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ABSTRACT

We show that lower-dimensional marginal densities of dependent zero-mean normal distributions trun-
cated to the positive orthant exhibit a mass-shifting phenomenon. Despite the truncated multivariate
normal density having a mode at the origin, the marginal density assigns increasingly small mass near the
origin as the dimension increases. The phenomenon accentuates with stronger correlation between the
randomvariables. This surprising behavior has serious implications toward Bayesian constrained estimation
and inference, where the prior, in addition to having a full support, is required to assign a substantial
probability near the origin to capture flat parts of the true function of interest. A precise quantification
of the mass-shifting phenomenon for both the prior and the posterior, characterizing the role of the
dimension as well as the dependence, is provided under a variety of correlation structures. Without further
modification, we show that truncated normal priors are not suitable for modeling flat regions and propose
a novel alternative strategy based on shrinking the coordinates using a multiplicative scale parameter. The
proposed shrinkage prior is shown to achieve optimal posterior contraction around true functions with
potentially flat regions. Synthetic and real data studies demonstrate how the modification guards against
the mass shifting phenomenon while retaining computational efficiency. Supplementary materials for this
article are available online.
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1. Introduction

Let p(·) denote the density of a non-singular NN(0,�) distri-
bution truncated to the nonnegative orthant in R

N ,

p(θ) ∝ e−θT�−1θ/2
1C(θ),

C = [0,∞)N :=
{
θ ∈ R

N : θ1 ≥ 0, . . . , θN ≥ 0
}
. (1.1)

The positive definite matrix � will henceforth be referred to
as the scale matrix associated with the truncated multivariate
normal vector θ . The density p is clearly unimodal with itsmode
at the origin. However, for certain classes of non-diagonal �,
we surprisingly observe that the lower-dimensional marginal
distributions increasingly shift mass away from the origin as N
increases. This observation is quantified in Theorem 2, where
we provide nonasymptotic estimates for marginal probabilities
of events of the form {θ1 ≤ δ}, for δ > 0. En-route to the proof,
we derive a novel Gaussian comparison inequality in Lemma
S1 in the supplementary materials. An immediate implication
of this mass-shifting phenomenon is that corner regions of
the support C, where a subset of the coordinates take val-
ues close to zero, increasingly become low-probability regions
under p(·) as dimension increases. From a statistical perspec-
tive, this helps explain a paradoxical behavior in Bayesian con-
strained regression empirically observed in Curtis and Ghosh
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(2011) andNeelon andDunson (2004), where truncated normal
priors led to biased posterior inference when the underlying
function had flat regions.

A common approach toward Bayesian constrained regres-
sion expands the function in a flexible basis which facilitates
representation of the functional constraints in terms of sim-
ple constraints on the coefficient space, and then specifies a
prior distribution on the coefficients obeying the said con-
straints. In this context, the multivariate normal distribution
subject to linear constraints arises as a natural conjugate prior
in Gaussian models and beyond. Various basis, such as Bern-
stein polynomials (Curtis and Ghosh 2011), regression splines
(Cai and Dunson 2007; Meyer, Hackstadt, and Hoeting 2011),
penalized spines (Brezger and Steiner 2008), cumulative dis-
tribution functions (Bornkamp and Ickstadt 2009), restricted
splines (Shively, Walker, and Damien 2011), and compactly
supported basis (Maatouk and Bay 2017) have been employed in
the literature. For numerical illustrations in this article, we shall
use the formulation of Maatouk and Bay (2017) where various
restrictions such as boundedness, monotonicity, convexity, etc
were equivalently translated into nonnegativity constraints on
the coefficients under an appropriate basis expansion. They used
a truncated normal prior as in (1.1) on the coefficients, with
� induced from a parent Gaussian process on the regression
function; see Appendix A for more details.

© 2022 American Statistical Association
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Figure 1. Monotone function estimation using the basis of Maatouk and Bay (2017) and a joint truncated normal prior p(·) on the coefficients. Red solid curve corresponds
to the true function, blue solid curve is the posterior mean, the region within two dotted blue curves represents a pointwise 95% credible interval, and the green dots are
observed data points. Left panel: true function is strictly monotone. Right panel: true function is monotone with a near-flat region.

Often the shape constraints enforce certain dependence

structure in the joint prior for the coefficients to allow the

posterior to borrow information from adjacent intervals (see

e.g., Neelon and Dunson 2004). A multivariate normal prior

truncated to the appropriate constraint set on the basis coeffi-

cients is used in such cases. For instance, with the Bernstein

polynomials in Curtis and Ghosh (2011), the differences of

coefficients are endowed with independent truncated normal

prior, inducing dependence across the coefficients. In Neelon

and Dunson (2004), a piecewise linear model with univariate

truncated normal prior is used with autocorrelated means. In

Maatouk and Bay (2017), a multivariate normal prior restricted

to a set of linear constraints is an appropriate choice that ensures

smoothness along the curve. We regard this as a prototype for

the subsequent theoretical and empirical investigations.

To motivate our theoretical investigations, the two panels

in Figure 1 depict the estimation of two different monotone

smooth functions on [0, 1] based on 100 samples using the basis

of Maatouk and Bay (2017) and a joint prior p(·) as in (1.1) on

theN = 50 dimensional basis coefficients. The same prior scale

matrix� was employed across the two settings; the specifics are

deferred to Section 3 andAppendixA.Observe that the function

in the left panel is strictly monotone, while the one on the right

panel is relatively flat over a region. While the point estimate

(posteriormean) aswell as the credible intervals look reasonable

for the function in the left panel, the situation is significantly

worse for the function in the right panel. The posterior mean

incurs a large bias, and the pointwise 95% credible intervals

fail to capture the true function for a substantial part of the

input domain, suggesting that the entire posterior distribution

is biased away from the truth. This behavior is perplexing;

we are fitting a well-specified model with a prior that has full

support1 on the parameter space, which under mild conditions

implies good first-order asymptotic properties (Ghosal, Ghosh,

and van der Vaart 2000) such as posterior consistency. However,

the finite sample behavior of the posterior under the second

scenario clearly suggests otherwise.

Functions with flat regions as in the right panel of Figure 1

routinely appear in many applications; for example, dose–

response curves are assumed to be nondecreasing with the

possibility that the dose-response relationship is flat over

certain regions (Neelon and Dunson 2004). A similar biased

behavior of the posterior for such functions under truncated

normal priors was observed by Neelon and Dunson (2004)

while using a piecewise linear model, and also by Curtis and

Ghosh (2011) under a Bernstein polynomial basis. However, a

clear explanation behind such behavior as well as the extent

to which it is prevalent has been missing in the literature,

and the mass-shifting phenomenon alluded before offers an

explanation. Under the basis of Maatouk and Bay (2017), a

subset of the basis coefficients are required to shrink close to

zero to accurately approximate functions with such flat regions.

However, the truncated normal posterior pushes mass away

from such corner regions, leading to the bias. Importantly, our

theory also suggests that the problem would not disappear and

would rather get accentuated in the large sample scenario if

one follows standard practice of scaling up the number of basis

functions with increasing sample size, since the mass-shifting

gets more pronounced with increasing dimension. To illustrate

this point, Figure S2 in Section S2.3 in the supplementary

materials shows the estimation of the same function in the right

1Thepriorprobability assigned toarbitrarily small Kullback–Leibler neighbor-
hoods of any point is positive.
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panel of Figure 1, now based on 500 samples and N = 50 and

N = 250 basis functions in the left and right panel respectively.

Increasing the number of basis functions indeed results in a

noticeable increase in the bias as clearly seen from the insets

which zoom into two disjoint regions of the covariate domain.

A similar story holds for the basis of Curtis and Ghosh (2011)

and Neelon and Dunson (2004).

One of our main contributions is to rigorously study the

mass-shifting phenomenon of the marginal posterior distribu-

tion in a Bayesian shape-restricted inference problem. We show

that the root of the problem lies in poor marginal posterior con-

centration around functions having flat regions, a phenomenon

caused by the combined effects of truncation and dependence

in truncatedmultivariate normal priors. For a general truncated

normal distribution, we have found that the mass-shifting phe-

nomenon occurs if the mode of the distribution lies near the

boundary of the truncation region. A similar result is shown

for the truncated normal posterior distribution in the context

of Bayesian constrained inference.

