

Poisson orders on large quantum groups Nicolás Andruskiewitsch ^a, Iván Angiono ^a, Milen Yakimov ^{b,*}^a FaMAF-CIEM (CONICET), Universidad Nacional de Córdoba, Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina^b Department of Mathematics, Northeastern University, Boston, MA 02115, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 23 August 2022

Received in revised form 10 May 2023

Accepted 19 May 2023

Available online xxxx

Communicated by Pramod Achar

MSC:

16T05

16T20

17B37

17B62

Keywords:

Hopf algebras

Nichols algebras

Integral forms of quantum groups

Poisson orders

Poisson algebraic groups and homogeneous spaces

We develop a Poisson geometric framework for studying the representation theory of all contragredient quantum super groups at roots of unity. This is done in a uniform fashion by treating the larger class of quantum doubles of bozonizations of all distinguished pre-Nichols algebras [9] belonging to a one-parameter family; we call these algebras *large* quantum groups. We prove that each of these quantum algebras has a central Hopf subalgebra giving rise to a Poisson order in the sense of [13]. We describe explicitly the underlying Poisson algebraic groups and Poisson homogeneous spaces in terms of Borel subgroups of complex semisimple algebraic groups of adjoint type. The geometry of the Poisson algebraic groups and Poisson homogeneous spaces that are involved and its applications to the irreducible representations of the algebras $U_q \supset U_q^{\geq} \supset U_q^+$ are also described. Besides all (multiparameter) big quantum groups of De Concini-Kac-Procesi and big quantum super groups at roots of unity, our framework also contains the quantizations in characteristic 0 of the 34-dimensional Kac-Weisfeiler Lie algebras in characteristic 2 and the 10-dimensional Brown Lie algebras in characteristic 3. The previous approaches to the above problems relied on reductions to rank two cases and

* This material is based upon work supported by the National Science Foundation under Grant No. DMS-1440140 while N.A. was in residence at the Mathematical Sciences Research Institute in Berkeley, California, in the Spring 2020 semester. The work of N.A. and I.A. was partially supported by CONICET (PIP 11220200102916CO), FONCyT-ANPCyT (PICT-2019-03660) and SECyT (UNC). The work of M.Y. was partially supported by NSF grants DMS-2131243 and DMS-2200762.

* Corresponding author.

E-mail addresses: nicolas.andruskiewitsch@unc.edu.ar (N. Andruskiewitsch), ivan.angiono@unc.edu.ar (I. Angiono), m.yakimov@northeastern.edu (M. Yakimov).

direct calculations of Poisson brackets, which is not possible in the super case since there are 13 kinds of additional Serre relations on up to 4 generators. We use a new approach that relies on perfect pairings between restricted and non-restricted integral forms.

© 2023 Elsevier Inc. All rights reserved.

Contents

1. Introduction	2
2. Poisson orders and restrictions to central subalgebras	10
3. Hopf algebras	13
4. Large quantum groups	20
5. The specialization setting for large quantum groups	29
6. Poisson orders on large quantum groups	34
7. The associated Poisson algebraic groups	37
8. Poisson geometry and representations	50
Declaration of competing interest	56
Data availability	56
Appendix A. Families of finite-dimensional Nichols algebras	56
Appendix B. Lie bialgebras and Poisson algebraic groups	61
Appendix C. Symplectic cores and symplectic leaves	64
References	65

1. Introduction

1.1. Quantum groups and Poisson orders

Let \mathfrak{g} be a complex finite-dimensional simple Lie algebra and let $\xi \in \mathbb{C}$ be a root of 1 with some restrictions on its order depending on \mathfrak{g} . In the papers [17,18,20] a quantized enveloping algebra $U_\xi(\mathfrak{g})$ at ξ was introduced and studied; it is a version of the Drinfeld-Jimbo quantized universal enveloping algebra different from the one defined in [38,39].

The algebra $U_\xi(\mathfrak{g})$ is module-finite over a central Hopf subalgebra $Z_\xi(\mathfrak{g})$ and the corresponding small quantum group of Lusztig [38,39] arises as the quotient $U_\xi(\mathfrak{g})/\!/Z_\xi(\mathfrak{g})$ in the sense of Hopf algebras. A geometric approach to the representation theory of $U_\xi(\mathfrak{g})$ was proposed in [20], based on these facts. The key ingredients of this approach are:

- The existence of a Poisson structure on $Z_\xi(\mathfrak{g})$ so that the algebraic group M corresponding to this algebra is a Poisson algebraic group, whose Lie bialgebra is dual to the standard Lie bialgebra structure on \mathfrak{g} .
- The Hamiltonian vector fields on M extend to (explicit) derivations of $U_\xi(\mathfrak{g})$.

The approach consists in packing the irreducible finite-dimensional representations of $U_\xi(\mathfrak{g})$ along the symplectic leaves of M and predicting their dimensions. These ideas were

distilled in the notion of Poisson order in [13], see Section 2. The construction of a Poisson order structure on an algebra has substantial applications to the representation theory of the algebra: using this route the irreducible representations of quantum function algebras were studied in [19], the Azumaya loci of symplectic reflection algebras were described in [13], the irreducible representations of the 3 and 4-dimensional PI Sklyanin algebras were fully classified in [47,48], the Azumaya loci of the multiplicative quiver varieties and quantum character varieties were studied in [24]. See [14, Part III] for a comprehensive exposition of the applications of the notion of Poisson order to the representation theory of quantum algebras at roots of unity.

1.2. Large quantum groups and pre-Nichols algebras

The main goal of this paper is to study by means of Poisson orders the representation theory of a larger class of Hopf algebras introduced by the second author in [8] and studied in [9]. They contain as special cases

- all big quantum groups of De Concini–Kac–Procesi,
- all big contragredient quantum super groups,
- and exceptional families that can be viewed as quantizations of the universal enveloping algebras of simple Lie algebras in positive characteristic.

The keystone of the definition of these Hopf algebras is the notion of *distinguished pre-Nichols algebra*. It allows us to treat all of the above families uniformly without case-by-case considerations and computational arguments with quantum Serre relations. Additionally, unlike [17,18,20], we do not place any assumptions on the order of the roots of unity, e.g., it can be even.

Nichols algebras of diagonal type are essential for various classification problems of Hopf algebras. Those of finite dimension were classified in the celebrated paper [29] while the defining relations were provided in [7,8]. Let \mathfrak{q} be a braiding matrix as in the list of [29] and let $\mathcal{B}_{\mathfrak{q}}$ be the corresponding finite-dimensional Nichols algebra of diagonal type. The distinguished pre-Nichols algebra $\tilde{\mathcal{B}}_{\mathfrak{q}}$ of $\mathcal{B}_{\mathfrak{q}}$ is a covering of the latter defined by excluding the powers of the root vectors of Cartan type from its defining ideal. The Hopf algebras dealt with in the present paper are Drinfeld doubles of the bosonizations of the distinguished pre-Nichols algebras; they are denoted $U_{\mathfrak{q}}$, see §4.3. They are shown to be module-finite over canonical central Hopf subalgebras $Z_{\mathfrak{q}}$, which are the ones defined in [9] if \mathfrak{q} is not of type super A and a one-dimensional extension of those in the super A case, see §4.5.

On the other hand, the graded dual of $\tilde{\mathcal{B}}_{\mathfrak{q}}$ gives rise to a Lie algebra $\mathfrak{n}_{\mathfrak{q}}$, which is either 0 or the nilpotent part of a semisimple Lie algebra $\mathfrak{g}_{\mathfrak{q}}$ that is explicitly determined [5].

We focus on Hopf algebras $U_{\mathfrak{q}}$ with a further restriction: the related Nichols algebra $\mathcal{B}_{\mathfrak{q}}$ is deformable, i.e., belongs to a one-parameter family of Nichols algebras. We call them *large quantum groups*. By inspection, the matrix \mathfrak{q} is of one of three types:

- (a) Cartan type (multiparameter versions of the quantum groups from [18] without restrictions on ξ);
- (b) super type (multiparameter quantum groups associated to finite dimensional simple contragredient Lie superalgebras at roots of unity);
- (c) modular types $\mathbf{wk}(4)$ or $\mathbf{br}(2)$ (quantizations at a root of unity in characteristic 0 of some simple Lie algebras in characteristics 2 and 3 respectively).

But it stems from the list in [29] that there are finite-dimensional Nichols algebras of diagonal type that do not belong to such one-parameter families.

Remark. To be precise we need three technical assumptions:

- (i) The base field is \mathbb{C} to have on hand symplectic leaves [49]. (For other algebraically closed fields of characteristic 0, one can use symplectic cores [13] and argue as in [47, §6.4]). See Appendix C for a brief discussion of symplectic leaves and cores.
- (ii) Condition (4.26) is needed for the centrality of Z_q in U_q .
- (iii) The Non-degeneracy Assumption 7.5 is used to identify some dual vector spaces in order to compute some Lie bialgebras. However this is not a constraint; each of the Hopf algebras U_q that we consider can be obtained as a specialization from a family in many different ways. We prove in Proposition A.3 that there always exist ways that satisfy Assumption 7.5 and we choose one such way.

See the Appendix A and the survey [2] for full details on these algebras. We consider the chain of subalgebras $U_q^+ \subset U_q^{\geqslant} \subset U_q$ where

- U_q^{\geqslant} , the *large quantum Borel subalgebra*, is identified with the bosonization of $\tilde{\mathcal{B}}_q$;
- U_q^+ , the *large quantum unipotent subalgebra*, is identified with $\tilde{\mathcal{B}}_q$.

Intersecting the central subalgebra Z_q of U_q gives the chain of central Hopf subalgebras

$$Z_q^+ \subset Z_q^{\geqslant} \subset Z_q. \quad (1.1)$$

Each of these central Hopf subalgebras is actually isomorphic to a tensor product of a polynomial algebra and a Laurent polynomial algebra. We introduce the algebraic groups M_q , M_q^{\geqslant} and M_q^+ as the maximal spectra of the Hopf algebras Z_q , Z_q^{\geqslant} and Z_q^+ , respectively. We shall also need the opposite Borel U_q^{\leqslant} and its central Hopf subalgebra Z_q^{\leqslant} with maximal spectrum M_q^{\leqslant} and correspondingly U_q^- , Z_q^- and M_q^- .

1.3. Main results

As said, this paper deals with the geometry of the Poisson algebraic group M_q towards understanding the representation theory of large quantum groups. This last question

contains the description of the irreducible representations of contragredient quantum supergroups at roots of unity, an important problem which is wide open even in the simplest case of $U_q(\mathfrak{sl}(m|n))$. We present a foundation for a thorough investigation of these representations. We first summarize the main results in the following statement. Define the reductive Lie algebra

$$\tilde{\mathfrak{g}}_{\mathfrak{q}} := \begin{cases} \mathfrak{g}_{\mathfrak{q}} \oplus \mathbb{C}, & \text{if } \mathfrak{q} \text{ is of type super } A \\ \mathfrak{g}_{\mathfrak{q}}, & \text{otherwise.} \end{cases}$$

Type super A has the peculiarity that the rank of the Lie algebra $\mathfrak{g}_{\mathfrak{q}}$ is one less than the rank of Nichols algebra $\mathcal{B}_{\mathfrak{q}}$. Hence we need to enlarge the central subalgebra originally defined in [9] adding an extra group-like element in order to have a central subalgebra $Z_{\mathfrak{q}}$ such that $U_{\mathfrak{q}}$ is module-finite over $Z_{\mathfrak{q}}$.

Our first main result is the following:

Theorem A. *Let $U_{\mathfrak{q}}$ be a large quantum group as above. Then*

- (a) *The pair $(U_{\mathfrak{q}}, Z_{\mathfrak{q}})$ has the structure of a Poisson order in the sense of [13].*
- (b) *The algebraic Poisson group $M_{\mathfrak{q}}$ is solvable. The Lie bialgebra of $M_{\mathfrak{q}}$ is dual to a Lie bialgebra structure on $\tilde{\mathfrak{g}}_{\mathfrak{q}}$ coming from an empty Belavin–Drinfeld triple; the symplectic leaves of $M_{\mathfrak{q}}$ can be classified and related to conjugacy classes of the adjoint Lie group of $\tilde{\mathfrak{g}}_{\mathfrak{q}}$.*
- (c) *Every $z \in M_{\mathfrak{q}}$ with corresponding maximal ideal \mathfrak{M}_z gives rise to a finite-dimensional algebra $\mathcal{H}_z = U_{\mathfrak{q}}/U_{\mathfrak{q}}\mathfrak{M}_z$. Then $\mathcal{H}_z \simeq \mathcal{H}_{z'}$ whenever z and z' belong to the same symplectic leaf S . By abuse of notation we set $\mathcal{H}_S = \mathcal{H}_z$. Every irreducible representation of $U_{\mathfrak{q}}$ is finite-dimensional and*

$$\mathrm{Irr} U_{\mathfrak{q}} = \bigcup_{S \text{ symplectic leaf of } M} \mathrm{Irr} \mathcal{H}_S.$$

Furthermore, we have analogous results for the pairs $(U_{\mathfrak{q}}^{\geq}, Z_{\mathfrak{q}}^{\geq})$ and $(U_{\mathfrak{q}}^+, Z_{\mathfrak{q}}^+)$. Next we make more precise the claims of Theorem A. We fix a large quantum group $U_{\mathfrak{q}}$.

1.3.1. Poisson orders

We denote by $\mathcal{Z}(A)$ the center of an algebra A . Because of the assumption that $\mathcal{B}_{\mathfrak{q}}$ is deformable in the class of Nichols algebras as mentioned above, we get Poisson order structures on the pairs $(U_{\mathfrak{q}}, \mathcal{Z}(U_{\mathfrak{q}}))$, $(U_{\mathfrak{q}}^{\geq}, \mathcal{Z}(U_{\mathfrak{q}}^{\geq}))$ and $(U_{\mathfrak{q}}^+, \mathcal{Z}(U_{\mathfrak{q}}^+))$ by specialization. As these centers are singular, it is more convenient to look at the central subalgebras in (1.1). Part (a) of Theorem A is included in the following result, see Theorem 6.2.

Theorem B. *The pairs $(U_{\mathfrak{q}}, Z_{\mathfrak{q}})$, $(U_{\mathfrak{q}}^{\geq}, Z_{\mathfrak{q}}^{\geq})$ and $(U_{\mathfrak{q}}^+, Z_{\mathfrak{q}}^+)$ have Poisson order structures in the sense of [13] obtained from specialization.*

The Cartan type case includes, as mentioned earlier, the big quantum groups of De Concini–Kac–Procesi $U_\nu(\mathfrak{g})$ for ν a root of unity and \mathfrak{g} a finite-dimensional semisimple Lie algebra. Even in this case our theorem contains new results: unlike [17,18,20], no restrictions are imposed on the order of the root of unity in Theorem B. The same technique allows us to deal with the case where the order is even for types B_θ , C_θ and F_4 , or divisible by 3 for type G_2 . To work in this uniform way we consider a central subalgebra Z_q where the powers of the PBW generators may have different exponents. In [17,18,20] smaller central subalgebras are considered consisting of the same powers of all root vectors, for the exponent equal to the order of the root of unity. This causes the central subalgebras in [17,18,20] not to be closed under the canonical Poisson bracket when the coprime to 2 and 3 condition is not satisfied, while in our picture the central subalgebras are always closed under the canonical Poisson bracket without any assumptions. Because of this generality, the Lie algebra of the corresponding algebraic group is not exactly \mathfrak{g} when the order of ν is as before, see Table 1.

Presently it is not known whether for the remaining braiding matrices q in the list of [29] the pair (U_q, Z_q) has the structure of a Poisson order. Indeed the other Nichols algebras of diagonal type with arithmetic root system in the classification given in [29] do not admit such a one-parameter family and for instance our proof of Theorem 6.2 does not generalize to them.

1.3.2. Poisson algebraic groups and Lie bialgebras

Let \mathfrak{h}_q be a Cartan subalgebra of the semisimple Lie algebra \mathfrak{g}_q and extend it to a Cartan subalgebra $\tilde{\mathfrak{h}}_q$ of the reductive Lie algebra $\tilde{\mathfrak{g}}_q$. We consider a Lie bialgebra structure on \mathfrak{g}_q that corresponds to the empty Belavin–Drinfeld triple [11] and is explicitly defined in Theorem 7.8 and let \mathfrak{m}_q be the Lie bialgebra dual to $\tilde{\mathfrak{g}}_q \oplus \tilde{\mathfrak{h}}_q$, cf. Eq. (7.11).

Let G_q be the semisimple algebraic group of adjoint type with $\text{Lie } G_q \simeq \mathfrak{g}_q$. Denote

$$\tilde{G}_q := \begin{cases} G_q \times \mathbb{C}^\times, & \text{if } q \text{ is of type super } A \\ G_q, & \text{otherwise.} \end{cases}$$

For instance, when $U_q = U_q(\mathfrak{sl}(m|n))$, $\tilde{G}_q \simeq \text{PSL}_m(\mathbb{C}) \times \text{PSL}_n(\mathbb{C}) \times \mathbb{C}^\times$. Let \tilde{B}_q^\pm be a pair of opposite Borel subgroups of \tilde{G}_q , $\tilde{T}_q = \tilde{B}_q^+ \cap \tilde{B}_q^-$ be the corresponding maximal torus and N_q^\pm be the unipotent radicals of \tilde{B}_q^\pm ; we identify $N_q^+ \simeq \tilde{B}_q^+ / \tilde{T}_q$.

Here is a more precise statement of Theorem A Part (b), see Theorems 7.10 and 8.2.

Theorem C. (a) *The Poisson algebraic group M_q is isomorphic to the product of two Borel subgroups of \tilde{G}_q and $\text{Lie } M_q \simeq \mathfrak{m}_q$ as Lie bialgebras.*

(b) *The symplectic leaves of M_q are in bijective correspondence with the conjugacy classes of $\tilde{G}_q \times (\tilde{T}_q / \exp(\tilde{Q}_q))$, where \tilde{Q}_q is a lattice in $\tilde{\mathfrak{h}}_q$; each leaf is isomorphic to an open dense subset of the corresponding conjugacy class.*

Note that the symplectic leaves are not algebraic varieties in general. The lattice \tilde{Q}_q is related to the continuous parameter of the corresponding Lie bialgebra, see Appendix B. In the case considered in [20] the Poisson structure is the standard one and \tilde{Q}_q coincides with the kernel of the exponential map restricted to the Cartan subalgebra.

Here are the promised versions for M_q^{\geq} and M_q^+ .

Theorem D. (a) *The Poisson algebraic group M_q^{\geq} is isomorphic to the Borel subgroup \tilde{B}_q^+ . The Poisson structure is invariant under the left and right actions of \tilde{T}_q .*

(b) *The torus orbits of symplectic leaves of M_q^{\geq} are the double Bruhat cells of \tilde{G}_q that lie in \tilde{B}_q^+ .*

(c) *The algebraic group M_q^+ is isomorphic to the unipotent radical N_q^+ of \tilde{B}_q^+ . It has a Poisson structure arising from the identification $N_q^+ \simeq \tilde{B}_q^+/\tilde{T}_q$ which is invariant under the left action of \tilde{T}_q and is a reduction of the Poisson structure on \tilde{B}_q^+ from (a) under the right action of \tilde{T}_q .*

(d) *The torus orbits of symplectic leaves of M_q^+ are the open Richardson varieties of the flag variety $\tilde{G}_q/\tilde{B}_q^+$ that lie inside an open Schubert cell identified with \tilde{N}_q^+ .*

See Theorems 8.4 and 8.7. We refer to [23,36] for information on double Bruhat cells and open Richardson varieties. Here we recall briefly the definitions.

Let $v, w \in W$. The corresponding double Bruhat cell is $\tilde{G}_q^{v,w} := \tilde{B}_q^+ v \tilde{B}_q^+ \cap \tilde{B}_q^- w \tilde{B}_q^-$. These cells form a partition: $\tilde{G}_q = \bigsqcup_{v,w \in W} \tilde{G}_q^{v,w}$.

In turn the corresponding open Richardson variety is $\mathring{X}_w = \mathring{X}^v \cap \mathring{X}_w \subset \tilde{G}_q/\tilde{B}_q^+$ where $\mathring{X}_w = \tilde{B}_q^- w / \tilde{B}_q^+$ and $\mathring{X}^v = \tilde{B}_q^+ v / \tilde{B}_q^+$ are the Schubert cell and the opposite Schubert cell corresponding to w and v respectively.

We conjecture that the statements in Theorem C(b) and Theorem D(a,c) on algebraic groups (not Poisson structures) hold even without the assumption that q belongs to a one-parameter family, where \tilde{G}_q is taken to be a direct product of G_q and an abelian algebraic group.

1.3.3. Representations

Since U_q is a free Z_q -module of finite rank, it is a PI-algebra. Let V be an irreducible representation of U_q . By the above, V is finite-dimensional, and by Schur's Lemma, Z_q acts on V by some $z \in M_q$ (a central character) with corresponding maximal ideal \mathfrak{M}_z . Now the algebra $\mathcal{H}_z = U_q/U_q\mathfrak{M}_z$ is non-zero and finite-dimensional and V becomes a \mathcal{H}_z -module. In other words the irreps of U_q with central character z are in bijective correspondence with the irreps of \mathcal{H}_z . Thus

$$\mathrm{Irr} U_q = \bigsqcup_{z \in M_q} \mathrm{Irr} \mathcal{H}_z.$$

This circle of ideas is already present in [20]. In this way, Part (c) of Theorem A boils down to the following statement.

Theorem E. *For every two points z, z' in the same symplectic leaf of $M_{\mathfrak{q}}$, the algebras \mathcal{H}_z and $\mathcal{H}_{z'}$ are isomorphic. In particular there is a dimension preserving bijection between the irreps of $U_{\mathfrak{q}}$ with central characters z and z' .*

See Theorem 8.2. For instance, let $z = e$ be the identity of $M_{\mathfrak{q}}$. Then its symplectic leaf is $S = \{e\}$ and $\mathcal{H}_S = \mathcal{H}_e$ is the Drinfeld double of a suitable bosonization of the Nichols algebra $\mathcal{B}_{\mathfrak{q}}$. Assume that the matrix \mathfrak{q} is of Cartan type. Then \mathcal{H}_e is a variation of the small quantum group of Lusztig (with an extra copy of the finite torus), with a notoriously difficult representation theory treated intensively in the literature. Also, arguing as in [20] one concludes that $U_{\mathfrak{q}}$ is a maximal order. It is a domain, hence a prime algebra. It follows that for generic z , \mathcal{H}_z is semisimple by [14, Theorem III.1.7]. But for super and modular types, the representation theory of \mathcal{H}_e is largely unknown, except for the somewhat standard fact that simple modules are classified by highest weights (but there is not even a conjecture for their characters). Also, $U_{\mathfrak{q}}$ is not a maximal order because it has nilpotent elements.

We next write down the corresponding formulations for $M_{\mathfrak{q}}^{\geqslant}$, $M_{\mathfrak{q}}^{\leqslant}$, $M_{\mathfrak{q}}^+$ and $M_{\mathfrak{q}}^-$. Let $\star \in \{\geqslant, \leqslant, +, -\}$. If $z \in M_{\mathfrak{q}}^*$, then we denote by \mathfrak{M}_z^* its maximal ideal in $Z_{\mathfrak{q}}^*$ and

$$\mathcal{H}_z^* = U_{\mathfrak{q}}^*/U_{\mathfrak{q}}^*(\mathfrak{M}_z^*). \quad (1.2)$$

Clearly these are finite-dimensional algebras.

Theorem F. (a) *For every z, z' in the same double Bruhat cell inside $\tilde{B}_{\mathfrak{q}}^+$, the algebras $\mathcal{H}_z^{\geqslant}$ and $\mathcal{H}_{z'}^{\geqslant}$ are isomorphic. Analogously for $\mathcal{H}_z^{\leqslant}$ and $\mathcal{H}_{z'}^{\leqslant}$.*

(b) *For every z, z' in the same open Richardson variety, the algebras \mathcal{H}_z^+ and $\mathcal{H}_{z'}^+$ are isomorphic. Analogously for \mathcal{H}_z^- and $\mathcal{H}_{z'}^-$.*

See Theorems 8.4 and 8.7.

Notice also that \mathcal{H}_z is a Hopf-Galois \mathcal{H}_e -object since $U_{\mathfrak{q}}$ is a cleft \mathcal{H}_e -comodule algebra, see §3.1. Analogously, \mathcal{H}_z^* is a Hopf-Galois \mathcal{H}_e^* -object for $\star \in \{\geqslant, \leqslant\}$.

1.4. Strategy and organization

Our proofs of Theorems C–F follow a different strategy from that of [17,18,20]. These papers rely on direct computations of Poisson brackets in terms of coordinates coming from Cartesian products of one-parameter unipotent groups and subsequent reductions to the rank 2 case. This approach does not work in the more general context of §1.2 for several reasons, the simplest of which is that the quantum Serre relations for quantum supergroups or for quantum groups at -1 involve more than two Chevalley generators.

Instead our approach is based on intrinsic properties of pairings between restricted and non-restricted integral forms of Hopf algebras. It does not rely on reduction to low rank cases. In particular, this approach provides new proofs of results in [17,18,20]. We expect that these ideas could be applied to other situations not covered in this paper.

Next we overview briefly the main steps of the strategy:

Step 1. Let $\mathbb{C}(\nu)$ be the field of rational functions on ν and \mathbf{A} the subalgebra defined in (5.1). Since \mathfrak{q} belongs to a family, there exists a chain of $\mathbb{C}(\nu)$ -algebras

$$U_{\mathfrak{q}}^+ \subset U_{\mathfrak{q}}^{\geq} \subset U_{\mathfrak{q}}$$

and non-restricted integral forms over \mathbf{A}

$$U_{\mathfrak{q},\mathbf{A}}^+ \subset U_{\mathfrak{q},\mathbf{A}}^{\geq} \subset U_{\mathfrak{q},\mathbf{A}}$$

such that the algebras $U_{\mathfrak{q}}^+ \subset U_{\mathfrak{q}}^{\geq} \subset U_{\mathfrak{q}}$ arise as specializations from these integral forms. This provides Poisson order structures on the pairs $(U_{\mathfrak{q}}^+, \mathcal{Z}(U_{\mathfrak{q}}^+))$, $(U_{\mathfrak{q}}^{\geq}, \mathcal{Z}(U_{\mathfrak{q}}^{\geq}))$ and $(U_{\mathfrak{q}}, \mathcal{Z}(U_{\mathfrak{q}}))$. This step is carried out in Section 5 in the framework of [20,13] evoked in Section 2.

Step 2. We use Theorem 2.4 (on the restriction of Poisson order structures obtained from specialization to central subalgebras) to prove that the Poisson order structures on $(U_{\mathfrak{q}}^+, \mathcal{Z}(U_{\mathfrak{q}}^+))$ and $(U_{\mathfrak{q}}^{\geq}, \mathcal{Z}(U_{\mathfrak{q}}^{\geq}))$ restrict to $(U_{\mathfrak{q}}^+, Z_{\mathfrak{q}}^+)$ and $(U_{\mathfrak{q}}^{\geq}, Z_{\mathfrak{q}}^{\geq})$. To get a Poisson order structure on $(U_{\mathfrak{q}}, Z_{\mathfrak{q}})$ by restriction from $(U_{\mathfrak{q}}, \mathcal{Z}(U_{\mathfrak{q}}))$, we need first to establish in Theorem 4.7 that the Weyl groupoid action preserves the central subalgebras $Z_{\mathfrak{q}}$. Along the way we also obtain that these Poisson structures on the algebras $Z_{\mathfrak{q}}$ are equivariant under the Weyl groupoid. This step is carried out in Section 6.

Step 3. This is the matter of Section 7. We introduce in §5.4 restricted integral forms $U_{\mathfrak{q},\mathbf{A}}^{\text{res}\pm}$ of $U_{\mathfrak{q}}^{\pm}$ and \mathbf{A} -linear perfect pairings $U_{\mathfrak{q},\mathbf{A}}^{\text{res}\pm} \times U_{\mathfrak{q},\mathbf{A}}^{\mp} \rightarrow \mathbf{A}$, where $U_{\mathfrak{q},\mathbf{A}}^{\mp}$ denote the nonrestricted integral forms of $U_{\mathfrak{q}}^{\mp}$ introduced earlier. We prove that

- (i) the specializations of $U_{\mathfrak{q},\mathbf{A}}^{\text{res}\pm}$ are isomorphic to the Lusztig algebras defined in [3], see Proposition 5.9, and
- (ii) the cobrackets of the tangent Lie bialgebras to $M_{\mathfrak{q}}^{\geq}$ and $M_{\mathfrak{q}}^{\leq}$ are linearizations of those specializations, see Proposition 7.1.

In this way we control tangent Lie bialgebras intrinsically and consequently we compute in Theorems 7.4 and 7.8 the tangent Lie bialgebras of the Poisson algebraic groups $M_{\mathfrak{q}}$, $M_{\mathfrak{q}}^{\geq}$ and $M_{\mathfrak{q}}^{\leq}$ by means of a Manin pair. Since these algebraic groups are connected we describe them as Poisson algebraic groups in terms of Borel subgroups of complex semisimple algebraic groups of adjoint type. Also, $M_{\mathfrak{q}}^{\pm}$ are presented as Poisson homogeneous spaces.

Finally, we discuss in Section 8 the Poisson geometry of the Poisson algebraic groups $M_{\mathfrak{q}}$, $M_{\mathfrak{q}}^{\geq}$ and the Poisson homogeneous space $M_{\mathfrak{q}}^+$, and the applications to the irreducible representations of $U_{\mathfrak{q}}$, $U_{\mathfrak{q}}^{\geq}$ and $U_{\mathfrak{q}}^+$.

Besides, we discuss in Section 2 Poisson orders and their restrictions to central subalgebras, see Theorem 2.4; Section 3 is devoted to preliminaries on Hopf algebra theory while we present the main actors of this paper in Section 4.

An in depth study of the restricted and nonrestricted integral forms of multiparameter quantum groups of Cartan type at roots of unity was carried out in [25], based on the interpretation of those algebras as cocycle twists of the standard ones [17,18]. The authors completely describe the specialization at 1 as the Poisson algebra of regular functions on an explicit Poisson algebraic group and construct a Frobenius map which amounts to a Hopf algebra isomorphism between the specialization at 1 and a central subalgebra of the specialization at a root of unity. Our results show that this is an isomorphism of Poisson algebras and that in the root of unity case it gives rise to a Poisson order structure.

Acknowledgments

This project started in visits of M. Y. to the University of Córdoba in September 2017 and December 2018 supported by the program of guest professors of FaMAF. It was continued during visits of I. A. and N. A. in February 2019 to the Louisiana State University. Progress on this material was reported at the plenary talk of I. A. at the XXIII *Coloquio Latinoamericano de Álgebra*, Mexico City (2019) and at the talk of M. Y. at the International conference on Hopf algebras, Nanjing (2019). We are grateful to the referee whose valuable suggestions helped us to improve the paper.

Notations

The base field is \mathbb{C} ; all algebras, Hom's and tensor products are over \mathbb{C} . If $t \in \mathbb{N}_0$, $n \in \mathbb{N}$ and $t < n$, then $\mathbb{I}_{t,n} := \{t, t+1, \dots, n\}$, $\mathbb{I}_n := \mathbb{I}_{1,n}$.

For each integer $N > 1$, let \mathbb{G}_N be the group of N -th roots of unity in \mathbb{C} and let \mathbb{G}'_N be its subset of primitive roots (of order N). Also $\mathbb{G}_\infty = \bigcup_{N \in \mathbb{N}} \mathbb{G}_N$, $\mathbb{G}'_\infty = \mathbb{G}_\infty - \{1\}$.

We shall use the notation for q -factorial numbers: for $q \in \mathbb{C}^\times$, $n \in \mathbb{N}$,

$$(0)_q! = 1, \quad (n)_q = 1 + q + \dots + q^{n-1}, \quad (n)_q! = (1)_q (2)_q \cdots (n)_q.$$

2. Poisson orders and restrictions to central subalgebras

This section contains background on Poisson orders, their construction from specializations, and their relations to Hopf algebras. We prove a general result on restrictions of Poisson orders to central subalgebras, Theorem 2.4, which plays a key role later.

2.1. Poisson orders

Here we follow the exposition in [20, Chapter 3, §11]. Consider

- a commutative \mathbb{C} -algebra A and $h \in A$ such that $A/h \simeq \mathbb{C}$,
- an A -algebra U such that h is not a zero divisor of U . The natural map $U \rightarrow U/(h)$ is denoted by $x \mapsto \bar{x}$.

For any $u \in U$ such that $\bar{u} \in \mathcal{Z}(U/(h))$ there is a linear map $D_u \in \text{Hom } U/(h)$ given by

$$D_u(y) = \frac{[u, v]}{h}, \quad \text{if } y = \bar{v}. \quad (2.1)$$

Proposition 2.1. [20, 11.7] *Let $u \in U$ such that $\bar{u} \in \mathcal{Z}(U/(h))$.*

- (a) $D_u \in \text{Der } U/(h)$.
- (b) *Let $w \in U$. If $u' = u + hw$ so that $\bar{u} = \bar{u}'$, then $D_u - D_{u'} = \text{ad } \bar{w}$ is an inner derivation. Conversely the inner derivation $\text{ad } \bar{w}$ coincides with D_{hw} .*
- (c) *Let $\varphi \in \text{Aut}_{A-\text{alg}}(U)$ and let $\bar{\varphi}$ be the induced automorphism of $U/(h)$. Then*

$$\bar{\varphi} \circ D_u \circ \bar{\varphi}^{-1} = D_{\varphi(u)}.$$

- (d) *There is natural Poisson structure on $\mathcal{Z} := \mathcal{Z}(U/(h))$ given by*

$$\{x, y\} = D_u(y) = \frac{[u, v]}{h}, \quad \text{if } x = \bar{u}, y = \bar{v}. \quad (2.2)$$

- (e) *The map $\varphi \mapsto \bar{\varphi}$ gives a group homomorphism $\text{Aut}_{A-\text{alg}}(U) \rightarrow \text{Aut}_{\text{Poisson}}(\mathcal{Z})$.*
- (f) *$\mathcal{L} = \{D_v : v \in U, \bar{v} \in \mathcal{Z}\}$ is a Lie subalgebra of $\text{Der } U/(h)$. Indeed*

$$[D_u, D_v] = D_{\frac{[u, v]}{h}}, \quad v \in U, \bar{v} \in \mathcal{Z}.$$

- (g) *The Poisson structure gives rise to a Lie subalgebra \mathcal{L}' of $\text{Der } \mathcal{Z}$ that fits into the complex*

$$0 \longrightarrow \text{Innder}(U/(h)) \longrightarrow \mathcal{L} \longrightarrow \mathcal{L}' \longrightarrow 0. \quad (2.3)$$

The sequence (2.3) is exact if and only if the Poisson center of \mathcal{Z} is trivial (i.e., there are no Casimir elements except 0). \square

Brown and Gordon [13] axiomatized the ingredients of the above setting as follows:

Definition 2.2. A pair of \mathbb{C} -algebras (R, Z) is called a *Poisson order* if Z is a central subalgebra of R , R is a finitely generated Z -module and the following conditions hold:

- (a) Z is equipped a structure of Poisson algebra $\{\cdot, \cdot\}$;
- (b) There exists a linear map $D : Z \rightarrow \text{Der}_{\mathbb{C}}(R)$ such that $D_z|_Z = \{z, -\}$ for all $z \in Z$.

Reshetikhin, Voronov and Weinstein defined earlier a related notion of a *Poisson fibered algebra*, see [42, Definition 2.1]. In the above terminology, such an algebra is a Poisson order with the additional property that

$$D_{z_1 z_2}(r) = z_1 D_{z_2}(r) + z_2 D_{z_1}(r) \quad \text{for all } z_1, z_2 \in Z, r \in R.$$

Proposition 2.1 proves that the pair $(U/(h), \mathcal{Z}(U/(h)))$ has a canonical structure of Poisson order when $U/(h)$ is module finite over $\mathcal{Z}(U/(h))$. The Poisson bracket on $\mathcal{Z}(U/(h))$ is given by (2.2). The linear map D is the map induced from the one in (2.1) by taking a linear section of the canonical projection $U \rightarrow U/(h)$.

The main application of Poisson orders for us is the following result, inspired by [20, Cor. 11.8], [19, Cor. 9.2]. Assume that R is affine, i.e., it is a finitely generated algebra (hence also Z is affine).

