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A Displacement-Based Fiber Element to Simulate

Interactive Lateral Torsional and Local
Buckling in Steel Members

Arka Maity, S.M.ASCE'; Amit Kanvinde, M.ASCE?; Diego |. Heredia Rosa, S.M.ASCE?;
Albano de Castro e Sousa®; and Dimitrios G. Lignos, M.ASCE?®

Abstract: Collapse in steel structures is often controlled by loss of load carrying capacity of steel columns due to interactive buckling,
which involves interactions between local and global (i.e., lateral and lateral torsional) buckling. Commonly used concentrated plastic hinge
or fiber-based elements do not simulate the physics of this response, potentially leading to inaccuracy in performance assessment. A nonlinear
fiber-beam-column element [termed the Torsion Fiber Element (TFE)] to simulate monotonic interactive buckling in steel beam-columns
is presented. The element, implemented in the OpenSees platform, incorporates St. Venant as well as warping torsion through enrichment
of strain interpolation functions, in addition to axial and flexural deformation modes. Local buckling is represented through a softening
multiaxial constitutive relationship. The efficacy of this approach is examined by comparing its results against those obtained from continuum
finite element simulations as well as experimental data on beam-columns subjected to monotonic loading. The comparisons indicate that
the element can functionally represent the physics underlying interactive buckling, resulting in effective prediction of the overall monotonic
load-deformation response, as well as internal deformation and stress fields. Limitations of the element in its current form are summarized,

along with prospective improvements. DOI: 10.1061/JSENDH.STENG-11889. © 2023 American Society of Civil Engineers.

Author keywords: Frame elements; Steel beam-columns; Local buckling; Lateral torsional buckling.

Introduction

The performance assessment and design of structures subjected
to extreme loads (e.g., seismic, wind, or blast) increasingly rely
on the accuracy of model-based simulations of limit states such as
collapse. This is enabled by design standards (e.g., ASCE 2017)
and guidelines (PEER/ATC 2010) that allow or mandate the use of
nonlinear response-history simulations of buildings to evaluate
collapse or failure probabilities along with associated acceptance
criteria. Sophisticated and robust analysis methods are required to
support such model-based assessment/design frameworks; these
methods rely on research supplemented by simulation guidance
documents for various structural systems in steel (NIST 2017a) and
concrete (NIST 2017b). In steel systems, structural collapse is usu-
ally the result of loss of member load carrying capacity coupled
with the destabilizing effects of gravity.
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A dominant member failure mode observed in popular structural
steel systems (e.g., columns in moment frames, or multi-tiered
braced frames) includes interactions between inelastic lateral tor-
sional buckling and local buckling. One form of buckling may pre-
cede and trigger the other (e.g., local buckling diminishes torsional
restraint at the ends of the column, triggering lateral torsional buck-
ling), or a coupled failure mode may occur in which both types of
buckling happen simultaneously and progressively. In this paper,
the term interactive buckling (IB) is used to generically connote all
such interactions that lead to loss of member load carrying capacity.
Notwithstanding the specific order of events, the physical out-
come of IB is a three-dimensional failure mode resulting in loss of
member strength. Fig. 1 shows photographs of IB occurring in a
column subjected to axial and lateral loads during a test program
conducted by Elkady (2016). Fig. 1(a) shows the load-deformation
curve of the column tested under major axis bending. Figs. 1(b
and c) show the in-plane deformations [at loading instants 1 and 2
shown in Fig. 1(a)], the latter exhibiting local buckling, whereas
Fig. 1(d) shows lateral torsional buckling which, along with local
buckling, corresponds to the negative slope (and strength loss)
observed at loading instant 3. The response shown in Fig. 1 is in-
herently three-dimensional, with various physical phenomena at
play; these include: (1) inelastic torsional response including warp-
ing torsion as well as St. Venant type torsion, (2) spread of plasticity
along the length and through the cross section, (3) interactions be-
tween axial force, biaxial bending, torsion, and shear, and (4) locali-
zation of deformation, which typically occurs after local buckling.
Similar responses have been noted in other experimental (Chansuk
et al. 2021) and computational (Elkady and Lignos 2015, 2018b;
Fogarty and El-Tawil 2016; Wu et al. 2018) studies as well.

As shown in previous studies (Elkady and Lignos 2015, 2018b),
such responses can be accurately simulated through Continuum
Finite Element (CFE) simulations that are able to explicitly simulate
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Fig. 1. Representative interactive buckling from experiments (W24X146, P/P, = 0.2): (a) schematic load-deformation curve; deformed states at

chord rotation (0): (b) 2%, (¢) 3%, and (d) 4%.

these various phenomena and their interactions. However, these are
generally regarded as being prohibitively expensive within the con-
text of structural performance assessment (ASCE 2017; FEMA
2009; PEER/ATC 2010). The structural engineering research and
professional practice rely almost exclusively on frame elements;
consequently, these are the focus of this paper. Within frame ele-
ments, the popular approaches to simulate IB include concentrated
hinge or spring type models (Dides and de la Llera 2005; Ibarra et al.
2005), or fiber elements (Kolwankar et al. 2018, 2020; Krishnan
2010; Spacone et al. 1996). However, both of these approaches
are inadequate because they (in their common interpretations and
implementations) fail to capture the fundamental physics of IB.
Specifically, zero length elements cannot capture the spread of plas-
ticity, and typically cannot capture axial force flexure interactions or
axial force-flexure-torsion interactions. Moreover, they usually
reflect only in-plane response, and do not, in general, simulate the
three-dimensional response shown in Fig. 1. Conventional fiber-
based elements address some of these limitations (e.g., spread of
plasticity and axial-force-moment interactions) but usually do not
incorporate cross-sectional warping or the effect of shear strains,
both of which are important especially when torsional deformation
modes are involved. As a result, these approaches are usually cali-
brated in an ad hoc, phenomenological way to match the load-
deformation response of specific experiments. This compromises
their generality when extrapolated to new structural configurations
or loadings.

Motivated by the above, this paper formulates and implements a
displacement-based fiber element that can simulate IB in steel
beam-columns. Termed the Torsion Fiber Element (TFE), the
element incorporates the following features: (1) a multiaxial fiber
construct to represent normal and shear stress interactions at the
fiber level and ultimately axial, flexural, shear, and torsional inter-
actions at the cross-sectional level, (2) spread of plasticity and
effective softening due to local buckling, (3) consideration of warp-
ing as well St. Venant torsion through a 14 degree of freedom
element and new deformation interpolation functions, (4) rigorous
incorporation of geometric nonlinearities to enable simulation
of various forms of buckling and post-buckling response, and
(5) complete numerical implementation in the simulation platform
OpenSees (version 3.0.0a). The next section provides background,
including a summary of relevant work in the area. Following this,
observations from CFE simulations conducted as part of this
study are presented, along with prior experimental results—these
inform the element formulation and also serve as a testbed for

© ASCE

04023045-2

the validation of the proposed TFE. The element formulation and
implementation are then presented, and results are compared
against their counterparts from the CFE simulations and one experi-
ment. The paper concludes by summarizing limitations along with
ongoing and future work.

Background and Scope

Numerous studies have experimentally, computationally, and ana-
Iytically investigated lateral torsional buckling, local buckling, and
more recently, IB. These studies establish: (1) a comprehensive
understanding of the phenomenology of these response modes,
(2) a theoretical understanding of basic attributes such as internal
strain distributions (generally under elastic conditions), and
(3) mathematical formulations and geometric transformations that
enable their representation through frame elements. Early work
(Farwell and Galambos 1969; Fukumoto and Galambos 1966;
White 1956) on the topic of inelastic lateral torsional buckling
of steel beam-columns established a basic understanding of
the physical phenomena which, through several refinements
(e.g., Subramanian and White 2015) continues to influence current
design codes (AISC 2016a, b); Kemp (1996) provides an overview
of the important aspects of this seminal body of work. This work
is underpinned by theoretical developments (Timoshenko 1945)
regarding internal stress/strain fields and deformation modes
through which open sections resist combinations of applied flexure,
shear, and torsion (uniform and non-uniform). More recent exper-
imental (Newell and Uang 2008; Elkady and Lignos 2018a; Suzuki
and Lignos 2021; Cravero et al. 2020; Chansuk et al. 2021) and
computational (Elkady and Lignos 2015, 2018b; Fogarty and
El-Tawil 2016; Wu et al. 2018) studies provide additional data
under seismic loading. In the context of this paper, the main
observations from these studies are that: (1) conventional Euler—
Bernoulli beam theory, in which plane sections remain plane
(PSRP) is utilized, cannot capture the mechanics of warping torsion
that are essential to inelastic lateral torsional response of open
sections, and (2) the response is controlled by interactions between
longitudinal (i.e., axial) and shear stresses, which results in strong
coupling between various stress resultants as interpreted at the
member ends or cross-sections. Work by Simo and Vu-Quoc
(1991), Pi and Trahair (1994a, b) has resulted in frame elements
to represent this type of response, albeit the former focuses on
elastic response, whereas the latter considers only warping torsion
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Fig. 2. Mechanism of torsion in I-section: deformation associated with (a) St. Venant’s torsion and (b) warping torsion; (c) shear flow due to
St. Venant’s torsion; (d) shear in flange due to warping torsion; (e) combined state of stress due to applied torsion.