Curtis and Ghosh (2011) and Neelon and Dunson (2004)

both used point-mass mixture priors as remedy, which is a

natural choice under a nondecreasing constraint. However, such

mixture priors become somewhat cumbersome under the non-

negativity constraint in (1.1). As a simple remedy, we suggest

introducing amultiplicative scale parameter for each coordinate

a priori and further equipping it with a priormixing distribution

which has positive density at the origin and heavy tails; a default

candidate is the half-Cauchy density (Carvalho, Polson, and

Scott 2010; Polson and Scott 2012). In contrast to independent

point-mass mixture priors, the resulting prior is more appealing

as it retains the correlation between significant coefficients due

to the dependence structure. The proposed prior shrinks more

aggressively toward the origin, and we rigorously establish

its de-biasing property that rectifies the mass-shifting issue,

with empirical evidence of its superior performance over the

truncated normal prior. Moreover, we offer theoretical justifica-

tion toward prediction accuracy and parameter recovery over

the class of all nondecreasing functions which may contain a

flat region. In particular, the best obtainable posterior contrac-

tion rate is achieved adaptively regardless of the presence or

absence of flat regions. Simulations studies are performed to

compare the proposed method with the current state-of-the-art

approaches under various choices of shape constraints. Multiple

real applications provide further support to our argument that

the proposed prior is robust to the presence or absence of

flat regions in the true function. Proofs of all theorems and

technical results are deferred to supplementarymaterials, which

also contains additional simulations and figures, and implemen-

tation details.

2. Mass-Shifting Phenomenon of Truncated Normal

Distributions

2.1. Marginal Densities of Truncated Normal Distributions

Our main focus is studying the properties of marginal densities
of truncated normal distributions described in Equation (1.1)

and quantifying how they behave with increasing dimensions.
We begin by introducing some notations. We use N (γ ,�)

to denote the d-dimensional normal distribution with mean
γ ∈ R

d and positive definite covariance matrix �; also let
N (x; γ ,�) denote its density evaluated at x ∈ R

d. We reserve
the notation �d(ρ) to denote the d × d compound-symmetry
correlation matrix with diagonal elements equal to 1 and off-
diagonal elements equal to ρ ∈ (0, 1),

�d(ρ) = (1 − ρ)Id + ρ1d1
T
d , (2.1)

with 1d the vector of ones inR
d and Id the d×d identity matrix.

For a subset C ⊂ R
N with positive Lebesgue measure, let

NC(γ ,�) denote aN (γ ,�) distribution truncated onto C, with
density

p̃(θ) = m−1
C

N (θ ; γ ,�)1C(θ), (2.2)

where mC = P(X ∈ C) for X ∼ N (γ ,�) is the constant
of integration and 1C(·) the indicator function of the set C.
We throughout assume C to be the positive orthant of RN as
in Equation (1.1), namely, C = [0,∞)N ; a general C defined
by linear inequality constraints can be reduced to rectangular
constraints using a linear transformation—see, for example,
section 2 of Botev (2017). The dimension N will be typically
evident from the context.

Our investigationswere originallymotivated by the following
observation. Consider θ ∼ NC(0,�2(ρ)) for ρ ∈ (0, 1).
Then, the marginal distribution of θ1 has density proportional

to e−θ21 /2 �{ρθ1/(1 − ρ2)1/2} on (0,∞), where � denotes the
N (0, 1) cumulative distribution function. This distribution is
readily recognized as a skew normal density (Azzalini and Valle
1996) truncated to (0,∞). Interestingly, the marginal of θ1
has a strictly positive mode, while the joint distribution of θ

had its mode at 0. Cartinhour (1990) noted that the truncated
normal family is not closed under marginalization for non-
diagonal �, and derived a general formula for the univariate
marginal as the product of a univariate normal density with
a skewing factor. In Proposition 1, we generalize the result in
Cartinhour (1990) for any lower-dimensional marginal den-
sity. We write the scale matrix �N in block form as �N =
[�k,k, �N−k,k;�k,N−k, �N−k,N−k].

Proposition 1. Suppose θ ∼ NC(0N ,�N). The marginal density
p̃k,N of θ (k) = (θ1, . . . , θk)

T is

p̃k,N(θ1, . . . , θk) = (2π)−k/2m−1
C

e−
1
2 θ (k)T�−1

k,k θ (k)

P(X̃N−k ≤ �N−k,k �−1
k,k θ (k))

k∏

i=1

1[0,∞)(θi),

where X̃N−k ∼ N (0N−k, �̃
−1
N−k,N−k) with �̃N−k,N−k =

(�N−k,N−k − �N−k,k �−1
k,k �k,N−k)

−1, and the ≤ symbol is to
be interpreted elementwise. Here, the constantmC = P(X ∈ C)

for X ∼ N (0N ,�N).

When k = 1, Proposition 1 implies

p̃1,N ∝ e−θ21 /(2�1,1)P(X̃N−1 ≤ �N−1,1 θ1/�1,1)1[0,∞)(θ1).
(2.3)
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Let SN denote the set of N × N covariance matrices whose
correlation coefficients are all nonnegative. The map θ1 	→
e−θ21 /(2�1,1) is decreasing and when �N ∈ SN , θ1 	→ P(X̃N−1 ≤
�N−1,1 θ1/�1,1) is increasing, on (0,∞). Thus, if�N ∈ SN and
it contains nonzero off-diagonal elements, p̃1,N is unimodal with
a strictly positive mode.

As another special case, suppose �N = �N(ρ) for some ρ ∈
(0, 1) and let k = N − 1. We then have,

p̃N−1,N ∝ e−θ (N−1)T �−1
N−1(ρ) θ (N−1)

�(aTθ (N−1))

N−1∏

i=1

1[0,∞)(θi),

with a = Cρ

( ∑N−1
i=1 θi

)
1N−1, where Cρ is a positive constant.

This density can be recognized as a multivariate skew-normal
distribution (Azzalini and Valle 1996) truncated to the nonneg-
ative orthant.

2.2. Mass-Shifting Phenomenon ofMarginal Densities

While the results in the previous section imply that themarginal
distributions shift mass away from the origin, they do not pre-
cisely characterize the severity of its prevalence. In this sec-
tion, we show that under appropriate conditions, the univariate
marginals assign increasingly smaller mass to a fixed neighbor-
hood of the origin with increasing dimension. In other words,
the skewing factor noted by Cartinhour (1990) begins to dom-
inate when the ambient dimension is large. In addition to the
dimension, we also quantify the amount of dependence in �N

contributing to this mass-shifting. On the other hand, when
the mode of a truncated multivariate normal distribution lies
in the interior of truncation region and not on the boundary,
the skewness is less pronounced. One of our main interests is to
understand the relation between themagnitude of themode and
the severity of themass shifting phenomenon. To the best of our
knowledge, such results have not been observed or quantified in
the literature.

In the following,we consider a truncatedmultivariate normal
distributionNC(µN ,�N)where the centerµN is assumed to be
coordinate-wise nonnegative and �N is a banded nonnegative
scalematrixwith equal variances. Such a banded structure arises
naturally in statistical applications as will be discussed in the
next section. Define the space of K-banded nonnegative and
equal-variance scale matrices as

BN,K =
{
�N = (σij) ∈ SN : σii ≡ σ 2 ∀ i, for some σ 2 > 0;

σij ∈ (0, σ 2),∀ |i − j| < K, σij = 0, ∀ |i − j| ≥ K
}
,

(2.4)

for 2 ≤ K ≤ N − 1. In the sequel, the bandwidth K is allowed
to increase with N.

For any�N ∈ BN,K , it can be viewed as a scaling of a positive
correlation matrix with σ 2 as the scale. We let ρij = σij/σ

2

for 1 ≤ i, j ≤ N and then define ρmax = maxi 
=j,|i−j|<K{ρij}
and ρmin = mini 
=j,|i−j|<K{ρij} as the maximum and mini-
mumoff-diagonal elements within the band separately to ensure
ρmax, ρmin ∈ (0, 1).

We assume µN = {μj} with μj ≥ 0 for j = 1, . . . ,N
and denote μ∗ = max1≤j≤N{μj}. For θ ∼ NC(µN ,�N) with

C = [0,∞)N , let αN,δ = P(θ1 ≤ δ). With these definitions
and assumptions in place, we are ready to state the following key
theorem.

Theorem 2 (Strictly banded case). Let �N ∈ BN,K be such that
(ρmin, ρmax) ∈ Q, where

Q =
{
(u, v) ∈ (0, 1)2 : u ≤ v,

u

2(1 − u)
≥ v

}
.

Fix β ∈ [0, 1). For any µN satisfying μ∗ ≤ Cρmin,ρmaxβ

Gα(ρmin, ρmax)(logK)1/2, there exists a constant K0 such that
whenever K ≥ K0, we have for any δ > 0,

αN,δ ≤ C′
ρmin,ρmax

(δ/σ ) (logK)1/2K−(1−β)Gα(ρmin,ρmax),

where Gα(ρmin, ρmax) = (1 − α)/ρmax − 2(1 − ρmin)/ρmin for
some constant α ∈ (0, 1), and Cρmin,ρmax , C

′
ρmin,ρmax

are positive
constants free of K,N.

