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Abstract. We prove that large classes of algebras in the framework of root
of unity quantum cluster algebras have the structures of maximal orders in
central simple algebras and Cayley–Hamilton algebras in the sense of Procesi.
We show that every root of unity upper quantum cluster algebra is a maxi-
mal order and obtain an explicit formula for its reduced trace. Under mild
assumptions, inside each such algebra we construct a canonical central subal-
gebra isomorphic to the underlying upper cluster algebra, such that the pair
is a Cayley–Hamilton algebra; its fully Azumaya locus is shown to contain a
copy of the underlying cluster A-variety. Both results are proved in the wider
generality of intersections of mixed quantum tori over subcollections of seeds.
Furthermore, we prove that all monomial subalgebras of root of unity quantum
tori are Cayley–Hamilton algebras and classify those ones that are maximal

orders. Arbitrary intersections of those over subsets of seeds are also proved
to be Cayley–Hamilton algebras. Previous approaches to constructing maxi-
mal orders relied on filtration and homological methods. We use new methods
based on cluster algebras.

1. Introduction

1.1. Cayley–Hamilton algebras. Maximal orders are the noncommutative coun-
terparts of normal domains. Their representation theory has attracted a lot of
attention due to the fact that many important classes of algebras fit in this frame-
work, see for instance [4, Part III]. Cayley–Hamilton algebras, defined by Procesi
[22] in the late 80s, provide a vast generalization of maximal orders in central sim-
ple algebras. Such an algebra of degree d (a positive integer) is a triple (R,C, tr)
consisting of a k-algebra R of a commutative ring k, a central subalgebra C and a
trace function tr satisfying the d-th Cayley–Hamilton identity, which means that
each element of R satisfies its d-th characteristic polynomial. Every maximal order
in a central simple algebra of PI degree d whose center has characteristic p /∈ [1, d]
is a Cayley–Hamilton algebra of degree d with respect to its full center and reduced
trace, cf. Sect. 5.1.

There are a number of results on Cayley–Hamilton algebras that provide a gen-
eral approach to their representation theory. Using invariant theory, for each char-
acter χ of C, Procesi [8, 22] constructed a semisimple representation of R whose
direct summands exhaust all irreducible representations of R with central character
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χ. In [5] it was proved that there is a close relationship between the discriminant
ideals of a Cayley–Hamilton algebra and its irreducible representations, namely the
zero loci of the discriminant ideals record the sum of the squares of the irreducible
representations with a given central character χ.

There has been a great interest in proving that quantum algebras at roots of unity
that appear in Lie theory and topology possess structures of maximal orders or more
generally Cayley–Hamilton algebras with the aim of classifying their irreducible
representations.

In Lie theory, De Concini, Kac and Procesi [6, 8] proved that all big quantum
groups at roots of unity and all quantum Schubert cells are maximal orders in
central simple algebras. Their centers are singular which presents difficulties for
applications to representation theory. To overcome those, it was proved in [6, 8]
that each algebra in the two classes possesses a non-singular subalgebra and an
appropriate trace function that makes the pair a Cayley–Hamilton algebra. More-
over, De Concini and Lyubashenko [7] proved that the quantum function algebras
at roots of unity of all complex simple Lie groups are maximal orders. Stafford
proved that the 3 and 4-dimensional Sklyanin algebras corresponding to elliptic
curves with finite order automorphisms are maximal orders [24].

In topology, it was proved that the stated skein algebras at roots of unity of
surfaces with nontrivial boundary [16] are maximal orders. In [21] it was proved
that in those cases the Muller skein algebras [19] at roots of unity are also maximal
orders.

All of the above results on maximal orders are proved by filtration arguments, ho-
mological methods or by methods relying on unique factorization domains. The re-
sults on Cayley–Hamilton structures on quantum groups at roots of unity construct
Cayley–Hamilton algebras (R,C, tr) of a very special nature having the property
that R is a free C-module.

1.2. From root of unity upper quantum cluster algebras to Cayley-Hamil-
ton algebras and maximal orders. In this paper we prove that all roots of
unity upper quantum cluster algebras are maximal orders in central simple algebras
(maximal orders for short). This is a very general setting that unifies quantum
algebras from Lie theory, topology and mathematical physics.

Furthermore, under mild assumptions on the order of the root of unity, we prove
that each root of unity upper quantum cluster algebra possesses a canonical cen-
tral subalgebra isomorphic to the corresponding upper cluster algebra and a trace
function making the triple into a Cayley–Hamilton algebra. Unlike the situation
in the work of De Concini, Kac and Procesi, for our triples (R,C, tr), R is rarely a
free module over C.

Cluster algebras have been an area of intense research in the last 20 years due to
their deep relations to many areas of mathematics and mathematical physics, see
[12,14,18]. In this paper we use the methods of cluster algebras to construct broad
classes of maximal orders and Cayley–Hamilton algebras. Previously, structures of
maximal orders were constructed using filtration arguments [17] and homological
methods [24]. However, those do not apply to the classes that we construct. In
the broad generality that is considered in the paper, roots of unity upper quantum
cluster algebras do not possess any filtrations that can be used to prove that they
are maximal orders. They do not satisfy the homological assumptions in [24]; for
instance, they are Auslander regular only in special cases.
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1.3. Statements of main results. Fix an integral domain k of characteristic 0.
Let ℓ be a positive integer, ε1/2 be a primitive ℓ-th root of unity in the algebraic
closure of the fraction field of k, and

A1/2
ε := k[ε1/2].

To a compatible pair, consisting of an exchange matrix B̃ and a root of unity toric
frame Mε, one associates [20] the root of unity upper quantum cluster algebra

Uε(Mε, B̃, inv), where inv is a subset of the set of frozen variables denoting those

that are inverted, see Sect. 2.4 for details. It is the A1/2
ε -algebra given by the

intersection

Uε(Mε, B̃, inv) :=
⋂

all seeds (M ′
ε,B̃

′)

Tε(M ′
ε)≥,

where Tε(M ′
ε)≥ is the mixed quantum torus associated to the toric frame M ′

ε which

is the A1/2
ε -subalgebra of the root of unity quantum torus Tε(M ′

ε) corresponding
to M ′

ε obtained by not inverting the frozen variables that do not lie in inv, cf.
(2.6)–(2.7). Here the term mixed refers to the fact that Tε(M ′

ε)≥ is a mixture of a
quantum torus and a quantum plane.

For a subset of seeds Θ, consider the algebra

Uε(Mε, B̃, inv,Θ) :=
⋂

(M ′
ε,B̃

′)∈Θ

Tε(M ′
ε)≥.

Our results concern these more general algebras, rather than just root of unity

upper quantum cluster algebras Uε(Mε, B̃, inv). This adds an extra degree of
flexibility for applications, since potentially there could be interesting algebras that

are isomorphic to algebras of the form Uε(Mε, B̃, inv,Θ) but are not isomorphic to
a root of unity upper quantum cluster algebra.

Theorem A. Let Θ be an arbitrary subset of seeds of Uε(Mε, B̃, inv). The follow-
ing hold:

(1) The algebra Uε(Mε, B̃, inv,Θ) is a maximal order in a central simple al-
gebra. Its reduced trace is the restriction of any of the reduced traces of
the quantum tori Tε(M ′

ε), explicitly given by Corollary 6.3, for the seeds

(M ′
ε, B̃

′) in Θ.
(2) If the base ring k is an algebraically closed field containing Q(ε1/2), then

the union
⋃

(M ′
ε,B̃

′)∈Θ

MaxSpec
(
Z(Uε(Mε, B̃, inv,Θ))[M ′

ε(ei)
−ℓ, 1 ≤ i ≤ N ]

)

inside MaxSpecZ(Uε(Mε, B̃, inv,Θ)) is in the Azumaya locus of Uε(Mε, B̃,
inv,Θ).

We follow the conventions of [17] for orders in central simple algebras with equiv-
alent definitions given in [17, Ch. 3, §1.2] and [17, Ch. 5 §3.6], and equivalence
proved in [17, Proposition 5.3.10]. We refer the reader to Sect. 2.2 for all necessary
background on maximal orders.

For a PI algebra, its Azumya locus is an important representations theoretic ob-
ject, classifying its irreducible representations of maximal dimension, cf. Definition
2.5.
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For a mixed quantum torus Tε(Mε)≥, let T ℓ
ε (Mε)≥ be its central A1/2

ε -subalgebra
generated by the ℓ-th powers of the standard generators of Tε(Mε)≥. It is a mixture
of a Laurent polynomial ring and polynomial ring. Tε(M ′

ε)≥ is free over T ℓ
ε (M

′
ε)≥

which gives rise to the regular trace function

tr
Tε(M

′
ε)≥

reg : Tε(M ′
ε)≥ → T ℓ

ε (M
′
ε)≥,

explicitly described in Lemma 4.1. Define

CUε(Mε, B̃, inv,Θ) :=
⋂

(M ′
ε,B̃

′)∈Θ

Tε(M ′
ε)

ℓ
≥.

If ℓ is odd and coprime to the skew-symmetrizing integers for the principal part

of B̃ and Θ is the set of all roots, then CUε(Mε, B̃, inv,Θ) is isomorphic to the

corresponding upper cluster algebra defined over A1/2
ε :

CUε(Mε, B̃, inv) ∼= U(B̃, inv)Aε
,

see Proposition 3.1. In Proposition 3.2 an extension of this fact to the algebras

CUε(Mε, B̃, inv,Θ) and their classical counterparts in the setting of upper cluster
algebras is proved.

Theorem B. Assume that the order ℓ of the root of unity ε1/2 is odd and coprime

to the skew-symmetrizing integers for the principal part of B̃. Let Θ be a connected

set of vertices of the exchange graph of Uε(Mε, B̃, inv). The following hold:

(1) For every pair of seeds (M ′
ε, B̃

′), (M ′′
ε , B̃

′′) ∈ Θ,

tr
Tε(M

′
ε)≥

reg

∣∣
Uε(Mε,B̃,inv,Θ)

= tr
Tε(M

′′
ε )≥

reg

∣∣
Uε(Mε,B̃,inv,Θ)

.

Denote by trreg this restriction map coming from an arbitrary seed in Θ.

(2) trreg(Uε(Mε, B̃, inv,Θ)) ⊆ CUε(Mε, B̃, inv,Θ).
(3) The triple

(Uε(Mε, B̃, inv,Θ),CUε(Mε, B̃, inv,Θ), trreg)

is a Cayley–Hamilton algebra of degree equal to ℓN , where N is the number
of cluster variables.

(4) Assume that the base ring k is a field extension of the cyclotomic field

Q(ε1/2). Then Uε(Mε, B̃, inv,Θ) is a finitely generated k-algebra if

and only if CUε(Mε, B̃, inv,Θ) is a finitely generated k-algebra and

Uε(Mε, B̃, inv,Θ) is a finitely generated module over CUε(Mε, B̃, inv,Θ).
(5) If the base ring k is an algebraically closed field containing Q(ε1/2), then

the union

(1.1)
⋃

(M ′
ε,B̃

′)∈Θ

MaxSpec
(
CUε(Mε, B̃, inv,Θ)[M ′

ε(ei)
−ℓ, 1 ≤ i ≤ N ]

)

inside MaxSpecCUε(Mε, B̃, inv,Θ) is in the fully Azumaya locus of the

algebra Uε(Mε, B̃, inv,Θ) with respect to the central subalgebra

CUε(Mε, B̃, inv,Θ), see Definition 2.5.

