
TailGuard: Tail Latency SLO Guaranteed Task

Scheduling for Data-Intensive User-Facing

Applications

Zhijun Wang

The University of Texas at Arlington

zhijun.wang@uta.edu

Huiyang Li

The University of Texas at Arlington

huiyang.li@mavs.uta.edu

Lin Sun

University of Texas at Arlington

lxs5171@mavs.uta.edu

Todd Rosenkrantz

The University of Texas at Arlington

todd.rosenkrantz@mavs.uta.edu

Hao Che

The University of Texas at Arlington

hche@cse.uta.edu

Hong Jiang

The University of Texas at Arlington

hong.jiang@uta.edu

Abstract—A primary design objective for Data-intensive User-
facing (DU) services for cloud and edge computing is to maximize
query throughput, while meeting query tail latency Service Level
Objectives (SLOs) for individual queries. Unfortunately, the
existing solutions fall short of achieving this design objective,
which we argue, is largely attributed to the fact that they
fail to take the query fanout explicitly into account. In this
paper, we propose TailGuard based on a Tail-latency-SLO-and-
Fanout-aware Earliest-Deadline-First Queuing policy (TF-EDFQ)
for task queuing at individual task servers the query tasks
are fanned out to. With the task queuing deadline for each
task being derived based on both query tail latency SLO and
query fanout, TailGuard takes an important first step towards
achieving the design objective. TailGuard is evaluated against
First-In-First-Out (FIFO) task queuing, task PRIority Queuing
(PRIQ) and Tail-latency-SLO-aware EDFQ (T-EDFQ) policies
by simulation. It is driven by three types of applications in
the Tailbench benchmark suite. The results demonstrate that
TailGuard can improve resource utilization by up to 80%, while
meeting the targeted tail latency SLOs, as compared with the
other three policies. TailGuard is also implemented and tested in
a highly heterogeneous Sensing-as-a-Service (SaS) testbed for a
data sensing service, with test results in line with the other ones.

Index Terms—Task scheduling, resource management, tail
latency SLO, user-facing application

I. INTRODUCTION

It has been widely recognized that the query tail latency

for Data-intensive User-facing (DU) services, such as web

searching, online social networking, and emergency response

through edge-based crowdsensing, has a great impact on user

experience and hence, business revenues. For example, for

Amazon online web services, every 100-millisecond addition

of query tail latency causes 1% decrease in sale [1]. To

meet strict tail latency Service Level Objectives (SLOs), the

resources for DU services are generally over-provisioned [2],

at the cost of reduced profit. As a result, a key design objective

This work was supported the US NSF under Grants CNS CSR-2008835
and CCF-SHF2226117.

of a DU service, called the design objective in short hereafter,

is to maximize the resource utilization or query throughput,

while meeting tail latency SLOs for individual queries.

However, achieving the above design objective is by no

means easy. A query for a typical DU service may spawn a

number of tasks, known as query fanout, to be dispatched

to, queued and serviced in parallel in different servers or

edge nodes where the data shards reside and the slowest

task of the query determines the query response time [3],

[4]. The range of query fanouts may differ from one service

to another, e.g., up to several hundreds for online social

networking [5], on the order of several thousands to tens of

thousands for web search [3], and potentially up to millions for

emergency response through edge crowdsening [6]. A small

number of outliers (caused by, e.g., skewed workloads [7]

or software/hardware resource variations [8]) can significantly

impact the query tail latency performance [3]. While a large

body of works have been devoted to alleviating the impact

of outliers on the query tail latency performance (e.g., [9],

[11]–[18]), to the best of our knowledge, no existing solution

attempts to meet more than one query tail latency SLO to

satisfy different performance requirements of individual users,

while maximizing the resource utilization or query throughput,

hence falling short of the design objective.

In this paper, we claim that a solution that stands a chance to

achieve the design objective must be not only tail latency SLO

aware but also query fanout aware. This is simply because to

meet a given tail latency SLO, the task resource demands for

tasks belonging to queries with different fanouts are different.

For example, assume that with a given amount of resource

allocated to process each task and the task response time for

each task has 1% probability to be over 100 ms. Then the

query response time for a query with fanout kf has probability,

1-0.99kf , to be over 100 ms, meaning that a query with kf=1

and kf=100 have 1% and 63.4% probabilities of being over

100 ms, respectively. This implies that while a query with

kf=1 can meet the tail latency SLO in terms of the 99th

898

2023 IEEE 43rd International Conference on Distributed Computing Systems (ICDCS)

U.S. Government work not protected by U.S. copyright
DOI 10.1109/ICDCS57875.2023.00042

percentile tail latency of 100 ms, a query with kf=100 cannot.

In order to allow the query with kf=100 to also meet the same

tail latency SLO, a task associated with the query must be

allocated a much larger amount of resource so that the chance

it will exceed 100 ms is as small as 0.01%. This ensures

that the probably that the query response time exceeds 100

ms is 1-0.9999100 = 0.01 or 1%, i.e., meeting the same tail

latency SLO as the query with kf=1. This example clearly

demonstrates that to meet a query tail latency SLO for all

queries regardless query fanouts, the task resource demands for

tasks belonging to queries with different fanouts are different

and a task belonging to a query with a larger fanout demands

more resources, confirming our claim.

The implication of the above observation is significant. First,

even with all the queries sharing a given tail latency SLO, the

tasks belonging to queries with different fanouts should be

treated differently, e.g., by being allocated different amounts

of resource to closely match their resource demands so that

all the queries can meet the tail latency SLO at the lowest

possible resource consumption. Any solution that fails to take

the query fanout explicitly into account is guaranteed to result

in resource overprovisioning, simply because such a solution

will have to allocate task resources based on the worst-case

task resource demand. This partially explains why the way to

meet stringent tail latency SLOs for large-scale DU services

in today’s datacenters is normally through resource over-

provisioning [2]. Our simulation results (see Section IV.B for

details) indicate that by taking fanout into account, TailGuard

can improve resource utilization by 80% compared to the First-

In-First-Out (FIFO) queuing policy, while meeting a stringent

query tail latency SLO for DU workloads.

Second, consider a DU service that supports multiple classes

of queries with a higher class requiring a more stringent

tail latency SLO. Since the resource demand for a task is a

function of not only the tail latency SLO but also the fanout

of the query the task belongs to, it becomes apparent that a

task associated with a query of a lower class but with a larger

fanout may end up demanding more resources than a task in a

query of a higher class but with a smaller fanout. This renders

class-based task queue scheduling disciplines (e.g., PRIority-

based task Queuing (PRIQ) [2], [19], [20]), task fanout-

unaware queue management policies (e.g., the Tail-latency-

SLO-aware Earliest-Deadline-First Queuing (T-EDFQ)), or

task preemption [21] policies inadequate to achieve the design

objective. This may also render some task reordering solutions

solely based on task sizes [8], [22] inadequate. Our simulation

results (see details in Section IV.B) demonstrate that TailGuard

can improve overall resource utilization by 40% over the PRIQ

policy and 22% over T-EDFQ in supporting two classes of tail

latency SLOs for DU workloads.

In this paper, we propose TailGuard, a Tail-latency-SLO-

and-Fanout-aware Earliest-Deadline-First Queuing(TF-EDFQ)

policy, as a first step towards achieving the design objective for

DU services in general. As a top-down approach, TailGuard

decouples the upper query level design from the lower task

level design. First, at the query level, a task decomposition

technique is developed to translate the query tail latency SLO

for a query with a given fanout into a task queuing deadline

for tasks spawned by the query at the task level, reflecting the

resource demand of the tasks. This effectively decomposes

a hard cotask scheduling problem at the query level into

individual queue management subproblems at the task level.