(and neglects shear strains), focusing on thin-walled sections.
More recently, Du and Hajjar (2021) developed a nonlinear frame
element for single angle and tee sections accounting for inelastic
torsion warping. While these various formulations address impor-
tant aspects of response, they remain application specific and none
can account for all the combined effects present in open section
members that have significant contributions from St. Venant torsion
(i.e., thick-walled sections vis-a-vis PSRP which arises from shear
flow around the cross section), as well as warping torsion (which
arises from torsion-induced weak-axis bending of the flanges);
Figs. 2(a—e) illustrate these phenomena.

These two types of torsion result in interactions between shear
and longitudinal strain at the continuum level [Fig. 2(e)], which
cannot usually be accommodated into conventional fiber element
formulations, and only consider longitudinal local strains. Research
by Le Corvec and Filippou (2011) is particularly notable in this
regard. This work provides a general framework for the incorpo-
ration of cross-sectional warping deformations into a force-based
fiber element constructs, and is applied to simulate interactive
flexural, shear, and torsional response of beam-columns. This is
done through the introduction of an arbitrary number of additional
degrees of freedom to interpolate warping deformations. The
element formulation presented in this paper may be considered
a particularization of the Le Corvec and Filippou (2011) approach,
focusing on physically intuitive (and well-established) deformation
modes and force resultants, such as twist rate and the bimoment to
describe the response of beam-columns. The formulation in this
paper is also different insofar as it focuses on displacement-based
elements rather than force-based. While the research described
above provides the basis for simulating a response at the member
scale, it requires additional enrichment to simulate local buckling,
which is integral to IB. A common approach for simulating local
buckling in fiber elements is to represent it as effective constitutive
softening. This approach has been used successfully by several re-
searchers (Hajjar et al. 1998; Kolwankar et al. 2018, 2020). Suzuki
and Lignos (2018) developed uniaxial material models specifically
to represent local buckling in fiber elements, and other researchers
(Kolwankar et al. 2020) have provided means for their calibration
and regularization (to mitigate the effects of mesh dependence or
non-objectivity). The method presented in this paper uses a similar
approach, except that the effective softening material is a multiaxial
one, to account for the interactions between shear and longitudinal
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stresses. This study builds on these previous developments to pro-
pose an element formulation with the features described in the
Introduction. This formulation is applicable to bisymmetric open
sections (specifically, I-beams) and (in its current form) is limited
to monotonic loading. Local buckling is represented through an
adaptation of a von Mises hardening plasticity model with effective
softening. It should be noted that the proposed TFE formulation,
along with the use of a softening von Mises material law, aims to
simulate element response well past its peak capacity. For applica-
tions that require only precise estimates of the member load-bearing
capacity, other well calibrated methodologies exist, such as the
strain-averaged Continuous Strength Method (Fieber et al. 2019).

Continuum Finite Element Simulations and
Experimental Data

Benchmark data for model development and validation was pri-
marily derived from CFE simulations conducted as part of this
study, along with a previously conducted physical experiment by
Farwell and Galambos (1969). While the experiment provides
direct observations of response, the CFE simulations are advanta-
geous for three reasons. First, they simulate the behaviors of inter-
est (i.e., elastoplastic response, local, lateral torsional, and IB)
accurately, representing all the relevant physics. Second, they en-
able the interrogation of a large range of parameters and loading
conditions that are challenging to examine in a physical or exper-
imental setting. Finally, they allow for the recovery of deformation
fields and internal stress variables at a scale and resolution that are
unfeasible to assess in experiments; this is particularly important
from the standpoint of formulating the element and the underlying
strain interpolations. Referring to Fig. 3(a), each simulation was a
single member subjected to a range of boundary conditions and
loadings that are summarized in Table 1. Figs. 3(b—c) show the de-
formed shape of one such simulation (Simulation #18; see Table 1)
indicating an IB mode with local buckling as well as lateral tor-
sional buckling. The boundary conditions and loadings shown in
Table 1 feature a mix of flexural, torsional, and axial loads applied
in various ways and are intended to represent conditions that are
present in typical first story columns. The parameter sets include
a wide range of flange slenderness [4 < (b/2t;) < 10], ranging
from highly ductile to moderately ductile as per AISC (2016b), web
slenderness [35 < (h/t,,) < 60] - a majority being beyond the high
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Fig. 3. Representative continuum finite element (CFE) model (simulation #18): (a) undeformed column; (b) axial stress (o,,); and (c) in-plane shear

stress (7) distribution at drift level 4%.

Table 1. Investigated Problems (i.e., Simulation matrix) and associated parameters

Sim. number Load type Section by /2t h/t, Length (mm) Boundary conditions P/P, Observations
1,2,3 0" W24X131 6.70 35.6 5,486 TR - Fr° 0,0.2,03 T
4,5,6 0, W24X103 4.59 39.2 5,486 TR - Fr 0,0.2,03 T
7,8,9 0, W24X84 5.86 45.9 5,486 TR - Fr 0,0.2,03 T
10, 11, 12 Al W24X131 6.70 356 5,486 Fx - Fx® 0,02, 03 IB'
13, 14, 15 Ay W24X131 6.70 35.6 5,486 Fx - Fr® 0,0.2,0.3 LT¢
16, 17, 18 A, W24X103 4.59 39.2 5,486 Fx — Fx 0,02,03 1B
19, 20, 21 A, W24X103 4.59 39.2 5,486 Fx — Fr 0,0.2,0.3 LT
22,23, 24 A;, W24X84 5.86 459 5,486 Fx - Fx 0,0.2,0.3 1B
25, 26, 27 A, W24X84 5.86 45.9 5,486 Fx — Fr 0,02,03 LT
28, 29, 30 A, W24X55 6.94 54.6 5,486 Fx — Fx 0,0.2,03 LT
31, 32,33 A;, W21X101 7.68 37.5 5,486 Fx - Fx 0,02,03 1B
34, 35, 36 A, W21X101 7.68 37.5 5,486 Fx — Fr 0,02,03 LT
37, 38 A, W21X48 9.47 53.6 5,486 Fx — Fx 0,0.2 1B

<

*Applied twist (6,) (Displacement controlled).

°One end strictly torsion restrained, the other end free, both ends warping restrained.
“Torsional (T) and lateral torsional (LT) response, together termed as global torsion (GT).
dApplied lateral displacement (A,) for major axis bending (Displacement controlled).
°One end fixed, the other end with restrained rotations (both ends warping restrained).

finteractive buckling (IB) response.
€0ne end fixed; the other end entirely free (both ends warping restrained).

ductility limit as per AISC (2016b), and a wide range of global
member slenderness ratios [50 < (L/r,) < 150] — a majority being
higher than the plastic LTB slenderness ratio limit of L, /r, as per
AISC (2016a). Two different types of end conditions are also con-
sidered: (1) Fx-Fr: wherein one end is fully restrained and the other
(loading end) is fully free except for the minor axis displacement
(A,), and (2) Fx-Fx: wherein one end is fully restrained, and the
other (loading end) has restrained rotations as well as the minor axis
displacement (A, - refer to Table 1); warping is restrained for both
the cases. In terms of moment gradient ratio (M:V), the latter is
lower than the former with all other conditions being the same.
These variables allow for the examination of response in cases
where lateral torsional buckling or when local buckling is dominant
(i.e., high L/r, and high moment gradient or low L/r, and low
moment gradient, respectively) — the LTB dominated or pure tor-
sional responses are notated LT in Table 1, or when IB is highly
likely (moderately high values of both L/r, and the moment gra-
dient); these are notated IB. The methodology used for the

© ASCE

04023045-4

construction of these CFE models has been exhaustively validated
by Elkady and Lignos 2015, 2018b against experimental data
(Elkady and Lignos 2018a; Newell and Uang 2008); consequently,
such validation is not presented here.

