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Abstract—A primary design objective for Data-intensive User-
facing (DU) services for cloud and edge computing is to maximize
query throughput, while meeting query tail latency Service Level
Objectives (SLOs) for individual queries. Unfortunately, the
existing solutions fall short of achieving this design objective,
which we argue, is largely attributed to the fact that they
fail to take the query fanout explicitly into account. In this
paper, we propose TailGuard based on a Tail-latency-SL.O-and-
Fanout-aware Earliest-Deadline-First Queuing policy (TF-EDFQ)
for task queuing at individual task servers the query tasks
are fanned out to. With the task queuing deadline for each
task being derived based on both query tail latency SLO and
query fanout, TailGuard takes an important first step towards
achieving the design objective. TailGuard is evaluated against
First-In-First-Out (FIFO) task queuing, task PRIority Queuing
(PRIQ) and Tail-latency-SLO-aware EDFQ (T-EDFQ) policies
by simulation. It is driven by three types of applications in
the Tailbench benchmark suite. The results demonstrate that
TailGuard can improve resource utilization by up to 80%, while
meeting the targeted tail latency SLOs, as compared with the
other three policies. TailGuard is also implemented and tested in
a highly heterogeneous Sensing-as-a-Service (SaS) testbed for a
data sensing service, with test results in line with the other ones.

Index Terms—Task scheduling, resource management, tail
latency SLO, user-facing application

I. INTRODUCTION

It has been widely recognized that the query tail latency
for Data-intensive User-facing (DU) services, such as web
searching, online social networking, and emergency response
through edge-based crowdsensing, has a great impact on user
experience and hence, business revenues. For example, for
Amazon online web services, every 100-millisecond addition
of query tail latency causes 1% decrease in sale [1]. To
meet strict tail latency Service Level Objectives (SLOs), the
resources for DU services are generally over-provisioned [2],
at the cost of reduced profit. As a result, a key design objective
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of a DU service, called the design objective in short hereafter,
is to maximize the resource utilization or query throughput,
while meeting tail latency SLOs for individual queries.

However, achieving the above design objective is by no
means easy. A query for a typical DU service may spawn a
number of tasks, known as query fanout, to be dispatched
to, queued and serviced in parallel in different servers or
edge nodes where the data shards reside and the slowest
task of the query determines the query response time [3],
[4]. The range of query fanouts may differ from one service
to another, e.g., up to several hundreds for online social
networking [5], on the order of several thousands to tens of
thousands for web search [3], and potentially up to millions for
emergency response through edge crowdsening [6]. A small
number of outliers (caused by, e.g., skewed workloads [7]
or software/hardware resource variations [8]) can significantly
impact the query tail latency performance [3]. While a large
body of works have been devoted to alleviating the impact
of outliers on the query tail latency performance (e.g., [9],
[11]-[18]), to the best of our knowledge, no existing solution
attempts to meet more than one query tail latency SLO to
satisfy different performance requirements of individual users,
while maximizing the resource utilization or query throughput,
hence falling short of the design objective.

In this paper, we claim that a solution that stands a chance to
achieve the design objective must be not only tail latency SLO
aware but also query fanout aware. This is simply because fo
meet a given tail latency SLO, the task resource demands for
tasks belonging to queries with different fanouts are different.
For example, assume that with a given amount of resource
allocated to process each task and the task response time for
each task has 1% probability to be over 100 ms. Then the
query response time for a query with fanout k; has probability,
1-0.99%7, to be over 100 ms, meaning that a query with k=1
and k=100 have 1% and 63.4% probabilities of being over
100 ms, respectively. This implies that while a query with
k¢=1 can meet the tail latency SLO in terms of the 99th



percentile tail latency of 100 ms, a query with k=100 cannot.
In order to allow the query with k;=100 to also meet the same
tail latency SLO, a task associated with the query must be
allocated a much larger amount of resource so that the chance
it will exceed 100 ms is as small as 0.01%. This ensures
that the probably that the query response time exceeds 100
ms is 1-0.9999190 = 0.01 or 1%, i.e., meeting the same tail
latency SLO as the query with ky=1. This example clearly
demonstrates that to meet a query tail latency SLO for all
queries regardless query fanouts, the task resource demands for
tasks belonging to queries with different fanouts are different
and a task belonging to a query with a larger fanout demands
more resources, confirming our claim.

The implication of the above observation is significant. First,
even with all the queries sharing a given tail latency SLO, the
tasks belonging to queries with different fanouts should be
treated differently, e.g., by being allocated different amounts
of resource to closely match their resource demands so that
all the queries can meet the tail latency SLO at the lowest
possible resource consumption. Any solution that fails to take
the query fanout explicitly into account is guaranteed to result
in resource overprovisioning, simply because such a solution
will have to allocate task resources based on the worst-case
task resource demand. This partially explains why the way to
meet stringent tail latency SLOs for large-scale DU services
in today’s datacenters is normally through resource over-
provisioning [2]. Our simulation results (see Section IV.B for
details) indicate that by taking fanout into account, TailGuard
can improve resource utilization by 80% compared to the First-
In-First-Out (FIFO) queuing policy, while meeting a stringent
query tail latency SLO for DU workloads.

Second, consider a DU service that supports multiple classes
of queries with a higher class requiring a more stringent
tail latency SLO. Since the resource demand for a task is a
function of not only the tail latency SLO but also the fanout
of the query the task belongs to, it becomes apparent that a
task associated with a query of a lower class but with a larger
fanout may end up demanding more resources than a task in a
query of a higher class but with a smaller fanout. This renders
class-based task queue scheduling disciplines (e.g., PRIority-
based task Queuing (PRIQ) [2], [19], [20]), task fanout-
unaware queue management policies (e.g., the Tail-latency-
SLO-aware Earliest-Deadline-First Queuing (T-EDFQ)), or
task preemption [21] policies inadequate to achieve the design
objective. This may also render some task reordering solutions
solely based on task sizes [8], [22] inadequate. Our simulation
results (see details in Section IV.B) demonstrate that TailGuard
can improve overall resource utilization by 40% over the PRIQ
policy and 22% over T-EDFQ in supporting two classes of tail
latency SLOs for DU workloads.

In this paper, we propose TailGuard, a Tail-latency-SLO-
and-Fanout-aware Earliest-Deadline-First Queuing(TF-EDFQ)
policy, as a first step towards achieving the design objective for
DU services in general. As a top-down approach, TailGuard
decouples the upper query level design from the lower task
level design. First, at the query level, a task decomposition
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technique is developed to translate the query tail latency SLO
for a query with a given fanout into a task queuing deadline
for tasks spawned by the query at the task level, reflecting the
resource demand of the tasks. This effectively decomposes
a hard cotask scheduling problem at the query level into
individual queue management subproblems at the task level.
Second, at the task level, a single TF-EDFQ corresponding to
a task server is used to enforce the task queuing deadlines,
as a way to differentiate resource allocation for tasks with
different resource demands. In principle, TailGuard permits
unlimited number of query classes and is lightweight, as it
incurs minimum overhead for task queuing deadline estimation
and requires to implement only a single earliest-deadline-
first queue per task server for any DU applications. A query
admission control scheme is also developed to provide tail
latency SLO guarantee in the face of resource shortages.