Part (5) of the Theorem B provides yet another link between noncommutative
ring theory and cluster algebras: when Θ is the set of all seeds, (1.1) is precisely
the cluster A-variety of the associated cluster algebra defined over k, see Remark
6.7. In other words, the fully Azumaya locus of the root of unity quantum upper
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cluster algebra Uε(Mε, B̃, inv) contains a copy of the associated cluster A-variety
over k. Undoubtably, cluster algebra theory will play a role in classifying all irre-
ducible representations of the algebras that are isomorphic to algebras of the form

Uε(Mε, B̃, inv,Θ).
Up to date there are practically no general results that transfer properties be-

tween upper cluster algebras and their quantum and root of unity counterpart. Part
(4) of Theorem B proves such a result. It implies the following fact:

Corollary. If the root of unity quantum cluster algebra Uε(Mε, B̃, inv) is a finitely
generated algebra over a field extension of Q(ε1/2), then the upper cluster algebra

Uε(Mε, B̃) has the same property.

In Theorems A and B we intersect mixed quantum tori because those are the
natural objects that appear in cluster algebra theory. But our methods allow us

to deal with quite more general classes of algebras. For a seed Σ = (Mε, B̃) and

a submonoid Φ of ZN , denote by AΣ(Φ) the A1/2
ε -subalgebra of Tε(Mε) generated

by the monomials with exponents in Φ. We call those monomial subalgebras. For
example, the mixed quantum torus Tε(Mε)≥ is a special case of a subalgebra of
Tε(Mε) of this type.

Theorem C.

(1) For every monomial subalgebra AΣ(Φ) of Tε(Mε), the triple
(
AΣ(Φ),AΣ(Φ) ∩ Z(Tε(Mε)), tr

Tε(Mε)
red

)

is a Cayley–Hamilton algebra of degree given in Proposition 8.4.
(2) A monomial subalgebra AΣ(Φ) is a maximal order if and only if the sub-

monoid Φ of ZN is integrally convex and integrally closed, see Sect. 8.2 for
definitions.

For the remaining part of the theorem, let Θ be a subset of seeds of Uε(Mε, B̃, inv)

and AΣ(ΦΣ) be a monomial subalgebra of Tε(M ′
ε) for each seed Σ = (M ′

ε, B̃
′) ∈ Θ.

Consider the A1/2
ε -algebra

A :=
⋂

Σ∈Θ

AΣ(ΦΣ).

The following hold:

(3) For every pair of seeds (M ′
ε, B̃

′), (M ′′
ε , B̃

′′) ∈ Θ,

tr
Tε(M

′
ε)

red

∣∣
A
= tr

Tε(M
′′
ε )

red

∣∣
A
.

Denote by trred this restriction map coming from an arbitrary seed in Θ.
(4) trred(A) ⊆ ∩Σ∈ΘZ(AΣ(ΦΣ)).
(5) The triple

(A,∩Σ∈ΘZ(AΣ(ΦΣ)), trred)

is a Cayley–Hamilton algebra of degree given in Theorem 8.9.

Finally, we note that when algebras are proved to be maximal orders using filtra-
tion arguments [17] and homological methods [24], this does not give information
on their reduced traces. Unlike those methods, in Theorems A–C we obtain explicit
formulas for the corresponding trace maps. All results in the paper are proved in-
tegrally over k[ε1/2] for an arbitrary integral domain k of characteristic 0, except
part (2) of Theorem A and parts (4)-(5) of Theorem B.
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The paper is organized as follows. Sect. 2 contains background material on
Cayley–Hamilton algebras and cluster algebras. Sect. 3 sets up the framework for
root of unity upper quantum cluster algebras, the algebras of the form

Uε(Mε, B̃, inv,Θ), and their central subalgebras. The proofs of parts (1)-(4) of
Theorem B are given in Sect. 4. Sect. 5 contains background material on max-
imal orders and reduced traces and proves a general theorem on intersections of
maximal orders and Caylay–Hamilton algebras. In Sect. 6 we prove Theorem A
and part (5) of Theorem B. Sect. 7 illustrates Theorems A and B with a root
of unity upper quantum cluster algebra without frozen variables; examples that
were treated before in Lie theory and topology always have sufficient number of
frozen variables which makes them more tractable. Sect. 8 contains our results on
monomial algebras and their cluster theoretic intersections; it proves Theorem C.

For additional background material on maximal orders, representation theory of
PI algebras, and Cayley–Hamilton algebras we refer the reader to [17, 23], [4, 17]
and [8], respectively.

Notation. The center of a ring R will be denoted by Z(R). For a commutative ring
A, we will denote by Mn(A) the ring of n× n matrices with entries in R and by

Tr : Mn(A) → A

the standard matrix trace. We will denote by N the set of non-negative integers
and by Z+ the set of positive integers.

2. Preliminaries on Cayley–Hamilton algebras and cluster algebras

This section contains preliminaries on Cayley–Hamilton algebras, cluster alge-
bras of geometric type, root of unity quantum cluster algebras and exchange graphs
that will be used later in the paper.

2.1. Cayley–Hamilton algebras. For 1 ≤ i ≤ d, denote by σi the i-th elementary
symmetric function in the indeterminates λ1, λ2, . . . , λd and by ψi := λi

1+λi
2+ · · ·+

λi
d the Newton power sum function. It is well known that there exists a unique set

of polynomials

pi(x1, x2, . . . , xi) ∈ Z[(i!)−1][x1, x2, . . . , xi]

such that

σi = pi(ψ1, ψ2, . . . , ψi), ∀ 1 ≤ i ≤ d.

Definition 2.1. An algebra with trace is a triple (R,C, tr), where R is a k-algebra
with k being a commutative ring, C is a central subalgebra of R and tr : R → C is
a C-linear map such that

tr(ab) = tr(ba) for all a, b ∈ R.

Fix a positive integer d and assume that i is not a zero divisor of R for 1 ≤ i ≤ d.
The d-th characteristic polynomial χd,a(t) ∈ C[(d!)−1][t] of an element a ∈ R is
defined to be

χd,a(t) := td − c1(a)t
d−1 + · · ·+ (−1)dcd(a),

where ci(a) := pi
(
tr(a), tr(a2), . . . , tr(ai)

)
.
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Definition 2.2. A Cayley–Hamilton algebra of degree d ∈ Z+ is a k-algebra with
trace (R,C, tr) over a commutative ring k such that i is not a zero divisor of R for
1 ≤ i ≤ d and

(1) for all a ∈ R, χd,a(a) = 0,
(2) tr(1) = d.

Example 2.3. Every maximal order, see Sect. 2.2, of PI degree d whose center
has characteristic p /∈ [1, d] is a Cayley–Hamilton algebra of degree d with respect
to the reduced trace, see Sect. 5.1 for details.

Lemma 2.4. If (R,C, tr) is a Cayley–Hamilton algebra of degree d and R′, C ′ are
subalgebras of R, R′ ∩ C, respectively such that tr(R′) ⊆ C ′, then (R′, C ′, tr |R′) is
also a Cayley–Hamilton algebra of degree d.

Proof. Since tr : R → C is C-linear and C ′ ⊆ R′ ∩ C, tr |R′ : R′ → C ′ is C ′-linear.
The conditions (1)–(2) in Definition 2.2 for tr imply their validity for tr |R′ . �

Definition 2.5. Let R be a prime affine algebra over an algebraically closed field
k, which is a finitely generated module over a central k-subalgebra C.

(1) A point m ∈ MaxSpecZ(R) is in the Azumaya locus of R if Rm is an
Azumaya algebra over Zm. This is equivalent to saying that R has an
irreducible module, annihilated by m, of maximal dimension among the
irreducible R-modules (which equals the PI degree of R); such a represen-
tation is automatically unique (see [4, Theorem III.1.6]).

(2) [3] A maximal ideal m of C is in the fully Azumaya locus of R with respect
to C if all irreducible representations of R that are annihilated by mR have
maximal dimension

This can be formulated in the following equivalent way. Denote by

ψ : MaxSpecZ(R) → MaxSpecC

the map induced by the inclusion C →֒ Z(R). A maximal ideal m ∈
MaxSpecC is in the fully Azumaya locus of R with respect to C if all
preimages in ψ(m) are in the Azumaya locus of R, cf. [4, Sect. III.1.7].

2.2. Maximal orders. We recall the notion of a maximal order, following [17].
A central simple algebra S over a commutative field Q is a finite dimensional
simple Q-algebra whose center is Q. An order in a central simple algebra S is a
subring R ⊆ S such that every x ∈ S can be presented as x = ab−1 = c−1d with
a, b, c, d ∈ R, see [17, Ch. 3, §1.2]. Two orders R,R′ of S are equivalent if there
are units a, b, a′, b′ ∈ S such that aRb ⊆ R′ and a′R′b′ ⊆ R. A maximal order
is an order which is maximal (with respect to inclusions) in its equivalence class.
Actually the notion of an order is more generally defined for quotient rings, see
[17, Ch. 3, §1.2], but in the case of central simple algebras, there is a simpler
equivalent definition. The following is essentially given in [8, Sect. 6].

Proposition 2.6. Assume S is a central simple algebra over a commutative field
Q and R ⊆ S is a subring with center Z(R).

(1) R is an order of S if and only if
(i) Z(R) is an integral domain whose field of fractions is Q and
(ii) RQ = S.

(2) If R is an order, then it is a maximal order if and only if
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(iii) for any ring R′ with

(2.1) R ⊆ R′ ⊆ 1

z
R := {xz−1 | x ∈ R},

where z ∈ Z(R) is a non-zero element, we have R′ = R.

Proof. (1) Suppose R is an order in S. By [17, Proposition 5.3.10] the ring R is
another type or order, called Z(R)-order there, see [17, Ch. 5 §3.6], and (i) and (ii)
are part of the definition of a Z(R)-order. Thus we have (i) and (ii).

The converse follows obviously from the definition of order.
(2) Assume that R is a maximal order and R′ satisfies (2.1). As R ⊆ R′, by

[17, Corollary 3.1.6], the ring R′ is also an order. Eq. (2.1) implies R′ is equivalent
to R, and maximality means R′ = R.

Let us prove the converse. Assume (iii). Let R′ be an order equivalent to R. By
[17, Proposition 5.3.8(iii)], there is a non-zero z ∈ Z(R) such that R′ ⊆ 1

zR. If in
addition R ⊆ R′, then by (iii) we have R′ = R. This shows that R is a maximal
order. �

Remark 2.7. In some texts like Reiner’s book [23], the notion of a maximal order
R in a central simple algebra Q is stronger and requires the center Z(R) to be
Noetherian. In the definition of R being a Z(R)-order in Q one adds the condition
that R be a finitely generated Z(R)-module [23, Sect. 8]; this notion is called
classical order in [17, Ch. 5 §3.5]. However, under the assumption that Z(R)
is Noetherian, this condition follows from condition (ii) in Proposition 2.6(1), see
[17, Proposition 5.3.14].

2.3. Cluster algebras of geometric type. Let k be an integral domain of char-
acteristic 0 and F be its fraction field.

Let N be a positive integer, ex ⊆ [1, N ] (set of exchangeable indices), inv ⊆
[1, N ]\ex (set of frozen variables that will be inverted) and F be a purely transcen-

dental extension of F of degree N . A seed is a pair (x̃, B̃) such that

(1) x̃ = {x1, . . . , xN} is a transcendence basis of F over F ;

(2) B̃ = (bij) ∈ MN×ex(Z) (exchange matrix) and its ex × ex submatrix B

(the principal part of B̃) is skew-symmetrizable. More precisely, DB is
skew-symmetric for a matrix D = diag(dj , j ∈ ex) with dj ∈ Z+.