Theorem 2.3. [13, Theorem 4.1] *Let (R, Z) be a Poisson order and $M := \text{MaxSpec } Z$. Given $x \in M$ with maximal ideal \mathfrak{M}_x , let $R_x := R/\mathfrak{M}_x R$, a finite dimensional algebra. If x and y belong to the same symplectic core, then $R_x \simeq R_y$ as algebras.*

2.2. Restrictions of Poisson orders from specializations

In the setting of Proposition 2.1 the center $\mathcal{Z} = \mathcal{Z}(U/(h))$ can be singular and is more useful to work with suitable subalgebras \mathcal{Z}' . Next we prove a general fact for the construction of Poisson orders on pairs $(U/(h), \mathcal{Z}')$ for subalgebras \mathcal{Z}' defined from algebra automorphisms and skew-derivations. For this purpose we fix:

- A -algebra endomorphisms $\varsigma_i : U \rightarrow U$, $i \in \mathbb{I}$. We denote by $\bar{\varsigma}_i$ the corresponding \mathbb{C} -algebra endomorphisms of $U/(h)$ induced by ς_i .
- A -linear (id, ς_i) -derivations $\partial_i : U \rightarrow U$, $i \in \mathbb{I}$. We denote by $\bar{\partial}_i$ the corresponding \mathbb{C} -linear $(\text{id}, \bar{\varsigma}_i)$ -derivations induced by ∂_i .

Theorem 2.4. *In the setting of Proposition 2.1, denote*

$$\mathcal{Z}' := \mathcal{Z} \cap (\cap_{i \in \mathbb{I}} \ker \bar{\partial}_i) \cap (\cap_{i \in \mathbb{I}} \ker (\bar{\varsigma}_i - \text{id})). \quad (2.4)$$

If $U/(h)$ is module finite over \mathcal{Z}' , then the Poisson order structure on $(U/(h), \mathcal{Z}(U/(h)))$ restricts to a Poisson order structure on $(U/(h), \mathcal{Z}')$.

Proof. Clearly \mathcal{Z}' is a subalgebra of \mathcal{Z} . We have to check that $\{\mathcal{Z}', \mathcal{Z}'\} \subset \mathcal{Z}'$. Let $x_j \in \mathcal{Z}'$ and $u_j \in U$ such that $x_j = \bar{u}_j$, $j = 1, 2$. Fix $i \in \mathbb{I}$. As $\bar{\varsigma}_i(x_j) = x_j$ and $\bar{\partial}_i(x_i) = 0$, there are $v_j, w_j \in U$ such that

$$\varsigma_i(u_j) = u_j + h v_j, \quad \partial_i(u_j) = h w_j, \quad j = 1, 2.$$

Now we compute

$$\begin{aligned}\overline{\varsigma}_i\{x_1, x_2\} &= \overline{\varsigma}_i\left(\frac{[u_1, u_2]}{h}\right) = \frac{[\varsigma_i(u_1), \varsigma_i(u_2)]}{h} \\ &= \frac{[u_1, u_2]}{h} + \overline{[u_1, v_2]} + \overline{[v_1, u_2]} = \{x_1, x_2\} + [x_1, \overline{v_2}] + [\overline{v_1}, x_2] = \{x_1, x_2\}, \\ \overline{\partial}_i\{x_1, x_2\} &= \overline{\partial}_i\left(\frac{[u_1, u_2]}{h}\right) = \frac{\overline{\partial}_i(u_1)\varsigma_i(u_2) + u_1\overline{\partial}_i(u_2) - \overline{\partial}_i(u_2)\varsigma_i(u_1) - u_2\overline{\partial}_i(u_1)}{h} \\ &= \overline{w_1(u_2 + h v_2) + u_1 w_2 - w_2(u_1 + h v_1) - u_2 w_1} = [x_1, \overline{w_2}] + [\overline{w_1}, x_2] = 0.\end{aligned}$$

Hence $\{x_1, x_2\} \in \ker \overline{\partial}_i \cap \ker(\overline{\varsigma}_i - \text{id})$ for all $i \in \mathbb{I}$ so $\{x_1, x_2\} \in \mathcal{Z}$. \square

2.3. Poisson-Hopf algebras

Assume that in the above setting U is a Hopf algebra over A . Then $U/(h)$ has a canonical structure of Hopf algebra over \mathbb{C} .

Let $u \in U$ such that $\overline{u} \in \mathcal{Z}(U/(h))$ and furthermore $\Delta(\overline{u}) \in \mathcal{Z}(U/(h) \otimes U/(h))$. Then

$$D_{\Delta(u)}\Delta(y) = \Delta(D_u(y)), \quad y \in U/(h). \quad (2.5)$$

Proposition 2.5. [20, 11.7] *Let B be a central Hopf subalgebra of $U/(h)$. Then*

*$T :=$ minimal subalgebra of \mathcal{Z} containing B and closed under the Poisson bracket
is a central Hopf subalgebra of $U/(h)$, hence a Poisson-Hopf algebra.*

We recall the elegant proof of [20].

Proof. Apply (2.5) to $y \in \mathcal{Z}$ and $x = \overline{u}$ to get $\Delta(\{x, y\}) = \{\Delta(x), \Delta(y)\}$ for all $x, y \in \mathcal{Z}$. Hence $\widetilde{T} = \{t \in T : \Delta(t) \in T \otimes T\}$, which is a subalgebra containing B , is also closed under Poisson bracket; thus $\widetilde{T} = T$. Finally T is stable under the antipode \mathcal{S} , which is assumed to be bijective. Indeed, because of the formula $\{\mathcal{S}(x), \mathcal{S}(y)\} = \mathcal{S}(\{y, x\})$ that follows from (2.1), $\mathcal{S}(T)$ and $\mathcal{S}^{-1}(T)$ are subalgebras containing B and closed under the Poisson bracket, thus $T = \mathcal{S}(T)$. \square

3. Hopf algebras

In this section we collect preliminaries on (braided) Hopf algebras (always with bijective antipode \mathcal{S}), bosonizations, braided vectors spaces of diagonal type, Nichols algebras, Weyl groupoids, distinguished pre-Nichols algebras and Lusztig algebras. We refer to [40,1] for more information on Hopf algebras, Nichols algebras, Nichols algebras of diagonal type, respectively.

3.1. Cleft comodule algebras

Let \mathcal{H} be a Hopf algebra with a central Hopf subalgebra Z . Given $z \in G = \text{Alg}(Z, \mathbb{C})$ (the pro-algebraic group defined by Z), let

$$\mathfrak{M}_z = \ker z, \quad \mathfrak{I}_z = \mathcal{H}\mathfrak{M}_z, \quad \mathcal{H}_z = \mathcal{H}/\mathfrak{I}_z;$$

thus \mathcal{H}_z is an algebra (with multiplication m_z and unit u_z) and the natural projection $p_z : \mathcal{H} \rightarrow \mathcal{H}_z$ is an algebra map. Then \mathcal{H}_ε is a quotient Hopf algebra of \mathcal{H} and there is an exact sequence of Hopf algebras $Z \hookrightarrow \mathcal{H} \twoheadrightarrow \mathcal{H}_\varepsilon$. Also for any $z, z' \in G$ there are well-defined algebra morphisms $\Delta_{z,z'} : \mathcal{H}_{zz'} \rightarrow \mathcal{H}_z \otimes \mathcal{H}'_{z'}$ and in particular the maps

$$\varrho_z := \Delta_{z,\varepsilon} : \mathcal{H}_z \rightarrow \mathcal{H}_z \otimes \mathcal{H}_\varepsilon, \quad \lambda_z := \Delta_{\varepsilon,z} : \mathcal{H}_z \rightarrow \mathcal{H}_\varepsilon \otimes \mathcal{H}_z,$$

make \mathcal{H}_z a \mathcal{H}_ε -bicomodule algebra for $z \in G$. Clearly

$$\varrho_z p_z = (p_z \otimes p_\varepsilon) \Delta_{\mathcal{H}}, \quad \lambda_z p_z = (p_\varepsilon \otimes p_z) \Delta_{\mathcal{H}}. \quad (3.1)$$

Recall that a right K -comodule algebra A (over a Hopf algebra K) is cleft if there exists a convolution-invertible morphism of K -comodules $\chi : K \rightarrow A$.

Lemma 3.1. *If the \mathcal{H}_ε -comodule algebra \mathcal{H} with coaction $\varrho = (\text{id} \otimes p_\varepsilon) \Delta_{\mathcal{H}}$ is cleft, then so is \mathcal{H}_z for any $z \in G$. In particular \mathcal{H}_z is a Hopf-Galois object over \mathcal{H}_ε .*

If \mathcal{H} is a pointed Hopf algebra, then \mathcal{H}_z is \mathcal{H}_ε -cleft for all $z \in G$.

Proof. If $\chi : \mathcal{H}_\varepsilon \rightarrow \mathcal{H}$ is a morphism of \mathcal{H} -comodules, then so is $\chi_z := p_z \chi : \mathcal{H}_\varepsilon \rightarrow \mathcal{H}_z$:

$$\begin{aligned} (\chi_z \otimes \text{id}) \varrho_z &= (p_z \otimes \text{id})(\chi \otimes \text{id}) \Delta_{\mathcal{H}_\varepsilon} \\ &= (p_z \otimes \text{id})(\text{id} \otimes p_\varepsilon) \Delta_{\mathcal{H}} \chi = \varrho_z p_z \chi = \varrho_z \chi_z. \end{aligned}$$

If χ is convolution-invertible, then so is χ_z since p_z is an algebra map.

For the last statement, \mathcal{H} is \mathcal{H}_ε -cleft by [44, 4.3], and then we apply the first part. \square

We refer to [43] for Hopf-Galois objects. In the setting of Cayley–Hamilton Hopf algebras, which is a refinement of the above setting for the pair (\mathcal{H}, Z) , a tensor product decomposition of the irreducible representations of \mathcal{H}_z was obtained in [21].

3.2. Braided Hopf algebras and bosonization

Recall that a braided vector space is a pair (\mathcal{V}, c) where \mathcal{V} is a vector space and $c \in GL(\mathcal{V} \otimes \mathcal{V})$ is a solution of the braid equation: $(c \otimes \text{id})(\text{id} \otimes c)(c \otimes \text{id}) = (\text{id} \otimes c)(c \otimes \text{id})(\text{id} \otimes c)$. There are natural notions of morphisms of braided vector spaces and braided Hopf algebras (braided vector spaces with compatible algebra and coalgebra structures),

see [46] for details. To distinguish comultiplications of braided Hopf algebras from those of Hopf algebras, we use a variation of the Sweedler notation for the former: $\underline{\Delta}(r) = r^{(1)} \otimes r^{(2)}$.

Let H be a Hopf algebra. Then the category of (left) Yetter-Drinfeld modules ${}^H_H\mathcal{YD}$ is a braided tensor category and there is a forgetful functor from ${}^H_H\mathcal{YD}$ to the category of braided vector spaces, namely $\mathcal{V} \in {}^H_H\mathcal{YD}$ goes to (\mathcal{V}, c) where $c \in GL(\mathcal{V} \otimes \mathcal{V})$ is given by $c(v \otimes w) = v_{(-1)} \cdot w \otimes v_{(0)}$ in Sweedler notation. This forgetful functor sends Hopf algebras in ${}^H_H\mathcal{YD}$ to braided Hopf algebras. In turn Hopf algebras in ${}^H_H\mathcal{YD}$ are noteworthy because of the Radford-Majid bosonization that provides a bijective correspondence between their collection and the collection of triples (A, π, ι) where $A \xrightarrow[\iota]{} H$ are morphisms of Hopf algebras with $\pi\iota = \text{id}_H$. See [40] for an exposition. More precisely, the correspondence sends the Hopf algebra $R \in {}^H_H\mathcal{YD}$ to the bosonization $R \# H$ and the triple (A, π, ι) to the algebra of right coinvariants $R = A^{\text{co } \pi}$.

Similar notions and results hold for the category of (right) Yetter-Drinfeld modules \mathcal{YD}_H^H consisting of right H -modules and right H -comodules \mathcal{V} satisfying the compatibility

$$(v \cdot h)_{(0)} \otimes (v \cdot h)_{(1)} = v_{(0)} \cdot h_{(2)} \otimes \mathcal{S}(h_{(1)})v_{(1)}h_{(3)}, \quad v \in \mathcal{V}, h \in H.$$

For convenience of the reader we spell out the precise definitions. First, any $\mathcal{V} \in \mathcal{YD}_H^H$ becomes a braided vector space with $c \in GL(\mathcal{V} \otimes \mathcal{V})$ and its inverse given by

$$c(v \otimes w) = w_{(0)} \otimes v \cdot w_{(1)}, \quad c^{-1}(v \otimes w) = w \cdot \mathcal{S}^{-1}(v_{(1)}) \otimes v_{(0)}, \quad v, w \in \mathcal{V}. \quad (3.2)$$

Let (A, π, ι) be a triple as before. Then the subalgebra of left coinvariants

$$S = {}^{\text{co } \pi} A = \{s \in A : (\pi \otimes \text{id})\Delta(s) = 1 \otimes s\}$$

becomes a Hopf algebra in \mathcal{YD}_H^H with right action \cdot , right coaction ρ and comultiplication $\underline{\Delta}$ given by

$$s \cdot h = \mathcal{S}(h_{(1)})sh_{(2)}, \quad \rho(s) = (\text{id} \otimes \pi)\Delta(s), \quad \underline{\Delta}(s) = s_{(1)} \otimes \underline{\vartheta}(s_{(2)}), \quad s \in S, \quad h \in H,$$

where $\underline{\vartheta} : A \rightarrow S$ is given by $\underline{\vartheta}(a) = \pi(\mathcal{S}(a_{(1)}))a_{(2)}$, $a \in A$. Conversely, the bosonization $H \# S$ of a Hopf algebra S in \mathcal{YD}_H^H is the vector space $H \otimes S$ with the right smash product and coproduct. That is, given $s, \tilde{s} \in S$ and $h, \tilde{h} \in H$,

$$(h \# s)(\tilde{h} \# \tilde{s}) = h\tilde{h}_{(1)} \# (s \cdot \tilde{h}_{(2)})\tilde{s}, \quad \Delta(h \# s) = h_{(1)} \# (s^{(1)})_{(0)} \otimes h_{(2)}(s^{(1)})_{(1)} \# s^{(2)}.$$

3.3. Nichols algebras

Let $\mathcal{V} \in {}^H_H\mathcal{YD}$. Then the tensor algebra $T(\mathcal{V})$ is naturally a Hopf algebra in ${}^H_H\mathcal{YD}$. A *pre-Nichols algebra* of \mathcal{V} is a quotient of $T(\mathcal{V})$ by a graded Hopf ideal in ${}^H_H\mathcal{YD}$ supported

in degrees ≥ 2 . The maximal Hopf ideal among those is denoted by $\mathcal{J}(\mathcal{V})$; the Nichols algebra of \mathcal{V} is the quotient $\mathcal{B}(\mathcal{V}) = T(\mathcal{V})/\mathcal{J}(\mathcal{V})$.

The tensor algebra of a braided vector space (\mathcal{V}, c) is also a braided Hopf algebra in the sense of [46]; a *pre-Nichols algebra* of \mathcal{V} is a quotient of $T(\mathcal{V})$ by a braided graded Hopf ideal supported in degrees ≥ 2 . The maximal Hopf ideal among those is denoted $\tilde{\mathcal{J}}(\mathcal{V})$; the Nichols algebra of \mathcal{V} is the quotient $\mathcal{B}(\mathcal{V}) = T(\mathcal{V})/\tilde{\mathcal{J}}(\mathcal{V})$.

These two structures are compatible, i.e., if $\mathcal{V} \in {}^H\mathcal{YD}$ and (\mathcal{V}, c) is the corresponding braided vector space, then $\mathcal{J}(\mathcal{V}) = \tilde{\mathcal{J}}(\mathcal{V})$. But a pre-Nichols algebra of (\mathcal{V}, c) does not necessarily come as the forgetful functor applied to a pre-Nichols algebra of $\mathcal{V} \in {}^H\mathcal{YD}$.

Remark 3.2. Let H be cosemisimple, $\mathcal{V} \in {}^H\mathcal{YD}$ and $G = \mathcal{B}(\mathcal{V})\#H = \bigoplus_{n \in \mathbb{N}_0} G^n$, where $G^n = \mathcal{B}^n(\mathcal{V})\#H$. By other characterizations of Nichols algebras, we know that

- (a) $\mathcal{B}(\mathcal{V})$ is coradically graded and generated in degree 1;
- (b) G is coradically graded and generated in degree 1.

Since the projection $\pi : G \rightarrow H$ is graded, the subalgebra of left coinvariants $S = {}^{\text{co } \pi} G$ inherits the grading of G ; by a standard argument it is also coradically graded and generated in degree 1. Thus S is a Nichols algebra in \mathcal{YD}_H^H .

3.4. Hopf skew-pairings of bosonizations

Let $\langle \cdot, \cdot \rangle : M \times V \rightarrow \mathbb{C}$ be a bilinear form between two vector spaces M and V . We denote by $\langle \cdot, \cdot \rangle : (M \otimes M) \times (V \otimes V) \rightarrow \mathbb{C}$ the bilinear form determined by

$$\langle m \otimes m', v \otimes v' \rangle = \langle m, v' \rangle \langle m', v \rangle, \quad m, m' \in M, v, v' \in V. \quad (3.3)$$

Let H and K be two Hopf algebras. A bilinear form $\langle \cdot, \cdot \rangle : K \times H \rightarrow \mathbb{C}$ is a *Hopf skew-pairing* (or skew-pairing of Hopf algebras) if for all $k, k' \in K, h, h' \in H$,

$$\begin{aligned} \langle k, hh' \rangle &= \langle \Delta^{\text{op}}(k), h \otimes h' \rangle, & \langle kk', h \rangle &= \langle k \otimes k', \Delta(h) \rangle, \\ \langle k, 1 \rangle &= \varepsilon(k), & \langle 1, h \rangle &= \varepsilon(h), & \langle \mathcal{S}(k), h \rangle &= \langle k, \mathcal{S}(h) \rangle. \end{aligned} \quad (3.4)$$

A skew-pairing of braided Hopf algebras is defined by (3.4) but with the convention

$$\underline{\Delta}^{\text{op}} = c^{-1} \underline{\Delta}.$$

Let us fix a Hopf skew-pairing $\langle \cdot, \cdot \rangle : K \times H \rightarrow \mathbb{C}$. A *YD-pairing* between $\mathcal{M} \in \mathcal{YD}_K^K$ and $\mathcal{V} \in {}^H\mathcal{YD}$ is a bilinear form $\langle \cdot, \cdot \rangle : \mathcal{M} \times \mathcal{V} \rightarrow \mathbb{C}$ such that

$$\begin{aligned} \langle m \cdot k, v \rangle &= \langle k, v_{(-1)} \rangle \langle m, v_{(0)} \rangle, & m \in \mathcal{M}, k \in K, v \in \mathcal{V}, h \in H. \\ \langle m, h \cdot v \rangle &= \langle m_{(1)}, h \rangle \langle m_{(0)}, v \rangle, \end{aligned} \quad (3.5)$$

We recall the following well-known result, whose proof is straightforward.

Lemma 3.3. *Let R be a Hopf algebra in ${}^H_H\mathcal{YD}$, S be a Hopf algebra in \mathcal{YD}_K^K and $\langle \cdot, \cdot \rangle : (K \# S) \times (R \# H) \rightarrow \mathbb{C}$ be a bilinear form such that*

$$\langle ky, xh \rangle = \langle k, h \rangle \langle y, x \rangle, \quad y \in S, k \in K, x \in R, h \in H. \quad (3.6)$$

Then the following are equivalent:

- (a) $\langle \cdot, \cdot \rangle$ is a Hopf skew-pairing.
- (b) The restriction of $\langle \cdot, \cdot \rangle$ to $K \times H$ is a Hopf skew-pairing and the restriction of $\langle \cdot, \cdot \rangle$ to $S \times R$ is both a skew-pairing of braided Hopf algebras and a YD-pairing. \square

A YD-pairing between $\mathcal{M} \in \mathcal{YD}_K^K$ and $\mathcal{V} \in {}^H_H\mathcal{YD}$ extends canonically to a YD-pairing $\langle \cdot, \cdot \rangle : T(\mathcal{M}) \times T(\mathcal{V}) \rightarrow \mathbb{C}$. This extension is actually a braided Hopf skew-pairing, i.e., it satisfies (3.4) with respect to the braided comultiplications. The bilinear form

$$\langle \cdot, \cdot \rangle : (K \# T(\mathcal{M})) \times (T(\mathcal{V}) \# H) \rightarrow \mathbb{C}, \quad \langle k \# y, x \# h \rangle := \langle k, h \rangle \langle y, x \rangle,$$

$y \in T(\mathcal{M})$, $k \in K$, $x \in T(\mathcal{V})$, $h \in H$ is a Hopf skew-pairing by Lemma 3.3.

Assume that $\dim \mathcal{M} < \infty$. Then the radical $T(\mathcal{M}^*)^\perp$ with respect to $\langle \cdot, \cdot \rangle$ coincides with $\mathcal{J}(\mathcal{M})$. Hence, for any \mathcal{V} YD-paired with \mathcal{M} we have

$$T(\mathcal{V})^\perp \supseteq \mathcal{J}(\mathcal{M}).$$

Consequently, if $\dim \mathcal{M} < \infty$ and $\dim \mathcal{V} < \infty$, \mathcal{B} is a pre-Nichols algebra of \mathcal{M} in \mathcal{YD}_K^K and \mathcal{E} is a pre-Nichols algebra of \mathcal{V} in ${}^H_H\mathcal{YD}$, then $\langle \cdot, \cdot \rangle$ descends to Hopf skew-pairings $\langle \cdot, \cdot \rangle : \mathcal{B} \times \mathcal{E} \rightarrow \mathbb{C}$ and $\langle \cdot, \cdot \rangle : (K \# \mathcal{B}) \times (\mathcal{E} \# H) \rightarrow \mathbb{C}$.

3.5. Nichols algebras of diagonal type

We fix $\theta \in \mathbb{N}$ and set $\mathbb{I} = \mathbb{I}_\theta$. Let (V, c) be a (complex) braided vector space of diagonal type with braiding matrix

$$\mathfrak{q} = (q_{ij}) \in (\mathbb{C}^\times)^{\mathbb{I} \times \mathbb{I}} \quad (3.7)$$

with respect to a basis $(x_i)_{i \in \mathbb{I}}$, i.e., $c(x_i \otimes x_j) = q_{ij} x_j \otimes x_i$ for all $i, j \in \mathbb{I}$. We assume that $\dim \mathcal{B}(V) < \infty$. These Nichols algebras are classified in [29]. Throughout the paper we will also assume that the Dynkin diagram of \mathfrak{q} is connected, for simplicity of the exposition. As in page 3, we use the notation $\mathcal{B}_\mathfrak{q} := \mathcal{B}(V)$.

The canonical basis of $\mathbb{Z}^{\mathbb{I}}$ is denoted $\alpha_1, \dots, \alpha_\theta$. The algebra $T(V)$ is $\mathbb{Z}^{\mathbb{I}}$ -graded, with grading $\deg x_i = \alpha_i$, $i \in \mathbb{I}$. This grading naturally specializes to the standard \mathbb{N}_0 -grading.

Let $\mathfrak{q} : \mathbb{Z}^{\mathbb{I}} \times \mathbb{Z}^{\mathbb{I}} \rightarrow \mathbb{C}^{\times}$ be the \mathbb{Z} -bilinear forms associated to the matrix \mathfrak{q} , i.e., $\mathfrak{q}(\alpha_j, \alpha_k) := q_{jk}$, $j, k \in \mathbb{I}$. If $\alpha, \beta \in \mathbb{Z}^{\mathbb{I}}$ and $i \in \mathbb{I}$, then we set

$$q_{\alpha\beta} = \mathfrak{q}(\alpha, \beta), \quad q_{\alpha\alpha} = \mathfrak{q}(\alpha, \alpha), \quad N_{\alpha} = \text{ord } q_{\alpha\alpha}, \quad N_i = \text{ord } q_{\alpha_i\alpha_i} = N_{\alpha_i}. \quad (3.8)$$

Remark 3.4. Every $\mathbb{Z}^{\mathbb{I}}$ -graded pre-Nichols algebra of V admits algebra automorphisms $\varsigma_i^{\mathfrak{q}}$ and $(\text{id}, \varsigma_i^{\mathfrak{q}})$ -derivations $\partial_i^{\mathfrak{q}}$ for each $i \in \mathbb{I}$; that is,

$$\partial_i^{\mathfrak{q}}(xy) = \partial_i^{\mathfrak{q}}(x)\varsigma_i^{\mathfrak{q}}(y) + x\partial_i^{\mathfrak{q}}(y), \quad x, y \in T(V).$$

Indeed the algebra automorphism $\varsigma_i^{\mathfrak{q}} : T(V) \rightarrow T(V)$ is given by

$$\varsigma_i^{\mathfrak{q}}(x) = \mathfrak{q}(\alpha_i, \beta)x, \quad x \in T(V) \text{ homogeneous of degree } \beta \in \mathbb{Z}^{\mathbb{I}}.$$

The linear endomorphisms $\partial_i^{\mathfrak{q}} : T(V) \rightarrow T(V)$ are defined as follows. Let $\Delta_{m,n}(x)$ be the homogeneous component of $\Delta(x) \in T(V) \otimes T(V)$ of degree $(m, n) \in \mathbb{N}_0^2$. Then

$$\Delta_{n-1,1}(x) = \sum_{i \in \mathbb{I}} \partial_i^{\mathfrak{q}}(x) \otimes x_i, \quad x \in T^n(V).$$

It is easy to see that $\partial_i^{\mathfrak{q}}$ is a $(\text{id}, \varsigma_i^{\mathfrak{q}})$ -derivation. If \mathcal{B} is a quotient of $T(V)$ by a $\mathbb{Z}^{\mathbb{I}}$ -homogeneous ideal, then $\varsigma_i^{\mathfrak{q}}$ induces an algebra automorphism of \mathcal{B} , also denoted by $\varsigma_i^{\mathfrak{q}}$, and $\partial_i^{\mathfrak{q}}$ induces a $(\text{id}, \varsigma_i^{\mathfrak{q}})$ -derivation of \mathcal{B} , also denoted by $\partial_i^{\mathfrak{q}}$.

3.6. Weyl groupoids

The notions of Weyl groupoid and generalized root systems were introduced in [28,31]. We recall the main features needed later. Let $(c_{ij}^{\mathfrak{q}})_{i,j \in \mathbb{I}} \in \mathbb{Z}^{\mathbb{I} \times \mathbb{I}}$ be the (generalized Cartan) matrix defined by $c_{ii}^{\mathfrak{q}} := 2$ and

$$c_{ij}^{\mathfrak{q}} := -\min \{n \in \mathbb{N}_0 : (n+1)_{q_{ii}}(1 - q_{ii}^n q_{ij} q_{ji}) = 0\}, \quad i \neq j. \quad (3.9)$$

Let $i \in \mathbb{I}$. First, the reflection $s_i^{\mathfrak{q}} \in GL(\mathbb{Z}^{\mathbb{I}})$ is given by

$$s_i^{\mathfrak{q}}(\alpha_j) := \alpha_j - c_{ij}^{\mathfrak{q}} \alpha_i, \quad j \in \mathbb{I}. \quad (3.10)$$

Second, the matrix $\rho_i(\mathfrak{q})$ is given by

$$(\rho_i(\mathfrak{q}))_{jk} := \mathfrak{q}(s_i^{\mathfrak{q}}(\alpha_j), s_i^{\mathfrak{q}}(\alpha_k)) = q_{jk} q_{ik}^{-c_{ij}^{\mathfrak{q}}} q_{ji}^{-c_{ik}^{\mathfrak{q}}} q_{ii}^{c_{ij}^{\mathfrak{q}} c_{ik}^{\mathfrak{q}}}, \quad j, k \in \mathbb{I}. \quad (3.11)$$

Finally, the braided vector space $\rho_i(V)$ is of diagonal type with matrix $\rho_i(\mathfrak{q})$. Set

$$\mathcal{X} := \{\rho_{j_1} \dots \rho_{j_n}(\mathfrak{q}) : j_1, \dots, j_n \in \mathbb{I}, n \in \mathbb{N}\}.$$

The set \mathcal{X} is called the Weyl-equivalence class of \mathfrak{q} . The set $\Delta_+^{\mathfrak{q}}$ of *positive roots* consists of the $\mathbb{Z}^{\mathbb{I}}$ -degrees of the generators of a PBW-basis of $\mathcal{B}_{\mathfrak{q}}$, counted with multiplicities. Let $\Delta^{\mathfrak{q}} := \Delta_+^{\mathfrak{q}} \cup -\Delta_+^{\mathfrak{q}}$. Then the generalized root system of \mathfrak{q} is the fibration $\Delta \rightarrow \mathcal{X}$, where the fiber of $\rho_{j_1} \dots \rho_{j_N}(\mathfrak{q})$ is $\Delta^{\rho_{j_1} \dots \rho_{j_N}(\mathfrak{q})}$. The Weyl groupoid $\mathcal{W}_{\mathfrak{q}}$ of $\mathcal{B}_{\mathfrak{q}}$ acts on this fibration, generalizing the classical Weyl group. Here is another characterization of $\Delta_+^{\mathfrak{q}}$, valid because it is finite. Let $\omega_0^{\mathfrak{q}} \in \mathcal{W}_{\mathfrak{q}}$ be an element of maximal length and $\omega_0^{\mathfrak{q}} = s_{i_1}^{\mathfrak{q}} s_{i_2} \dots s_{i_\ell}$ be a reduced expression. Then

$$\beta_k := s_{i_1}^{\mathfrak{q}} \dots s_{i_{k-1}}(\alpha_{i_k}), \quad k \in \mathbb{I}_\ell \quad (3.12)$$

are pairwise different vectors and $\Delta_+^{\mathfrak{q}} = \{\beta_k : k \in \mathbb{I}_\ell\}$ [16, Prop. 2.12], so $|\Delta_+^{\mathfrak{q}}| = \ell$.

3.7. Cartan roots [9]

This important notion is crucial for our purposes. First, $i \in \mathbb{I}$ is a *Cartan vertex* of \mathfrak{q} if

$$q_{ij} q_{ji} = q_{ii}^{c_{ij}^{\mathfrak{q}}}, \quad \text{for all } j \neq i. \quad (3.13)$$

Then the set of *Cartan roots* of \mathfrak{q} is

$$\mathfrak{O}^{\mathfrak{q}} = \{s_{i_1}^{\mathfrak{q}} s_{i_2} \dots s_{i_k}(\alpha_i) \in \Delta^{\mathfrak{q}} : i \in \mathbb{I} \text{ is a Cartan vertex of } \rho_{i_k} \dots \rho_{i_2} \rho_{i_1}(\mathfrak{q})\}.$$

Set $\mathfrak{O}_+^{\mathfrak{q}} = \mathfrak{O}^{\mathfrak{q}} \cap \mathbb{N}_0^\theta$. Recall (3.8) and set $\tilde{N}_\beta := N_\beta$, if $\beta \notin \mathfrak{O}^{\mathfrak{q}}$, or else ∞ if $\beta \in \mathfrak{O}^{\mathfrak{q}}$.

The set of Cartan roots gives rise to a root system up to a rescaling. Set

$$\underline{\mathfrak{O}}^{\mathfrak{q}} = \{N_\beta^{\mathfrak{q}} \beta : \beta \in \mathfrak{O}^{\mathfrak{q}}\}, \quad \underline{\mathfrak{O}}_+^{\mathfrak{q}} = \underline{\mathfrak{O}}^{\mathfrak{q}} \cap \mathbb{N}_0^\theta, \quad \underline{\beta} = N_\beta^{\mathfrak{q}} \beta, \quad \beta \in \mathfrak{O}^{\mathfrak{q}}. \quad (3.14)$$

Theorem 3.5. [5, Theorem 3.6] *The set $\underline{\mathfrak{O}}^{\mathfrak{q}}$ is either empty or a root system inside the real vector space generated by $\mathfrak{O}^{\mathfrak{q}}$. The set $\Pi^{\mathfrak{q}}$ of all indecomposable elements of $\underline{\mathfrak{O}}_+^{\mathfrak{q}}$ is a basis of this root system. \square*

Here $\underline{\gamma} \in \underline{\mathfrak{O}}_+^{\mathfrak{q}}$ is *indecomposable* if it can not be represented as a non-trivial positive linear combination of elements of $\underline{\mathfrak{O}}_+^{\mathfrak{q}}$. Let $\mathfrak{g}_{\mathfrak{q}}$ be either 0 or the semisimple Lie algebra with root system as in Theorem 3.5, accordingly. We fix a triangular decomposition

$$\mathfrak{g}_{\mathfrak{q}} = \mathfrak{n}_{\mathfrak{q}}^+ \oplus \mathfrak{h}_{\mathfrak{q}} \oplus \mathfrak{n}_{\mathfrak{q}}^- \quad (3.15)$$

and the Borel subalgebras $\mathfrak{b}_{\mathfrak{q}}^{\pm} = \mathfrak{h}_{\mathfrak{q}} \oplus \mathfrak{n}_{\mathfrak{q}}^{\pm} \subset \mathfrak{g}_{\mathfrak{q}}$; if $\mathfrak{g}_{\mathfrak{q}} = 0$, then $\mathfrak{n}_{\mathfrak{q}}^+ = \mathfrak{h}_{\mathfrak{q}} = \mathfrak{n}_{\mathfrak{q}}^- = 0$. We denote the root lattice of $\mathfrak{g}_{\mathfrak{q}}$ by

$$\mathcal{Q}_{\mathfrak{q}} := \sum_{\gamma \in \underline{\mathfrak{O}}_+^{\mathfrak{q}}} \mathbb{Z}\gamma = \bigoplus_{\gamma \in \Pi^{\mathfrak{q}}} \mathbb{Z}\gamma. \quad (3.16)$$

3.8. Distinguished pre-Nichols algebras

The finite-dimensional Nichols algebras of diagonal type admit distinguished pre-Nichols algebras introduced in [8,9]. An ideal $\mathcal{I}(V)$ of $T(V)$ was introduced in [9]; it is generated by all the defining relations of \mathcal{B}_q in [8, Theorem 3.1], but excluding the power root vectors $x_\alpha^{N_\alpha}$, $\alpha \in \underline{\Omega}_q$, and adding some quantum Serre relations, see [9] for the precise list of relations.

Definition 3.6. [9] The distinguished pre-Nichols algebra $\tilde{\mathcal{B}}_q$ of V is the quotient $\tilde{\mathcal{B}}_q = T(V)/\mathcal{I}(V)$. Since $\mathcal{I}(V)$ is a Hopf ideal, $\tilde{\mathcal{B}}_q$ is a braided Hopf algebra.

By Remark 3.4, there are automorphisms ς_i^q and skew-derivations ∂_i^q of $\tilde{\mathcal{B}}_q$, $i \in \mathbb{I}$.

3.9. Lusztig algebras

The *Lusztig algebra* \mathcal{L}_q associated to q is the graded dual of $\tilde{\mathcal{B}}_q$ [3]. Thus \mathcal{L}_q is a braided Hopf algebra equipped with a bilinear form $(\cdot, \cdot) : \mathcal{L}_q \times \tilde{\mathcal{B}}_q \rightarrow \mathbb{C}$, which satisfies

$$(y, xx') = (y^{(2)}, x)(y^{(1)}, x') \quad \text{and} \quad (yy', x) = (y, x^{(2)})(y', x^{(1)}) \quad (3.17)$$

for all $x, x' \in \tilde{\mathcal{B}}_q$, $y, y' \in \mathcal{L}_q$. Let $Z_q^+ = {}^{\text{co } \varpi} \tilde{\mathcal{B}}_q$ be the subalgebra of coinvariants of the canonical projection

$$\varpi : \tilde{\mathcal{B}}_q \rightarrow \mathcal{B}_q.$$

Then Z_q^+ is a *normal* Hopf subalgebra of $\tilde{\mathcal{B}}_q$ [9, Theorem 29] and we have an extension of braided Hopf algebras $Z_q^+ \xhookrightarrow{\iota} \tilde{\mathcal{B}}_q \xrightarrow{\varpi} \mathcal{B}_q$. Taking graded duals, we obtain a new extension of braided Hopf algebras, cf. [4, Proposition 3.2]:

$$\mathcal{B}_{q^t} \xrightarrow{\varpi^*} \mathcal{L}_q \xrightarrow{\iota^*} \mathfrak{Z}_q, \quad (3.18)$$

Remark 3.7. Assume that (4.26) below holds. Then the braided Hopf algebra \mathfrak{Z}_q is a Hopf algebra, isomorphic to the enveloping algebra of the Lie algebra $\mathcal{P}(\mathfrak{Z}_q)$ [4, 3.3]. Moreover $\mathcal{P}(\mathfrak{Z}_q) \simeq \mathfrak{n}_q^-$ as in (3.15) [5].