Figs. 3(b and c) show contour plots of the stress components:
axial stress o, as well as in-plane shear 7 in a region of interest
near the local buckle; indicating that the material is subjected to a
complex stress state composed of both axial as well as shear
stresses, neither of which can be disregarded. These simulation
models were constructed using the software ABAQUS (2020)
using protocols developed by Elkady and Lignos (2015). The
members were idealized by shell elements (4 node reduced integra-
tion; S4R in ABAQUS), with an element size on the order of
25 mm x 25 mm (small relative to section depths in the range
of 500-600 mm, and overall member length in the range of
5,000-6,000 mm) to achieve mesh convergence. Initial imperfec-
tions were introduced into the model as perturbations to initiate
local buckling. The size and shape of these imperfections are based
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Fig. 4. Results from representative continuum finite element (CFE) model (simulation #18): (a) load-deformation response; (b) lateral displacement

profiles; and (c) twist angle profile.

on procedures developed by Elkady and Lignos 2015, 2018b. The
material constitutive response was represented through a von Mises
yield surface with isotropic-kinematic hardening and one back
stress (Lemaitre and Chaboche 1990), with parameters calibrated
to represent A992 Grade 50 steel commonly used in United States
construction; the parameter values are summarized in Elkady and
Lignos 2018b. It is emphasized here that the constitutive material is
monotonically hardened, such that all forms of softening (measured
at the global scale) occur due to geometric nonlinear effects, such
as local or lateral torsional buckling. Residual stresses were not
incorporated, either in the CFE simulations or the TFE simulations
(presented later) for consistency. The primary information extracted
from the CFE simulations (and the experiment) was the load-
deformation curves. Additionally, deformations (measured both
in terms of continuum strains profiles and displacement variables
in three dimensions) was recovered from each of the simulations.
Figs. 4(a—c) show a sample of such recovered results, all from
Simulation #18, which features W24X103 (Fx-Fx end condition)
subjected to an axial load of 0.3P, (constant throughout and ap-
plied as a force) followed by a lateral force (applied by an imposed
displacement history at the top of the column). Fig. 4(a) shows the
lateral load versus chord rotation [see inset of Fig. 4(a)], whereas
Figs. 4(b and c) show the distribution of two deformation variables,
i.e., the lateral displacement A and the twist 0, over the length of
the member, at loading instants 1, 2, and 3 marked in Fig. 4(a). It is
noted here that the lateral displacement shown in Fig. 4(b) reflects
the displacement of the centerline of the CFE model, whereas the
twist is idealized by the rotation of the imaginary line connecting
the flange centroids about the member longitudinal axis (x-axis).
This facilitates a consistent comparison with the results of the frame
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i ! J J
u u
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element introduced in the next section. Similar results were recov-
ered for all 38 simulations listed in Table 1. In addition to the
recovered quantitative data from these simulations, qualitative data
(e.g., stress and strain patterns) from these simulations [similar to
those indicated in Figs. 3(b and c)] were inspected to develop
intuition regarding internal stress and strain distributions.

Element Formulation for the Torsional Fiber Element

The discussion of the element formulation is divided into three
subsections. First, the element construct, section kinematics, and
deformation interpolations are presented. This is followed by a de-
scription of the approach used for the incorporation of geometric
nonlinearity, using an updated Lagrangian formulation. The section
concludes by describing the numerical implementation.

TFE Construct, Section Kinematics, and Deformation
Interpolation

Fig. 5(a) shows the frame element and degrees of freedom. Refer-
ring to the figure, the member has 14 degrees of freedom (dofs). Of
these, two (i.e., dof u; and u;) correspond to axial deformations,
eight (v;,w;,0..0,., v, W, 92,, and Hyj) correspond to flexural
and shear deformations, whereas four (0, 0;., 91; and 9,21_) corre-
spond to torsional deformations. Of the torsional dofs, two corre-
spond to the twist angles (6, and ij) at ends i and j, whereas dofs
6. and 9;/ correspond to the twist rates at these ends. The work-

conjugate forces for each of these are straightforward, i.e., the
moments for the flexural rotations, axial forces, and shear forces

- e

6; 6'%

_———

(€)

Fig. 5. Proposed TFE construct: (a) TFE element with displacement components; (b) deformation due to St. Venant’s torsion; and (c) deformation

due to warping torsion.
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for the axial and lateral displacements, and the torsional moment
for the twist. The work-conjugate force for the twist rate (and/or the
warping) is the bimoment. The element construct is similar to the
well-established elastic warping torsion element originally pro-
posed by Bathe and Wiener (1983) and described in detail by
McGuire et al. (2000). The deformation of each cross section is
considered to be a superposition of the following deformations:

u' : strain at centerline

0! : curvature about z-z axis

—0, : curvature about y-y axis

0} : twist rate

Of these, the axial deformation (i.e., centerline stretch) and
the flexural deformations (i.e., the curvatures in both directions)
carry their usual meanings from the Euler—Bernoulli beam theory
(e.g., see Le Corvec 2012). The torsional deformations are sche-
matically illustrated in Figs. 5(b and c). As shown in these figures,
the torsional deformations may be decomposed into those that arise
from St. Venant torsion (i.e., wherein plane sections remain plane —
see Fig. 5(b); in the elastic case this corresponds to the torsional
rigidity GJ), and warping torsion. The latter (which corresponds
to the torsional constant in the elastic case EC,,, in which C,, is
the warping constant of the cross section), for an open I-section
(or wide-flanged section), is characterized by the formation of
a shear couple due to the bending of each of the flanges in
the weak-axis of the cross section that occurs due to torsional
deformation of the cross section — see Fig. 5(c). The centerline
generalized displacements (u, v, w, and 6,) at any cross section
(i.e., longitudinal location x) are interpolated from the end displace-
ments as described below in Egs. (1)-(4). As discussed in the
next subsection, these displacement interpolations are applied for
incremental (rather than total) displacements within an updated
Lagrangian framework

u(x) = Ny, (x)u; + Ny, (x)u; (1)

v(x) = N, (¥)v; + N, ()0, + N, (x)v; + Ne, (x)0, - (2)

W(x> = Ncl (X)Wi - ch (x)eyi + Nq (x)wj - Nc4 (x)eyf (3)
0.:(x) = N, (X)0; + Ne, (0)0, + Ney (0)0,, + N, (x)6y, (4)

In the above equations, the subscripts i and j represent the
two nodes of the member, such that the terms that feature them
represent the nodal displacement quantities (e.g., u; represents the
displacement in the x-direction at node i, and so on). The interpo-

lation functions themselves are

Ny(x)=1—-=,  N,(x)=-— (5)

—~

9)

Ne(x) =L, <_ (Li)z . (Li)s)

Referring to Egs. (5)-(9) above, the axial displacements are in-
terpolated in a linear manner, whereas the flexural and torsional
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displacements are interpolated with cubic Hermite polynomials.
Once the centerline displacements have been interpolated from
the nodal displacements, they may be transformed to the continuum
displacements through the following relationships

u(x,y,z) = u(x) —y0.(x) + 26, (x) —yz0;(x)  (10)
ve(x,y,2) = v(x) — 20, (x) (11)
we(x, ¥, 2) = w(x) + y0,(x) (12)

The above relationships imply a Plane-Parts-Remain-Plane
(PPRP) rather than a PSRP condition, such that the “parts” of
the section, i.e., the webs and the flanges remain plane individually,
but the section as a whole experiences warping deformations. The
warping deformations are introduced through the bolded term
yz0/(x) and are determined only for the flanges. The ‘z’ term in
this equation expresses the assumed warping function. Note that
the second terms in Egs. (11) and (12): z0,(x), and y0,(x), are con-
ventionally not included or shown in standard beam formulations,
and represent displacements associated with St. Venant torsion;
these become relevant only when they are used to compute con-
tinuum shear strains, as done in this study. The displacements may
then be converted to point-wise strains (over the cross section) so
that the constitutive relationship may be invoked at each fiber
location to determine the stresses. For the longitudinal strains, this
follows well-established kinematic relationships used in conven-
tional fiber elements

€ux(X,,2) = u'(x) = y0:(x) + 205(x) — yz0¢ (x) (13)