TailGuard, or equivalently, TF-EDFQ, is evaluated against
FIFO, PRIQ and T-EDFQ (Section III.A gives their exact
definitions) by simulation. Three traces generated from the
Tailbench benchmark suite [23] are used as input. The results
demonstrate that TailGuard can improve resource utilization by
up to 80%, while meeting the targeted tail latency SLOs, as
compared with the other three policies. The query admission
control scheme is also tested and the results indicate that it
can indeed provide query tail latency SLO guarantee. Finally,
TailGuard is implemented and tested in a highly heteroge-
neous Sensing-as-a-Service (SaS) testbed for an edge-based
temperature-and-humidity sensing service, with test results in
lines with the other ones.

The remainder of this paper is organized as follows. Section
I presents the background and related work. Section III intro-
duces TailGuard. Performance evaluation is given in Section
IV. Finally Section V concludes the paper.

II. BACKGROUND AND RELATED WORK
A. Data-Intensive User-Facing Services

DU services are a predominant class of workloads in
today’s cloud and have also emerged as an important class
of workloads in an edge-cloud ecosystem, generally known as
SaS! [24]. Predominant DU services are driven by queries that
require query responsiveness in sub-seconds to seconds and
may need to touch on massive datasets, which are typically
carried out in a data parallel fashion. The working dataset for
a service (e.g., the total amount of crowdsensing data in the
case of an SaS) in this class are distributed to a large number
of task servers/edge nodes. Accordingly, a query may spawn
a number of tasks to be dispatched to some or all of these
task servers/edge nodes to be processed. A notable subclass of
such services is OnLine Data-intensive (OLDI) services [25].
A query for an OLDI service needs to touch upon every part
of the working dataset, i.e., the query fanout for each query is
equal to the total number of servers involved (ranging from a

IFor an SaS, users send sensing requests to the cloud. The cloud then
dispatches related query tasks to geo-distributed edge nodes to acquire
desired sensing data collected and processed through crowdsensing, which
are subsequently merged in and returned to the users from the cloud.
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Fig. 1. A typical DU application process architecture

few to tens of thousands). Large online search products, online
advertising and online machine translation, are examples of
OLDI services. For other DU services, different queries may
need to touch upon different parts of the working dataset.
A notable example of such a service is social networking
services, such as Facebook and LinkedIn. For instance, the
fanout for a typical Facebook page query is in the range of one
to several hundreds with 65% under 20 [5]. Other examples
are emergency response SaSes, e.g., finding a missing person
through surveillance cameras and fire detection and alert via
crowd temperature sensing. A query of such a service is
expected to have a fanout anywhere between one to a few
millions depending on the scope of sensing.

A DU service may be launched in a dedicated datacenter
cluster owned by a service provider, e.g., the web search
service by Google, in a cloud by a tenant who rents cloud
resources from a cloud service provider (e.g., Amazon cloud),
or in an edge-cloud ecosystem owned by multiple stake-
holders, including individuals who own the sensing data and/or
edge devices and cloud service providers.

Figure 1 depicts a generic DU application processing model
[25], [26]. It is composed of three parts, including a front-end
server, a mid-tier server (called query handler in this paper),
and a set of back-end leaf servers (called task servers in this
paper?), each hosting a piece of the total dataset, also known
as a shard, a partition, or a published sensing dataset (e.g., in
an edge node).

When a user request arrives at the front-end server, its
workflow is parsed to generate a set of queries to be issued
sequentially to the query handler at the mid-tier server. Due
to query/task dependency, the next query cannot be issued
until the current one finishes. For each query received, the
query handler spawns a number of tasks for the query and
dispatches them to the queues corresponding to the task
servers® that will serve them when they reach the queue
heads. The tasks for the same task server are queued based
on a given queuing mechanism. In practice, task servers are
usually allocated dedicated CPU/memory/storage resources in
the form of, e.g., cores, VMs, containers, or pods, as well as

2Task servers are also known as, e.g., workers, virtual-machines (VMs),
containers, or edge nodes, depending on the specific services to be studied.

3Note that the queuing may take place either centrally at the query handler
or at individual task servers.
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fix-sized data shards, forming a more or less homogeneous
task server cluster. As a result, the differentiation of resource
allocation among tasks with different resource demands are
mainly through task queuing policies, e.g., PRIQ [2], [19],
[20], task-reordering-based queuing [8], [22], or EDFQ, unless
task-aware resource auto-scaling [27] is allowed.

Upon completion of the execution of a task, the task result
is returned to the query handler to be merged with the task
results from the other tasks of the query. The query finishes
when all the task results are merged and sent to the front-
end server. Hence the task response time for the slowest task
dictates the query response time. In turn, the request completes
when the last query in the request finishes.

B. Tail Latency Aware Solutions for DU Services

Many works have been devoted to addressing query tail
latency related issues for DU services, which can be broadly
classified into two categories, i.e., outlier alleviation, focusing
on curtailing the tail length of the task response time to im-
prove overall query tail latency performance, and tail latency
SLO guarantee for queries sharing a single tail latency SLO.
In what follows, we elaborate more on the solutions in the two
categories, respectively.

Outlier Alleviation: Most existing solutions fall into this
category. Some typical examples in this category are listed
as follows. Solutions based on task-size-aware task reorder-
ing in a task queue [8], [22], [28], [29] are proposed to
avoid head-of-line blocking of small-sized tasks by large-sized
ones to reduce the mean task latency. Task-aware scheduling
schemes [13]-[15], [30], [38] are designed to shorten the
tail latency for tail latency critical tasks in workloads with
both batch and tail latency critical queries. Redundant-task-
issue solutions [7], [12], [18] are developed to reduce the
task tail latency by allowing a task to be issued to multiple
task server replicas. Task execution time prediction through
workload profiling [9], [11], [16], [17], [25] and machine
learning [31], [32] are widely employed to adjust the level
of parallelism to remove task bottlenecks or to avoid sending
tasks with predicted long execution time to poorly performing
task severs to reduce task tail latency. Solutions based on
synchronized garbage collection for all task servers [3], [33]
are proposed to minimize variabilities of task execution times
among parallel tasks to reduce query tail latency. Solutions
that allow partial results to be returned to fulfill a query,
e.g., [34], can maintain more predictable query tail latency at
the cost of possible loss of partial results. Dynamic resource
allocation based on the feedback loop control mechanisms [8],
[35] are proposed to help reduce query tail latencies. CPU
power control schemes [18], [36] are developed to dynamically
adjust voltage and frequency scaling (DVFS) for task servers
based on task execution time to save energy and maintain
low task tail latency. A query fanout control scheme [4] is
designed to control the fanout in queries to optimize the
system performance. A transaction scheduling solution for
geo-distributed databases [37] uses transaction timestamps to
reduce both mean and tail latencies for edge computing. All



TABLE 1
THE SYMBOLS USED IN TAILGUARD.

Symbol Description

N number of task servers

M number of queries in a request

kyf fanout of a query

Ty task pre-dequeuing time budget for a query

to query arrival time

tp task queuing deadline, tp = to + T}

tpr task pre-dequeuing time

tpo task post-queuing time or unloaded task re-
sponse time

tr task response time, tr = tpr + tpo

zg Lo pth percentile query tail latency SLO

@y (ky)lzp(ky)  unloaded/loaded pth percentile tail latency for
a query with fanout k

Fr(t)/Fy(t) CDF of unloaded/loaded task response time
with respect to task server [

Fs (t)/Fg(t) CDF of unloaded/loaded response time for a
query

P(ky) probability of a query with fanout k¢

these solutions help reduce the query tail latency, but cannot
provide SLO guarantee.