Second, at the task level, a single TF-EDFQ corresponding to

a task server is used to enforce the task queuing deadlines,

as a way to differentiate resource allocation for tasks with

different resource demands. In principle, TailGuard permits

unlimited number of query classes and is lightweight, as it

incurs minimum overhead for task queuing deadline estimation

and requires to implement only a single earliest-deadline-

first queue per task server for any DU applications. A query

admission control scheme is also developed to provide tail

latency SLO guarantee in the face of resource shortages.

TailGuard, or equivalently, TF-EDFQ, is evaluated against

FIFO, PRIQ and T-EDFQ (Section III.A gives their exact

definitions) by simulation. Three traces generated from the

Tailbench benchmark suite [23] are used as input. The results

demonstrate that TailGuard can improve resource utilization by

up to 80%, while meeting the targeted tail latency SLOs, as

compared with the other three policies. The query admission

control scheme is also tested and the results indicate that it

can indeed provide query tail latency SLO guarantee. Finally,

TailGuard is implemented and tested in a highly heteroge-

neous Sensing-as-a-Service (SaS) testbed for an edge-based

temperature-and-humidity sensing service, with test results in

lines with the other ones.

The remainder of this paper is organized as follows. Section

II presents the background and related work. Section III intro-

duces TailGuard. Performance evaluation is given in Section

IV. Finally Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Data-Intensive User-Facing Services

DU services are a predominant class of workloads in

today’s cloud and have also emerged as an important class

of workloads in an edge-cloud ecosystem, generally known as

SaS1 [24]. Predominant DU services are driven by queries that

require query responsiveness in sub-seconds to seconds and

may need to touch on massive datasets, which are typically

carried out in a data parallel fashion. The working dataset for

a service (e.g., the total amount of crowdsensing data in the

case of an SaS) in this class are distributed to a large number

of task servers/edge nodes. Accordingly, a query may spawn

a number of tasks to be dispatched to some or all of these

task servers/edge nodes to be processed. A notable subclass of

such services is OnLine Data-intensive (OLDI) services [25].

A query for an OLDI service needs to touch upon every part

of the working dataset, i.e., the query fanout for each query is

equal to the total number of servers involved (ranging from a

1For an SaS, users send sensing requests to the cloud. The cloud then
dispatches related query tasks to geo-distributed edge nodes to acquire
desired sensing data collected and processed through crowdsensing, which
are subsequently merged in and returned to the users from the cloud.

899

Fig. 1. A typical DU application process architecture

few to tens of thousands). Large online search products, online

advertising and online machine translation, are examples of

OLDI services. For other DU services, different queries may

need to touch upon different parts of the working dataset.

A notable example of such a service is social networking

services, such as Facebook and LinkedIn. For instance, the

fanout for a typical Facebook page query is in the range of one

to several hundreds with 65% under 20 [5]. Other examples

are emergency response SaSes, e.g., finding a missing person

through surveillance cameras and fire detection and alert via

crowd temperature sensing. A query of such a service is

expected to have a fanout anywhere between one to a few

millions depending on the scope of sensing.

A DU service may be launched in a dedicated datacenter

cluster owned by a service provider, e.g., the web search

service by Google, in a cloud by a tenant who rents cloud

resources from a cloud service provider (e.g., Amazon cloud),

or in an edge-cloud ecosystem owned by multiple stake-

holders, including individuals who own the sensing data and/or

edge devices and cloud service providers.

Figure 1 depicts a generic DU application processing model

[25], [26]. It is composed of three parts, including a front-end

server, a mid-tier server (called query handler in this paper),

and a set of back-end leaf servers (called task servers in this

paper2), each hosting a piece of the total dataset, also known

as a shard, a partition, or a published sensing dataset (e.g., in

an edge node).

When a user request arrives at the front-end server, its

workflow is parsed to generate a set of queries to be issued

sequentially to the query handler at the mid-tier server. Due

to query/task dependency, the next query cannot be issued

until the current one finishes. For each query received, the

query handler spawns a number of tasks for the query and

dispatches them to the queues corresponding to the task

servers3 that will serve them when they reach the queue

heads. The tasks for the same task server are queued based

on a given queuing mechanism. In practice, task servers are

usually allocated dedicated CPU/memory/storage resources in

the form of, e.g., cores, VMs, containers, or pods, as well as

2Task servers are also known as, e.g., workers, virtual-machines (VMs),
containers, or edge nodes, depending on the specific services to be studied.

3Note that the queuing may take place either centrally at the query handler
or at individual task servers.

fix-sized data shards, forming a more or less homogeneous

task server cluster. As a result, the differentiation of resource

allocation among tasks with different resource demands are

mainly through task queuing policies, e.g., PRIQ [2], [19],

[20], task-reordering-based queuing [8], [22], or EDFQ, unless

task-aware resource auto-scaling [27] is allowed.

Upon completion of the execution of a task, the task result

is returned to the query handler to be merged with the task

results from the other tasks of the query. The query finishes

when all the task results are merged and sent to the front-

end server. Hence the task response time for the slowest task

dictates the query response time. In turn, the request completes

when the last query in the request finishes.

B. Tail Latency Aware Solutions for DU Services

Many works have been devoted to addressing query tail

latency related issues for DU services, which can be broadly

classified into two categories, i.e., outlier alleviation, focusing

on curtailing the tail length of the task response time to im-

prove overall query tail latency performance, and tail latency

SLO guarantee for queries sharing a single tail latency SLO.

In what follows, we elaborate more on the solutions in the two

categories, respectively.

Outlier Alleviation: Most existing solutions fall into this

category. Some typical examples in this category are listed

as follows. Solutions based on task-size-aware task reorder-

ing in a task queue [8], [22], [28], [29] are proposed to

avoid head-of-line blocking of small-sized tasks by large-sized

ones to reduce the mean task latency. Task-aware scheduling

schemes [13]–[15], [30], [38] are designed to shorten the

tail latency for tail latency critical tasks in workloads with

both batch and tail latency critical queries. Redundant-task-

issue solutions [7], [12], [18] are developed to reduce the

task tail latency by allowing a task to be issued to multiple

task server replicas. Task execution time prediction through

workload profiling [9], [11], [16], [17], [25] and machine

learning [31], [32] are widely employed to adjust the level

of parallelism to remove task bottlenecks or to avoid sending

tasks with predicted long execution time to poorly performing

task severs to reduce task tail latency. Solutions based on

synchronized garbage collection for all task servers [3], [33]

are proposed to minimize variabilities of task execution times

among parallel tasks to reduce query tail latency. Solutions

that allow partial results to be returned to fulfill a query,

e.g., [34], can maintain more predictable query tail latency at

the cost of possible loss of partial results. Dynamic resource

allocation based on the feedback loop control mechanisms [8],

[35] are proposed to help reduce query tail latencies. CPU

power control schemes [18], [36] are developed to dynamically

adjust voltage and frequency scaling (DVFS) for task servers

based on task execution time to save energy and maintain

low task tail latency. A query fanout control scheme [4] is

designed to control the fanout in queries to optimize the

system performance. A transaction scheduling solution for

geo-distributed databases [37] uses transaction timestamps to

reduce both mean and tail latencies for edge computing. All

900

TABLE I
THE SYMBOLS USED IN TAILGUARD.