4. Large quantum groups

In this section we describe the *large quantum groups*, i.e., Drinfeld doubles of bosonizations of the distinguished pre-Nichols algebras belonging to a one-parameter family; these are the main focus of the paper. The large quantum Borel and unipotent subalgebras are also introduced here. Throughout the rest of the paper Γ^+ and Γ^- denote free abelian groups of rank θ with bases denoted respectively $(K_i)_{i \in \mathbb{I}}$ and $(L_i)_{i \in \mathbb{I}}$. Let $\Gamma = \Gamma^+ \times \Gamma^-$.

4.1. Families of Nichols algebras

From now on we assume that \mathbf{q} belongs to a one-parameter family (except when explicitly stated otherwise). This means that there exists an indecomposable matrix

$$\mathbf{q} = (\mathbf{q}_{ij}) \in (\mathbb{C}[\nu^{\pm 1}]^{\times})^{\mathbb{I} \times \mathbb{I}} \quad (4.1)$$

such that:

- The Nichols algebra of the $\mathbb{C}(\nu)$ -braided vector space of diagonal type $V_{\mathbb{C}(\nu)}$ with basis $(x_i)_{i \in \mathbb{I}}$ and braiding matrix (4.1) has finite root system; thus \mathbf{q} is in the list of [29].
- There exists an open subset $\emptyset \neq O \subseteq \mathbb{C}^{\times}$ such that for any $x \in O$, the matrix $\mathbf{q}(x)$ obtained by evaluation $\nu \mapsto x$ has the same finite root system as \mathbf{q} .
- There exists $\xi \in \mathbb{G}'_{\infty} \cap O$ such that $\mathbf{q} = \mathbf{q}(\xi)$.

By inspection in [29], all one-parameter families are listed in Appendix A. We denote the Nichols algebras of V and $V_{\mathbb{C}(\nu)}$, with braidings given by \mathbf{q} , respectively \mathbf{q} , by

$$\mathcal{B}_{\mathbf{q}} := \mathcal{B}(V) \quad \text{and} \quad \mathcal{B}_{\mathbf{q}} := \mathcal{B}(V_{\mathbb{C}(\nu)}).$$

The defining relations and PBW-basis of $\mathcal{B}_{\mathbf{q}}$ and $\mathcal{B}_{\mathbf{q}}$ are described in [2] over an algebraically closed field of characteristic 0 but the same presentation and PBW-basis are valid over $\mathbb{C}(\nu)$. Indeed, apply to $\mathbb{F} = \mathbb{C}(\nu)$, $\mathbb{K} = \overline{\mathbb{C}(\nu)}$ the following remarks:

- Let \mathbb{K}/\mathbb{F} be a field extension and (V, c) a braided \mathbb{F} -vector space. Then $(V \otimes_{\mathbb{F}} \mathbb{K}, c \otimes \text{id})$ is a braided \mathbb{K} -vector space and $\mathcal{B}(V) \otimes_{\mathbb{F}} \mathbb{K} \simeq \mathcal{B}(V \otimes_{\mathbb{F}} \mathbb{K})$; use e.g. quantum symmetrizers.
- Let \mathbb{K}/\mathbb{F} be a faithfully flat extension of commutative rings. Let U be an \mathbb{F} -algebra with generators $(y_j)_{j \in J}$ and $U_{\mathbb{K}} = U \otimes_{\mathbb{F}} \mathbb{K}$ which is also generated by $(y_j)_{j \in J}$. Let $(r_t)_{t \in T}$ be a set of elements in the tensor algebra over \mathbb{F} of the free module $\mathbb{F}^{(J)}$. Then these are defining relations of U if and only if they are defining relations of $U_{\mathbb{K}}$.

The discussions in §3.5 and §3.6 apply to the matrix \mathbf{q} . Let $\mathbf{q} : \mathbb{Z}^{\mathbb{I}} \times \mathbb{Z}^{\mathbb{I}} \rightarrow (\mathbb{C}[\nu^{\pm 1}]^{\times})$ as in §3.5; we also have the notation $\mathbf{q}_{\alpha\beta}$ for $\alpha, \beta \in \mathbb{Z}^{\mathbb{I}}$ as in (3.8). We denote by $\mathcal{W}_{\mathbf{q}}$ the corresponding Weyl groupoid, by $\rho_i(\mathbf{q})$ the related braiding matrices, etc. As in Remark 3.4, there are $\zeta_i^{\mathbf{q}} \in \text{Aut}_{\text{alg}}(\mathcal{B}_{\mathbf{q}})$ and $(\text{id}, \zeta_i^{\mathbf{q}})$ -derivations $\partial_i^{\mathbf{q}} : \mathcal{B}_{\mathbf{q}} \rightarrow \mathcal{B}_{\mathbf{q}}$, for every $i \in \mathbb{I}$.

Remark 4.1. Let $\beta \in \Delta^{\mathbf{q}}$. Crucially, β is a Cartan root of \mathbf{q} if and only if $\text{ord } \mathbf{q}_{\beta\beta} = \infty$.

4.2. The quantum group $U_{\mathbf{q}}$

Here we work over $\mathbb{C}(\nu)$. Let $W_{\mathbb{C}(\nu)}$ be the $\mathbb{C}(\nu)$ -vector space with basis $(y_i)_{i \in \mathbb{I}}$. The group Γ acts on $V_{\mathbb{C}(\nu)} \oplus W_{\mathbb{C}(\nu)}$ by

$$K_i \cdot x_j = \mathbf{q}_{ij} x_j, \quad K_i \cdot y_j = \mathbf{q}_{ij}^{-1} y_j, \quad L_i \cdot x_j = \mathbf{q}_{ji} x_j, \quad L_i \cdot y_j = \mathbf{q}_{ji}^{-1} y_j, \quad (4.2)$$

$i, j \in \mathbb{I}$. The vector space $V_{\mathbb{C}(\nu)} \oplus W_{\mathbb{C}(\nu)}$ is Γ -graded by

$$\deg x_i = K_i, \quad \deg y_i = L_i, \quad i \in \mathbb{I}. \quad (4.3)$$

Thus $V_{\mathbb{C}(\nu)} \oplus W_{\mathbb{C}(\nu)} \in \frac{\mathbb{C}(\nu)\Gamma}{\mathbb{C}(\nu)\Gamma} \mathcal{YD}$ with coaction given by the grading. In particular, $W_{\mathbb{C}(\nu)}$ is a braided vector space with braiding matrix \mathbf{q}' where $\mathbf{q}'_{ij} = \mathbf{q}_{ji}^{-1}$, $i, j \in \mathbb{I}$.

Let $U_{\mathbf{q}}$ be the quotient Hopf algebra of the bosonization $T(V_{\mathbb{C}(\nu)} \oplus W_{\mathbb{C}(\nu)}) \# \mathbb{C}(\nu)\Gamma$ modulo the ideal generated by

$$\mathcal{J}(V_{\mathbb{C}(\nu)}), \quad \mathcal{J}(W_{\mathbb{C}(\nu)}), \quad x_i y_j - \mathbf{q}_{ij}^{-1} y_j x_i - \delta_{ij} (K_i L_i - 1), \quad i, j \in \mathbb{I}.$$

The images of x_i , y_i , K_i and L_i in $U_{\mathbf{q}}$ will again be denoted by the same symbols. Let $E_i := x_i$, $F_i := y_i L_i^{-1}$ in $U_{\mathbf{q}}$, $i \in \mathbb{I}$. Then for all $i, j \in \mathbb{I}$ we have

$$K_i E_j = \mathbf{q}_{ij} E_j K_i, \quad L_i E_j = \mathbf{q}_{ji} E_j L_i, \quad (4.4)$$

$$K_i F_j = \mathbf{q}_{ij}^{-1} F_j K_i, \quad L_i F_j = \mathbf{q}_{ji}^{-1} F_j L_i, \quad (4.5)$$

$$E_i F_j - F_j E_i = \delta_{ij} (K_i - L_i^{-1}), \quad (4.6)$$

$$\Delta(E_i) = K_i \otimes E_i + E_i \otimes 1, \quad \Delta(F_i) = 1 \otimes F_i + F_i \otimes L_i^{-1}. \quad (4.7)$$

We consider the following subalgebras of $U_{\mathbf{q}}$:

$$U_{\mathbf{q}}^{+0} = \mathbb{C}(\nu)[K_i^{\pm 1} : i \in \mathbb{I}], \quad U_{\mathbf{q}}^{-0} = \mathbb{C}(\nu)[L_i^{\pm 1} : i \in \mathbb{I}], \quad U_{\mathbf{q}}^0 = \mathbb{C}(\nu)[K_i^{\pm 1}, L_i^{\pm 1} : i \in \mathbb{I}],$$

$$U_{\mathbf{q}}^+ = \mathbb{C}(\nu)\langle E_i : i \in \mathbb{I} \rangle, \quad U_{\mathbf{q}}^- = \mathbb{C}(\nu)\langle F_i : i \in \mathbb{I} \rangle,$$

$$U_{\mathbf{q}}^{\geq} = \mathbb{C}(\nu)\langle E_i, K_i^{\pm 1} : i \in \mathbb{I} \rangle, \quad U_{\mathbf{q}}^{\leq} = \mathbb{C}(\nu)\langle F_i, L_i^{\pm 1} : i \in \mathbb{I} \rangle.$$

The multiplication map induces linear isomorphisms

$$U_{\mathbf{q}} \simeq U_{\mathbf{q}}^+ \otimes_{\mathbb{C}(\nu)} U_{\mathbf{q}}^0 \otimes_{\mathbb{C}(\nu)} U_{\mathbf{q}}^- \simeq U_{\mathbf{q}}^{\geq} \otimes_{\mathbb{C}(\nu)} U_{\mathbf{q}}^{\leq}. \quad (4.8)$$

We have canonical isomorphisms of Hopf algebras

$$U_{\mathbf{q}}^{+0} \simeq \mathbb{C}(\nu)\Gamma^+, \quad U_{\mathbf{q}}^{-0} \simeq \mathbb{C}(\nu)\Gamma^-, \quad U_{\mathbf{q}}^0 \simeq \mathbb{C}(\nu)\Gamma.$$

The algebra $U_{\mathbf{q}}^+$ has a canonical structure of a Hopf algebra in $\frac{\mathbb{C}(\nu)\Gamma^+}{\mathbb{C}(\nu)\Gamma^+} \mathcal{YD}$ and there are isomorphisms of (braided) Hopf algebras

$$U_{\mathbf{q}}^+ \simeq \mathcal{B}_{\mathbf{q}}, \quad U_{\mathbf{q}}^{\geqslant} \simeq U_{\mathbf{q}}^+ \# U_{\mathbf{q}}^{+0},$$

see e.g. [6] for details.

Define the module $V_{\mathbb{C}(\nu)}^* \in \mathcal{YD}_{\mathbb{C}(\nu)\Gamma^-}^{\mathbb{C}(\nu)\Gamma^-}$ with basis $\{x_i^* : i \in \mathbb{I}\}$ by

$$x_j^* \cdot L_i = \mathbf{q}_{ji} x_j^*, \quad \deg x_i^* = L_i^{-1}, \quad i, j \in \mathbb{I}.$$

Let $\pi^- : U_{\mathbf{q}}^{\leqslant} \rightarrow U_{\mathbf{q}}^{-0}$ be the canonical Hopf algebra morphism; then ${}^{\text{co } \pi^-} U_{\mathbf{q}}^{\leqslant} = U_{\mathbf{q}}^-$, cf. [6, Corollary 3.9 (2)]. Hence $U_{\mathbf{q}}^-$ has a canonical structure of a Hopf algebra in $\mathcal{YD}_{\mathbb{C}(\nu)\Gamma^-}^{\mathbb{C}(\nu)\Gamma^-}$. By Remark 3.2, we have isomorphisms of (braided) Hopf algebras

$$U_{\mathbf{q}}^- \simeq \mathcal{B}(V_{\mathbb{C}(\nu)}^*) \simeq \mathcal{B}_{\mathbf{q}^{(-1)}}, \quad U_{\mathbf{q}}^{\leqslant} \simeq U_{\mathbf{q}}^{-0} \# U_{\mathbf{q}}^-.$$

Here $\mathbf{q}^{(-1)}$ means the matrix obtained by inverting every entry of \mathbf{q} .

Now there is a unique Hopf skew-pairing $\langle \cdot, \cdot \rangle : U_{\mathbf{q}}^{\leqslant} \times U_{\mathbf{q}}^{\geqslant} \rightarrow \mathbb{C}(\nu)$ determined by

$$\langle L_i, K_j \rangle = \mathbf{q}_{ji}^{-1}, \quad \langle F_i, E_j \rangle = \delta_{ij}, \quad \langle L_i, E_j \rangle = \langle F_i, K_j \rangle = 0, \quad i, j \in \mathbb{I},$$

see [6, Theorem 3.7]. By [6, Theorem 3.11 (1)], we have

$$\langle x_- g_-, x_+ g_+ \rangle = \langle x_-, x_+ \rangle \langle g_-, g_+ \rangle, \quad x_{\pm} \in U_{\mathbf{q}}^{\pm}, g_{\pm} \in \Gamma^{\pm}.$$

The restriction $\langle \cdot, \cdot \rangle : U_{\mathbf{q}}^- \times U_{\mathbf{q}}^+ \rightarrow \mathbb{C}(\nu)$ is non-degenerate by [6, Theorem 3.11 (3)] and is a Hopf skew-pairing of braided Hopf algebras by Lemma 3.3.

4.3. The large quantum group $U_{\mathbf{q}}$

Recall that $\mathbf{q} \in (\mathbb{C}^{\times})^{\mathbb{I} \times \mathbb{I}}$ belongs to a one parameter family given by a matrix \mathbf{q} , cf. §4.1.

Definition 4.2. The **large quantum group** $U_{\mathbf{q}}$ is the Drinfeld double of the bosonization of the distinguished pre-Nichols algebra $\tilde{\mathcal{B}}_{\mathbf{q}}$.

The complex Hopf algebra $U_{\mathbf{q}}$ was defined in [9] for arbitrary \mathbf{q} with $\dim \mathcal{B}_{\mathbf{q}} < \infty$. Explicitly, let W be the \mathbb{C} -vector space with basis $(y_i)_{i \in \mathbb{I}}$. The group Γ acts on $V \oplus W$ by

$$K_i \cdot x_j = q_{ij} x_j, \quad K_i \cdot y_j = q_{ji}^{-1} y_j, \quad L_i \cdot x_j = q_{ji} x_j, \quad L_i \cdot y_j = q_{ji}^{-1} y_j, \quad i, j \in \mathbb{I}.$$

Now $V \oplus W$ is Γ -graded by (4.3), so W is a braided vector space with braiding matrix \mathbf{q}' with entries $q'_{ij} = q_{ji}^{-1}$ for $i, j \in \mathbb{I}$. Recall the defining ideal $\mathcal{I}(V)$ of $\tilde{\mathcal{B}}_{\mathbf{q}}$. Then $U_{\mathbf{q}}$ is the bosonization $T(V \oplus W) \# \mathbb{C}\Gamma$ modulo the ideal generated by

$$\mathcal{I}(V), \quad \mathcal{I}(W), \quad x_i y_j - q_{ij}^{-1} y_j x_i - \delta_{ij}(K_i L_i - 1), \quad i, j \in \mathbb{I}.$$

The images of x_i , y_i , K_i and L_i in $U_{\mathfrak{q}}$ will again be denoted by the same symbols. Let $e_i = x_i$, $f_i = y_i L_i^{-1}$ in $U_{\mathfrak{q}}$, $i \in \mathbb{I}$. Then for all $i, j \in \mathbb{I}$ we have

$$K_i e_j = q_{ij} e_j K_i, \quad L_i e_j = q_{ji} e_j L_i, \quad (4.9)$$

$$K_i f_j = q_{ij}^{-1} f_j K_i, \quad L_i f_j = q_{ji}^{-1} f_j L_i, \quad (4.10)$$

$$e_i f_j - f_j e_i = \delta_{ij}(K_i - L_i^{-1}), \quad (4.11)$$

$$\Delta(e_i) = K_i \otimes e_i + e_i \otimes 1, \quad \Delta(f_i) = 1 \otimes f_i + f_i \otimes L_i^{-1}. \quad (4.12)$$

We consider the following subalgebras of $U_{\mathfrak{q}}$:

$$U_{\mathfrak{q}}^{+0} = \mathbb{C}[K_i^{\pm 1} : i \in \mathbb{I}], \quad U_{\mathfrak{q}}^{-0} = \mathbb{C}[L_i^{\pm 1} : i \in \mathbb{I}], \quad U_{\mathfrak{q}}^0 = \mathbb{C}[K_i^{\pm 1}, L_i^{\pm 1} : i \in \mathbb{I}],$$

$$U_{\mathfrak{q}}^+ = \mathbb{C}\langle e_i : i \in \mathbb{I} \rangle, \quad U_{\mathfrak{q}}^- = \mathbb{C}\langle f_i : i \in \mathbb{I} \rangle,$$

$$U_{\mathfrak{q}}^{\geq} = \mathbb{C}\langle e_i, K_i^{\pm 1} : i \in \mathbb{I} \rangle, \quad U_{\mathfrak{q}}^{\leq} = \mathbb{C}\langle f_i, L_i^{\pm 1} : i \in \mathbb{I} \rangle.$$

Definition 4.3. The algebras $U_{\mathfrak{q}}^{\geq}$ and $U_{\mathfrak{q}}^{\leq}$ will be called **large quantum Borel algebras** and the algebras $U_{\mathfrak{q}}^{\pm}$ **large quantum unipotent algebras**.

The multiplication map induces the linear isomorphisms

$$U_{\mathfrak{q}} \simeq U_{\mathfrak{q}}^+ \otimes_{\mathbb{C}} U_{\mathfrak{q}}^0 \otimes_{\mathbb{C}} U_{\mathfrak{q}}^{(-)} \simeq U_{\mathfrak{q}}^{\geq} \otimes_{\mathbb{C}} U_{\mathfrak{q}}^{\leq}. \quad (4.13)$$

We have canonical isomorphisms of Hopf algebras

$$U_{\mathfrak{q}}^{+0} \simeq \mathbb{C}\Gamma^+, \quad U_{\mathfrak{q}}^{-0} \simeq \mathbb{C}\Gamma^-, \quad U_{\mathfrak{q}}^0 \simeq \mathbb{C}\Gamma.$$

The algebra $U_{\mathfrak{q}}^+$ has a canonical structure of a Hopf algebra in $\mathbb{C}\Gamma^+ \mathcal{YD}$. We have isomorphisms of (braided) Hopf algebras:

$$U_{\mathfrak{q}}^+ \simeq \tilde{\mathcal{B}}_{\mathfrak{q}}, \quad U_{\mathfrak{q}}^{\geq} \simeq U_{\mathfrak{q}}^+ \# U_{\mathfrak{q}}^{+0},$$

see [9]. Define the module $V^* \in \mathcal{YD}_{\mathbb{C}\Gamma^-}^{\mathbb{C}\Gamma^+}$ with basis $\{x_i^* : i \in \mathbb{I}\}$ by

$$x_j^* \cdot L_i = \mathfrak{q}_{ji} x_j^*, \quad \deg x_i^* = L_i^{-1}, \quad i, j \in \mathbb{I}.$$

Let $\pi^- : U_{\mathfrak{q}}^{\leq} \rightarrow U_{\mathfrak{q}}^{-0}$ be the canonical Hopf algebra projection; then ${}^{\text{co}} \pi^- U_{\mathfrak{q}}^{\leq} = U_{\mathfrak{q}}^-$ as in [6, Corollary 3.9 (2)]. Hence $U_{\mathfrak{q}}^-$ is a Hopf algebra in $\mathcal{YD}_{\mathbb{C}\Gamma^-}^{\mathbb{C}\Gamma^+}$ and because of the defining relations of $U_{\mathfrak{q}}^-$, it is isomorphic to the distinguished pre-Nichols algebra of $V^* \in \mathcal{YD}_{\mathbb{C}\Gamma^-}^{\mathbb{C}\Gamma^+}$. Combining the above, we get isomorphisms of (braided) Hopf algebras:

$$U_{\mathbf{q}}^- \simeq \tilde{\mathcal{B}}_{\mathbf{q}^{(-1)}}, \quad U_{\mathbf{q}}^{\leqslant} \simeq U_{\mathbf{q}}^{-0} \# U_{\mathbf{q}}^-. \quad (4.14)$$

Here, again, $\mathbf{q}^{(-1)}$ denotes the matrix obtained by inverting every entry of \mathbf{q} .

4.4. Lusztig isomorphisms and root vectors

As in [30, §3] we consider

$$\lambda_{ij}^{\mathbf{q}} = (\mathbf{q}_{ii}^{-c_{ij}^{\mathbf{q}}} \mathbf{q}_{ij} \mathbf{q}_{ji})^{c_{ij}^{\mathbf{q}}} (-c_{ij}^{\mathbf{q}})_{\mathbf{q}_{ii}}! \prod_{0 \leq s < -c_{ij}^{\mathbf{q}}} (\mathbf{q}_{ii}^s \mathbf{q}_{ij} \mathbf{q}_{ji} - 1) \in \mathbb{C}[\nu^{\pm 1}]^{\times}, \quad i \neq j \in \mathbb{I}. \quad (4.15)$$

Notice that $\lambda_{ij}^{\mathbf{q}} \neq 0$ by the definition (3.9).

By [30, Proposition 6.8], there exist algebra isomorphisms $T_i^{\mathbf{q}} : U_{\rho_i(\mathbf{q})} \rightarrow U_{\mathbf{q}}$ such that

$$\begin{aligned} T_i^{\mathbf{q}}(\underline{K}_j) &= K_j K_i^{-c_{ij}^{\mathbf{q}}}; \quad T_i^{\mathbf{q}}(\underline{E}_i) = \begin{cases} F_i L_i, & j = i, \\ (\text{ad}_c E_i)^{-c_{ij}^{\mathbf{q}}} E_j, & j \neq i, \end{cases} \\ T_i^{\mathbf{q}}(\underline{L}_j) &= L_j L_i^{-c_{ij}^{\mathbf{q}}}; \quad T_i^{\mathbf{q}}(\underline{F}_i) = \begin{cases} K_i^{-1} E_i, & j = i, \\ (\lambda_{ij}^{\mathbf{q}})^{-1} (\text{ad}_c F_i)^{-c_{ij}^{\mathbf{q}}} F_j, & j \neq i, \end{cases} \end{aligned} \quad (4.16)$$

where the underlined letters denote the generators of $U_{\rho_i(\mathbf{q})}$.

Let $\omega_0^{\mathbf{q}}$ be the element of $\mathcal{W}_{\mathbf{q}}$ of maximal length ending at \mathbf{q} and $\omega_0^{\mathbf{q}} = s_{i_1}^{\mathbf{q}} s_{i_2} \cdots s_{i_\ell}$ be a reduced expression. By [30, Theorem 6.20], we have that

$$E_{\beta_k} := T_{i_1}^{\mathbf{q}} \cdots T_{i_{k-1}}^{\mathbf{q}} (E_{i_k}) \in U_{\mathbf{q}}^+, \quad F_{\beta_k} := T_{i_1}^{\mathbf{q}} \cdots T_{i_{k-1}}^{\mathbf{q}} (F_{i_k}) \in U_{\mathbf{q}}^-, \quad k \in \mathbb{I}_\ell. \quad (4.17)$$

By [32, Theorem 4.5] the sets

$$\left\{ E_{\beta_1}^{n_1} E_{\beta_2}^{n_2} \cdots E_{\beta_\ell}^{n_\ell} : 0 \leq n_j < \tilde{N}_{\beta_j}, j \in \mathbb{I}_\ell \right\}, \left\{ F_{\beta_1}^{m_1} F_{\beta_2}^{m_2} \cdots F_{\beta_\ell}^{m_\ell} : 0 \leq m_j < \tilde{N}_{\beta_j}, j \in \mathbb{I}_\ell \right\} \quad (4.18)$$

are bases of $U_{\mathbf{q}}^+$ and $U_{\mathbf{q}}^-$, respectively. Indeed, this follows from Property (c) in the Appendix A and Remark 4.1. Thus the following set is a basis of $U_{\mathbf{q}}$:

$$\{E_{\beta_1}^{m_1} \cdots E_{\beta_\ell}^{m_\ell} K_1^{a_1} \cdots K_\theta^{a_\theta} L_1^{b_1} \cdots L_\theta^{b_\theta} F_{\beta_1}^{n_1} \cdots F_{\beta_\ell}^{n_\ell} : 0 \leq m_j, n_j < \tilde{N}_{\beta_j}, a_i, b_i \in \mathbb{Z}\}. \quad (4.19)$$

We now turn to the algebras $U_{\mathbf{q}}$. Let $\lambda_{ij}^{\mathbf{q}}$ be defined as (4.15) with \mathbf{q} in place of \mathbf{q} . Notice that $\lambda_{ij}^{\mathbf{q}} \neq 0$ by the definition (3.9). By [9, Proposition 10], there exist algebra isomorphisms $T_i^{\mathbf{q}} : U_{\rho_i(\mathbf{q})} \rightarrow U_{\mathbf{q}}$ such that

$$\begin{aligned} T_i^q(\underline{K}_j) &= K_j K_i^{-c_{ij}^q}; & T_i^q(\underline{e}_i) &= \begin{cases} f_i L_i, & j = i, \\ (\text{ad}_c e_i)^{-c_{ij}^q} e_j, & j \neq i, \end{cases} \\ T_i^q(\underline{L}_j) &= L_j L_i^{-c_{ij}^q}; & T_i^q(\underline{f}_i) &= \begin{cases} K_i^{-1} e_i, & j = i, \\ (\lambda_{ij}^q)^{-1} (\text{ad}_c f_i)^{-c_{ij}^q} f_j, & j \neq i. \end{cases} \end{aligned} \quad (4.20)$$

The underlined letters denote the generators of $U_{\rho_i(q)}$.

Analogously, $e_{\beta_k} = T_{i_1}^q \dots T_{i_{k-1}}^q(e_{i_k})$ and $f_{\beta_k} = T_{i_1}^q \dots T_{i_{k-1}}^q(f_{i_k})$ belong to U_q^+ and U_q^- , respectively and by [9, Theorem 11] the sets

$$\{e_{\beta_1}^{n_1} e_{\beta_2}^{n_2} \dots e_{\beta_\ell}^{n_\ell} : 0 \leq n_i < \tilde{N}_{\beta_i}\} \quad \text{and} \quad \{f_{\beta_1}^{m_1} f_{\beta_2}^{m_2} \dots f_{\beta_\ell}^{m_\ell} : 0 \leq m_j < \tilde{N}_{\beta_j}\} \quad (4.21)$$

are bases of U_q^+ and U_q^- , respectively. Thus the following set is a basis of U_q :

$$\{e_{\beta_1}^{m_1} \dots e_{\beta_\ell}^{m_\ell} K_1^{a_1} \dots K_\theta^{a_\theta} L_1^{b_1} \dots L_\theta^{b_\theta} f_{\beta_1}^{n_1} \dots f_{\beta_\ell}^{n_\ell} : 0 \leq m_j, n_j < \tilde{N}_{\beta_j}, a_i, b_i \in \mathbb{Z}\}. \quad (4.22)$$

4.5. The central subalgebras Z_q , Z_q^\pm , $Z_q^>$, $Z_q^<$

In this subsection and the next q does not need to be in a family, just $\dim \mathcal{B}_q < \infty$ is assumed. Set

$$\mathbb{N} = \text{lcm}\{N_\beta : \beta \in \Delta_+^q\}. \quad (4.23)$$

To start with, we consider a subalgebra Z_q of U_q . Then Z_q is generated by

$$e_\beta^{N_\beta}, \quad f_\beta^{N_\beta}, \quad K_\beta^{\pm N_\beta}, \quad L_\beta^{\pm N_\beta}, \quad \beta \in \mathfrak{O}_+^q, \quad (4.24)$$

$$K_\beta^{\pm \mathbb{N}}, \quad L_\beta^{\pm \mathbb{N}}, \quad \beta \in \Delta_+^q; \quad (4.25)$$

this is a normal \mathcal{Q}_q -graded Hopf subalgebra of U_q , [9, Proposition 21, Theorem 33], which may be different from the one in [9, p. 18] since we add the generators in (4.25) what actually only affects the types $\mathbf{A}(k-1|\theta-k)$, see Proposition 4.8. These new generators are necessary for U_q to be finitely generated as Z_q -module.

The following subalgebras of Z_q are also needed:

$$Z_q^+ = \mathbb{C}\langle e_\beta^{N_\beta} : \beta \in \mathfrak{O}_+^q \rangle, \quad Z_q^- = \mathbb{C}\langle f_\beta^{N_\beta} : \beta \in \mathfrak{O}_+^q \rangle.$$

Notice that Z_q^+ coincides with the subalgebra introduced right after (3.17), see [9, Theorem 29]. For Z_q to be central in U_q we need the following condition that we assume from now on:

$$q_{\alpha\beta}^{N_\beta} = 1, \quad \alpha \in \Delta^q, \beta \in \mathfrak{O}^q. \quad (4.26)$$

Remark 4.4.

(a) If (4.26) holds, then $q_{\beta\alpha}^{N_\beta} = 1$ [9, Lemma 24].
 (b) Condition (4.26) is equivalent to the following one:

$$q_{\alpha_i\beta}^{N_\beta} = 1, \quad \text{for all } i \in \mathbb{I}, \beta \in \underline{\Pi^q}. \quad (4.27)$$

The reduction to simple roots is clear. Since $q_{\alpha\beta}^{N_\beta} = q_{\alpha\beta}$ and $\underline{\Pi^q}$ is a basis of the root system \mathfrak{D}_+^q , the reduction from \mathfrak{D}_+^q to Π^q holds.

(c) Let $i \in \mathbb{I}$. Condition (4.26) holds for \mathfrak{q} if and only if it holds for $\rho_i(\mathfrak{q})$.

Indeed, $\rho_i(\mathfrak{q})_{\alpha\beta} = \mathfrak{q}_{s_i^q(\alpha)s_i^q(\beta)}$ for all $\alpha, \beta \in \mathbb{Z}^\theta$ by (3.11), and by [5, Lemma 2.3] we have $s_i^q(\mathfrak{D}^q) = \mathfrak{D}^{\rho_i(\mathfrak{q})}$, $N_{s_i^q(\beta)}^{\rho_i(\mathfrak{q})} = N_\beta^q$ for all β .

When \mathfrak{q} is symmetric, we can quotient the large quantum group by a central group subalgebra to remove the extra Cartan generators as in quantum groups. However the condition of \mathfrak{q} being symmetric is not always compatible with (4.26) as we see next.

Example 4.5. Assume that \mathfrak{q} has Dynkin diagram $\overset{-1}{\circ} \xrightarrow{\xi} \overset{-1}{\circ}$, $\xi \in \mathbb{G}'_N$, $N > 2$: it is of super type $\mathbf{A}(1|0)$. In this case,

$$\Delta_+^q = \{\alpha_1, \alpha_1 + \alpha_2, \alpha_2\}, \quad \mathfrak{D}_+^q = \{\alpha_1 + \alpha_2\}.$$

Condition (4.27) becomes

$$1 = (q_{11}q_{12})^N = (-q_{12})^N, \quad 1 = (q_{21}q_{22})^N = (-q_{21})^N \iff q_{12}^N = (-1)^N = q_{21}^N.$$

We have two possibilities: if N is even, then $q_{12} = \xi^k$ for some $k \in \mathbb{I}_N$, so $q_{21} = \xi^{1-k}$, and \mathfrak{q} is not symmetric. If N is odd, then $q_{12} = -\xi^k$ for some $k \in \mathbb{I}_N$, so $q_{21} = -\xi^{1-k}$. In this case \mathfrak{q} is symmetric only when $k = \frac{N+1}{2}$.

We consider also the Hopf subalgebras

$$\begin{aligned} Z_{\mathfrak{q}}^{+0} &= \mathbb{C}\langle\{K_\beta^{\pm N_\beta} : \beta \in \mathfrak{D}_+^q\} \cup \{K_\beta^{\pm N} : \beta \in \Delta_+^q\}\rangle, & Z_{\mathfrak{q}}^{\geqslant} &= Z_{\mathfrak{q}}^+ Z_{\mathfrak{q}}^{+0}, \\ Z_{\mathfrak{q}}^{-0} &= \mathbb{C}\langle\{L_\beta^{\pm N_\beta} : \beta \in \mathfrak{D}_+^q\} \cup \{L_\beta^{\pm N} : \beta \in \Delta_+^q\}\rangle, & Z_{\mathfrak{q}}^{\leqslant} &= Z_{\mathfrak{q}}^- Z_{\mathfrak{q}}^{-0}. \\ Z_{\mathfrak{q}}^0 &= Z_{\mathfrak{q}}^{+0} Z_{\mathfrak{q}}^{-0}. \end{aligned}$$

Remark 4.6. The following properties hold:

(a) [9, Th. 23]. $Z_{\mathfrak{q}}^\pm$ is a polynomial ring in variables $e_\beta^{N_\beta}$, respectively $f_\beta^{N_\beta}$, $\beta \in \mathfrak{D}_+^q$.

(b) The multiplication gives linear isomorphisms $Z_{\mathfrak{q}}^+ \otimes Z_{\mathfrak{q}}^{+0} \otimes Z_{\mathfrak{q}}^{-0} \otimes Z_{\mathfrak{q}}^- \simeq Z_{\mathfrak{q}} \simeq Z_{\mathfrak{q}}^{\geqslant} \otimes Z_{\mathfrak{q}}^{\leqslant}$.
(c) Recall the skew-derivations $\partial_i^{\mathfrak{q}}, \partial_i^{\mathfrak{q}^{(-1)}}$ of $U_{\mathfrak{q}}^{\pm}$, cf. (4.14). By [9, Theorem 31],

$$Z_{\mathfrak{q}}^+ = \bigcap_{i \in \mathbb{I}} \ker \partial_i^{\mathfrak{q}}, \quad Z_{\mathfrak{q}}^- = \bigcap_{i \in \mathbb{I}} \ker \partial_i^{\mathfrak{q}^{(-1)}}. \quad (4.28)$$

(d) The algebras $U_{\mathfrak{q}}, U_{\mathfrak{q}}^{\geqslant}, U_{\mathfrak{q}}^{\leqslant}$ and $U_{\mathfrak{q}}^{\pm}$ are module finite over their central subalgebras $Z_{\mathfrak{q}}, Z_{\mathfrak{q}}^{\geqslant}, Z_{\mathfrak{q}}^{\leqslant}$ and $Z_{\mathfrak{q}}^{\pm}$; just consider the PBW-bases in §4.4.

4.6. Action of the Weyl groupoid on $Z_{\mathfrak{q}}$

Next we prove invariance of the central Hopf subalgebras $Z_{\mathfrak{q}}$ under the Lusztig isomorphisms $T_i^{\mathfrak{q}} : U_{\rho_i(\mathfrak{q})} \rightarrow U_{\mathfrak{q}}$, cf. §4.4.