Tail Latency SLO guarantee: There are a few existing
solutions in this category, including Cake [39], PriorityMeister
[40], SNC-Meister [41], WorkloadCompactor [42] and PSLO
[43], all for shared datacenter storage applications. All these
solutions, except Cake, aim at meeting a single query tail
latency SLO for all queries with fanout of one only. Cake
can handle fanout of more than one, but is unable to enable
per-class or per-query tail latency SLOs, as it relies on direct
measurement of the overall tail latency statistics as input for
control, resulting in fanout-unaware resource overprovision-
ing. Clearly, a solution based on direct tail latency statistics
measurement like Cake cannot be extended to allow per-
query resource allocation, simply because the needed statistics
are unavailable at this granularity. Some tail latency SLO
guaranteed solutions for micro-service such as GrandSLAm
[44] and Sinan [45] are proposed. But, again, they cannot
support per-query tail latency SLO.

III. TAILGUARD

In this section, we first give the TailGuard query pro-
cessing model. Then we present the task decomposition, or
equivalently, task queuing deadline estimation solution and
address its implementation issues. Finally we present the
query admission control scheme. The major symbols used in
TailGuard are listed and defined in Table I.

A. TailGuard Query Processing Model

Consider a query processing model directly derived from
Figure 1, as depicted in Figure 2. It is composed of a query
arrival process, a query handler, and N task servers. The
query arrival process characterizes the randomness of queries
arriving at the query handler.

At the query level, upon receiving a query at time, g,
the query handler first determines how many tasks (i.e., the
query fanout, k) need to be spawned and to which k; task
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Fig. 2. TailGuard query processing model. A task queue for a task server
can be set in the task server or in the query handler.

servers these tasks need to be dispatched. The query handler
estimates task pre-dequeuing time budget 7} and computes
the task queuing deadline tp = tg + 7}, shared by all the
tasks associated with the query *. Here ¢p is defined as the
deadline when the task must be dequeued and given to the
corresponding task server to be processed in order to meet
the tail latency SLO for the query. As we shall show in the
next subsection, 7} (or tp) is a function of both query tail
latency SLO in terms of the pth percentile query latency of
255 and query fanout, ky, ie., Tj Ty(z; 19, ky) and
tp = tD(:rgLO,kf). Finally, the tasks, together with their
deadlines, are dispatched to the queues corresponding to the
task servers. Since task pre-dequeuing time budget, 7}, is
an explicit function of both z5%? and kj for the query,
TailGuard by design permits per-query tail latency SLOs. At
the task level, each task queue adopts a TF-EDFQ, based on
tp (2579, ky). When a task is to be enqueued at a task queue,
if the corresponding task server is idle, the task is serviced
immediately, otherwise, it is inserted into the task queue with
tasks ordered in increasing order of ¢p’s, hence with the task
of the smallest £ at the head of the queue. Whenever a task
in service finishes, the task at the head of the queue is put in
service immediately. Finally, upon the completion of execution
of a task, the task result is sent back to the query handler to
be merged. A query finishes as soon as the merging of all the
task results completes.

TailGuard ensures that tasks with a higher chance to cause
the violation of the associated query tail latency SLO will be
serviced earlier, thus improving the system utilization.

Finally, as mentioned in Section I, the performance of
TailGuard will be compared against FIFO, PRIQ and T-EDFQ.
In terms of queuing policy, FIFO is simply a first-in-first-
out queuing policy. PRIQ assigns tasks of different classes
to different queues with strict priorities given to the queue
of a higher class over that of a lower class. T-EDFQ works

“The rationale for assigning the same budget to all the tasks of a query
is as follows. Mathematically, with two reasonable assumptions made, i.e., a
task resource demand is an decreasing function of the task budget and the
sum of the task budgets for all the tasks in a query must be upper bounded
to meet a given query tail latency SLO, it can be easily shown that assigning
the same budget results in the minimum overall resource allocation.



the same way as TailGuard except that tp = ty + ;rgLO. In
other words, the queuing deadline for a task is dependent
on the corresponding query tail latency SLO, z5LC, but
independent of query fanout, k. Clearly, both PRIQ and T-
EDFQ degenerate to FIFO if all queries have the same tail
latency SLO, i.e., the case with a single class.

B. Task Queuing Deadline Estimation

The key to the design of TailGuard is the task queuing
deadline estimation or task decomposition. In this subsection,
we first present the task queuing deadline estimation solution
and then propose a way to implement it.

1) Solution: The task queuing deadline estimation problem
can be formally stated as follows: For a query with fanout, ky,
a given tail latency SLO in term of JUSLO, and arrival time,
to, find the task queuing deadline, tp = to + Tb(ngO,k:f),
for tasks spawned by the query. Here, Tb(xfl‘o, ky), the task
pre-dequeuing time budget, is the maximum allowable task
pre-dequeuing time before the task must be dequeued and
given/sent to the task server to be processed, in order to meet
the query tail latency SLO.

First, we note that the task response time (also called loaded
task response time), ¢,, can be generally expressed as, t, =
tpr + tpo, Where t,,. represents the task pre-dequeuing time
and t,, stands for task post-queuing time or unloaded task
response time. ,, is composed of task scheduling time and
task queuing time, if task queuing takes place centrally at the
query handler. It also includes task dispatching time, if task
queuing occurs at the task server. t,, includes all the times
the task incurs after de-queuing.

Now we assume that the Cumulative Distribution Function
(CDF) of the unloaded task response time t,,, F}“(t), with
respect to task server, [, can be measured and updated (see
Section III.B.2 for details) for all task servers [ = 1,..., N.
Furthermore, let zj(ky) and F§(t ky) represent the pth
percentile unloaded query tail latency for a query with fanout
ks and the CDF of unloaded query latency, respectively. Here,
a query latency is considered as unloaded (loaded) if the query
response time does not (does) include pre-dequeuing delay,
tpr. Also define n = n(k) to be the mapping between the k-th
task in a query and the n-th task server the task is dispatched
to, for k = 1,..., ky. Clearly, the unloaded query latency is
the task post-queuing time of the slowest of all ks tasks.
According to the ordered statistics [10], we have,

5t ky) = H i (¢ 8))
By definition, we have,

k) = Fu (-2 2

( f) Q (100)1 ( )

where Fé’l(.) is the inverse function of F§(.).

Assuming that all the tasks in a query experience the same
pre-dequeuing delay t,., we can express the CDF of the
response time for task I, Fi(t), as follows,

— Flu(t - tl””)a Zf t Z tpr
Eit) = { 0, otherwise.