Symbol Description

N number of task servers
M number of queries in a request
kf fanout of a query
Tb task pre-dequeuing time budget for a query
t0 query arrival time
tD task queuing deadline, tD = t0 + Tb

tpr task pre-dequeuing time
tpo task post-queuing time or unloaded task re-

sponse time
tr task response time, tr = tpr + tpo
xSLO
p pth percentile query tail latency SLO

xu
p (kf)/xp(kf) unloaded/loaded pth percentile tail latency for

a query with fanout kf
Fu
l
(t)/Fl(t) CDF of unloaded/loaded task response time

with respect to task server l
Fu
Q(t)/FQ(t) CDF of unloaded/loaded response time for a

query
P (kf) probability of a query with fanout kf

these solutions help reduce the query tail latency, but cannot

provide SLO guarantee.

Tail Latency SLO guarantee: There are a few existing

solutions in this category, including Cake [39], PriorityMeister

[40], SNC-Meister [41], WorkloadCompactor [42] and PSLO

[43], all for shared datacenter storage applications. All these

solutions, except Cake, aim at meeting a single query tail

latency SLO for all queries with fanout of one only. Cake

can handle fanout of more than one, but is unable to enable

per-class or per-query tail latency SLOs, as it relies on direct

measurement of the overall tail latency statistics as input for

control, resulting in fanout-unaware resource overprovision-

ing. Clearly, a solution based on direct tail latency statistics

measurement like Cake cannot be extended to allow per-

query resource allocation, simply because the needed statistics

are unavailable at this granularity. Some tail latency SLO

guaranteed solutions for micro-service such as GrandSLAm

[44] and Sinan [45] are proposed. But, again, they cannot

support per-query tail latency SLO.

III. TAILGUARD

In this section, we first give the TailGuard query pro-

cessing model. Then we present the task decomposition, or

equivalently, task queuing deadline estimation solution and

address its implementation issues. Finally we present the

query admission control scheme. The major symbols used in

TailGuard are listed and defined in Table I.

A. TailGuard Query Processing Model

Consider a query processing model directly derived from

Figure 1, as depicted in Figure 2. It is composed of a query

arrival process, a query handler, and N task servers. The

query arrival process characterizes the randomness of queries

arriving at the query handler.

At the query level, upon receiving a query at time, t0,

the query handler first determines how many tasks (i.e., the

query fanout, kf) need to be spawned and to which kf task

Fig. 2. TailGuard query processing model. A task queue for a task server
can be set in the task server or in the query handler.

servers these tasks need to be dispatched. The query handler

estimates task pre-dequeuing time budget Tb and computes

the task queuing deadline tD = t0 + Tb, shared by all the

tasks associated with the query 4. Here tD is defined as the

deadline when the task must be dequeued and given to the

corresponding task server to be processed in order to meet

the tail latency SLO for the query. As we shall show in the

next subsection, Tb (or tD) is a function of both query tail

latency SLO in terms of the pth percentile query latency of

xSLO
p and query fanout, kf , i.e., Tb = Tb(x

SLO
p , kf) and

tD = tD(xSLO
p , kf). Finally, the tasks, together with their

deadlines, are dispatched to the queues corresponding to the

task servers. Since task pre-dequeuing time budget, Tb, is

an explicit function of both xSLO
p and kf for the query,

TailGuard by design permits per-query tail latency SLOs. At

the task level, each task queue adopts a TF-EDFQ, based on

tD(xSLO
p , kf). When a task is to be enqueued at a task queue,

if the corresponding task server is idle, the task is serviced

immediately, otherwise, it is inserted into the task queue with

tasks ordered in increasing order of tD’s, hence with the task

of the smallest tD at the head of the queue. Whenever a task

in service finishes, the task at the head of the queue is put in

service immediately. Finally, upon the completion of execution

of a task, the task result is sent back to the query handler to

be merged. A query finishes as soon as the merging of all the

task results completes.

TailGuard ensures that tasks with a higher chance to cause

the violation of the associated query tail latency SLO will be

serviced earlier, thus improving the system utilization.

Finally, as mentioned in Section I, the performance of

TailGuard will be compared against FIFO, PRIQ and T-EDFQ.

In terms of queuing policy, FIFO is simply a first-in-first-

out queuing policy. PRIQ assigns tasks of different classes

to different queues with strict priorities given to the queue

of a higher class over that of a lower class. T-EDFQ works

4The rationale for assigning the same budget to all the tasks of a query
is as follows. Mathematically, with two reasonable assumptions made, i.e., a
task resource demand is an decreasing function of the task budget and the
sum of the task budgets for all the tasks in a query must be upper bounded
to meet a given query tail latency SLO, it can be easily shown that assigning
the same budget results in the minimum overall resource allocation.

901

the same way as TailGuard except that tD = t0 + xSLO
p . In

other words, the queuing deadline for a task is dependent

on the corresponding query tail latency SLO, xSLO
p , but

independent of query fanout, kf . Clearly, both PRIQ and T-

EDFQ degenerate to FIFO if all queries have the same tail

latency SLO, i.e., the case with a single class.

B. Task Queuing Deadline Estimation

The key to the design of TailGuard is the task queuing

deadline estimation or task decomposition. In this subsection,

we first present the task queuing deadline estimation solution

and then propose a way to implement it.
1) Solution: The task queuing deadline estimation problem

can be formally stated as follows: For a query with fanout, kf ,

a given tail latency SLO in term of xSLO
p , and arrival time,

t0, find the task queuing deadline, tD = t0 + Tb(x
SLO
p , kf),

for tasks spawned by the query. Here, Tb(x
SLO
p , kf), the task

pre-dequeuing time budget, is the maximum allowable task

pre-dequeuing time before the task must be dequeued and

given/sent to the task server to be processed, in order to meet

the query tail latency SLO.

First, we note that the task response time (also called loaded

task response time), tr, can be generally expressed as, tr =
tpr + tpo, where tpr represents the task pre-dequeuing time

and tpo stands for task post-queuing time or unloaded task

response time. tpr is composed of task scheduling time and

task queuing time, if task queuing takes place centrally at the

query handler. It also includes task dispatching time, if task

queuing occurs at the task server. tpo includes all the times

the task incurs after de-queuing.

Now we assume that the Cumulative Distribution Function

(CDF) of the unloaded task response time tpo, Fu
l (t), with

respect to task server, l, can be measured and updated (see

Section III.B.2 for details) for all task servers l = 1, ..., N .

Furthermore, let xu
p(kf) and Fu

Q(t, kf) represent the pth

percentile unloaded query tail latency for a query with fanout

kf and the CDF of unloaded query latency, respectively. Here,

a query latency is considered as unloaded (loaded) if the query

response time does not (does) include pre-dequeuing delay,

tpr. Also define n = n(k) to be the mapping between the k-th

task in a query and the n-th task server the task is dispatched

to, for k = 1, ..., kf . Clearly, the unloaded query latency is

the task post-queuing time of the slowest of all kf tasks.