Referring to the equation above, the longitudinal strain £,, may
be decomposed into the strains arising from axial stretching u,
bending about both axes (y and z), and warping due to torsion
(warping dof: 6)). The longitudinal strains in the cross-sectional
plane (along directions y and z), along with the shear strain in
the cross-sectional plane (7,,), are also assumed to be zero, im-
plying that each cross section retains its original shape without
in-plane distortion; this is consistent with experimental and CFE
observations. This leaves the shear strains ,, and v,,, which
produce shear stress on the cross-sectional surface. These shear
stresses resist the St. Venant torsion [refer to Fig. 2(b) shown ear-
lier]. However, there is no established way to determine these shear
strains from the cross-sectional deformations. Consequently, a
strain field is proposed for which the visual interpretation is illus-
trated in Fig. 6. Referring to this figure, the basic concept is
consistent with the manner in which shear stresses are inferred
in thin-walled open sections (e.g., see Timoshenko 1945). The
underlying assumptions are that: (1) the shear flow is parallel to
the long-edge of any part of the section (i.e., web or flange),
i.., Yy 18 zero in the flange, and v,, is zero in the web; (2) the
shear strains are zero at the centerline of the web and the flange,
and increase linearly outward from there; (3) the shear strains main-
tain compatibility with the twist rate in a manner as described
by Egs. (14) and (15) below. In the web, the shear strain field
Yy (X, ¥, 2) is interpolated as follows [Fig. 6(b)]

’ny(x’ Y, Z) = _29)2()6) (14)

In the flanges, the shear strain field +,.(x, y, z) is expressed as
follows [Fig. 6(b)]

sz(x’ Y, Z) = _nylangee)(‘(x) (15)

In the above equation, y 4,5, = yFh/2, depending on whether
the flange in question is located at +4/2 or —h/2. It is noted here
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Yxz = Zy-{ye;c(x)

(@)

Flange

Flange
Tty —y

Yxy = —220,(x)

Vxz = ZY—fya;((x)
(b)

Fig. 6. Shear flow pattern for St. Venant’s torsion: (a) actual shear flow in I-section for torsion; and (b) idealized shear flow diagram for torsion.

that the term & here represents the height of the web [measured
between the center of the flanges — see Fig. 6(a)], wherein the cross
section is idealized as an assembly of three rectangles (one for the
web and two for the flanges), and carries a different meaning than
the 4 in the web slenderness ratio //1,,, wherein it represents the
height of the web disregarding the fillet transition to the flange. The
strain field may be considered analogous to the Prandtl stress field
(see Timoshenko 1945) for thin-walled open sections subjected
to torsion. Eqs. (1)—(15) enable the determination of the strains
Exxs Vxy» and 7, at a fiber location (y, z) and at any longitudinal
location x. Note that unlike a conventional fiber element, which has
only one component of the fiber strain, i.e., £,,, the fibers here have
three components, including the shears ~,, and 7,.. Incorporation
of these shear strains is important from the standpoint of effectively
incorporating both warping and St Venant torsion, along with
their inelastic response. This is an improvement over conventional
fiber elements that usually: (1) disregard warping torsion entirely;

Element trial global

and (2) incorporate St Venant torsional response only in an elastic
sense, i.e., by prescribing a GJ/L stiffness between the torsional
degrees of freedom (e.g., OpenSees version 3.0.0a). Once the fiber
level strains have been determined as above, they may be used
within any suitable multiaxial constitutive model to estimate the
fiber stresses; the selection and calibration of constitutive models
in the context of this study is the topic of later discussion. The
stresses computed in this manner may then be used for force recov-
ery (or state determination) in conjunction with a formulation of
geometrical nonlinearity, within an appropriate solution algorithm
for analysis of the structure.

Numerical Implementation and Geometric Nonlinearity

Fig. 7 schematically illustrates the computational implementation
of the element. The element formulation is implemented within
OpenSees (version 3.0.0a), which has a standard predictor-corrector

Element global force

displacement vector (u g) I ‘ vector (R g)

Geometric Transformation

— u
sy | Torsional beam-column element - (UL)
o
" Bl o g « Convert global (u,) to local
£ € | +Obtain local displacements (u;) onvert global (ug) to loca
§ 5 from global displacement vector Ry. Ky displacements (u;)
5 — = (ug) - * Convert R; to global
2 | «Evaluate displacement vector at R, | clementendforces (Ry)
the continuum (fiber) level - + Obtain geometric stiffness
@ . S C Ny
(v(x,y,2)) - § g matrix (K g) for the element
— = =
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, B, 2 e
= vy R. K,, =
s . . A Element force integration
= = 5 Fiber section IP
_E - 7 ~alcul . R, Ky « Integrate stress () over
BB o ate str: rector e ——,
§ = ; (v{ Cl; atelst}am ¥ e"t_m (e) at volume and obtain element
> £ tlli >e11 eve! 1101}1 «l,(intlmmm o E end local force vector (R;)
= displac Ly . . e
L= displacement field (v(x, y, z)) — + Obtain material stiffiess

Constitutive response:

Multi-axial material (J, Plasticity)

Material
A

+ Calculate stress vector (o)
+ Calculate material tangent modulus
matrix ( E; )

matnix (K,,) for the element

Fig. 7. Flow diagram for force recovery process of TFE with multiaxial material model.
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Fig. 8. Updated Lagrangian (UL) reference system in the TFE construct: (a) the initial state and (b)—(c) deformed state.

algorithm for global solution. This algorithm involves estimating trial
displacement vectors based on the applied loads and a tangent stiff-
ness, and then obtaining a converged solution by minimizing an ap-
propriate residual. The residual is based on an internal force, which
in turn is calculated from the element force recovery or state deter-
mination (Yang et al. 2007). During each iteration, the element input
from the global solution algorithm is a trial element displacement
vector u# (and a corresponding incremental displacement vector
du?®) in global coordinates. The output, back to the global solution
algorithm is an element force vector P§,, also in global coordinates,
in addition to a tangent stiffness matrix (K7) for the element. The
former is used to construct the global internal force vector and min-
imize the residual. All element-level operations are performed in an
updated Lagrangian (UL) construct, i.e., using the last converged
state of the element as the reference configuration—see Fig. 8.

The first step is to convert the global incremental displace-
ments u8 to local coordinates, and then use the shape functions
[Egs. (5)-(9)] and the transformation Egs. (13)—(15) to determine
the strains €, 7y, and 7, at each fiber location (the other strains
are assumed zero). Once these are determined, they are passed to
the constitutive model, which in this case is a von Mises (J5)
plasticity model available in OpenSees as ‘ J, plasticity.” The fiber
level stresses (o,, T,y, and 7,,) are returned to the element, which
must then be integrated over the cross section and converted to
equivalent nodal forces (i.e., force recovery). This step involves
the consideration of geometric nonlinearity and equilibrium in
the deformed shape. The goal of force recovery is the determination
of the element internal force vector P;,; in the reference frame cor-
responding to the last converged state at step I [Fig. 8(b)]. Upon
convergence, P;,, should match (within reasonable tolerance) the
external load vector P,

Py = Poy (16)

The internal force may be determined by equating the external
and internal virtual work

6Uext = 6Uint (17)
— t+Ar. ci+At
Syt - Py — / AL () )aY, (18)
v,

where T/"2 is the 2" Piola-Kirchhoff stress tensor and §/"*'¢ is
the virtual Green-Lagrange strain tensor for the time increment
from ¢ to ¢ + At¢ (corresponding to step I and I+ 1, respectively);
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calculated considering the converged shape at time ¢ as the refer-
ence configuration (UL) [Fig. 8(b)]. The integration is conducted
over the material volume (V,) referenced to time 7. A simplified
matrix-vector form of the Egs. (18) is

ou'P,, :/5870'dv (19)

where ¢ is the continuum stress vector, d¢ is the virtual strain vector
corresponding to the virtual nodal displacement vector du, and v is
the element volume at the last converged step ‘I’. The virtual strain
vector may be calculated as

be = Béu (20)

where B is a matrix containing derivatives of the displacement in-
terpolation functions and the local coordinates of any continuum
point. Using Eqgs. (20) and (19), we get

u'P,, = 6uT/BT6d1/ (21)

v

And hence, the recovered internal force vector becomes
P = [ Bodo = Po (22)
v

Therefore, the mapping of nodal virtual displacements to the
continuum virtual strain measures (using B) is required in a UL
construct to determine the recovered force vector. Since the axial
strain is considered to be the finite Green-Lagrange strain [Eq. (23)]
and the shear strain is calculated from the function proposed in
Egs. (14) and (15), two distinct force recovery procedures (for axial
and shear strains) are performed, and the recovered forces are
superposed.