Theorem 4.7. *Let $i \in \mathbb{I}$. Then $T_i^{\mathfrak{q}}$ restricts to an algebra isomorphism $T_i^{\mathfrak{q}} : Z_{\rho_i(\mathfrak{q})} \rightarrow Z_{\mathfrak{q}}$.*

Proof. By (4.28), $Z_{\mathfrak{q}}$ (defined in terms of the root vectors which depend on the expression of $\omega_0^{\mathfrak{q}}$) is indeed independent of such expression; in particular we may choose $\omega_0^{\mathfrak{q}} = s_{i_1}^{\mathfrak{q}} \dots s_{i_\ell}^{\mathfrak{q}}$ such that $i_1 = i$. For simplicity we set $\mathfrak{p} = \rho_i(\mathfrak{q})$. As $s_{i_2}^{\mathfrak{p}} \dots s_{i_\ell}^{\mathfrak{p}}$ is reduced, we may extend it to a reduced expression of $\omega_0^{\mathfrak{p}}$ [31, Corollary 3]:

$$\omega_0^{\mathfrak{p}} = s_{i_2}^{\mathfrak{p}} \dots s_{i_\ell}^{\mathfrak{p}} s_j \quad \text{for some } j \in \mathbb{I}.$$

We set $\beta'_k = s_{i_1}(\beta_k) = s_{i_2}^{\mathfrak{p}} \dots s_{i_{k-1}}(\alpha_{i_k})$, $k \in \mathbb{I}_{2,\ell}$. Hence

$$\{\beta'_k : k \in \mathbb{I}_{2,\ell}\} = s_i^{\mathfrak{p}} (\Delta_+^{\mathfrak{q}} - \{\alpha_i\}) = \Delta_+^{\mathfrak{p}} - \{\alpha_i\}.$$

As $s_{i_2}^{\mathfrak{p}} \dots s_{i_\ell}(\alpha_j) \in \Delta_+^{\mathfrak{p}}$, $s_{i_2}^{\mathfrak{p}} \dots s_{i_\ell}(\alpha_j) \neq \beta'_k$ for $k \in \mathbb{I}_{2,\ell}$, we have that $s_{i_2}^{\mathfrak{p}} \dots s_{i_\ell}(\alpha_j) = \alpha_i$. Then $\{N_{\beta'} : \beta' \in \Delta_+^{\mathfrak{p}}\} = \{N_{\beta} : \beta \in \Delta_+^{\mathfrak{q}}\}$, so $\text{lcm}\{N_{\beta'} : \beta' \in \Delta_+^{\mathfrak{p}}\} = \mathbb{N}$, and

$$\begin{aligned} T_i^{\mathfrak{q}}(K_i^{\pm \mathbb{N}}) &= K_i^{\mp \mathbb{N}} \in Z_{\mathfrak{q}}, & T_i^{\mathfrak{q}}(K_{\beta'_k}^{\pm \mathbb{N}}) &= K_{s_i^{\mathfrak{q}}(\beta'_k)}^{\pm \mathbb{N}} = K_{\beta_k}^{\pm \mathbb{N}} \in Z_{\mathfrak{q}}, & k > 1, \\ T_i^{\mathfrak{q}}(K_i^{\pm \mathbb{N}}) &= K_i^{\mp \mathbb{N}} \in Z_{\mathfrak{q}}, & T_i^{\mathfrak{q}}(K_{\beta'_k}^{\pm \mathbb{N}}) &= K_{s_i^{\mathfrak{q}}(\beta'_k)}^{\pm \mathbb{N}} = K_{\beta_k}^{\pm \mathbb{N}} \in Z_{\mathfrak{q}}, & k > 1. \end{aligned}$$

Let $\beta \in \mathfrak{O}^{\rho_i(\mathfrak{q})}$. If $\beta = \beta'_k$ for some $k \in \mathbb{I}_{2,\ell}$, then $s_i^{\mathfrak{q}}(\beta'_k) = \beta_k$ and $N_{\beta'_k} = N_{\beta_k}$, hence

$$T_i^{\mathfrak{q}}(K_{\beta'_k}^{\pm N_{\beta'_k}}) = K_{s_i^{\mathfrak{q}}(\beta'_k)}^{\pm N_{\beta'_k}} = K_{\beta_k}^{\pm N_{\beta_k}} \in Z_{\mathfrak{q}}, \quad T_i^{\mathfrak{q}}(e_{\beta'_k}^{N_{\beta'_k}}) = T_i^{\mathfrak{q}}(e_{\beta_k}^{N_{\beta_k}}) = T_{i_1}^{\mathfrak{q}} T_{i_2} \dots T_{i_{k-1}}(e_{i_k}^{N_{\beta_k}}) = e_{\beta_k}^{N_{\beta_k}} \in Z_{\mathfrak{q}}.$$

Otherwise $\beta = \alpha_i$, so i is a Cartan vertex and

$$T_i^{\mathfrak{q}}(K_{\beta}^{\pm N_{\beta}}) = K_i^{\mp N_{\alpha_i}} \in Z_{\mathfrak{q}}, \quad T_i^{\mathfrak{q}}(e_{\beta}^{N_{\beta}}) = T_i^{\mathfrak{q}}(e_i^{N_{\alpha_i}}) = (f_i L_i)^{N_{\alpha_i}} = q_{ii}^{\binom{N_{\alpha_i}}{2}} f_i^{N_{\alpha_i}} L_i^{N_{\alpha_i}} \in Z_{\mathfrak{q}}.$$

Analogously, $T_i^{\mathfrak{q}}(L_{\beta}^{\pm N_{\beta}}), T_i^{\mathfrak{q}}(f_{\beta}^{N_{\beta}}) \in Z_{\mathfrak{q}}$ for all $\beta \in \mathfrak{O}^{\rho_i(\mathfrak{q})}$, so $T_i^{\mathfrak{q}}(Z_{\rho_i(\mathfrak{q})}) \subseteq Z_{\mathfrak{q}}$. Applying $T_i^{\mathfrak{p}}$ we get the opposite inclusion. \square

Let Λ'_q be the subgroup of Γ generated by $K_\beta^{\pm N_\beta}, L_\beta^{\pm N_\beta}, \beta \in \mathfrak{D}_+^q$ and let Λ_q be the subgroup generated by Λ'_q and $K_\beta^{\pm N}, L_\beta^{\pm N}, \beta \in \Delta_+^q$: we have that $Z_q^0 = \mathbb{C}\Lambda_q$.

Next we check that $\Lambda'_q = \Lambda_q$ for q as in the Appendix, not of type super A , so the subalgebra Z_q is generated by (4.24) and coincides with the one in [9, p. 18].

Proposition 4.8. *Assume that q belongs to one of the families in the Appendix A.*

- (a) *If q is not of type $\mathbf{A}(k-1|\theta-k)$, $k \in \mathbb{I}_{\lfloor \frac{\theta+1}{2} \rfloor}$, then $\Lambda'_q = \Lambda_q$ and Z_q^0 is generated by (4.24).*
- (b) *Let q be of type $\mathbf{A}(k-1|\theta-k)$, $k \in \mathbb{I}_{\lfloor \frac{\theta+1}{2} \rfloor}$, $\eta \in \Delta_+^q - \mathfrak{D}_+^q$. Then $\Lambda_q \simeq \Lambda'_q \times \langle K_\eta^N \rangle \times \langle L_\eta^N \rangle$, and Z_q^0 is generated by $\{K_\beta^{\pm N_\beta}, L_\beta^{\pm N_\beta} : \beta \in \Delta_+^q\}$ and $K_\eta^{\pm N}, L_\eta^{\pm N}$.*

Proof. First we notice that T_i^q restricts to group isomorphisms $\Lambda_q \simeq \Lambda_{\rho_i q}$, $\Lambda'_q \simeq \Lambda'_{\rho_i q}$ since the restrictions $(T_i^q)|_{U_{\rho_i q}^{+0}} : U_{\rho_i q}^{+0} \rightarrow U_q^{+0}$ and $(T_i^q)|_{U_{\rho_i q}^{-0}} : U_{\rho_i q}^{-0} \rightarrow U_q^{-0}$ are given by s_i^q . Hence it is enough to consider one matrix for each Weyl equivalence class.

Assume that q is as in the Appendix A and is not of type $\mathbf{A}(k-1|\theta-k)$. If q is of Cartan type, then $\Delta_+^q = \mathfrak{D}_+^q$, hence $\Lambda'_q = \Lambda_q$. For the other types we check the equality $\Lambda'_q = \Lambda_q$ case-by-case when the Dynkin diagram is the one in Tables 2 and 3.

Let q be of type $\mathbf{A}(k-1|\theta-k)$ with Dynkin diagram in Table 2, $\eta \in \Delta_+^q - \mathfrak{D}_+^q$. Then $\mathfrak{D}_+^q = \{\alpha_{ij} | i \leq j < k \text{ or } k < i \leq j\}$, $N_\beta = N$ for all $\beta \in \mathfrak{D}_+^q$, $\Lambda'_q = \langle K_i^N, L_i^N | i \neq k \rangle$, $\eta = \alpha_{ij}$ for some $i \leq k \leq j$ and $N = N$ if N is even while $N = 2N$ if N is odd. Hence K_k^N, L_k^N belong to the subgroup generated by Λ'_q , K_η^N and L_η^N . On the other hand, Λ_q is generated by Λ'_q , K_k^N and L_k^N , thus the statement follows. \square

5. The specialization setting for large quantum groups

In this section we introduce the non-restricted integral form of U_q and prove that the large quantum group U_q is a specialization of it. We also introduce restricted integral forms of the subalgebras U_q^\pm and establish pairing results for the corresponding specializations. The latter integral forms will play a key role in our treatment of Poisson order structures on the large quantum groups U_q and their Borel and unipotent subalgebras.

5.1. Integral forms

In order to implement the ideas of Section 2, we need to consider forms over suitable rings, generalizing [20]. For simplicity, we set

$$\mathsf{A} := \mathbb{C}[\nu^{\pm 1}, (\mathbf{q}_{ii}^s \mathbf{q}_{ij} \mathbf{q}_{ji} - 1)^{-1} : i \neq j \in \mathbb{I}, 0 \leq s < -c_{ij}^q] \subset \mathbb{C}(\nu). \quad (5.1)$$

By (3.9), $\mathbf{q}_{ii}^s \mathbf{q}_{ij} \mathbf{q}_{ji} \neq 0$ for $0 \leq s < -c_{ij}^q$.

We now define the *(non-restricted) integral forms* as the A -subalgebras

$$U_{\mathbf{q}, \mathsf{A}}^+ = \mathsf{A}\langle E_i : i \in \mathbb{I} \rangle \subset U_{\mathbf{q}}^+, \quad U_{\mathbf{q}, \mathsf{A}}^0 = \mathsf{A}[K_i^{\pm 1}, L_i^{\pm 1} : i \in \mathbb{I}] \subset U_{\mathbf{q}}^0,$$

$$U_{\mathbf{q}, \mathsf{A}}^- = \mathsf{A}\langle F_i : i \in \mathbb{I} \rangle \subset U_{\mathbf{q}}^-, \quad U_{\mathbf{q}, \mathsf{A}} = \mathsf{A}\langle K_i^{\pm 1}, L_i^{\pm 1}, E_i, F_i : i \in \mathbb{I} \rangle \subset U_{\mathbf{q}},$$

$$U_{\mathbf{q}, \mathsf{A}}^{\geq} = U_{\mathbf{q}, \mathsf{A}}^+ \otimes_{\mathsf{A}} \mathsf{A}[K_i^{\pm 1} : i \in \mathbb{I}], \quad U_{\mathbf{q}, \mathsf{A}}^{\leq} = U_{\mathbf{q}, \mathsf{A}}^- \otimes_{\mathsf{A}} \mathsf{A}[L_i^{\pm 1} : i \in \mathbb{I}].$$

These are crucial for our purposes. We have again a triangular decomposition

$$U_{\mathbf{q}, \mathsf{A}}^+ \otimes_{\mathsf{A}} U_{\mathbf{q}, \mathsf{A}}^0 \otimes_{\mathsf{A}} U_{\mathbf{q}, \mathsf{A}}^- \simeq U_{\mathbf{q}, \mathsf{A}}. \quad (5.2)$$

The surjectivity of this multiplication map follows from the cross relations (4.4), (4.5) and (4.6), while the injectivity follows from (4.8). Recall (4.15) for the next result.

Lemma 5.1. *For all $i \neq j$ in \mathbb{I} , $(\lambda_{ij}^{\mathbf{q}})^{-1} \in \mathsf{A}$.*

Proof. If $\mathbf{q}_{ii}^{-c_{ij}^{\mathbf{q}}} \mathbf{q}_{ij} \mathbf{q}_{ji} = 1$, then using that $\mathbf{q}_{ii} \in \mathbb{C}[\nu^{\pm 1}]^{\times}$ we have

$$(\lambda_{ij}^{\mathbf{q}})^{-1} = (-1)^{c_{ij}^{\mathbf{q}}} q_{ii}^{c_{ij}^{\mathbf{q}}(c_{ij}^{\mathbf{q}}-1)} (\mathbf{q}_{ii} - 1)^{-c_{ij}^{\mathbf{q}}} \prod_{0 \leq s < -c_{ij}^{\mathbf{q}}} (\mathbf{q}_{ii}^s \mathbf{q}_{ij} \mathbf{q}_{ji} - 1)^{-2} \in \mathsf{A}$$

Otherwise \mathbf{q}_{ii} is a root of unity of order $1 - c_{ij}^{\mathbf{q}}$, so because $(-c_{ij}^{\mathbf{q}})_{\mathbf{q}_{ii}}! \in \mathbb{C}^{\times}$, we have

$$(\lambda_{ij}^{\mathbf{q}})^{-1} = \frac{(\mathbf{q}_{ii}^{-1} \mathbf{q}_{ij} \mathbf{q}_{ji})^{-c_{ij}^{\mathbf{q}}}}{(-c_{ij}^{\mathbf{q}})_{\mathbf{q}_{ii}}!} \prod_{0 \leq s < -c_{ij}^{\mathbf{q}}} (\mathbf{q}_{ii}^s \mathbf{q}_{ij} \mathbf{q}_{ji} - 1)^{-1} \in \mathsf{A}. \quad \square$$

Example 5.2. Let \mathbf{q} be of modular type $\mathsf{br}(2)$, respectively $\mathsf{wk}(4)$, see §A.3. Then $\mathsf{A} = \mathbb{C}[\nu^{\pm 1}, (\nu - 1)^{-1}, (\nu - \zeta)^{-1}]$, respectively $\mathsf{A} = \mathbb{C}[\nu^{\pm 1}, (\nu - 1)^{-1}, (\nu + 1)^{-1}]$.

Recall the Hopf skew-pairing from §4.2. We now define the *restricted integral forms*, that also play a central role in this paper, as the A -submodules

$$U_{\mathbf{q}, \mathsf{A}}^{\text{res} -} := \{y \in U_{\mathbf{q}}^- \mid \langle y, U_{\mathbf{q}, \mathsf{A}}^+ \rangle \subset \mathsf{A}\}, \quad U_{\mathbf{q}, \mathsf{A}}^{\text{res} +} := \{x \in U_{\mathbf{q}}^+ \mid \langle U_{\mathbf{q}, \mathsf{A}}^-, x \rangle \subset \mathsf{A}\}. \quad (5.3)$$

Indeed, these are A -subalgebras of $U_{\mathbf{q}}^-$ and $U_{\mathbf{q}}^+$, respectively. This follows from the fact that $U_{\mathbf{q}, \mathsf{A}}^{\pm}$ are braided Hopf subalgebras of $U_{\mathbf{q}}^{\pm}$ over A and the properties of Hopf skew-pairings.

5.2. PBW-bases of integral forms

Recall the Lusztig isomorphisms $T_i^{\mathbf{q}}$ from §4.4.

Lemma 5.3.

- (a) $T_i^{\mathbf{q}}$ restricts to an A -algebra isomorphism $T_i^{\mathbf{q}} : U_{\rho_i(\mathbf{q}), \mathsf{A}} \rightarrow U_{\mathbf{q}, \mathsf{A}}$, $i \in \mathbb{I}$.
- (b) Let $\beta \in \Delta_+$. Then $E_{\beta}, F_{\beta} \in U_{\mathbf{q}, \mathsf{A}}$.

Proof. (a) follows from (4.20) and Lemma 5.1, while (b) from (a) and (4.17). \square

Proposition 5.4. *The sets (4.18) and (4.19) are \mathbf{A} -bases of $U_{\mathbf{q}, \mathbf{A}}^\pm$ and $U_{\mathbf{q}, \mathbf{A}}$, respectively.*

Proof. We consider the case of $U_{\mathbf{q}, \mathbf{A}}^+$, the other being analogous. Let Y be the set of PBW monomials of $U_{\mathbf{q}}^+$ from (4.18). By Lemma 5.3, $Y \subset U_{\mathbf{q}, \mathbf{A}}^+$. The defining relations of $U_{\mathbf{q}}^+$ involve products of E_i with coefficients in \mathbf{A} , hence we may prove recursively that, for $j > k$, $E_{\beta_j} E_{\beta_k} \in \mathbf{A}Y$, the \mathbf{A} -module generated by Y , where each monomial in the expansion has letters E_{β_t} , $j > t > k$; see the proof of [32, Theorem 4.8]. Thus $\mathbf{A}Y$ is a left ideal containing 1, so $\mathbf{A}Y = U_{\mathbf{q}, \mathbf{A}}^+$. This fact and the direct sum decomposition $U_{\mathbf{q}}^+ = \bigoplus_{y \in Y} \mathbb{C}(\nu)y$ imply that $U_{\mathbf{q}, \mathbf{A}}^+ = \bigoplus_{y \in Y} \mathbf{A}y$. \square

Recall the notation \tilde{N}_β in §3.7. Next we consider the quantum divided powers

$$F_{\beta_j}^{(n)} = \frac{F_{\beta_j}^n}{(n)_{\mathbf{q}_{\beta_j \beta_j}}!}, \quad E_{\beta_j}^{(n)} = \frac{E_{\beta_j}^n}{(n)_{\mathbf{q}_{\beta_j \beta_j}}!}, \quad 0 \leq n < \tilde{N}_{\beta_j}.$$

Proposition 5.5. *For $j \in \mathbb{I}_\ell$, let n_j, m_j be such that $0 \leq n_j, m_j < \tilde{N}_{\beta_j}$. Then*

$$\langle F_{\beta_1}^{(n_1)} \dots F_{\beta_\ell}^{(n_\ell)}, E_{\beta_1}^{m_1} \dots E_{\beta_\ell}^{m_\ell} \rangle = \delta_{n_1 m_1} \dots \delta_{n_\ell m_\ell}.$$

Proof. Let $\eta_j = \langle F_{\beta_j}, E_{\beta_j} \rangle$, $j \in \mathbb{I}_\ell$. The same proof as [10, Proposition 4.6] shows that

$$\langle F_{\beta_1}^{(n_1)} \dots F_{\beta_\ell}^{(n_\ell)}, E_{\beta_1}^{m_1} \dots E_{\beta_\ell}^{m_\ell} \rangle = \delta_{n_1 m_1} \dots \delta_{n_\ell m_\ell} \eta_1^{n_1} \dots \eta_\ell^{n_\ell}.$$

As in [10, 4.7], we see that $\eta_j = 1$: here $\langle F_i, E_i \rangle = 1$, there $\langle F_i, E_i \rangle = -1$ for $i \in \mathbb{I}$. \square

Propositions 5.4 and 5.5 imply the following:

Corollary 5.6. *The following sets are \mathbf{A} -basis of $U_{\mathbf{q}, \mathbf{A}}^{\text{res} -}$ and $U_{\mathbf{q}, \mathbf{A}}^{\text{res} +}$, respectively:*

$$\left\{ F_{\beta_1}^{(n_1)} \dots F_{\beta_\ell}^{(n_\ell)} : 0 \leq n_j < \tilde{N}_{\beta_j} \right\} \quad \text{and} \quad \left\{ E_{\beta_1}^{(m_1)} \dots E_{\beta_\ell}^{(m_\ell)} : 0 \leq m_j < \tilde{N}_{\beta_j} \right\}. \quad (5.4)$$

5.3. The specialization of $U_{\mathbf{q}, \mathbf{A}}$

As explained in Property (c) of the Appendix, there exists $\xi \in \mathbb{G}'_\infty$ such that $\mathbf{q}(\xi) = \mathbf{q}$; we fix one such ξ .

We consider the setting in Section 2 assuming $R = \mathbf{A}$, $h = \nu - \xi$ and the R -algebra A being either $U_{\mathbf{q}, \mathbf{A}}$ or its subalgebras $U_{\mathbf{q}, \mathbf{A}}^\pm$. We claim that the map $\mathbb{C}[\nu^{\pm 1}] \rightarrow \mathbb{C}$, $\nu \mapsto \xi$ extends to an isomorphism $\mathbf{A}/(\nu - \xi) \simeq \mathbb{C}$. For, if

$$\mathbf{q}_{ii}^s \mathbf{q}_{ij} \mathbf{q}_{ji} - 1 \mapsto q_{ii}^s q_{ij} q_{ji} - 1 = 0 \quad \text{for some } i \neq j, 0 \leq s < -c_{ij}^{\mathbf{q}},$$

then $0 \leq -c_{ij}^{\mathbf{q}} \leq s < -c_{ij}^{\mathbf{q}}$, which contradicts Property (c) of the Appendix A. Here and below we will use the bar notation $x \mapsto \bar{x}$ for specializations.

Theorem 5.7. *There are Hopf algebra (respectively, braided Hopf algebra) isomorphisms*

$$\Xi_{\mathbf{q}} : U_{\mathbf{q}} \rightarrow U_{\mathbf{q}, \mathbf{A}}/(\nu - \xi) \quad \text{and} \quad \Xi_{\mathbf{q}}|_{U_{\mathbf{q}}^{\pm}} : U_{\mathbf{q}}^{\pm} \rightarrow U_{\mathbf{q}, \mathbf{A}}^{\pm}/(\nu - \xi)$$

given by $e_i \mapsto \bar{E}_i$, $f_i \mapsto \bar{F}_i$, $K_i^{\pm 1} \mapsto \bar{K}_i^{\pm 1}$, $L_i^{\pm 1} \mapsto \bar{L}_i^{\pm 1}$ for all $i \in \mathbb{I}$. For each $i \in \mathbb{I}$, the following diagram is commutative:

$$\begin{array}{ccc} U_{\rho_i(\mathbf{q})} & \xrightarrow{\Xi_{\rho_i(\mathbf{q})}} & U_{\rho_i(\mathbf{q})f, \mathbf{A}}/(\nu - \xi) \\ T_i^{\mathbf{q}} \downarrow & & \downarrow T_i^{\mathbf{q}} \\ U_{\mathbf{q}} & \xrightarrow{\Xi_{\mathbf{q}}} & U_{\mathbf{q}, \mathbf{A}}/(\nu - \xi). \end{array} \quad (5.5)$$

Proof. The defining relations of $U_{\mathbf{q}}$ hold in $U_{\mathbf{q}, \mathbf{A}}/(\nu - \xi)$ by the definition of $U_{\mathbf{q}}$ in [9] and the presentation of $U_{\mathbf{q}}$ in [8]. Therefore, the map $\Xi_{\mathbf{q}}$ as above is well-defined. Moreover $\Xi_{\mathbf{q}}$ is surjective, since \bar{E}_i , \bar{F}_i , $\bar{K}_i^{\pm 1}$, $\bar{L}_i^{\pm 1}$ generate $U_{\mathbf{q}, \mathbf{A}}/(\nu - \xi)$ as \mathbb{C} -algebra.

Now we check that (5.5) is a commutative diagram. Indeed, since Property (c) in the Appendix A holds and $\mathbf{q} \mapsto \mathbf{q}$ under the evaluation map, we have that

$$\begin{aligned} \Xi_{\mathbf{q}} \circ T_i^{\mathbf{q}}(e_j) &= (\text{ad}_c \bar{E}_i)^{-c_{ij}^{\mathbf{q}}} \bar{E}_j = T_i^{\mathbf{q}} \circ \Xi_{\rho_i(\mathbf{q})}(e_j), \\ \Xi_{\mathbf{q}} \circ T_i^{\mathbf{q}}(f_j) &= (\text{ad}_c \bar{F}_i)^{-c_{ij}^{\mathbf{q}}} \bar{F}_j = T_i^{\mathbf{q}} \circ \Xi_{\rho_i(\mathbf{q})}(f_j) \end{aligned}$$

for $j \neq i$. Since $\Xi_{\mathbf{q}} \circ T_i^{\mathbf{q}}(X) = T_i^{\mathbf{q}} \circ \Xi_{\rho_i(\mathbf{q})}(X)$ for $X \in \{e_i, f_i, K_j^{\pm 1}, L_j^{\pm 1}\}$, the claim follows. By (5.5), $\Xi_{\mathbf{q}}(E_{\beta}) = \bar{E}_{\beta}$ and $\Xi_{\mathbf{q}}(F_{\beta}) = \bar{F}_{\beta}$ for all $\beta \in \Delta_+$. Hence $\Xi_{\mathbf{q}}$ sends the PBW basis of $U_{\mathbf{q}}$ to that of $U_{\mathbf{q}, \mathbf{A}}/(\nu - \xi)$, so $\Xi_{\mathbf{q}}$, and its restrictions to $U_{\mathbf{q}}^{\pm}$, are isomorphisms. Clearly $\Xi_{\mathbf{q}}$ (and its restrictions) are isomorphisms of (braided) Hopf algebras. \square

5.4. The specialization of $U_{\mathbf{q}, \mathbf{A}}^{\text{res} \pm}$

Recall the Lusztig algebra $\mathcal{L}_{\mathbf{q}}$ §3.9 and the identification of $\tilde{\mathcal{B}}_{\mathbf{q}}$ with $U_{\mathbf{q}}^+$ as in §4.3. For $\beta \in \mathfrak{O}^{\mathbf{q}}$, $n \in \mathbb{N}_0$, define $\eta_{\beta}^{(n)} \in \mathcal{L}_{\mathbf{q}}$ such that

$$(\eta_{\beta_j}^{(n)}, e_{\beta_1}^{m_1} \dots e_{\beta_{\ell}}^{m_{\ell}}) = \begin{cases} 1, & m_j = n, m_k = 0 \text{ for } k \neq j, \\ 0, & \text{otherwise.} \end{cases} \quad (5.6)$$

By [3, Proposition 4.6], the set

$$\{\eta_{\beta_1}^{(n_1)} \dots \eta_{\beta_{\ell}}^{(n_{\ell})} : 0 \leq n_j < \tilde{N}_{\beta_j}\}$$

is a basis of \mathcal{L}_q and the algebra \mathcal{L}_q is generated by

$$\{\eta_{\alpha_i} : i \in \mathbb{I}\} \cup \{\eta_{\beta}^{(N_{\beta})} : \underline{\beta} \in \Pi^q\}.$$

The Lie algebra \mathfrak{n}_q^- from (3.15) has a \mathbb{C} -basis $\{\iota^*(\eta_{\beta}^{(N_{\beta})}) : \beta \in \mathfrak{O}^q\}$ and set of simple root vectors $\{\iota^*(\eta_{\beta}^{(N_{\beta})}) : \underline{\beta} \in \Pi^q\}$. Similar results hold for the Lusztig algebra $\mathcal{L}_{q^{(-1)}}$ associated to $\tilde{\mathcal{B}}_{q^{(-1)}} \simeq U_q^-$. The corresponding elements of $\mathcal{L}_{q^{(-1)}}$, defined as in (5.6) using f_{β}^m instead of e_{β}^m , will be denoted by $\theta_{\beta}^{(n)}$, where $\beta \in \mathfrak{O}^q$ and $n \in \mathbb{N}_0$.

Remark 5.8. The Lie algebras associated to \mathcal{L}_q and $\mathcal{L}_{q^{(-1)}}$ as in Remark 3.7 are isomorphic to each other, see the list in the Appendix A. Hence we have a Lie algebra isomorphism

$$\mathfrak{n}_{q^{(-1)}}^- \simeq \mathfrak{n}_q^+ \quad (5.7)$$

where $\iota^*(\theta_{\beta}^{(N_{\beta})}) \in \mathfrak{n}_{q^{(-1)}}^+$, $\underline{\beta} \in \Pi^q$ are mapped to the simple root vectors of \mathfrak{n}_q^- .

For a braided Hopf algebra B denote the braided opposite algebra B^{op} with product $\mu^{\text{op}} := \mu c^{-1}$ where $\mu : B \times B \rightarrow B$ is the product in B .

Proposition 5.9. *There are \mathbb{C} -algebra anti-isomorphisms*

$$\begin{aligned} \phi^- : U_{q,A}^{\text{res}-}/(\nu - \xi) &\rightarrow \mathcal{L}_q, & \overline{F_{\beta}^{(n)}} &\mapsto \eta_{\beta}^{(n)}, \\ \phi^+ : \left(U_{q,A}^{\text{res}+}/(\nu - \xi)\right)^{\text{op}} &\rightarrow \mathcal{L}_{q^{(-1)}}, & \overline{E_{\beta}^{(n)}} &\mapsto \theta_{\beta}^{(n)}, \end{aligned} \quad \text{given by} \quad \beta \in \mathfrak{O}^q, n \in \mathbb{N}_0.$$

Proof. We prove the statement in the minus case, the plus case is analogous. By Proposition 5.5 the Hopf skew-pairing $\langle \cdot, \cdot \rangle : U_q^- \times U_q^+ \rightarrow \mathbb{C}(\nu)$ restricts to a perfect pairing

$$\langle \cdot, \cdot \rangle : U_{q,A}^{\text{res}-} \times U_{q,A}^+ \rightarrow A.$$

Since $U_{q,A}^+ / (\nu - \xi) \simeq U_q^+$ as braided Hopf algebras, the latter pairing induces a non-degenerate pairing $\langle \cdot, \cdot \rangle : (U_{q,A}^{\text{res}-}/(\nu - \xi)) \times U_q^+ \rightarrow \mathbb{C}$ such that

$$\langle yy', x \rangle = \langle y \otimes y', \Delta(x) \rangle, \quad y, y' \in U_{q,A}^{\text{res}-}/(\nu - \xi), x \in U_q^+ \quad (5.8)$$

and we have the commutative diagram

$$\begin{array}{ccc} U_{q,A}^{\text{res}-} \times U_{q,A}^+ & \longrightarrow & A \\ \downarrow & & \downarrow \\ (U_{q,A}^{\text{res}-}/(\nu - \xi)) \times U_q^+ & \longrightarrow & \mathbb{C} \end{array}$$

By the definition of \mathcal{L}_q , we have a canonical vector space isomorphism

$$\phi^- : U_{q,A}^{\text{res}\,-}/(\nu - \xi) \rightarrow \mathcal{L}_q \quad \text{such that} \quad \langle Y, x \rangle = (\phi^-(Y), x)$$

for all $Y \in U_{q,A}^{\text{res}\,-}/(\nu - \xi)$, $x \in U_q^+$. Comparing (3.17) and (5.8), we see that ϕ^- is an algebra anti-isomorphism. Using again Proposition 5.5 and the definition (5.6) of $\eta_\beta^{(n)}$, we get that ϕ^- is given by $\overline{F_\beta^{(n)}} \mapsto \eta_\beta^{(n)}$ for $\beta \in \mathfrak{O}_q$, $n \in \mathbb{N}_0$. \square

6. Poisson orders on large quantum groups

By Theorem 5.7, the large quantum group U_q fits in the context of Section 2 and consequently the pair $(U_q, \mathcal{Z}(U_q))$ inherits a structure of Poisson order from deformation theory. However the Poisson algebra $\mathcal{Z}(U_q)$ is often singular. We prove that the central Hopf subalgebra Z_q introduced in §4.5 (which is of course regular) is a Poisson subalgebra of $\mathcal{Z}(U_q)$ of the same dimension. Thus (U_q, Z_q) has a structure of Poisson order that restricts to the corresponding large quantum Borel and unipotent algebras.

6.1. Poisson structure on Z_q

We show that Z_q , $Z_q^>$, $Z_q^<$, Z_q^+ and Z_q^- are Poisson subalgebras of $\mathcal{Z}(U_q)$, respectively $\mathcal{Z}(U_q^>)$, $\mathcal{Z}(U_q^<)$, $\mathcal{Z}(U_q^+)$ and $\mathcal{Z}(U_q^-)$.

The coefficients of Poisson brackets that we use will be expressed in terms of a square matrix $\mathcal{P}^q \in \mathbb{C}^{\Pi^q \times \Pi^q}$. Furthermore, in the next section we will show that the Cartan matrix of the semisimple Lie algebra \mathfrak{g}_q is also expressed in terms of the entries of this matrix. The matrix \mathcal{P}^q is defined as follows. Let $\beta, \gamma \in \mathfrak{O}_q^+$. As $q_{\beta\gamma} = \mathbf{q}_{\beta\gamma}(\xi)$, (4.26) implies that there exists $\wp_{\beta\gamma}^q(\nu) \in A$ such that

$$1 - \mathbf{q}_{\beta\gamma}^{N_\beta N_\gamma} = (\nu - \xi) \wp_{\beta\gamma}^q(\nu). \quad (6.1)$$

Recall the notation $\underline{\beta}$ from (3.14) and the set $\underline{\mathfrak{O}}^q$ from Theorem 3.5. Define

$$\mathcal{P}^q := (\wp_{\beta\gamma}^q(\xi))_{\underline{\beta}, \underline{\gamma} \in \underline{\Pi}^q}. \quad (6.2)$$

We distinguish two cases, namely whether q is of type $\mathbf{A}(k-1|\theta-k)$ or not. In the first case we need one more generator to have finite type of U_q as Z_q -module, and a *fortiori* as $Z(U_q)$ -module.

Case 1. q is of type $\mathbf{A}(k-1|\theta-k)$ with Dynkin diagram as in Table 2. Set

$$\eta := \sum_{1 \leq i \leq k} \alpha_i + \sum_{k < i \leq \theta} (i - k + 1) \alpha_i, \quad \underline{\eta} := N_\eta \eta, \quad (6.3)$$

recall (3.12). It is easy to see that $N_\eta = \mathbb{N}$, recall (4.23). Denote

$$\tilde{\Pi}^{\mathbf{q}} := \Pi^{\mathbf{q}} \sqcup \{\underline{\eta}\} = \{\underline{\alpha}_i | i \neq k\} \sqcup \{\underline{\eta}\}. \quad (6.4)$$

We have the following:

- (I) By Proposition 4.8, $Z_{\mathbf{q}}$ is generated by (4.24) and $K_{\eta}^{\pm N_{\eta}}$, $L_{\eta}^{\pm N_{\eta}}$.
- (II) By direct computation, $q_{\underline{\alpha}_i \underline{\eta}} = q_{\underline{\eta} \underline{\alpha}_i} = 1$. Arguing as in (6.1), there exist $\wp_{\alpha_i \eta}^{\mathbf{q}}(\nu)$, $\wp_{\eta \alpha_i}^{\mathbf{q}}(\nu) \in \mathbf{A}$ such that

$$1 - \mathbf{q}_{\underline{\alpha}_i \underline{\eta}} = (\nu - \xi) \wp_{\alpha_i \eta}^{\mathbf{q}}(\nu), \quad 1 - \mathbf{q}_{\underline{\eta} \underline{\alpha}_i} = (\nu - \xi) \wp_{\eta \alpha_i}^{\mathbf{q}}(\nu).$$

We check that the following equality holds:

$$\wp_{\alpha_i \eta}^{\mathbf{q}}(\xi) + \wp_{\eta \alpha_i}^{\mathbf{q}}(\xi) = 0, \quad i \neq k. \quad (6.5)$$

- (III) Similarly, $q_{\eta \eta} = 1$, so there exist $\wp_{\eta \eta}^{\mathbf{q}}(\nu) \in \mathbf{A}$ such that $1 - \mathbf{q}_{\eta \eta} = (\nu - \xi) \wp_{\eta \eta}^{\mathbf{q}}(\nu)$. By direct computation,

$$\wp_{\eta \eta}^{\mathbf{q}}(\xi) = -N_{\eta}^2 \xi (\theta - k + (\theta - k + 1)^2) \neq 0. \quad (6.6)$$

Case 2. \mathbf{q} is not of type $\mathbf{A}(k-1|\theta-k)$. Set

$$\tilde{\Pi}^{\mathbf{q}} := \Pi^{\mathbf{q}}. \quad (6.7)$$

It follows from Proposition 4.8 that

$$Z_{\mathbf{q}}^{+0} = \mathbb{C}[K_{\mu}^{N_{\mu}} : \underline{\mu} \in \tilde{\Pi}_{\mathbf{q}}], \quad Z_{\mathbf{q}}^{-0} = \mathbb{C}[L_{\mu}^{N_{\mu}} : \underline{\mu} \in \tilde{\Pi}_{\mathbf{q}}]. \quad (6.8)$$

Lemma 6.1. *Let $i \in \mathbb{I}$. Then $\mathcal{P}^{\rho_i(\mathbf{q})} = \mathcal{P}^{\mathbf{q}}$.*

Proof. First, $\Pi^{\rho_i(\mathbf{q})} = s_i^{\mathbf{q}}(\Pi^{\mathbf{q}})$. Thus $\wp_{s_i^{\mathbf{q}}(\beta) s_i^{\mathbf{q}}(\gamma)}^{\rho_i(\mathbf{q})}(\nu) = \wp_{\beta \gamma}^{\mathbf{q}}(\nu)$ for $\underline{\beta}, \underline{\gamma} \in \Pi^{\mathbf{q}}$ by (3.11). \square

The next theorem is the main result of this section.