According to the ordered statistics [10], we have,

Fu
Q(t, kf) =

kf
∏

k=1

Fu
n(k)(t). (1)

By definition, we have,

xu
p(kf) = Fu

Q
−1(

p

100
), (2)

where Fu
Q
−1(.) is the inverse function of Fu

Q(.).
Assuming that all the tasks in a query experience the same

pre-dequeuing delay tpr, we can express the CDF of the

response time for task l, Fl(t), as follows,

Fl(t) =

{

Fu
l (t− tpr), if t ≥ tpr

0, otherwise.
(3)

Hence

FQ(t, kf) =

kf
∏

k=1

Fn(k)(t) =

{

Fu
Q(t− tpr, kf), if t ≥ tpr

0, otherwise,

and

xp(kf)− tpr = Fu
Q
−1(

p

100
). (4)

From Eqns. (2) and (4), we have,

xp(kf) = xu
p(kf) + tpr. (5)

This result means that with any given query tail latency

SLO, xSLO
p , as long as, tpr ≤ xSLO

p − xu
p(kf), the query

tail latency SLO is guaranteed to be met, i.e., xp(kf) =
xu
p(kf)+tpr ≤ xSLO

p . This means that the task pre-dequeuing

time budget Tb(x
SLO
p , kf) can be defined as, Tb(x

SLO
p , kf) =

xSLO
p −xu

p(kf), or equivalently, the task queuing deadline can

be defined as,

tD = t0 + Tb(x
SLO
p , kf) = t0 + xSLO

p − xu
p(kf). (6)

In other words, for a query arrived at t = t0, as shown in

Figure 2, so long as all the tasks belonging to this query are

dequeued no later than tD, the query tail latency SLO, xSLO
p ,

is guaranteed to be met.

Ideally, under the work conserving condition5, if a queuing

policy can ensure that all the tasks exactly meet their queuing

deadlines, the design objective is achieved. In practice,

however, such a queuing policy may not exist. As a first

step, TailGuard adopts EDFQ based on tD, i.e., TF-EDFQ,

to enforce the task queuing deadlines. This queuing policy

can ensure that the task with the earliest queuing deadline is

placed at the head of the queue before deadline. However,

it cannot guarantee that the task at the head of the queue

can always be served before deadline, simply because the

task ahead of it may be still in service when the deadline is

reached. On the other hand, the task may also have a chance

to be dequeued before deadline, if the task server becomes

idle before deadline. This implies that TailGuard may tolerate

a small percentage of tasks missing their deadlines without

violating the tail latency SLOs as the tail latency is a

probabilistic measure.

A remark on meeting request tail latency SLO: Here we

present preliminary ideas on how to extend the above task

decomposition technique for queries to a task decomposition

technique for requests that account for query dependencies.

Consider a request composed of M queries to be issued

sequentially and with the request tail latency SLO expressed

in terms of the pth percentile of request latency of, xR,SLO
p .

Now, the request response time tRr =
∑M

i=1 tr,i, where tr,i is

the query response time for the i-th query. Although this rela-

tionship is an additive one, the one for the corresponding tail

latency is not. As the CDF of the request response time, FR(t),
is the convolutions of all the CDFs of the constituent query

5The work conserving condition refers to the condition whereby the task
server is always busy as long as there are unfinished tasks at the server.

902

response times, in general, xR,SLO
p <

∑M

i=1 x
SLO
p,i , making

query decomposition for requests difficult. In what follows,

we show that the above task decomposition technique can

be generalized to establish an additive relationship between

the request pre-dequeuing time budget and task pre-dequeuing

time budgets for the constituent queries, paving the way for the

development of a task decomposition technique for requests.

Define unloaded request latency, tRpo =
∑M

i=1 tpo,i, and the

CDF of the unloaded request response time, Fu
R(t), to be the

CDF of tRpo, where tpo,i is the unloaded query latency for the

i-th query. Further assume that all the tasks of query i have

the same pre-dequeuing time, tpr,i, and define request pre-

dequeuing time, tRpr =
∑M

i=1 tpr,i. Then we have the loaded

request response time tRr =
∑M

i=1(tpo,i + tpr,i) = tRpo + tRpr.

Clearly, by substituting tr, tpr, tpo, FQ, and Fu
Q with tRr , tRpr,

tRpo, FR, and Fu
R, respectively, and following Eqs. (4) and (5),

we have,

xR
p = xR

p

u
+ tRpr = xR

p

u
+

M
∑

i=1

tpr,i, (7)

where xR
p and xR

p

u
are the loaded and unloaded pth percentile

tail latency of the request. Eq. (7) means that the request

pre-dequeuing time budget, TR
b = xR,SLO

p − xR
p

u
, and it

is additive, i.e., TR
b =

∑M

i=1 Tb,i, here Tb,i is the task pre-

dequeuing budget for query i, for i = 1, ...,M .

Note that as long as TR
b (i.e., tRpr ≤ TR

b) is met, the request

tail latency SLO will be met, regardless the assignments of

Tb,i’s. However, different assignments may lead to different

resource utilizations. Hence, a key challenge that will be the

main focus of our future work is: with a given total budget

TR
b , how to assign budgets Tb,i to individual queries so that

the resource utilization is maximized.

2) Implementation: The above task queuing deadline

estimation solution requires the availability of the task

post-queuing time distributions, Fl(t), for all the task servers,

which must be conveyed to the query handler for task

pre-dequeuing time budget estimation. Here, we propose an

approach to estimate Fl(t)’s by means of a combined initial

offline estimation process and a periodical online updating

process.

Offline Estimation Process: As mentioned earlier, DU

services are likely to run in a more or less homogeneous

cluster. So before the service starts, we set Fl(t) ≈ F (t), for

l=1,...N . This lends us a handy way to perform an initial

offline estimation of only a single distribution function F (t),
which serves as the initial distribution for all the task servers.

More specifically, use a query handler and single task

server and load it with a typical task workload trace to collect

a sufficient number of samples of task post-queuing times

offline. Then use these samples to construct F (t) to be used

as the initial distribution function for all task servers. This

will allow task queuing deadlines to be estimated at the very

start of a DU service.

Online updating process: To account for the inevitable

heterogeneity in practice (e.g., due to skewed workloads,

uneven resource allocation and resource availability changes),

Fl(t)’s must be periodically updated online. Fortunately, this

can be done with low cost. When the query handler receives

and merges the task result for a task from task server l, it

uses the current time minus the task dequeue time (which is

either locally available if the queuing takes place in the query

handler, or comes with the task result from the task server l)

as the post-queuing time for the task to update Fl(t). This

updating process accounts for all the possible post-queuing

delays incurred by the tasks, including the long delays caused

by outliers. Hence TailGuard captures heterogeneity through

online updating process.

TailGuard implementation complexity: The computation

complexities for both task queuing deadline estimation and

queuing management in TailGuard are low. The former entails

the evaluation of two equations, i.e., Eq. (2) for xu
p(kf),

which can be done in the background for all possible kf ’s

in advance and updated when Fl(t)’s change and Eq. (6) for

each query. The latter requires the management of a single

EDFQ. As a result, TailGuard is a lightweight solution.

C. Query admission control

TailGuard can provide tail latency SLO guarantee for all

queries, when there are enough resources to sustain the

workload. In the presence of resource shortages due to, e.g.,

sudden surges of workloads or hardware/software failures,

some upcoming queries may need to be rejected to ensure

that all admitted queries can meet the prepaid tail latency

SLOs. Query admission control is particularly desirable in the

case where resource auto-scaling cannot be done, e.g., due to

monetary budget or resource constraints (e.g., edge resources

may be quite limited to allow an SaS to scale).

We tested TailGuard using various workloads and found

that the query tail latency SLOs can still be met, when

a small portion (less than 2% in our tests) of tasks miss

their deadlines, confirming the aforementioned observation.

With this understanding, TailGuard sets a threshold for the

percentage of tasks missing their deadlines, Rth, for query

admission control. If the task queuing takes place centrally at

the query handler, the information on whether a task misses its

deadline or not is immediately available to the query handler,

otherwise, this information can be piggybacked on the task

results returned from the task sever. The query handler can

update the task deadline violation ratio in a given moving time

window. When the ratio exceeds Rth, upcoming queries are

rejected, till the ratio falls back below Rth again. The moving

time window can be set to be the same as the time window

in which the tail latency SLOs should be guaranteed.