The mutation of the seed (x̃, B̃) in the direction of k ∈ ex is defined to be the seed

μk(x̃, B̃) := (x̃′, B̃′), where

(2.2) x̃′ = {x′
k} ∪ x̃\{xk} and xkx

′
k :=

∏

bik>0

xbik
i +

∏

bik<0

x−bik
i

and

(2.3) μk(B̃) = (b′ij) :=

{
−bij , if i = k or j = k

bij +
|bik|bkj+bik|bkj |

2 , otherwise.

The principal part of B̃′ is skew-symmetrized by the same matrix D. Mutation

is involutive: μ2
k(x̃, B̃) = (x̃, B̃). Two seeds (x̃, B̃) and (x̃′′, B̃′′) are mutation-

equivalent, denoted (x̃, B̃) ∼ (x̃′′, B̃′′), if one is obtained from the other by a se-
quence of mutations.
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Definition 2.8 ([1, 10]).

(1) The cluster algebra A(B̃, inv)k is the unital k-subalgebra of F generated by

the cluster variables in the seeds (x̃′′, B̃′′) ∼ (x̃, B̃) and by x−1
i for i ∈ inv.

(2) The upper cluster algebra U(B̃, inv)k is the intersection of all mixed poly-
nomial/Laurent polynomial rings

U(B̃, inv)k :=
⋂

(x̃′′,B̃′′)∼(x̃,B̃)

k[(x′′
i )

±1, x′′
j ; i ∈ ex ⊔ inv, j /∈ ex ⊔ inv].

It is clear that

(2.4) A(B̃, inv)k ∼= k⊗ZA(B̃, inv)Z,

but we are not aware of a similar fact for U(B̃, inv)k unless we are in the case when
k is a finite extension of Z.

When the base ring k is clear from the discussion, we will use the notations

A(B̃, inv) and U(B̃, inv) for brevity, but k will be an arbitrary integral domain of
characteristic 0 and not just Z.

By the Laurent Phenomenon Theorem of Fomin and Zelevinsky [11],

A(B̃, inv) ⊆ U(B̃, inv).

2.4. Root of unity quantum cluster algebras. We follow the framework of
Berenstein–Zelevinsky for quantum cluster algebras [2], adapted to the root of unity
case in [20]. The algebras that are considered are in general not specializations of
quantum cluster algebras. This treatment can be viewed as defining quantum
cluster A-varieties at roots of unity. Quantum cluster X -varieties at roots of unity
were defined and studied by Fock and Goncharov in [9].

As in the previous subsection, k will denote an integral domain of characteristic
0 and F its fraction field. Fix a positive integer ℓ and a primitive ℓ-th root of unity,
ε1/2 in the algebraic closure of F . Recall from the introduction that

A1/2
ε := k[ε1/2].

Let
Λ : ZN × ZN → Z/ℓ := Z/(ℓZ)

be a skew-symmetric bicharacter. The root of unity (based) quantum torus Tε(Λ)
is the A1/2

ε -algebra with basis {Xf |f ∈ ZN} and product

(2.5) XfXg = εΛ(f,g)/2Xf+g for all f, g ∈ ZN .

Obviously Tε(Λ) is a domain. A root of unity toric frame Mε of a division algebra
Fε over Q(ε1/2) is a map Mε : ZN → Fε for which there exists a bicharacter Λ as
above with the properties:

(1) There is an A1/2
ε -algebra embedding φ : Tε(Λ) →֒ Fε given by φ(Xf ) =

Mε(f), ∀f ∈ ZN .
(2) Fε ≃ Fract (φ(Tε(Λ))).
The matrix Λ ∈ MN (Z/ℓ) (called matrix of the frame Mε) is uniquely recon-

structed from the root of unity toric frame Mε. Denote quantum torus

(2.6) Tε(Mε) = φ(Tε(Λ)) ⊆ Fε.

Define the mixed quantum tori

(2.7) Tε(Λ)≥ and Tε(Mε)≥
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inside Tε(Λ) and Tε(Mε) with A1/2
ε -bases consisting of the elements Xf and Mε(f)

for those f = (f1, . . . fN ) ∈ ZN such that fj ≥ 0 for j /∈ ex ⊔ inv. The restriction

φ : Tε(Λ)≥ → Tε(Mε)≥ is an A1/2
ε -algebra isomorphism.

A pair (Mε, B̃) (consisting of a root of unity toric frame and an exchange matrix)

is called a root of unity quantum seed if (ΛMε
, B̃) is ℓ-compatible, that is,

Λ⊤B̃ =

[
D
0

]
,

where D is a diagonal matrix with positive integral diagonal entries which skew-

symmetrizes the principal part of B̃. For an integer matrix Y , we denote by Y
the reduction of entries to Z/ℓ. The diagonal entries of D are not required to be
coprime.

The seed mutation μk(Mε, B̃) := (μk(Mε), μk(B̃)) in the direction of k ∈ ex is

defined so that μk(B̃) is given by (2.3) and

μk(Mε)(ei) :=

{
Mε(ei) if i �= k

Mε(−ek + [bk]+) +Mε(−ek − [bk]−) if i = k.

Here e1, . . . , eN denote the standard basis elements of ZN and for c :=
∑

i aiei ∈
ZN ,

[c]+ :=
∑

i:ai≥0

aiei, [c]− :=
∑

i:ai≤0

aiei.

The k-th column of the matrix B̃ is denoted by bk.

Mutation is involutive. Two seeds (Mε, B̃) and (M ′′
ε , B̃

′′) aremutation-equivalent,

denoted (Mε, B̃) ∼ (M ′′
ε , B̃

′′), if one is obtained from the other by a sequence of
mutations.

Definition 2.9.

(1) The root of unity quantum cluster algebra Aε(Mε, B̃, inv)k is the A1/2
ε -

subalgebra of Fε

Aε(Mε, B̃, inv)k :=A1/2
ε 〈M ′′

ε (ei),Mε(ej)
−1 | i∈ [1, N ], j∈ inv, (M ′′

ε , B̃
′′)∼(Mε, B̃)〉.

(2) The corresponding root of unity upper quantum cluster algebra is the A1/2
ε -

subalgebra of Fε

Uε(Mε, B̃, inv)k :=
⋂

(M ′′
ε ,B̃′′)∼(Mε,B̃)

Tε(M ′′
ε )≥.

It is clear that in the quantum root of unity situation, we have

(2.8) Aε(Mε, B̃, inv)k ∼= A1/2
ε ⊗Z[ε1/2] Aε(Mε, B̃, inv)Z[ε1/2],

but a similar fact for Uε(Mε, B̃, inv)k is unknown, unless we are in the case when
k is a finite extension of Z.

We will use the notations Aε(Mε, B̃, inv) and Uε(Mε, B̃, inv) for brevity but k
will be an arbitrary integral domain of characteristic 0 and not just Z.

By the root of unity quantum Laurent Phenomenon [20, Theorem 3.10],

Aε(Mε, B̃, inv) ⊆ Uε(Mε, B̃, inv).
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2.5. Canonical central subalgebras. For every toric frame Mε of Fε and 1 ≤
i ≤ N ,

M(ei)
ℓ ∈ Z(Fε).

By [20, Proposition 4.4], if the following condition holds
(Coprime) ℓ ∈ Z+ is odd and coprime to the diagonal entries of the skew-

symmetrizing matrix D,
then for all k ∈ ex,

(2.9) Mε(ek)
ℓ (μkMε(ek))

ℓ
=

∏

bik>0

(Mε(ei)
ℓ)bik +

∏

bik<0

(Mε(ei)
ℓ)−bik .

By Theorem 4.6 and Corollary 4.7 in [20], the central A1/2
ε -subalgebra of

Aε(Mε, B̃, inv)

Cε(Mε, B̃, inv) :=A1/2
ε 〈M ′′

ε (ei)
ℓ,Mε(ej)

−ℓ | i∈ [1, N ], j∈ inv, (M ′′
ε , B̃

′′) ∼ (Mε, B̃)〉
is isomorphic to a base change of the underlying cluster algebra:

Cε(Mε, B̃, inv) ∼= A1/2
ε ⊗k A(B̃, inv).

2.6. Exchange graphs. The exchange graphs of an upper cluster algebra

U(B̃, inv) and a root of unity upper quantum cluster algebra Uε(Mε, B̃, inv) are
the labelled graphs with vertices corresponding to the seeds that are mutation-

equivalent to (x̃, B̃) and (Mε, B̃), respectively, and edges given by seed mutations
and labelled by the corresponding mutation numbers. The exchange graphs are
independent of the choice to work with cluster algebras vs their upper counter-
parts, the choice of base ring k by (2.4) and (2.8), and the choice of the inverted

set of frozen indices inv. Those graphs will be denoted by E(B̃) and Eε(ΛMε
, B̃),

respectively.
By [20, Theorem 4.8], if condition (Coprime) is satisfied, then there is a unique

isomorphism of labelled graphs

(2.10) Eε(Mε, B̃) ∼= E(B̃)

sending the vertex corresponding to the seed (Mε, B̃) to the vertex corresponding

to the seed (x̃, B̃).

3. Root of unity upper quantum cluster algebras

This section contains material on root of unity upper quantum cluster algebras,
partial intersections of mixed quantum tori, their special and full centers.

In the rest of the paper we retain the notation from Sect. 2.4, and k will denote
an arbitrary integral domain of characteristic 0.

3.1. The algebras Uε(Mε, B̃, inv) and their centers. For a root of unity toric

frameMε of an A1/2
ε -division algebra Fε, the subfields of Fε generated by {Mε(ei)

ℓ |
1 ≤ i ≤ N} and A1/2

ε ∪{Mε(ei)
ℓ | 1 ≤ i ≤ N} are purely transcendental extensions

of F and F (ε), respectively, of degree N . (Recall that F denotes the fraction field
of the integral domain k.) They contain the mixed polynomial/Laurent polynomial
rings

T (Mε)
ℓ
≥ := k[Mε(ei)

±ℓ,Mε(ej)
ℓ; i ∈ ex ⊔ inv, j /∈ ex ⊔ inv],(3.1)

Tε(Mε)
ℓ
≥ := A1/2

ε [Mε(ei)
±ℓ,Mε(ej)

ℓ; i ∈ ex ⊔ inv, j /∈ ex ⊔ inv].(3.2)
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Clearly, Tε(Mε)
ℓ
≥

∼= T (Mε)
ℓ
≥ ⊗k A1/2

ε . Denote the following central subring and
subalgebra of Fε:

CU(Mε, B̃, inv) :=
⋂

(M ′′
ε ,B̃′′)∼(Mε,B̃)

T (M ′′
ε )

ℓ
≥,

CUε(Mε, B̃, inv) :=
⋂

(M ′′
ε ,B̃′′)∼(Mε,B̃)

Tε(M ′′
ε )

ℓ
≥.

As in the previous section, for brevity, we will not display the base ring k in the

notations CU(Mε, B̃, inv) and CUε(Mε, B̃, inv).

Proposition 3.1. Assume that ℓ ∈ Z+ and B̃ ∈ MN×ex(Z) is an exchange matrix
such that ℓ satisfies condition (Coprime). Then

CU(Mε, B̃, inv) ∼= U(B̃, inv)k and CUε(Mε, B̃, inv) ∼= U(B̃, inv)Aε
.

Proof. It follows from (2.9) that for all seeds (M ′′
ε , B̃

′′) ∼ (Mε, B̃), the mixed poly-
nomial/Laurent polynomial ring T (M ′′

ε )
ℓ
≥ lies inside the fraction field of T (Mε)

ℓ
≥.