Theorem 6.2. *There are structures of Poisson order on the pairs*

$$(U_{\mathbf{q}}, Z_{\mathbf{q}}), \quad (U_{\mathbf{q}}^{\geq}, Z_{\mathbf{q}}^{\geq}), \quad (U_{\mathbf{q}}^{\leq}, Z_{\mathbf{q}}^{\leq}), \quad (U_{\mathbf{q}}^+, Z_{\mathbf{q}}^+), \quad \text{and} \quad (U_{\mathbf{q}}^-, Z_{\mathbf{q}}^-) \quad (6.9)$$

arising by restriction from the Poisson order on the corresponding algebra and its center with Poisson bracket (2.2). The central algebras $Z_{\mathbf{q}}$, $Z_{\mathbf{q}}^{\geq}$ and $Z_{\mathbf{q}}^{\leq}$ are Poisson-Hopf while $Z_{\mathbf{q}}^{\pm}$ are coideal Poisson subalgebras over the former.

In each of the pairs in (6.9) the second algebra is central to the first. Using PBW bases one easily shows that in each case the first algebra is a finitely generated module over the second one in the pair; here the introduction of the generators (4.25) for super type A is essential. Because of Theorem 5.7 and Proposition 2.5 we are reduced to prove:

Proposition 6.3. *The subalgebras Z_q^\pm , $Z_q^>$, $Z_q^<$ and Z_q are Poisson subalgebras of $\mathcal{Z}(U_q^\pm)$, $\mathcal{Z}(U_q^>)$, $\mathcal{Z}(U_q^<)$ and $\mathcal{Z}(U_q)$, respectively, under the Poisson bracket (2.2).*

Observe that Z_q^\pm , $Z_q^>$ and $Z_q^<$ are Poisson subalgebras of Z_q .

Proof. We apply Theorem 2.4 to the algebra $U_{q,A}^+$, the automorphisms ς_i^q and the $(\text{id}, \varsigma_i^q)$ -derivations ∂_i^q , $i \in \mathbb{I}$ to conclude that \mathcal{Z}' defined as in (2.4) is a Poisson subalgebra of $\mathcal{Z}(U_q^+)$. Now we have that

$$\bar{\varsigma}_i^q \stackrel{*}{=} \varsigma_i^q, \quad \bar{\partial}_i^q \stackrel{*}{=} \partial_i^q, \quad Z_q^+ \subset \cap_{i \in \mathbb{I}} \ker(\varsigma_i^q - \text{id}).$$

The equality \star holds since $q = \mathbf{q}(\xi)$, while $*$ holds because both skew-derivations act in the same way on the generators of U_q^+ . The inclusion holds since $Z_q^+ \subset \mathcal{Z}(U_q)$: indeed $\varsigma_i^q(x) = K_i x K_i^{-1} = x$ for all $x \in Z_q^+$. From this inclusion and (4.28), it follows that $\mathcal{Z}' = Z_q^+$. The proof for Z_q^- is analogous. The restriction of the Poisson structure to $Z_q^{0\pm}$ vanishes by the definition (2.2).

Next we prove the statement for $Z_q^>$. Let $\beta, \gamma \in \mathfrak{O}_+^q$. We have

$$\{e_\beta^{N_\beta}, K_\gamma^{N_\gamma}\} = \overline{\frac{[E_\beta^{N_\beta}, K_\gamma^{N_\gamma}]}{\nu - \xi}} = \overline{\frac{1 - \mathbf{q}_{\beta\gamma}^{N_\beta N_\gamma}}{\nu - \xi} E_\beta^{N_\beta} K_\gamma^{N_\gamma}} \stackrel{(6.1)}{=} \wp_{\beta\gamma}^q(\xi) e_\beta^{N_\beta} K_\gamma^{N_\gamma} \in Z_q^>.$$

If q is of type **A** ($k-1|\theta-k$) and η is as in (6.3), then $K_\eta^{N_\eta} \in \mathcal{Z}(U_q)$ and $\{e_\beta^{N_\beta}, K_\eta^{N_\eta}\} \in \mathbb{C} e_\beta^{N_\beta} K_\eta^{N_\eta} \subset Z_q^>$. This proves the claim in light of Proposition 4.8 and Property (I) in §6.1. Similarly, one shows that

$$\{e_\beta^{N_\beta}, L_\mu^{N_\mu}\} \in \mathbb{C} e_\beta^{N_\beta} L_\mu^{N_\mu}, \quad \{f_\beta^{N_\beta}, K_\mu^{N_\mu}\} \in \mathbb{C} f_\beta^{N_\beta} K_\mu^{N_\mu}, \quad \{f_\beta^{N_\beta}, L_\mu^{N_\mu}\} \in \mathbb{C} f_\beta^{N_\beta} L_\mu^{N_\mu},$$

for all $\beta \in \mathfrak{O}_+^q$, $\underline{\mu} \in \tilde{\Pi}^q$. This finishes the proof for $Z_q^<$ and reduces that of Z_q to proving that $\{e_\beta^{N_\beta}, f_\gamma^{N_\gamma}\} \in Z_q$ for all $\beta, \gamma \in \mathfrak{O}_+^q$. For this we use the enumeration of the positive roots using the longest element of the Weyl groupoid. First we assume that $\beta = \beta_j$, $\gamma = \beta_k$ for $1 \leq j < k \leq \ell$. Let $\mathfrak{p} = \rho_{i_j} \dots \rho_{i_1}(q)$, $\gamma' = s_{i_j}^{\mathfrak{p}} \dots s_{i_1}(\gamma)$, so $N_{\gamma'} = N_\gamma$. We have that

$$\begin{aligned} \{e_\beta^{N_\beta}, f_\gamma^{N_\gamma}\} &= \overline{\frac{[E_\beta^{N_\beta}, F_\gamma^{N_\gamma}]}{\nu - \xi}} = \overline{\frac{T_{i_1}^q \dots T_{i_j}([K_{i_j}^{-N_{i_j}} F_{i_j}^{N_{i_j}}, F_{\gamma'}^{N_{\gamma'}}])}{\nu - \xi}} \\ &\stackrel{(5.5)}{=} T_{i_1}^q \dots T_{i_j} \left(\overline{\frac{[K_{i_j}^{-N_{i_j}} F_{i_j}^{N_{i_j}}, F_{\gamma'}^{N_{\gamma'}}]}{\nu - \xi}} \right) = T_{i_1}^q \dots T_{i_j} \left(\{K_{i_j}^{-N_{i_j}} f_{i_j}^{N_{i_j}}, f_{\gamma'}^{N_{\gamma'}}\} \right). \end{aligned}$$

By the statements already proved, $\{K_{i_j}^{-N_{i_j}} f_{i_j}^{N_{i_j}}, f_{\gamma'}^{N_{\gamma'}}\} \in Z_{\mathfrak{p}}$. Hence

$$\{e_\beta^{N_\beta}, f_\gamma^{N_\gamma}\} \in T_{i_1}^{\mathbf{q}} \dots T_{i_j}(Z_{\mathfrak{p}}) \stackrel{\text{Theorem 4.7}}{=} Z_{\mathfrak{q}}.$$

The case $j > k$ is proved analogously. Now assume that $\beta = \gamma$. We start with the case $\beta = \alpha_i$ for some $i \in \mathbb{I}$ (a simple Cartan root). Using (4.6) we prove recursively that

$$[E_i^N, F_i^N] = \sum_{t=1}^N (t)_{\mathbf{q}_{ii}}! \binom{N}{t}_{\mathbf{q}_{ii}}^2 F_i^{N-t} \prod_{s=0}^{t-1} (K_i \mathbf{q}_{ii}^{2t-2N-s} - L_i^{-1}) E_i^{N-t}, \quad N \in \mathbb{N}. \quad (6.10)$$

Let $t \in \mathbb{I}_{N_i-1}$. As q_{ii} is a primitive N_i -th root of unity and $\overline{\mathbf{q}_{ii}} = q_{ii}$,

$$\wp_{\alpha_i \alpha_i}^{\mathbf{q}}(\xi) = \overline{\frac{1 - \mathbf{q}_{ii}^{N_i^2}}{\nu - \xi}} = \overline{\frac{(1 - \mathbf{q}_{ii}^{N_i})(1 + \mathbf{q}_{ii}^{N_i} + \dots + \mathbf{q}_{ii}^{N_i(N_i-1)})}{\nu - \xi}} = N_i \overline{\frac{1 - \mathbf{q}_{ii}^{N_i}}{\nu - \xi}}.$$

Hence,

$$\frac{(N_i)_{\mathbf{q}_{ii}}!}{\nu - \xi} = \overline{\frac{1 - \mathbf{q}_{ii}^{N_i}}{\nu - \xi}} \cdot \frac{(1 - q_{ii}) \dots (1 - q_{ii}^{N_i-1})}{(1 - q_{ii})^{N_i}} = \frac{\wp_{\alpha_i \alpha_i}^{\mathbf{q}}(\xi)}{(1 - q_{ii})^{N_i}}. \quad (6.11)$$

From this we obtain,

$$\{e_i^{N_i}, f_i^{N_i}\} = \overline{\frac{[E_i^{N_i}, F_i^{N_i}]}{\nu - \xi}} = \overline{\frac{(N_i)_{\mathbf{q}_{ii}}!}{\nu - \xi}} \prod_{s=0}^{N_i-1} (K_i q_{ii}^{-s} - L_i) = \frac{-\wp_{\alpha_i \alpha_i}^{\mathbf{q}}(\xi)}{(q_{ii} - 1)^{N_i}} (K_i^{N_i} - L_i^{-N_i}) \in Z_{\mathfrak{q}}.$$

Next, if β is not simple, say $\beta = \beta_j$ for some $j \in \mathbb{I}_\ell$, then using Theorem 4.7 and (5.5) again

$$\{e_\beta^{N_\beta}, f_\beta^{N_\beta}\} = T_{i_1}^{\mathbf{q}} \dots T_{i_{j-1}} \left(\overline{\frac{[E_{i_j}^{N_{i_j}}, F_{i_j}^{N_{i_j}}]}{\nu - \xi}} \right) = \frac{-\wp_{\beta \beta}^{\mathbf{q}}(\xi)}{(q_{\beta \beta} - 1)^{N_\beta}} (K_\beta^{N_\beta} - L_\beta^{N_\beta}) \in Z_{\mathfrak{q}}. \quad \square \quad (6.12)$$

7. The associated Poisson algebraic groups

In this section we describe the Poisson algebraic groups that correspond to the Poisson-Hopf algebras $Z_{\mathfrak{q}}$, $Z_{\mathfrak{q}}^{\geq}$ and $Z_{\mathfrak{q}}^{\leq}$. We prove that, as algebraic groups, they are isomorphic to Borel subgroups of connected semisimple algebraic groups but of adjoint type (and not of simply connected type as in previous works) and direct products of such Borel subgroups. The dual Lie bialgebras of the three tangent Lie algebras are proved to constitute a Manin triple, the ample Lie algebra in which is reductive. It is shown that the resulting Lie bialgebra structures are the ones from the Belavin–Drinfeld classification [11] for the empty BD-triple and arbitrary choice of the continuous parameters. The results completely determine the Poisson structures on the three kinds of algebraic groups in question.

7.1. The positive and negative parts of the dual tangent Lie bialgebra of M_q

Let M_q , M_q^\pm , $M_q^{\pm 0}$, M_q^{\geq} and M_q^{\leq} be the complex algebraic groups which are equal to the maximal spectra of the commutative Hopf algebras Z_q , Z_q^\pm , $Z_q^{\pm 0}$, Z_q^{\geq} and Z_q^{\leq} , respectively. Here the Hopf algebra structures on Z_q^\pm are the restrictions of the braided Hopf algebra structures on U_q^\pm to Z_q^\pm [9].

Since Z_q is a finitely generated Poisson-Hopf algebra which is an integral domain, M_q is a connected Poisson algebraic group (see §B.2 for background). Analogously, M_q^{\geq} , M_q^{\leq} and $M_q^{\pm 0}$ are connected Poisson algebraic groups, and M_q^\pm are connected unipotent algebraic groups. The latter are not Poisson algebraic groups; they are isomorphic to certain Poisson homogeneous spaces for M_q^{\geq} and M_q^{\leq} (see §8.3). The tensor product decompositions $Z_q \simeq Z_q^{\geq} \otimes Z_q^{\leq}$ from §4.5 give rise to the decomposition of algebraic groups

$$M_q \simeq M_q^{\geq} \times M_q^{\leq}. \quad (7.1)$$

This is not a direct product decomposition of Poisson algebraic groups (because $Z_q \simeq Z_q^{\geq} \otimes Z_q^{\leq}$ is a tensor product decomposition of commutative but not Poisson algebras). However, the canonical projections $M_q \twoheadrightarrow M_q^{\geq}$ and $M_q \twoheadrightarrow M_q^{\leq}$ are homomorphisms of Poisson algebraic groups because Z_q^{\geq} and Z_q^{\leq} are Poisson-Hopf subalgebras of Z_q .

Denote by \mathfrak{m}_q , \mathfrak{m}_q^{\geq} and \mathfrak{m}_q^{\leq} the tangent Lie bialgebras of M_q , M_q^{\geq} and M_q^{\leq} (see the Appendix B for background and notations). Eq. (7.1) gives rise to the direct sum decomposition of Lie algebras

$$\mathfrak{m}_q \simeq \mathfrak{m}_q^{\leq} \oplus \mathfrak{m}_q^{\geq}.$$

The Lie coalgebra structure on \mathfrak{m}_q , fully described below, has cross terms. The dual of the tangent Lie bialgebra $\mathfrak{m}_q^* = T_1^* M_q$ is computed as the linearization at the identity element 1 of M_q of its Poisson structure by using (B.1). The maximal ideal \mathfrak{M}_1 of $\mathbb{C}[M_q] \simeq Z_q$ of functions vanishing at 1 coincides with the augmentation ideal of Z_q . In the proofs below we will use the identification $T_1^* M \simeq \mathfrak{M}_1/\mathfrak{M}_1^2$ where the differential $d_1(g)$ of a function $g \in \mathbb{C}[M_q]$ at $1 \in M_q$ is sent to the class of $g - g(1)$ in $\mathfrak{M}_1/\mathfrak{M}_1^2$ for $g \in \mathbb{C}[M_q]$. The Lie algebra \mathfrak{m}_q^* has the \mathbb{C} -basis:

$$\{d_1(e_\beta^{N_\beta}), d_1(f_\beta^{N_\beta}), d_1(K_\mu^{N_\mu}), d_1(L_\mu^{N_\mu}) : \beta \in \mathfrak{O}_+^q, \underline{\mu} \in \widetilde{\Pi}^q\}. \quad (7.2)$$

By Proposition 6.3, the subspaces

$$(\mathfrak{m}_q^+)^* := \bigoplus_{\beta \in \mathfrak{O}_+^q} \mathbb{C} d_1(e_\beta^{N_\beta}) \quad \text{and} \quad (\mathfrak{m}_q^-)^* := \bigoplus_{\beta \in \mathfrak{O}_+^q} \mathbb{C} d_1(f_\beta^{N_\beta})$$

are Lie subalgebras of \mathfrak{m}_q^* . The dual Lie bialgebras $(\mathfrak{m}_q^{\geq})^*$ and $(\mathfrak{m}_q^{\leq})^*$ are canonically identified with the Lie sub-bialgebras of \mathfrak{m}_q^*

$$(\mathfrak{m}_{\mathfrak{q}}^+)^* \oplus \left(\bigoplus_{\underline{\mu} \in \bar{\Pi}^{\mathfrak{q}}} d_1(K_{\mu}^{N_{\mu}}) \right) \quad \text{and} \quad (\mathfrak{m}_{\mathfrak{q}}^-)^* \oplus \left(\bigoplus_{\underline{\mu} \in \bar{\Pi}^{\mathfrak{q}}} d_1(L_{\mu}^{N_{\mu}}) \right). \quad (7.3)$$

Recall the notation from §5.4. It follows from the triangular decomposition (3.15) of the semisimple Lie algebra $\mathfrak{g}_{\mathfrak{q}}$ associated to \mathfrak{q} that the set of simple roots of $\mathfrak{g}_{\mathfrak{q}}$ can be identified with $\bar{\Pi}^{\mathfrak{q}}$. Denote the entries of the Cartan matrix of $\mathfrak{g}_{\mathfrak{q}}$ by

$$c_{\underline{\beta} \underline{\gamma}}, \quad \underline{\beta}, \underline{\gamma} \in \bar{\Pi}^{\mathfrak{q}}.$$

Throughout the section we will assume the identification $\mathfrak{n}_{\mathfrak{q}(-1)}^- \simeq \mathfrak{n}_{\mathfrak{q}}^+$ from (5.7), so $\mathfrak{g}_{\mathfrak{q}} = \mathfrak{n}_{\mathfrak{q}}^+ \oplus \mathfrak{h}_{\mathfrak{q}} \oplus \mathfrak{n}_{\mathfrak{q}}^-$ will be identified with $\mathfrak{n}_{\mathfrak{q}(-1)}^- \oplus \mathfrak{h}_{\mathfrak{q}} \oplus \mathfrak{n}_{\mathfrak{q}}^-$. By the definitions of $\mathfrak{n}_{\mathfrak{q}(-1)}^-$ and $\mathfrak{n}_{\mathfrak{q}}^-$, $\mathfrak{g}_{\mathfrak{q}}$ has a set of Chevalley generators

$$\{x_{\beta}, y_{\beta}, h_{\beta} : \underline{\beta} \in \bar{\Pi}^{\mathfrak{q}}\}$$

such that $x_{\beta} \in \mathbb{C}^{\times} \iota^*(\theta_{\beta})$ and $y_{\beta} \in \mathbb{C}^{\times} \iota^*(\eta_{\beta})$, respectively (here η_{β} and θ_{β} are defined in (5.6) and the subsequent paragraph). In this way the root lattice of $\mathfrak{g}_{\mathfrak{q}}$ is identified with $\mathcal{Q}_{\mathfrak{q}}$ by setting $\deg x_{\beta} = -\deg y_{\beta} = N_{\beta} \beta$, $\deg h_{\beta} = 0$ for $\underline{\beta} \in \bar{\Pi}^{\mathfrak{q}}$.

We will need the following reductive Lie algebra

$$\tilde{\mathfrak{g}}_{\mathfrak{q}} := \begin{cases} \mathfrak{g}_{\mathfrak{q}} \oplus \mathbb{C}, & \text{if } \mathfrak{q} \text{ is of type } \mathbf{A}(k-1|\theta-k) \\ \mathfrak{g}_{\mathfrak{q}}, & \text{otherwise.} \end{cases}$$

See the comments after Theorem 6.2. By (3.15), it has the triangular decomposition

$$\tilde{\mathfrak{g}}_{\mathfrak{q}} = \mathfrak{n}_{\mathfrak{q}}^+ \oplus \tilde{\mathfrak{h}}_{\mathfrak{q}} \oplus \mathfrak{n}_{\mathfrak{q}}^-$$

where the Cartan subalgebra is given by

$$\tilde{\mathfrak{h}}_{\mathfrak{q}} := \begin{cases} \mathfrak{h}_{\mathfrak{q}} \oplus \mathbb{C}, & \text{if } \mathfrak{q} \text{ is of type } \mathbf{A}(k-1|\theta-k) \\ \mathfrak{h}_{\mathfrak{q}}, & \text{otherwise.} \end{cases}$$

In the $\mathbf{A}(k-1|\theta-k)$ case denote by h_{η} a non-zero central element of $\tilde{\mathfrak{g}}_{\mathfrak{q}}$. In that case we have $\tilde{\mathfrak{g}}_{\mathfrak{q}} = \mathfrak{g}_{\mathfrak{q}} \oplus \mathbb{C}h_{\eta}$ and $\tilde{\mathfrak{h}}_{\mathfrak{q}} = \mathfrak{h}_{\mathfrak{q}} \oplus \mathbb{C}h_{\eta}$.

Proposition 7.1. *We have a $\mathcal{Q}_{\mathfrak{q}}$ -graded Lie algebra isomorphism $(\mathfrak{m}_{\mathfrak{q}}^{\pm})^* \simeq \mathfrak{n}_{\mathfrak{q}}^{\pm}$ given by*

$$d_1(e_{\beta}^{N_{\beta}}) \mapsto s_{\beta} \iota^*(\theta_{\beta}^{(N_{\beta})}), \quad \text{respectively} \quad d_1(f_{\beta}^{N_{\beta}}) \mapsto -s_{\beta} \iota^*(\eta_{\beta}^{(N_{\beta})})$$

for all $\beta \in \mathfrak{D}_{+}^{\mathfrak{q}}$, where $s_{\beta} := \frac{\wp_{\beta\beta}^{\mathfrak{q}}(\xi)}{(1 - q_{\beta\beta})^{N_{\beta}}}$. In the plus case we use the identification (5.7).

Proof. First we prove the minus case. Let $\beta, \gamma \in \mathfrak{O}_+^q$. Since $\overline{F_\beta^{N_\beta}} = f_\beta^{N_\beta}$, $\overline{F_\gamma^{N_\gamma}} = f_\gamma^{N_\gamma} \in Z_q$ and the subalgebra Z_q is closed under the Poisson bracket $\{\cdot, \cdot\}$ by Proposition 6.3, using Proposition 5.4 we obtain

$$[F_\beta^{N_\beta}, F_\gamma^{N_\gamma}] \equiv \sum_{\delta \in \mathfrak{O}_+^q} (\nu - \xi) a_{\beta\gamma}^\delta(\nu) F_\delta^{N_\delta} + (\nu - \xi) g_{\beta\gamma} \pmod{(\nu - \xi)^2 U_{q,A}^-}, \quad (7.4)$$

where $a_{\beta\gamma}^\delta(\nu) \in A$ and $g_{\beta\gamma}$ is a non-commutative polynomial in $\{F_\delta^{N_\delta} : \delta \in \mathfrak{O}_+^q\}$ involving monomials of degree ≥ 2 . Since U_q is \mathbb{Z}^I -graded, the sum in the right-hand side has at most one non-zero term, when $N_\beta\beta + N_\gamma\gamma = N_\delta\delta$ for some $\delta \in \mathfrak{O}_+^q$. Therefore

$$\begin{aligned} [d_1(f_\beta^{N_\beta}), d_1(f_\gamma^{N_\gamma})] &= d_1(\{f_\beta^{N_\beta}, f_\gamma^{N_\gamma}\}) = d_1\left(\frac{[F_\beta^{N_\beta}, F_\gamma^{N_\gamma}]}{\nu - \xi}\right) \\ &= \sum_{\delta \in \mathfrak{O}_+^q} a_{\beta\gamma}^\delta(\xi) d_1(f_\delta^{N_\delta}) + d_1(g_{\beta\gamma}) = \sum_{\delta \in \mathfrak{O}_+^q} a_{\beta\gamma}^\delta(\xi) d_1(f_\delta^{N_\delta}), \end{aligned} \quad (7.5)$$

because $g_{\beta\gamma} \in \mathfrak{M}_1^2$. From (7.4) and since $U_{q,A}^-$ is \mathbb{N}_0 -graded connected, we see that

$$[F_\beta^{(N_\beta)}, F_\gamma^{(N_\gamma)}] \equiv \sum_{\delta \in \mathfrak{O}_+^q} a_{\beta\gamma}^\delta(\nu) \frac{(\nu - \xi)(N_\delta)_{q_{\delta\delta}}!}{(N_\beta)_{q_{\beta\beta}}!(N_\gamma)_{q_{\gamma\gamma}}!} F_\delta^{(N_\delta)} \pmod{(\nu - \xi) U_{q,A}^{\text{res} -}}.$$

It follows from (6.11) that

$$\frac{\overline{(N_\beta)_{q_{\beta\beta}}!}}{\nu - \xi} = \frac{\wp_{\beta\beta}^q(\xi)}{(1 - q_{\beta\beta})^{N_\beta}} = s_\beta.$$

Hence in $U_{q,A}^{\text{res} -}/(\nu - \xi)$ we have

$$\begin{aligned} [s_\beta \overline{F_\beta^{(N_\beta)}}, s_\gamma \overline{F_\gamma^{(N_\gamma)}}] &= \sum_{\delta \in \mathfrak{O}_+^q} a_{\beta\gamma}^\delta(\xi) s_\delta \overline{F_\delta^{(N_\delta)}} \\ &= \begin{cases} a_{\beta\gamma}^\delta(\xi) s_\delta \overline{F_\delta^{(N_\delta)}} & \text{if } \exists \delta \in \mathfrak{O}_+^q : \delta = \underline{\beta} + \underline{\gamma}, \\ 0, & \text{otherwise.} \end{cases} \end{aligned} \quad (7.6)$$

The statement of the lemma follows from this identity, (7.5) and Proposition 5.9. The plus case is proved analogously, using Remark 5.8 and that $\mathfrak{q}_{\beta\gamma} = 1$ for all $\beta, \gamma \in \mathfrak{O}_+^q$. \square

The last part of the proof gives the following fact about the structure of Lusztig algebras which is of independent interest. Recall η_β defined in (5.6).

Corollary 7.2. *The braided Hopf algebra projection $\iota^* : \mathcal{L}_q \rightarrow U(\mathfrak{n}_q^-)$ (recall (3.18)) has an algebra section $U(\mathfrak{n}_q^-) \rightarrow \mathcal{L}_q$ given by*

$$\iota^*(\eta_\beta^{(N_\beta)}) \mapsto \eta_\beta^{(N_\beta)}, \quad \beta \in \mathfrak{O}_+^q.$$

Proof. By Proposition 5.9 and (7.6),

$$[\eta_\beta^{(N_\beta)}, \eta_\gamma^{(N_\gamma)}] = \begin{cases} \frac{a_{\beta\gamma}^\delta(\xi)s_\delta}{s_\beta s_\gamma} \eta_\delta^{(N_\delta)}, & \text{if } \exists \delta \in \mathfrak{O}_+^q : \underline{\delta} = \underline{\beta} + \underline{\gamma}, \\ 0, & \text{otherwise.} \end{cases} \quad (7.7)$$

On the other hand, set $\mathbf{x}_{\underline{\beta}} := \iota^*(\eta_\beta^{(N_\beta)})$. As \mathfrak{n}_q^- is the positive part of \mathfrak{g}_q and each $\mathbf{x}_{\underline{\beta}}$ has weight $\underline{\beta}$, there exist $a_{\underline{\beta}\underline{\gamma}} \in \mathbb{k}$, $\underline{\beta}, \underline{\gamma} \in \mathfrak{O}_+^q$, such that

$$[\mathbf{x}_{\underline{\beta}}, \mathbf{x}_{\underline{\gamma}}] = \begin{cases} a_{\underline{\beta}\underline{\gamma}} \mathbf{x}_{\underline{\beta}+\underline{\gamma}}, & \underline{\beta} + \underline{\gamma} \in \mathfrak{O}_+^q, \\ 0, & \underline{\beta} + \underline{\gamma} \notin \mathfrak{O}_+^q. \end{cases} \quad (7.8)$$

Applying ι^* to (7.7) we obtain that $a_{\underline{\beta}\underline{\gamma}} = \frac{a_{\beta\gamma}^\delta(\xi)s_\delta}{s_\beta s_\gamma}$ for each pair $\underline{\beta}, \underline{\gamma} \in \mathfrak{O}_+^q$ such that $\underline{\beta} + \underline{\gamma} \in \mathfrak{O}_+^q$. Therefore the existence of the algebra map $U(\mathfrak{n}_q^-) \rightarrow \mathcal{L}_q$ as above follows since $U(\mathfrak{n}_q^-)$ is presented by generators $\mathbf{x}_{\underline{\beta}}$, $\underline{\beta} \in \mathfrak{O}_+^q$, and relations (7.8), and the corresponding relations for $\eta_\beta^{(N_\beta)}$ hold in \mathcal{L}_q by (7.7). \square

7.2. The dual tangent Lie bialgebra of M_q

Lemma 7.3. *The following equalities hold in the Lie algebra \mathfrak{m}_q^* :*

$$[d_1(e_\beta^{N_\beta}), d_1(f_\gamma^{N_\gamma})] = -\delta_{\beta\gamma} \frac{\wp_{\beta\beta}^q(\xi)}{(q_{\beta\beta} - 1)^{N_\beta}} (d_1(K_\beta^{N_\beta}) + d_1(L_\beta^{N_\beta})), \quad \underline{\beta}, \underline{\gamma} \in \Pi^q,$$

and

$$\begin{aligned} [d_1(K_\mu^{N_\mu}), d_1(e_\beta^{N_\beta})] &= -\wp_{\mu\beta}^q(\xi) d_1(e_\beta^{N_\beta}), & [d_1(K_\mu^{N_\mu}), d_1(f_\beta^{N_\beta})] &= \wp_{\mu\beta}^q(\xi) d_1(f_\beta^{N_\beta}), \\ [d_1(L_\mu^{N_\mu}), d_1(e_\beta^{N_\beta})] &= -\wp_{\beta\mu}^q(\xi) d_1(e_\beta^{N_\beta}), & [d_1(L_\mu^{N_\mu}), d_1(f_\beta^{N_\beta})] &= \wp_{\beta\mu}^q(\xi) d_1(f_\beta^{N_\beta}) \end{aligned}$$

for all $\beta \in \mathfrak{O}_+^q$, $\mu \in \tilde{\Pi}^q$.

Proof. The case of $\underline{\beta} \neq \underline{\gamma} \in \Pi^q$ of the first identity follows from the fact that (7.2) is a basis of the Lie algebra \mathfrak{m}_q^* and that the latter is \mathcal{Q}_q -graded. The case $\underline{\beta} = \underline{\gamma} \in \Pi^q$ is a consequence of (6.12) since $d_1(L_\beta^{N_\beta}) = -d_1(L_\beta^{-N_\beta})$, which in turn follows since the value of $L_\beta^{N_\beta}$ at the identity of M_q equals 1. The other four identities follow from (4.4)–(4.5). \square

Since the polynomials $\nu^n - a$ are separable over \mathbb{C} for $a \neq 0$, we infer from (6.1) that

$$\wp_{\beta\beta}^q(\xi) \neq 0 \quad \text{for all } \beta \in \mathfrak{O}_+^q.$$

Theorem 7.4.

(a) The Cartan matrix of the semisimple Lie algebra \mathfrak{g}_q is given by

$$c_{\underline{\beta}\underline{\gamma}} = \frac{\wp_{\beta\gamma}^{\mathbf{q}}(\xi) + \wp_{\gamma\beta}^{\mathbf{q}}(\xi)}{\wp_{\beta\beta}^{\mathbf{q}}(\xi)}, \quad \underline{\beta}, \underline{\gamma} \in \Pi^{\mathbf{q}}.$$

(b) There is a (\mathcal{Q}_q -graded) Lie algebra isomorphism $\tilde{\mathfrak{g}}_q \oplus \tilde{\mathfrak{h}}_q \simeq \mathfrak{m}_q^*$ such that

$$x_\beta \mapsto d_1(f_\beta^{N_\beta}), \quad y_\beta \mapsto \frac{(q_\beta - 1)^{N_\beta}}{\wp_{\beta\beta}^{\mathbf{q}}(\xi)^2} d_1(e_\beta^{N_\beta}), \quad h_\mu \mapsto \frac{1}{\wp_{\mu\mu}^{\mathbf{q}}(\xi)} (d_1(K_\mu^{N_\mu}) + d_1(L_\mu^{N_\mu}))$$

for $\underline{\beta} \in \Pi^{\mathbf{q}}$, $\underline{\mu} \in \tilde{\Pi}^{\mathbf{q}}$, and $\tilde{\mathfrak{h}}_q$ maps to the subspace

$$\left\{ \sum_{\mu \in \tilde{\Pi}^{\mathbf{q}}} a_\mu d_1(K_\mu^{N_\mu}) + b_\mu d_1(L_\mu^{N_\mu}) : \sum_{\mu \in \tilde{\Pi}^{\mathbf{q}}} \wp_{\mu\gamma}^{\mathbf{q}}(\xi) a_\mu + \wp_{\gamma\mu}^{\mathbf{q}}(\xi) b_\mu = 0, \forall \underline{\gamma} \in \tilde{\Pi}^{\mathbf{q}} \right\}$$

of the abelian Lie algebra $\bigoplus_{\underline{\beta} \in \tilde{\Pi}^{\mathbf{q}}} (\mathbb{C} d_1(K_\beta^{N_\beta}) + \mathbb{C} d_1(L_\beta^{N_\beta}))$.

Proof. (a) For $\underline{\beta} \in \Pi^{\mathbf{q}}$ and $\underline{\mu} \in \tilde{\Pi}^{\mathbf{q}}$, define the following elements of \mathfrak{m}_q^* :

$$\hat{x}_\beta := d_1(f_\beta^{N_\beta}), \quad \hat{y}_\beta := \frac{(q_\beta - 1)^{N_\beta}}{\wp_{\beta\beta}^{\mathbf{q}}(\xi)^2} d_1(e_\beta^{N_\beta}), \quad \hat{h}_\mu := \frac{1}{\wp_{\mu\mu}^{\mathbf{q}}(\xi)} (d_1(K_\mu^{N_\mu}) + d_1(L_\mu^{N_\mu}))$$

and the Lie subalgebra $\mathfrak{g}_q(\beta) := \mathbb{C} \hat{x}_\beta \oplus \mathbb{C} \hat{h}_\beta \oplus \mathbb{C} \hat{y}_\beta$. Lemma 7.3 implies that, for all $\underline{\beta} \in \Pi^{\mathbf{q}}$, $[\hat{h}_\beta, \hat{x}_\beta] = 2\hat{x}_\beta$, $[\hat{h}_\beta, \hat{y}_\beta] = -2\hat{y}_\beta$, $[\hat{x}_\beta, \hat{y}_\beta] = \hat{h}_\beta$, so $\mathfrak{g}_q(\beta) \simeq \mathfrak{sl}_2$.

Now take $\underline{\beta} \neq \underline{\gamma} \in \Pi^{\mathbf{q}}$ and consider \mathfrak{g}_q as a $\mathfrak{g}_q(\beta)$ -module under the adjoint action. It follows from Lemma 7.3 that

$$[\hat{x}_\beta, \hat{y}_\gamma] = 0 \quad \text{and} \quad [\hat{h}_\beta, \hat{y}_\gamma] = -\frac{\wp_{\beta\gamma}^{\mathbf{q}}(\xi) + \wp_{\gamma\beta}^{\mathbf{q}}(\xi)}{\wp_{\beta\beta}^{\mathbf{q}}(\xi)} \hat{x}_\gamma,$$

so \hat{y}_γ is a highest weight vector for $\mathfrak{g}_q(\beta) \simeq \mathfrak{sl}_2$ of weight $-\frac{\wp_{\beta\gamma}^{\mathbf{q}}(\xi) + \wp_{\gamma\beta}^{\mathbf{q}}(\xi)}{\wp_{\beta\beta}^{\mathbf{q}}(\xi)} \omega$ where ω denotes the fundamental weight of \mathfrak{sl}_2 . The isomorphism of Proposition 7.1 and the Serre relations in \mathfrak{n}_q^- imply that

$$\text{ad}_{\hat{y}_\beta}^{-c_{\beta\gamma}+1}(\hat{y}_\gamma) = 0 \quad \text{and} \quad \text{ad}_{\hat{y}_\beta}^j(\hat{y}_\gamma) \neq 0 \quad \text{for } j \leq -c_{\beta\gamma}.$$

Hence, $\text{ad}_{\hat{y}_\beta}^{-c_{\beta\gamma}}(\hat{y}_\gamma)$ is the lowest weight vector of the (irreducible) $\mathfrak{g}_q(\beta)$ -module generated by \hat{y}_γ , which forces

$$c_{\underline{\beta}\underline{\gamma}} = \frac{\wp_{\beta\gamma}^{\mathbf{q}}(\xi) + \wp_{\gamma\beta}^{\mathbf{q}}(\xi)}{\wp_{\beta\beta}^{\mathbf{q}}(\xi)}.$$

This proves part (a). It also proves that the assignment $x_\beta \mapsto \widehat{x}_\beta$, $y_\beta \mapsto \widehat{y}_\beta$, $h_\beta \mapsto \widehat{h}_\beta$ for $\underline{\beta} \in \Pi^q$ defines a \mathcal{Q}_q -graded Lie algebra homomorphism $\varphi : \mathfrak{g}_q \rightarrow \mathfrak{m}_q^*$ which is an embedding by Proposition 7.1 and the linear independence of $\{d_1(K_\beta^{N_\beta}), d_1(L_\beta^{N_\beta}) : \beta \in \mathfrak{O}_+^q\}$. Here we use the canonical isomorphism $\mathfrak{n}_q^\pm \rightarrow \mathfrak{n}_q^\mp$ obtained by restricting the Chevalley involution of \mathfrak{g}_q^\pm .

