic leaves of M> (with respect
to either action) are the intersections

Ms 0 ((Gy x T)w(Gq x Ty))
for w € Wy. Since ]\A/[/q) —» Mq> is a Poisson covering map and 7 : Mq> = é;{ is

an isomorphism (Theorem 7.10), the Tll(fq)—orbits of symplectic leaves of Mq> (with
respect to either action) are the double Bruhat cells Tll(B;‘ N BywBy ) for w e Wy.

Part (b) follows from part (a), Theorems 2.3 and 6.2, and the fact that the left action
of 77 1(Ty) on M comes from the (C*)I-action on UZ by algebra automorphisms. 0O
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Example 8.5. Let q be of type wk(4). By Example 7.11, the corresponding algebraic group
C~¥q is isomorphic to PSL3(C)xPSL3(C) whose Weyl group is S3x Ss. Theorem 8.4 implies
that among the quotients qu /MZ Uf for z in the maximal spectrum of Zq>7 there are
at most |S3 x S3| = (3!)2 = 36 isomorphism classes of finite dimensional algebras.

Analogously to Theorem 8.4 one proves the following:

Proposition 8.6. For every choice of the specialization parameters t;; € Z satisfying the
Non-degeneracy Assumption 7.5 the following hold:

(a) The Poisson structure on Mf is invariant under the left and right actions of
7= N(Ty). The 7="(Ty)-orbits of symplectic leaves of Mf are the double Bruhat cells

T_NB; NBiwBf), weW,
(b) If 7_(2) and 7_(2') are in the same double Bruhat cell, then HS ~ HS as algebras.
8.3. Poisson homogeneous spaces and irreps of large quantum unipotent algebras

Since Zc‘l* is the algebra of coinvariants for the coaction of Zg+ on Zq> obtained by
restricting the coaction of UC?"’ on Zq2 , and analogously for the negative part, we have
isomorphisms of Poisson algebras

Zf ~CIMZ /r7H(Ty)], Zg ~ C[MS/m=M(Ty)]- (8.3)
As shown in the previous subsection, the left and right actions of 7! (fq) and 771 (fq) on
the Poisson algebraic groups Mf and ng preserve their Poisson structures. The right
hand sides of the isomorphisms (8.3) involve the coordinate rings of the resulting Poisson
homogeneous spaces Mf / T;l(fq) and Mf / T__l(fq) obtained by taking quotients with
respect to the right actions. The Poisson structures on Mq> /T;l(fq) and ng / T:l(fq)
are invariant under the induced left actions of T_;l(fq) and le(fq). By Theorem 7.10,
74 restricts to the isomorphism of homogeneous spaces 74 : Mq> /j;l(fq) = E;‘/ﬁ,.
Denote the canonical isomorphism

v: B} /T, = BYB; /By C G4/B;.

Theorem 8.7. For every choice of the specialization parameters t;; € Z satisfying the
Non-degeneracy Assumption 7.5 the following hold:

(a) The le(fq)-orbits of symplectic leaves of Mf/r;l(fq) are the open Richardson
varieties

949 q q
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(b) If vy (2) and vT(Z') are in the same open Richardson variety, then there is an
isomorphism of algebras

HE ~HE.

Proof. Part (a) is proved arguing as in the proof of Theorem 8.4(a). Then (b) is a
consequence of (a), and Theorems 2.3 and 6.2. O

An analogous result holds for the large quantum unipotent algebra U~ and the torus

orbits of symplectic leaves of the Poisson homogeneous space M, qg / le(fq).
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Appendix A. Families of finite-dimensional Nichols algebras

Let 0 € N, I = Iy. We fix a matrix q = (g;;) € C™*! such that dim B, < co. To insure
centrality of Z; we require

(a). The matriz q satisfies (4.27), i.e., qoji‘fg =1, foralliel, pelIlv.

Remark A.1. If the Dynkin diagram of ¢’ is as in Tables 1, 2 and 3, then there is q with
the same Dynkin diagram that satisfies (4.27); the proof is straightforward.

If q satisfies (4.27), then any matrix in its Weyl-equivalence class also does. Let C[v*+!]
be the algebra of Laurent polynomials; its group of units is C[p*1]* = C*vZ. Let

IxI

q = (a;) € (C[r*']%) (A.1)

For x € C*, we denote by q(x) the matrix obtained by the evaluation ev : C[v*1] — C,
ev(v) = x. We seek for matrices (A.1) with the following Properties (b) and (d).