Furthermore, (2.9) also implies that the generators of T (M ′′
ε )

ℓ
≥ obey the classical

mutation rule (2.2). The statement of the proposition now follows from the isomor-
phism (2.10) of the exchange graphs of the classical cluster algebra and its root of
unity quantum counterpart. �

3.2. Partial intersections. For the purposes of flexibility of application to rep-
resentation theory, we consider partial intersections of mixed quantum tori that
generalize root of unity upper quantum cluster algebras. For a subset Θ of seeds,

denote the A1/2
ε -algebra

Uε(Mε, B̃, inv,Θ) :=
⋂

(M ′′
ε ,B̃′′)∈Θ

Tε(M ′′
ε )≥.

The following subring and subalgebra of Uε(Mε, B̃, inv,Θ)

CU(Mε, B̃, inv,Θ) :=
⋂

(M ′′
ε ,B̃′′)∈Θ

T (M ′′
ε )

ℓ
≥,

CUε(Mε, B̃, inv,Θ) :=
⋂

(M ′′
ε ,B̃′′)∈Θ

Tε(M ′′
ε )

ℓ
≥

lie in its center and CUε(Mε, B̃, inv,Θ) ∼= CU(Mε, B̃, inv,Θ)⊗k A1/2
ε .

Analogously to Proposition 3.1 one proves the following:

Proposition 3.2. If ℓ satisfies condition (Coprime), then

CU(Mε, B̃, inv,Θ) ∼= U(B̃, inv,Θ)k

:=
⋂

(x̃′′,B̃′′)∈Θ

k(x′′
i )

±1, x′′
j ; i ∈ ex ⊔ inv, j /∈ ex ⊔ inv],

where in the intersection we use the isomorphism (2.10) to identify Θ with a subset

of the set of vertices of the exchange graph of U(B̃, inv), and

CUε(Mε, B̃, inv,Θ) ∼= U(B̃, inv,Θ)
A

1/2
ε

.
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3.3. Full centers.

Lemma 3.3. For any subset Θ of the set of vertices of the exchange graph

Eε(Mε, B̃) of the root of unity upper quantum cluster algebra Uε(Mε, B̃, inv) (which
is not necessarily connected) and any root of unity ε (without restrictions on its or-

der), the center of Uε(Mε, B̃, inv,Θ) is given by

(3.3) Z(Uε(Mε, B̃, inv,Θ)) = Uε(Mε, B̃, inv,Θ) ∩ Z(Tε(M ′
ε))

for any seed (M ′
ε, B̃

′) ∈ Θ.
In particular,

Z(Uε(Mε, B̃, inv)) = Uε(Mε, B̃, inv) ∩ Z(Tε(M ′
ε))

for any seed (M ′
ε, B̃

′) of Uε(Mε, B̃, inv).

Proof. Eq. (3.3) follows at once from the fact that Tε(M ′
ε) is a central localization

of the algebra Uε(Mε, B̃, inv,Θ):

(3.4) Tε(M ′
ε)

∼= Uε(Mε, B̃, inv,Θ)[M ′
ε(ei)

−ℓ, 1 ≤ i ≤ N ].

�

The center Z(Tε(M ′
ε)) of the quantum torus Tε(M ′

ε) is explicitly described in
Sect. 6.1. In Sect. 4.3 we present similar descriptions of the central subalgebras

CU(Mε, B̃, inv,Θ) and CUε(Mε, B̃, inv,Θ) as intersections of the form (3.3).

4. A Cayley–Hamilton structure on the pair

(Uε(Mε, B̃, inv,Θ),CUε(Mε, B̃, inv,Θ))

In this section we construct Cayley–Hamilton structures on root of unity upper
quantum cluster algebras with respect to their special centers, proving parts (1)-(4)
of Theorem B from the introduction.

4.1. Mixed quantum tori. If R is a k-algebra over a commutative ring k which
is free over a central subalgebra C of finite rank r, then the left action of R on itself
induces the algebra homomorphism

R → EndC(R) ∼= Mr(C).

The regular trace of R with respect to C is the composition of this map with the
matrix trace on Mr(C):

trR,C
reg : R → EndC(R) ∼= Mr(C)

Tr→ C.

If i is not a zero divisor of R for 1 ≤ i ≤ r, then
(*) the triple (R,C, trR,C

reg ) is a Cayley–Hamilton algebra of degree r.
This follows from the fact that (Mr(C), C,Tr) is a Cayley–Hamilton algebra of

degree r.
Recall the notation (3.2).

Lemma 4.1. The following hold for a root of unity toric frame Mε of an A1/2
ε -

division algebra Fε:

(1) Tε(Mε)≥ is a free Tε(Mε)
ℓ
≥-module of rank ℓN with basis

{Mε(f)|f = (f1, f2, . . . , fN ) ∈ ZN
≥ , 0 ≤ fi < ℓ}.
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(2) The regular trace for the pair (Tε(Mε)≥, Tε(Mε)
ℓ
≥), to be denoted by

tr
Tε(Mε)≥
reg , is given by

tr
Tε(Mε)≥
reg (Mε(f)) =

{
ℓN ·Mε(f), if f ∈ (ℓZ)N

0, if f �∈ (ℓZ)N .

(3) The triple (Tε(Mε)≥, Tε(Mε)
ℓ
≥, tr

Tε(Mε)≥
reg ) is a Cayley–Hamilton algebra of

degree ℓN .

Proof. Part (1) follows from the product formula (2.5). The second part is straight-
forward. The third is a special case of statement (*) above. �

4.2. Structure of neighboring intersections. Consider a root of unity quantum

seed (Mε, B̃) and a 1-step mutation μk(Mε, B̃) = (M ′
ε, B̃

′). In this subsection we
analyze the structure of the intersection

R := Tε(Mε)≥ ∩ Tε(M ′
ε)≥.

Denote

xk := Mε(ek) and yk := M ′
ε(ek).

Define the mixed quantum torus

Tε(Mε)
◦
≥

:= A1/2
ε −Span{Mε(f) | f = (f1, f2, . . . , fN ) ∈ ZN , fk = 0, fj ≥ 0 for j �∈ ex⊔inv}.

sitting inside R. It has the direct sum decomposition

Tε(Mε)
◦
≥ = Tε(Mε)

◦,c
≥ ⊕ Tε(Mε)

◦,nc
≥ ,

where

Tε(Mε)
◦,c
≥ := A1/2

ε −Span{Mε(f) | f = (f1, f2, . . . , fN ) ∈ (ℓZ)N ,

fk = 0, fj ≥ 0 for j �∈ ex ⊔ inv},
Tε(Mε)

◦,nc
≥ := A1/2

ε −Span{Mε(f) | f = (f1, f2, . . . , fN ) ∈ ZN\(ℓZ)N ,

fk = 0, fj ≥ 0 for j �∈ ex ⊔ inv}.

The algebra Tε(Mε)
◦,c
≥ is inside Z(R) and Tε(Mε)

◦,nc
≥ is a Tε(Mε)

◦,c
≥ -module under

the left (and right) action.
The mixed quantum torus Tε(Mε)≥ is decomposed as

(4.1)

Tε(Mε)≥ =
( ⊕

n∈Z,ℓ∤n

xn
kTε(Mε)

◦
≥

)
⊕
(⊕

n∈Z

xℓn
k Tε(Mε)

◦,nc
≥

)
⊕
(⊕

n∈Z

xℓn
k Tε(Mε)

◦,c
≥

)
.

The third term is Tε(Mε)
ℓ
≥:

(4.2) Tε(Mε)
ℓ
≥ =

⊕

n∈Z

xℓn
k Tε(Mε)

◦,c
≥ .

By Lemma 4.1(2),

(**) the trace function tr
Tε(Mε)≥
reg vanishes on the first two summands and equals

ℓN · Id on the third one.
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Likewise the mixed quantum torus Tε(M ′
ε)≥ is decomposed as

(4.3)

Tε(M ′
ε)≥ =

( ⊕

n∈Z,ℓ∤n

ynkTε(Mε)
◦
≥

)
⊕
( ⊕

ℓn∈Z

yℓnk Tε(Mε)
◦,nc
≥

)
⊕
( ⊕

ℓn∈Z

yℓnk Tε(Mε)
◦,c
≥

)
,

where the third term is Tε(M ′
ε)

ℓ
≥:

(4.4) Tε(M ′
ε)

ℓ
≥ =

⊕

n∈Z

yℓnk Tε(Mε)
◦,c
≥ .

By Lemma 4.1(2),

(***) the trace function tr
Tε(M

′
ε)≥

reg vanishes on the first two summands and equals
ℓN · Id on the third one.

Theorem 4.2. Let ℓ satisfy condition (Coprime). Assume that μk(Mε, B̃) =

(M ′
ε, B̃

′). For all n ∈ Z, we have:

(1)

xn
kTε(Mε)

◦
≥

⋂
Tε(M ′

ε)≥ = Tε(Mε)≥
⋂

y−n
k Tε(Mε)

◦
≥ = xn

kTε(Mε)
◦
≥

⋂
y−n
k Tε(Mε)

◦
≥.

(2)

xℓn
k Tε(Mε)

◦,c
≥

⋂
Tε(M ′

ε)≥

= Tε(Mε)≥
⋂

y−ℓn
k Tε(Mε)

◦,c
≥ = xℓn

k Tε(Mε)
◦,c
≥

⋂
y−ℓn
k Tε(Mε)

◦,c
≥ ;

(3)

Tε(Mε)
ℓ
≥

⋂
Tε(M ′

ε)≥ = Tε(Mε)≥
⋂

Tε(M ′
ε)

ℓ
≥ = Tε(Mε)

ℓ
≥

⋂
Tε(M ′

ε)
ℓ
≥;

(4)

xℓn
k Tε(Mε)

◦,nc
≥

⋂
Tε(M ′

ε)≥

= Tε(Mε)≥
⋂

y−ℓn
k Tε(Mε)

◦,nc
≥ = xℓn

k Tε(Mε)
◦,nc
≥

⋂
y−ℓn
k Tε(Mε)

◦,nc
≥ ;

(5) The direct sum decompositions (4.1) and (4.3) restrict to direct sum de-
compositions of R.

(6) The regular trace maps tr
Tε(Mε)≥
reg and tr

Tε(M
′
ε)≥

reg coincide on R and map it
to Tε(Mε)

ℓ
≥

⋂ Tε(M ′
ε)

ℓ
≥.

Proof. We use the idea of [13, Proposition 3.5] to deal with the elements of R.
Define

Qn = εnΛ(ek,[b
k]+)/2Mε([b

k]+) + ε−nΛ(ek,[b
k]−)/2Mε(−[bk]−) ∈ Tε(Mε)

◦
≥

for n ∈ Z. Then

Q1 = xkyk and Qnxk = xkQn−2, ∀n ∈ Z.

All elements r ∈ R are of the form

(4.5) r =
∑

n∈Z

xn
kan =

∑

n∈Z

(yk)
ncn,
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where both sums are finite and an, cn ∈ Tε(Mε)
◦
≥, ∀n ∈ Z. Since the mixed quantum

torus Tε(Mε)≥ has the basis {M(f) | f ∈ ZN , fj ≥ 0, ∀j /∈ ex ⊔ inv},
a0 = c0,

an = Q−2n−1 . . . Q3Q1c−n, ∀n < 0,

Q−1Q−3 . . . Q−2n+1an = c−n, ∀n > 0.

(1) If r ∈ xn
kTε(Mε)

◦
≥

⋂ Tε(M ′
ε)≥, then am = 0 for all m �= n. Hence cm = 0 for

m �= −n, and thus, r ∈ xn
kTε(Mε)

◦
≥

⋂
y−n
k Tε(Mε)

◦
≥. Since

xn
kTε(Mε)

◦
≥

⋂
y−n
k Tε(Mε)

◦
≥ ⊆ xn

kTε(Mε)
◦
≥

⋂
Tε(M ′

ε)≥,

we get that

xn
kTε(Mε)

◦
≥

⋂
Tε(M ′

ε)≥ = xn
kTε(Mε)

◦
≥

⋂
y−n
k Tε(Mε)

◦
≥.