If \mathfrak{q} is of type $\mathbf{A}(k-1|\theta-k)$, then \widehat{h}_η is in the center of \mathfrak{m}_q^* by (6.5) and Lemma 7.3. Furthermore, $\widehat{h}_\eta \notin \varphi(\mathfrak{g}_q)$ by the definition of $d(K_\mu^{N_\mu})$ and $d(L_\mu^{N_\mu})$ for $\underline{\mu} \in \widetilde{\Pi}^q$. Hence, φ extends to an embedding

$$\varphi : \widetilde{\mathfrak{g}}_q \rightarrow \mathfrak{m}_q^* \quad (7.9)$$

by setting $\varphi(h_\eta) := \widehat{h}_\eta$ if \mathfrak{q} is of type $\mathbf{A}(k-1|\theta-k)$. Denote

$$(\mathfrak{m}_q^0)^* := \bigoplus_{\underline{\mu} \in \widetilde{\Pi}^q} \left(\mathbb{C}d_1(K_\mu^{N_\mu}) \oplus \mathbb{C}d_1(L_\mu^{N_\mu}) \right).$$

Let $(\mathfrak{m}_q^0)'$ be the intersection of the kernels of the functionals $\{l_\gamma : \underline{\gamma} \in \widetilde{\Pi}^q\}$ on $(\mathfrak{m}_q^0)^*$ given by

$$l_\gamma(d_1(K_\mu^{N_\mu})) := \wp_{\mu\gamma}^q(\xi), \quad l_\gamma(d_1(L_\mu^{N_\mu})) := \wp_{\gamma\mu}^q(\xi).$$

Part (a) of the theorem, the constructed embedding (7.9), and eq. (6.6) imply that $(\mathfrak{m}_q^0) \cap \text{Im } \varphi = 0$. Hence, $\dim(\mathfrak{m}_q^0)' \leq \dim(\mathfrak{m}_q^0)^* - \dim \widetilde{\mathfrak{h}}_q = \dim \widetilde{\mathfrak{h}}_q$.

Since the number of the above functionals equals $|\widetilde{\Pi}^q| = \dim \widetilde{\mathfrak{h}}_q$, we have

$$\dim(\mathfrak{m}_q^0)' \geq \dim \mathfrak{h}_q.$$

It follows from part (a) that $\dim(\mathfrak{m}_q^0)' \leq \dim \mathfrak{h}_q$. Hence

$$\dim \mathfrak{h}_q \geq \dim(\mathfrak{m}_q^0)^* - \dim \widetilde{\mathfrak{h}}_q = \dim \widetilde{\mathfrak{h}}_q.$$

Therefore $\dim(\mathfrak{m}_q^0)' = \dim \widetilde{\mathfrak{h}}_q = \dim(\mathfrak{m}_q^0)^*/2$ and $\mathfrak{m}_q^* = \varphi(\widetilde{\mathfrak{g}}_\eta) \oplus (\mathfrak{m}_q^0)'$. Taking a vector space isomorphism $\mathfrak{h}_q \simeq (\mathfrak{m}_q^0)'$ and combining it with the embedding φ , gives the needed Lie algebra isomorphism for part (b). \square

Let (\cdot, \cdot) be the invariant symmetric bilinear form on \mathfrak{g}_q for which the induced form on the dual of the Cartan subalgebra of \mathfrak{g}_q satisfies $(\underline{\beta}, \underline{\beta}) = 2$ for short roots $\underline{\beta} \in \Pi^q$. We extend it to a non-degenerate invariant symmetric bilinear form on $\widetilde{\mathfrak{g}}_q$, where in the case when \mathfrak{q} is of type $\mathbf{A}(k-1|\theta-k)$ we let

$$(h_\eta, \mathfrak{g}_q) = 0, \quad (h_\eta, h_\eta) = 2.$$

In this case we identify

$$\tilde{\mathfrak{h}}_{\mathfrak{q}} \cong \mathfrak{h}_{\mathfrak{q}}^* \oplus \mathbb{C}\underline{\eta},$$

where $\underline{\eta} \in \tilde{\mathfrak{h}}_{\mathfrak{q}}^*$ is such that $\langle \underline{\eta}, h_{\eta} \rangle = 2$ and $\langle \underline{\eta}, h_{\beta} \rangle = 0$ for all $\beta \in \Pi^{\mathfrak{q}}$.

We will identify $\tilde{\mathfrak{h}}_{\mathfrak{q}}$ with $\mathfrak{h}_{\mathfrak{q}}^*$ via the bilinear form $(.,.)$. Define the scalars

$$\kappa_{\mu} := 2\wp_{\mu\mu}^{\mathfrak{q}}(\xi)(\underline{\mu}, \underline{\mu})^{-1} \quad \text{for } \underline{\mu} \in \tilde{\Pi}^{\mathfrak{q}}.$$

For $\beta \in \Pi^{\mathfrak{q}}$, the scalar κ_{β} only depends on the simple factor of $\tilde{\mathfrak{g}}_{\mathfrak{q}}$ of which $\underline{\beta} \in \Pi^{\mathfrak{q}}$ is a root, because by Theorem 7.4(a),

$$c_{\beta\gamma} = \frac{\wp_{\beta\gamma}^{\mathfrak{q}}(\xi) + \wp_{\gamma\beta}^{\mathfrak{q}}(\xi)}{\wp_{\beta\beta}^{\mathfrak{q}}(\xi)} = \frac{2(\underline{\beta}, \underline{\gamma})}{(\underline{\beta}, \underline{\beta})}. \quad (7.10)$$

If \mathfrak{q} is of type $\mathbf{A}(k-1|\theta-k)$, then $(\underline{\eta}, \underline{\eta}) = 2$.

Proposition A.3 (i) tells us that each large quantum group $U_{\mathfrak{q}}$ is realized as a specialization of an integral form of a one-parameter quantum group $U_{\mathfrak{q}}$ in infinitely many different ways parametrized by integers $t_{ij} \in \mathbb{Z}$ for $i < j \in \mathbb{I}$. Furthermore, by part (ii) of that proposition, for a generic choice of the parameters $t_{ij} \in \mathbb{Z}$, $i < j \in \mathbb{I}$, the matrix with entries $\wp_{\beta\gamma}^{\mathfrak{q}}(\xi)$ for $\underline{\beta}, \underline{\gamma} \in \Pi^{\mathfrak{q}}$ is non-degenerate. In the remaining part of the paper we will assume the following:

Non-degeneracy Assumption 7.5. The specialization parameters $t_{ij} \in \mathbb{Z}$, $i < j \in \mathbb{I}$ in Proposition A.3 are chosen in such a way that the matrix $\mathcal{P}^{\mathfrak{q}}$ in (6.2) is non-degenerate.

It follows from (6.5)–(6.6) that the matrix

$$\widetilde{\mathcal{P}}^{\mathfrak{q}} := (\wp_{\mu\gamma}^{\mathfrak{q}}(\xi))_{\underline{\mu}, \underline{\gamma} \in \tilde{\Pi}^{\mathfrak{q}}}$$

is invertible.

Remark 7.6. In what follows we will identify the Lie algebras

$$\mathfrak{m}_{\mathfrak{q}}^* \simeq \tilde{\mathfrak{g}}_{\mathfrak{q}} \oplus \tilde{\mathfrak{h}}_{\mathfrak{q}} \quad (7.11)$$

via the isomorphism from Theorem 7.4. In particular, $x_{\beta}, y_{\beta}, h_{\mu}$ for $\beta \in \Pi^{\mathfrak{q}}, \underline{\mu} \in \tilde{\Pi}^{\mathfrak{q}}$ will be viewed as elements of $\mathfrak{m}_{\mathfrak{q}}^*$. We also fix the identification of abelian Lie algebras

$$\left\{ \sum_{\underline{\mu} \in \tilde{\Pi}^{\mathfrak{q}}} a_{\mu} d_1(K_{\mu}^{N_{\mu}}) + b_{\mu} d_1(L_{\mu}^{N_{\mu}}) : \sum_{\underline{\mu} \in \tilde{\Pi}^{\mathfrak{q}}} \wp_{\mu\gamma}^{\mathfrak{q}}(\xi) a_{\mu} + \wp_{\gamma\mu}^{\mathfrak{q}}(\xi) b_{\mu} = 0, \forall \underline{\gamma} \in \tilde{\Pi}^{\mathfrak{q}} \right\} \simeq \tilde{\mathfrak{h}}_{\mathfrak{q}} \quad (7.12)$$

for Theorem 7.4(b) by sending $\sum_{\underline{\mu} \in \tilde{\Pi}^{\mathfrak{q}}} a_{\mu} d_1(K_{\mu}^{N_{\mu}}) + b_{\mu} d_1(L_{\mu}^{N_{\mu}}) \mapsto \sum_{\underline{\mu} \in \tilde{\Pi}^{\mathfrak{q}}} b_{\mu} \kappa_{\mu} \underline{\mu}$, using the identification of $\tilde{\mathfrak{h}}_{\mathfrak{q}}$ with $\tilde{\mathfrak{h}}_{\mathfrak{q}}^*$ via the form $(.,.)$. Since both Lie algebras in (7.12) have

the same dimensions, we only need to show that this map is injective. An element in its kernel has $b_\mu = 0$ for all $\mu \in \tilde{\Pi}^q$ and thus, $\sum \wp_{\mu\gamma}^q(\xi) a_\mu = 0$ for all $\underline{\gamma} \in \tilde{\Pi}^q$. The Non-degeneracy Assumption 7.5 implies that $a_\mu = 0$ for $\underline{\mu} \in \tilde{\Pi}^q$.

Consider the Borel subalgebras $\tilde{\mathfrak{b}}_q^\pm := \mathfrak{n}_q^\pm \oplus \tilde{\mathfrak{h}}_q$ of $\tilde{\mathfrak{g}}_q$. We have

$$(\mathfrak{m}_q^{\geq})^* \subset \tilde{\mathfrak{b}}_q^- \oplus \tilde{\mathfrak{h}}_q \quad \text{and} \quad (\mathfrak{m}_q^{\leq})^* \subset \tilde{\mathfrak{b}}_q^+ \oplus \tilde{\mathfrak{h}}_q \quad (7.13)$$

in the identification (7.3) of $(\mathfrak{m}_q^{\geq})^*$ and $(\mathfrak{m}_q^{\leq})^*$ with Lie subalgebras of \mathfrak{m}_q^* . Using the Non-degeneracy Assumption 7.5 one more time, we obtain that the projection into the first component $\mathfrak{m}_q^* \simeq \tilde{\mathfrak{g}}_q \oplus \tilde{\mathfrak{h}}_q \rightarrow \tilde{\mathfrak{g}}_q$ restricts to the Lie algebra isomorphisms

$$(\mathfrak{m}_q^{\geq})^* \simeq \tilde{\mathfrak{b}}_q^- \quad \text{and} \quad (\mathfrak{m}_q^{\leq})^* \simeq \tilde{\mathfrak{b}}_q^+. \quad (7.14)$$

We next describe the embeddings (7.13). Denote the linear maps $\tilde{\mathcal{P}}, \tilde{\mathcal{P}}^T \in \text{End}(\tilde{\mathfrak{h}}_q)$:

$$\tilde{\mathcal{P}}(\underline{\mu}) := \sum_{\underline{\gamma} \in \tilde{\Pi}^q} \wp_{\mu\gamma}^q(\xi) \underline{\gamma}, \quad \tilde{\mathcal{P}}^T(\underline{\mu}) := \sum_{\underline{\gamma} \in \tilde{\Pi}^q} \wp_{\gamma\mu}^q(\xi) \underline{\gamma}. \quad (7.15)$$

Because of the Non-degeneracy Assumption 7.5, the matrix $\tilde{\mathcal{P}}^q$ is invertible, and thus both endomorphisms are invertible.

Denote by $((\cdot, \cdot))$ the invariant symmetric bilinear form on $\tilde{\mathfrak{g}}_q$, which is a rescaling of (\cdot, \cdot) by κ_μ^{-1} on each simple factor of $\tilde{\mathfrak{g}}_q$ and on the one-dimensional center of $\tilde{\mathfrak{g}}_q$ if q is of type $\mathbf{A}(k-1|\theta-k)$. It satisfies

$$\begin{aligned} ((d_1(K_\mu^{N_\mu}) + d_1(L_\mu^{N_\mu}), d_1(K_\gamma^{N_\gamma}) + d_1(L_\gamma^{N_\gamma}))) &= \wp_{\mu\mu}^q(\xi) \wp_{\gamma\gamma}^q(\xi) ((h_\mu, h_\gamma)) \\ &= \wp_{\mu\mu}^q(\xi) \wp_{\gamma\gamma}^q(\xi) \kappa_\gamma^{-1} \frac{2c_{\mu\gamma}}{(\underline{\gamma}, \underline{\gamma})} = \wp_{\mu\gamma}^q(\xi) + \wp_{\gamma\mu}^q(\xi), \quad \forall \underline{\mu}, \underline{\gamma} \in \tilde{\Pi}^q. \end{aligned}$$

This implies that the form $((\cdot, \cdot))$ has a unique extension to an invariant symmetric bilinear form on \mathfrak{m}_q^* such that

$$((d_1(K_\mu^{N_\mu}), d_1(L_\gamma^{N_\gamma}))) = \wp_{\mu\gamma}^q(\xi), \quad (7.16)$$

$$((d_1(K_\mu^{N_\mu}), d_1(L_\mu^{N_\mu}))) = ((d_1(K_\gamma^{N_\gamma}), d_1(L_\gamma^{N_\gamma}))) = 0 \quad (7.17)$$

for $\underline{\mu}, \underline{\gamma} \in \tilde{\Pi}^q$. The Non-degeneracy Assumption 7.5 implies that the bilinear form $((\cdot, \cdot))$ on \mathfrak{m}_q^* is non-degenerate.

One easily verifies that the orthogonal complement in \mathfrak{m}_q^* of $\tilde{\mathfrak{g}}_q$ equals $\tilde{\mathfrak{h}}_q$.

Proposition 7.7. *For all large quantum groups U_q satisfying the Non-degeneracy Assumption 7.5, the subalgebras $(\mathfrak{m}_q^{\geq})^* \subset \tilde{\mathfrak{b}}_q^- \oplus \tilde{\mathfrak{h}}_q$ and $(\mathfrak{m}_q^{\leq})^* \subset \tilde{\mathfrak{b}}_q^+ \oplus \tilde{\mathfrak{h}}_q$ are given by*

$$\begin{aligned} (\mathfrak{m}_q^{\geq})^* &= \{(y + h, -h) : y \in \mathfrak{n}_q^-, h \in \tilde{\mathfrak{h}}_q\}, \\ (\mathfrak{m}_q^{\leq})^* &= \{(x + h, \mathcal{P}^{-1}\mathcal{P}^T(h)) : x \in \mathfrak{n}_q^+, h \in \tilde{\mathfrak{h}}_q\}. \end{aligned}$$

Proof. Denote the first (abelian) Lie algebra in (7.12) by $\tilde{\mathfrak{h}}_q^{(2)}$. Fix

$$h := \sum_{\mu \in \tilde{\Pi}^q} c_\mu (d_1(K_\mu^{N_\mu}) + d_1(L_\mu^{N_\mu})), \quad h_1 := \sum_{\underline{\mu} \in \tilde{\Pi}^q} a_\mu d_1(K_\mu^{N_\mu}), \quad h_2 := \sum_{\underline{\mu} \in \tilde{\Pi}^q} b_\mu d_1(L_\mu^{N_\mu}).$$

If $h_1 + h_2 \in \tilde{\mathfrak{h}}_q^{(2)}$, then $l_\gamma(h_1) = -l_\gamma(h_2)$ for all $\underline{\gamma} \in \tilde{\Pi}^q$, which is equivalent to

$$\widetilde{\mathcal{P}}\left(\sum_{\underline{\mu} \in \tilde{\Pi}^q} a_\mu \underline{\mu}\right) = -\widetilde{\mathcal{P}}^T\left(\sum_{\underline{\mu} \in \tilde{\Pi}^q} b_\mu \underline{\mu}\right). \quad (7.18)$$

By Theorem 7.4(b), in the identification (7.11), $d_1(K_\mu^{N_\mu}) + d_1(L_\mu^{N_\mu})$ corresponds to $\kappa_\mu \underline{\mu}$ for all $\underline{\mu} \in \tilde{\Pi}^q$. Hence, the first statement of the proposition is equivalent to proving that for all h, h_1, h_2 as above, if $h_1 + h_2 \in \tilde{\mathfrak{h}}_q^{(2)}$ and $h + h_1 + h_2 \in (\mathfrak{m}_q^{\geq})^*$, then $c_\mu = -b_\mu$ for $\underline{\mu} \in \tilde{\Pi}^q$. From the condition $h_1 + h_2 \in \tilde{\mathfrak{h}}_q^{(2)}$ we obtain $(d_1(L_\gamma^{N_\gamma}), h + h_2) = 0$ for all $\underline{\gamma} \in \tilde{\Pi}^q$. Thus

$$\sum_{\mu \in \tilde{\Pi}^q} \wp_{\mu \gamma}^q(\xi)(c_\mu + b_\mu) = 0, \quad \forall \underline{\gamma} \in \tilde{\Pi}^q.$$

Now the first statement of the proposition follows from the Non-degeneracy Assumption 7.5. The second one follows from the first by interchanging the roles of $(\mathfrak{m}_q^{\geq})^*$ and $(\mathfrak{m}_q^{\leq})^*$ and applying (7.18). \square

We next describe the Lie coalgebra structure on \mathfrak{m}_q^* and the corresponding Manin triple; see §B for background.

Theorem 7.8. *For every choice of the specialization parameters $t_{ij} \in \mathbb{Z}$ satisfying the Non-degeneracy Assumption 7.5 the following hold:*

(a) *The Lie coalgebra structure of the Lie bialgebra \mathfrak{m}_q^* is given by*

$$\delta(x_\beta) = d_1(L_\beta^{N_\beta}) \wedge x_\beta, \quad \delta(y_\beta) = d_1(K_\beta^{N_\beta}) \wedge y_\beta, \quad \delta(d_1(K_\mu^{N_\mu})) = \delta(d_1(L_\mu^{N_\mu})) = 0$$

for all $\underline{\beta} \in \Pi^q, \underline{\mu} \in \tilde{\Pi}^q$.

(b) *With respect to the bilinear form $((\cdot, \cdot))$, $(\mathfrak{m}_q^*, (\mathfrak{m}_q^{\leq})^*, (\mathfrak{m}_q^{\geq})^*)$ is a Manin triple.*
 (c) *The Lie coalgebra structures of $(\mathfrak{m}_q^{\geq})^*$ and $(\mathfrak{m}_q^{\leq})^*$ satisfy*

$$((\delta(y), x_1 \otimes x_2)) = -((y, [x_1, x_2])), \quad ((\delta(x), y_1 \otimes y_2)) = ((x, [y_1, y_2])) \quad (7.19)$$

for all $x, x_1, x_2 \in (\mathfrak{m}_q^{\leq})^$ and $y, y_1, y_2 \in (\mathfrak{m}_q^{\geq})^*$.*

Remark 7.9.

(a) Part (a) of the theorem uniquely determines the Lie coalgebra structures of \mathfrak{m}_q^* , $(\mathfrak{m}_q^{\leq})^*$ and $(\mathfrak{m}_q^{\geq})^*$, since the set

$$\{x_\beta, y_\beta, d_1(L_\mu^{N_\mu}), d_1(L_\mu^{N_\mu}) : \underline{\beta} \in \Pi^q, \underline{\mu} \in \tilde{\Pi}^q\}$$

and its appropriate subsets generate the Lie algebras \mathfrak{m}_q^* , $(\mathfrak{m}_q^{\leq})^*$ and $(\mathfrak{m}_q^{\geq})^*$.

(b) By part (c) of the theorem, the Lie coalgebra structures of \mathfrak{m}_q^* , $(\mathfrak{m}_q^{\leq})^*$ and $(\mathfrak{m}_q^{\geq})^*$, are precisely the ones that are associated to a Manin triple as in Remark B.1(c). In particular, we have the isomorphism of Lie bialgebras

$$\mathfrak{m}_q^* \simeq D((\mathfrak{m}_q^{\leq})^*), \quad (\mathfrak{m}_q^{\geq})^* \simeq (((\mathfrak{m}_q^{\leq})^*)^*)^{\text{op}} \simeq (\mathfrak{m}_q^{\leq})^{\text{op}}. \quad (7.20)$$

(c) The Lie bialgebra structures on the reductive Lie algebras $\mathfrak{m}_q^* \simeq \tilde{\mathfrak{g}}_q \oplus \tilde{\mathfrak{h}}_q$ from part (a) of the theorem correspond to empty Belavin–Drinfeld triples and arbitrary choice of the continuous parameters in their classification [11].

Proof of Theorem 7.8. Part (a) follows from Lemma B.2 and the identities

$$\Delta(e_\beta^{N_\beta}) = K_\beta^{N_\beta} \otimes e_\beta^{N_\beta} + e_\beta^{N_\beta} \otimes 1, \quad \Delta(f_\beta^{N_\beta}) = 1 \otimes f_\beta^{N_\beta} + f_\beta^{N_\beta} \otimes L_\beta^{-N_\beta}. \quad (7.21)$$

for $\underline{\beta} \in \Pi^q$ and the fact that $K_\mu^{N_\mu}$ and $L_\mu^{N_\mu}$ for $\underline{\mu} \in \tilde{\Pi}^q$ are group-like elements.

(b) The subalgebras $(\mathfrak{m}_q^{\geq})^*$ and $(\mathfrak{m}_q^{\leq})^*$ are orthogonal to their nilradicals because of the embeddings (7.13). This, combined with (7.17), implies that they are isotropic subalgebras of \mathfrak{m}_q^* with respect to the form $((\cdot, \cdot))$. The direct sum decomposition $\mathfrak{m}_q \simeq \mathfrak{m}_q^{\leq} \oplus \mathfrak{m}_q^{\geq}$ yields the desired result.

(c) Part (a) of the theorem and the isomorphism in Theorem 7.4(b) imply at once the validity of the identities (7.19) for $y = d_1(e_\beta^{N_\beta})$, $y = d_1(K_\mu^{N_\mu})$, $x = d_1(f_\beta^{N_\beta})$, $x = d_1(L_\mu^{N_\mu})$, where $\underline{\beta} \in \Pi^q$ $\underline{\mu} \in \tilde{\Pi}^q$, and for all possible choices of x_1, x_2, y_1, y_2 . The general case follows by induction on root height when x, y are chosen to be root vectors by using the invariance of the bilinear form $((\cdot, \cdot))$. \square

7.3. The Poisson algebraic groups M_q^{\geq} and M_q^{\leq}

Combining the isomorphisms (7.14) and (7.20), we get the Lie algebra isomorphisms

$$\mathfrak{m}_q^{\geq} \simeq ((\mathfrak{m}_q^{\leq})^*)_{\text{op}} \simeq (\tilde{\mathfrak{b}}_q^+)_\text{op} \simeq \tilde{\mathfrak{b}}_q^+ \quad \text{and} \quad \mathfrak{m}_q^{\leq} \simeq (\mathfrak{m}_q^{\geq})^* \simeq \tilde{\mathfrak{b}}_q^-, \quad (7.22)$$

where $(\cdot)_\text{op}$ stands for the opposite Lie algebra structure and $(\tilde{\mathfrak{b}}_q^+)_\text{op} \simeq \tilde{\mathfrak{b}}_q^+$ is the standard Lie algebra isomorphism $x \mapsto -x$. The proof of Proposition 7.7 shows that the corresponding pull back maps on the level of duals send

$$\underline{\beta} \mapsto -d_1(K_\beta^{N_\beta}), \quad \underline{\beta} \mapsto d_1(L_\beta^{N_\beta}), \quad \forall \underline{\beta} \in \tilde{\Pi}^q. \quad (7.23)$$

The scalars κ_β do not appear here because the form $((\cdot, \cdot))$ is a rescaling of the form (\cdot, \cdot) by κ_μ^{-1} on each simple factor of $\tilde{\mathfrak{g}}_q$ and on the one-dimensional center of $\tilde{\mathfrak{g}}_q$ if q is of type $\mathbf{A}(k-1|\theta-k)$.

Denote by G_q the adjoint semisimple algebraic group with Lie algebra \mathfrak{g}_q . Let

$$\tilde{G}_q = \begin{cases} G_q \times \mathbb{C}^\times, & \text{if } q \text{ is of type } \mathbf{A}(k-1|\theta-k) \\ G_q, & \text{otherwise.} \end{cases}$$

In the former case the exponential map

$$\exp : \tilde{\mathfrak{g}}_q \rightarrow \tilde{G}_q \quad \text{is given by} \quad \exp(x + ch_\eta) = (\exp(x), \exp(c)), \quad (7.24)$$

where in the first component in the right hand side we use the exponential map $\exp : \mathfrak{g}_q \rightarrow G_q$, and $x \in \mathfrak{g}_q$, $c \in \mathbb{C}$. Denote by \tilde{B}_q^\pm the Borel subgroups of \tilde{G}_q corresponding to $\tilde{\mathfrak{b}}_q^\pm$ and by B_q^\pm the Borel subgroups of G_q corresponding to $\tilde{\mathfrak{b}}_q^\pm \cap \mathfrak{g}_q$. We have $\tilde{B}_q^\pm = B_q^\pm \times \mathbb{C}^\times$ if q is of type $\mathbf{A}(k-1|\theta-k)$, and $\tilde{B}_q^\pm = B_q^\pm$ otherwise.

Let $\tilde{T}_q := \tilde{B}_q^+ \cap \tilde{B}_q^-$ be the corresponding maximal torus of \tilde{G}_q . Denote by $N_q^\pm \subset G_q$ the unipotent radicals of \tilde{B}_q^\pm .

The groups of group-like elements of Z_q^{\geqslant} and Z_q^{\leqslant} are the free abelian groups on $K_\mu^{\pm N_\mu}$, $\underline{\beta} \in \tilde{\Pi}^q$ and $L_\mu^{\pm N_\mu}$, $\mu \in \tilde{\Pi}^q$, respectively.

Theorem 7.10. *For every choice of the specialization parameters $t_{ij} \in \mathbb{Z}$ satisfying the Non-degeneracy Assumption 7.5, the Lie algebra isomorphisms (7.22) integrate to isomorphisms of algebraic groups.*

$$\tau_+ : M_q^{\geqslant} \xrightarrow{\sim} \tilde{B}_q^+ \quad \text{and} \quad \tau_- : M_q^{\leqslant} \xrightarrow{\sim} \tilde{B}_q^-.$$

Theorem 7.10 describes explicitly the algebraic groups M_q^{\geqslant} and M_q^{\leqslant} . As an algebraic group, $M_q \simeq \tilde{B}_q^+ \times \tilde{B}_q^-$. The Poisson structures on M_q^{\geqslant} , M_q^{\leqslant} and M_q are the unique Poisson algebraic group structures that integrate the Lie bialgebras $\mathfrak{m}_q^{\geqslant}$, $\mathfrak{m}_q^{\leqslant}$ and \mathfrak{m}_q , whose dual Lie bialgebras are described in Theorem 7.8.

Proof. We prove the first statement, the second being analogous. Since G_q is of adjoint type, the Borel subgroup B_q^+ is canonically identified with the identity component of $\text{Aut}(\mathfrak{b}_q^+)$. The adjoint action of M_q^{\geqslant} on $\mathfrak{m}_q^{\geqslant} \simeq \mathfrak{b}_q^+$ induces a surjective homomorphism $\tau_+^1 : M_q^{\geqslant} \twoheadrightarrow B_q^+$. If q is of type $\mathbf{A}(k-1|\theta-k)$, then we also have a canonical surjective homomorphism $\tau_+^2 : M_q^{\geqslant} \twoheadrightarrow \mathbb{C}^\times$, whose pull back map $\mathbb{C}[\mathbb{C}^\times] \cong \mathbb{C}[\chi^{\pm 1}] \rightarrow \mathbb{C}[M_q^{\geqslant}]$ is given by $\chi \mapsto K_\eta^{N_\eta}$, where χ is the identity character of \mathbb{C}^\times . Define the homomorphism $\tau_+ : M_q^{\geqslant} \twoheadrightarrow \tilde{B}_q^+$ given by

$$\tau_+ := \begin{cases} (\tau_+^1, \tau_+^2), & \text{if } \mathfrak{q} \text{ is of type } \mathbf{A}(k-1|\theta-k) \\ \tau_+^1, & \text{otherwise.} \end{cases}$$

It follows from (6.8) that the homomorphism τ_+ is surjective. It restricts to an isomorphism $\tau_+ : N(M_{\mathfrak{q}}^{\geq}) \xrightarrow{\sim} N_{\mathfrak{q}}^+$, where $N(M_{\mathfrak{q}}^{\geq})$ is the unipotent radical of $M_{\mathfrak{q}}^{\geq}$. The homomorphism τ_+ also restricts to a surjective homomorphism

$$\tau_+ : T(M_{\mathfrak{q}}^{\geq}) \twoheadrightarrow \tilde{T}_{\mathfrak{q}}, \quad (7.25)$$

where $T(M_{\mathfrak{q}}^{\geq})$ is a maximal torus of $M_{\mathfrak{q}}^{\geq}$. The tori $T(M_{\mathfrak{q}}^{\geq})$ and $\tilde{T}_{\mathfrak{q}}$ are connected because $M_{\mathfrak{q}}^{\geq}$ and $\tilde{B}_{\mathfrak{q}}^+$ are connected algebraic groups. In view of the Levi decompositions of $M_{\mathfrak{q}}^{\geq}$ and $\tilde{B}_{\mathfrak{q}}^+$, in order to prove that τ_+ is an isomorphism, it is sufficient to show that the restriction (7.25) is an isomorphism. However,

$$\mathbb{C}[T(M_{\mathfrak{q}}^{\geq})] \simeq \mathbb{C}[M_{\mathfrak{q}}^{\geq}/N(M_{\mathfrak{q}}^{\geq})] \simeq \mathbb{C}[G(\mathbb{C}[M_{\mathfrak{q}}^{\geq}])], \quad \mathbb{C}[\tilde{T}_{\mathfrak{q}}] \simeq \mathbb{C}[\tilde{B}_{\mathfrak{q}}^+/N_{\mathfrak{q}}^+] \simeq \mathbb{C}[G(\mathbb{C}[\tilde{B}_{\mathfrak{q}}^+])],$$

where $G(H)$ denotes the group of group-like elements of a Hopf algebra H .

The group of group-like elements of $\mathbb{C}[M_{\mathfrak{q}}^{\geq}] \simeq Z_{\mathfrak{q}}^{\geq}$ is the free abelian group with generators $K_{\beta}^{N_{\beta}}$, $\underline{\beta} \in \Pi^{\mathfrak{q}}$. The group of group-like elements of $\mathbb{C}[\tilde{B}_{\mathfrak{q}}^+]$ equals the character lattice of $\tilde{B}_{\mathfrak{q}}^+$, which is canonically identified with the lattice $\mathbb{Z}\tilde{H}^{\mathfrak{q}}$. The differentials at the identity element of the two generating sets are respectively $d_1(K_{\mu}^{N_{\mu}})$ and $\underline{\mu}$, where $\underline{\mu} \in \tilde{H}^{\mathfrak{q}}$. Eq. (7.23) implies that $\tau_+^* : G(\mathbb{C}[\tilde{B}_{\mathfrak{q}}^+]) \rightarrow G(\mathbb{C}[M_{\mathfrak{q}}^{\geq}])$ is an isomorphism. Hence, $\tau_+^* : \mathbb{C}[\tilde{T}_{\mathfrak{q}}] \rightarrow \mathbb{C}[T(M_{\mathfrak{q}}^{\geq})]$ is an isomorphism and the same holds for (7.25). This completes the proof of the theorem. \square

Example 7.11. Let \mathfrak{q} be of type $\text{wk}(4)$ and fix $N = \text{ord } q$, $M = \text{ord } (-q)$, see §A.3. Let $\gamma = \alpha_1 + 2\alpha_2 + 3\alpha_3 + \alpha_4$. Then $N_{\alpha_1} = N_{\alpha_2} = N$, $N_{\alpha_4} = N_{\gamma} = M$,

$$\underline{\Omega}_{\mathfrak{q}}^{\mathfrak{q}} = \{\underline{\alpha}_1, \underline{\alpha}_2, \underline{\alpha}_1 + \underline{\alpha}_2, \underline{\alpha}_4, \underline{\gamma}, \underline{\alpha}_4 + \underline{\gamma}\}.$$

As shown previously, $\Delta(e_{\beta}^{N_{\beta}}) = e_{\beta}^{N_{\beta}} \otimes 1 + K_{\beta}^{N_{\beta}} \otimes e_{\beta}^{N_{\beta}}$ for $\underline{\beta} \in \Pi^{\mathfrak{q}} = \{\underline{\alpha}_1, \underline{\alpha}_2, \underline{\alpha}_4, \underline{\gamma}\}$. We can check that $e_{\alpha_1+\alpha_2} = [e_1, e_2]_c$, $e_{\alpha_4+\gamma} = [e_{\gamma}, e_4]_c$ and

$$\begin{aligned} \Delta(e_{\alpha_1+\alpha_2}^N) &= e_{\alpha_1+\alpha_2}^N \otimes 1 + (q-1)^N e_{\alpha_1}^N K_{\alpha_2}^N \otimes e_{\alpha_2}^N + K_{\alpha_1}^N K_{\alpha_2}^N \otimes e_{\alpha_1+\alpha_2}^N, \\ \Delta(e_{\alpha_4+\gamma}^M) &= e_{\alpha_4+\gamma}^M \otimes 1 + (q+1)^M e_{\gamma}^M K_{\alpha_4}^M \otimes e_{\alpha_4}^M + K_{\alpha_4}^M K_{\gamma}^M \otimes e_{\alpha_4+\gamma}^M. \end{aligned}$$

We now construct an explicit isomorphism between $Z_{\mathfrak{q}}^{\geq}$ and the algebra of functions over the Borel subgroup of $\text{PSL}_3(\mathbb{C}) \times \text{PSL}_3(\mathbb{C})$. We consider the Levi decomposition $\tilde{B}_3 \simeq N_3 \rtimes \tilde{T}_3$ of the Borel subgroup of $\text{SL}_3(\mathbb{C})$, where

$$\tilde{T}_3 = \{\mathbf{t} = \text{diag}(t_1, t_2, t_3) : t_i \in \mathbb{C}^{\times}, t_1 t_2 t_3 = 1\}, \quad N_3 = \left\{ \mathbf{n} = \begin{pmatrix} 1 & t_{12} & t_{13} \\ 0 & 1 & t_{12} \\ 0 & 0 & 1 \end{pmatrix} : t_{ij} \in \mathbb{C} \right\}.$$

Let $a_i, x_{ij} : \tilde{B}_3 \rightarrow \mathbb{C}$ be the coordinate functions sending $\mathbf{t} \mapsto t_i$ and $\mathbf{n} \mapsto t_{ij}$ respectively. The coproducts of these coordinate functions are given by $\Delta(a_i) = a_i \otimes a_i$ and

$$\begin{aligned}\Delta(x_{12}) &= x_{12} \otimes 1 + a_1 a_2^{-1} \otimes x_{12}, & \Delta(x_{23}) &= x_{23} \otimes 1 + a_2 a_3^{-1} \otimes x_{23}, \\ \Delta(x_{13}) &= x_{13} \otimes 1 + x_{12} a_2 a_3^{-1} \otimes x_{23} + a_1 a_3^{-1} \otimes x_{13}.\end{aligned}$$

Denote $\mathbb{Z}_3 = \langle (\zeta, \zeta, \zeta) \rangle$, where ζ is a primitive 3rd root of unity. The Borel subgroup B_3 of $\mathrm{PSL}_3(\mathbb{C})$ has Levi decomposition $B_3 \simeq N_3 \rtimes T_3$ where $T_3 = \tilde{T}/\mathbb{Z}_3$, so

$$\mathbb{C}[B_3] = \mathbb{C}[N_3] \otimes \mathbb{C}[\tilde{T}_3]^{\mathbb{Z}_3} = \mathbb{C}[x_{12}, x_{23}, x_{13}, a_{12}^{\pm 1}, a_{23}^{\pm 1}],$$

where $a_{12} := a_1 a_2^{-1}$ and $a_{23} = a_2 a_3^{-1}$. The coproducts of the coordinate functions on B_3 are given by $\Delta(a_{ii+1}) = a_{ii+1} \otimes a_{ii+1}$ and

$$\begin{aligned}\Delta(x_{12}) &= x_{12} \otimes 1 + a_{12} \otimes x_{12}, & \Delta(x_{23}) &= x_{23} \otimes 1 + a_{23} \otimes x_{23}, \\ \Delta(x_{13}) &= x_{13} \otimes 1 + x_{12} a_{23} \otimes x_{23} + a_{12} a_{23} \otimes x_{13}.\end{aligned}$$

The Borel subgroup of $\mathrm{PSL}_3(\mathbb{C}) \times \mathrm{PSL}_3(\mathbb{C})$ is isomorphic to $B_3 \times B_3$. We denote the coordinate functions a_{ii+1} and x_{ij} on the first and second copy of B_3 by superscripts 1 and 2. Now, clearly the map $\tau_+ : Z_{\mathfrak{q}}^{\geqslant} \rightarrow \mathbb{C}[B_3 \times B_3]$ given by

$$K_{\alpha_1}^N \mapsto a_{12}^1, \quad K_{\alpha_2}^N \mapsto a_{23}^1, \quad K_{\alpha_3}^N \mapsto a_{12}^2, \quad K_{\gamma}^M \mapsto a_{23}^2$$

and

$$\begin{aligned}e_{\alpha_1}^N &\mapsto x_{12}^1, & e_{\alpha_2}^N &\mapsto x_{23}^1, & \frac{e_{\alpha_1+\alpha_2}^N}{(q-1)^N} &\mapsto x_{13}^1, \\ e_{\alpha_4}^M &\mapsto x_{12}^2, & e_{\gamma}^M &\mapsto x_{23}^2, & \frac{e_{\alpha_4+\gamma}^M}{(q+1)^M} &\mapsto x_{13}^2\end{aligned}$$

is a Hopf algebra isomorphism.

