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ABSTRACT

Biophysics experiments performed at single-molecule resolution contain exceptional insight into
the structural details and dynamic behavior of biological systems. However, extracting this
information from the corresponding experimental data unequivocally requires applying a

biophysical model. Here, we discuss how to use probability theory to apply these models to single-
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molecule data. Many current single-molecule data analysis methods apply parts of probability
theory, sometimes unknowingly, and thus miss out on the full set of benefits provided by this self-
consistent framework. The full application of probability theory involves a process called Bayesian
inference that fully accounts for the uncertainties inherent to single-molecule experiments.
Additionally, using Bayesian inference provides a scientifically rigorous manner to incorporate
information from multiple experiments into a single analysis and to find the best biophysical model
for an experiment without the risk of overfitting the data. These benefits make the Bayesian

approach ideal for analyzing any type of single-molecule experiment.
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1. INTRODUCTION

The ability to observe and characterize the biophysical properties of individual biomolecules has

revolutionized the study of biological systems (38). Such single-molecule experiments avoid



ensemble averaging, which removes the need to experimentally synchronize molecules and
enables investigations of rare and transient molecular states. Consequently, single-molecule
experiments provide unique and powerful insights into the fundamental workings of biological
processes (38). Despite the mechanistically rich information contained within single-molecule
data, such data are typically challenging to analyze and require extensive scientific, mathematical,
and computational effort. As is the case for all scientific experiments, models play a central role
in the analysis of single-molecule data. Indeed, data collected from any biophysics experiment
have to ultimately be modeled according to the physico-chemical properties of the biomolecules
being studied, (e.g., the molecular structure, the nature and kinetics of structural rearrangements,
etc.). In the case of single-molecule biophysics experiments, this modeling process is made
significantly more complex by the large uncertainties that necessarily accompany the observation
of a small number of molecules for a short period of time using low signal-to-noise ratio (SNR)
techniques.

Recently, methods that use probability theory and a process called ‘Bayesian inference’
have arisen as powerful tools for tackling the challenges of scientific data analysis (24), and have
made a significant impact in the field of single-molecule biophysics (6). Bayesian inference
formalizes the application of the scientific method to the problem of data analysis, making it an
approach that naturally conforms with best scientific practices (Fig. 1) (14). Additionally, Bayesian
inference-based data analysis methods require scientists to be rigorously explicit about the
assumptions they make when modeling data and to fully account for uncertainties in their
conclusions when the data are unclear—both important considerations when interpreting single-
molecule experiments.

Perhaps the most enticing and exciting aspect of Bayesian inference-based methods is
the emerging possibility of using probabilities to rigorously perform ‘model selection’. When
analyzing real experimental data, it is often the case that many different models are hypothetically
consistent with the data. In the case of modeling single-molecule data, this problem is
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exacerbated by the large uncertainties inherent to the data. Bayesian inference allows one to
calculate the probability that each model is the ‘best’, given both the experimental data and our
previous biophysics knowledge regarding the underlying biomolecular process. Using these
probabilities to select the best model and quantitatively characterize how much better it performs
relative to the broader set of models under consideration is the most rigorous way to analyze an
experiment.

This review addresses the question of how information can be accurately and precisely
extracted from single-molecule data in a manner consistent with the principles of the scientific
method. We begin by examining the role of models in the scientific investigation of a natural
phenomenon. We then describe how, within the framework of probability theory, Bayesian
inference uses Bayes’ theorem to extract information from experiments in a manner that is
naturally consistent with the scientific method. Subsequently, we consider the specific benefits
that the various terms in Bayes’ theorem (i.e., the prior, likelihood, posterior, and evidence)
provide to the analysis of single-molecule experiments and provide examples of current methods
that leverage these benefits. Finally, we argue for the near-future development of methods in
which Bayesian inference is used to implement model selection and rigorously account for the

uncertainties present in single-molecule experiments.

2. THE ROLE OF MODELS IN SCIENCE

The role of models in science was summarized well by John von Neumann:
“To begin, we must emphasize a statement which | am sure you have heard before, but
which must be repeated again and again. It is that the sciences do not try to explain, they
hardly ever try to interpret, they mainly make models. By a model is meant a mathematical
construct which, with the addition of some verbal interpretations, describes observed

phenomena.” (40)



Primarily, all scientific investigations involve some combination of creating, refining, and testing
these models of natural phenomena. In biophysics and related fields, for instance, one might
create a structural model of a biomolecular complex or develop a mechanistic model of a
biochemical reaction. The role of modeling in scientific practice is compounded when one
considers that: (/) interpreting experimental data designed to probe such phenomena requires use
of additional models to extract information that is necessary for the interpretation (e.g., models of
spectroscopic signals and noise) and (i) models are dependent on assumptions from associated
models (e.g., structural models assume that molecules are well-modeled by point particles and
bonds). Thus, to successfully model experimental data, scientists need effective models for the
phenomena that they study (e.g., biophysical properties of molecules); the signals that report on,
and noise that obscure, (e.g., detector signal and noise) these phenomena; and for the
background knowledge on which the phenomena are conditioned (e.g., quantum mechanics) (Fig.

2).