By interchanging the roles of Mε and M ′
ε, we obtain

Tε(Mε)≥
⋂

y−n
k Tε(Mε)

◦
≥ = xn

kTε(Mε)
◦
≥

⋂
y−n
k Tε(Mε)

◦
≥.

For parts (2) and (3), denote

Q :=
∏

bik>0

(Mε(ei)
ℓ)bik +

∏

bik<0

(Mε(ei)
ℓ)−bik ∈ Tε(Mε)

◦,c
≥

and note that (2.9) implies that

xℓn
k yℓnk = Qn, ∀n ≥ 0.

Therefore the coefficients aℓn and cℓn in (4.5) satisfy

a−ℓn = Qncℓn, Qnaℓn = c−ℓn ∀n ≥ 0.

(2) If r ∈ xℓn
k Tε(Mε)

◦,c
≥

⋂
Tε(M ′

ε)≥, then aℓn ∈ Tε(Mε)
◦,c
≥ and by part (1), cm = 0

for m �= −ℓn.
Case 1: If n ≥ 0, then

c−ℓn = Qnaℓn ∈ Tε(Mε)
◦,c
≥

because Qn, aℓn ∈ Tε(Mε)
◦,c
≥ . Therefore, r ∈ xℓn

k Tε(Mε)
◦,c
≥

⋂
y−ℓn
k Tε(Mε)

◦,c
≥ .

Case 2: If n < 0, then

c−ℓn = Qnaℓn ∈ Tε(Mε)
◦,c
≥ [Q−1] ∩ Tε(Mε)

◦
≥ = Tε(Mε)

◦,c
≥

and once again r ∈ xℓn
k Tε(Mε)

◦,c
≥

⋂
y−ℓn
k Tε(Mε)

◦,c
≥ .

Combining the two cases gives

xℓn
k Tε(Mε)

◦,c
≥

⋂
Tε(M ′

ε)≥ ⊆ xℓn
k Tε(Mε)

◦,c
≥

⋂
y−ℓn
k Tε(Mε)

◦,c
≥

and the opposite inclusion is obvious. Hence,

xℓn
k Tε(Mε)

◦,c
≥

⋂
Tε(M ′

ε)≥ = xℓn
k Tε(Mε)

◦,c
≥

⋂
y−ℓn
k Tε(Mε)

◦,c
≥ .

The equality

Tε(Mε)≥
⋂

y−ℓn
k Tε(Mε)

◦,c
≥ = xℓn

k Tε(Mε)
◦,c
≥

⋂
y−ℓn
k Tε(Mε)

◦,c
≥

is proved by interchanging the roles of Mε and M ′
ε.

Part (3) follows from part (1) and Eqs. (4.2) and (4.4). Part (4) is proved
similarly to part (2). Part (5) is proved by combining the arguments in the proofs
of parts (1), (2) and (4).
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(6) For an element r ∈ R, denote by r1, r2, r3 its components in the direct sum
decomposition (4.1) and by s1, s2, s3 its components in the direct sum decomposi-
tion (4.3). By facts (**) and (***) above,

(4.6) tr
Tε(Mε)≥
reg (r) = ℓNr3 and tr

Tε(M
′
ε)≥

reg (r) = ℓNs3.

Parts (1), (2), (4) and (5) of the theorem imply that

r1, s1 ∈
( ⊕

n∈Z,ℓ∤n

xn
kTε(Mε)

◦
≥

⋂
y−n
k Tε(Mε)

◦
≥

)
,

r2, s2 ∈
(⊕

n∈Z

xℓn
k Tε(Mε)

◦,nc
≥

⋂
y−ℓn
k Tε(Mε)

◦,nc
≥

)
,

r3, s3 ∈
(⊕

n∈Z

xℓn
k Tε(Mε)

◦,c
≥

⋂
y−ℓn
k Tε(Mε)

◦,c
≥

)
.

Therefore r1 = s1, r2 = s2, r3 = s3, and by (4.6), tr
Tε(Mε)≥
reg (r) = tr

Tε(M
′
ε)≥

reg (r). �

4.3. The central subrings CU(Mε, B̃, inv,Θ) and CUε(Mε, B̃, inv,Θ). Theo-
rem 4.2 leads to the following description of the two canonical central subring and

subalgebra of Uε(Mε, B̃, inv,Θ) in a manner that is similar to the description of

the full center of Uε(Mε, B̃, inv,Θ) from Lemma 3.3.

Proposition 4.3. Assume that ℓ satisfies condition (Coprime). For every con-

nected subset Θ of the exchange graph Eε(ΛMε
, B̃) of U(Mε, B̃, inv) and any seed

(M ′
ε, B̃

′) in Θ, we have

(4.7) CU(Mε, B̃, inv,Θ) = Uε(Mε, B̃, inv,Θ) ∩ T (M ′
ε)

ℓ
≥

and

(4.8) CUε(Mε, B̃, inv,Θ) = Uε(Mε, B̃, inv,Θ) ∩ Tε(M ′
ε)

ℓ
≥,

recall (3.1) and (3.2).

Proof. First we show (4.8). For two seeds (M ′
ε, B̃

′), (M ′′
ε , B̃

′′) ∈ Θ denote by

d
(
(M ′

ε, B̃
′), (M ′′

ε , B̃
′′)
)

the distance between them in the full subgraph of Eε(ΛM ′
ε
, B̃) with vertex set Θ.

For k ≥ 0, denote the subalgebras

Ck :=
(
∩ {Tε(M ′′

ε )
ℓ
≥ | (M ′′

ε , B̃
′′) ∈ Θ, d((M ′

ε, B̃
′), (M ′′

ε , B̃
′′)) ≤ k}

)⋂

(
∩ {Tε(M ′′

ε )≥ | (M ′′
ε , B̃

′′) ∈ Θ, d((M ′
ε, B̃

′), (M ′′
ε , B̃

′′)) > k}
)
.

It is clear that

Uε(Mε, B̃, inv,Θ) ∩ Tε(M ′
ε)

ℓ
≥ = C0 ⊇ C1 ⊇ . . .

and that ⋂

k≥0

Ck = CUε(Mε, B̃, inv,Θ).

By recursively applying Theorem 4.2(3), we obtain that

C0 = C1 = . . . ,

This proves (4.8).
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Analogously to Theorem 4.2(3), one proves that, if μk(Mε, B̃) = (M ′
ε, B̃

′), then

T (Mε)
ℓ
≥

⋂
Tε(M ′

ε)≥ = Tε(Mε)≥
⋂

T (M ′
ε)

ℓ
≥ = T (Mε)

ℓ
≥

⋂
T (M ′

ε)
ℓ
≥.

Eq. (4.7) is deduced from this property by an analogous argument to the one used
for (4.8). �

4.4. Construction of Cayley–Hamilton structures.

Theorem 4.4. Let B̃ be an exchange matrix and ε1/2 be a primitive ℓ-th root of
unity for an integer ℓ that satisfies condition (Coprime). Let Θ be a connected set

of vertices of the exchange graph Eε(ΛMε
, B̃) of Uε(Mε, B̃, inv) (recall the isomor-

phism (2.10) to the exchange graph E(B̃) of U(B̃, inv)). The following hold:

(1) For every pair of seeds (M ′
ε, B̃

′), (M ′′
ε , B̃

′′) ∈ Θ,

(4.9) tr
Tε(M

′
ε)≥

reg

∣∣
Uε(Mε,B̃,inv,Θ)

= tr
Tε(M

′′
ε )≥

reg

∣∣
Uε(Mε,B̃,inv,Θ)

.

We denote by trreg this restriction map coming from an arbitrary seed in
Θ.

(2) trreg(Uε(Mε, B̃, inv,Θ)) ⊆ CUε(Mε, B̃, inv,Θ).
(3) The triple

(Uε(Mε, B̃, inv,Θ),CUε(Mε, B̃, inv,Θ), trreg)

is a Cayley–Hamilton algebra of degree equal to ℓN .
(4) Assume that the base ring k is a field extension of the cyclotomic

field Q(ε1/2). Then Uε(Mε, B̃, inv,Θ) is a finitely generated k-algebra if

and only if CUε(Mε, B̃, inv,Θ) is a finitely generated k-algebra and

Uε(Mε, B̃, inv,Θ) is a finitely generated module over CUε(Mε, B̃, inv,Θ).

Proof. (1) Assume that (M ′
ε, B̃

′) and (M ′′
ε , B̃

′′) := μk(M
′
ε, B̃

′) are two adjacent
seeds in Θ. Since,

Uε(Mε, B̃, inv,Θ) ⊆ Tε(M ′
ε)≥ ∩ Tε(M ′′

ε )≥,

Theorem 4.2(6) implies that (4.9) holds for pairs of adjacent seeds in Θ. Because

Θ is a connected subset of vertices of the exchange graph Eε(ΛMε
, B̃), (4.9) holds

for pairs of seeds in Θ.
For part (2) we have:

trreg(Uε(Mε, B̃, inv,Θ)) ⊆
⋂

(M ′
ε,B̃

′)∈Θ

Im tr
Tε(M

′
ε)≥

reg =
⋂

(M ′
ε,B̃

′)∈Θ

Tε(M ′
ε)

ℓ
≥

= CUε(Mε, B̃, inv,Θ).

Part (3) follows from Lemmas 2.4 and 4.1(3) and part (2) of the theorem.

(4) Assume first that Uε(Mε, B̃, inv,Θ) is a finitely generated k-algebra. This
assumption and the Cayley–Hamilton algebra structure from part (3) make possible

the application of [8, Theorem 4.5], which implies that CUε(Mε, B̃, inv,Θ) is a

finitely generated k-algebra and Uε(Mε, B̃, inv,Θ) is a finitely generated module

over CUε(Mε, B̃, inv,Θ).

In the opposite direction, if CUε(Mε, B̃, inv,Θ) is a finitely generated k-algebra

and Uε(Mε, B̃, inv,Θ) is a finitely generated module over CUε(Mε, B̃, inv,Θ),
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then, as a k-algebra, Uε(Mε, B̃, inv,Θ) is generated by the collection of genera-

tors of the k-algebra CUε(Mε, B̃, inv,Θ) together with the collection of generators

of Uε(Mε, B̃, inv,Θ) as a CUε(Mε, B̃, inv,Θ)-module. �

Remark 4.5. Although in Theorem 4.4 we denote the trace function

Uε(Mε, B̃, inv,Θ) → CUε(Mε, B̃, inv,Θ)

by trreg, the algebra Uε(Mε, B̃, inv,Θ) is very rarely free over CUε(Mε, B̃, inv,Θ),
so this is not a regular trace in the setting described in Sect. 4.1.

5. Intersections of Cayley–Hamilton algebras and maximal orders

In this section, we start with background material on maximal orders and re-
duced traces, and then prove a general theorem on intersections of maximal orders
and Caylay–Hamilton algebras.

5.1. The regular, standard and reduced traces.
(1) If R is a k-algebra over a commutative ring k, which is free over its center of

finite rank r, then the left action of R on itself induces the ring homomorphism

R → EndZ(R)(R) ∼= Mr(Z(R)).

The composition of this map with the matrix trace Tr on Mr(Z(R)) gives the
regular trace of R:

trreg : R → EndZ(R)(R) ∼= Mr(Z(R))
Tr→ Z(R).