8. Poisson geometry and representations

In this section we describe the symplectic foliations and the torus orbits of symplectic leaves of the Poisson algebraic groups $M_{\mathfrak{q}}$, $M_{\mathfrak{q}}^{\geqslant}$ and $M_{\mathfrak{q}}^{\leqslant}$, and the Poisson homogeneous spaces $M_{\mathfrak{q}}^+$ and $M_{\mathfrak{q}}^-$. Previous work in this direction dealt with the so called standard Poisson structures on simple algebraic groups (and their Borel subgroups) [33], the dual Poisson algebraic groups [18] and the related flag varieties [27]. See also [15,19,34]. The Poisson structures in Remark 7.9 are not of standard type in general and the results in this section can not be deduced from [33,18,27]. For $z \in M_{\mathfrak{q}}$, respectively $M_{\mathfrak{q}}^{\geqslant}$, $M_{\mathfrak{q}}^{\leqslant}$, $M_{\mathfrak{q}}^+$, $M_{\mathfrak{q}}^-$, let \mathcal{H}_z , respectively $\mathcal{H}_z^{\geqslant}$, $\mathcal{H}_z^{\leqslant}$, \mathcal{H}_z^+ , \mathcal{H}_z^- be the algebra defined in Theorem A (c),

respectively (1.2). The Poisson geometric results described above provide information on the irreducible representations of the large quantum groups $U_{\mathfrak{q}}$ by reduction to the sheaf of algebras \mathcal{H}_z , $z \in M_{\mathfrak{q}}$. Analogous results hold for $U_{\mathfrak{q}}^{\geqslant}$, $U_{\mathfrak{q}}^{\leqslant}$, and $U_{\mathfrak{q}}^{\pm}$.

8.1. Representations of the large quantum groups and symplectic foliations

The Manin triple described in Theorem 7.8 and the identification $\mathfrak{m}_{\mathfrak{q}}^* \simeq \tilde{\mathfrak{g}}_{\mathfrak{q}} \oplus \tilde{\mathfrak{h}}_{\mathfrak{q}}$ equip $\tilde{\mathfrak{g}}_{\mathfrak{q}} \oplus \tilde{\mathfrak{h}}_{\mathfrak{q}}$ with a quasitriangular Lie bialgebra structure, which turns $\tilde{G}_{\mathfrak{q}} \times \tilde{T}_{\mathfrak{q}}$ into a Poisson algebraic group. The Poisson structure on $\tilde{G}_{\mathfrak{q}} \times \tilde{T}_{\mathfrak{q}}$ equals $L_g(r) - R_g(r)$ for $g \in \tilde{G}_{\mathfrak{q}} \times \tilde{T}_{\mathfrak{q}}$, where $r \in \wedge^2(\tilde{\mathfrak{g}}_{\mathfrak{q}} \oplus \tilde{\mathfrak{h}}_{\mathfrak{q}})$ is the r -matrix for the Lie bialgebra structure on $\tilde{\mathfrak{g}}_{\mathfrak{q}} \oplus \tilde{\mathfrak{h}}_{\mathfrak{q}}$, and $L_g(-)$ and $R_g(-)$ refer to the left and right-invariant bivector fields on $\tilde{G}_{\mathfrak{q}} \times \tilde{T}_{\mathfrak{q}}$.

Let $\widetilde{M}_{\mathfrak{q}}^{\geqslant}$ and $\widetilde{M}_{\mathfrak{q}}^{\leqslant}$ be the connected Lie subgroups of $\tilde{G}_{\mathfrak{q}} \times \tilde{T}_{\mathfrak{q}}$ with Lie algebras $(\mathfrak{m}_{\mathfrak{q}}^{\leqslant})^*$ and $(\mathfrak{m}_{\mathfrak{q}}^{\geqslant})^*$. Proposition 7.7 implies that $\widetilde{M}_{\mathfrak{q}}^{\leqslant}$ is an algebraic subgroup, while $\widetilde{M}_{\mathfrak{q}}^{\geqslant}$ is not necessarily a closed Lie subgroup. The projection onto the first component $\pi : \tilde{G}_{\mathfrak{q}} \times \tilde{T}_{\mathfrak{q}} \rightarrow \tilde{G}_{\mathfrak{q}}$ gives the surjective Lie group homomorphisms

$$\pi_+ : \widetilde{M}_{\mathfrak{q}}^{\geqslant} \rightarrow \tilde{B}_{\mathfrak{q}}^+, \quad \pi_- : \widetilde{M}_{\mathfrak{q}}^{\leqslant} \rightarrow \tilde{B}_{\mathfrak{q}}^-.$$

Since $G_{\mathfrak{q}}$ is of adjoint type, the kernel of the exponential map $\exp : \mathfrak{h}_{\mathfrak{q}} \rightarrow T_{\mathfrak{q}}$ equals $2\pi i P_{\mathfrak{q}}^{\vee}$, where $P_{\mathfrak{q}}^{\vee}$ denotes the coweight lattice of $\mathfrak{g}_{\mathfrak{q}}$. It follows from (7.24) that the kernel of the exponential map $\exp : \tilde{\mathfrak{h}}_{\mathfrak{q}} \rightarrow \tilde{T}_{\mathfrak{q}}$ equals $2\pi i \tilde{P}_{\mathfrak{q}}^{\vee}$, where $\tilde{P}_{\mathfrak{q}}^{\vee}$ is the coweight lattice of $\tilde{\mathfrak{g}}_{\mathfrak{q}}$ given by

$$\tilde{P}_{\mathfrak{q}}^{\vee} = \begin{cases} \tilde{P}_{\mathfrak{q}}^{\vee} \oplus \mathbb{Z} h_{\eta}, & \text{if } \mathfrak{q} \text{ is of type } \mathbf{A}(k-1|\theta-k) \\ \tilde{P}_{\mathfrak{q}}^{\vee}, & \text{otherwise.} \end{cases}$$

Denote the subgroup

$$\tilde{C}_{\mathfrak{q}} := \exp(2\pi i \widetilde{\mathcal{P}}^{-1} \widetilde{\mathcal{P}}^T(P_{\mathfrak{q}}^{\vee})) \subset \tilde{T}_{\mathfrak{q}}, \quad (8.1)$$

cf. (7.15). Proposition 7.7 and the solvability of $\widetilde{M}_{\mathfrak{q}}^{\geqslant}$ and $\widetilde{M}_{\mathfrak{q}}^{\leqslant}$ give that

$$\begin{aligned} \widetilde{M}_{\mathfrak{q}}^{\geqslant} &= (N_{\mathfrak{q}}^+ \times \{1\}) \times \{\exp(h, \widetilde{\mathcal{P}}^{-1} \widetilde{\mathcal{P}}^T(h)) : h \in \tilde{\mathfrak{h}}_{\mathfrak{q}}\}, \\ \widetilde{M}_{\mathfrak{q}}^{\leqslant} &= (N_{\mathfrak{q}}^- \times \{1\}) \times \{(t, t^{-1}) : t \in \tilde{T}_{\mathfrak{q}}\}, \end{aligned}$$

from which one obtains that

$$\text{Ker } \pi_+ = \{1\}, \quad \text{Ker } \pi_- = \{1\} \times \tilde{C}_{\mathfrak{q}}.$$

Composing π_{\pm} with the isomorphisms from Theorem 7.10 leads to the isomorphisms

$$\tau_+^{-1} \pi_+ : \widetilde{M}_{\mathfrak{q}}^{\geqslant} \xrightarrow{\cong} M_{\mathfrak{q}}^{\geqslant}, \quad \tau_-^{-1} \pi_- : \widetilde{M}_{\mathfrak{q}}^{\leqslant} / \text{Ker } \pi_- \xrightarrow{\cong} M_{\mathfrak{q}}^{\leqslant}.$$

Their inverses give the canonical embeddings

$$j_+ : M_q^{\geq} \hookrightarrow \tilde{G}_q \times (\tilde{T}_q / \tilde{C}_q), \quad j_- : M_q^{\leq} \hookrightarrow \tilde{G}_q \times (\tilde{T}_q / \tilde{C}_q). \quad (8.2)$$

Here we use that $\tilde{G}_q \times (\tilde{T}_q / \tilde{C}_q) \simeq (\tilde{G}_q \times \tilde{T}_q) / \text{Ker } \pi_-$ and $\tilde{M}_q^{\leq} \cap \text{Ker } \pi_- = \{1\}$.

Remark 8.1. If the matrix \mathbf{q} is symmetric, then so is the matrix \mathcal{P}^q . This implies that $\tilde{\mathcal{P}} = \tilde{\mathcal{P}}^T$ and that the group \tilde{C}_q is trivial. Then the continuous parameter accompanying the BD triple is as in Example B.5 and the Poisson structure is the standard one.

Theorem 8.2. Let U_q be a large quantum group. For every choice of the specialization parameters $t_{ij} \in \mathbb{Z}$ satisfying the Non-degeneracy Assumption 7.5 the following hold:

(a) The symplectic leaves of the Poisson algebraic group $M_q \simeq M_q^{\geq} \times M_q^{\leq}$ are the inverse images $j^{-1}(\mathcal{O} \times t)$ under the map

$$j : M_q \rightarrow \tilde{G}_q \times (\tilde{T}_q / \tilde{C}_q), \quad j(m_+, m_-) := j_+(m_+)^{-1} j_-(m_-), \quad m_+ \in M_q^{\geq}, m_- \in M_q^{\leq},$$

where \mathcal{O} is a conjugacy class of \tilde{G}_q and $t \in \tilde{T}_q / \tilde{C}_q$. The dimension of the symplectic leaf $j^{-1}(\mathcal{O} \times \{t\})$ equals $\dim \mathcal{O}$.

(b) If $j(z)$ and $j(z')$ are in the same conjugacy class of $\tilde{G}_q \times (\tilde{T}_q / \tilde{C}_q)$, then there is an algebra isomorphism

$$\mathcal{H}_z \simeq \mathcal{H}_{z'}.$$

Note that, since $\tilde{T}_q / \tilde{C}_q$ is abelian, each conjugacy class of $\tilde{G}_q \times (\tilde{T}_q / \tilde{C}_q)$ has the form $\mathcal{O} \times \{t\}$, where \mathcal{O} is a conjugacy class of \tilde{G}_q and $t \in (\tilde{T}_q / \tilde{C}_q)$.

Proof. (a) By [41], since the Poisson algebraic group $\tilde{G}_q \times \tilde{T}_q$ is quasitriangular, its double Poisson algebraic group is canonically isomorphic to

$$D(\tilde{G}_q \times \tilde{T}_q) \simeq (\tilde{G}_q \times \tilde{T}_q) \times (\tilde{G}_q \times \tilde{T}_q).$$

Theorem 7.8(b) implies that the dual Poisson Lie group of $\tilde{G}_q \times \tilde{T}_q$ is

$$\tilde{M}_q^{\geq} \times \tilde{M}_q^{\leq} \hookrightarrow (\tilde{G}_q \times \tilde{T}_q) \times (\tilde{G}_q \times \tilde{T}_q)$$

with the opposite Poisson structure to the restriction of the one of the double. Both $\tilde{M}_q^{\geq} \times \tilde{M}_q^{\leq}$ and $M_q \simeq M_q^{\geq} \times M_q^{\leq}$ have the same tangent Lie bialgebra, hence the map

$$\tau := (\tau_+^{-1} \pi_+, \tau_-^{-1} \pi_-) : \tilde{M}_q^{\geq} \times \tilde{M}_q^{\leq} \rightarrow M_q^{\geq} \times M_q^{\leq} \simeq M_q$$

is a Poisson covering map. By the Semenov-Tian-Shansky dressing method [45], we get that the symplectic leaves of $\tilde{M}_q^{\geq} \times \tilde{M}_q^{\leq}$ are the connected components of the intersections

$$\widetilde{M}_{\mathfrak{q}}^{\leqslant} \cap (\text{diag}(\widetilde{G}_{\mathfrak{q}} \times \widetilde{T}_{\mathfrak{q}}) \cdot g \cdot \text{diag}(\widetilde{G}_{\mathfrak{q}} \times \widetilde{T}_{\mathfrak{q}})),$$

where $\text{diag}(\widetilde{G}_{\mathfrak{q}} \times \widetilde{T}_{\mathfrak{q}})$ denotes the diagonal of $(\widetilde{G}_{\mathfrak{q}} \times \widetilde{T}_{\mathfrak{q}})^{\times 2}$ and $g \in (\widetilde{G}_{\mathfrak{q}} \times \widetilde{T}_{\mathfrak{q}})^{\times 2}$. Now we apply [50, Theorem 1.10] to obtain that each such intersection is a dense, open and connected subset of $\text{diag}(\widetilde{G}_{\mathfrak{q}} \times \widetilde{T}_{\mathfrak{q}}) \cdot g \cdot \text{diag}(\widetilde{G}_{\mathfrak{q}} \times \widetilde{T}_{\mathfrak{q}})$. Consider the map

$$\tilde{j} : \widetilde{M}_{\mathfrak{q}}^{\geqslant} \times \widetilde{M}_{\mathfrak{q}}^{\leqslant} \rightarrow \widetilde{G}_{\mathfrak{q}} \times \widetilde{T}_{\mathfrak{q}}, \quad \tilde{j}(m_+, m_-) := m_+^{-1} m_-, \quad m_+ \in \widetilde{M}_{\mathfrak{q}}^{\geqslant}, m_- \in \widetilde{M}_{\mathfrak{q}}^{\leqslant}.$$

By a direct argument we conclude that each symplectic leaf of $\widetilde{M}_{\mathfrak{q}}^{\geqslant} \times \widetilde{M}_{\mathfrak{q}}^{\leqslant}$ is of the form

$$\mathcal{S}_{\mathcal{O}'} := (\widetilde{M}_{\mathfrak{q}}^{\geqslant} \times \widetilde{M}_{\mathfrak{q}}^{\leqslant}) \cap \mathcal{O}',$$

where \mathcal{O}' is a conjugacy class of $G_{\mathfrak{q}} \times T_{\mathfrak{q}}$, and that

$$\dim \mathcal{S}_{\mathcal{O}'} = \dim \mathcal{O}'.$$

Since $\tau : \widetilde{M}_{\mathfrak{q}}^{\geqslant} \times \widetilde{M}_{\mathfrak{q}}^{\leqslant} \rightarrow M_{\mathfrak{q}}$ is a covering of Poisson Lie groups, each symplectic leaf of $M_{\mathfrak{q}}$ is of the form $\tau(\mathcal{S}_{\mathcal{O}'})$. One easily verifies that the diagram

$$\begin{array}{ccc} \widetilde{M}_{\mathfrak{q}}^{\geqslant} \times \widetilde{M}_{\mathfrak{q}}^{\leqslant} & \xrightarrow{\tilde{j}} & \widetilde{G}_{\mathfrak{q}} \times \widetilde{T}_{\mathfrak{q}} \\ \tau \downarrow & & \downarrow \psi \\ M_{\mathfrak{q}} & \xrightarrow{j} & \widetilde{G}_{\mathfrak{q}} \times (\widetilde{T}_{\mathfrak{q}}/\widetilde{C}_{\mathfrak{q}}) \end{array}$$

commutes, where $\psi : \widetilde{G}_{\mathfrak{q}} \times \widetilde{T}_{\mathfrak{q}} \rightarrow \widetilde{G}_{\mathfrak{q}} \times (\widetilde{T}_{\mathfrak{q}}/\widetilde{C}_{\mathfrak{q}})$ is the canonical projection. Clearly, $\psi(\mathcal{O}') = \mathcal{O} \times \{t\}$, where \mathcal{O} is a conjugacy class of $\widetilde{G}_{\mathfrak{q}}$ and $t \in \widetilde{T}_{\mathfrak{q}}/\widetilde{C}_{\mathfrak{q}}$. Therefore all symplectic leaves of $M_{\mathfrak{q}}$ are of the form $\tau(\mathcal{S}_{\mathcal{O}'}) = j^{-1}\psi(\mathcal{O}') = j^{-1}(\mathcal{O} \times \{t\})$ and $\dim j^{-1}(\mathcal{O} \times \{t\}) = \dim \mathcal{O}' = \dim \mathcal{O}$.

Part (b) follows from part (a), and Theorems 2.3 and 6.2. \square

In regard to the irreducible representations of $U_{\mathfrak{q}}$ we wonder whether the De Concini–Kac–Procesi conjecture could be extended to the setting of Theorem 8.2, see [18].

Question 8.3. *Let \mathcal{O} be a conjugacy class of $\widetilde{G}_{\mathfrak{q}}$, $t \in \widetilde{T}_{\mathfrak{q}}/\widetilde{C}_{\mathfrak{q}}$ and $z \in j^{-1}(\mathcal{O} \times \{t\})$. Does $\ell^{\dim \mathcal{O}'/2}$ divide the dimension of any irreducible representation of \mathcal{H}_z ?*

8.2. The torus orbits of symplectic leaves and the representations of the large quantum Borel algebras

The algebras $U_{\mathfrak{q}}$, $U_{\mathfrak{q}}^{\geqslant}$, $U_{\mathfrak{q}}^{\leqslant}$ and $U_{\mathfrak{q}}^{\pm}$ are $\mathbb{Z}^{\mathbb{I}}$ -graded with grading $\deg e_i = -\deg f_i = \alpha_i$, $\deg K_i = \deg L_i = 0$ for $i \in \mathbb{I}$. This leads to a canonical action of the torus $(\mathbb{C}^{\times})^{\mathbb{I}}$ on

these algebras by algebra automorphisms, which preserves the central subalgebras Z_q , Z_q^{\geqslant} , Z_q^{\leqslant} and Z_q^{\pm} .

By a direct comparison, one obtains that the $(\mathbb{C}^\times)^\mathbb{I}$ -action on Z_q^{\geqslant} corresponds to the left action of $\tau_+^{-1}(T_q)$ on M_q^{\geqslant} in the sense that every automorphism from the first one corresponds to an automorphism from the second and vice versa. Similarly, the $(\mathbb{C}^\times)^\mathbb{I}$ -action on Z_q^{\leqslant} corresponds to the left action of $\tau_-^{-1}(T_q)$ on M_q^{\leqslant} . Theorem 8.2(a) implies that the induced action of $(\mathbb{C}^\times)^\mathbb{I}$ on M_q preserves the symplectic leaves of M_q . So, in regard to irreps of U_q , the $(\mathbb{C}^\times)^\mathbb{I}$ -automorphisms of U_q do not provide any additional information to that in Theorem 8.2(a).

However, for U_q^{\geqslant} and U_q^{\leqslant} , we do obtain additional representation theoretic information from the $(\mathbb{C}^\times)^\mathbb{I}$ -action, as stated in next theorem. Let W_q be the Weyl group of G_q , i.e., that of \tilde{G}_q .

Theorem 8.4. *For every choice of the specialization parameters $t_{ij} \in \mathbb{Z}$ satisfying the Non-degeneracy Assumption 7.5 the following hold:*

(a) *The Poisson structure on M_q^{\geqslant} is invariant under the left and right actions of $\tau_+^{-1}(\tilde{T}_q)$. The $\tau_+^{-1}(\tilde{T}_q)$ -orbits of symplectic leaves of M_q^{\geqslant} are the double Bruhat cells*

$$\tau_+^{-1}(\tilde{B}_q^+ \cap \tilde{B}_q^- w \tilde{B}_q^-), \quad w \in W_q.$$

(b) *If $\tau_+(z)$ and $\tau_+(z')$ are in the same double Bruhat cell, then there is an algebra isomorphism*

$$\mathcal{H}_z^{\geqslant} \simeq \mathcal{H}_{z'}^{\geqslant}.$$

Proof. (a) For a Lie subalgebra of $\tilde{\mathfrak{g}}_q \oplus \tilde{\mathfrak{h}}_q$, denote by $N(-)$ its normalizer in $\tilde{G}_q \times \tilde{T}_q$. By [37, Lemma 2.12], the left and right actions of $\tilde{M}_{\geqslant} \cap N((\mathfrak{m}_q^{\geqslant})^*)$ on the Lie group \tilde{M}_{\geqslant} preserve its Poisson structure. By the definition of τ_+ , these actions correspond to the left and right actions of $\tau_+^{-1}(T_q)$ on M_q^{\geqslant} , so the latter preserve the Poisson structure on M_q^{\geqslant} , because $\tilde{M}_q^{\geqslant} \twoheadrightarrow M_q^{\geqslant}$ is a Poisson map.

Applying [37, Theorem 2.7 and Proposition 2.15] and the Bruhat decomposition of \tilde{G}_q , we obtain that the $\tilde{M}_{\geqslant} \cap N((\mathfrak{m}_q^{\geqslant})^*)$ -orbits of symplectic leaves of \tilde{M}_{\geqslant} (with respect to either action) are the intersections

$$\tilde{M}_{\geqslant} \cap ((\tilde{G}_q \times \tilde{T}_q) w (\tilde{G}_q \times \tilde{T}_q))$$

for $w \in W_q$. Since $\tilde{M}_q^{\geqslant} \twoheadrightarrow M_q^{\geqslant}$ is a Poisson covering map and $\tau_+ : M_q^{\geqslant} \xrightarrow{\sim} \tilde{B}_q^+$ is an isomorphism (Theorem 7.10), the $\tau_+^{-1}(\tilde{T}_q)$ -orbits of symplectic leaves of M_q^{\geqslant} (with respect to either action) are the double Bruhat cells $\tau_+^{-1}(\tilde{B}_q^+ \cap \tilde{B}_q^- w \tilde{B}_q^-)$ for $w \in W_q$.

Part (b) follows from part (a), Theorems 2.3 and 6.2, and the fact that the left action of $\tau_+^{-1}(\tilde{T}_q)$ on M_q^{\geqslant} comes from the $(\mathbb{C}^\times)^\mathbb{I}$ -action on U_q^{\geqslant} by algebra automorphisms. \square

Example 8.5. Let \mathfrak{q} be of type $\text{wk}(4)$. By Example 7.11, the corresponding algebraic group $\tilde{G}_{\mathfrak{q}}$ is isomorphic to $\text{PSL}_3(\mathbb{C}) \times \text{PSL}_3(\mathbb{C})$ whose Weyl group is $S_3 \times S_3$. Theorem 8.4 implies that among the quotients $U_{\mathfrak{q}}^{\geq} / \mathfrak{M}_z^{\geq} U_{\mathfrak{q}}^{\geq}$ for z in the maximal spectrum of $Z_{\mathfrak{q}}^{\geq}$, there are at most $|S_3 \times S_3| = (3!)^2 = 36$ isomorphism classes of finite dimensional algebras.

Analogously to Theorem 8.4 one proves the following:

Proposition 8.6. *For every choice of the specialization parameters $t_{ij} \in \mathbb{Z}$ satisfying the Non-degeneracy Assumption 7.5 the following hold:*

(a) *The Poisson structure on $M_{\mathfrak{q}}^{\leq}$ is invariant under the left and right actions of $\tau_{-1}(\tilde{T}_{\mathfrak{q}})$. The $\tau_{-1}(\tilde{T}_{\mathfrak{q}})$ -orbits of symplectic leaves of $M_{\mathfrak{q}}^{\leq}$ are the double Bruhat cells*

$$\tau_{-1}(\tilde{B}_{\mathfrak{q}}^- \cap \tilde{B}_{\mathfrak{q}}^+ w \tilde{B}_{\mathfrak{q}}^+), \quad w \in W_{\mathfrak{q}}.$$

(b) *If $\tau_{-}(z)$ and $\tau_{-}(z')$ are in the same double Bruhat cell, then $\mathcal{H}_z^{\leq} \simeq \mathcal{H}_{z'}^{\leq}$ as algebras.*

8.3. Poisson homogeneous spaces and irreps of large quantum unipotent algebras

Since $Z_{\mathfrak{q}}^+$ is the algebra of coinvariants for the coaction of $Z_{\mathfrak{q}}^{0+}$ on $Z_{\mathfrak{q}}^{\geq}$ obtained by restricting the coaction of $U_{\mathfrak{q}}^{0+}$ on $Z_{\mathfrak{q}}^{\geq}$, and analogously for the negative part, we have isomorphisms of Poisson algebras

$$Z_{\mathfrak{q}}^+ \simeq \mathbb{C}[M_{\mathfrak{q}}^{\geq} / \tau_{+1}(\tilde{T}_{\mathfrak{q}})], \quad Z_{\mathfrak{q}}^- \simeq \mathbb{C}[M_{\mathfrak{q}}^{\leq} / \tau_{-1}(\tilde{T}_{\mathfrak{q}})]. \quad (8.3)$$

As shown in the previous subsection, the left and right actions of $\tau_{+1}(\tilde{T}_{\mathfrak{q}})$ and $\tau_{-1}(\tilde{T}_{\mathfrak{q}})$ on the Poisson algebraic groups $M_{\mathfrak{q}}^{\geq}$ and $M_{\mathfrak{q}}^{\leq}$ preserve their Poisson structures. The right hand sides of the isomorphisms (8.3) involve the coordinate rings of the resulting Poisson homogeneous spaces $M_{\mathfrak{q}}^{\geq} / \tau_{+1}(\tilde{T}_{\mathfrak{q}})$ and $M_{\mathfrak{q}}^{\leq} / \tau_{-1}(\tilde{T}_{\mathfrak{q}})$ obtained by taking quotients with respect to the right actions. The Poisson structures on $M_{\mathfrak{q}}^{\geq} / \tau_{+1}(\tilde{T}_{\mathfrak{q}})$ and $M_{\mathfrak{q}}^{\leq} / \tau_{-1}(\tilde{T}_{\mathfrak{q}})$ are invariant under the induced left actions of $\tau_{+1}(\tilde{T}_{\mathfrak{q}})$ and $\tau_{-1}(\tilde{T}_{\mathfrak{q}})$. By Theorem 7.10, τ_{+1} restricts to the isomorphism of homogeneous spaces $\tau_{+1} : M_{\mathfrak{q}}^{\geq} / j_{+1}^{-1}(\tilde{T}_{\mathfrak{q}}) \xrightarrow{\sim} \tilde{B}_{\mathfrak{q}}^+ / \tilde{T}_{\mathfrak{q}}$. Denote the canonical isomorphism

$$v : \tilde{B}_{\mathfrak{q}}^+ / \tilde{T}_{\mathfrak{q}} \xrightarrow{\sim} \tilde{B}_{\mathfrak{q}}^+ \tilde{B}_{\mathfrak{q}}^- / \tilde{B}_{\mathfrak{q}}^- \subset \tilde{G}_{\mathfrak{q}} / \tilde{B}_{\mathfrak{q}}^-.$$

Theorem 8.7. *For every choice of the specialization parameters $t_{ij} \in \mathbb{Z}$ satisfying the Non-degeneracy Assumption 7.5 the following hold:*

(a) *The $\tau_{+1}(\tilde{T}_{\mathfrak{q}})$ -orbits of symplectic leaves of $M_{\mathfrak{q}}^{\geq} / \tau_{+1}(\tilde{T}_{\mathfrak{q}})$ are the open Richardson varieties*

$$\tau_{+1}^{-1} v^{-1} ((\tilde{B}_{\mathfrak{q}}^+ \tilde{B}_{\mathfrak{q}}^- \cap \tilde{B}_{\mathfrak{q}}^- w \tilde{B}_{\mathfrak{q}}^+) / \tilde{B}_{\mathfrak{q}}^-), \quad w \in W_{\mathfrak{q}}.$$

(b) If $v\tau_+(z)$ and $v\tau_+(z')$ are in the same open Richardson variety, then there is an isomorphism of algebras

$$\mathcal{H}_z^+ \simeq \mathcal{H}_{z'}^+.$$

Proof. Part (a) is proved arguing as in the proof of Theorem 8.4(a). Then (b) is a consequence of (a), and Theorems 2.3 and 6.2. \square

An analogous result holds for the large quantum unipotent algebra U_q^- and the torus orbits of symplectic leaves of the Poisson homogeneous space $M_q^{\leqslant}/\tau_-^{-1}(\tilde{T}_q)$.

Declaration of competing interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Appendix A. Families of finite-dimensional Nichols algebras

Let $\theta \in \mathbb{N}$, $\mathbb{I} = \mathbb{I}_\theta$. We fix a matrix $\mathbf{q} = (q_{ij}) \in \mathbb{C}^{\mathbb{I} \times \mathbb{I}}$ such that $\dim \mathcal{B}_{\mathbf{q}} < \infty$. To insure centrality of $Z_{\mathbf{q}}$ we require

(a). The matrix \mathbf{q} satisfies (4.27), i.e., $q_{\alpha_i \beta}^{N_\beta} = 1$, for all $i \in \mathbb{I}$, $\beta \in \Pi^{\mathbf{q}}$.

Remark A.1. If the Dynkin diagram of \mathbf{q}' is as in Tables 1, 2 and 3, then there is \mathbf{q} with the same Dynkin diagram that satisfies (4.27); the proof is straightforward.

If \mathbf{q} satisfies (4.27), then any matrix in its Weyl-equivalence class also does. Let $\mathbb{C}[\nu^{\pm 1}]$ be the algebra of Laurent polynomials; its group of units is $\mathbb{C}[\nu^{\pm 1}]^\times = \mathbb{C}^\times \nu^\mathbb{Z}$. Let

$$\mathbf{q} = (\mathbf{q}_{ij}) \in (\mathbb{C}[\nu^{\pm 1}]^\times)^{\mathbb{I} \times \mathbb{I}} \tag{A.1}$$

For $x \in \mathbb{C}^\times$, we denote by $\mathbf{q}(x)$ the matrix obtained by the evaluation $\text{ev} : \mathbb{C}[\nu^{\pm 1}] \rightarrow \mathbb{C}$, $\text{ev}(\nu) = x$. We seek for matrices (A.1) with the following Properties (b) and (d).

(b). The Nichols algebra of the $\mathbb{C}(\nu)$ -braided vector space of diagonal type with braiding matrix (A.1) has the same arithmetic root system as \mathbf{q} .

By inspection of the list in [29]—see also the exposition in [2]—we conclude that the only possible matrices (A.1) are those Weyl-equivalent to the ones with Dynkin diagrams as in Tables 1, 2 and 3 and that the following property holds.

(c). *There exists an open subset $\emptyset \neq O \subseteq \mathbb{C}^\times$ such that for any $x \in O$, the root systems and Weyl groupoids associated to \mathbf{q} and $\mathbf{q}(x)$ are isomorphic. Also there exists $\xi \in \mathbb{G}'_\infty \cap O$ with $N := \text{ord } \xi \in [2, \infty)$ such that $\mathbf{q} = \mathbf{q}(\xi)$.*

Remark A.2. (i). The Dynkin diagrams of the matrices \mathbf{q} and \mathbf{q} locally have the form $\overset{\mathbf{q}_{ii}}{\circ} \xrightarrow{\tilde{\mathbf{q}}_{ij}} \overset{\mathbf{q}_{jj}}{\circ}$, respectively $\overset{q_{ii}}{\circ} \xrightarrow{\tilde{q}_{ij}} \overset{q_{jj}}{\circ}$, where $\tilde{\mathbf{q}}_{ij} = \mathbf{q}_{ij}\mathbf{q}_{ji}$, $\tilde{q}_{ij} = q_{ij}q_{ji}$, i.e., the Dynkin diagram does not determine completely the braiding matrix. We deal with this as follows. Let $\mathbf{p} = (p_{ij}) \in \mathbb{C}^{\mathbb{I} \times \mathbb{I}}$ with the same Dynkin diagram as \mathbf{q} . Then there exists $\mathbf{p} \in (\mathbb{C}[\nu^{\pm 1}]^\times)^{\mathbb{I} \times \mathbb{I}}$ with the same Dynkin diagram as \mathbf{q} such that $\mathbf{p} = \mathbf{p}(\xi)$. For, take $\mathbf{p}_{ii} = \mathbf{q}_{ii}$ and $\mathbf{p}_{ij} \in \mathbb{C}[\nu^{\pm 1}]^\times$ such that $p_{ij} = \mathbf{p}_{ij}(\xi)$ for $i < j$; then $\mathbf{p}_{ji} = \tilde{\mathbf{q}}_{ij}\mathbf{p}_{ij}^{-1}$.

(ii). Assume that \mathbf{q} satisfies (b). Let \mathbf{p} be another matrix with the same diagram as (A.1). Then $\mathbf{q}_{ij} = \mathbf{p}_{ij}\nu^{h_{ij}N}$, $i < j$ for a unique family $(h_{ij})_{i < j \in \mathbb{I}}$ with $h_{ij} \in \mathbb{Z}$.

(d). $\mathcal{P}^\mathbf{q}$ defined in (6.2) is invertible.

Let \mathcal{N} be the diagonal matrix with entries N_β , $\beta \in \Pi^\mathbf{q}$. The matrix $\mathcal{P}^\mathbf{q}$ is invertible if and only if the auxiliary matrix $\mathcal{T}^\mathbf{q}$ is so, where

$$\mathcal{P}^\mathbf{q} = -\xi^{-1} \mathcal{N} \mathcal{T}^\mathbf{q} \mathcal{N}.$$

Proposition A.3. *There exist matrices $C = (c_{ij}) \in \mathbb{Z}^{\mathbb{I} \times \mathbb{I}}$ and $(\mathbf{p}_{ij}) \in (\mathbb{C}^\times)^{\mathbb{I} \times \mathbb{I}}$ such that C is symmetric and:*

(i) *There are infinitely many matrices $T = (t_{ij}) \in \mathbb{Z}^{\mathbb{I} \times \mathbb{I}}$ fulfilling*

$$t_{ii} = c_{ii}, \quad t_{ij} + t_{ji} = c_{ij} \quad \text{for all } i \neq j \in \mathbb{I} \quad (\text{A.2})$$

such that the matrix $\mathbf{q} = (\mathbf{q}_{ij})$ defined by

$$\mathbf{q}_{ij} = \mathbf{p}_{ij}\nu^{t_{ij}}, \quad \text{for all } i, j \in \mathbb{I} \quad (\text{A.3})$$

satisfies (b).

(ii) *Among those T in (i), there infinitely many such that \mathbf{q} satisfies (d).*

Proof. It suffices to fix one matrix for each Weyl-equivalence class, see Lemma 6.1. We check below (i) by case-by-case considerations computing also $\mathcal{T}^\mathbf{q}$ and proving that it is invertible for infinitely many T .