(b). The Nichols algebra of the C(v)-braided vector space of diagonal type with braiding
matriz (A.1) has the same arithmetic root system as q.
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By inspection of the list in [29]-see also the exposition in [2]-we conclude that the
only possible matrices (A.1) are those Weyl-equivalent to the ones with Dynkin diagrams
as in Tables 1, 2 and 3 and that the following property holds.

(c). There exists an open subset ) # O C C* such that for any x € O, the root systems
and Weyl groupoids associated to q and q(zx) are isomorphic. Also there exists £ € GL_NO
with N := ord € € [2,00) such that q = q(§).

Remark A.2. (i). The Dynkin diagrams of the matrices q and g locally have the form

T . i i jj ~ ~ .
qo ’ qéj s respectlvely qO ’ qi])J 5 where Qi; = Qi 954, 9i5 = Gij4q54, 1.€., the
Dynkin diagram does not determine completely the braiding matrix. We deal with this
as follows. Let p = (p;;) € C™T with the same Dynkin diagram as q. Then there exists
IxI
p € (C[Vﬂ:l]x) X
pii = qii and p;; € C[vF1]* such that p;; = p;;(€) for i < j; then p;; = aijpi_jl.

with the same Dynkin diagram as q such that p = p(€). For, take

(ii). Assume that q satisfies (b). Let p be another matrix with the same diagram as
(A.1). Then q;; = ps;v"7N, i < j for a unique family (hi;)i<jer with h;; € Z.

(d). 29 defined in (6.2) is invertible.

Let NV be the diagonal matrix with entries Ng, § € IT9. The matrix &9 is invertible
if and only if the auxiliary matrix 79 is so, where

PU= - INTIN.

Proposition A.3. There exist matrices C = (c;;) € Z™1 and (pi;) € (C*)™*Y such that
C is symmetric and:

(i) There are infinitely many matrices T = (t;;) € Z™ fulfilling
tii = Ci, tij +tji = cij foralli £ j€l (A.2)
such that the matriz q = (q;;) defined by
qij = pijvt“, foralli,jel (A.3)

satisfies (b).
(ii) Among those T in (i), there infinitely many such that q satisfies (d).

Proof. It suffices to fix one matrix for each Weyl-equivalence class, see Lemma 6.1. We
check below (i) by case-by-case considerations computing also 79 and proving that it is
invertible for infinitely many 7.
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A.1. Cartan type

Let q be in this class; then there is a Cartan matrix A = (a;;); jer such that g;;q;; =
qi;?. We fix d; € I3 such that d;a;; = djaj; for all i,j € I. The Lie algebra gq has the
same type except when N is even and A is of type By or Cy, when they are interchanged.
In this case I[I% = {N;«; : i € I}, so (4.27) becomes:

g =1,  forallijel (A4)

The matrix q we are looking for should also satisfy q;;q;; = qf;j for all i # j. In all cases

we take & = g1 except for By, where £ = ggg; see Table 1. Set t; = d; and q; = vbi.

Thus q;;(§) = qi; for all i € I. Recall that

N;N;
(V_f)pgiaj(y) = 1_qij .
. 1_pdiN?
For instance ¢3 ,, (v) = === hence
90, (€) = =€ 1diN? = =M N (A.5)

Let ¢ < j. We see that there exists d; € I3 such that N; = N/d;. By (A.4), g
is a power of £%; choose t;; € d;Z such that q;; = v’ satisfies q;;(§) = &4i = ¢;;.
Set t;; = d;a;; — t;; and qj; = v'. We have defined T satisfying (A.2) and q turns
out to be given by (A.3) with p;; = 1 for all 4,7, i.e., (i) holds. Also for all i # j,
(v = )80, () = 1 — 9% and

90, () = =€ iy NiN;. (A.6)

Therefore 79 = T'. Observe that if t;; = 0 for ¢ < j, then det 79 # 0. By a standard
argument, (ii) holds.

A.2. Super type

Assume that the braiding matrix q is of super type; see [2] for details and below for
D(2,1; «). Going over the list, we see that there exist

o £ € C*, aroot of 1 of order N > 1;
o a symmetric matrix B = (b;;); jer € Z*! with b;; = 1 for at least one pair (4, j);
o a parity vector p = (p1,...,ps) € {1} with p; = —1 when b;; = 0; such that

qijqji = €9, i # J; i = pil"", el

We describe in Table 2 matrices q of super type, one for each Weyl-equivalence class
(here a(;jy = a; +--- + «; for i < j). Since the matrix q has an analogous shape, we
may assume that
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Table 1
Cartan type.
Type q N 9q
—1 —1 -1
Ag PO S % Ag
2 2 2 2 2
Bg, 6> 2 6L % 6~ % odd By
even, # 2 Cy
1 1 -2 2
Co,0>3 O S 2 % odd Cy
even, # 2 By
Dy, 0 >4 6 Dy
v vty v vt ,,U71i’1 v
O O O (o}
Eq, 0 € I8 5 Eqo
v vl ‘uuil/il v vt
O O O (o}
—1 -2 2 -2 2
Fy O . AN > 2 Fy
s
G 55 >3 e

o there exists k € I such that {i € I : p; = —1} = {k};
o there exists h € I, h # k, such that £ = gup.