2.1 The scientific method: Experiments yield updated models

The scientific method allows us to assess which models of a natural phenomenon to trust. Models
are never ‘right’ or ‘wrong’. Instead, they each provide various degrees of predictive power. Our
certainty in whether a model is appropriate or not depends upon assessing that predictive power.
Through this lens, a hypothesis can be thought of as a model; by performing experiments, we
collect data that allows us to assess its effectiveness at explaining the natural phenomenon of
interest. Based on those results, we can ‘update’ the model to better represent the phenomenon
in the future, or move on to a different model.

Another way to think of the scientific method is to consider two separate models, say M,
and M,, that are the same except for the value of a single parameter. For example, M; and M,
might represent slightly different conformations of a biomolecule, and given our prior knowledge

of this biomolecule, our initial model of its conformation might be that both M; and M, are equally

5



reasonable. By performing an experiment, we might determine that M, is better able to describe
the observed data than is M,. Thus, performing the experiment can be thought to have updated
our conformational model to favor M;, which has more predictive power. By extrapolating this
process to models that differ by many parameters or that are conceptually distinct, it becomes
apparent how implementing the scientific method generally enables experiments to yield updated

models of natural phenomena (Fig. 1).

2.2 Models in single-molecule studies

Although single-molecule experiments are incredibly rich sources of data, observing and trying to
characterize the behavior of a set of individual molecules complicates the modeling process. This
is because, rather than using a single model to describe the average molecular behavior as is
done in an ensemble experiment, the behavior of every individual molecule in a single-molecule
experiment must be separately modeled and then those individual models must somehow be
integrated into a collective model that describes the overall behavior of the biophysical system.
Moreover, uncertainties originating from the sample, the instrumentation used to collect
the data, and the analysis of the collected data further compound the challenges associated with
modeling single-molecule data. Compositional and spatial heterogeneities in the sample, such as
differences in post-translational modifications and in the local molecular environment,
respectively, can make any one observed biomolecule different from the other observed
biomolecules. Furthermore, samples using reporter molecules, such as fluorophores in single-
molecule fluorescence experiments, can exhibit heterogeneous signaling dynamics (e.g.,
photophysical effects such as photoblinking or photobleaching). The presence of these
heterogeneities across the individual molecules complicate data modeling, and, thus, the analysis
process. Additionally, the SNR of data from an individual molecule is generally low, despite the
high sensitivity of the instruments used to collect these data. Such low SNR makes it difficult to

model data with a high degree of confidence. These instruments also generally have limited
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observation times and/or throughputs, both of which make it difficult to collect a statistically
relevant amount of data. A further complication is that it remains theoretically unclear whether the
data from a single molecule observed over a long period of time are equivalent to the data from
multiple individual molecules observed over a shorter period of time (i.e., whether biological
systems are ‘ergodic’), an assumption that is implicit in many data analysis methods. Finally, the
models used to appropriately describe the behavior of individual molecules are often not well-
developed, and are themselves a subject of active research (19).

Regardless of these complications, the data recorded from the individual molecules in a
single-molecule experiment have to be modeled in order for conclusions to be drawn about the
biomolecular process under investigation. Fortunately, the scientist often has prior knowledge of
the biomolecular system that can inform their modeling. For example, knowledge of the primary
and/or secondary structure of a molecule can inform tertiary structural modeling. In the following
section, we will show how to use probability theory to apply a model and extract the relevant
information in a mathematically rigorous manner that accounts for all of the uncertainties in the

modeling process while making use of such prior knowledge.

3. USING PROBABILITY THEORY TO MODEL EXPERIMENTS

In 1946, Cox showed how a ‘probability’, P, can be understood as an extension of formal logic
that quantifies the certainty in a scientific statement (5, 14). A statement has P = 0 if false and
P = 1if true. A fractional value of P between zero and one corresponds to the certainty that the
statement is true. For example, consider the model defined by the statement “every molecule in
the ensemble is in the same conformational state” (M., )- Even before performing an experiment
to test it, we know that M. corresponds to a system with extremely low entropy, and, according
to the second law of thermodynamics, it is very unlikely that Mg,,,. is true. Probability theory

allows us to write this as P(M,,.) = 0. Of course, this assessment is based on more than a



century of biophysics knowledge; so, to be transparent about the scientific knowledge
incorporated into our certainty in that statement, we must write that it conditionally depends upon

the model of our biophysics knowledge (Mp;pnysics)- This conditional probability should thus be
explicitly written as P(Msame|Mpiophysics) = 0, where the vertical bar reads as the word ‘given’.

Although they are often not explicitly acknowledged, all scientific statements are
conditionally dependent upon the scientist’s notions of background models. For instance, it is
generally true that all biophysicists’ analyses adhere to the laws of thermodynamics; so, there is
little need to explicitly acknowledge that dependence in an analysis. Similarly, it is generally true
that all probabilities have conditional dependencies, but when those dependencies are obvious
or seem unimportant there is little need to explicitly acknowledge them. Regardless of whether
such conditional dependencies are explicitly acknowledged in an analysis or not, every analysis
is still dependent upon them. However, to some, acknowledging the conditional dependence of
an analysis upon, for example, one specific scientist's My;,pnysics IS S€€N as incorporating a
subjective, non-scientific element into an analysis. It is important to note, however, that this merely
reflects a more general, though unfounded criticism of the role of conditional dependencies in the
scientific method itself. Fortunately, while two scientists may have learned biophysics from
different sources, and thus technically have different Mp;,,nysicsS, the collective body of
knowledge that defines a field like biophysics compels two scientists with an equivalent exposure
to the field to have effectively equivalent My;,ppysicsS. The proof of this is that two well-informed
scientists endeavoring to perform the same experiment to test the same model undoubtedly reach
the same conclusions to a high enough precision that science is reproducible.