IV. PERFORMANCE EVALUATION

To cover a wide range of applications, TailGuard is firstly

evaluated based on simulation using the workload statistics

903

(a) (b) (c)

Fig. 3. The CDFs and the unloaded 95th and 99th percentile task tail latencies of the three Tailbench workloads: (a) Masstree; (b) Shore; (c) Xapian.

for three datacenter applications available in Tailbench [23]

as input. We first characterize the workload and then present

the simulation results along the fanout and service class

dimensions; and then with query admission control. Finally

we verify TailGuard in a highly heterogeneous SaS testbed.

A. Workloads

For simulation, a DU workload must be characterized by a

query arrival process, a query fanout distribution and a task

post-queuing time distribution. Unfortunately, the available

real traces simply do not contain the needed information.

Although traces for commercial DU services in cloud are

available, e.g., those made available by Google [19], [27] and

Alibaba [2], [20], they only include the CPU and memory

usage information for task servers, not the information needed

to drive the simulation at the task level, including the arrival

process, query fanouts and task service times. Hence, we resort

to modeling for the first two and benchmarks for the third one,

as described in detail below.

First, since the Poisson process [46] has been widely

recognized as a good model for cloud applications in general

[25], by default, we assume that the query arrival process is

Poisson with mean arrival rate, λ, a tunning knob to adjust the

system load. Meanwhile, to test the performance sensitivity of

TailGuard with respect to the burstiness of query arrivals, a

burstier arrival process, i.e., the Pareto arrival process [47], is

also used in one simulation case.

Second, although a few publications do offer fanout dis-

tribution, P (kf), for kf=1,...,N , for the DU services, e.g.,

the Facebook social networking service [5], they do not

provide task service times needed for the task-level simulation.

This, however, should not be too much of a concern, as

TailGuard needs to be applicable to both the existing and

future workloads whose P (kf)’s are not known yet. Hence, we

adopt quite different P (kf) models for different case studies

to gain a wide coverage. As we shall see, for all those cases

tested, TailGuard consistently outperforms the FIFO, PRIQ

and T-EDFQ queuing policies, which strongly suggests that

the TailGuard’s performance gain is insensitive to P (kf)’s.

Third, as a solution meant to be used by the current and

future DU services in general, TailGuard should be tested

against DU services with a wide range of task service time

distributions. To this end, we resort to Tailbench [23] to gain

TABLE II
THE MEAN TASK SERVICE TIME Tm (ms) AND THE UNLOADED 99TH

PERCENTILE QUERY TAIL LATENCY xu
99

(ms) WITH VARIOUS FANOUTS.

Bench Tm xu
99
(1) xu

99
(10) xu

99
(100)

Masstree 0.176 0.219 0.247 0.473
Shore 0.341 2.095 2.721 2.829
Xapian 0.925 2.590 2.998 3.308

access to applications with a wide range of task service time

distributions. Tailbench provides eight DU task benchmarks.

Each of these workloads allows a sufficiently large number

of task service time samples to be collected to construct F (t)
for task service time, assuming that the post-queuing time,

tpo, is dominated by the task service time, for the lack of

the information about the rest of the post-queuing delays.

We further assume that Fl(t)=F (t) for l=1,...,N , i.e., the

homogeneous case, which do not change over time (All the

other delays and heterogeneity will be accounted fully in the

SaS case study). These workloads can be classified into three

groups with distinct characteristics for F (t). We select one

workload from each group to be tested, including Masstree for

in-memory key-value store, Shore for SSD-based transactional

database and Xapian for web search.

Figure 3 depicts the CDFs and the unloaded 95/99th per-

centile task tail latencies for the three workloads. Table II also

gives the related statistics, including the mean task service

time (Tm) and the unloaded 99th percentile query tail latency

at fanouts kf=1, 10 and 100, derived from Eqs. (1) and (2).

B. Impact of query fanout

In this subsection, we focus on testing the impact of the

query fanout. We present two cases, i.e., a single class case

and a two-class case. Consider a cluster of size N=100 and

three different types of queries corresponding to three different

fanouts 1, 10 and 100, similar to the testing scenario in

[48], in which fanouts 1, 8 and 33 are used. Further assume

P (1)=100/111, P (10)=10/111, and P (100)=1/111, i.e., the

probability for a fanout is inversely proportional to the fanout

itself, similar to the one observed by Facebook [5]. This makes

the total numbers of tasks from the three query types to be,

on average, the same. For a given tail latency SLO of xSLO
99 ,

904

(a) (b) (c)

Fig. 4. The maximum loads with a single service class. in the three workloads. (a) Masstree; (b) Shore; and (c) Xapian.

the task pre-dequeuing time budget for a query with fanout kf
(1, 10 or 100) is Tb=xSLO

99 − xu
99(kf).

Note that meeting the tail latency SLO for queries as a

whole does not guarantee that queries of individual types can

meet the tail latency SLO. Hence, in the following simulation,

we measure the tail latency for each type of queries and

identify the maximum load at which all three types of queries

meet their tail latency SLOs.

We first consider the case with a single service class, i.e.,

all the queries have to meet a single SLO. In this case, both

PRIQ and T-EDFQ behave exactly the same as FIFO and

hence, we only compare TailGuard against FIFO. Figure 4

depicts the maximum loads that can meet the tail latency

SLO for TailGuard and FIFO for four different tail latency

SLOs (these SLOs are chosen such that the corresponding

maximum loads fall in the range of 20% to 60% which are

the typical system loads for the current commercial clouds

serving DU applications [19], [20]). This gives us a good idea

about TailGuard’s performance gain/loss with respect to those

of the currently practiced ones. As we can see, for all the

cases, TailGuard achieves higher loads compared to FIFO,

while meeting the same tail latency SLO. The performance

gain increases as the tail latency SLO becomes tighter. This

is because a query with a higher fanout has a tighter task

queuing deadline and hence, higher chance to violate the

tail latency SLO. Therefore, TailGuard that reorders the tasks

based on queuing deadlines can help meet the tail latency SLO

for all queries, resulting in higher performance than FIFO,

especially when the tail latency SLO becomes more stringent.

For example, for Masstree, the maximum load increases from

20% for FIFO to 28% for TailGuard at xSLO
99 = 0.8ms,

resulting in about 40% higher resource utilization. In other

words, TailGuard can save 40% task server resources over

FIFO (also PRIQ and T-EDFQ), while meeting the same tail

latency SLO, hence reducing the cost.

To gain more insights, for Masstree, Table III gives the

breakdowns of the tail latencies at the maximum loads for the

three types of queries. First, we note that at the maximum

loads, the query type with kf=100 barely meets the tail

latency SLOs for both schemes. In other words, the maximum

achievable load for both queuing policies are constrained by

the query type with the highest kf . For the other two query

types, the tail latencies are smaller than the corresponding tail

TABLE III
THE 99TH TAIL LATENCY (ms) OF THREE TYPES OF QUERIES AT

MAXIMUM LOADS FOR THE MASSTREE WORKLOAD.

Kf= 1 Kf= 10 Kf=100

x99=0.8 FIFO 0.439 0.594 0.798
TailGuard 0.572 0.745 0.797

x99=1.0 FIFO 0.533 0.731 0.997
TailGuard 0.705 0.941 0.994

x99=1.2 FIFO 0.647 0.889 1.192
TailGuard 0.817 1.098 1.193

x99=1.4 FIFO 0.751 1.061 1.389
TailGuard 0.945 1.262 1.392

(a) (b)

Fig. 5. The Maximum loads with two classes for the Masstree workload: (a)
Poisson and (b) Pareto arrival process.

latency SLOs, implying that they get more resources than they

need, especially for the one with kf=1. The performance gain

for TailGuard comes from more balanced resource allocation

among the three types, as evidenced by the closer tail latencies

among the three types than those for FIFO. The results clearly

indicate that the query fanout has to be taken into consideration

in task resource allocation for meeting query tail latency SLO

to maximize the system performance.