3
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Faithy) = [ Fwt = { g8 =1t o L2 o
and
zp(kp) = tr = F§ ™~ (555): @
From Eqns. (2) and (4), we have,
xp(ky) =y (kf) + tpr- &)

This result means that with any given query tail latency
SLO, z,5©, as long as, t,r < 2350 — a%(ky), the query
tail latency SLO is guaranteed to be met, ie., z,(kf) =
wy(ky)+tpr < xSLO This means that the task pre-dequeuing
tlme budget Tj(z;, 510 ,ky) can be defined as, T(z,) SLO k) =
S Lo _ xy(ky), or equivalently, the task queuing deadhne can
be defined as,

tp =to+ Ty(z5 O ky) = to + 25 -0 — al(ky).  (6)

In other words, for a query arrived at ¢ = ¢y, as shown in
Figure 2, so long as all the tasks belonging to this query are
dequeued no later than ¢p, the query tail latency SLO, :rs LO,
is guaranteed to be met.

Ideally, under the work conserving condition’, if a queuing
policy can ensure that all the tasks exactly meet their queuing
deadlines, the design objective is achieved. In practice,
however, such a queuing policy may not exist. As a first
step, TailGuard adopts EDFQ based on tp, i.e., TF-EDFQ,
to enforce the task queuing deadlines. This queuing policy
can ensure that the task with the earliest queuing deadline is
placed at the head of the queue before deadline. However,
it cannot guarantee that the task at the head of the queue
can always be served before deadline, simply because the
task ahead of it may be still in service when the deadline is
reached. On the other hand, the task may also have a chance
to be dequeued before deadline, if the task server becomes
idle before deadline. This implies that TailGuard may tolerate
a small percentage of tasks missing their deadlines without
violating the tail latency SLOs as the tail latency is a
probabilistic measure.

A remark on meeting request tail latency SLO: Here we
present preliminary ideas on how to extend the above task
decomposition technique for queries to a task decomposition
technique for requests that account for query dependencies.
Consider a request composed of M queries to be issued
sequentially and with the request tail latency SLO expressed
in terms of the pth percentile of request latency of, TR’SLO
Now, the request response time t? = wal Lris where [FH
the query response time for the ¢-th query. Although this rela-
tionship is an additive one, the one for the corresponding tail
latency is not. As the CDF of the request response time, Fr(t),
is the convolutions of all the CDFs of the constituent query

SThe work conserving condition refers to the condition whereby the task
server is always busy as long as there are unfinished tasks at the server.
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response times, in general, Ty < Zi:l Tpi s making

query decomposition for requests difficult. In what follows,
we show that the above task decomposition technique can
be generalized to establish an additive relationship between
the request pre-dequeuing time budget and task pre-dequeuing
time budgets for the constituent queries, paving the way for the
development of a task decomposition techniq{\ue for requests.

Define unloaded request latency, tffo = 2111 tpo,i» and the
CDF of the unloaded request response time, Fi(t), to be the
CDF of tﬁj, where t,,,; is the unloaded query latency for the
i-th query. Further assume that all the tasks of query i have
the same pre-dequeuing time, ?,,;, and define request pre-
dequeuing time, % = Zf\il tpri- Then we have the loaded

s b =
M
i1 (tpoi + tpri) = tﬁ, + tf'r.

request response time ¢ = >

Clearly, by substituting t,, t,,, tp,, Fg, and Féj with tﬁ, tﬁ.,
tﬁo, Fr, and F'g, respectively, and following Egs. (4) and (5),

we have,

R _
T, =

M
RY R R
l'p + tpr = .Tp + Z tpr,i7 (7)
i=1

where 1'5 and wgu are the loaded and unloaded pth percentile
tail latency of the request. Eq. (7) means that the request
pre-dequeuing time budget, 7' = z[920 — 2l and it
is additive, i.e., TbR = vail Ty.i, here Ty ; is the task pre-
dequeuing budget for query ¢, for i =1, ..., M.

Note that as long as T, (i.e., t]. < T,') is met, the request
tail latency SLO will be met, regardless the assignments of
Ty ;’s. However, different assignments may lead to different
resource utilizations. Hence, a key challenge that will be the
main focus of our future work is: with a given total budget
TbR, how to assign budgets T} ; to individual queries so that

the resource utilization is maximized.

2) Implementation: The above task queuing deadline
estimation solution requires the availability of the task
post-queuing time distributions, Fj(t), for all the task servers,
which must be conveyed to the query handler for task
pre-dequeuing time budget estimation. Here, we propose an
approach to estimate Fj(¢)’s by means of a combined initial
offline estimation process and a periodical online updating
process.

Offline Estimation Process: As mentioned earlier, DU
services are likely to run in a more or less homogeneous
cluster. So before the service starts, we set Fj(t) ~ F'(t), for
[=1,...N. This lends us a handy way to perform an initial
offline estimation of only a single distribution function F'(t),
which serves as the initial distribution for all the task servers.

More specifically, use a query handler and single task
server and load it with a typical task workload trace to collect
a sufficient number of samples of task post-queuing times
offline. Then use these samples to construct F'(t) to be used
as the initial distribution function for all task servers. This
will allow task queuing deadlines to be estimated at the very
start of a DU service.
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Online updating process: To account for the inevitable
heterogeneity in practice (e.g., due to skewed workloads,
uneven resource allocation and resource availability changes),
F(t)’s must be periodically updated online. Fortunately, this
can be done with low cost. When the query handler receives
and merges the task result for a task from task server [, it
uses the current time minus the task dequeue time (which is
either locally available if the queuing takes place in the query
handler, or comes with the task result from the task server [)
as the post-queuing time for the task to update Fj(¢). This
updating process accounts for all the possible post-queuing
delays incurred by the tasks, including the long delays caused
by outliers. Hence TailGuard captures heterogeneity through
online updating process.

TailGuard implementation complexity: The computation
complexities for both task queuing deadline estimation and
queuing management in TailGuard are low. The former entails
the evaluation of two equations, i.e., Eq. (2) for x;(kf),
which can be done in the background for all possible k¢’s
in advance and updated when Fj(t)’s change and Eq. (6) for
each query. The latter requires the management of a single
EDFQ. As a result, TailGuard is a lightweight solution.

C. Query admission control

TailGuard can provide tail latency SLO guarantee for all
queries, when there are enough resources to sustain the
workload. In the presence of resource shortages due to, e.g.,
sudden surges of workloads or hardware/software failures,
some upcoming queries may need to be rejected to ensure
that all admitted queries can meet the prepaid tail latency
SLOs. Query admission control is particularly desirable in the
case where resource auto-scaling cannot be done, e.g., due to
monetary budget or resource constraints (e.g., edge resources
may be quite limited to allow an SaS to scale).

We tested TailGuard using various workloads and found
that the query tail latency SLOs can still be met, when
a small portion (less than 2% in our tests) of tasks miss
their deadlines, confirming the aforementioned observation.
With this understanding, TailGuard sets a threshold for the
percentage of tasks missing their deadlines, Ry, for query
admission control. If the task queuing takes place centrally at
the query handler, the information on whether a task misses its
deadline or not is immediately available to the query handler,
otherwise, this information can be piggybacked on the task
results returned from the task sever. The query handler can
update the task deadline violation ratio in a given moving time
window. When the ratio exceeds R;;, upcoming queries are
rejected, till the ratio falls back below R, again. The moving
time window can be set to be the same as the time window
in which the tail latency SLOs should be guaranteed.