(2) If R is a prime PI algebra of PI degree d and Q is the quotient field of Z(R),
then we have the embedding

R →֒ S := R[(Z(R)\{0})−1] ∼= R ⊗Z(R) Q,

and by Posner’s theorem [17, Theorem 13.6.5], S is a central simple algebra of
dimension d2 with center Q. There is a finite field extension F of Q such that
S ⊗Q F ∼= Md(F ) (called a splitting field of S, see e.g. [23, Sect. 7b]); that is
R⊗Z(R) F ∼= Md(F ).

The standard trace trst : R → Z(R) is the composition

trst : R → R⊗Z(R) F ∼= Md(F )
trreg−→ F.

The reduced trace trred : R → Z(R) is the composition

trred : R → R ⊗Z(R) F ∼= Md(F )
Tr−→ F.

Since the pair (Md(F ), F,Tr) is a Cayley–Hamilton algebra of degree d if charF /∈
[1, d], the pair (R,Z(R), trred) is a Cayley–Hamilton algebra if charZ(R) /∈ [1, d].

The standard and reduced traces are related by

trst = d trred,

cf. [5, Eq. (2.5)].
(3) If we are in both situations (1) and (2), i.e., R is a prime affine PI algebra

which is free over its center of rank r, then the PI degree of R is

(5.1) d =
√
r

and

(5.2) trreg = trst = d trred .
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The first equality follows at once from the fact that in this situation a Z(R)-basis
of R gives an F -basis of R⊗Z(R) F .

When we need to emphasize the algebra R in question, the above traces will be
denoted by trRreg, tr

R
st and trRred.

5.2. Intersections of maximal orders and Cayley–Hamilton algebras.

Theorem 5.1. Assume that

{Rγ | γ ∈ Γ}
is a collection of k-algebras over a commutative ring k, which are maximal orders
in a central simple algebra S with center Q of dimension d2 (over Q) for an index
set Γ. For each γ ∈ Γ, let R′

γ be a k-subalgebra of Rγ and Zγ ⊆ Z(R′
γ) be a central

k-subalgebra of R′
γ such that

tr
Rγ

red(R
′
γ) ⊆ Zγ .

Set

R :=
⋂

γ∈Γ

R′
γ and Z :=

⋂

γ∈Γ

Zγ ⊆ Z(R).

The following hold:

(1) tr
Rβ

red |R = tr
Rγ

red |R for all β, γ ∈ Γ. Set trred := tr
Rγ

red |R, which is independent
on the choice of γ ∈ Γ.

(2) trred(R) ⊆ Z.
(3) If charQ /∈ [1, d], then the triple (R,Z, trred) is a Cayley–Hamilton algebra

of degree d.

For the rest of the theorem, we restrict ourselves to the case when R′
γ = Rγ , Zγ =

Z(Rγ) for all γ ∈ Γ.

(4) Z is integrally closed.
(5) If S is a central localization of R, then Z = Z(R).
(6) If Rγ is a central localization of R then R is a maximal order in S whose

reduced trace equals trred.

If charQ /∈ [1, d], then each triple (Rγ , Zγ , tr
Rγ

red) is a Cayley–Hamilton algebra of
degree d by Lemma 2.4. The third part of the theorem shows that their intersection
is also a Cayley–Hamilton algebra of degree d. The sixth part of the theorem proves
that an intersection of maximal orders is also a maximal order under the natural
assumption that each Rγ is a central localization of R.

Proof. (1) For all β, γ ∈ Γ, we have the commutative diagram

R Rβ

Rγ S

By the construction of the reduced trace, the maps tr
Rβ

red : Rβ → Z(Rβ) and

tr
Rγ

red : Rγ → Z(Rγ) are the restrictions of trSred : S → Z(S) to the algebras Rβ and
Rγ . Therefore,

tr
Rβ

red |R = trSred |R = tr
Rγ

red |R.
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(2) Part (1) implies that trred(R) ⊆ Zγ for all γ ∈ Γ. Hence,

trred(R) ⊆
⋂

γ∈Γ

Zγ = Z.

Part (3) follows from Lemma 2.4 and part (2).
(4) Since Rγ is a maximal order for all γ ∈ Γ, Z(Rγ) is integrally closed (in Q).

Therefore Z =
⋂

γ∈Γ Z(Rγ) is integrally closed in Q. Thus, Z is integrally closed
in its quotient field, which is canonically identified with a subfield of Q.

(5) The assumption in part (5) implies that for all γ ∈ Γ,

Z(R) = {z ∈ R | zr = rz, ∀r ∈ R}
= {z ∈ R | zs = sz, ∀s ∈ S}
⊆ {z ∈ Rγ | zs = sz, ∀s ∈ S} = Z(Rγ).

Hence, Z(R) ⊆ Z, and by part (2), Z(R) = Z.
(6) Let us prove that R is an order. As Rγ is a central localization of R we have

Z(R) = Z(Rγ) ∩R. It follows that Z(R) is a domain.
Let us prove that Z(Rγ) ⊆ Fr(Z(R)), the field of fractions of Z(R). Let z ∈

Z(Rγ). By localization, we have z = ru−1 where r ∈ R and 0 �= u ∈ Z(R). Since
z commutes with each element Rγ , it commutes with each element of R. It follows
easily that r commutes with each element of R. Hence r ∈ Z(R), and z ∈ Fr(Z(R)).

Consequently Q = Fr(Z(Rγ)) = Fr(Z(R)).
Since RFr(Z(R)) contains both Rγ and Q, we have RFr(Z(R)) ⊃ Rγ Q = S.

Thus RFr(Z(R)) = S. By Proposition 2.6, the ring R is an order of S.

Let us prove R is a maximal order. Assume 0 �= z ∈ Z(R) and a subring R̃ of S
satisfy

(5.3) R ⊆ R̃ ⊆ 1

z
R.

We will show that R̃ = R. Then by Proposition 2.6, R is a maximal order.
Fix γ ∈ Γ. There is a multiplicative set M of central elements of R such that

RM
−1 = Rγ . As R̃ ⊆ 1

zR and z and each element of M are central in R, each

element of M is central in R̃ as well. In particular, one can define the localization

R̃M
−1. By localizing each algebra in (5.3) using the multiplicative set M, we get

Rγ ⊆ R̃M
−1 ⊆ 1

z
Rγ .

Since Rγ is a maximal order, we conclude R̃M
−1 = Rγ . Because the elements of

M are invertible in Rγ , and thus are not zero divisors in R̃, we have that R̃ ⊆
R̃M

−1 = Rγ . As this is true for all γ ∈ Γ, we have

R̃ ⊆
⋂

γ

Rγ = R.

Therefore R̃ = R. Hence R is a maximal order. Since each Rγ is a localization of
R, the reduced trace of R equals trred. �
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6. Root of unity upper quantum cluster algebras and

maximal orders

In this section we show that all roots of unity upper quantum cluster algebras
are maximal orders, thus proving Theorem A from the introduction. We also prove
part (5) of Theorem B from the introduction. Throughout the section, we work
over an arbitrary integral domain k of characteristic 0.

6.1. Trace maps on root of unity quantum tori. Consider the root of unity
quantum torus Tε(Λ) and denote

Ker(Λ) := {f ∈ ZN | Λ(f, g) = 0 ∈ Z/ℓ, ∀g ∈ ZN}.
Ker(Λ) is a subgroup of ZN and thus a lattice. It has the same rank, i.e., a finite
index in ZN

[ZN : Ker(Λ)] < ∞
because Ker(Λ) ⊇ (ℓZ)N .

The center of Tε(Λ) is
(6.1) Z

(
Tε(Λ)

)
= A1/2

ε − Span{Xf | f ∈ Ker(Λ)}.
Proposition 6.1. The following hold for an arbitrary base ring k which is an
integral domain of characteristic 0:

(1) Tε(Λ) is a free module over Z
(
Tε(Λ)

)
of rank

[ZN : Ker(Λ)]

with basis {Xf | f ∈ Δ} where Δ ⊂ ZN is a set of representatives for the
cosets in ZN/Ker(Λ);

(2) Tε(Λ) and Tε(Λ)≥ are maximal orders;
(3) If the base ring k is an algebraically closed field containing the cyclotomic

field Q(ε1/2), then Tε(Λ) is an Azumaya algebra.
(4) The PI degree of Tε(Λ) equals

d(Λ) :=
√
[ZN : Ker(Λ)].

Proof. Part (1) follows from the product formula (2.5). Part (2) follows from [8,
Theorem 6.5]. A more general statement will be proved in Theorem 8.6. For
part (3) see [8, Proposition 7.2]. Part (4) follows from (5.1) and part (1) of the
proposition. �

Lemma 6.2. The regular trace of Tε(Λ) is given by

trTε(Λ)
reg (Xf ) =

{
d(Λ)2 ·Xf , if f ∈ Ker(Λ)

0, if f �∈ Ker(Λ).

The proof of the lemma is straightforward.

Corollary 6.3. The reduced traces of Tε(Λ) and Tε(Λ)≥ are given by

tr
Tε(Λ)
red (Xf ) =

{
d(Λ) ·Xf , if f ∈ Ker(Λ)

0, if f �∈ Ker(Λ).

The statement for Tε(Λ) follows from (5.2) and Lemma 6.2. The statement for
Tε(Λ)≥ follows from the fact that the reduced trace of Tε(Λ)≥ is a restriction of
that of Tε(Λ) because Tε(Λ) is a central localization of Tε(Λ)≥.
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6.2. Uε(Mε, B̃, inv,Θ) is a maximal order. Let us fix a subset Θ of the ex-

change graph Eε(ΛMε
, B̃) of the root of unity upper quantum cluster algebra

Uε(Mε, B̃, inv). The center of the algebra Uε(Mε, B̃, inv,Θ) is given by Lemma
3.3. The center Z(Tε(M ′

ε)) of the quantum torus Tε(M ′
ε) is explicitly described in

(6.1). To determine the center of Uε(Mε, B̃, inv,Θ), we expand the elements of

the algebra Uε(Mε, B̃, inv,Θ) in terms of the quantum torus Tε(M ′
ε) for any seed

(M ′
ε, B̃

′) ∈ Θ (i.e., compute explicitly the embedding Uε(Mε, B̃, inv,Θ) →֒ Tε(M ′
ε))

and then apply (6.1).
Since the quantum torus Tε(M ′

ε) is a central localization of the algebra

Uε(Mε, B̃, inv,Θ) (see Eq. (3.4)) for any seed (M ′
ε, B̃

′) in Θ, the PI degrees of
the two algebras are equal to each other:

Proposition 6.4. The PI degree of Uε(Mε, B̃, inv,Θ) equals

d(ΛM ′
ε
) :=

√
[ZN : Ker(ΛM ′

ε
)],

where (M ′
ε, B̃

′) is any seed in Θ.

As a consequence of the proposition, the integer d(ΛM ′
ε
) is independent of the

choice of a seed (M ′
ε, B̃

′) of Uε(Mε, B̃, inv). We denote this integer by

d(Mε, B̃).

Theorem 6.5. Let k be an integral domain of characteristic 0, ε1/2 be a primi-
tive ℓ-th root of unity in the algebraic closure of the faction field of k (without any

restriction on ℓ) and Uε(Mε, B̃, inv) be a root of unity upper quantum cluster alge-
bra. Assume that Θ is a (not necessarily connected) subset of the exchange graph

Eε(ΛMε
, B̃) of Uε(Mε, B̃, inv). The following hold:

(1) For every pair of seeds (M ′
ε, B̃

′), (M ′′
ε , B̃

′′) ∈ Θ,

tr
Tε(M

′
ε)

red

∣∣
Uε(Mε,B̃,inv,Θ)

= tr
Tε(M

′′
ε )

red

∣∣
Uε(Mε,B̃,inv,Θ)

.