Now we consider the case with two service classes with the

tail latency SLO of the lower class being 1.5 times of that of

the higher class, i.e., 1.5x99, where x99 is the tail latency SLO

for the higher class. Each query is randomly assigned to one

of the two classes with equal probability. Both the Poisson

and Pareto arrival processes are considered. Due to limited

space, only the results for the Masstree workload are given

(the results for the other two workloads are similar).

Figure 5 shows the maximum loads under which all queries

905

can meet their tail latency SLOs. From the results (Figure

5 (a)) with the Poisson arrival process, we can see that

the performance gains of TailGuard over FIFO increase to

up to 80%, much higher than that in the single class case

(i.e., up to 40%). FIFO treats every task equally. Hence its

performance is constrained by the most resource demanding

queries, i.e., the higher class queries with the largest fanout.

The TailGuard performance gain is up to 40% with respect to

PRIQ. PRIQ gives higher priority to the higher class queries,

resulting in lower class queries having less resources to meet

their tail latency SLOs. The TailGuard performance gain is

up to about 22% with respect to T-EDFQ, smaller than that

with respect to PRIQ. This means that by incorporating the

actual tail latency SLO, rather than just the class information,

T-EDFQ can allocate task resources more accurately than

PRIQ does. In turn, TailGuard improves over T-EDFQ by

further incorporating query fanout information in task resource

allocation.

The performance gains for TailGuard against the other three

schemes with the Pareto arrival process (Figure 5(b)) are

similar to those with the Poisson arrival process. Meanwhile,

the maximum loads decease about 2% to 6% for all schemes

compared to those with the Poisson arrival process. This means

that the burstiness of query arrivals mainly impact the overall

achievable load, but much less on the relative performance

of different queuing policies. Hence, in the following cases

studies, we only present those with the Poisson arrival process.

C. Impact of service class

Again, consider the cluster of size N=100. Now all queries

have the same fanout of kf=100, i.e., for each query, its

tasks are served by all the task servers in the cluster in

parallel, which is the case for OLDI services. We evaluate the

performance of TailGuard for workloads with two different

service classes, denoted as Classes I and II. The tail latency

SLOs for Class I/II are 1/1.5, 6/10 and 10/15 ms for Masstree,

Shore and Xapian, respectively. Again, these tail latency SLOs

are chosen such that the achievable maximum load ranges

from 20% to 60%. A query has equal probability to request

for either of the two classes. For any query of a given class,

by substituting the corresponding xSLO
99 and xu

99(100) from

Table II into Eq. (6), we arrive at the task pre-dequeuing

time budgets. For example, for Masstree, the budgets for

classes I and II are 1-0.473=0.527ms and 1.5-0.473=1.027ms,

respectively. As the fanout is the same for all queries, T-EDFQ

behaves the same as TailGuard, and hence we compare the

performance of TailGuard against both FIFO and PRIQ.

Figure 6 presents the simulation results. For each plot, the

cyan dash line represents the tail latency SLO for that class

and the arrows, each having the same color as the tail latency

curve for a queuing policy, indicate the maximum achievable

loads that meet the tail latency SLOs.

As one can see, for all three workloads, FIFO, which is class

unaware, gives equal resources to queries from both classes.

Since the task resource demands or task pre-dequeuing time

budgets for tasks from classes I and II are quite different, e.g.,

(a) (b)

(c) (d)

(e)

Fig. 6. The 99th percentile latency at different loads. The cyan line indicates
the required tail latency and the arrows points to the maximum load that the
tail latency can be met.

0.527ms and 1.027ms, respectively, as calculated above, for

Masstree, indiscriminately allocating equal resources to tasks

results in a very low achievable load for class I queries but

very high achievable load for class II queries, e.g., 45% for

class I, as shown in Figure 6(a), and higher than 60% for

class II, as shown in Figure 6(b). Consequently, to meet the

tail latency SLOs for both classes, FIFO allows the cluster to

run at 45% for Masstree, 36% for Shore (see Figure 6(c)) and

49% for Xapian (see Figure 6(e)).

PRIQ, on the other hand, is class aware, but it gives strict

priority to tasks in Class I over Class II. This results in

unbalanced resource allocation in favor of Class I over Class

II. Consequently, the maximum load for class II is about 48%

for Masstree, and about 45% for both Shore and Xapian, while

the maximum load for class I reaches more than 60% for all

three workloads. Again, the low load for class II limits the

overall achievable load that meets both tail latency SLOs.

In contrast, as a class-aware approach and with task bud-

geting, TailGuard can balance the resources allocated to

tasks closely in proportion to their resource demands, re-

906

(a) (b)

Fig. 7. TailGuard with query admission control. (a) is the accepted/rejected
load; and (b) is the query tail latency for Class I and II.

sulting in much closer maximum loads for the two classes

(i.e., within 5% difference) for all three workloads. As

shown in Figure 6, the maximum loads for Classes I and

II for Masstree/Shore/Xapian are about 54%/51%/58% and

57%/56%/ 59%, respectively. Hence, the maximum loads that

meet both tail latency SLOs are 54%/51%/58% for the three

workloads, respectively. The performance gain of TailGuard

over FIFO and PRIQ are up to 40% (i.e , from 36% to 51%)

compared to FIFO and up to 30% (i.e., from 45% to 58%)

compared to PRIQ.

D. TailGuard with Query Admission Control

Now we test the TailGuard query admission control scheme.

Consider the same case presented in Section IV.C (only the

result of Masstree is given due to limited space). We first run

TailGuard without admission control to find the task queuing

deadline violation threshold Rth at the maximum acceptable

load when TailGuard can barely provide the tail latency SLO

guarantee. The maximum acceptable load thus found is about

54% and the corresponding threshold is 1.7%. We use a

moving window with size of 1000 queries (or 100000 tasks)

to compute the task queuing deadline violation ratio.

Figure 7 shows the accepted/rejected loads and the query

tail latencies at different loads. First, we see that the query

tail latency SLOs for both classes are guaranteed at all loads.

When the load is over the maximum acceptable loads, the

query tail latency of Class I closely approaches its tail latency

SLO, while the tail latency of Class II is a little below its

SLO. This is due to the fact that Class I tasks have tighter pre-

dequeuing time budgets to meet and hence have higher chances

to miss the queuing deadlines as we explained in Section

IV.C. Second, we note that the accepted loads (the load is

computed using the accepted queries only) closely approach its

respective maximum acceptable loads (within 2.5%). Further

increasing the load beyond the maximum acceptable loads,

the accepted load drops to about 6% below the maximum

acceptable loads. There are two reasons for this to happen.

First, TailGuard may not drop the exact number of queries

needed to perfectly meet the tail latency SLO. Second, just

like any feedback loop control solutions, TailGuard incurs a

delay between the measurement and control, which inevitably

makes the achievable load to be lower than the maximum

acceptable load. Nevertheless, these results demonstrated that

the TailGuard query admission control can indeed provide

tail latency SLO guarantee, while maintaining high resource

utilization.

Finally, we note that the simulation results for cluster size,

N=1,000, and in the presence of 4 classes are also available

and consistent with the ones above, which however, are not

presented here for the lack of space.