IV. PERFORMANCE EVALUATION

To cover a wide range of applications, TailGuard is firstly
evaluated based on simulation using the workload statistics
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Fig. 3. The CDFs and the unloaded 95th and 99th percentile task tail latencies of the three Tailbench workloads: (a) Masstree; (b) Shore; (c) Xapian.

for three datacenter applications available in Tailbench [23]
as input. We first characterize the workload and then present
the simulation results along the fanout and service class
dimensions; and then with query admission control. Finally
we verify TailGuard in a highly heterogeneous SaS testbed.

A. Workloads

For simulation, a DU workload must be characterized by a
query arrival process, a query fanout distribution and a task
post-queuing time distribution. Unfortunately, the available
real traces simply do not contain the needed information.
Although traces for commercial DU services in cloud are
available, e.g., those made available by Google [19], [27] and
Alibaba [2], [20], they only include the CPU and memory
usage information for task servers, not the information needed
to drive the simulation at the task level, including the arrival
process, query fanouts and task service times. Hence, we resort
to modeling for the first two and benchmarks for the third one,
as described in detail below.

First, since the Poisson process [46] has been widely
recognized as a good model for cloud applications in general
[25], by default, we assume that the query arrival process is
Poisson with mean arrival rate, ), a tunning knob to adjust the
system load. Meanwhile, to test the performance sensitivity of
TailGuard with respect to the burstiness of query arrivals, a
burstier arrival process, i.e., the Pareto arrival process [47], is
also used in one simulation case.

Second, although a few publications do offer fanout dis-
tribution, P(ky), for ky=1,...,N, for the DU services, e.g.,
the Facebook social networking service [5], they do not
provide task service times needed for the task-level simulation.
This, however, should not be too much of a concern, as
TailGuard needs to be applicable to both the existing and
future workloads whose P(ky)’s are not known yet. Hence, we
adopt quite different P(ky) models for different case studies
to gain a wide coverage. As we shall see, for all those cases
tested, TailGuard consistently outperforms the FIFO, PRIQ
and T-EDFQ queuing policies, which strongly suggests that
the TailGuard’s performance gain is insensitive to P(ky)’s.

Third, as a solution meant to be used by the current and
future DU services in general, TailGuard should be tested
against DU services with a wide range of task service time
distributions. To this end, we resort to Tailbench [23] to gain
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TABLE 11
THE MEAN TASK SERVICE TIME T}y, (ms) AND THE UNLOADED 99TH
PERCENTILE QUERY TAIL LATENCY z gy () WITH VARIOUS FANOUTS.

Bench Tm zge(1)  x§y(10) g, (100)
Masstree  0.176  0.219 0.247 0.473
Shore 0.341  2.095 2.721 2.829
Xapian 0.925 2590 2.998 3.308

access to applications with a wide range of task service time
distributions. Tailbench provides eight DU task benchmarks.
Each of these workloads allows a sufficiently large number
of task service time samples to be collected to construct F'(t)
for task service time, assuming that the post-queuing time,
tpo, is dominated by the task service time, for the lack of
the information about the rest of the post-queuing delays.
We further assume that Fj(t)=F(t) for I=1,...,N, i.e., the
homogeneous case, which do not change over time (All the
other delays and heterogeneity will be accounted fully in the
SaS case study). These workloads can be classified into three
groups with distinct characteristics for F'(t). We select one
workload from each group to be tested, including Masstree for
in-memory key-value store, Shore for SSD-based transactional
database and Xapian for web search.

Figure 3 depicts the CDFs and the unloaded 95/99th per-
centile task tail latencies for the three workloads. Table II also
gives the related statistics, including the mean task service
time (7},,) and the unloaded 99th percentile query tail latency
at fanouts £y=1, 10 and 100, derived from Egs. (1) and (2).

B. Impact of query fanout

In this subsection, we focus on testing the impact of the
query fanout. We present two cases, i.e., a single class case
and a two-class case. Consider a cluster of size N=100 and
three different types of queries corresponding to three different
fanouts 1, 10 and 100, similar to the testing scenario in
[48], in which fanouts 1, 8 and 33 are used. Further assume
P(1)=100/111, P(10)=10/111, and P(100)=1/111, i.e., the
probability for a fanout is inversely proportional to the fanout
itself, similar to the one observed by Facebook [5]. This makes
the total numbers of tasks from the three query types to be,
on average, the same. For a given tail latency SLO of xggLo,
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the task pre-dequeuing time budget for a query with fanout ks
(1, 10 or 100) is Ty=254C — xly (k).

Note that meeting the tail latency SLO for queries as a
whole does not guarantee that queries of individual types can
meet the tail latency SLO. Hence, in the following simulation,
we measure the tail latency for each type of queries and
identify the maximum load at which all three types of queries
meet their tail latency SLOs.

We first consider the case with a single service class, i.e.,
all the queries have to meet a single SLO. In this case, both
PRIQ and T-EDFQ behave exactly the same as FIFO and
hence, we only compare TailGuard against FIFO. Figure 4
depicts the maximum loads that can meet the tail latency
SLO for TailGuard and FIFO for four different tail latency
SLOs ( these SLOs are chosen such that the corresponding
maximum loads fall in the range of 20% to 60% which are
the typical system loads for the current commercial clouds
serving DU applications [19], [20]). This gives us a good idea
about TailGuard’s performance gain/loss with respect to those
of the currently practiced ones. As we can see, for all the
cases, TailGuard achieves higher loads compared to FIFO,
while meeting the same tail latency SLO. The performance
gain increases as the tail latency SLO becomes tighter. This
is because a query with a higher fanout has a tighter task
queuing deadline and hence, higher chance to violate the
tail latency SLO. Therefore, TailGuard that reorders the tasks
based on queuing deadlines can help meet the tail latency SLO
for all queries, resulting in higher performance than FIFO,
especially when the tail latency SLO becomes more stringent.
For example, for Masstree, the maximum load increases from
20% for FIFO to 28% for TailGuard at z§&° = 0.8ms,
resulting in about 40% higher resource utilization. In other
words, TailGuard can save 40% task server resources over
FIFO (also PRIQ and T-EDFQ), while meeting the same tail
latency SLO, hence reducing the cost.

To gain more insights, for Masstree, Table III gives the
breakdowns of the tail latencies at the maximum loads for the
three types of queries. First, we note that at the maximum
loads, the query type with ky=100 barely meets the tail
latency SLOs for both schemes. In other words, the maximum
achievable load for both queuing policies are constrained by
the query type with the highest k;. For the other two query
types, the tail latencies are smaller than the corresponding tail
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TABLE III
THE 99TH TAIL LATENCY (m.s) OF THREE TYPES OF QUERIES AT
MAXIMUM LOADS FOR THE MASSTREE WORKLOAD.

K;=1 K;=10 K;=100
299=0.8 _ FIFO 0439 0394  0.798
TailGuard  0.572 0745 0797
Z99=10 FIFO 0533 0731 0997
TailGuard 0705 0941  0.994
Zo9=12  FIFO 0.647  0.889 1.192
TailGuard  0.817  1.098 1.193
Tog=14 FIFO 0751 1.061 1389
TailGuard 0945 1262 1392
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Fig. 5. The Maximum loads with two classes for the Masstree workload: (a)
Poisson and (b) Pareto arrival process.

latency SLOs, implying that they get more resources than they
need, especially for the one with k;=1. The performance gain
for TailGuard comes from more balanced resource allocation
among the three types, as evidenced by the closer tail latencies
among the three types than those for FIFO. The results clearly
indicate that the query fanout has to be taken into consideration
in task resource allocation for meeting query tail latency SLO
to maximize the system performance.