In particular, if we consider a sequence of KN-banded scale
matrices �N ∈ BN,KN with KN → ∞ as N → ∞, then under
the conditions of Theorem 2, limN→∞ αN,δ = 0 for any fixed
δ > 0. Theorem 2, being non-asymptotic in nature, additionally
characterizes the rate of decay of αN,δ . Simulations illustrating
the conclusion of Theorem 2 can be found in Section S2.1 of the
supplementarymaterials, where the univariate marginal density
p̃1,N is displayed under different values of the dimension N
and the bandwidth K. To contrast the conclusion of Theorem 2
with two closely related cases, consider first the case when
θ ∼ N (0N ,�N). For any N, the marginal distribution of
θ1 is always N (0, 1), and hence αN,δ does not depend on N.
Similarly, if θ ∼ NC(0N ,�N) with �N a diagonal correlation
matrix, then for any N ≥ 1, the marginal distribution of θ1 is
N (0, 1) truncated to (0,∞) and αN,δ again does not depend
on N. In particular, in both these cases, αN,δ � δ for δ small.
Here we denote an � bn for positive sequences an, bn if 0 <

lim inf an/bn < lim sup an/bn < ∞. However, when a combi-
nation of dependence and truncation is present, an additional
(logK)1/2 K−Gα(ρmin,ρmax) penalty (obtained by setting β = 0)
is incurred. When μ∗ > 0, the theorem reveals an inverse
relationship between the allowable upper bound onμ∗ andαN,δ ,
implying that the mass shifting phenomenon is mitigated when
the mode of the truncated multivariate normal shifts to the
right.

For the conclusion of Theorem 2 to hold, our current proof
technique requires (ρmin, ρmax) to lie in the region Q, which is
pictorially represented by the black shaded region in Figure S3
in Section S2.3 of the supplementary material. Fixing α and
ρmax, one can see that a larger value of ρmin leads to a greater
value of Gα and thus a more severe mass-shifting problem. As a
special case, if all the nonzero correlations are the same, that is,
ρmin = ρmax, then the condition simplifies to ρmin > 0.5. More
generally, if we write ρmin = κρmax for some κ ∈ (0, 1], then the
condition reduces to ρmin ≥ 1 − κ/2.

Remark 1. For any fixedN, the marginal density of θ1 evaluated
at the origin, p̃1,N(0) = limδ→0 αN,δ/δ. Theorem 2 thus implies
in particular that limN→∞ p̃1,N(0) = 0, when K = KN → ∞
asN → ∞. Also, for any fixed 1 ≤ k ≤ N, if we denote βN,k,δ =
P(θ1 ≤ δ, . . . , θk ≤ δ), it is immediate that βN,k,δ < αN,δ , and
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hence limN→∞ βN,k,δ = 0, meaning the probability of a corner
region is vanishingly small for large N.

Theorem 2 assumed a strictly banded assumption on the
scale matrix which may be restrictive in real applications. We
nowgeneralize the result to “approximately” banded scalematri-
ces, which allow long range dependency between the variables.
For an arbitrary nonnegative scale matrix �N , we say it is
“approximately” banded if there exists some integer 2 ≤ K ≤
N − 1 such that there exists a matrix �′

N ∈ BN,K satisfying
||�′

N − �N || ≤ ε(N,K)||�N || for some sufficiently small
constant ε(N,K) > 0 that may depend on N,K. We denote the
operator norm of a matrix A by ||A|| = {λmax(A

TA)}1/2 where
λmax(A) denotes its largest eigenvalue.

As our analysis relies on Theorem 2, the assumptions are
directly applied to the banded approximating matrix �′

N . Akin
to Theorem 2, we assume �′

N = (σ ′
ij) ∈ BN,K and denote

the variance by σ ′2. We then denote by ρ′
min, ρ

′
max ∈ (0, 1) the

minimum and maximum values within the band after scaling
�′

N by σ ′2, respectively. And for positive sequences an, bn, we
denote an � bn if an ≤ Cbn for some universal fixed constant
C > 0, similarly we define an � bn.

Theorem 3 (Approximately banded case). Let θ ∼ NC(µN ,�N),
where�N is a positive definite scale matrix. Assume there exists
an integer 2 ≤ K ≤ N − 1 such that one can construct a
K-banded matrix �′

N ∈ BN,K that satisfies ||�N − �′
N || �

(N logK)−1||�N ||, and assume (ρ′
min, ρ

′
max) ∈ Q. Fix β ∈

[0, 1). For any µN satisfying μ∗ ≤ Cρ′
min,ρ

′
max

βGα(ρ′
min, ρ

′
max)

(logK)1/2, there exists some integer K0 > 0 such that for K >

K0, for any fixed δ > 0 and some α ∈ (0, 1),

αN,δ ≤ C′′
ρ′
min,ρ

′
max

δ (logK)1/2K−(1−β)Gα(ρ′
min,ρ

′
max),

where Q,Gα(ρ′
min, ρ

′
max) and Cρ′

min,ρ
′
max

are defined in Theo-

rem 2, and C′′
ρ′
min,ρ

′
max

is a positive constant that is independent

of K,N.

Theorem 3 states the upper bound of αN,δ remains the same
as in Theorem 2 even if the scale matrix deviates slightly from
a banded structure. As Theorem 2 holds for any K > K0, it
guarantees that the conclusion holds for �N so long as it can be
approximated by a wide enough banded matrix. To obtain such
banded approximating matrix for general matrices, one may
adopt commonly used techniques inmatrix approximation (e.g.,
Bickel and Lindner 2012; Yoo and Ghosal 2016). Indeed in Sec-
tion 3, we shall discuss an example where the induced posterior
scale matrix can be approximated by a banded matrix. Theo-
rem3 can be also applied to “approximately” banded scalematri-
ces with unequal variances. A similar result for the unequal-
variance case is deferred to Corollary S1 in Section S2.2 of
the supplementary materials. This generalization allows us to
apply our mass-shifting theory to a truncated normal posterior
induced from Bayesian isotonic regression estimation problem,
since the banded approximating matrix of the associated poste-
rior scale matrix may not have equal variances in general. More
discussion will be given in Section 3 in the context of Bayesian
constrained regression estimation.

3. Connections with Bayesian Constrained Inference

In this section, we connect the theoretical findings in the pre-
vious section to posterior inference in Bayesian constrained
regression models. We work under the setup of a Gaussian
regression model,

yi = f (xi) + εi, εi ∼ N (0, σ 2), i = 1, . . . , n, (3.1)

where we assume xi ∈ [0, 1] for simplicity. We are interested in
the situation when the regression function f is constrained to
lie in some space Cf which is a subset of the space of all con-
tinuous functions on [0, 1], determined by linear restrictions on
f and possibly its higher-order derivatives. Common examples
include bounded, monotone, convex, and concave functions.

As discussed in the introduction, a general approach is to

expand f in some basis {φj} as f (·) =
∑N

j=1 θjφj(·) so that the
restrictions on f can be posed as linear restrictions on the vector
of basis coefficients θ ∈ R

N , with the parameter space C for θ

of the form C = {θ ∈ R
N : Aθ ≥ b}. For example, when Cf

corresponds to monotone increasing functions, the set C is of
the form {θ1 ≤ θ2 ≤ · · · ≤ θN} under the Bernstein polynomial
basis (Curtis andGhosh 2011) and [0,∞)N under the integrated
triangular basis of Maatouk and Bay (2017). For sake of con-
creteness, we shall henceforth work with C = [0,∞)N . Under
such a basis representation, the model (3.1) can be expressed as

Y = �θ + ε, ε ∼ N (0n, In), θ ∈ C, (3.2)

where Y = (y1, . . . , yn)
T and � = {φj(xi)}ij is an n × N basis

matrix.
The truncated normal prior θ ∼ NC(0N ,�N) is conjugate,

with the posterior θ |Y ∼ NC(µN ,�N), with μN = �N�TY
and �N = (�−1

N + �T�)−1. To motivate their prior choice,
Maatouk and Bay (2017) begin with an unconstrained mean-
zero Gaussian process prior on f , f ∼ gp(0,K), with covariance
kernel K. Since their basis coefficients correspond to evalua-
tion of the function and its derivatives at the grid points (see
Appendix A for details), this induces a multivariate zero-mean
Gaussian priorN (0N ,�N) on θ provided the covariance kernel
K of the parent Gaussian process is sufficiently smooth. Having
obtained this unconstrained Gaussian prior on θ , Maatouk and
Bay (2017) multiply it with the indicator function 1C(θ) of the
truncation region to obtain the truncated normal prior.

We are now in a position to connect the posterior bias in
Figure 1 and Figure S2 (in the supplementary materials) to
the mass-shifting phenomenon characterized in the preceding
section. Consider an extreme scenario where the true function
f0(x) ≡ 0 for all x ∈ [0, 1]. Expanding f0 on a proper basis such
as the basis (M) in (A.1), one can express [f0(x1), . . . , f0(xn)]T =
�θ0 where the pseudo-true parameter θ0 = 0N (or approxi-
mately). Given the posterior θ |Y ∼ NC(µN ,�N), a draw from
the posterior can be represented as

θ = µN + θc, θc ∼ NC(0N ,�N). (3.3)

Under mild assumptions, µN concentrates near the origin
with high probability under the true data generating distribu-
tion. The mass-shifting phenomenon pushes θc away from the
origin, resulting in the bias. On the other hand, when the true
function is strictly monotone as in the left panel of Figure 1, all
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the entries ofµN are bounded away from zero, which masks the
effect of the shift in θc.