The most beneficial aspect of the correspondence between probabilities and scientific
statements is that probability theory can be used to quantify the effects of an experiment on our

certainty in a scientific statement. For example, consider a model, M.y rormations: that attempts

to quantify the conformation of each biomolecule in a homogeneous ensemble. The set of



parameters of Mo rormations: 18}, Might be the Cartesian coordinates of all the atoms in all of the
biomolecules in the ensemble. Given our My;,,pysics, We may have some idea before performing
an experiment about the particular values of {6} that are reasonable (e.g., atoms are not closer
to each other than 1 A). Thus, in the context of M onformations, the probability that the ensemble
of biomolecules exists in one particular set of conformations is P({6}|Mcon formations: Mpiophysics)-
Because P({0}|Mconformations: Mbiophysics) €an be formulated before an experiment is performed,
it is called a ‘prior probability’. After performing an experiment that is designed to probe the
conformations of the biomolecules (e.g., measuring fluorescence resonance energy transfer
(FRET) efficiencies (Errers) with a single-molecule FRET (smFRET) experiment), the set of data,
{D}, that was collected and processed using a model of the experiment, Mexperiment, Will update the
prior probability of a particular {6} to a ‘posterior probability’ value, which is written
P({8}{D}, M oxperiment> Mconformations: Mbiophysics)- This posterior probability is also the probability
of a particular {6}, but is conditionally dependent upon the newly observed, experimental data
obtained and processed according to Myperiment (€.9., Observed Errer values are assigned to
particular conformational states using a separate experiment, such as a cryogenic electron
microscopy (cryo-EM) study). In the following section, we will discuss exactly how {D} is used to

update a prior probability into a posterior probability.

3.1 Bayesian inference: Applying the scientific method to data analysis

Bayesian inference is the process of using probability theory to model and analyze experimental
data. Specifically, it is the application of Bayes’ theorem to estimate the posterior probability for
the values of a set of model parameters, {8}, conditionally dependent on experimental data, {D},
for a particular scientific model, M. The goal of any analysis is to find the ‘best’ {6} for the M to
describe the natural phenomenon, and to judge this using the observed {D}. Practically, it is often

the case that many different {6}'s will yield a reasonable version of M, and this is especially true



if {D} contains significant statistical uncertainty. The solution is to use Bayes’ theorem to calculate
the posterior probability, P({6}|{D}, M), of every possible instance of {6}

P({D}|{6}, M) P({6}IM)
P({D}IM) '

P({8}|{D}, M) = €y

As explained above, obtaining the posterior probability distribution, sometimes simply called the
posterior, is the goal of this inference process. In the numerator, the term P({D}|{6}, M) is called
the likelihood function, or simply the likelihood, and P({6}|M) is the prior probability distribution,
or simply the prior. In the denominator, P({D}|M) is called the evidence function, or simply the

evidence. The evidence may be rewritten as

P{D}|M) = fP({D}I{G};M)P({G}IM) d{6}, (2)

where the integral is taken over all possible values of the set of {8}. This type of integration is
called ‘marginalization’, because it removes the dependence on {6}. Thus, the evidence can be
interpreted as the probability of observing the {D} regardless of the exact values of {6} for the M;
because of this interpretation, the evidence is sometimes called the ‘marginal likelihood’. This
means that Eqn. 1 involves only the prior and the likelihood, and that Bayesian inference is
performed by choosing the M (which involves defining the prior) and then collecting the {D}—after
which the resulting posterior yields insight into the phenomenon being modeled by M.

One of the most powerful aspects of using Bayesian inference to analyze an experiment
is that it is analogous to using the scientific method (c.f., Section 2 and Fig. 1). Forming a
hypothesis to test with the scientific method is equivalent to choosing a model and defining the
prior for Bayesian inference. Analyzing the results of an experiment to reach an updated
conclusion about the hypothesis is equivalent to using the likelihood to obtain the posterior. In this
sense, Bayesian inference allows scientists to rigorously extend the scientific method into the
realm of analyzing their data, and vice versa. In addition, the scientific method relies upon multiple,

interconnected models to investigate a natural phenomenon (c.f., Section 3) and Bayesian
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inference explicitly details how the analysis of an experiment depends on those models. This
mirroring of the scientific method is what makes Bayesian inference such powerful analytical tool.
In the following sections, we will discuss the various terms in Bayes’ theorem, the contributions
they make to Bayesian inference, and the distinct benefits they provide to the analysis of single-
molecule experiments. In each section, we have highlighted specific examples of analytical tools,
algorithms, and/or software packages in which the term described in that particular section has
been used to great effect in the analysis of single-molecule data. Given that we are only able to
highlight a limited number of specific examples, we point the interested reader to additional

specific examples in the Related Resources section at the end of this article.