Now we consider the case with two service classes with the
tail latency SLO of the lower class being 1.5 times of that of
the higher class, i.e., 1.5z99, Where xgg is the tail latency SLO
for the higher class. Each query is randomly assigned to one
of the two classes with equal probability. Both the Poisson
and Pareto arrival processes are considered. Due to limited
space, only the results for the Masstree workload are given
(the results for the other two workloads are similar).

Figure 5 shows the maximum loads under which all queries



can meet their tail latency SLOs. From the results (Figure
5 (a)) with the Poisson arrival process, we can see that
the performance gains of TailGuard over FIFO increase to
up to 80%, much higher than that in the single class case
(i.e., up to 40%). FIFO treats every task equally. Hence its
performance is constrained by the most resource demanding
queries, i.e., the higher class queries with the largest fanout.
The TailGuard performance gain is up to 40% with respect to
PRIQ. PRIQ gives higher priority to the higher class queries,
resulting in lower class queries having less resources to meet
their tail latency SLOs. The TailGuard performance gain is
up to about 22% with respect to T-EDFQ, smaller than that
with respect to PRIQ. This means that by incorporating the
actual tail latency SLO, rather than just the class information,
T-EDFQ can allocate task resources more accurately than
PRIQ does. In turn, TailGuard improves over T-EDFQ by
further incorporating query fanout information in task resource
allocation.

The performance gains for TailGuard against the other three
schemes with the Pareto arrival process (Figure 5(b)) are
similar to those with the Poisson arrival process. Meanwhile,
the maximum loads decease about 2% to 6% for all schemes
compared to those with the Poisson arrival process. This means
that the burstiness of query arrivals mainly impact the overall
achievable load, but much less on the relative performance
of different queuing policies. Hence, in the following cases
studies, we only present those with the Poisson arrival process.

C. Impact of service class

Again, consider the cluster of size N=100. Now all queries
have the same fanout of ky=100, i.e., for each query, its
tasks are served by all the task servers in the cluster in
parallel, which is the case for OLDI services. We evaluate the
performance of TailGuard for workloads with two different
service classes, denoted as Classes I and II. The tail latency
SLOs for Class I/II are 1/1.5, 6/10 and 10/15 ms for Masstree,
Shore and Xapian, respectively. Again, these tail latency SLOs
are chosen such that the achievable maximum load ranges
from 20% to 60%. A query has equal probability to request
for either of the two classes. For any query of a given class,
by substituting the corresponding x54C and zy,(100) from
Table II into Eq. (6), we arrive at the task pre-dequeuing
time budgets. For example, for Masstree, the budgets for
classes I and II are 1-0.473=0.527ms and 1.5-0.473=1.027ms,
respectively. As the fanout is the same for all queries, T-EDFQ
behaves the same as TailGuard, and hence we compare the
performance of TailGuard against both FIFO and PRIQ.

Figure 6 presents the simulation results. For each plot, the
cyan dash line represents the tail latency SLO for that class
and the arrows, each having the same color as the tail latency
curve for a queuing policy, indicate the maximum achievable
loads that meet the tail latency SLOs.

As one can see, for all three workloads, FIFO, which is class
unaware, gives equal resources to queries from both classes.
Since the task resource demands or task pre-dequeuing time
budgets for tasks from classes I and II are quite different, e.g.,
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0.527ms and 1.027ms, respectively, as calculated above, for
Masstree, indiscriminately allocating equal resources to tasks
results in a very low achievable load for class I queries but
very high achievable load for class II queries, e.g., 45% for
class I, as shown in Figure 6(a), and higher than 60% for
class II, as shown in Figure 6(b). Consequently, to meet the
tail latency SLOs for both classes, FIFO allows the cluster to
run at 45% for Masstree, 36% for Shore (see Figure 6(c)) and
49% for Xapian (see Figure 6(e)).

PRIQ, on the other hand, is class aware, but it gives strict
priority to tasks in Class I over Class II. This results in
unbalanced resource allocation in favor of Class I over Class
II. Consequently, the maximum load for class II is about 48%
for Masstree, and about 45% for both Shore and Xapian, while
the maximum load for class I reaches more than 60% for all
three workloads. Again, the low load for class II limits the
overall achievable load that meets both tail latency SLOs.

In contrast, as a class-aware approach and with task bud-
geting, TailGuard can balance the resources allocated to
tasks closely in proportion to their resource demands, re-
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sulting in much closer maximum loads for the two classes
(i.e., within 5% difference) for all three workloads. As
shown in Figure 6, the maximum loads for Classes I and
II for Masstree/Shore/Xapian are about 54%/51%/58% and
57%156%! 59%, respectively. Hence, the maximum loads that
meet both tail latency SLOs are 54%/51%/58% for the three
workloads, respectively. The performance gain of TailGuard
over FIFO and PRIQ are up to 40% (i.e , from 36% to 51%)
compared to FIFO and up to 30% (i.e., from 45% to 58%)
compared to PRIQ.

D. TailGuard with Query Admission Control

Now we test the TailGuard query admission control scheme.
Consider the same case presented in Section IV.C (only the
result of Masstree is given due to limited space). We first run
TailGuard without admission control to find the task queuing
deadline violation threshold Ry, at the maximum acceptable
load when TailGuard can barely provide the tail latency SLO
guarantee. The maximum acceptable load thus found is about
54% and the corresponding threshold is 1.7%. We use a
moving window with size of 1000 queries (or 100000 tasks)
to compute the task queuing deadline violation ratio.

Figure 7 shows the accepted/rejected loads and the query
tail latencies at different loads. First, we see that the query
tail latency SLOs for both classes are guaranteed at all loads.
When the load is over the maximum acceptable loads, the
query tail latency of Class I closely approaches its tail latency
SLO, while the tail latency of Class II is a little below its
SLO. This is due to the fact that Class I tasks have tighter pre-
dequeuing time budgets to meet and hence have higher chances
to miss the queuing deadlines as we explained in Section
IV.C. Second, we note that the accepted loads (the load is
computed using the accepted queries only) closely approach its
respective maximum acceptable loads (within 2.5%). Further
increasing the load beyond the maximum acceptable loads,
the accepted load drops to about 6% below the maximum
acceptable loads. There are two reasons for this to happen.
First, TailGuard may not drop the exact number of queries
needed to perfectly meet the tail latency SLO. Second, just
like any feedback loop control solutions, TailGuard incurs a
delay between the measurement and control, which inevitably
makes the achievable load to be lower than the maximum
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acceptable load. Nevertheless, these results demonstrated that
the TailGuard query admission control can indeed provide
tail latency SLO guarantee, while maintaining high resource
utilization.

Finally, we note that the simulation results for cluster size,
N=1,000, and in the presence of 4 classes are also available
and consistent with the ones above, which however, are not
presented here for the lack of space.

E. Evaluation in an SaS Testbed

Finally, we evaluate and compare TailGuard against the
other three schemes in an on-campus SaS testbed being
developed.