In strict technical terms, our theory is not directly applicable
to θc since the scalematrix�N is a densematrix in general.How-
ever, we show below that �N is approximately banded under
mild conditions. Figure S4 in Section S2.3 of the supplementary
materials shows image plots of �N for three choices of N using
the basis of Maatouk and Bay (2017) and sample size n = 500.
In all cases, �N is seen to have a near-banded structure.

We make this empirical observation concrete below. We first
state the assumptions on the basis matrix � and prior scale
matrix �N that allow the construction of a strictly banded
matrix approximation.

Assumption 1. We assume the basis matrix � is such that the
matrix �T � is q-banded for some 2 ≤ q ≤ N; also there exist
constants 0 < C1 < C2 < ∞ such that C1 (n/N) IN ≤ �T� ≤
C2 (n/N) IN .

One example of a basis satisfying Assumption 1 is a B-Spline
of fixed order q denoted as BN,q(x) with N = J + q over
quasi-uniform knot points of number J > 0; see, for example,
Yoo and Ghosal (2016). The basis (M) introduced in (A.1) also
satisfies Assumption 1 under some mild conditions on the grid
points by Lemma 2 in Appendix A. For any square matrix A,
let λmin(A), λmax(A) denote the smallest and largest eigenvalues
of A, respectively. Now define a uniform class of symmetric
positive definite well-conditioned matrices (Bickel and Levina
2008) as

M(λ0,α, k) =
{
�N = (ωij) : max

j

∑

i

{|ωij| : |i − j| > k}

≤ C k−α for all k > 0, and 0 < λ0 ≤ λmin(�N)

≤ λmax(�N) ≤ 1/λ0

}
, (3.4)

for some positive constants α, λ0 > 0.

Assumption 2. We assume the prior scale matrix �N ∈
M(λ0,α, k) defined in (3.4).

Given above assumptions, we are now ready to give the
approximation result of posterior scale matrix �N to a banded
symmetric positive definite matrix. We first introduce few new
notations. For positive sequences an, bn, we write an = O(bn) if
there exists a global constant C′ > 0 such that an ≤ C′bn and
an = o(bn) if an/bn → 0 as n → ∞. For any a ∈ R, we denote
by �a� the greatest integer that is no larger than a.

Proposition 4. If � and �N in �N = (�−1
N + �T�)−1 satisfy

Assumptions 1 and 2, for sufficiently small ε < min{λ0, 1/λ0}
and for any integer n0 ≥

⌊
log[λ0(λ0 − ε)/(1 + λ20)]/ log κ

⌋
,

there exists r � log(1/ε) such that we can find a K-banded,
symmetric and positive definite matrix �̃N with ||�N − �̃N || �
δε,κ , where K = max(n20r, n0q) with q defined in Assumption 1,
δε,κ = (ε + κn0+1)(N/n) and 0 < κ < 1 is a fixed constant.

Remark 2. It is easy to show that ||�N || � N/n under Assump-
tions 1 and 2. Proposition 4 implies one can construct �̃N with
||�̃N || � N/n. Moreover, under model (3.2), if Assumptions 1
and 2 are satisfied, then by letting N = o(n) and choosing
K and n0 such that max{K, n0} � (logN)t for some constant

t > 0 and for sufficiently large N, one has ||�N − �̃N || �
(N logK)−1||�N ||.

Proposition 4 states under mild conditions one can always
construct a banded positive definite matrix that approximates
�N in operator norm. Proposition S1 (in the supplementary
materials) guarantees if δε,κ is small enough, the marginal prob-
ability αN,δ will not change significantly if �N is replaced by
its banded approximate �̃N . These are the key ingredients to
translate themass-shifting results for the prior in Section 2 to the
marginal posterior distribution. To this end, we adopt similar
notations and assumptions used in Theorem 3. Assumptions
regarding the correlation structure are imposed on the banded
approximating matrix �̃N = (̃σij). Let σ̃ 2

(1), σ̃
2
(N)

denote the

smallest and largest variances of �̃N . Without loss of generality,
we assume σ̃11 = σ̃ 2

(1) for simplicity. We denote by σ̃min =
mini 
=j,|i−j|<K {̃σij}, σ̃max = maxi 
=j,|i−j|<K {̃σij} the smallest and

largest positive off-diagonal entries of �̃N , respectively. By scal-
ing �̃N by the value of its smallest variance, we let ρ̃ij =
σ̃ij/σ̃

2
(1) for all 1 ≤ i, j ≤ N. Further define κ̃ = σ̃ 2

(N)
/σ̃ 2

(1),

ρ̃min = σ̃min/σ̃
2
(1) and ρ̃max = σ̃max/σ̃

2
(1). In addition, we

assume ρ̃min, ρ̃max ∈ (0, 1).

Theorem 5. Let θ |Y ∼ NC(µN ,�N) and assume �̃N

obtained from Proposition 4 satisfies �̃N ∈ BN,K and ||�N −
�̃N || � (N logK)−1||�N || for sufficiently large N. Assume
(ρ̃min, ρ̃max, κ̃) ∈ Qκ̃ , where

Qs =
{
(u, v, s) ∈ (0, 1)2 ⊗ [1,∞) : u ≤ v,

u

2(s − u)
≥ v

}
.

Fix an arbitrary δ > 0.
(a) Recall θc ∼ NC(0N ,�N) defined in Equation (3.3), then

there exists a sufficiently large integer K0 such that for K > K0,

�(0 < θc1 < δ|Y)

≤ Cρ̃min,ρ̃max ,̃κ(δ/σ̃(1))(logK)1/2K−Gα(ρ̃min/̃κ , ρ̃max),

where the functionGα is same inTheorem2 for someα ∈ (0, 1).
The constant Cρ̃min,ρ̃max ,̃κ is free of N,K.

(b) In addition, there exists a sufficiently large integer K ′
0

such that for K > K ′
0, with at least P0-Probability

2 1 −
C′
1(logK)(1−β)/2 exp{−C′

2(logK)1−β} for some fixed constants
C′
1,C

′
2 > 0 and β ∈ (0, 1), we have

�(0 < θ1 < δ|Y)

≤ C′
ρ̃min,ρ̃max ,̃κ

(δ/σ̃(1))(logK)1/2K−Gα(ρ̃min/̃κ , ρ̃max),

where the function Gα is same as in Theorem 2 for some α ∈
(0, 1). The positive constant C′

ρ̃min,ρ̃max ,̃κ
is free of N,K.

Remark 3. For any κ̃ ≥ 1, (ρ̃min, ρ̃max, κ̃) ∈ Qκ̃ implies
ρ̃min > 1/2. For any fixed ρ̃min ∈ (1/2, 1), the condition
u/{2(̃κ − u)} ≥ v defined in Qκ̃ implies that κ̃ ≤ ρ̃min + 1/2.
This leads to 1 ≤ κ̃ < 3/2, which indicates the ratio of
largest and smallest variances cannot be greater than 3/2. Thus,
if κ̃ ≥ 1, the area Qκ̃ places a slightly stronger restriction
on (ρ̃min, ρ̃max) than the one in the equal-variance scenario
considered inTheorem3. The stronger restriction can be viewed
as a price to pay to accommodate a more complex dependence
structure with unequal variances.

2
P0 denotes the true data generating measure.
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Theorem 5 characterizes the decaying rate of the marginal
posterior probability assigned over a fixed neighborhood of the
truth. This result is a combined effect of two key phenomena: the
posterior mode µN is close to the origin with high probability
and the posterior scale matrix �N is approximately K-banded.
The posterior distribution thus inherits the undesirable mass-
shifting property as exhibited by Theorem 5. As a corollary
of Theorem 5, we now show that the posterior of �θ fails to
contract at the optimal rate toward a true flat function f0. We
use E0(·) to denote expectation taken with respect to the true
probability density function.

Proposition 6. Assume that Y ∼ N (0n, In) and the basis matrix
� satisfies Assumption 1. For a truncated multivariate normal
prior θ ∼ NC(0N ,�N) with C = [0,∞)N and the prior scale
matrix �N satisfying Assumption 2,

E0 �
(
||�θ − f0|| �

√
N|Y

)
→ 0 as n,N → ∞.

Remark 4. As an intermediate result in the proof of Proposi-
tion 6, we observed that �(θ |Y) also fails to contract at the
optimal rate toward the pseudo-true parameter vector θ0.

4. A De-biasing Remedy based on a Shrinkage Prior

4.1. A Dependent Global-Local Shrinkage Procedure

In this section, we propose a simple modification to the trun-
cated normal prior that can alleviate the issues related to such
mass-shifting phenomenon. Among remedies proposed in the
literature (Neelon and Dunson 2004; Dunson 2005; Curtis and
Ghosh 2011), a discrete point-mass mixture shrinkage prior
was employed θk ∼ (1−π)δ0 +πND(μk, σ

2
k ) coordinate-wise

on the parameter vector {θk}. The mass at zero allows positive
prior probability to functions having exactly flat regions, and
the normal density truncated to set D incorporates the non-
decreasing constraint. For example, Curtis and Ghosh (2011)
considered D = (0,∞). In contrast to a regular variable selec-
tion scenario where coefficients are treated independently, here
the coefficients (might be related to function evaluations) are
assumed to be a priori correlated to facilitate smoothness of the
function estimates. The hyperparameters {μk, σ

2
k } of truncated

normal distributions can also be chosen to encompass certain
dependence structure, see, for example, Dunson (2005) and
Neelon and Dunson (2004).