3.2 The prior: Quantifying the hypothesis

Before performing an experiment, a scientist generally has prior knowledge about the natural
phenomenon under investigation that led them to develop the hypothesis they are testing. The
prior, P({6}|M), quantifies this knowledge about {6} for the M being tested. For instance, when
trying to determine the rate constant for a biomolecular conformational change, a very reasonable
prior based on our My;,,nysics Would be to stipulate that the rate constant has a non-zero
probability for being in the range between 3.2x10® s (less than a year) and 10™ s (more than
a bond stretching time) and a probability of zero for being outside that range. In practice, our prior
knowledge about a particular biomolecular system often allows us to specify priors with more
information than the very loose range in this example.

The use of a prior provides many benefits to the analysis of single-molecule experiments,
but two of them are particularly powerful. First, the use of priors enables precise analysis of very
small amounts of data. This is because any amount of collected data, even a single data point,
will update the prior into the posterior. This is extremely advantageous for the analysis of single-
molecule experiments, which frequently yield relatively small datasets. Second, priors provide a

coherent, mathematical framework for incorporating information from previous experiments into
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the current analysis—even if those experiments were performed with different experimental
techniques (e.g., refinement of a cryo-EM structure using structural homology (11, 20)).

Just as formulating a sound hypothesis is the art of the scientific method, choosing an
appropriate prior is the art of Bayesian inference. For example, priors that describe years of
knowledge about the signals, noise, and transition kinetics that are typical of the Errer versus time
trajectories (Errer trajectories) recorded in smFRET experiments are used in the Bayesian
inference-based smFRET analysis methods vbFRET, VB-HMM-TS-FRET, ebFRET, bl-ICON and
hFRET (2, 13, 29, 34, 39). Notably, the use of a prior for the transition kinetics in these methods
ensures that a posterior quantifying the transition kinetics exists, even if no transitions occur in
the Errer trajectory being analyzed. Essentially, the absence of any observed transitions is able
to provide an upper-limit for the transition rate; non-Bayesian inference-based methods cannot
reach this conclusion.

Similarly, in the Bayesian inference-based cryo-EM single-particle analysis (SPA) method
RELION, priors are used for the Fourier components (i.e., the coefficients of the spatial
frequencies) in the density map reconstructed from electron micrograph images (33). By using
Gaussian distributions centered at zero for these Fourier components, the use of priors in RELION
enables high-resolution mapping of the electrostatic potential of a molecule while simultaneously
avoiding spurious noise from the high spatial frequencies where there is little structural information
present in the raw data. Work to incorporate more information into these priors is underway, for
instance by including information about the inherent spatial frequencies found in all biomolecular
structures (17).

Once a prior is specified, an experiment can be thought of as acting via the likelihood to
redistribute the probability of {6} specified by the prior to where it is most consistent with the
collected data; this new, updated distribution is the posterior. Importantly, the amount of data
collected in an experiment typically overwhelms the information content in the prior, and
dominates the posterior result; otherwise, it would be unclear why the scientist thought the
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particular experiment should have been performed in the first place (an idea explored in Bayesian
experimental design (3), but beyond the scope of this review). Moreover, the incorporation of
incorrect knowledge or ‘bad’ information into the prior does not pose a major concern, because,
beyond the transparency requirement of specifying the actual background information used in the
analysis as a conditional probability, Bayesian inference-based model selection should be used
to simultaneously test multiple models (c.f., Section 4). Such an approach should quickly eliminate
models with bad prior choices, and yield the best description of the natural phenomenon being
investigated.

An occasional criticism of Bayesian inference, and particularly priors, is that it can
introduce a ‘non-scientific bias’ into an otherwise ‘objective’ analysis. The use of priors does not
introduce bias into a scientific model, however, it is instead part of the mathematical statement of
the ‘biases’ that already exist in the scientific investigation (c.f., Section 3); all analysis methods,
Bayesian or not, include such ‘biases’. In fact, it is possible to employ priors in a Bayesian method
that express the biases inherent to non-Bayesian methods, such as maximum likelihood
estimation (MLE) method (c.f., Section 3.3). By ignoring the existence of the prior, as well as the
posterior and evidence, such non-Bayesian methods do not fully enjoy the benefits of probability
theory, including the abilities to mathematically adhere to the tenets of the scientific method
(Section 3.1), properly quantify the uncertainty in the model of the experiment (Section 3.4), and

perform model selection to determine the ‘best’ model and avoid overfitting (Section 4).

3.3 The likelihood: How an experiment relates to a model

The likelihood function, P({D}|{8}, M), can be thought of as the mathematical equivalent of the
experiment used to test M (Fig. 1). Assuming that M is the ‘true’ representation of the natural
phenomenon being studied, the likelihood is the probability of observing a particular {D} in the
experiment, given that {6} comprises the ‘true’ parameters of M. For the analysis of single-

molecule experiments, it can be quite challenging to devise and write down the likelihood function,
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because its mathematical form must encapsulate the model itself. Identifying and deriving suitable
likelihoods that capture the complex and/or heterogeneous behavior of an individual molecule for
the many different experimental single-molecule techniques is often the limiting factor in the
Bayesian inference-based analysis of single-molecule experiments, and is often itself the subject
of intense theoretical study (10). For instance, the method BIASD is used to analyze time series
data from single-molecule experiments where the underlying molecular dynamics are faster than
the instrumental time resolution (18); hFRET is used to analyze time series data from single-
molecule experiments where the molecules exhibit heterogenous kinetics (13); and bioEM is used
to analyze structural data from cryo-EM experiments where the molecules exhibit heterogeneous
conformations (4). All of these examples of Bayesian inference-based methods use specialized
likelihood functions for overcoming the complexities present in single-molecule data.