Axial Strain

The finite Green-Lagrange axial strain is defined as

out 1 [ [ou\? v\ 2 ow\ 2
strd = () + () + ()} @
Disregarding (6u¢/éx)?, since (6u¢/éx)? < (6u/éx), and

using Eqgs. (10)—(12)
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1
Exr(¥.7,2) = {u’ = y0 + 201} — y207 + 2 {o" + w?}

The virtual strain becomes

! be =Yod (28)
+5 07 + 2307 + Hw' —z0'}0; (24) . -
2 Using variational calculus
r i ! I ! 7]
Note that the terms (" — yf. + z0y) represent the ‘linear’ strain du’ + v'év’ +w'dw
measure which is already incorporated in a displacement-based 60y — 060" — v'60;
beam-column element in OpenSees. . P prs e |
However, the remainder of the “nonlinear” terms introduce sev- bd = | 00; — Oxdw’ — w60y | = N,bv (29)
eral interactions in the element, listed as follows: yz, = torsion 86y
warping term (only in the flanges); (1/2){v” +w"} = axial 0160/
force—bending interaction; (1/2){y? + z?}0/*> = Wagner term (axial B}
strain torsion interaction); {yw’ —zv'}@] = bending—torsion where
interaction. ~ , , _
In compact form, the axial strain is represented by the following Lo w0 0 0
matrix equation 0 -6, 0 1 v’ 0
e =Yd (25) Nl =10 0 —0; 01 —w 0 (30)
0 0 0 00 0 1
where 0 0 0 0 0. 0]
Y=[1 z —y —yz y*+2%] (26) and
- | - bv = {6u’, 60’ 6w’, 60;,60..60;,60)}" = N, ou (31)
u' 4 - (,UIZ + W/Z)
2 where du is the element end virtual displacement vector (14 DOFs)
oy —v'0; along the local directions for the finite element formulation
— ! '
d= 0; —w'oy (27) bu = {6u;, 6v;, 6wy, 80x;, 60y;, 662, 664, 6uj. 6v;, 5w, 86
0// :
: * 60yj,692j,69;j} (32)
— 9;2
L 2 J and
|
[N/ 0 0 0 0 0 0 N, O 0 0 0 0 0 ]
0 N[ 0 0 0 N, O 0 N 0 0 0 N, O
0 0 N 0 —-N;, O 0 0 0 N, 0 —-N;, O 0
N,=10 0 -N! 0 N/ 0 0 0 0 -N! 0 N 0 0 (33)
0 N/ 0 0 0 N/, 0 0 N 0 0 0 N/ O
0 0 0 N 0 0 N, O 0 0 N 0 0 N
| 0 0 0 N/ 0 0 N 0 0 0 N/ 0 0 N |
I
Therefore, Eq. (28) may be written as Shear Strain
The shear strains from Egs. (14) and (15) may be written in a
6Exx =Yéd = YNI(SV = YN1N26u = Bax,-al(Su (34) COmpaCt form as
— _ _ _ 12 _ ’
This equation may be compared to the general Eq. (20). There- Yoy (¥.:2) = =22H(y = y2){1 = H(y = y1)}0:(x) = kn ()
fore, using Eq. (22), the recovered internal force vector (14 x 1) (36)
due to the axial strain is determined as
Ve (%3, 2) = 295 H(y = y0)0i(x) + 25, {1 — H(y — y2) }0i ()
pial — /Bzxialaxxdv = /NZTNITYTaxxdv (35) = k05 (x) (37)
where y; = [(d/2) —t;] and y, = —[(d/2) — 1], t; is the flange
wherein the axial stress o, is obtained from the strain €, using the thickness (y; and y, are the y-coordinates of the inner-most points
constitutive model. of the * 4y’ and * —y’ flange, respectively), and d is the section
© ASCE 04023045-9 J. Struct. Eng.
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depth. 6, is the twist rate. The Heaviside function H(x) is
defined as

1, x>0

H(x)—{o, <0 (38)

Egs. (36) and (37) may be written in matrix form as

NEMZE )

Now, recalling the Hermite interpolation for twist angles

0.,
ny] _ {K,]Nél K,N! K,N. K,]Nc’q} 0y, (40)
Yes K,N!. K,N. KN K,N.||0,
05,
In compact form
7 = BohearPshear (41)

where @gpear = {6, 05, O, %}T is the nodal twist displacement.
Therefore, the virtual shear strain may be written as

67/ = Bshear6¢shear (42)

Using Eq. (22), we recover the force vector (torsion and bimo-
ment) for the shear strain vector

B sh
pyear — / BI,,, vdv (43)
v
The shear stress vector 7 is obtained from the shear strain y using
constitutive model J, plasticity, where P = {M xo B My,

Bx/}f,mr gives the nodal torsional moments and bi-moments for
the element only for the torsional shear. This force vector can be
written for the developed element with 14 DOFs, introducing zero
forces for non-torsional degrees of freedom
Pghear — {0,0,0,M,.0,0,B, 0,0, 0.M,.0.0,B,, XThear (44)
Superposing Egs. (35) and (44), the final recovered force vector
(14 x 1 is)
Py = Pyt + Pl (45)
The forces P;,, determined as above reflects the nodal forces in
the element as determined in the local configuration corresponding
to the trial displacements, i.e., at the ‘I + 1’th step. These are sub-
sequently transformed into global coordinates for residual force (R)
determination

R =P, — P, (46)
where P2, is the external force vector in global coordinates. If the
residual tolerance is not met, then a new trial displacement vector
is generated, depending on the type of solution algorithm being
used (e.g., Newton Raphson), and the process illustrated in Fig. 7
is repeated. When an acceptably small residual is obtained, the
structural (and the element) states are assumed to be converged, and
the next loading increment is applied. As discussed above, an
important output from the element to the global algorithm is the
element tangent stiffness; this is assembled into the global stiff-
ness matrix to compute the next trial displacement vector. For the
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element proposed in this paper, determination of the tangent stiff-
ness matrix also follows a process similar to that for force recovery.
Specifically, the j-th column of the tangent stiffness (Ky) may be
interpreted as

F= / BT ddv = / BTDdzdv (47)
JU v

In the above equation, FV are the incremental (infinitesimal)
forces corresponding the infinitesimal strain de resulting from
incremental infinitesimal displacements di# such that

(1 =
df/,-:{ (48)
0, i#j

Matrix D is the material tangent stiffness (at the current step)
associated with a continuum point, which is implemented in the
J, plasticity subroutine within OpenSees. Consequently, each term
in the tangent stiffness becomes Ky, and may be determined as

K; =P, (49)

One more important output from the solution convergence is
the updated geometric state of the element, which becomes the
new reference for the next step (UL). The new local axes system
is obtained with appropriate 3d rotation matrices (Felippa 2000;
McGuire et al. 2000), considering a finite rotation increment be-
tween step I and I+ 1. A new set of the transformation matrices
are also evaluated based on the updated local axes used for the
global to local displacement (and force) transformation in the next
step (Fig. 7). As discussed previously and illustrated in Fig. 7, this
entire formulation was implemented within OpenSees (version
3.0.0a), where it was tested to examine its performance for various
element definitions as well as loading conditions.

Results and Discussion

Each of the simulations summarized in Table 1 was also conducted
using the TFE element. Additionally, an experiment by Farwell
and Galambos (1969) was also simulated. The TFE models were
subjected to loading and boundary conditions that were identical to
their CFE (or the experimental) counterparts. The results are pre-
sented in three subsections: (1) a comparison of the TFE model to
the experiment by Farwell and Galambos (1969), (2) comparisons
of the TFE models to CFE model configurations notated GT (see
Table 1, footnote c), i.e., moderate to high member slenderness
ratios (L/r, > 70) with free end unrestrained (Fx-Fr); these con-
figurations are susceptible to global torsional modes including lat-
eral and lateral torsional buckling, and are not susceptible to local
buckling, and (3) comparisons to CFE models notated IB, that have
moderate to high cross-sectional slenderness (4 < b/2t; < 10) and
restrained ends (Fx-Fx) and are sensitive to local buckling which
then triggers lateral torsional buckling, i.e., interactive buckling
(IB — see Table 1, footnote f). It is acknowledged that depending
on the parameters, the behavior can gradually transition from one
response mode (e.g., GT) to another (e.g., IB). However, organi-
zation of the results in the aforesaid manner allows for rigorous
examination of the TFE element in each separate context.

Simulation of Experiment by Farwell and
Galambos (1969)

Fig. 9(a) schematically illustrates the test setup, boundary condi-
tions, and the loading applied to the experimental specimen by
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Fig. 9. Comparison of experimental and TFE simulation results with W6X25 beam: (a) schematic experiment setup; (b) schematic TFE discretization
and loading; and (c) comparison of load-deformation plots between test and TFE simulations with different discretization.