Although possible in principle, introduction of such discrete
structure (point-masses) while retaining the dependence struc-
ture between the coefficients becomes somewhat cumbersome
in addition to being computationally burdensome. With such
motivation and the additional consideration that in most real
scenarios a function is approximately flat in certain regions,
we propose a shrinkage procedure as a remedy to replace the
coefficients θ ∈ C by ξ = (ξ1, . . . , ξN)T, where

ξj = τ λj θj, j = 1, . . . ,N. (4.1)

The parameter τ provides global shrinkage toward the origin
while the λjs provide coefficient-specific deviations. We
consider default (Carvalho, Polson, and Scott 2010) half-
Cauchy priors C+(0, 1), which has a density proportional to

(1+t2)−1
1(0,∞)(t), on τ and theλjs independently.We continue

to use a dependent truncated normal prior θ ∼ NC(0N ,�N)

which in turn induces dependence among the ξjs. Our prior
on ξ can thus be considered as a dependent extension of the
global-local shrinkage priors (Carvalho, Polson, and Scott 2010)
widely used in the high-dimensional regression context. We
namedour prior as dgl-tmvn (dependent global local truncated
multivariate normal) prior. Figure S8 in Section S8.1 of the
supplementary materials shows prior draws for the first and
third components of both θ and ξ , based on which the marginal
distributions of the ξjs are clearly seen to place more mass near
the origin while retaining heavy tails.

We investigate the proposed shrinkage procedure in the con-
text of estimating monotone functions as described in (A.1).
The procedure can be readily adapted to include various other
constraints. Replacing θ by ξ in (M) in (A.1), we can write (3.1)
in vector notation as

Y = ζ1n + τ ��θ + ε, ε ∼ N (0n, σ
2In). (4.2)

Here, � is an n × N basis matrix with ith row �T
i where �ij =

ψj−1(xi) for j = 1, . . . ,N and the basis functions ψj are as in

(A.1). Also, Y = (y1, . . . , yn)
T, � = diag(λ1, . . . , λN) and ε =

(ε1, . . . , εn)
T.

The model is parameterized by ζ ∈ R, θ = (θ1, . . . , θN)T ∈
C, λ = (λ1, . . . , λN)T ∈ C, σ ∈ R

+ and τ ∈ R
+. We

place a flat prior π(ζ ) ∝ 1 on ζ . We place a truncated normal
prior NC(0N ,�N) on θ independently of ζ , τ and λ, where
the prior scale matrix is defined as �N = (�jj′) with �jj′ =
k(uj − uj′), uj = j/(N − 1), j = 0, 1, . . . ,N − 1, and k(·) is
the stationary Matérn kernel with smoothness parameter ν > 0
and length-scale parameter � > 0. To implement the model, we
place improper prior π(σ 2) ∝ 1/σ 2 on σ 2.

To conclude this section, we rigorously justify the de-biasing
property of the proposed procedure by examining the marginal
posterior probability over the interval (0, δ) of ξ1 for any fixed
δ > 0. For brevity and consistency, we assume observations
Y ∼ N (�θ0, In) with θ0 ≡ 0N , and consider model (4.2) with
ζ = 0 and σ = 1. Theorem 7 asserts that the mass-shifting
phenomenon of marginal posterior distribution is completely
alleviated by the proposed prior. The contrast with the conclu-
sion of Theorem 5 is immediately apparent.

Theorem 7. Suppose Assumptions 1 and 2 hold for the basis
matrix � and prior scale matrix �N separately. For ξ defined

in equation (4.1) with λj
i.i.d.∼ C+(0, 1), choose τn � n−(1+α) for

some constant α > 0, then for any fixed δ > 0, E0 �(0 < ξ1 <

δ|τn,Y) → 1, a.s. as n,N → ∞.

4.2. Asymptotic Properties

In this section, we study the asymptotic properties of the result-
ing posterior distribution, when the underlying true function is
allowed to be flat in certain regions. To that end, we consider the
following class of continuously differentiable functions

F+ :=
{
f ∈ C[0, 1] : f (0) = 0, f ′(x) > 0∀ x ∈ [0, r0], f ′(x) = 0

∀ x ∈ (r0, 1], for some r0 ∈ [0, 1], and
f ′(x) is Lipschitz continuous

}
.
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F+ includes nondecreasing functions which are strictly increas-
ing followed by a flat region, the length of which is controlled
by r0, which is unknown. Specifically, r0 = 1 implies a strictly
increasing function and r0 = 0 implies f ≡ 0. Assume the true
function f0 ∈ F+. Given n observed covariates {xi}, we assume
the observations are drawn independently from the true model
by Yi ∼ N (f0(xi), σ

2
0 ) for i = 1, . . . , n, with the noise level

σ0. Next, we consider a simplified setting of our model (4.2) by
dropping the intercept term

Y = �θ + ε, ε ∼ N (0n, σ
2In), (4.3)

where (θ , σ 2) are the unknown parameters of interest. In gen-
eral, the model (4.3) can be misspecified for estimating f0 ∈ F+
and hence we shall investigate posterior convergence around the
pseudo-true parameter by θ0, which is obtained by minimizing
the Kullback–Leibler divergence between the true data gener-
ating distribution and the model. In many cases, it is possible
to quantify the gap between the true function and the pseudo-
true parameter. For instance, if one adopts the basis (M) in (A.1)
to construct � in (4.3), {θ0j} can be obtained by evaluating
f0 at equally spaced grid points around which the compactly
supported triangular basis functions are supported. In this case,
we can show ||f0 − �θ0||∞ � N−1 (refer to Lemma 1 of
Appendix A) where N denotes the number of basis functions
used. For any function f defined on some X ⊂ R, we denote
||f ||∞ = supx∈X |f (x)|.

Using the equivalence property of basis (M) (refer to
Appendix A and Lemma 3 therein), one can convert the
constraint f0 ∈ F+ equivalently to the following constraint
set C0 of θ0,

C0 :=
{
θ ∈ R

N : θj > 0, j ∈ S0; θj = 0, j ∈ Sc0, S0 = {1, . . . , s0}
}
,

for some integer 0 < s0 ≤ N. The set C0 then contains
the indices of all nonzero coordinates corresponding to the
increasing portion of f0. Thus, f0 ∈ F+ is equivalent to θ0 ∈ C0.
Representing θ0 = [θ0S0 , 0Sc0 ], the presence of a flat region of f0
can be equivalently expressed in terms of sparsity of the pseudo-
true parameter θ0. Without the knowledge of the true flatness,
our proposed dgl-tmvn prior incorporates the constraint θ ∈
C = [0,∞)N through the following hierarchical representation

θ |τ ,� ∼ NC(0N , τ
2��N�), � = diag(λ1, . . . , λN),

(4.4)

λj
iid∼ C+(0, 1), σ 2 ∼ IG(a0, b0), (4.5)

where τ is a global parameter to be chosen later, and (a0, b0)
are the shape and rate parameters of the inverse-Gamma prior.
An application of Bayes’ theorem with (4.3) as the likelihood
and (4.4)–(4.5) as the prior leads to the posterior distribution of
(θ , σ 2) given data Y denoted by �(· |Y) and can be expressed
as �{(θ , σ 2) ∈ B|Y} =

∫
B Pn,σ (Y)d�(θ |λ)d�(λ)d�(σ 2)/∫

Pn,σ (Y)d�(θ |λ)d�(λ)d�(σ 2), where the likelihood is
defined asPn,σ (Y) = (2πσ 2)−n/2 exp{− ‖Y − �θ‖2 /2σ 2} and
B is a Borel subset of RN+1. In contrast to a regular truncated
multivariate normal prior, the marginal distributions of the
proposed prior are designed to assign high probability near
the origin by letting the global parameter τ to be sufficiently
small, thusmitigating themass-shifting phenomenon associated

with the truly insignificant coefficients. On the other hand,
the heavy-tailed prior for λj’s combined with the dependence
across the coordinates result in a good estimation of the nonzero
coordinates, while ensuring smoothness.

We now state assumptions on the basis matrix�T� and the
pseudo-true parameter θ0.

(A1) Assume N = o(n), and assume the number of nonzero
coordinates s0 satisfies s0 ≤ N and s0N logN � n.