It should be noted that the likelihood is also used extensively in non-Bayesian inference-
based data analysis methods—particularly in MLE-based methods. In MLE-based methods, the
{6} that yields the highest value of the likelihood for the observed {D} is used as a point estimate
of the model of the underlying phenomenon. Because MLE does not acknowledge the uncertainty
in {6}, MLE-based methods suffer from severe overfitting (p. 434 in 1) and can be inappropriate
for analyzing data from single-molecule experiments where the uncertainties can be quite large.
Additionally, while the likelihood function is the conditional probability of {D} based on a particular
{6}, the objective of modeling a natural phenomenon according to the scientific method is to
determine the optimal {8} based on {D}. Thus, MLE-based data analysis methods address the
reverse problem to what the scientific method aims to solve. It is worth noting that, with a prior
that is independent of {6} (i.e., a flat’ prior), the posterior is proportional to the likelihood. In this
case, the maximum of the posterior, which can be found using the Bayesian technique called
maximum a posteriori (MAP) estimation, is numerically the same value as the point-estimate

found with MLE. Nonetheless, non-Bayesian methods such as MLE miss out on all the benefits
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that using Bayesian inference provides for single-molecule data analysis (c.f., Sections 3.2-4).

3.4 The posterior: Updating the model after performing the experiment

The posterior, P({6}|{D}), can be thought of as the quantification of how the experimental {D}
updates our certainty of the initial hypothesis (i.e., the prior) in terms of the model parameters in
{6} . In essence, all data analysis methods that are consistent with the scientific method strive to
obtain the posterior—regardless of whether they acknowledge it or not. While some analysis
approaches simply attempt to estimate the single ‘best’ {6} to explain the experimental data (e.qg.,
MAP), the posterior provides the probability for all possible values of {6}. As such, this makes the
reporting of the entire posterior tedious or, if it has no analytical form, impossible. Thus, common
approaches to reporting posteriors include providing the credible interval, which describes the
range of {06} that contains a certain percentage (e.g., 95%) of the posterior probability. It can also
be useful to provide summary statistics of the posterior, such as expectation values and variances
of {6} from the posterior.

Despite the benefits it provides to the analysis of single-molecule experiments, fully
implementing Bayesian inference has historically been quite difficult in practice. Specifically, this
is because of the mathematical challenge of deriving analytical equations for the posterior and
the computational cost of evaluating numerical solutions for posteriors without analytical solutions
(1, 24). There are several approaches that directly address these challenges. One approach is to
only consider models that yield analytical solutions. But this approach limits the variety of priors
and likelihood functions that can be used, which may limit the ability to represent the actual
scientific knowledge used to create the model. Instead, given modern computational resources,
the more appropriate approach of numerically calculating the posterior is now easily achievable.
The standard approach is to use a Markov chain Monte Carlo (MCMC) sampling variant (8, 9, 12,

25), which will yield the full posterior and are exact to an arbitrary precision that depends on the
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amount of sampling (1).

Another general and computationally feasible approach is to use methods that yield
tractable approximations of the posterior. Of these, the standard is the ‘Laplace approximation,’
where the posterior is assumed to be a multivariate Gaussian distribution centered at the
maximum of the posterior (i.e., the MAP point) with a variance calculated from the curvature of
the posterior at that point (1)—a very reasonable approximation as a consequence of the central
limit theorem when there is enough data in {D}. Importantly, the Laplace approximation is not
much more computationally intensive than finding the MAP point, but still provides a full, although
approximate, posterior. This suggests that using flat priors, finding the MAP point, and then
calculating the Laplace approximation of the posterior will easily allow any MLE-based method to
be converted into a Bayesian inference-based method. Thus, the Laplace approximation allows
both current MLE- and MAP-based methods to be easily extended to obtain an approximate
posterior, and, consequently, the evidence (c.f., Section 3.5).

In cases where the Laplace approximation provides a poor approximation of the posterior
(e.g., single-molecule experiments with a small number of datapoints) more mathematically
rigorous approximation methods, such as a variational approximation, can be used. The
variational approximation used in variational Bayesian (VB) inference is the same as that used in
quantum mechanics. This approach depends on the fact that any approximation of the true
posterior will have an evidence value that is a lower bound for the true evidence value (i.e., the
evidence lower bound, or ELBO), achieving equality when the approximate posterior is equivalent
to the true posterior (1). Thus, in VB inference, the best approximations of the true posterior are
found by searching for the maximum value of the ELBO. The first use of VB inference in single-
molecule biophysics was with vbFRET, which uses VB inference to yield a tractable, analytical
form of the posterior for a hidden Markov model (HMM) in order to model the Errer trajectories
recorded in smFRET experiments (2). Because the VB inference approach is both accurate and
efficient, it has found widespread use in many single-molecule biophysics methods such as
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ebFRET (39), hFRET (13), vbSPT (30), VB-HMM-TS-FRET (29) and others (15, 36). In addition
to these benefits, the real power of VB inference methods is that they also provide an estimate of
the true evidence (in the form of the ELBO). Thus, they can be used to perform model selection

(Section 4).