A.1. Cartan type

Let \mathbf{q} be in this class; then there is a Cartan matrix $A = (a_{ij})_{i,j \in \mathbb{I}}$ such that $q_{ij}q_{ji} = q_{ii}^{a_{ij}}$. We fix $d_i \in \mathbb{I}_3$ such that $d_i a_{ij} = d_j a_{ji}$ for all $i, j \in \mathbb{I}$. The Lie algebra $\mathfrak{g}_{\mathbf{q}}$ has the same type except when N is even and A is of type B_θ or C_θ , when they are interchanged. In this case $\Pi^{\mathbf{q}} = \{N_i \alpha_i : i \in \mathbb{I}\}$, so (4.27) becomes:

$$q_{ij}^{N_j} = 1, \quad \text{for all } i, j \in \mathbb{I}. \quad (\text{A.4})$$

The matrix \mathbf{q} we are looking for should also satisfy $\mathbf{q}_{ij}\mathbf{q}_{ji} = \mathbf{q}_{ii}^{a_{ij}}$ for all $i \neq j$. In all cases we take $\xi = q_{11}$ except for B_θ , where $\xi = q_{\theta\theta}$; see Table 1. Set $t_{ii} = d_i$ and $\mathbf{q}_{ii} = \nu^{t_{ii}}$. Thus $\mathbf{q}_{ii}(\xi) = q_{ii}$ for all $i \in \mathbb{I}$. Recall that

$$(\nu - \xi) \wp_{\alpha_i \alpha_j}^{\mathbf{q}}(\nu) = 1 - \mathbf{q}_{ij}^{N_i N_j}.$$

For instance $\wp_{\alpha_i \alpha_i}^{\mathbf{q}}(\nu) = \frac{1 - \nu^{d_i N_i^2}}{\nu - \xi}$ hence

$$\wp_{\alpha_i \alpha_i}^{\mathbf{q}}(\xi) = -\xi^{-1} d_i N_i^2 = -\xi^{-1} t_{ii} N_i^2. \quad (\text{A.5})$$

Let $i < j$. We see that there exists $d_j \in \mathbb{I}_3$ such that $N_j = N/d_j$. By (A.4), q_{ij} is a power of ξ^{d_j} ; choose $t_{ij} \in d_j \mathbb{Z}$ such that $\mathbf{q}_{ij} = \nu^{t_{ij}}$ satisfies $\mathbf{q}_{ij}(\xi) = \xi^{t_{ij}} = q_{ij}$. Set $t_{ji} = d_i a_{ij} - t_{ij}$ and $\mathbf{q}_{ji} = \nu^{t_{ji}}$. We have defined T satisfying (A.2) and \mathbf{q} turns out to be given by (A.3) with $\mathbf{p}_{ij} = 1$ for all i, j , i.e., (i) holds. Also for all $i \neq j$, $(\nu - \xi) \wp_{\alpha_i \alpha_j}^{\mathbf{q}}(\nu) = 1 - \nu^{t_{ij} N_i N_j}$ and

$$\wp_{\alpha_i \alpha_j}^{\mathbf{q}}(\xi) = -\xi^{-1} t_{ij} N_i N_j. \quad (\text{A.6})$$

Therefore $\mathcal{T}^{\mathbf{q}} = T$. Observe that if $t_{ij} = 0$ for $i < j$, then $\det \mathcal{T}^{\mathbf{q}} \neq 0$. By a standard argument, (ii) holds.

A.2. Super type

Assume that the braiding matrix \mathbf{q} is of super type; see [2] for details and below for $\mathbf{D}(2, 1; \alpha)$. Going over the list, we see that there exist

- o $\xi \in \mathbb{C}^\times$, a root of 1 of order $N > 1$;
- o a symmetric matrix $B = (b_{ij})_{i,j \in \mathbb{I}} \in \mathbb{Z}^{\mathbb{I} \times \mathbb{I}}$ with $b_{ij} = 1$ for at least one pair (i, j) ;
- o a parity vector $\mathbf{p} = (\mathbf{p}_1, \dots, \mathbf{p}_\theta) \in \{\pm 1\}^{\mathbb{I}}$ with $\mathbf{p}_i = -1$ when $b_{ii} = 0$; such that

$$q_{ij}q_{ji} = \xi^{b_{ij}}, \quad i \neq j; \quad q_{ii} = \mathbf{p}_i \xi^{b_{ii}}, \quad i \in \mathbb{I}.$$

We describe in Table 2 matrices \mathbf{q} of super type, one for each Weyl-equivalence class (here $\alpha_{(ij)} := \alpha_i + \dots + \alpha_j$ for $i < j$). Since the matrix \mathbf{q} has an analogous shape, we may assume that

Table 1
Cartan type.

Type	\mathbf{q}	N	$\mathfrak{g}_{\mathbf{q}}$
A_{θ}			A_{θ}
$B_{\theta}, \theta \geq 2$		odd even, ≠ 2	B_{θ} C_{θ}
$C_{\theta}, \theta \geq 3$		odd even, ≠ 2	C_{θ} B_{θ}
$D_{\theta}, \theta \geq 4$			D_{θ}
$E_{\theta}, \theta \in \mathbb{I}_{6,8}$			E_{θ}
F_4		> 2	F_4
G_2		> 3	G_2

- there exists $k \in \mathbb{I}$ such that $\{i \in \mathbb{I} : \mathbf{p}_i = -1\} = \{k\}$;
- there exists $h \in \mathbb{I}$, $h \neq k$, such that $\xi = q_{hh}$.

Recall that $\tilde{\Pi}$ was defined in (6.4) and (6.7). Therefore we have:

- either $\tilde{\Pi}^{\mathbf{q}} = \{N_i \alpha_i : i \in \mathbb{I}, i \neq k\} \cup \{\mathbf{N} \alpha_k\}$ ($\mathbf{N} = N$ if N is even and $\mathbf{N} = 2N$ if N is odd) for type $\mathbf{A}(k-1|\theta-k)$ or else there exists a unique positive non-simple root β such that $\tilde{\Pi}^{\mathbf{q}} = \{N_i \alpha_i : i \in \mathbb{I}, i \neq k\} \cup \{N_{\beta} \beta\}$;
- for $i \in \mathbb{I}$, $i \neq k$, we may (and do) choose $b_{ii} \in \{\pm 1, \pm 2, \pm 3\}$. Then $N_i = LCD(b_{ii}, N)$; set $d_i = N/N_i$.

We start defining the matrix \mathbf{q} . First we take $t_{ii} = b_{ii}$ and $\mathbf{q}_{ii} = \mathbf{p}_i q^{b_{ii}}$ for all $i \in \mathbb{I}$.

Condition (4.27) says that $q_{ij}^{N_j} = 1$, for all $i \in \mathbb{I}$, $j \in \mathbb{I} \setminus \{k\}$. Let $i < j$ with $j \neq k$; choose $t_{ij} \in d_j \mathbb{Z}$ and set $t_{ij} = b_{ji} - t_{ij}$. Then $\mathbf{q}_{ij} = \nu^{t_{ij}}$ and $\mathbf{q}_{ji} = \nu^{t_{ji}}$ satisfy $\mathbf{q}_{ij}(\xi) = \xi^{t_{ij}} = q_{ij}$ and $\mathbf{q}_{ij} \mathbf{q}_{ji} = \nu^{b_{ij}}$.

Similarly, $q_{ki}^{N_i} = 1$ for $k > i$, so choose $t_{ik} \in d_i \mathbb{Z}$ and set $t_{ki} = b_{ki} - t_{ik}$, $\mathbf{q}_{ki} = \nu^{b_{ki} - t_{ik}}$ and $\mathbf{q}_{ik} = \nu^{t_{ki}}$ so that $\mathbf{q}_{ki}(\xi) = \xi^{t_{ki}} = q_{ki}$. We have defined T satisfying (A.2) and \mathbf{q} turns out to be given by (A.3) with $\mathbf{p}_{ii} = \mathbf{p}_i$ and $\mathbf{p}_{ij} = 1$ for all $i \neq j$, i.e., (i) holds.

It remains to compute the matrix $\mathcal{T}^{\mathbf{q}}$. Arguing as in the Cartan case we see that

$$\wp_{\alpha_i \alpha_i}^{\mathbf{q}}(\xi) = -\xi^{-1} \mathbf{p}_i b_{ii} N_i^2, \quad \wp_{\alpha_i \alpha_j}^{\mathbf{q}}(\xi) = -\xi^{-1} t_{ij} N_i N_j, \quad i, j \in \mathbb{I} \setminus \{k\}.$$

Assume that there exists $\gamma \in \Pi^{\mathbf{q}} \setminus \mathbb{I}$ (a non-simple Cartan root). Then there exist $\mathbf{p}_{\gamma} \in \{\pm 1\}$ and $b_{\gamma\gamma}, b_{i\gamma} \in \mathbb{Z}$ such that

Table 2
Super type.

Type	\mathbf{q}	N	$\widetilde{\Pi}^{\mathbf{q}}$	$\mathfrak{g}_{\mathbf{q}}$
$\mathbf{A}(k-1 \theta-k),$ $k \in \mathbb{I}_{\lfloor \frac{\theta+1}{2} \rfloor}$		> 2	(A.7)	$A_{k-1} \times A_{\theta-k}$
$\mathbf{B}(k \theta-k),$ $k \in \mathbb{I}_{\theta-1}$		odd even, $\neq 2, 4$	(A.8)	$C_k \times B_{\theta-k}$ $C_k \times C_{\theta-k}$
$\mathbf{D}(k \theta-k),$ $k < \frac{\theta}{2}$		odd even, $\neq 2$	(A.9)	$D_k \times C_{\theta-k}$ $D_k \times B_{\theta-k}$
$\mathbf{D}(2, 1; \alpha),$ $d_1, d_3 \in \mathbb{N}$			(A.10)	$A_1 \times A_1 \times A_1$
$\mathbf{F}(4)$		> 2	(A.11)	$A_1 \times B_3$
$\mathbf{G}(3)$		$N > 3$	(A.12)	$A_1 \times G_2$

$$\mathbf{q}_{\gamma\gamma} = \mathbf{p}_{\gamma} \nu^{b_{\gamma\gamma}}, \quad \mathbf{q}_{i\gamma} \mathbf{q}_{\gamma i} = \nu^{b_{i\gamma}}.$$

Extend (t_{ij}) to a bilinear form $t : \mathbb{Z}^{\mathbb{I}} \times \mathbb{Z}^{\mathbb{I}} \rightarrow \mathbb{Z}$. Then for $k \neq i \in \mathbb{I}$,

$$\wp_{\gamma\gamma}^{\mathbf{q}}(\xi) = -\xi^{-1} \mathbf{p}_{\gamma} b_{\gamma\gamma} N_{\gamma}^2, \quad \wp_{\alpha_i\gamma}^{\mathbf{q}}(\xi) = -\xi^{-1} t_{i\gamma} N_i N_{\gamma}, \quad (\nu - \xi) \wp_{\gamma\alpha_i}^{\mathbf{q}}(\nu) = -\xi^{-1} t_{\gamma i} N_i N_{\gamma}.$$

All in all, $\mathcal{T}^{\mathbf{q}}$ is of the form $(t_{\alpha\beta}) \in \mathbb{Z}^{\widetilde{\Pi}^{\mathbf{q}} \times \widetilde{\Pi}^{\mathbf{q}}}$, where $t_{\alpha\alpha} = \mathbf{p}_{\alpha} b_{\alpha\alpha}$, $t_{\alpha\beta} + t_{\beta\alpha} = b_{\alpha\beta}$ for $\alpha \neq \beta$. Arguing as in the Cartan case, we conclude that (ii) holds.

$$\{N\alpha_j \mid j \neq k\} \cup \{\mathbb{N}\eta\}, \quad (\text{A.7})$$

$$\{N_j\alpha_j \mid j \neq k\} \cup \{N_{\alpha_{(k\theta)}}\alpha_{(k\theta)}\}, \quad (\text{A.8})$$

$$\{N_j\alpha_j \mid j \neq k\} \cup \{N_{\alpha_{(k-1\theta)} + \alpha_{(k\theta-1)}}(\alpha_{(k-1\theta)} + \alpha_{(k\theta-1)})\}, \quad (\text{A.9})$$

$$\{N_1\alpha_1, N_3\alpha_3, N_{\alpha_1+2\alpha_2+\alpha_3}(\alpha_1 + 2\alpha_2 + \alpha_3)\}, \quad (\text{A.10})$$

$$\{N_1\alpha_1, N_2\alpha_2, N_3\alpha_3, N_{\alpha_1+2\alpha_2+3\alpha_3+2\alpha_4}(\alpha_1 + 2\alpha_2 + 3\alpha_3 + 2\alpha_4)\}, \quad (\text{A.11})$$

$$\{N_{\alpha_1+2\alpha_2+\alpha_3}(\alpha_1 + 2\alpha_2 + \alpha_3), N_2\alpha_2, N_3\alpha_3\}. \quad (\text{A.12})$$

Type $\mathbf{D}(2, 1; \alpha)$

The diagrams of this type are Weyl equivalent to the following one , with $r, s, rs \neq 1$. The corresponding Nichols algebra has finite dimension if and only if $r, s \in \mathbb{G}'_{\infty}$, $rs \neq 1$. Let \mathbf{q} be a braiding matrix with this diagram satisfying (4.27). Fix a generator ξ of the subgroup of \mathbb{G}_{∞} generated by r, s ; we choose $d_1, d_3 \in \mathbb{N}$ minimal such that $r = \xi^{d_1}$, $s = \xi^{d_3}$. Then there exists a braiding matrix \mathbf{q} as in Table 2 such that $\mathbf{q} = \mathbf{q}(\xi)$.

Table 3
Modular type.

Type	\mathbf{q}	N	$\widetilde{H}^{\mathbf{q}}$	$\mathfrak{g}_{\mathbf{q}}$
$\text{wk}(4)$	$\begin{array}{c} \nu^{-1} \nu \nu^{-1} \\ \circ \text{---} \circ \text{---} \circ \text{---} \circ \end{array}$	> 2	(A.13)	$A_2 \times A_2$
$\text{br}(2)$	$\begin{array}{c} \nu^{-1} \\ \circ \end{array}$, $\zeta \in \mathbb{G}'_3$	$\neq 3$	$\{2M\alpha_1 + M\alpha_2, N\alpha_2\}$	$A_1 \times A_1$

A.3. Modular type

The Nichols algebras in this family could be thought of as quantizations in char 0 of the 34-dimensional Lie algebras in char 2 from [35], respectively the 10-dimensional Lie algebras in char 3 introduced in [12]. The information on this type is given in Table 3. The matrices T and $\mathcal{T}^{\mathbf{q}}$ are worked out as in the super case. \square

$$\{N\alpha_1, N\alpha_2, M\alpha_4, M\alpha_1 + 2M\alpha_2 + 3M\alpha_3 + M\alpha_4\}. \quad (\text{A.13})$$

Appendix B. Lie bialgebras and Poisson algebraic groups

We gather minimal background material on Lie bialgebras and Poisson algebraic groups for Sections 7 and 8. We refer to [22, Section 2-7] for a full treatment.

B.1. Lie bialgebras

Recall that a Lie bialgebra is a Lie algebra \mathfrak{g} equipped with a linear map $\delta : \mathfrak{g} \rightarrow \wedge^2 \mathfrak{g}$ such that

- (i) the dual of the map δ defines a Lie algebra structure of \mathfrak{g}^* and
- (ii) δ is a 1-cocycle, i.e., $\delta([a, b]) = \text{ad}_a(\delta(b)) - \text{ad}_b(\delta(a))$ for all $a, b \in \mathfrak{g}$.

The Lie bialgebras with opposite cobracket (same bracket) and opposite bracket (same cobracket) will be denoted by \mathfrak{g}_{op} and \mathfrak{g}^{op} , respectively. The dual Lie bialgebra \mathfrak{g}^* of \mathfrak{g} is the Lie bialgebra with Lie bracket and cobracket given by

$$\langle [f, g], a \rangle = \langle f \otimes g, \delta(a) \rangle, \quad \langle \delta(f), a \otimes b \rangle = \langle f, [a, b] \rangle, \quad \forall a, b \in \mathfrak{g}, f, g \in \mathfrak{g}^*.$$

The Drinfeld double $D(\mathfrak{g})$ of the Lie bialgebra \mathfrak{g} is a Lie bialgebra which is isomorphic to $\mathfrak{g} \oplus \mathfrak{g}^*$ as a vector space and is uniquely defined by the conditions:

- (a) The canonical embeddings $\iota : \mathfrak{g} \hookrightarrow D(\mathfrak{g})$ and $\iota^* : (\mathfrak{g}^*)^{\text{op}} \hookrightarrow D(\mathfrak{g})$ are embeddings of Lie bialgebras;
- (b) For $a \in \mathfrak{g} \subset D(\mathfrak{g})$, $f \in \mathfrak{g}^* \subset D(\mathfrak{g})$, $[x, f] = \text{ad}_x^*(f) - \text{ad}_f^*(x)$ in terms of the coadjoint actions of \mathfrak{g} and \mathfrak{g}^* .

A quadratic Lie algebra is a Lie algebra \mathfrak{g} equipped with a non-degenerate invariant symmetric bilinear form (\cdot, \cdot) . A Manin triple is a triple $(\mathfrak{g}, \mathfrak{g}_+, \mathfrak{g}_-)$ consisting of a quadratic Lie algebra $(\mathfrak{g}, (\cdot, \cdot))$ and a pair of isotropic Lie subalgebras $\mathfrak{g}_\pm \subset \mathfrak{g}$.

Remark B.1. The notions of Drinfeld double and Manin triple are equivalent in the case of finite dimensional Lie algebras:

(a) Each Drinfeld double $D(\mathfrak{g})$ is a quadratic Lie algebra with symmetric bilinear form

$$(a + f, b + g) = \langle f, b \rangle + \langle g, a \rangle, \quad a, b \in \mathfrak{g}, f, g \in \mathfrak{g}^*.$$

With respect to this form, $(D(\mathfrak{g}), \mathfrak{g}, \mathfrak{g}^*)$ is a Manin triple.

(b) For a Manin triple $(\mathfrak{g}, \mathfrak{g}_+, \mathfrak{g}_-)$, \mathfrak{g}_\pm have canonical Lie bialgebra structures given by

$$(\delta(a), f \otimes g) = (a, [f, g]), \quad (\delta(f), a \otimes b) = -(f, [a, b]), \quad \forall a, b \in \mathfrak{g}_+, f, g \in \mathfrak{g}_-.$$

Then \mathfrak{g} , equipped with the Lie cobracket $\delta_{\mathfrak{g}_+} + \delta_{\mathfrak{g}_-}$, is isomorphic to the Drinfeld double of \mathfrak{g}_+ , and $\mathfrak{g}_- \simeq (\mathfrak{g}_+^*)^{\text{op}}$.

Here is an important class of Lie bialgebras: (\mathfrak{g}, δ) is *quasitriangular* if $\delta(x) = \text{ad } x(r)$ for all $x \in \mathfrak{g}$ where $r = \sum_i r_i \otimes r^i \in \mathfrak{g} \otimes \mathfrak{g}$ satisfies the classical Yang-Baxter equation:

$$[r^{12}, r^{13}] + [r^{12}, r^{23}] + [r^{13}, r^{23}] = 0;$$

here $r^{12} = r \otimes 1$, $r^{13} = \sum_i r_i \otimes 1 \otimes r^i$, $r^{23} = 1 \otimes r$. In this case we set $(\mathfrak{g}, r) := (\mathfrak{g}, \delta)$. The Drinfeld double is the archetypical example of a quasitriangular Lie bialgebra.

Let $r^{21} = \sum_i r^i \otimes r_i$. Recall that a quasitriangular Lie bialgebra (\mathfrak{g}, r) is called *factorizable* if $r + r^{21} \in S^2 \mathfrak{g}$ defines a nondegenerate inner product on \mathfrak{g}^* [41].

B.2. Poisson algebraic groups

A (complex) Poisson algebraic group is an algebraic group G equipped with a bivector field π such that the product map

$$(G, \pi) \times (G, \pi) \rightarrow (G, \pi)$$

is Poisson. The coordinate ring $\mathbb{C}[G]$ has a canonical structure of commutative Poisson-Hopf algebra with Poisson bracket given by

$$\{f, g\} := \langle df \otimes dg, \pi \rangle, \quad f, g \in \mathbb{C}[G],$$

where df denotes the differential of f . Conversely, every finitely generated commutative Poisson-Hopf algebra H gives rise to the Poisson algebraic group $\text{MaxSpec } H$.

The tangent Lie algebra $\mathfrak{g} = T_1 G$ of every Poisson algebraic group G has a canonical Lie bialgebra structure. The Poisson structure π automatically vanishes at the identity element 1 of G . The Lie cobracket on \mathfrak{g} , or equivalently the Lie bracket on $\mathfrak{g}^* \simeq T_1^* G$, is defined as the linearization of π at 1:

$$[d_1(f), d_1(g)] := d_1(\{f, g\}), \quad f, g \in \mathbb{C}[G]. \quad (\text{B.1})$$

In Hopf algebra situations it is advantageous to describe the tangent Lie algebra \mathfrak{g} of an algebraic group G by describing the corresponding Lie cobracket on $\mathfrak{g}^* = T_1^* G$.

Lemma B.2. *Let G be a complex algebraic group; as usual $\Delta(f) = f_{(1)} \otimes f_{(2)}$ for $f \in \mathbb{C}[G]$. Then the canonical Lie coalgebra structure on $T_1^* G \simeq \mathfrak{g}^*$ is given by*

$$\delta(d_1 f) = d_1 f_{(1)} \wedge d_1 f_{(2)}, \quad f \in \mathbb{C}[G].$$

B.3. The classification of Belavin and Drinfeld

We fix a complex finite-dimensional simple Lie algebra \mathfrak{g} . Pick a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ and a set $\Delta \subset \mathfrak{h}^*$ of simple roots. The Casimir element $\Omega \in \mathfrak{g} \otimes \mathfrak{g}$ of \mathfrak{g} is the symmetric tensor associated to the Killing form of \mathfrak{g} ; the component of Ω in $\mathfrak{h} \otimes \mathfrak{h}$ is denoted by Ω_0 .

Definition B.3. A Belavin-Drinfeld triple (BD-triple for short) is a triple (Γ_1, Γ_2, T) where Γ_1, Γ_2 are subsets of Δ and $T : \Gamma_1 \rightarrow \Gamma_2$ is a bijection that preserves the inner product and satisfies the nilpotency condition: for any $\alpha \in \Gamma_1$ there exists a positive integer n for which $T^n(\alpha)$ belongs to Γ_2 but not to Γ_1 .

Given a BD-triple (Γ_1, Γ_2, T) , we denote by $\widehat{\Gamma}_i$ the set of positive roots lying in the subgroup generated by Γ_i , for $i = 1, 2$. There is an associated partial ordering on Φ^+ given by $\alpha \prec \beta$ if $\alpha \in \widehat{\Gamma}_1$, $\beta \in \widehat{\Gamma}_2$, and $\beta = T^n(\alpha)$ for a positive integer n .

A *continuous parameter* for the BD-triple (Γ_1, Γ_2, T) is an element $\lambda \in \mathfrak{h}^{\otimes 2}$ such that

$$(T(\alpha) \otimes 1)\lambda + (1 \otimes \alpha)\lambda = 0, \quad \text{for all } \alpha \in \Gamma_1, \quad (\text{B.2})$$

$$\lambda + \lambda^{21} = \Omega_0. \quad (\text{B.3})$$

Let $\mathfrak{a}_1, \mathfrak{a}_2$ be the reductive subalgebras of \mathfrak{g} with Cartan subalgebras generated by h_α, α in Γ_1 , resp. in Γ_2 , and with Dynkin diagrams Γ_1 , respectively Γ_2 . We extend T to a Lie algebra isomorphism $\widehat{T} : \mathfrak{a}_1 \rightarrow \mathfrak{a}_2$.

Theorem B.4. [11]. *Let (\mathfrak{g}, r) be a factorizable Lie bialgebra with underlying simple Lie algebra \mathfrak{g} . Then there exist a Cartan subalgebra \mathfrak{h} , a set of simple roots Δ , a BD-triple (Γ_1, Γ_2, T) , a continuous parameter λ and $t \in \mathbb{C} - 0$ such that the r is given by*

$$r = t \left(\lambda + \sum_{\alpha \in \Phi^+} x_{-\alpha} \otimes x_\alpha + \sum_{\alpha, \beta \in \Phi^+, \alpha \prec \beta} x_{-\alpha} \wedge x_\beta \right), \quad (\text{B.4})$$

where $x_\beta \in \mathfrak{g}_\beta$, $\beta \in \pm \Phi^+$, are root vectors normalized by

$$(x_\beta | x_{-\beta}) = 1, \quad \text{for all } \beta \in \Phi^+, \quad (\text{B.5})$$

$$\widehat{T}(x_\beta) = x_{T(\beta)}, \quad \text{for all } \beta \in \Gamma_1. \quad (\text{B.6})$$

Reciprocally the matrix r defined by (B.4) satisfies the classical Yang-Baxter equation, hence defines a factorizable Lie bialgebra structure on \mathfrak{g} . \square

Example B.5. We say that a BD-triple (Γ_1, Γ_2, T) is *empty* if $\Gamma_1 = \Gamma_2 = \emptyset$. In this case any $\lambda \in \mathfrak{h}^{\otimes 2}$ is a continuous parameter; the choice $\lambda = \frac{1}{2}(\sum_i h_i \otimes h_i)$, for an orthonormal basis h_i of \mathfrak{h} , gives rise to the *standard* Poisson structure.

Appendix C. Symplectic cores and symplectic leaves

Let Z be an affine commutative Poisson algebra and $M := \text{MaxSpec } Z$. As usual the point $x \in M$ corresponds to the ideal \mathfrak{M}_x . The material below is extracted from [13].

The largest Poisson ideal contained in an ideal I of Z is called the *Poisson core* of I and denoted $\mathfrak{P}(I)$; it exists because the sum of Poisson ideals is again a Poisson ideal. If I is prime, then so is $\mathfrak{P}(I)$. If \mathfrak{M} is maximal, then we say that $\mathfrak{P}(\mathfrak{M})$ is Poisson primitive. Every prime Poisson ideal of Z is an intersection of Poisson primitive ideals.

Definition C.1. A *symplectic core* is a class of the equivalence relation \sim given by

$$x \sim y \iff \mathfrak{P}(\mathfrak{M}_x) = \mathfrak{P}(\mathfrak{M}_y), \quad x, y \in M.$$

The equivalence class of $x \in M$ is denoted by $\mathcal{C}(x)$ and called the symplectic core of x . Any symplectic core is locally closed and smooth in its closure [13, 3.3].

Assume for simplicity that Z is regular, i.e., M is smooth, see [13, 3.5] for the general case. Then M becomes a complex analytic Poisson manifold. Given $x \in M$, the *symplectic leaf* $\mathcal{L}(x)$ is the maximal connected complex analytic submanifold of M such that $x \in \mathcal{L}(x)$ and the restriction of the Poisson bracket to $\mathcal{L}(x)$ is nondegenerate at every point. Concretely, the symplectic leaf $\mathcal{L}(x)$ is formed by the points which can be reached from x by a piecewise smooth curve, each segment of which is a trajectory of a hamiltonian vector field. Symplectic leaves might be not algebraic but they determine the symplectic cores. Below the closure is relative to the Zariski topology.

Theorem C.2. [26, Th. 7.4] Let \mathcal{L} be a symplectic leaf. There is a unique symplectic core \mathcal{C} in M with $\mathcal{L} \subset \mathcal{C} \subseteq \overline{\mathcal{L}}$ and \mathcal{C} is the unique symplectic core dense in $\overline{\mathcal{L}}$. In fact

$$\mathcal{C} = \overline{\mathcal{L}} \setminus \bigcup_{\substack{\mathcal{K} \text{ symplectic leaf} \\ \overline{\mathcal{K}} \subsetneq \overline{\mathcal{L}}}} \overline{\mathcal{K}}. \quad (\text{C.1})$$

Each symplectic core \mathcal{C} in M can be obtained as in (C.1).

References

- [1] N. Andruskiewitsch, An introduction to Nichols algebras, in: A. Cardona, et al. (Eds.), Quantization, Geometry and Noncommutative Structures in Mathematics and Physics, Springer, 2017, pp. 135–195.
- [2] N. Andruskiewitsch, I. Angiono, On finite dimensional Nichols algebras of diagonal type, *Bull. Math. Sci.* 7 (2017) 353–573.
- [3] N. Andruskiewitsch, I. Angiono, F. Rossi Bertone, The divided powers algebra of a finite-dimensional Nichols algebra of diagonal type, *Math. Res. Lett.* 24 (2017) 619–643.
- [4] N. Andruskiewitsch, I. Angiono, F. Rossi Bertone, A finite-dimensional Lie algebra arising from a Nichols algebra of diagonal type (rank 2), *Bull. Belg. Math. Soc. Simon Stevin* 24 (2017) 15–34.
- [5] N. Andruskiewitsch, I. Angiono, F. Rossi Bertone, Lie algebras arising from Nichols algebras of diagonal type, *Int. Math. Res. Not.* 2023 (2023) 3424–3459.
- [6] N. Andruskiewitsch, D. Radford, H.-J. Schneider, Complete reducibility theorems for modules over pointed Hopf algebras, *J. Algebra* 324 (2010) 2932–2970.
- [7] I. Angiono, A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems, *J. Eur. Math. Soc.* 17 (2015) 2643–2671.
- [8] I. Angiono, On Nichols algebras of diagonal type, *J. Reine Angew. Math.* 683 (2013) 189–251.
- [9] I. Angiono, Distinguished pre-Nichols algebras, *Transform. Groups* 21 (2016) 1–33.
- [10] I. Angiono, H. Yamane, The R-matrix of quantum doubles of Nichols algebras of diagonal type, *J. Math. Phys.* 56 (2015) 021702, 19 pp.
- [11] A.A. Belavin, V.G. Drinfeld, Triangle equations and simple Lie algebras, in: Soviet Sci. Rev. Section C Math. Phys. Rev., vol. 4, Harwood, Chur, Switzerland, 1984, pp. 93–165.
- [12] G. Brown, Properties of a 29-dimensional simple Lie algebra of characteristic three, *Math. Ann.* 261 (1982) 487–492.
- [13] K.A. Brown, I. Gordon, Poisson orders, symplectic reflection algebras and representation theory, *J. Reine Angew. Math.* 559 (2003) 193–216.
- [14] K.A. Brown, K.R. Goodearl, Lectures on Algebraic Quantum Groups, Adv. Courses in Math. CRM Barcelona, Birkhäuser Verlag, Basel, 2002.
- [15] M. Costantini, M. Varagnolo, Multiparameter quantum function algebra at roots of 1, *Math. Ann.* 306 (4) (1996) 759–780.
- [16] M. Cuntz, I. Heckenberger, Weyl groupoids with at most three objects, *J. Pure Appl. Algebra* 213 (2009) 1112–1128.
- [17] C. De Concini, V. Kac, Representations of quantum groups at roots of 1, in: Operator Algebras, Unitary Representations, Enveloping Algebras and Invariant Theory, Paris, 1989, in: Progr. Math., vol. 92, Birkhäuser, Boston, 1990, pp. 471–506.
- [18] C. De Concini, V. Kac, C. Procesi, Quantum coadjoint action, *J. Am. Math. Soc.* 5 (1992) 151–189.
- [19] C. De Concini, V. Lyubashenko, Quantum function algebra at roots of 1, *Adv. Math.* 108 (2) (1994) 205–262.
- [20] C. De Concini, C. Procesi, Quantum groups, in: D-Modules, Representation Theory and Quantum Groups, in: Lecture Notes in Math., vol. 1565, Springer, 1993, pp. 31–140.
- [21] C. De Concini, C. Procesi, N. Reshetikhin, M. Rosso, Hopf algebras with trace and representations, *Invent. Math.* 161 (2005) 1–44.
- [22] P. Etingof, O. Schiffmann, Lectures on Quantum Groups, 2nd ed., Lect. Math. Phys., International Press, Somerville, MA, 2002.
- [23] S. Fomin, A. Zelevinsky, Double Bruhat cells and total positivity, *J. Am. Math. Soc.* 12 (1999) 335–380.
- [24] I. Ganev, D. Jordan, P. Safronov, The quantum Frobenius for character varieties and multiplicative quiver varieties, *J. Eur. Math. Soc.* (2023), in press.
- [25] G.A. García, F. Gavarini, Multiparameter quantum groups at roots of unity, *J. Noncommut. Geom.* 16 (2022) 839–926.

- [26] K.R. Goodearl, Semiclassical limits of quantized coordinate rings, in: D. Van Huynh, et al. (Eds.), *Advances in Ring Theory. Papers of the Conference on Algebra and Applications*, Athens, OH, USA, June 18–21, 2008, in: *Trends in Mathematics*, Birkhäuser, Basel, 2010, pp. 165–204.
- [27] K.R. Goodearl, M. Yakimov, Poisson structures on affine spaces and flag varieties. II, *Trans. Am. Math. Soc.* 361 (2009) 5753–5780.
- [28] I. Heckenberger, The Weyl groupoid of a Nichols algebra of diagonal type, *Invent. Math.* 164 (2006) 175–188.
- [29] I. Heckenberger, Classification of arithmetic root systems, *Adv. Math.* 220 (2009) 59–124.
- [30] I. Heckenberger, Lusztig isomorphisms for Drinfeld doubles of bosonizations of Nichols algebras of diagonal type, *J. Algebra* 323 (2010) 2130–2182.
- [31] I. Heckenberger, H. Yamane, A generalization of Coxeter groups, root systems and Matsumoto's theorem, *Math. Z.* 259 (2008) 255–276.
- [32] I. Heckenberger, H. Yamane, Drinfel'd doubles and Shapovalov determinants, *Rev. Unión Mat. Argent.* 51 (2010) 107–146.
- [33] T.J. Hodges, T. Levasseur, Primitive ideals of $\mathbb{C}_q[SL(3)]$, *Commun. Math. Phys.* 156 (1993) 581–605.
- [34] T.J. Hodges, T. Levasseur, T. Toro, Algebraic structure of multiparameter quantum groups, *Adv. Math.* 126 (1) (1997) 52–92.
- [35] V. Kac, B. Weisfeiler, Exponentials in Lie algebras of characteristic p , *Math. USSR, Izv.* 5 (1971) 777–803.
- [36] A. Knutson, T. Lam, D.E. Speyer, Projections of Richardson varieties, *J. Reine Angew. Math.* 687 (2014) 133–157.
- [37] J.-H. Lu, M. Yakimov, Group orbits and regular partitions of Poisson manifolds, *Commun. Math. Phys.* 283 (2008) 729–748.
- [38] G. Lusztig, Finite dimensional Hopf algebras arising from quantized universal enveloping algebras, *J. Am. Math. Soc.* 3 (1990) 257–296.
- [39] G. Lusztig, Quantum groups at roots of 1, *Geom. Dedic.* 35 (1990) 89–113.
- [40] D.E. Radford, Hopf Algebras, Series on & Everything, vol. 49, World Scientific, Hackensack, NJ, 2012.
- [41] N.Yu. Reshetikhin, M.A. Semenov-Tian-Shansky, Quantum R-matrices and factorization problems, *J. Geom. Phys.* 5 (1988) 533–550.
- [42] N. Reshetikhin, A. Voronov, A. Weinstein, Semiquantum geometry, in: *Algebraic Geometry*, 5, *J. Math. Sci.* 82 (1996) 3255–3267.
- [43] P. Schauenburg, Hopf-Galois and bi-Galois extensions, *Fields Inst. Commun.* 43 (2004) 469–515.
- [44] H.-J. Schneider, Normal basis and transitivity of crossed products for Hopf algebras, *J. Algebra* 152 (1992) 289–312.
- [45] M.A. Semenov-Tian-Shansky, Dressing transformations and Poisson group actions, *Publ. Res. Inst. Math. Sci.* 21 (1985) 1237–1260.
- [46] M. Takeuchi, Survey of braided Hopf algebras, *Contemp. Math.* 267 (2000) 301–324.
- [47] C. Walton, X. Wang, M. Yakimov, Poisson geometry of PI 3-dimensional Sklyanin algebras, *Proc. Lond. Math. Soc.* 118 (2019) 1471–1500.
- [48] C. Walton, X. Wang, M. Yakimov, Poisson geometry and representations of PI 4-dimensional Sklyanin algebras, *Sel. Math. New Ser.* 27 (5) (2021) 99, 60 pp.
- [49] A. Weinstein, The local structure of Poisson manifolds, *J. Differ. Geom.* 18 (1983) 523–557.
- [50] M. Yakimov, Symplectic leaves of complex reductive Poisson-Lie groups, *Duke Math. J.* 112 (2002) 453–509.