(A2) Assume for any nonempty subset S ⊂ {1, . . . ,N}, there
exist constants 0 < k1 < k2 < ∞ such that k1(n/N) ≤
λmin(�

T
S �S) ≤ λmax(�

T
S �S) ≤ k2(n/N), where�S is the

n × |S| sub-matrix of � with columns {�j : j ∈ S}.
(A3) Assume the pseudo-true parameter θ0 satisfies maxj∈S0

{|θ0j |} ≤ c En, where c ∈ (0, 1) and En is a positive
nondecreasing sequence.

Assumptions (A1)–(A3) are commonly assumed for proving
optimal recovery results in high dimensional linear models.
Assumption (A1) restricts the number of nonzero coefficients
|S0| = s0 � n/(N logN), corresponding to the increasing
portion of the true function. However, observe that we refrain
from assuming that s0 = o(N). Akin to the high-dimensional
linear regression setting (Narisetty andHe 2014; Song and Liang
2017), Assumption (A2) ensures local invertibility over arbitrary
directions of the basis matrix and implies ||�T�|| � n/N.
Assumption (A2) coincides with the restricted isometry prop-
erty (Candes, Romberg, and Tao 2006), characterizing the near-
orthonormality of the basis matrix�T

S �S, for any nonempty set
S, up to a scaling factor of value (k1 + k2)n/N. This assumption
holds for a wide variety of basis functions, for example, B-
Splines (refer to Lemma 8.9 of Yoo and Ghosal (2016) with a
mild modification) and the considered basis (M) in (A.1) (see
Lemma 2 in Appendix A). A similar assumption over B-Spline
basis matrix can also be found in Bai et al. (2020). Assumption
(A3) is commonly used on the growth of nonzero coefficients
considered in optimal recovery in sparse (multivariate) linear
models, refer to Song and Liang (2017), Chakraborty, Bhat-
tacharya, and Mallick (2020), and Wei and Ghosal (2020). We
next state the posterior contraction results regarding the param-
eter recovery and prediction.

Theorem8. Let εn � max{
√
s0 log n/n, 1/N}. SupposeAssump-

tions (A1)–(A3) hold and consider the prior on (θ , σ 2) defined
in Equations (4.4) and (4.5). If τ � n−(1+α) for some constant
α > 0, then

sup
f0∈F+

Ef0 �
(
θ : ‖θ − θ0‖ ≥ M1

√
Nεn|Y

)
→ 0

a.s. as n,N → ∞, (4.6)

sup
f0∈F+

Ef0 �
(
f :

∥∥f − f0
∥∥ ≥ M2

√
nεn|Y

)
→ 0

a.s. as n,N → ∞, (4.7)

for positive constantsM1,M2, large enough.

Remark 5. For s0 = O(N), one may obtain the best rate εn �
(n/ log n)−1/3 by choosing N � (n/ log n)1/3 and s0 = [α0N]
in the expression for εn, for some fixed constant α0 ∈ (0, 1].
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The proof of Theorem 8 extends existing results (Pati
et al. 2014; Chakraborty, Bhattacharya, and Mallick 2020) on
prior concentration for independent global-local shrinkage
priors to its present dependent counterpart, which may be of
independent interest. We also adapt testing arguments from
high-dimensional regression problems (Song and Liang 2017;
Wei and Ghosal 2020) to the present setup. Theorem 8 holds
uniformly for all functions in F+. As the procedure does
not require the knowledge of r0, the proposed model can
successfully recover flat regions in the true function. When
s0 = O(N), the posterior contracts at a near minimax rate for
isotonic regression problems; refer to Van der Vaart (2000),
Chatterjee, Guntuboyina, and Sen (2015), Gao, Han, and Zhang
(2020), and Chakraborty and Ghosal (2021) for a Bayesian
counterpart. In a sparse linear regression setting with covariate
matrix X, the eigen values of XT

S XS are typically allowed to grow
atO(n) (refer to Theorem 2 in Castillo et al. (2015)) for optimal
recovery. On the other hand, to reflect the inherent smoothness,
the eigenvalues of the basis matrix �T

S �S are assumed to grow
as O(n/N) in Assumption (A2). This accounts for the extra
factor

√
N in the posterior contraction rate. It is easy to see that

the obtained rate matches the Theorem of Castillo et al. (2015)
by letting maxi{(XTX)ii} � n/N which is the best possible
attainable rate in a minimax sense. Overall, our result provides
a framework for obtaining optimal posterior contraction using
a dependent global-local shrinkage prior, which can be more
broadly relevant.

Next, define the posterior mean of parameter as θ̂ =∫
θ �(θ |Y) dθ and consider the Bayes estimate f̂ = �θ̂ .

The optimality of the posterior contraction rate in Theorem 8
implies, as a byproduct (Castillo and van der Vaart 2012), that
the posterior mean converges at the same rate as sample size
goes to infinity, in contrast to the observed bias for truncated
multivariate normal priors in the right panel of Figure 1,
and Figure S2 in the supplementary materials. The result is
summarized in the following Corollary.

Corollary 9 (Posterior mean). Under the conditions of The-
orem 8 and for the εn defined in Theorem 8, we have
supf0∈F+ Ef0 ||̂f − f0||2 � nε2n.

4.3. Empirical Illustrations

In this section, we discuss the efficacy of our proposed de-
biasing approach based on the dgl-tmvn prior and compare
its prediction performance with other existing methods, such
as the model based on an independent global local shrinkage
prior (by setting the scale matrix to be an identity matrix). The
data is generated from (3.1) with true σ = 0.5 and four different
choices of the true f , namely,

f1(x) = (5x − 3)3 1[0.6,1](x), f2(x) =
3

1 + exp(−10x + 2.1)
,

f3(x) =
√
2

100∑

l=1

l−1.7 sin(l) cos(π(l − 0.5)(1 − x)), f4(x) = 5x2,

for x ∈ [0, 1]. The function f1, which is nondecreasing and flat
between 0 and 0.6, was used as the motivating example in the

introduction. The functions f2 and f3 are both approximately
flat between 0.7 and 1. In particular, f3 is decreasing in certain
regions which allows us to evaluate the performance of the
proposed model under slight model misspecification. Finally,
f4 is considered for testing the performance of the proposed
method in recovering strictly monotone functions.

We used the same model set up and prior specifications
described in Section 4.1 with k(·) as the stationary Matérn ker-
nel with smoothness parameter ν > 0 and length-scale parame-
ter � > 0. In the comparisons below when the hyperparameters
are not fixed, we place compactly supported priors ν ∼ U(0.5, 1)
and � ∼ U(0.1, 1) on ν and �. The hyperprior and covariance
kernel choices are made with utmost care; detailed justifications
are deferred to Section S8.5 of the supplementary materials
along with the sensitivity study results on the model robustness
to different covariance kernels and mild variations of hyper-
priors. We also develop a data-augmentation Gibbs sampler
which combinedwith the embedding technique of Ray, Pati, and
Bhattacharya (2020) results in an efficient MCMC algorithm
to sample from the joint posterior of (ζ , θ , λ, σ 2, τ 2, ν, �); the
details are in Section S8.2 of the supplementary materials.

First, we discuss the improvement due to the shrinkage. We
consider a sequence of priors, becoming progressively complex,
beginning with a truncated normal prior (tmvn) and gradually
adding more structure to eventually arrive at the proposed
shrinkage prior (dgl-tmvn). Specifically, four variants of tmvn
priors are compared, a detailed elaboration is deferred to Section
S8.3 of the supplementary materials. We generate 500 pairs of
response and covariates and randomly divide the data into 300
training samples and 200 test samples. For all of the variants
above, we set the number of knots N = 150. We provide plots
of the function fit for four functions along with pointwise 95%
credible intervals in Figures S9– S12 in the supplementary
materials, and also report the mean squared prediction error
(mspe) at the bottom of the sub-plots. The results show that
dgl-tmvn performs the best, both visually and also in terms of
mspe.

We now focus on the performance of the dgl-tmvn prior
against that of some potential competitors. Three different pri-
ors are compared: our proposeddgl-tmvnprior (dgl for short),
the tmvn prior with updating hyperparameters and incorpo-
rated with an independent global-local shrinkage prior (igl for
short), which can be considered as the continuous version of
the independent univariate point-mass mixture priors, and the
tmvn prior with the global shrinkage where we consider the
prior on τ as π(τ 2) ∝ 1/τ 2 (tmvn for short). The simulation
studies are conducted over 25 replicated datasets of size 500
which are randomly split into training set of size 300 and test
set of size 200 for each function under the same setting as the
previous cascading analysis. For each replicate we run a Gibbs
sampler of 15,000 iterations with the first 5000 discarded as
burn-in. To compare the performance specifically for the flat
region and for the increasing region separately, in addition to
the average mspe, we report the average partial mspes corre-
sponding to the flat portion (mspe flat) and to the increasing
portion (mspe incr.), respectively. Finally, we look into the aver-
age coverage probability over the true function to evaluate the
concentration of resulting posterior distribution toward the true
function. Out-of-sample prediction results on the test data are
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Table 1. Results of three methods over test samples for f1 , f2 , f3 , and f4 .