Recall that IT was defined in (6.4) and (6.7). Therefore we have:

o either 19 = {N;a; :i €1,i#k}U{Nap} (W= N if N is even and N = 2N if N is
odd) for type A(k — 1|0 — k) or else there exists a unique positive non-simple root /3
such that I19 = {Nya; : i € 1,i # k} U{NzB};

o fori €1, i # k, we may (and do) choose b;; € {£1,+2,£3}. Then N; = LCD(b;;, N);
set d; = N/N;.

We start defining the matrix q. First we take t; = b;; and q;; = piq®* for all i € I.

Condition (4.27) says that qi}l" =1, forall i €I, j € I\{k}. Let i < j with j # k;
choose t;; € d;Z and set t;; = bj; — t;;. Then q;; = v' and q;; = V% satisfy q;;(¢) =
' = q;; and qq;q;5 = V0.

Similarly, quc\i =1 for k > i, so choose t;;, € d;Z and set ty; = bg; — tik, Qus = V
and q;; = v'i* so that qu(€) = € = qi;. We have defined T satisfying (A.2) and q
turns out to be given by (A.3) with p;; = p; and p;; = 1 for all ¢ # j, i.e., (i) holds.

bri—tik

It remains to compute the matrix 7. Arguing as in the Cartan case we see that

03 0. (§) = = 'pibiN}, 9.0, () = =€ M, NiNy, i,j € I\{k}.

Assume that there exists v € IT"\I (a non-simple Cartan root). Then there exist
py € {£1} and b4, biy € Z such that
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Table 2
Super type.
Type q N 17 dq
vt v oyt - vV v
Ak —1]6 — k), o o 21 6% > 2 (A7) Ap_1 X Ag_y,
k € HL%J
v w2 o2 —1 iy
B(k|0 — k), o o ° o o odd (A.8) Cr X Bo_»
kelyg_q even, # 2,4 Cr X Co_pi
vl v ot -1 v T2y
D(k|0 — k), ° o ° o o odd (A.9) Dy x Co—p
k< % even, # 2 Dy X Bg_
vd —di —d3 2
D(2,1;a), oL ’ (A.10) A1 x Ay x Ay
di,d3 €N
[ Y Ja Y Vs |
F(4) o 0—o0—0 > 2 (A.11) A; X B3
—1 vy w8
G(3) o o o, N >3 (A.12) A X Go
— bwv . . = bi“r
Qyy =PV, qQinQyi = V717

Extend (t;;) to a bilinear form ¢ : Z! x Z! — Z. Then for k #i € I,

93(6) = = 'pybyy N2, 92 (&) = =€ iy NiN,, (v — §)pd,, (v) = = i Ni N,

All in all, 79 is of the form (t,s5) € Z"*T" where taa = Pabaas tras + tsa = bas
for a # . Arguing as in the Cartan case, we conclude that (ii) holds.

{Naj|j # k}U{Nn}, (A.7)
{Nja; 7 # k} U{Nae @mo) (A.8)
{Nja |3 # kY U{Na_, o +amen (Qr-10) T a@ro-1))} (A.9)
{N1a1, Nsasg, Ny 1205+as (01 + 202 + a3) }, (A.10)
{N1a1, Naaa, N3as, Noy +200+3as+204 (1 + 202 + 3az + 2a4) }, (A.11)
{Na,+200+as (@1 + 202 + a3), Noag, N3as}. (A.12)

Type D(2,1; )

-1 st s
O — O

The diagrams of this type are Weyl equivalent to the following one 5 ,
with r,s,7s # 1. The corresponding Nichols algebra has finite dimension if and only if
r,s € G, rs # 1. Let q be a braiding matrix with this diagram satisfying (4.27). Fix

a generator £ of the subgroup of G, generated by r,s; we choose di,ds € N minimal
such that r = £%1, s = ¢93. Then there exists a braiding matrix q as in Table 2 such that

q=q(¢).
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Table 3
Modular type.
Type q N I dq
T Rl
wk(4) 0—0—o0— o > 2 (A.13) As X Ao
L1
br(Q) g—g,CGGé #3 {2MC¥1+MC¥2,NO(2} Al XAl