We denote by trred this restriction map coming from an arbitrary seed in

Θ. It satisfies trred(Uε(Mε, B̃, inv,Θ)) ⊆ Z(Uε(Mε, B̃, inv,Θ)).

(2) The algebra Uε(Mε, B̃, inv,Θ) is a maximal order whose reduced trace is
equal to trred. As a consequence, the triple

(6.2) (Uε(Mε, B̃, inv,Θ),Z(Uε(Mε, B̃, inv,Θ)), trred)

is a Cayley–Hamilton algebra of degree equal to the PI degree d(Mε, B̃) of

the algebra Uε(Mε, B̃, inv,Θ).
(3) If the base ring k is an algebraically closed field containing the cyclotomic

field Q(ε1/2), then the union
⋃

(M ′
ε,B̃

′)∈Θ

MaxSpec
(
Z(Uε(Mε, B̃, inv,Θ))[M ′

ε(ei)
−ℓ, 1 ≤ i ≤ N ]

)

inside MaxSpecZ(Uε(Mε, B̃, inv,Θ)) is in the Azumaya locus of

Uε(Mε, B̃, inv,Θ).

Proof. Part (1) follows by applying parts (1)-(2) of Theorem 5.1 to the collection
of mixed quantum tori

{Tε(M ′
ε)≥ | (M ′

ε, B̃
′) ∈ Θ}
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which are maximal orders in the central simple algebra

Tε(Mε)[(Z(Tε(Mε))\{0})−1]

by Proposition 6.1(2). By definition, Uε(Mε, B̃, inv,Θ) is the intersection of these
algebras. The triple in (6.2) is a Cayley–Hamilton algebra of the stated degree by
Example 2.3.

(2) By Eq. (3.4) each Tε(M ′
ε)≥ is a central localization of Uε(Mε, B̃, inv,Θ).

Hence, by Theorem 5.1(6), Uε(Mε, B̃, inv,Θ) is a maximal order with reduced
trace trred.

Part (3) follows from the fact that each of the central localizations

Uε(Mε, B̃, inv,Θ)[M ′
ε(ei)

−ℓ, 1 ≤ i ≤ N ]

is isomorphic to a quantum torus (Eq. (3.4)) which is an Azumaya algebra of PI

degree d(Mε, B̃) (parts (2) and (4) of Proposition 6.1 and Proposition 6.4). �

Theorem 6.6. Assume the setting of part (3) of Theorem 4.4. Then the union

⋃

(M ′
ε,B̃

′)∈Θ

MaxSpec
(
CUε(Mε, B̃, inv,Θ)[M ′

ε(ei)
−ℓ, 1 ≤ i ≤ N ]

)

inside MaxSpecCUε(Mε, B̃, inv,Θ) is in the fully Azumaya locus of Uε(Mε, B̃,

inv,Θ) with respect to its central subalgebra CUε(Mε, B̃, inv,Θ), cf. Definition

2.5. Over each such point, Uε(Mε, B̃, inv,Θ) has ℓN/d(Mε, B̃) irreducible repre-

sentations of dimension d(Mε, B̃).

Proof. Recall from (3.4) that for every seed (M ′
ε, B̃

′) ∈ Θ, we have the isomorphism

Uε(Mε, B̃, inv,Θ)[M ′
ε(ei)

−ℓ, 1 ≤ i ≤ N ] ∼= Tε(M ′
ε).

Analogously one proves

CUε(Mε, B̃, inv,Θ)[M ′
ε(ei)

−ℓ, 1 ≤ i ≤ N ] ∼= Tε(M ′
ε)

ℓ.

The theorem follows from the two isomorphisms and the fact that the quantum
torus in the right hand side of the first isomorphism is an Azumaya algebra of PI

degree d(Mε, B̃) by Proposition 6.1(4). �

Remark 6.7. Consider the case when Θ is the set of all seeds of the root of unity

upper quantum cluster algebra Uε(Mε, B̃, inv). The second isomorphism in Propo-
sition 3.1 and the isomorphism of exchange graphs from Eq. (2.10) imply that the
variety

⋃

(M ′
ε,B̃

′)∼(Mε,B̃)

MaxSpec
(
CUε(Mε, B̃, inv)[M ′

ε(ei)
−ℓ, 1 ≤ i ≤ N ]

)

in Theorem 6.6 is isomorphic to the cluster A-variety
⋃

(x̃′,B̃′)∼(x̃,B̃)

MaxSpeck[(x′
i)

±1, 1 ≤ i ≤ N ].
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7. An example

In the past it has been proved that quantum groups at roots of unity [6–8] as
well as stated and Muller skein algebras at roots of unity of surfaces with nontrivial
boundary [16, 21] are maximal orders in central simple algebras. These algebras
are closely related to root of unity quantum cluster algebras with sufficiently large
number of frozen variables and in all cases, the results were obtained by filtration
arguments. On the other hand, roots of unity quantum cluster algebras with fewer
frozen variables behave in less tractable way and in general do not have appropriate
filtrations. In this section we illustrate how our results apply to such an algebra.

7.1. The root of unity quantum cluster algebra of type A2. Consider the
cluster algebra of type A2 without frozen variables. It is associated to the exchange
matrix

B̃ =

[
0 1
−1 0

]
.

For a positive integer ℓ and a primitive ℓ-th root of unity ε1/2, consider the root

of unity quantum toric frame Mε with matrix Λ = B̃, where as in Sect. 2.4, the
bar denotes reduction modulo ℓ. The corresponding root of unity quantum cluster

algebra and its upper counterpart will be denoted by Aε(Mε, B̃) and Uε(Mε, B̃),
respectively; the inverted set inv is dropped from the notation since there are no
frozen variables.

By [20, Theorem 4.8], the exchange graph of Aε(Mε, B̃) is canonically isomorphic
to the exchange graph of the underlying cluster algebra, which is well known to be

a pentagon. The cluster variables of Aε(Mε, B̃) are

X1 := Mε(e1), X2 := Mε(e2), Y1 := Mε(−e1 + e2) +Mε(−e1),

Y2 := Mε(e1 − e2) +Mε(−e2),Mε(−e1 − e2) +Mε(−e1) +Mε(−e2).

The proof of the following fact is direct and is left to the reader.

Proposition 7.1.

(1) Aε(Mε, B̃)=Uε(Mε, B̃) and Aε(Mε, B̃) equal the A1/2
ε -subalgebra of Tε(Mε)

generated by the first four cluster variables X1, X2, Y1, Y2.

(2) If ℓ is odd, then Z(Aε(Mε, B̃)) = CUε(Mε, B̃).

The first part of the proposition is in agreement with the results that for a cluster
algebra with an acyclic and coprime seed, the cluster algebra equals its lower bound
and the corresponding upper cluster algebra [1, Theorem 1.18 and Corollary 1.19].
The last cluster variable equals

Mε(−e1 − e2) +Mε(−e1) +Mε(−e2) = ε−1/2Y1Y2 − ε−1/2.

7.2. A presentation of the algebra. Consider the A1/2
ε -algebra R with genera-

tors x1, x2, y1, y2 and relations

x2x1 = ε−1x1x2, y2x1 = εx1y2, x2y1 = εy1x2,

x1y1 = 1 + ε1/2x2, y1x1 = 1 + ε−1/2x2,

x2y2 = 1 + ε−1/2x1, y2x2 = 1 + ε1/2x1,

y2y1 = ε−1y1y2 + (1− ε−1).
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Theorem 7.2. For all positive integers ℓ and primitive ℓ-th roots of unity ε1/2 in
the algebraic closure of the fraction field of the base ring k, which is assumed to be
an integral domain of characteristic 0, the following hold:

(1) There is an A1/2
ε -algebra isomorphism θ : R → Aε(Mε, B̃) given by

(7.1) θ(xk) = Xk, θ(yk) = Yk for k = 1, 2.

(2) The algebra R is a maximal order.

Proof. (1) Proposition 7.1(1) implies that Aε(Mε, B̃) is isomorphic to the subalge-
bra of the quantum torus

Tε(Mε) =
A1/2

ε 〈X±1
1 , X±1

2 〉
(X2X1 − ε−1X1X2)

generated by

X1, X2, Y1 = X−1
1 + ε1/2X−1

1 X2, Y2 = X−1
2 + ε−1/2X−1

2 X1.

From this one easily verifies that the elements X1, X2, Y1, Y2 satisfy the defining

relations for the generators of R. Thus, there is a well defined A1/2
ε -algebra ho-

momorphism θ : R → Aε(Mε, B̃) given by (7.1). The defining relations of R also
imply that

R=A1/2
ε −Span{ym1

1 xn1

1 xn2

2 ym2

2 | m1, n1, n2,m2∈N,min(m1, n1)=min(m2, n2)=0}.

Using that {Xn1

1 , Xn2

2 | n1, n2 ∈ Z} is an A1/2
ε -basis of Tε(Mε), one easily shows

that the set

{Y m1

1 Xn1

1 Xn2

2 Y m2

2 | m1, n1, n2,m2 ∈ N,min(m1, n1) = min(m2, n2) = 0}

is an A1/2
ε -basis of Aε(Mε, B̃). Hence θ is an isomorphism.

Part (2) follows from the first part of the theorem and Theorem 6.5(2). �

8. Monomial subalgebras of quantum tori and their intersections

over subsets of seeds

In this section we show that any monomial subalgebra of a quantum torus is
Cayley–Hamilton and give a necessary and sufficient condition for when it is a
maximal order. We generalize the results from the previous section to prove that
the intersection of monomial subalgebras over a collection of seeds of a root of
unity quantum cluster algebra is always a Cayley–Hamilton algebra. Throughout
the base ring k is assumed to be an integral domain of characteristic 0.

8.1. Monomial subalgebras of root of unity quantum tori. For a root of
unity quantum torus Tε(Λ) and a subset

Φ ⊆ ZN ,

denote

A(Φ) := A1/2
ε − Span{Xf | f ∈ Φ}.

Eq. (2.5) implies that A(Φ) is an A1/2
ε -subalgebra of Tε(Λ) if and only if Φ is a

submonoid of ZN .

Definition 8.1. A subalgebra of Tε(Λ) of the form A(Φ) will be called a monoidal
subalgebra.
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Example 8.2.

(1) Each mixed quantum torus Tε(Λ)≥ is a monoidal subalgebra of Tε(Λ),
namely,

Tε(Λ)≥ = A(Φ) for Φ := {(f1, . . . , fN ) ∈ ZN | fj ≥ 0; ∀j /∈ ex ⊔ inv}.

(2) If Φ is a subgroup of ZN , then A(Φ) is isomorphic to a root of unity (based)
quantum torus for the restriction of the bicharacter Λ to Φ.

Proposition 8.3. For every monomial subalgebra A(Φ) of a root of unity quantum
torus Tε(Λ), the triple

(A(Φ),A(Φ) ∩ Z(Tε(Λ)), trTε(Λ)
red )

is a Cayley–Hamilton algebra of degree

d(Λ) =
√
[ZN : Ker(Λ)],

where tr
Tε(Λ)
red is the reduced trace of Tε(Λ) as in Sect. 6.1.

Since, Z(A(Φ)) ⊆ A(Φ)∩Z(Tε(Λ)), Proposition 8.3 implies that (A(Φ),Z(A(Φ)),

tr
Tε(Λ)
red ) is a Cayley–Hamilton algebra of the same degree.

Proof. It follows from Corollary 6.3 that

tr
Tε(Λ)
red (A(Φ)) ⊆ A(Φ) ∩ Z(Tε(Λ)).