Function Method MSPE (total) MSPE (flat) MSPE (incr.) Coverage

f1 dgl 11.36(2.62) 8.13(1.95) 14.71(4.79) 0.715
igl 13.44(2.62) 9.86(1.70) 17.32(5.23) 0.651

tmvn 65.63(7.21) 14.53(2.59) 102.6(11.16) 0.391
f2 dgl 8.29(1.78) 7.13(2.64) 8.56(2.32) 0.887

igl 9.55(1.92) 8.40(2.61) 9.84(2.54) 0.856
tmvn 8.32(2.11) 8.61(2.91) 7.94(2.75) 0.793

f3 dgl 7.76(1.74) 9.16(2.9) 6.87(1.87) 0.918
igl 7.72(1.74) 8.57(2.45) 7.18(1.74) 0.946

tmvn 11.36(1.33) 15.27(2.85) 8.97(1.76) 0.765
f4 dgl 8.67(2.15) – 8.67(2.15) 0.952

igl 9.34(2.16) – 9.34(2.16) 0.969
tmvn 5.68(1.61) – 5.68(1.61) 0.979

NOTE: Thenumberof knotsN = �n/8�. All typesofMSPEs×102 (standarddeviations

×102) and the coverage are averaged over 25 replicates. The best reported result
of corresponding error measure in each column is highlighted with bold font.

summarized inTable 1. The plots of the function fit are displayed
with zoomed-in inset plots over the flat region in Figures 2 and
3 for functions f1, f3, in Figures S5 and S6 in Section S2.3 of the
supplementary materials for the functions f2, f4, respectively.

Results in Table 1 show employing any shrinkage procedure
with truncated normal priors improves the prediction accuracy
significantly in terms of all types of mspes and the coverage for
all four functions, providing strong support on the de-biasing
properties of the shrinkage procedures. When the model is
not misspecified, as fitting f1 and f2, the dgl prior obtains the
smallest total mspes and that for flat region alongwith the higher
posterior coverage than the igl prior. This result also agrees
with the zoomed-in inset plots in Figures 2 and S5 which show
smaller biases are induced by the dgl over the flat regions of f1
and f2. For the purpose of prediction, the dependent shrinkage
prior performs slightly better than its independent counterpart
even the true coefficients are (nearly) zero. The enforced inde-
pendence in the igl results in a loss of the necessary amount of
smoothness which is amplified when estimating the increasing
region of f1, f2 where a higher level of dependence among the
coefficients is required. We notice that the regular tmvn obtains
the lowest mspe in estimating the increasing region of f2, as
the original correlation structure of the truncated normal prior
is adequate to model smooth and strictly increasing functions.
Based on the simulation results, it is evident that the dgl prior
provides the best tradeoff between estimating the increasing
region and estimating the flat region among three priors.

Simulation results for f3 warrant some attention. When the
true function contains some discontinuities such as f3, the inde-
pendent shrinkage prior is expected to be favorable for estimat-
ing the discontinuous area. This is supported by the empirical
observations that the igl obtains the lowest mspe overall and
for the flat region as well as the highest coverage. The zoomed-in
inset plot of igl in Figure 3 also shows it captures the trend of the
true curve with a small shift. However, when a dependent trun-
cated normal prior is employedwith a global and local shrinkage
procedure the performance is not compromised significantly.
The total mspe of the dgl is very close to that of the igl and
the coverage is comparably good. Figure 3 shows the estimation
over the flat region of the dgl is also similar to the igl and its
95% credible interval contains the true function. We notice that
the prediction of the dgl is more biased compared to that of

the igl over the region where the slope of true curve changes
drastically. We attribute this partially to the independent local
shrinkage parameter corresponding to the significant compo-
nents weaken the global shrinkage on the correlation between
significant and the insignificant coefficients. This observation
motivates a variant of dgl prior which is discussed in Sec-
tion 4.4. Finally, results for f4 provide additional evidence that
performance of dgl is not deteriorated when used to estimate
a strictly increasing underlying function. In this case, both the
error measures and out-of-sample prediction plots in Figure
S6 in Section S2.3 of the supplementary materials indicate that
dgl performs comparably to tmvn, and results in smoother
predictions compared to igl.

Additional comparison of the proposed dgl-tmvn prior has
been conducted to a very recent state-of-the-art method named
bsar, which is developed by Lenk and Choi (2017) and imple-
mented in the R package bsamGP. For the out-of-sample pre-
diction performance of bsar, refer to Figure S13 in Section
S8.4 of the supplementary material, based on which it is clear
that the performance of global-local shrinkage procedure is
comparable with that of bsar. It is important to point out
that bsar is also a shrinkage based method that allows for exact
zeros in the coefficients in a transformedGaussian process prior
through a spike and slab specification. Based on the above
empirical studies, we conclude dgl prior is most robust for
estimating various nondecreasing functions with potential flat
regions compared to other priors under consideration.

We conclude this section with a brief discussion on the mix-
ing behavior and computational efficiency of theGibbs samplers
based on the compared priors. Boxplots of the effective sample
sizes (ess) of the MCMC samples of estimated function values
based on 200 test points are displayed in Figure S22 in Sec-
tion S8.6 of the supplementary materials for each function and
model. The reported ess values are averages over 25 replicates.
Moreover, the averaged Monte Carlo standard errors (mcse) in
estimating function values over test points for each prior are
compared with the averaged standard deviation of test response
samples over 25 replicates in Table S2 of Section S8.6 of the
supplementary materials. All diagnostic measurements indicate
theMCMC chains of eachmodel discussed here converged well.
The computing time of running the Gibbs sampler of 15,000
iterations under the same setting for one replicated dataset of
the function f1 based on dgl, igl and tmvn are 39.26, 13.68,
and 47.72 sec on a machine with a 8-Core processor and 32GB
RAM. MCMC algorithms related to dgl and tmvn are efficient
due to implementing the embedding technique of Ray, Pati,
and Bhattacharya (2020) that avoids drawing samples from
truncated multivariate normal distribution.

4.4. A Variant of the dgl-tmvn Prior

As discussed in previous section, the amount of shrinkage on
the correlation between the significant and the nonsignificant
coefficients is slightly weakened by the local shrinkage parame-
ters corresponding to the significant coefficients. This motivates
us to place τ ∼ C+(0, δτ ), where δτ < 1 is the scale parameter
for the half-Cauchy prior, to facilitate stronger global shrinkage.
Such modification will not affect the local shrinkage param-
eters significantly as it has been shown that a default Cauchy
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Figure 2. Out-of-sample prediction on f1 with zoomed-in inset plot for x ∈ [0, 0.6]. The number of knots N = �n/8�. Green points are the test samples, the red curve is
the true function, the blue curve is the posterior mean and the gray shaded area is the 95% pointwise prediction interval.

prior on λjs ensures that the global shrinkage on significant
coefficients tends to be negligible regardless of how small the
global parameter is (Polson and Scott 2010). Based on these
properties, we expect this version of dgl helps recover the flat
region in more complicated scenarios while the estimation over
the increasing region remains unaffected. Based on numerous
experimentations on the choice of δτ we find that δτ = 0.5
provides desired level of global shrinkage. On the contrary,
choosing δτ > 1 imposes weaker global shrinkage and allows
the prior to enforce stronger dependence among coefficients.
For estimating f4, dglworks slightly betterwith δτ > 1 than that
with a smaller δτ . These observations imply the model might
be sensitive to hyperprior choices for local-global shrinkage
parameters. However, sensitivity studies show the dgl model
is robust as long as δτ is chosen within a reasonable range.
For more details, refer to Section S8.5 of the supplementary
materials. A thorough investigation on the theoretically prop-
erties of this version of dgl-tmvn is considered as the future
work.

5. Application on Real Datasets

In this section, we provide performance illustrations of dgl-
tmvn implemented on real-life datasets. We applied the pro-
posed approach to analyze two datasets where either the under-

lying true function is known to be monotone with a flat region
or the data indicate amonotone patternwith certain flat regions.
Since there is no strong indication that the dgl prior is sensitive
to the choice of covariance kernel function based on the sensi-
tivity study in Section S8.5 of the supplementary materials, we
use theMatérn kernel function and we resort to the samemodel
and prior specifications as described in Section 4.3. We used the
version of dgl prior described in Section 4.4 to ensure better
detection of the monotone trend in addition to capturing the
flat region.

We compared the model performance based on dgl and
tmvn priors based on model selection criteria such as the
Watanabe-Akaike information criteria (waic) in addition to
visual representations. For datasets which appear to contain
certain flat regions, we compare the waic values of models
fitting the observed flat region as well. We ran our sampler for
15,000 MCMC iterations, first 5000 of which were discarded as
burn-in, and every 10th subsequent observation was stored.
The same was done for the Gibbs sampler with the tmvn
prior. Details on the mixing behavior of MCMC samples of the
two models are deferred to Section S8.6 of the supplementary
materials. Similar to Section 4.3, the boxplots of ess and
averaged mcse are reported for each dataset and each model.
Results indicate that the MCMC chains for both models
converged.
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Figure 3. Same as Figure 2 for f3 with zoomed-in inset plots where x ∈ [0.6, 1].