E. Evaluation in an SaS Testbed

Finally, we evaluate and compare TailGuard against the

other three schemes in an on-campus SaS testbed being

developed.

Testbed Setup: The testbed is currently composed of

four clusters of edge nodes, located in four rooms in

two buildings, including a server room and a Graduate

Research Assistant (GRA) office next to a wet lab in one

building, and a faculty office and a Graduate Teaching

Assistant (GTA) office in another building. Each of these four

clusters, referred to as Server-room, Wet-lab, Faculty and

GTA clusters hereafter, consists of 8 Raspberry Pi devices,

serving as edge nodes, with each currently attached with a

temperature sensor and humidity sensor and connected to the

Internet through an Ethernet switch. Each edge node receives

sensing data from both sensors periodically and keeps up to

eighteen-month-worth of the data records. Since the Wet-lab

cluster may require low delay sensing data, we use the

higher performing Raspberry Pi’s to furnish the cluster than

the ones for the other three and have the query handler co-

located with the cluster to minimize the communication delay.

Use Cases: We consider three likely use cases belonging to

three distinct classes, A, B, and C, to stress test TailGuard,

with the 99th percentile tail latency SLOs equal to 800, 1300,

and 1800 ms, respectively.

First, we note that the server room and wet lab are shared

by many research groups and individuals, who may want

to closely monitor individual devices they own to track the

sensing data. This use case can stress test TailGuard by

generating heavier workload on these two clusters than the

other two. To create even more unbalanced load, instead of

evenly distributing the load on these two clusters6, we place

80% of such workload on the Server-room cluster and the rest

20% randomly assigned to the others. Moreover, queries of

this use case are considered class A with the most stringent

tail latency SLO and constitute 50% of the total queries.

Second, we consider a use case targeting at potential users

who may want to get an overall reading of the temperature

and humidity in all areas with low delay. For such use case,

a query fans out 4 tasks, each accessing a randomly selected

edge node in a separate cluster. This use case is considered

less time critical than the previous one and thus designated

class B. We assume that it takes up 40% of the total queries.

6Note that equipped with the highest performing nodes and closest to the
query handler, the Wet-lab cluster can hardly pose a performance bottleneck.

907

Fig. 8. SaS testbed architecture.

(a) (b)

(c) (d)

Fig. 9. (a) The task post-queuing time CDFs in four clusters. Circle and
diamond represent the 95th and 99th percentile tail latencies, respectively.
(b), (c) and (d) are the 99th percentile query tail latency of the three classes
at various loads.

Third, some users may require detailed, relatively longer

term sensing data records to be retrieved from all edge nodes

with a loose tail latency SLO. Hence, all the queries in this

use case have fanout 32 and are assigned as class C, and

10% of the total queries are assigned to this class.

SaS testbed Architecture: Figure 8 depicts the SaS

testbed architecture. The query handler runs in a PC and

consists of a query/task process module and an aggregator

module. Queuing takes place centrally in the query/task

process module with 32 sets of queuing buffers allocated, one

for each edge node. The testbed resources are managed by K3s

[49], which orchestrates the pod resource allocation in edge

nodes. All the communications between the query handler

and an edge node use keep-alive HTTP/1.1 connections.

A task arriving at an edge node retrieves one or multiple

temperature and/or humidity records from the local database.

It has an equal probability of retrieving one to up to thirty-

day-worth of consecutive records starting from a random time

in the eighteen-month period. After retrieving the records, the

edge node sends the records to the aggregator module and an

edge-node-idle message to the process module. Upon receiving

the records for all the query tasks, the aggregator merges the

records for the query, which are finally sent to the user.

To further test if TailGuard can perform well with

inaccurate CDFs of unloaded task post-queuing times, we

let all 8 edge nodes in each cluster share the same CDF

based on the samples evenly collected from all edge nodes

in the cluster. Figure 9 (a) presents the CDFs for all four

clusters. First, we note that the CDFs (red and green lines)

for Faculty and GTA clusters are almost identical, as they use

the same model of Raspberry Pi’s and located in the same

building. With the same model of Raspberry Pi’s but located

in a different building and closer to the query handler, the

CDF for the Sever-room cluster concentrates more in the

lower post-queuing time region than the previous two. In

contrast, equipped with the highest performing Raspberry

Pi’s and co-located with the query handler, the Wet-lab

cluster offers significantly smaller overall post-queuing time

than the other three. More specifically, The mean, 95th,

and 99th task post queuing times are about 82/31/92/91

ms, 235/112/226/228 ms, and 300/136/306/304 ms for the

Server-room/Wet-lab/Faculty/GTA clusters, respectively,

making the system heterogeneous. With class A queries

highly concentrated on the Server-room cluster, we create a

highly heterogeneous scenario where the Server-room cluster

is the most heavily loaded, whereas the Wet-lab cluster is

highly under utilized. This is an ideal scenario to stress

test TailGuard. The reason is that a query from any class

that has a task using the Server-room cluster has a higher

probability to be the slowest one and hence a high chance

to determine the query response time. In this case, the query

fanout impact on the query performance is much reduced,

making TailGuard less effective with respective to the other

three queuing policies, which are fanout agnostic.

Results and Analysis: Figures 9 (b), (c) and (d) present the

results. We note that TailGuard, FIFO, PRIQ and T-EDFQ

can achieve the maximum load of about 48%, 38%, 36%

and 42%, respectively. This results in the performance gains

of TailGuard over FIFO, PRIQ and T-EDFQ to be 26.3%,

33.3% and 14.3%, respectively. As one can see, both the

performance gains and the maximum load differences in such

a highly heterogeneous system are in line with the simulated

ones (homogeneous systems).

The above stress test, together with the simulation, demon-

strates that TailGuard is effective to improve resource alloca-

tion performance for DU applications, even in a heterogeneous

system with highly unbalanced workload patterns, and varied

processing and communication delays. As the testbed grows

larger, one can expect that the performance gains of TailGuard

over the other three fanout-agnostic schemes will further

908

increase, because the average query fanout is likely to increase

with the number of edge nodes in the testbed.

All simulation source codes can be found on

https://github.com/zjwang68/Tailguard.

V. CONCLUSIONS

In this paper, we propose TailGuard for data-intensive user-

facing applications, aiming at maximizing resource utilization,

while providing tail latency SLO guarantee. TailGuard decou-

ples the upper query level design from the lower task level

design. First, at the query level, a decomposition technique

is developed to compute the task queuing deadline for a

query with the given tail latency SLO and fanout. Second,

at the task level, based on the task queuing deadline, a simple

earliest-deadline-first queuing policy is employed to manage

task queues to improve the resource utilization. TailGuard is

evaluated by simulation using three Tailbench workloads as

input. The results demonstrate that TailGuard can improve

resource utilization by up to 80% while meeting tail latency

SLOs, compared to the FIFO, PRIQ and T-EDFQ queuing

policies. TailGuard is also implemented and tested in a het-

erogeneous SaS testbed and the test results agree with the

simulated ones.

REFERENCES

[1] “Storage: How Tail Latency Impacts Customer-Facing Applications,”
https://www.computerweekly.com/opinion/Storage-How-tail-latency-
impacts-customer-facing-applications.

[2] Y. Cheng and A. Anwar and X. Duan, “Analyzing Alibaba’s Co-located
Datacenter Workloads,” Proceedings of IEEE BIGDATA, 2018.

[3] J. Dean and L. Barroso, “The Tail at Scale,” Communications of the
ACM, v56(12), 2013.

[4] S. Cho, A. Carter, J. Ehrlich, and J. Jan, “Moolle: Fan-out Control for
Scalable Distributed Data Stores,”Proceedings of IEEE ICDE, 2016.