Testbed Setup: The testbed is currently composed of
four clusters of edge nodes, located in four rooms in
two buildings, including a server room and a Graduate
Research Assistant (GRA) office next to a wet lab in one
building, and a faculty office and a Graduate Teaching
Assistant (GTA) office in another building. Each of these four
clusters, referred to as Server-room, Wet-lab, Faculty and
GTA clusters hereafter, consists of 8 Raspberry Pi devices,
serving as edge nodes, with each currently attached with a
temperature sensor and humidity sensor and connected to the
Internet through an Ethernet switch. Each edge node receives
sensing data from both sensors periodically and keeps up to
eighteen-month-worth of the data records. Since the Wet-lab
cluster may require low delay sensing data, we use the
higher performing Raspberry Pi’s to furnish the cluster than
the ones for the other three and have the query handler co-
located with the cluster to minimize the communication delay.

Use Cases: We consider three likely use cases belonging to
three distinct classes, A, B, and C, to stress test TailGuard,
with the 99th percentile tail latency SLOs equal to 800, 1300,
and 1800 ms, respectively.

First, we note that the server room and wet lab are shared
by many research groups and individuals, who may want
to closely monitor individual devices they own to track the
sensing data. This use case can stress test TailGuard by
generating heavier workload on these two clusters than the
other two. To create even more unbalanced load, instead of
evenly distributing the load on these two clusters®, we place
80% of such workload on the Server-room cluster and the rest
20% randomly assigned to the others. Moreover, queries of
this use case are considered class A with the most stringent
tail latency SLO and constitute 50% of the total queries.

Second, we consider a use case targeting at potential users
who may want to get an overall reading of the temperature
and humidity in all areas with low delay. For such use case,
a query fans out 4 tasks, each accessing a randomly selected
edge node in a separate cluster. This use case is considered
less time critical than the previous one and thus designated
class B. We assume that it takes up 40% of the total queries.

SNote that equipped with the highest performing nodes and closest to the
query handler, the Wet-lab cluster can hardly pose a performance bottleneck.
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Third, some users may require detailed, relatively longer
term sensing data records to be retrieved from all edge nodes
with a loose tail latency SLO. Hence, all the queries in this
use case have fanout 32 and are assigned as class C, and
10% of the total queries are assigned to this class.

SaS testbed Architecture: Figure 8 depicts the SaS
testbed architecture. The query handler runs in a PC and
consists of a query/task process module and an aggregator
module. Queuing takes place centrally in the query/task
process module with 32 sets of queuing buffers allocated, one
for each edge node. The testbed resources are managed by K3s
[49], which orchestrates the pod resource allocation in edge
nodes. All the communications between the query handler
and an edge node use keep-alive HTTP/1.1 connections.

A task arriving at an edge node retrieves one or multiple
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temperature and/or humidity records from the local database.
It has an equal probability of retrieving one to up to thirty-
day-worth of consecutive records starting from a random time
in the eighteen-month period. After retrieving the records, the
edge node sends the records to the aggregator module and an
edge-node-idle message to the process module. Upon receiving
the records for all the query tasks, the aggregator merges the
records for the query, which are finally sent to the user.

To further test if TailGuard can perform well with
inaccurate CDFs of unloaded task post-queuing times, we
let all 8 edge nodes in each cluster share the same CDF
based on the samples evenly collected from all edge nodes
in the cluster. Figure 9 (a) presents the CDFs for all four
clusters. First, we note that the CDFs (red and green lines)
for Faculty and GTA clusters are almost identical, as they use
the same model of Raspberry Pi’s and located in the same
building. With the same model of Raspberry Pi’s but located
in a different building and closer to the query handler, the
CDF for the Sever-room cluster concentrates more in the
lower post-queuing time region than the previous two. In
contrast, equipped with the highest performing Raspberry
Pi’s and co-located with the query handler, the Wet-lab
cluster offers significantly smaller overall post-queuing time
than the other three. More specifically, The mean, 95th,
and 99th task post queuing times are about 82/31/92/91
ms, 235/112/226/228 ms, and 300/136/306/304 ms for the
Server-room/Wet-lab/Faculty/GTA  clusters,  respectively,
making the system heterogeneous. With class A queries
highly concentrated on the Server-room cluster, we create a
highly heterogeneous scenario where the Server-room cluster
is the most heavily loaded, whereas the Wet-lab cluster is
highly under utilized. This is an ideal scenario to stress
test TailGuard. The reason is that a query from any class
that has a task using the Server-room cluster has a higher
probability to be the slowest one and hence a high chance
to determine the query response time. In this case, the query
fanout impact on the query performance is much reduced,
making TailGuard less effective with respective to the other
three queuing policies, which are fanout agnostic.

Results and Analysis: Figures 9 (b), (c) and (d) present the
results. We note that TailGuard, FIFO, PRIQ and T-EDFQ
can achieve the maximum load of about 48%, 38%, 36%
and 42%, respectively. This results in the performance gains
of TailGuard over FIFO, PRIQ and T-EDFQ to be 26.3%,
33.3% and 14.3%, respectively. As one can see, both the
performance gains and the maximum load differences in such
a highly heterogeneous system are in line with the simulated
ones (homogeneous systems).

The above stress test, together with the simulation, demon-
strates that TailGuard is effective to improve resource alloca-
tion performance for DU applications, even in a heterogeneous
system with highly unbalanced workload patterns, and varied
processing and communication delays. As the testbed grows
larger, one can expect that the performance gains of TailGuard
over the other three fanout-agnostic schemes will further



increase, because the average query fanout is likely to increase

with the number of edge nodes in the testbed.
All  simulation source codes can be

https://github.com/zjwang68/Tailguard.

found on

V. CONCLUSIONS

In this paper, we propose TailGuard for data-intensive user-
facing applications, aiming at maximizing resource utilization,
while providing tail latency SLO guarantee. TailGuard decou-
ples the upper query level design from the lower task level
design. First, at the query level, a decomposition technique
is developed to compute the task queuing deadline for a
query with the given tail latency SLO and fanout. Second,
at the task level, based on the task queuing deadline, a simple
earliest-deadline-first queuing policy is employed to manage
task queues to improve the resource utilization. TailGuard is
evaluated by simulation using three Tailbench workloads as
input. The results demonstrate that TailGuard can improve
resource utilization by up to 80% while meeting tail latency
SLOs, compared to the FIFO, PRIQ and T-EDFQ queuing
policies. TailGuard is also implemented and tested in a het-
erogeneous SaS testbed and the test results agree with the
simulated ones.

REFERENCES

[1

—

“Storage: How Tail Latency Impacts Customer-Facing Applications,”
https://www.computerweekly.com/opinion/Storage-How-tail-latency-
impacts-customer-facing-applications.

Y. Cheng and A. Anwar and X. Duan, “Analyzing Alibaba’s Co-located
Datacenter Workloads,” Proceedings of IEEE BIGDATA, 2018.

J. Dean and L. Barroso, “The Tail at Scale,” Communications of the
ACM, v56(12), 2013.

S. Cho, A. Carter, J. Ehrlich, and J. Jan, “Moolle: Fan-out Control for
Scalable Distributed Data Stores,”’Proceedings of IEEE ICDE, 2016.

R. Nishtala, et al., “Scaling Memcache at Facebook,” Proceedings of
USENIX NSDI, 2013.

S. Rosenkrantz et al., “JADE: Tail-Latency-SLO-Aware Job Scheduling
for Sensing-as-a-Service,” Proceedings of CloudAM, 2020.