3.5 The evidence: Evaluating the effectiveness of a model

The evidence, P({D}|M), is perhaps both the most powerful and overlooked term in Bayesian
inference. It provides the probability that the observed {D} could have come from the M being
tested, regardless of the specifics concerning {6}. As discussed in Section 3.1, the evidence is
obtained by marginalizing out every possible value of {6}, and thus can be thought of as being
agnostic towards their ‘true’ value. Interestingly, because this marginalization is an integration
performed over all of the model parameters, the more parameters included in a model, the more
the predictive power of the model is diminished. The intuition behind this mathematical
phenomenon comes from the fact that, while a model with a large number of parameters may
describe the particular observed dataset very well, it is also flexible enough to account for a large
number of other possible datasets. In this sense, the overall probability that the observed dataset
originated from the model in question (i.e., the evidence) is diluted by the existence of the large
number of plausible datasets that could have been generated by the model (1). Thus, the
evidence protects against overfitting by balancing the ability of a model to explain the observed
data and its ability to generate only the observed data, thereby favoring models with the highest
predictive-power and simultaneously the fewest parameters. This is a very attractive property for
scientists, as it is mathematically equivalent to Occam’s razor, which states that the most
parsimonious model is the ‘best’ model.

Unfortunately, just as with the posterior (see Section 3.4), the evidence is often difficult or
impossible to directly calculate. As such, it is often ignored in many data analysis methods. For

instance, it is unimportant when finding the MAP solution of a posterior (i.e., the point estimate of
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the location of the maximum of the posterior), because the value of the evidence is independent
of {#} and thus will not change the location of the maximum. Nonetheless, just as with the
posterior, there are a number of methods available for approximating the evidence. When using
the Laplace approximation (see Section 3.4), for example, the evidence has the analytical form
corresponding to a multivariate Gaussian posterior (1). Similarly, when using VB inference (see
Section 3.4), the ELBO provides a measure of the true evidence. In particular, if great care is
taken to find the best possible variational approximation of the posterior, the ELBO will achieve
the true value of the evidence to within arbitrary precision. Thus, in contrast to an approximation
of the evidence that, by construction, will never be correct, if properly treated, the ELBO can be
used as an estimate of the true value of the evidence.

A further, very rough approximation of the evidence is the Bayesian information criterion
(BIC), which approximates the evidence of the Laplace approximation in the asymptotic limit that
there are so many data points that both the prior and the variance of the posterior can just be
ignored. Considering the relatively limited number of datapoints in single-molecule experiments
and the correlations present in {8}, the assumptions that lead to the BIC (or the conceptually
similar, but ad hoc, Akaike information criterion (AIC)) should not be used for single-molecule data
analysis (2). The full Laplace approximation out-performs the BIC in model selection, captures
the correlations in {6}, and only requires minimal additional computation beyond the MAP solution
(1, 26). It is worth noting, however, that rather than obtaining an approximation of the evidence, it
is possible, albeit computationally expensive, to numerically calculate the exact value of the
evidence using MCMC sampling with a method called thermodynamic integration (21).

Because of the large uncertainties associated with single-molecule experiments, the
evidence is a particularly powerful tool for analyzing experiments performed at single-molecule
resolution. By marginalizing out all of the possible {8} from M, the evidence quantifies how
consistent the observed single-molecule data is with M. For instance, voFRET (and other similar

methods (13, 29)) models an Errer trajectory collected in an smFRET experiment with a series of

18



HMMs employing an increasing number of hidden states (2). Of these, the HMM with the largest
ELBO corresponds to the most parsimonious model appropriate for the observed Errer trajectory,
and is taken to be ‘best’ model for that Errer trajectory. By using the evidence, HMMs with more
hidden states than are required to explain the data are ‘penalized’, which allows this ‘maximum
evidence’ approach to avoid overfitting (Fig 3). Similarly, the maximum evidence approach is
routinely used in single particle tracking (SPT) experiments to choose between competing models
of diffusion based on particle trajectories of limited length (27, 28, 31, 35, 37).

When modeling any biophysical process, it is worth mentioning that the models developed
do not account for every possible experimental complication found in the data. In such cases, one
often finds that the ‘maximum evidence’ approach is difficult to implement. For instance, there
might be several models with evidences that are probabilistically too close to each other to choose
any of them as having the ‘largest’ evidence. In Section 4, we discuss how to determine the ‘best’
model indicated by the evidence using probability theory to account for the uncertainty present in

the data and models.

4. MODEL SELECTION: DETERMINING THE BEST MODEL USING PROBABILITY THEORY

The goal of the scientific method is to perform experiments in order to test a hypothesis that, on
some level, will ultimately inform upon more than the experiment itself. For instance, an
understanding of the role that the conformational dynamics of a biomolecule plays in a particular
biochemical reaction informs more broadly upon biomolecular function in general. Practically, this
means that, at some point during an investigation, a decision must be made about what the ‘best’
model for the phenomenon being studied should be in order to inform upon other phenomena. In
Section 3.5, we discussed how the evidence, P({D}|M), quantifies the predictive power of a
model, and showed how Bayesian-inference based methods, such as vbFRET (2) and others (13,
15, 27-31, 35-37), can utilize the maximum evidence approach to choose the ‘best’ model for
the data. The maximum evidence approach, however, fails to account for the uncertainty from the
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limited amount of data collected during an experiment. For instance, how does one select, as is
often the case in single-molecule experiments, between models with effectively the same
evidence value? The answer is to take the ideas developed in the sections above one step further
and make this determination in a manner consistent with probability theory by again using
Bayesian inference.