[5] R. Nishtala, et al., “Scaling Memcache at Facebook,” Proceedings of
USENIX NSDI, 2013.

[6] S. Rosenkrantz et al., “JADE: Tail-Latency-SLO-Aware Job Scheduling
for Sensing-as-a-Service,” Proceedings of CloudAM, 2020.

[7] S. Lalith at al.,“C3: Cutting Tail Latency in Cloud Data Stores via
Adaptive Replica Selection,” Proceeding of NSDI, 2015.

[8] J. Li at al., “Tales of the Tail: Hardware, OS, and Application-level
Sources of Tail Latency,” Proceedings of ACM SoCC, 2014.

[9] W. Reda et al., “Rein: Taming Tail Latency in Key-Value Stores via
Multiget Scheduling,” Proceedings of ACM Eurosys, 2017.

[10] “Order Statistic,” https://en.wikipedia.org/wiki/Order statistic.

[11] M. Jeon et al., “Predictive Parallelization: Taming Tail Latencies in Web
Search,” Proceedings of ACM SIGIR, 2014.

[12] A. Vulimiri et al., “Low Latency via Redundancy”, Proceedings of ACM
CoNEXT, 2013

[13] D. Lo, David at. al., “Heracles: Improving Resource Efficiency at Scale,”
Proceedings of ACM ISCA, 2015.

[14] C. Delimitrou and K. Christos, “Paragon: QoS-aware Scheduling for
Heterogeneous Datacenters,” ACM SIGPLAN Notices, v48(4), 2013.

[15] H. Yang at al., “Bubble-Flux: Precise Online QoS Management for
Increased Utilization in Warehouse Scale Computers,” ACM SIGARCH
Computer Architecture News, v41(3), 127-144, 2020.

[16] M. Haque at al., “Few-to-Many: Incremental Parallelism for Reducing
Tail Latency in Interactive Services,” ACM SIGPLAN Notices, v50(4),
2015.

[17] Y. Xu et al., “Bobtail: Avoiding Long Tails in the Cloud,” Poceedings
of the USENIX NSDI, 2013.

[18] C. Stewart, A. Chakrabarti and R. Griffith, “Zoolander: Efficiently
Meeting Very Strict, Low-Latency SLOs,” Proceedings of ICAC, 2013.

[19] M. Tirmazi et al., “Borg: the Next Generation,” Proceedings of ACM
Eurosys, 2020.

[20] J. Guo et al., “Who Limits the Resource Efficiency of My Datacenter: An
Analysis of Alibaba Datacenter Traces,”Proceedings of IWQoS, 2019.

[21] W. Chen, J. Rao and X. Zhou, “Preemptive, Low Latency Datacenter
Scheduling via Lightweight Virtualization,” Proceedings of ATC, 2017.

[22] P. Misra, et al., “Managing Tail Latency in Datacenter-Scale File
Systems Under Production Constraints,”Poceedings of Eurosys, 2019.

[23] H. Kasture and D. Sanchez, “TailBench: A Benchmark Suite and
Evaluation Methodology for Latency-Critical Applications,” Proceedings
of IEEE IISWA, 2016.

[24] C. Perera, A. Zaslavsky, and D. Georgakopoulos, “Sensing as a service
model for smart cities supported by Internet of Things,” Wiley Trans-
actions on Emerging Telecommunications Technologies, 2013.

[25] A. Sriraman and T. Wenisch, “µtune: Auto-tuned threading for OLDI
microservices, Proceedings of ISCA, 2017.

[26] A. Sriraman and T. Wenisch, “µSuite: A Benchmark Suite for Microser-
vices,” Proceedings of IISWA, 2018.

[27] K. Rzadca et al., “Autopilot: Workload Autoscaling at
Google,”Proceedings of Eurosys, 2020.

[28] A. Mirhosseini et al., “Q-Zilla: A Scheduling Framework and Core Mi-
croarchitecture for Tail-Tolerant Microservices,” Proceedings of HPCA,
2020.

[29] Z. Wang, H. Li, Z. Li, X. Sun, J. Rao, H. Che, Hao and H. Jiang, ”Pi-
geon: an Effective Distributed, Hierarchical Datacenter Job Scheduler,”
Proceedings of the ACM Symposium on Cloud Computing (SOCC),
2019.

[30] A. Mirhosseini and T. Wenisch, “µSteal: a Theory-backed Framework
for Preemptive Work and Resource Stealing in Mixed-criticality Mi-
croservices,” Proceedings of ICS, 2021.

[31] R. Nishtala et al., “Twig: Multi-Agent Task Management for Colocated
Latency-Critical Cloud Services,” Proceedings of HPCA, 2020.

[32] I. Gog et al., “Firmanent: Fast, Centralized Cluster Scheduling at Scale,”
Proceedings of OSDI, 2016.

[33] K. Suo et al., “Characterizing and Optimizing Hotspot Parallel Garbage
Collection on Multicore Systems,” Proceedings of EuroSys, 2018.

[34] Y. He, S. Sameh, J. Larus and C. Yan, ” Zeta: Scheduling Interactive
Services with Partial Execution,” Proceedings of ACM Symposium on
Cloud Computing (SoCC), 2012.

[35] B. Cai at al., “Less Provisioning: A Hybrid Resource Scaling Engine
for Long-running Services with Tail Latency Guarantees,” IEEE Trans-
actions on Cloud Computing, v10(3), pp1941-1957, 2020.

[36] M. Haque et al., “Exploiting Heterogeneity for Tail Latency and Energy
Efficiency,” Proceedings of MICRO, 2017.

[37] X. Chen et al., “Achieving Low Tail-latency and High Scalability for
Serializable Transactions in Edge Computing,” Proceedings of Eurosys,
2021.

[38] Z. Zhang et al., “CRISP: Critical Path Analysis of Large-Scale Microser-
vice Architectures,” Proceeding of ATC,2022.

[39] A. Wang et al., “Cake: Enabling High-level SLOs on Shared Storage
Systems,” Proceedings of SoCC, 2012.

[40] T. Zhu et al., “PriorityMeister: Tail Latency QoS for Shared Networked
Storage,” Proceedings of SoCC, 2014.

[41] T. Zhu, D. Berger and M. Harchol-Balter,“SNC-Meister: Admitting
More Tenants with Tail Latency SLOs, Proceedings of SoCC, 2016.

[42] T. Zhu, D. Berger and M. Harchol-Balter,“WorloadCompactor: Reduc-
ing Datacenter Cost While Providing Tail Latency SLO Guarantees,”
Proceedings of SoCC, 2017.

[43] N. Li et al., “PSLO: Enforcing the Xth Percentile Latency and Through-
put SLOs for Consolidated VM Storage,” Proceeding of EuroSys, 2016.

[44] R. Kannan et al., “Grandslam: Guaranteeing SLAs for Jobs in Microser-
vices Execution Frameworks,” Proceedings of EuroSys, 2019.

[45] Y. Zhang et al., “Sinan: ML-Based and QoS-Aware Resource Manage-
ment for Cloud Microservices,” Proceeding of ASPLOS, 2021.

[46] “Poisson Distribution,” https://en.wikipedia.org/wiki/Poisson-
distribution.

[47] “Pareto Distribution,” https://en.wikipedia.org/wiki/Pareto distribution.
[48] K. Ousterhout et al., “Sparrow: Distributed, Low Latency Scheduling,”

Proceedings of SOSP, 2013.
[49] “Kubernetes (K3s),” https://k3s.io/.

909