Farwell and Galambos (1969). Referring to the figure, the experi-
ment consisted of a simply supported beam (W6X25) loaded with a
torsional moment in the center. The end supports restrain the beam
against torsional and translational motion in any direction, but not
against flexural rotation or warping. The torsional loading was ap-
plied in the form of displacement (rotation) control at the center.
The key quantities recovered were the load and load-line displace-
ment, which are plotted in Fig. 9(c). Also shown on the figure is the
expected yield torsion (T,) calculated per AISC (1997). As such,
the experiment provides the opportunity for baseline validation of
the proposed TFE element for torsional loading. A model with the
identical physical configuration and boundary conditions was con-
structed using TFE elements; this model is schematically illustrated
in Fig. 9(b). A variable number of elements (1) were considered in
the TFE model to examine the efficacy of the TFE formulation. The
material constitutive model used for the TFE formulation was the
von Mises plasticity model (J, plasticity in OpenSees) calibrated to
the properties of A36 steel (used in the experiment). The uniaxial
stress—strain behavior was idealized as bilinear hardening, with
an initial elastic modulus E = 213,000 MPa and shear modulus
G = 80,000 MPa; yield stress oy = 285 MPa; and a post yield
stiffness ratio of 3% (Pi and Trahair 1995). The flanges are discre-
tized into 20 fibers along its width, and the web is also discretized
into 20 fibers along its depth. Both the flanges and the web are
discretized into six fibers through their thickness. This level of
discretization may be considered very fine in a conventional fiber-
based element. However, in the context of the multiaxial fiber-
based model, this finer discretization is necessary to capture the
shear strain distribution across the thickness of the web and flanges
(Fig. 6). A midpoint integration rule is adopted for the integration
over the cross section. A 5-point Gauss—Legendre quadrature rule
was adopted for numerical integration along the length (a built-in
capability of OpenSees), following Kolwankar et al. (2018, 2020).
Fig. 9(c) also overlays the results of the load displacement curve
from the TFE model and one uniaxial fiber element (UFE) model
(with 12 elements) on the experimental data. Referring to Fig. 9(c),
it is evident that when sufficiently refined (see note later) the TFE
model is able to capture the load-deformation response up to a
fairly large value of rotation (0.5 radians), including the initial elas-
tic slope and hardening, while the UFE model is able to reflect only
linear elastic response based on the prescribed GJ value, and does
not incorporate warping torsion, and is unable to capture inelastic
torsional response. At about 0.5 radians, there is a slight deviation
from the experimental data, due to the very high distortion that

© ASCE

04023045-11

occurs in the experiment. For context, this twist (beyond which
this deviation is observed) is significantly higher than values
(~0.2 radians) of practical interest. The mesh refinement study in-
dicates that: (1) the model is mesh-convergent, and (2) when the
element length is less than or equal to three times the flange width,
the load-deformation results from the TFE models match the
experimental data well.

Simulation of Configurations Sensitive to Global
Torsional (GT) Modes

Referring to Table 1, 15 out of the 38 CFE simulations listed
in Table 1 may be considered sensitive to global torsional modes
including torsion or lateral torsional buckling, but not local
buckling—these are identified in the table as either LT or T. This
is because their global slenderness A = L/r, is fairly large (A >
AETB) and this has been associated with a tendency for lateral
torsional buckling. From above, A57 is the member slenderness
ratio corresponding to the plastic lateral torsional buckling length

(L) and defined as

MLTB — 2P — 176, /% =42 (50)
ry y

On the other hand, the flange slenderness ratio is distributed
over the “highly ductile” ()\};D = 7.35) and “moderately ductile”

(X,p =9.19) range, while the web slenderness is beyond the
“highly ductile” limit (A\};;, = 36.05) as per AISC 341-16 (2016)
(Fig. 11). These are of particular interest, because in theory, the
proposed element seeks to directly simulate all relevant phenomena
(torsion warping, geometric nonlinearity, inelasticity) associated
with this type of behavior. Models with TFE elements [similar
to that shown in Fig. 9(a)] are constructed complementary to each
of these CFE simulations, with identical boundary conditions and
loading. For the purposes of demonstration of model results for this
set of simulation data, Fig. 10(a) shows the TFE model, whereas
Fig. 10(b) shows the undeformed CFE model for simulation
#14 (whose parameters are in Table 1). Referring to Fig. 10(a),
38 elements were used to simulate the beam-column; this results
in mesh-convergent solutions. This relatively fine mesh is necessi-
tated by the following:
» Interactive modes of buckling with out-of-plane action result in
complex deformation fields both longitudinally and over the

™~
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Fig. 10. Comparison between CFE and TFE model results for simulation #14 — W24X13, P/ P, = 0.2, Fx-Fr end conditions: (a) TFE model; (b) CFE
model (undeformed); and (c) comparison of load-deformation curves; (d) deformation profile and o, contours from TFE simulation; (¢) deformation
profile and o, contours from CFE simulation; (f) longitudinal distribution of lateral displacement (A,) and twist angle (¢,) at the instance shown in

the load-deformation curves (4% chord rotation).

cross section; a larger number of elements is necessary to

resolve these fields.

* The local coordinate axes of the element are defined based
on the current node locations. As large deformations occur be-
tween the nodes, these local axes represent only approximately
the orientation, which has important implications for the simu-
lation of geometric nonlinearity.

* A key objective of this study is to obtain a deformed shape over
the member length to identify the buckling mode along with
strain/stress distribution over the entire member. A finer mesh
enables a more accurate visualization of these results.

The material used was a multiaxial von Mises plasticity model
with combined isotropic-kinematic hardening, implemented in
OpenSees as the J, plasticity model. The parameters of the model
were calibrated as follows: bulk modulus, B = 167 GPa, shear
modulus, G = 77 GPa, elastic modulus, E =200 GPa, yield
strength (o) and saturation stress (0;,) of 345 MPa and 450 MPa
respectively, post yield linear hardening modulus H = 3.4 GPa,
and exponential hardening parameter of b = 12. These parameters
were selected to produce a reasonable match with the material
model in ABAQUS (which was calibrated, as discussed earlier,
based on guidelines provided by Elkady and Lignos 2018b).
Although both constitutive models (ABAQUS as well as Open-
Sees) are functionally identical, there are minor differences in
the way in which they are parameterized, with the implication
that an identical set of parameters cannot be used for the two;
rather a mapping between parameters is required. Note that because
local buckling is not observed in any of these CFE simulations,
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a monotonically hardening model at the material level is adequate
to simulate this response in the frame element-based model as well.
Imperfections are however provided in the CFE (following Elkady
and Lignos 2018b) as well as TFE models (with global buckling
imperfections). Fig. 10(b) shows the undeformed mesh of the CFE
model. Fig. 10(c) shows the lateral load-chord rotation curves ob-
tained from both the TFE and the CFE models. Fig. 10(d) shows a
deformation profile recovered from the TFE model at the loading
instant indicated in Fig. 10(c). Note that the TFE element itself
is a one-dimensional entity (i.e., linear), such that the element
output is only at the nodes, which cannot be visualized in three
dimensions. However, these nodal quantities may be processed
to determine internal stresses as well as the implied deformations
of the flanges and web through the transformations presented ear-
lier in Egs. (10)—(12). To visualize these computed quantities (and
compare them with their CFE counterparts), a postprocessing
module was developed in Visualization Toolkit (VTK) language,
which displays these deformations and any field variable of in-
terest (e.g., stress component) on the member webs and flanges.
Fig. 10(d) (and all subsequent figures where TFE results are visu-
alized) use this module. Fig. 10(d) may be directly compared to
Fig. 10(e), which shows the counterpart results from the CFE sim-
ulations. Finally, Fig. 10(f) plots the longitudinal distribution of the
angle of twist 0, as well as the lateral deflection A, as computed
from both the CFE and TFE models. Referring to Figs. 10(a—f), the
following observations may be made:
1. The load-deformation curve in Fig. 10(c) shows reasonable
agreement between the TFE and CFE models; the CFE model
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Fig. 11. Measured errors vs section and member slenderness ratio plots for GT response cases: (a)—(c) error in load-deformation; and (d)—(f) error in

angle of twist (6,)

tends to drop off at a steeper slope as compared to the TFE
model. This may be attributed to excessive twist and distortion
in the section. Also plotted on the load-deformation curve is
the expected inelastic lateral torsional buckling strength (VT5)
determined as per AISC 2016a; referring to the figure, the CFE
model predicts this lateral strength accurately whereas the TFE
model slightly (~7%) underestimates it. This deviation in
ultimate load may be attributed to two factors: (1) The difference
hardening rules in CFE and TFE models — specifically, the
CFE simulations utilize a von Mises (i.e., J,) model combined
isotropic-kinematic hardening, whereas the TFE assumes a sim-
plified J, plasticity model which only incorporates isotropic
hardening with some additional linear hardening modulus (a
standard ~2% linear hardening modulus is used, in addition
to the exponential rule governing the growth of the yield surface
(Kolwankar et al. 2018; Pi and Trahair 1995), and (2) the CFE
represents geometrically exact nonlinear transformations indi-
vidually for the flanges and web, whereas in the case of TFE,
an idealized UL geometric transformation is adopted. Consid-
ering these simplifications, the TFE model represents the re-
sponse with reasonable (if not ideal) accuracy.