5.1. Age and IncomeData

We use the age and income data that consist of age (in years)

and the logarithm of income (log.income) on 205 Canadian

workers from a 1971 Canadian Census Public Use Tape. This

dataset is readily available for public use and accessible through

the R package SemiPar. Our goal is to estimate logarithm of

income as function of age. Data suggest that the true underlying

function is monotone nondecreasing with a flat region. We

provide performance illustrations of the models with dgl and

tmvn priors along with waic values for overall fitting and for

fitting the observed flat region only. The reportedwaic values in

Figure 4 suggest that themodel with dgl fits the data better than

that with tmvn. This result is also consistent with the model fit

result shown in Figure 4. The predictive curve of themodel with

dgl aligns with the data points well, while the model with tmvn

appears to fail to capture the trend for age ≤ 26 and induces

a large bias. For the region with age ≥ 26, although the fitted

curves of bothmodels are approximately flat and similar, we find

that the dgl provides a smaller value 274.147 of the waic for

modeling this region only, compared to a waic value of 284.259

for the model with tmvn. This provides some evidence that the

model with dgl is more reliable to fit the data over the “flat”

region.

5.2. Light Detection and Ranging Data

The light detection and ranging (LiDAR) data have 221 obser-
vations from a LiDAR experiment and it contain information on
range and logratio. The predictor range is the distance
traveled before the light is reflected back to its source and the
response variable logratio is the logarithm of the ratio of
received light from two laser sources. This data is obtained from
the R package HRW. The data suggest that the true underlying
function is monotone nonincreasing with a flat region. Similar
to previous analyses, the overall waic value of the model with
dgl is lower than themodel with tmvn, indicating the dgl prior
is more appropriate for fitting the LiDAR data. Figure 5 shows
the model with tmvn captures the overall trend of the data,
however, the predictive curve of dgl seems to align with the
data better, specifically over the “flat” region and over the region
where the value of logratio starts to decrease. To confirm
this, we compared the waic values of both models for fitting
the region with range ≤ 550. The model with dgl obtains a
smaller waic value of −328.563 against the value of −310.736
for the model with tmvn. In this sense, the prediction of the
model with dgl seems to capture the dynamics between the
range and the received lights, for instance, finding a threshold
value of the range that begins to affect the ratio of received lights
from two sources.
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Figure 4. Estimation accuracy of the two competing methods applied on the dysphoria score data. The black solid curve is the posterior mean, the region within two
dotted blue curves represent 95% pointwise credible interval and the green dots are the observed data points. The WAIC values corresponding to the methods are shown
in the sub-plots.

Figure 5. Same as Figure 4 for the LiDAR data.

6. Discussion

A seemingly natural way to define a prior distribution on a

constrained parameter space is to consider the restriction of

a standard unrestricted prior to the constrained space. The

conjugacy properties of the unrestricted prior typically carry

over to the restricted case, facilitating computation. Moreover,

reference priors on constrained parameters are typically the

unconstrained reference prior multiplied by the indicator of the

constrained parameter space (Sun and Berger 1998). Despite

these various attractive properties, the findings of this article

pose a caveat toward routine truncation of priors in moder-

ate to high-dimensional parameter spaces, which might lead

to biased inference. This issue gets increasingly severe with

increasing dimension due to the concentration of measure phe-

nomenon (Talagrand 1995; Boucheron, Lugosi, and Massart

2013), which forces the prior to increasingly concentrate away

from statistically relevant portions of the parameter space. A

somewhat related issue with certain high-dimensional shrink-

age priors has been noted in Bhattacharya et al. (2016). Overall,

our results suggest a careful study of the geometry of trun-

cated priors as a useful practice. Understanding the cause of

the biased behavior also suggests natural shrinkage procedures

that can guard against such unintended consequences. We note

that post-processing approaches based on projection (Lin and

Dunson 2014; Sen, Patra, and Dunson 2018; Chakraborty and

Ghosal 2021) and constraint relaxation (Duan et al. 2020) do

not suffer from this unintended bias. The same is also true

for the recently proposed monotone bart (Bayesian Additive

Regression Trees) method (Chipman, George, and McCulloch

2010). It would be interesting to explore the presence of sim-

ilar issues arising from truncations beyond the constrained

regression setting. Possible examples include correlation matrix

estimation and simultaneous quantile regression. Priors on cor-

relation matrices are often prescribed in terms of constrained

priors on scale matrices, and truncated normal priors are used

tomaintain ordering between quantile functions corresponding
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to different quantiles, and this might leave the door open for

unintended bias to creep in.

Appendix A: Basis Representation of Maatouk and

Bay (2017)

As our example which motivates the main results of this article, we

consider the more recent basis sequence of Maatouk and Bay (2017).

Let uj = j/(N − 1), j = 0, 1, . . . ,N − 1 be equally spaced points on

[0, 1], with spacing δN = 1/(N − 1). Let,

hj(x) = h

(
x − uj

δN

)
, ψj(x) =

∫ x

0
hj(t) dt,

φj(x) =
∫ x

0

∫ t

0
hj(u) dudt,

for j = 0, 1, . . . ,N − 1, where h(x) = (1 − |x|)1[−1,1](x) is the

“hat function” on [−1, 1]. For any continuous function f : [0, 1] →
R, the function f̃ (·) =

∑N−1
j=0 f (uj) hj(·) approximates f by linearly

interpolating between the function values at the knots {uj}, with the

quality of the approximation improving with increasing N. With no

additional smoothness assumption, this suggests amodel for f as f (·) =∑N−1
j=0 θj+1hj(·). The basis {ψj} and {φj} take advantage of higher-

order smoothness. If f is once or twice continuously differentiable,

respectively, then by the fundamental theorem of calculus,

f (x) − f (0) =
∫ x

0
f ′(t)dt, f (x) − f (0) − xf ′(0) =

∫ x

0

∫ t

0
f ′′(s) dsdt.

Expanding f ′ and f ′′ in the interpolation basis as in the previous

paragraph, respectively, imply the models

f (x) = θ0 +
N−1∑

j=0

θj+1ψj(x)

︸ ︷︷ ︸
M

, f (x) = θ0 + θ∗x +
N−1∑

j=0

θj+1φj(x)

︸ ︷︷ ︸
C

.

(A.1)

Under the above, the coefficients have a natural interpretation as evalu-

ations of the function or its derivatives at the grid points. For example,

under (M), f ′(uj) = θj+1 for j = 0, 1, . . . ,N − 1, while under (C),

f ′′(uj) = θj+1 for j = 0, 1, . . . ,N − 1. We provide an approximation

result of such basis expansion to a regular differentiable function f ∈
C[0, 1] in the following lemma.

Lemma 1. For any f ∈ C[0, 1] and f ′ is Lipcshitz, for any integer N >

1 construct the model denoted by fN(·) under (M) in (A.1), we have∥∥f − fN
∥∥
∞ � 1/N.

Given covariates {xi}, construct an n×N basis matrix� = (ψj(xi))

with basis functions {ψj}, and for any nonempty subset of indexes S ⊂
{1, . . . ,N}, denote by�S the n×|S| sub-matrix with columns {�j : j ∈
S}. Next Lemma bounds eigenvalues of �T

S �S under mild conditions.

Lemma 2. For a grid {uj}, assume the covariates {xi} satisfy that there
exists a constant c > 0 such thatmin{j:|xi−uj|>0}{|xi−uj|} ≥ cδ

3/2
N , i =

1, . . . , n. Then for any nonempty set S ⊂ {1, . . . ,N}, there exist

constants 0 < m1 < m2 < ∞ such that m1n/N ≤ λmin(�
T
S �S) ≤

λmax(�
T
S �S) ≤ m2n/N.

(Equivalence property.) Maatouk and Bay (2017) showed that under the

representation (M) in (A.1), f is monotone nondecreasing if and only

if θi ≥ 0 for all 1 ≤ i ≤ N. The flat region can be characterized

by the corresponding basis coefficients, which is characterized by the

following result.

Lemma 3. For any 0 ≤ a < b ≤ 1 and some constant c ∈ R, and for

any x ∈ [a, b], f (x) ≡ c if and only if θj = 0, for j ∈ S[a,b], where S[a,b]
is a subset of indexes such that∪j∈S[a,b] [uj, uj+1] ⊃ [a, b] is the shortest
interval.

Similarly, under (C), f is convex nondecreasing if and only if θi ≥ 0

for all i = 1, . . . ,N. The ability to equivalently express various con-

straints in terms of linear restrictions on the vector θ = (θ1, . . . , θN)T

is an attractive feature of this basis not necessarily shared by other basis.

In either case, the parameter space C for θ is the nonnegative orthant

[0,∞)N . If f were unrestricted, a gp prior on f would induce a depen-

dentGaussian prior on θ . The approach ofMaatouk andBay (2017) is to

restrict this dependent prior subject to the linear restrictions, resulting

in a truncated normal prior.
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