A.3. Modular type

The Nichols algebras in this family could be thought of as quantizations in char0 of
the 34-dimensional Lie algebras in char 2 from [35], respectively the 10-dimensional Lie
algebras in char 3 introduced in [12]. The information on this type is given in Table 3.
The matrices T and 79 are worked out as in the super case. O

{Naj, Nag, Moy, May + 2Mas + 3Masz + May}. (A.13)
Appendix B. Lie bialgebras and Poisson algebraic groups

We gather minimal background material on Lie bialgebras and Poisson algebraic
groups for Sections 7 and 8. We refer to [22, Section 2-7] for a full treatment.

B.1. Lie bialgebras

Recall that a Lie bialgebra is a Lie algebra g equipped with a linear map 6 : g — A%g
such that

(i) the dual of the map ¢ defines a Lie algebra structure of g* and
(ii) 4§ is a 1-cocycle, i.e., §([a,b]) = ad,(6(b)) — adp(6(a)) for all a,b € g.

The Lie bialgebras with opposite cobracket (same bracket) and opposite bracket (same
cobracket) will be denoted by gop and g°P, respectively. The dual Lie bialgebra g* of g
is the Lie bialgebra with Lie bracket and cobracket given by

([f,g],a>=<f®g,5(a)>, (5(f),a®b>:<f,[a,b]>, Va,beg, f,g€g"

The Drinfeld double D(g) of the Lie bialgebra g is a Lie bialgebra which is isomorphic
to g ® g* as a vector space and is uniquely defined by the conditions:

(a) The canonical embeddings ¢ : g — D(g) and ¢* : (g*)°? — D(g) are embeddings of
Lie bialgebras;

(b) Fora € g C D(g), f € ¢* C D(g), [z, f] = ad;(f) —ad}(z) in terms of the coadjoint
actions of g and g*.
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A quadratic Lie algebra is a Lie algebra g equipped with an non-degenerate invari-
ant symmetric bilinear form (.,.). A Manin triple is a triple (g, g+, g—) consisting of a
quadratic Lie algebra (g, (.,.)) and a pair of isotropic Lie subalgebras g+ C g.

Remark B.1. The notions of Drinfeld double and Manin triple are equivalent in the case
of finite dimensional Lie algebras:

(a) Each Drinfeld double D(g) is a quadratic Lie algebra with symmetric bilinear form

(a+ f,b+g) = (f,b) +(g,a), a,beg, f,geg”

With respect to this form, (D(g), g,g") is a Manin triple.
(b) For a Manin triple (g, g+,9—), g+ have canonical Lie bialgebra structures given by

(5(&),f®g)=(a, [fagD7 (6(f)7a®b):_(fv [a”b])v Va,begt, fig€g-.

Then g, equipped with the Lie cobracket dg, + dq_, is isomorphic to the Drinfeld
double of g, and g_ ~ (g% )°P.

Here is an important class of Lie bialgebras: (g, ) is quasitriangular if §(x) = ad z(r)
for all z € g where r = Y. r; ® r' € g ® g satisfies the classical Yang-Baxter equation:

here r'2 =r @1, 73 =3 . r, @ 1®@r", r*® = 1 @ r. In this case we set (g,7) := (g,0).
The Drinfled double is the archetypical example of a quasitriangular Lie bialgebra.

Let 72! = > r* @ r;. Recall that a quasitriangular Lie bialgebra (g,r) is called fac-
torizable if r + r?! € S?g defines a nondegenerate inner product on g* [41].

B.2. Poisson algebraic groups

A (complex) Poisson algebraic group is an algebraic group G equipped with a bivector
field 7 such that the product map

(G,7) x (G,7m) = (G,7)

is Poisson. The coordinate ring C[G] has a canonical structure of commutative Poisson-
Hopf algebra with Poisson bracket given by

{f,9} = (df ®dg,n), f,9 € ClG],

where df denotes the differential of f. Conversely, every finitely generated commutative
Poisson-Hopf algebra H gives rise to the Poisson algebraic group MaxSpec H.
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The tangent Lie algebra g = T1G of every Poisson algebraic group G has a canonical
Lie bialgebra structure. The Poisson structure 7 automatically vanishes at the identity
element 1 of G. The Lie cobracket on g, or equivalently the Lie bracket on g* ~ TY¥G, is
defined as the linearization of 7 at 1:

[di(f),di(9)] :=dr({f,9}), f,9 € C[G]. (B.1)

In Hopf algebra situations it is advantageous to describe the tangent Lie algebra g of
an algebraic group G by describing the corresponding Lie cobracket on g* = 77 G.