S. Lalith at al.,“C3: Cutting Tail Latency in Cloud Data Stores via
Adaptive Replica Selection,” Proceeding of NSDI, 2015.

J. Li at al., “Tales of the Tail: Hardware, OS, and Application-level
Sources of Tail Latency,” Proceedings of ACM SoCC, 2014.

W. Reda et al., “Rein: Taming Tail Latency in Key-Value Stores via
Multiget Scheduling,” Proceedings of ACM Eurosys, 2017.

“Order Statistic,” https://en.wikipedia.org/wiki/Order_statistic.

M. Jeon et al., “Predictive Parallelization: Taming Tail Latencies in Web
Search,” Proceedings of ACM SIGIR, 2014.

A. Vulimiri et al., “Low Latency via Redundancy”, Proceedings of ACM
CoNEXT, 2013

D. Lo, David at. al., “Heracles: Improving Resource Efficiency at Scale,”
Proceedings of ACM ISCA, 2015.

C. Delimitrou and K. Christos, “Paragon: QoS-aware Scheduling for
Heterogeneous Datacenters,” ACM SIGPLAN Notices, v48(4), 2013.
H. Yang at al., “Bubble-Flux: Precise Online QoS Management for
Increased Utilization in Warehouse Scale Computers,” ACM SIGARCH
Computer Architecture News, v41(3), 127-144, 2020.

M. Haque at al., “Few-to-Many: Incremental Parallelism for Reducing
Tail Latency in Interactive Services,” ACM SIGPLAN Notices, v50(4),
2015.

Y. Xu et al., “Bobtail: Avoiding Long Tails in the Cloud,” Poceedings
of the USENIX NSDI, 2013.

C. Stewart, A. Chakrabarti and R. Griffith, “Zoolander: Efficiently
Meeting Very Strict, Low-Latency SLOs,” Proceedings of ICAC, 2013.
M. Tirmazi et al., “Borg: the Next Generation,” Proceedings of ACM
Eurosys, 2020.

[2]
[3]

[4

=

[5

=

[6]

[7

—

[8]
[91

[10]
[11]

[14]

[15]

[16]

[17]

909

[20]
[21]
[22]

[23]

[24]

[25]
[26]
[27]

[28]

[29]

[30]

[31]
[32]
[33]

[34]

[35]

[36]

[37]

[38]
[39]
[40]
[41]

[42]

[43]
[44]
[45]
[46]

[47]
[48]

[49]

J. Guo et al., “Who Limits the Resource Efficiency of My Datacenter: An
Analysis of Alibaba Datacenter Traces,”Proceedings of IWQoS, 2019.
W. Chen, J. Rao and X. Zhou, “Preemptive, Low Latency Datacenter
Scheduling via Lightweight Virtualization,” Proceedings of ATC, 2017.
P. Misra, et al., “Managing Tail Latency in Datacenter-Scale File
Systems Under Production Constraints,”Poceedings of Eurosys, 2019.
H. Kasture and D. Sanchez, “TailBench: A Benchmark Suite and
Evaluation Methodology for Latency-Critical Applications,” Proceedings
of IEEE IISWA, 2016.

C. Perera, A. Zaslavsky, and D. Georgakopoulos, “Sensing as a service
model for smart cities supported by Internet of Things,” Wiley Trans-
actions on Emerging Telecommunications Technologies, 2013.

A. Sriraman and T. Wenisch, “utune: Auto-tuned threading for OLDI
microservices, Proceedings of ISCA, 2017.

A. Sriraman and T. Wenisch, “uSuite: A Benchmark Suite for Microser-
vices,” Proceedings of IISWA, 2018.
K. Rzadca et al, “Autopilot:
Google, Proceedings of Eurosys, 2020.
A. Mirhosseini et al., “Q-Zilla: A Scheduling Framework and Core Mi-
croarchitecture for Tail-Tolerant Microservices,” Proceedings of HPCA,
2020.

Z. Wang, H. Li, Z. Li, X. Sun, J. Rao, H. Che, Hao and H. Jiang, "Pi-
geon: an Effective Distributed, Hierarchical Datacenter Job Scheduler,”
Proceedings of the ACM Symposium on Cloud Computing (SOCC),
2019.

A. Mirhosseini and T. Wenisch, “uSteal: a Theory-backed Framework
for Preemptive Work and Resource Stealing in Mixed-criticality Mi-
croservices,” Proceedings of ICS, 2021.

R. Nishtala et al., “Twig: Multi-Agent Task Management for Colocated
Latency-Critical Cloud Services,” Proceedings of HPCA, 2020.

I. Gog et al., “Firmanent: Fast, Centralized Cluster Scheduling at Scale,”
Proceedings of OSDI, 2016.

K. Suo et al., “Characterizing and Optimizing Hotspot Parallel Garbage
Collection on Multicore Systems,” Proceedings of EuroSys, 2018.

Y. He, S. Sameh, J. Larus and C. Yan, ” Zeta: Scheduling Interactive
Services with Partial Execution,” Proceedings of ACM Symposium on
Cloud Computing (SoCC), 2012.

B. Cai at al., “Less Provisioning: A Hybrid Resource Scaling Engine
for Long-running Services with Tail Latency Guarantees,” IEEE Trans-
actions on Cloud Computing, v10(3), pp1941-1957, 2020.

M. Haque et al., “Exploiting Heterogeneity for Tail Latency and Energy
Efficiency,” Proceedings of MICRO, 2017.

X. Chen et al., “Achieving Low Tail-latency and High Scalability for
Serializable Transactions in Edge Computing,” Proceedings of Eurosys,
2021.

Z. Zhang et al., “CRISP: Critical Path Analysis of Large-Scale Microser-
vice Architectures,” Proceeding of ATC,2022.

A. Wang et al., “Cake: Enabling High-level SLOs on Shared Storage
Systems,” Proceedings of SoCC, 2012.

T. Zhu et al., “PriorityMeister: Tail Latency QoS for Shared Networked
Storage,” Proceedings of SoCC, 2014.

T. Zhu, D. Berger and M. Harchol-Balter,“SNC-Meister: Admitting
More Tenants with Tail Latency SLOs, Proceedings of SoCC, 2016.

T. Zhu, D. Berger and M. Harchol-Balter,“WorloadCompactor: Reduc-
ing Datacenter Cost While Providing Tail Latency SLO Guarantees,”
Proceedings of SoCC, 2017.

N. Li et al., “PSLO: Enforcing the Xth Percentile Latency and Through-
put SLOs for Consolidated VM Storage,” Proceeding of EuroSys, 2016.
R. Kannan et al., “Grandslam: Guaranteeing SLAs for Jobs in Microser-
vices Execution Frameworks,” Proceedings of EuroSys, 2019.

Y. Zhang et al., “Sinan: ML-Based and QoS-Aware Resource Manage-
ment for Cloud Microservices,” Proceeding of ASPLOS, 2021.
“Poisson Distribution,” https://en.wikipedia.org/wiki/Poisson-
distribution.

“Pareto Distribution,” https://en.wikipedia.org/wiki/Pareto_distribution.
K. Ousterhout et al., “Sparrow: Distributed, Low Latency Scheduling,”
Proceedings of SOSP, 2013.

“Kubernetes (K3s),” https://k3s.io/.

Workload  Autoscaling  at