2. The longitudinal distribution of both the transverse deflection
and the twist [Fig. 10(f)] appears to be fairly similar between
the two. Note here that the transverse drift of the CFE model
represents the deflection of the web centerline of the CFE
model, whereas the twist of the CFE model is calculated by con-
sidering the rotation of the imaginary straight line connecting
the centroid of the flanges.

3. The qualitative comparison of the deformed shapes and the
stress fields between Figs. 10(d and e) indicate that the TFE
model can simulate the spatial distribution of deformations
and stresses in a reasonable manner.

Collectively, the above three observations suggest that the TFE
model captures the fundamental physics of inelastic lateral tor-
sional response with geometric nonlinearity. It is furthermore noted

© ASCE

04023045-13

that the TFE simulations require roughly 1/5" the time as CFE
simulations on a standard capacity computer, in addition to requir-
ing only a fraction of the memory. The representative comparisons
shown in Figs. 10(a—f) are only for a single configuration, and it is
not possible to show similar comparisons for all configurations.
Consequently, error measures are generated that can be assessed
across the full range of simulations. For the global torsion (GT)
configurations (LT along with simulation #1-9 with applied torsion,
see Table 1), two error measures are recovered. The first, termed
€load—des 18 the average relative error between the CFE and TFE
load-deformation curves, defined as

f(]L(VCFE _ VTFE)dAy

x 100%
JEVTEaA,

(51)

€load—def =

VCFE and VTFE represent the applied shear in the TFE and CFE
models, respectively [Figs. 10(a and b)]. The error is evaluated over
the entire loading (until chord rotation of 4.5%). Error measures ¢,
are similarly developed to characterize the agreement between the
longitudinal distribution of the twist .. These are defined in a man-
ner similar to €;o44_q.f, €xcept that: (1) instead of integrating over
the length of the member, they are calculated as the ratio of the
maximum twist angle (¢,) for the CFE and the TFE simulations,
and (2) they are evaluated at only a specific instant of loading—
corresponding to 4% chord rotation (for LT) or 0.2 rad of applied
twist (for torsional loading cases — T)—at which the torsional
response has been fully developed. Figs. 11(a—c) plot these three
error measures against bp/2t;, h/t,, and L/r,, respectively, to
examine the ability of the model to predict the response against
key cross-sectional and member variables. Within each figure, the
configurations subjected to torsion versus flexure are distinguished.
Referring to these figures, it is observed that:
* The error in load-deformation with respect to the member global
slenderness ratio L/r,, is reasonable (<30% in all cases) con-
sidering that these situations feature high lateral instability
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complex twisting modes. Even though flange slenderness
by/2t; does not significantly influence error, the error increases
with increasing web slenderness #/t,. Besides, capacity-
designed steel MRF columns typically feature an L/r, lower
than 100 (Kircher et al. 2010).

e The error in twist angle ¢, _is in a similar range, suggesting that
they are rather insensitive to slenderness ratio, as long as they
can initiate the lateral torsional response.

e The cases with torsional loadings (Simulations #1-9) show
negligible error in either of the error measures. This is consistent
with observations for the experimental results (Fig. 9) by
Farwell and Galambos (1969).

Simulation of Configurations Sensitive to Interactive
Buckling (IB) Modes

The configurations notated “IB” in Table 1 have similar slenderness
ratios as the “LT” cases, implying that they are in the highly and
moderately ductile range for flanges and beyond highly ductile
ranges for the web of members as per AISC 341-16. However in
most of cases, due to the end rotation constraints at the free end
(‘Fx-Fx’ in Table 1), which decreases the moment gradient
(M:V), these are susceptible to local buckling, which results in loss
of torsional fixity and triggers a torsional mode such as lateral
torsional buckling. A key distinction between these and the LT
configurations is that in the IB configurations, local buckling
results in an effective softening when interpreted at the fiber or
cross-sectional level, even if the continuum material hardens mono-
tonically; this is well documented in literature (Hajjar et al. 1998;
Kolwankar et al. 2018). As shown previously by Elkady and Lignos
(2018b) and Kolwankar et al. (2018), the CFE simulations (with a
hardening material law) are able to effectively trace this type of
response because they directly simulate the flange and web local
buckling phenomena. However, within the construct of the TFE
element, this type of response must be represented as effective
constitutive softening, because local buckling is not explicitly
modeled. Recent work by Kolwankar et al. (2018) and Suzuki and
Lignos (2018) has provided insights into this type of constitutive
softening, and also provided guidance to calibrate material models
to represent this type of response. However, work in this area has
mostly been limited to uniaxial material models, for use in conven-
tional fiber elements. In uniaxial material models, the constitutive
effects of local buckling may be conveniently represented through

an asymmetric stress—strain relationship that has a softening branch
on the compression side but hardens monotonically in tension.
Mabhan et al. (2011) have also used such stress—strain laws to sim-
ulate rebar buckling in fiber elements. However, unlike conven-
tional fiber elements, the TFE element uses multiaxial fibers
(Fig. 7) with three strain components (€,,7,y, and ;) as inputs
and three stress components (o,,, T,,, and 7,, components) as
outputs; this necessitates the use of a multiaxial material model.
Unfortunately, a multiaxial material model for steel with asymmet-
ric softening (to represent local buckling) is not readily available.
As a result, the von Mises plasticity model is calibrated with a
softening branch; specifically, an isotropic hardening law is modi-
fied to a smoothened trilinear curve, with linear elastic branch,
followed by linear hardening, and then linear softening that
matches the uniaxial local buckling response of the flange and
web. Fig. 12 illustrates such a stress—strain curve calibrated for
one of the simulations (simulation #11). The parameters for this
representative effective uniaxial stress—strain curve for local buck-
ling are as follows. The elastic modulus E and the yield stress o, are
set equal to 200 GPa and 345 MPa, respectively, based on material
constitutive data. However, the stress o,,, which represents the ini-
tiation of local buckling,depends on flange slenderness (Kolwankar
et al. 2018; Suzuki and Lignos 2018). Consequently, the effective
buckling stress (o,) and corresponding effective strain (g,) values
were recovered from each of the CFE simulations, following a
process outlined by Kolwankar et al. (2018). The other parameter
of the softening branch, i.e., the linear post-buckling softening
modulus, is also adopted from Kolwankar et al. (2018). All of these
parameters are used to calibrate the softening von Mises model in
the counterpart TFE simulation. It is well-known (Spacone et al.
1996; Wu and Wang 2010) that softening constitutive properties
lead to mesh dependence of the solution, because softening tends
to localize in a single element. To mitigate this, Kolwankar et al.
(2018) suggested the use of a fixed element size (to set the length
scale) at the anticipated plastic hinge regions along with the soft-
ening parameters (calibrated for the same length scale) as discussed
above. Following these recommendations, an element size of 1.5b
was adopted in this study. Mesh (outside the plastic hinge region)
and fiber discretization and the integration rules for the TFE model
are similar to that in the LT cases.

It is important to note that the axisymmetry of the von Mises
yield surface with respect to the hydrostatic stress (o) [Fig. 12(a)]
axis implies that any softening applied to the von Mises material is
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Fig. 12. Calibrated effective uniaxial stress vs strain curve for J, Plasticity model (a) von Mises cylinder in the stress space; and (b) uniaxial stress vs

strain response.
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symmetrically effective in compression as well as tension. This
is clearly a problem because local buckling-induced effective soft-
ening does not occur in tension. However, as discussed above, a
multiaxial metal plasticity model, which can capture this type of
asymmetric behavior is currently unavailable (although it is being
developed as part of the broader project that encompasses this
study). Despite this issue, the use of the softening von Mises model
is informative for two reasons: (1) in practical terms, the symmetric
von Mises model appears to be satisfactory to predict response be-
cause local buckling on the compression side of the member occurs
before the softening branch is engaged on the tension side, due to
the net compression in most of the configurations, and (2) perhaps
more importantly, the approach provides the opportunity to exam-
ine the functional ability of the TFE element formulation to sim-
ulate IB which is caused by local buckling induced softening
leading to lateral torsional buckling. As improved multiaxial mod-
els for local buckling induced softening become available, it is
anticipated that they will be used within the TFE element construct
for even more effective simulation of IB. Figs. 13(a—f) compare
the results of TFE to CFE simulations (Simulation #18 provide the
details) loaded under a transverse load. These figures provide a
representative assessment of the performance of the TFE element.
The observations from Figs. 13(a—f) are similar to those from
Figs. 10(a—f) presented previously for the GT configurations;
specifically, that:
1. The load-deformation curve, as well as the deformation modes
appear to be strikingly similar between the TFE and the CFE
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models. The TFE model is able to capture the full range of

response of observed in the CFE models, ranging from the initial

elastoplastic response to local buckling, and then lateral tor-
sional buckling that is triggered by local buckling.