Bayesian model selection (BMS) essentially entails performing a second round of
Bayesian inference where the evidences for each model are used as likelihoods to calculate a
posterior probability for the models themselves (1). In practice, a scientist can assign a model
prior probability to each model under consideration that it is the ‘true’ model as P(M;|Mp;opnysics)-
where M; is the ™ model under consideration, such that ¥; P(M;|Mpiopnysics) = 1. If there is no
reason to favor any M; over the others, then these model priors should all be equal; models not

considered or not imagined, given a scientist's My,;,pnysics, €an be thought of as having a model
prior probability of zero. Using the evidences for each model, P({D}|M;, Mpiopnysics), the model
posterior probability for M;, P(M;|{D}, Mpiopnysics), can then be calculated as

P({D}lMi: Mbiophysics)P(Mi|Mbiophysics)
Zj P({D}le' Mbiophysics) P(Mj |Mbiophysics)

P(Mil{D}' Mbiophysics) = fOT'j € {1, ---,N} (3)

Comparing Eqgn. 3 to Egn. 1 demonstrates that BMS is a form of Bayesian inference, and so all
of the benefits of using priors, likelihoods, and posteriors detailed in Section 3 also apply here.
The model posterior is the object of BMS, as it eliminates the difficulties of trying to
arbitrarily assess whether the evidences for two models are effectively the same or not; this also
addresses the issue of ‘plateauing’ evidences often found in maximum evidence methods such
as VbFRET (2). There are two approaches to deciding which model to use after performing model
selection and calculating the model posterior. First, the model with the largest model posterior
value can be chosen. Second, a probability threshold can be used (and set before performing the
experiment) where the scientist can decide that the experiment was ambiguous if none of the
models surpass the threshold (e.g., greater than 0.95). If no model surpassed the threshold, a
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subsequent experiment would have to be performed, perhaps with a different technique to provide
distinct information or with more data to be collected, in order to distinguish between the models.
Thus, the uncertainty quantified with the posterior in BMS allows the scientist to assess the
effectiveness of the experiment and subsequent analysis.

We believe single-molecule experiments are best analyzed in this manner, because the
extensive use of probability theory enables scientists to easily deal with the statistical uncertainty
and other related problems faced in single-molecule experiments (c.f., Section 2.2) with a unified
and comprehensive framework. Single-molecule analysis methods that currently employ
evidences (or ELBOs, for VB approaches) can be easily extended to perform BMS by using those
evidences with Egn. 3 (Fig 3). Thus, BMS can be used to extend current methods to determine
the number of hidden states in an smFRET study, the best structural model for each
conformational class in a cryo-EM study, the best model for diffusion dynamics, etc. (c.f., Section
3.5). Currently, BMS is used to determine the presence of a change-point in a signal-vs-time
trajectory (7), the best forcefield to be use in the construction of structural models (10), and even
whether a noisy fluorescent image corresponds to the molecule of interest or is ‘junk’ (32). The
list of models that can be imagined to analyze single-molecule experiments is nearly endless,

and, thus, so too is the number of applications for BMS in single-molecule biophysics.

5. CONCLUSION

It is clear that implementing Bayesian inference, even approximately, is extremely powerful for
single-molecule data analysis, and has enabled deep insight into biomolecular systems through
the rational and judicious use of priors, likelihoods, posteriors, and evidences. Not only is
Bayesian inference incredibly effective as an analysis tool for single-molecule experiments, but it
is also the most optimal tool, as it enables a scientist to account for the large uncertainty in single-
molecule data. Additionally, it allows a scientist to do so in a way that is rigorously consistent with
the scientific method, to be transparent about the underlying assumptions used in the modeling,
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and, most importantly, to select the best model of a phenomenon in a quantitative, scientific
manner. It is worth noting that, while we have focused our attention on the analysis of single-
molecule biophysics experiments, data from experiments in practically all scientific fields exhibit
a finite signal-to-noise and are composed of a finite number of data points (c.f., Section 2.2). The
universal applicability of the Bayesian approach to analyzing data therefore stands to benefit
scientific exploration in virtually all fields.

Unfortunately, despite the great advantages that they offer, many of the Bayesian
inference-based methods described above have not yet been widely adopted. While this may be
at least partly due to the misconception that Bayesian inference, and particularly the use of priors,
might introduce ‘non-scientific bias’ into an analysis (see Section 3.2), it is clear that further work
is still required to make Bayesian inference-based methods more accessible, computationally
efficient, and capable of modeling more complex single-molecule data. Fortunately, recent
progress in the field demonstrates that addressing these shortcomings is a very active area of
research (13, 16, 22, 23, 41). Implementing the BMS approach as we have described in Section
4 makes use of all the benefits that probability theory affords and is an exciting avenue to explore
for single-molecule analysis methods under current or future development. It is our hope that this
review will encourage others to use currently available Bayesian inference-based methods in their
single-molecule data analysis pipelines and inspire them to develop new, creative, and powerful
single-molecule analysis methods that fully benefit from probability theory and consistency with

the scientific method.