Lemma B.2. Let G be a complex algebraic group; as usual A(f) = fy® f(2) for f € C[G].
Then the canonical Lie coalgebra structure on TTG ~ g* is given by

6(dif) = difay ANdifiay, fecClal.
B.3. The classification of Belavin and Drinfeld

We fix a complex finite-dimensional simple Lie algebra g. Pick a Cartan subalgebra
h C gand a set A C h* of simple roots. The Casimir element Q2 € g ® g of g is the
symmetric tensor associated to the Killing form of g; the component of 2 in h ® b is
denoted by €.

Definition B.3. A Belavin-Drinfeld triple (BD-triple for short) is a triple (I'y, T's, T') where
T'y, 'y are subsets of A and T': I'; — T's is a bijection that preserves the inner product
and satisfies the nilpotency condition: for any o € I'; there exists a positive integer n
for which T™(«) belongs to I'y but not to I'y.

Given a BD-triple (I'y,T'2,T), we denote by ﬁ the set of positive roots lying in the
subgroup generated by I';, for i = 1,2. There is an associated partial ordering on ®+
given by a < g if a € 1/“\1, B e f‘;, and 8 = T™(«) for a positive integer n.

A continuous parameter for the BD-triple (I'1, 'y, T) is an element A € h®2 such that

T DA+ (1®a)d=0, foral aely, (B.2)
A+ A2 = Q. (B.3)

Let a;, as be the reductive subalgebras of g with Cartan subalgebras generated by
hqa, o in T'1, resp. in ', and with Dynkin diagrams I'y, respectively I';. We extend T to
a Lie algebra isomorphism 7" : a; — as.

Theorem B.4. [11]. Let (g,7) be a factorizable Lie bialgebra with underlying simple Lie
algebra g. Then there exist a Cartan subalgebra by, a set of simple roots A, a BD-triple
(T'1,T2,T), a continuous parameter A and t € C — 0 such that the r is given by
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rzt(A—&- Z Toq Ty + Z x,a/\xg), (B.4)

acd+ a,BED+,a<p

where xp € gz, B € £PT, are root vectors normalized by

(xglr_p) =1, for all B € ®F,

T(rg) = v1(p), for all B €T'y.

—~ o~
@ @
D Gt
= =

Reciprocally the matriz v defined by (B.4) satisfies the classical Yang-Baxter equation,
hence defines a factorizable Lie bialgebra structure on g. 0O

Example B.5. We say that a BD-triple (I'1,T'y,T) is empty if T'y = T's = (). In this case
any A € h®? is a continuous parameter; the choice A\ = %(ZZ h; ®h;), for an orthonormal
basis h; of b, gives rise to the standard Poisson structure.

Appendix C. Symplectic cores and symplectic leaves

Let Z be an affine commutative Poisson algebra and M := MaxSpec Z. As usual the
point € M corresponds to the ideal 9. The material below is extracted from [13].

The largest Poisson ideal contained in an ideal I of Z is called the Poisson core of I
and denoted B(1); it exists because the sum of Poisson ideals is again a Poisson ideal. If
I is prime, then so is P(I). If M is maximal, then we say that (9N) is Poisson primitive.
Every prime Poisson ideal of Z is an intersection of Poisson primitive ideals.

Definition C.1. A symplectic core is a class of the equivalence relation ~ given by
z~y = POM,) =P(MN,), x,y € M.

The equivalence class of © € M is denoted by € (z) and called the symplectic core of
x. Any symplectic core is locally closed and smooth in its closure [13, 3.3].

Assume for simplicity that Z is regular, i.e., M is smooth, see [13, 3.5] for the general
case. Then M becomes a complex analytic Poisson manifold. Given x € M, the symplectic
leaf £ (x) is the maximal connected complex analytic submanifold of M such that z €
Z(z) and the restriction of the Poisson bracket to .#(z) is nondegenerate at every point.
Concretely, the symplectic leaf £ (z) is formed by the points which can be reached from
x by a piecewise smooth curve, each segment of which is a trajectory of a hamiltonian
vector field. Symplectic leaves might be not algebraic but they determine the symplectic
cores. Below the closure is relative to the Zariski topology.

Theorem C.2. [26, Th. 7.4] Let £ be a symplectic leaf. There is a unique symplectic core
€ in M with & C € C £ and € is the unique symplectic core dense in Z. In fact
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C=2\ U A . (C.1)
KX symplectic leaf
HCL

Each symplectic core € in M can be obtained as in (C.1).
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