The proposition now follows from Lemma 2.4 and parts (2) and (4) of Proposition
6.1. �

For every submonoid Φ ⊆ ZN ,

Φ := Φ− Φ = {α− β | α, β ∈ Φ}

is a subgroup of ZN and A(Φ) is isomorphic to a root of unity quantum torus as
described in Example 8.2(2). Furthermore, A(Φ) is a central localization of A(Φ)
because of (2.5) and the fact that each element of the lattice Φ is of the form

α− β =
(
α+ (ℓ− 1)β

)
− ℓβ

for some α, β ∈ Φ. Hence, the restriction of the reduced trace of the root of unity
quantum torus A(Φ) to A(Φ) equals the reduced trace of A(Φ) (to be denoted by

tr
A(Φ)
red ) and the PI degrees of A(Φ) and A(Φ) equal

(8.1)
√
[Φ : Ker(Λ|Φ)].

Applying Proposition 8.3 to the algebra A(Φ) and the quantum torus A(Φ) leads
to the following:

Proposition 8.4. For every monomial subalgebra A(Φ) of a root of unity quantum
torus Tε(Λ), the triple

(A(Φ),Z(A(Φ)), tr
A(Φ)
red )

is a Cayley–Hamilton algebra of degree (8.1).
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8.2. Criterion for a monomial subalgebra to be a maximal order. Suppose
Φ ⊆ ZN is a submonoid, generating the group Φ ⊆ ZN . We consider ZN as a subset
of RN .

We say Φ is integrally convex if f, g ∈ Φ implies that any point of Φ lying
in the interval segment [f, g] is in Φ. This is equivalent to the seemly weaker
condition, which says that if f ∈ Φ is such that kf ∈ Φ for a positive integer k then
f ∈ Φ. In fact, assume the weaker condition and let h ∈ Φ be in the segment [f, g],
where f, g ∈ Φ. Then h is a non-negative rational linear combination of f and g.
Consequently there is a positive integer k such that kh is a non-negative integer
linear combination of f and g, and hence belongs to Φ. Thus the weaker condition
implies h ∈ Φ.

For example the submonoid N \ {1} of Z is not integrally convex.
For a non-zero f ∈ RN the ray passing through f is Ray(f) = {tf | t ∈ R, t > 0}.

For a subset V ⊆ RN let Ray(V ) be the set of all rays passing through non-zero
elements of V . There is a bijection p : Ray(RN ) → S, where S is the unit sphere
in RN , given by p(L) = L ∩ S. We topologize Ray(RN ) using the bijection p and
the topology of the unit sphere S. We say Φ is integrally closed if Ray(Φ) is closed
in Ray(Φ).

We give below typical integrally closed and non-integrally closed submonoids.

Example 8.5. Suppose L1, . . . , Lk are linear forms on RN , not necessarily having
integral coefficients.

(1) The submonoid determined by the non-strict inequalities

L(L1, . . . , Lk) := {f ∈ ZN | Li(f) ≥ 0, i = 1, . . . , k}
is integrally convex and integrally closed.

(2) Consider the submonoid defined by the strict and non-strict inequalities

L′(L1, . . . , Lk) = {f ∈ ZN | L1(f) > 0 for f �= 0, Li(f) ≥ 0, i = 2, . . . , k}.
Suppose L1 has integer coefficients and is non-redundant in the definition of
L′(L1, . . . , Lk). Then L′(L1, . . . , Lk) is integrally convex but not integrally
closed.

Note that integrally convex and integrally closed properties are intrinsic, meaning
they do not depend on how the monoid Φ embeds in an abelian group ZN .

Theorem 8.6. A monomial subalgebra A(Φ) of a root of unity quantum torus
Tε(Λ) is a maximal order if and only if Φ is integrally convex and integrally closed.

For example, a very special case of the theorem shows that the mixed quantum
tori Tε(Mε)≥ are maximal orders, see Examples 8.2(1) and 8.5(1).

Proof. By replacing ZN with Φ, we can assume that Φ = ZN . Then the ring of
fractions Fr(A(Φ)) of A(Φ) is equal to that of Tε(Λ).

(a) Assume that A(Φ) is a maximal order.
Let us show that Φ is integrally convex. Assume f ∈ ZN such that kf ∈ Φ where

k is a positive integer. We need to show that f ∈ Φ. By replacing k with a multiple
of it we can assume k is divisible by the order of ε. Then Xkg is central in A(Φ) for
any g ∈ Φ. Let B be the algebra generated by A(Φ) and the monomial b = Xf . We
will write x =× y if x = uy where u is an invertible scalar. Since for any monomial
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Xg we have bXg =× Xgb and A(Φ) has a basis consisting of monomials, we have
bA(Φ) = A(Φ)b. It follows that

B =

∞∑

i=0

biA(Φ) =

k−1∑

i=0

biA(Φ),

where the second identity follows from the fact that bk ∈ A(Φ). Since Φ−Φ = ZN ,

there are f ′, f ′′ ∈ Φ such that f ′ − f ′′ = f . Let a = Xf ′

and c = Xf ′′

. Then for
i = 0, . . . , k − 1,

bi =× c−iai = c−kck−iai ∈ c−kA(Φ).

It follows that B ⊆ c−kA(Φ), and maximal order property implies B = A(Φ).
Hence b ∈ B = A(Φ), or f ∈ Φ. Thus Φ is integrally convex.

Let us now show that Φ is integrally closed. If N = 1 then the integral convexity
implies that Φ = N or Φ = −N or Φ = Z. In each case Φ is integrally closed.

Suppose now N > 1. Assume L ∈ Ray(ZN ) is a limit of rays in Ray(Φ). We
have to show that L ∈ Ray(Φ). Let C(Φ) = p(Ray(Φ)) and C(ZN ) = p(Ray(ZN )).
The topological closure C(Φ) of C(Φ) is a convex subset of S of dimension equal
to that of S.

Claim: If x is an interior point of C(Φ) and x ∈ C(ZN), then x ∈ C(Φ). This is
because Ray(x) is a convex linear combination of the rays in Ray(Φ) when x is an
interior point of C(Φ). As all rays involved are integral, the coefficients of the linear
combination can be chosen to be non-negative rational numbers. This implies that
Ray(x) contains a point in Φ, or x ∈ C(Φ).

In particular, if p(L) is an interior point of C(Φ), then L ∈ Ray(Φ). Consider
the remaining case when p(L) is on the boundary of C(Φ). The interior of C(Φ)
is non-empty as N > 1. Choose f ∈ Φ such that p(Ray(f)) is an interior point of
C(Φ) and let a = Xord(ε)f where ord(ε) is the order of ε. Note that a is in the
center Z(A(Φ)) of A(Φ), which is absolutely integrally closed. Let g ∈ L∩ ZN and
b = Xord(ε)g. Then b is in the field of fractions Fr(Z(A(Φ))).

From the claim and the integral convexity, we have f + kg ∈ Φ for all positive
integers k. This is because p(Ray(f + kg)) is an interior point of C(Φ) and at
the same time an element of C(ZN ). Thus abk ∈ Z(A(Φ)) for all positive integers
k. The absolutely integrally closed property implies b ∈ Z(A(Φ)) ⊆ A(Φ), which
means L is in Ray(Φ).

(b) Assume that Φ is integrally convex and integrally closed. We will prove that
A(Φ) is a maximal order.

Suppose that 0 �= z ∈ Z(A(Φ)) and B is an A1/2
ε -algebra such that

A(Φ) ⊆ B ⊆ 1

z
A(Φ).

We need to show B = A(Φ). Let b ∈ B be a non-zero element. As Tε(Λ) is a central
localization of A(Φ) and at the same time a maximal order, we have b ∈ Tε(Λ). See
the proof of Theorem 5.1(6).

As 0 �= b ∈ Tε(Λ), there is a non-empty finite set supp(b) ⊆ ZN such that

b =
∑

f∈supp(b)

cfX
f , 0 �= cf ∈ A1/2

ε .

Let Newt(b), known as the Newton polytope, be the convex hull in RN of supp(b).
Note that b ∈ A(Φ) if and only if (Newt(b) ∩ ZN ) ⊆ Φ.
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For two non-zero b1, b2 ∈ Tε(Λ) we have
(8.2)
Newt(b1b2) = Newt(b1) + Newt(b2) := {f1 + f2 | f1 ∈ Newt(b1), f2 ∈ Newt(b2)}.

In fact Identity (8.2) for commutative rings of Laurent polynomials is known [15,
Proposition 19.4], and the easy proof there carries over to quantum tori.

For all positive integers k, the fact bkz ∈ A(Φ) means (kNewt(b) + Newt(z)) ∩
ZN ⊆ Φ. The integrally closed property implies the ray passing through any point
f ∈ Newt(b) ∩ ZN is in Ray(Φ), and the integral convexity further implies that
f ∈ Φ. Thus Newt(b) ∩ ZN ⊆ Φ, or b ∈ A(Φ). This completes the proof that A(Φ)
is a maximal order. �

Remark 8.7. The sufficient condition of Theorem 8.6 is a generalization of a result
of the second author and J. Paprocki [21], and the proof is a generalization of the
proof given there.

Remark 8.8. The stated skein algebra of a surface with non-empty boundary [16]
has an N-filtration whose associated graded algebra is a monomial algebra associ-
ated to an integrally convex and integrally closed submonoid, and consequently the
stated skein algebra of a surface with non-empty boundary is a maximal order, see
Theorem 7.5 therein.

For a marked surface with non-empty boundary and with at least one marked
point on each boundary component, Muller [19] defined a quantum cluster algebra.
The second author and J. Paprocki showed that the Muller quantum cluster algebra
has an N-filtration whose associated graded algebra is a monomial algebra associ-
ated to an integrally convex and integrally closed submonoid, and consequently it
is a maximal order, see [21, Section 10].

8.3. A cluster theoretic intersection of monomial algebras.

Theorem 8.9. Assume that ε1/2 is a primitive ℓ-th root of unity in the algebraic
closure of the fraction field of the base ring k, which is assumed to be an integral

domain of characteristic 0 (no restrictions on ℓ), and Uε(Mε, B̃, inv) is a root of
unity upper quantum cluster algebra. Let Θ be a (not necessarily connected) subset

of the exchange graph Eε(ΛMε
, B̃) of Uε(Mε, B̃, inv) and AΣ(ΦΣ) be a monomial

subalgebra of Tε(M ′
ε) for each seed Σ = (M ′

ε, B̃
′) ∈ Θ for some submonoids ΦΣ ⊆

ZN . Denote

A :=
⋂

Σ∈Θ

AΣ(ΦΣ).

The following hold:

(1) For every pair of seeds (M ′
ε, B̃

′), (M ′′
ε , B̃

′′) ∈ Θ,

tr
Tε(M

′
ε)

red

∣∣
A
= tr

Tε(M
′′
ε )

red

∣∣
A
.

We denote by trred this restriction map coming from an arbitrary seed in
Θ.

(2) trred(A) ⊆ ∩Σ∈ΘZ(AΣ(ΦΣ)).
(3) The triple

(A,∩Σ∈ΘZ(AΣ(ΦΣ)), trred)

is a Cayley–Hamilton algebra of degree equal to d(Mε, B̃).
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The theorem follows from applying parts (1)-(3) of Theorem 5.1 to the collection

of Cayley–Hamilton algebras (AΣ(ΦΣ),Z(AΣ(ΦΣ)), tr
Tε(M

′
ε))

red ) for the seeds Σ =

(M ′
ε, B̃

′) ∈ Θ constructed in Proposition 8.4. The theorem generalizes Theorem 6.5
in that intersections of mixed quantum tori over a collection of seeds are replaced
with arbitrary intersections of monomial algebras. However, in that more concrete
situation, Theorem 6.5 establishes a stronger result that the former intersections
are maximal orders rather than just Cayley–Hamilton algebras.
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