SUMMARY POINTS

1. In accordance with the scientific method, any analysis of a natural phenomenon requires
the application of a model, along with its associated assumptions. The models used to
analyze single-molecule biophysics experiments must account for behavior of individual
molecules, molecular heterogeneity, and noisy signals.
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Bayesian inference is the best way to perform the modeling of a single-molecule
experiment because it is most consistent with the scientific method and accounts for the
uncertainties present in all aspects of the experiments.

The use of a prior probability allows the quantitative incorporation of information from
previous experiments and theories into the current analysis. It is an integral part of the
model and thus should not be dismissed, as is the case in non-Bayesian inference-based
methods.

Likelihood functions, although integral in relating the model to the observed data, cannot
by themselves be used for inference. Doing so addresses the reverse of the problem that
the scientific method aims to solve.

The posterior probability can be thought of as the ‘updated’ model after performing an
experiment. It is the objective of all analysis methods and captures the uncertainty in our
knowledge of model parameters.

Analyses of single-molecule experiments that use Bayesian model selection (BMS) are
able to calculate the probability that a particular model is the ‘best’ model of the underlying
natural phenomenon, and therefore allow researchers to quantitatively evaluate

hypotheses in a manner that would not otherwise be possible.

FUTURE ISSUES

1.

Wider adoption of existing Bayesian inference-based data analysis methods could greatly
benefit the field of single-molecule biophysics. Moreover, wider engagement by the single-
molecule biophysics community in extending existing Bayesian inference-based methods
and creating new such methods would could be transformative to the field.

Many of the complexities of single-molecule behavior and data remain inaccessible to
current analysis methods due to the absence of suitable models to describe them. Models
capable of describing these behaviors and data, and the experimental techniques used to
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observe them, need to be developed.

3. A number of currently available Bayesian inference methods are prohibitively expensive
in terms of ease of use and/or computational resources required for implementation. More
accessible and efficient Bayesian methods need to be developed.

4. Analyses of single-molecule experiments often use Bayesian inference in a piecemeal
manner—either for some parts of a larger analysis and/or in a way that has been optimized
for a specific type of biomolecule or signal. General, Bayesian inference-based
computational frameworks that encompass every part of a single-molecule experiment
and are capable of incorporating information from multiple experimental sources to yield
a comprehensive picture of the biomolecular process under investigation remain elusive

and need to be developed.

TERMS AND DEFINITIONS

1. Bayesian model selection (BMS): Bayesian inference performed on the evidence of
different models to determine the probability that each model is the ‘best’ model.

2. Evidence: The probability that the dataset was generated by the given model.

3. Likelihood function: The probability that the dataset was generated by particular
parameter values according to a given model.

4. Maximum a posteriori (MAP) estimation: A Bayesian algorithm where a dataset is
modeled using the maximum of the posterior as a point estimate.

5. Maximum likelihood (ML) estimation: A model-fitting algorithm where a dataset is
modeled using the maximum of the likelihood as a point estimate.

6. Point estimate: A location in parameter space used as the best guess of the model
parameters (e.g., the maximum of the posterior).

7. Posterior probability: The probability that the model parameters can take up particular
values upon observation of the data.
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8. Prior probability: The probability that the model parameters can take up particular values

prior to observation of the data.
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Figure 1: The analogy between the scientific method and Bayesian inference. (a) The
components of a single example of the scientific method (above) show a one-to-one
correspondence with those of Bayesian inference (below), revealing how the latter is just a formal
extension of the former to data analysis. (b) The analogy is reinforced in how repeated
applications of both the scientific method and Bayesian inference extend the frontier of knowledge
and certainty, respectively. The area in tan shows a scientist’s knowledge (or certainty) gained by
the latest application of the scientific method (or Bayesian inference), which itself is built upon
previous applications.
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Figure 2: The role of models in science. Representations of simulated data (left) and a
corresponding model (right) for common single-molecule studies, including (a) an electron
micrograph probing the structure of a biomolecule (a ribosome) and the corresponding model of
its structure (PDB ID: 6UZ7), (b) a current versus time trajectory probing the conformational
dynamics of a biomolecule and the corresponding model of its conformational transitions, (c) a
force versus extension curve probing the unfolding of a biomolecule and the corresponding model
of its unfolding transitions, and (d) a single particle track probing the diffusion of a biomolecule
and the corresponding model of the diffusion coefficient. The blowout of (a) shows that while
scientists only aim for, and report, a portion of the model (red hexagon), the model is complex
and includes noise as well as other background information (red ovals).
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Figure 3: Bayesian model selection. (a) Representation of a typical Errer trajectory (top) and
the corresponding 2-state (middle) and 3-state (bottom) HMMs for the trajectory, as analyzed by
VvbFRET. (b) The log of the ELBOs for HMMs with increasing number of states (as calculated by
vbFRET) shows a peak at the 3-state model (above), and decays slowly as more states are
added. Upon using these ELBOs to calculate the posterior probability for these models (below),
it is clear that the 3-state model is overwhelmingly more probable than the others.
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