2. The longitudinal distribution of both the transverse deflection
and the twist appears to be qualitatively similar between the
two. However, the CFE predicts greater twist than the TFE, sug-
gesting a stronger degree of localization. This may be attributed
to the length scale (i.e., the element size equal to 1.5b) used for
the constitutive softening model in the TFE, originally inferred
by Kolwankar et al. (2018) for purely local buckling (no inter-
active buckling).

As for the LT configurations, Fig. 13 and the above observations
describe the response of only one representative case. To examine
the efficacy of the TFE model across various configurations,
Figs. 14(a—c) plot the error measures €;,,4_q.¢ (similar to the LT
case discussed earlier) and €, (averaged error in lateral displace-
ment along length at a particular drift level) against the parameters
bg/2ts, h/t,, and L/r,, respectively, to examine trends within
the response of the TFE model. Referring to these figures, it is
noted that:

* All the error measures are reasonably low (up to 10%),
suggesting that the TFE elements with a calibrated softening
multiaxial model can predict the softening response due to IB
in an efficient manner.

¢ The error in load-deformation (€;,44—g4. ) increases with increas-
ing flange slenderness ratio (beyond the highly ductile limit
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Fig. 15. Ultimate Load Ratio (ULR) vs section and member slenderness ratio plots for GT and IB response cases.

/\};m), which is reasonable because of complicated modes in
flange local buckling [full wave buckled shape and larger locali-
zation zone (~2.5b)], which may require different length scales
depending on the length of the buckled flange.

* The error in the lateral displacement shape (¢4 ) is low and
consistent for the wide range of chosen slenderness ratio.
Another indicator of the efficacy of the simulations is their

ability to predict the ultimate load. Therefore, ultimate load com-

parisons for both the GT and IB cases (0.2P, axial load) are sum-
marized in Fig. 15; the Ultimate Load Ratio (ULR) is defined as
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TFE

Vul
ULR =

ult

In the above, VITE and VEI'E are defined as the ultimate loads
from the TFE and the CFE simulations respectively. Referring to
Fig. 15 (which plots the ULR against measures of local and global
slenderness), it is noted that, in general, the predicted ultimate loads
through the TFE are fairly close to the CFE (an average ULR of

0.91 and 0.97 for LT and IB, respectively, with a standard deviation
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of 0.046 and 0.036 for LT and IB, respectively). Interestingly, the
ULR shows a modest increase with respect to both local and global
slenderness, indicating that the TFE model over-predicts the peak
load in these cases, which may be attributed to the somewhat
incomplete representation of geometric nonlinear response and
material properties mentioned earlier.

Considerations for Simulation of Frames Using the
TFE Element

Simulating frames using TFE elements is similar to that using regu-
lar 3-d frame elements, with some key differences. Specifically,
conventional beam elements only have six degrees of freedom at
each node, whose physical interpretations (rotation and displace-
ments) are straightforward. However, when elements with seven

(including warping) degrees of freedom are used, the interpretation,

and moreover the application of boundary conditions and compat-

ibility constraints between members requires additional discussion.

When simulating frame structures with such elements, the follow-

ing observations are useful:

e At supports (i.e., foundations), it is usually appropriate to re-
present the warping degree of freedom of the support as fixed.
In this regard, it is important to note that the warping deforma-
tions may be considered scalars (see kinematic analysis by
Desautels 1980; Pignataro et al. 2010), such that prescribing
a fixed warping boundary conditions sets the warping defor-
mations at all the members framing into the support as zero
(i.e., 0 = 0 for all members).

* At free nodes (i.e., where supports are not present), the work-
conjugate of the warping deformation (i.e., the bimoment) may
be set as zero, such that the node may experience appropriate
warping deformations, as a solution of the analysis.

* The points above pertain to boundary conditions (or external
restraints). However, it is important to also consider continuity
(or lack thereof) of warping deformations among members
framing into a single joint. In this context, it is noted that
the transmission of the warping deformations across structural
connections usually depend on the specific connection detail.
For example, a gusset plate connection (between a brace and
a column, as an example) will not transmit warping deforma-
tions in the same manner as if the brace were welded to the
column directly. Consequently, the type of warping continuity
to provide at such connections is at the discretion of the user.
A common approach is to provide a warping continuous ideali-
zation (Murin et al. 2012; Tong et al. 2005), which is applicable
in seismically designed moment frames with stiffened joints.
However, if more accurate behavior is desired, sophisticated
joint models for various types of joints (Basaglia et al. 2012;
Krenk and Damkilde 1991; Tong et al. 2005; Vacharajittiphan
and Trahair 1974) should be incorporated in the simulation.
It is important to note that if such a joint model is used, then
additional (free) degrees of freedom will be generated at the
junctions between each member framing into the joint, and the
element representing the joint.

Summary and Conclusions

The synergistic interactions between local and lateral torsional
buckling in steel members is often one of the reasons for their loss
of strength, and the collapse of structures. However, prevalent
frameworks for simulating this type of response rely largely on
phenomenological approaches wherein concentrated hinge or fiber
models are calibrated to match overall load-deformation response.
Since these approaches do not represent the underlying physical
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phenomena, they are challenging to generalize and prone to inac-
curacy. To address this, a new beam-column element formulation,
termed the Torsional Fiber Element (TFE) is proposed. The aim of
this element is to be able to functionally represent the phenomena
that are responsible for IB, to enable prediction of such response in
a general manner. To enable this, the TFE has four key features:
(1) enrichment of strain and deformation interpolation functions
to represent deformation modes associated with warping and
St. Venant torsion in addition to axial and flexural loading, (2) an
updated Lagrangian approach to capture geometric nonlinearity
and instability arising from these deformation modes, (3) the
use of multiaxial fiber plasticity to incorporate the interactions be-
tween axial and shear stresses in inducing plasticity and buckling,
and (4) representation of local buckling through an effective
softening constitutive response. The formulation is implemented
in the open-source software OpenSees version 3.0.0a, and its re-
sults are examined against counterpart results of 38 CFE simula-
tions and one experiment. The comparisons indicate that: (1) the
TFE is able to functionally represent the fundamental physical
phenomena and deformation modes that underlie local, lateral tor-
sional, and IB. The TFE element appears to successfully simulate
the load-deformation response, as well as local deformation pat-
terns and stress/strain distributions with good accuracy.

While the approach shows promise in simulating IB in frame
members, in its current form, the TFE has several limitations
that are the subject of ongoing or future study; these are briefly
summarized here. First, the TFE element has been developed
and demonstrated only for monotonic loading conditions. Although
the element formulation is generally applicable to cyclic loading as
well, aspects of it may require modifications especially if cyclically
evolving stress/strain fields over the element diverge from those
assumed in the interpolation functions. Second, a von Mises
plasticity model with a softening branch was used to represent
effective softening due to local buckling; this is inconsistent with
actual response because it is symmetric (i.e., softening in both
tension and compression, rather than just in compression); this
is an inherent feature of von Mises plasticity which cannot be
circumvented until a more appropriate multiaxial constitutive
model is developed. Nonetheless, it is used to demonstrate the func-
tional abilities of the TFE element to predict IB. Third, softening
constitutive response results in mesh dependence, which must be
regularized through the introduction of a length scale for localiza-
tion. In this study, this was done through pre-selecting the element
size to be 1.5b. This is an expedient approach, but not a particu-
larly attractive one, because the user must select the mesh size in
concert with the constitutive properties. Based upon previous work
by the authors (Kolwankar et al. 2018, 2020), development of
a nonlocal formulation for the TFE to mitigate this problem is
currently underway. In closing, while TFE element has these
limitations, it also possesses the fundamental characteristics to
simulate the phenomena responsible for IB, and in its current form.
is able to simulate monotonic inelastic lateral torsional response,
as well as IB with success. Mitigation of these shortcomings will
result in an element highly useful for simulating collapse of steel
structures.
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