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Abstract

The deep-sea precious red coral Hemicorallium laauense has long been overharvested in the North Pacific for the jewelry
and curio trades. An understanding of the population structure and connectivity of these octocorals has been limited due to
the difficulty of sampling and taxonomic challenges within the Family Coralliidae. We report on population genetics of 270
H. laauense individuals from 16 populations throughout the Main Hawaiian Islands (MHI) and the Northwestern Hawai-
ian Islands (NWHI) using nine microsatellite loci. Observed heterozygosity (0.69-0.85) was generally lower than expected
heterozygosity (0.71-0.85) except for the population at Twin Banks. Moderate F;g values (0.01-0.20) were present in nearly
half of the populations. Global G’ ¢y (0.166) and pairwise values were moderate to high (—0.003 to 0.489). G’ 4 values also
show moderate genetic structuring among populations within seamounts (0.12—0.22) for populations separated by as little as
3 km. DAPC indicated separation of the MHI from the NWHI, but two NWHI sites fall into the MHI clusters and samples
from Ka’ena Point (an MHI site) appear to form their own cluster. Membership assignments showed moderate admixture
between some locations, while three locations showed almost no admixture. Within-seamount admixture was surprisingly
limited for populations on the same seamount. A pattern of isolation by distance, with exchange primarily among adjacent
seamounts, was supported by MIGRATE results but not by Mantel tests. These results suggest a mixed pattern of connec-
tivity, with some distant locations well connected and others more isolated. The inconsistent connectivity of these corals is
likely amplified by their patchy distributions.
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Introduction

In many deep-sea hard substrate habitats, octocorals
are important ecosystem engineers (Genin et al. 1986;
Mortensen and Buhl-Mortensen 2004; Stocks 2004; Baco
2007; Rogers et al. 2007; Buhl-Mortensen et al. 2009;
Baker et al. 2012) that can form dense gardens and pro-
vide shelter and food for numerous other species (Stocks
2004; Buhl-Mortensen et al. 2009; Baillon et al. 2012;
Pham et al. 2015). This is especially true on seamounts in
the North Pacific, where octocorals were expected to be
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the only structure-forming corals (Guinotte et al. 2006;
Baco 2007; Baco et al. 2017; Kennedy et al. 2019), until
the recent discovery of scleractinian reefs in the Northwest
Hawaiian Islands (Baco et al. 2017). Seamounts can be iso-
lated habitats, separated from other hard substrate features
by distance, soft substrate habitats, currents, and/or water
mass changes that prevent larvae from dispersing between
features (Genin et al. 1989; Stocks and Hart 2007; Sautya
et al. 2011). Seamounts are also known to have very patchy
community structure with fragmented species distributions
(Lundsten et al. 2009; McClain et al. 2010; Williams et al.
2010; Bo et al. 2011; Sautya et al. 2011; Long and Baco
2014; Schlacher et al. 2014; Thresher et al. 2014; McClain
and Lundsten 2015; Morgan et al. 2015, 2019; Bell et al.
2016; Mejia-Mercado et al. 2019) which enhances the likeli-
hood of isolation of populations.

Deep-water octocorals often have life histories that
include slow growth and long lifespans (Andrews et al. 2002,
2009; Roark et al. 2005, 2009). These life history traits as
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well as their roles as critical habitat for other deep-sea spe-
cies (Stocks 2004; Buhl-Mortensen et al. 2009; Henderson
et al. 2020) have resulted in deep-sea octocoral communities
being designated as Vulnerable Marine Ecosystems (VMESs)
(Thompson et al. 2016) and as Ecologically or Biologically
Significant Areas (EBSAs) (CBD 2011). Seamounts as a
whole are also categorized as VMEs according to the UNGA
resolution 61/105 (UN General Assembly 2007) due to the
numerous species that are found on seamounts with simi-
larly vulnerable life history traits. Regulatory bodies have a
requirement to enact protection of VMEs and EBSAs within
their purview but having better knowledge of the connectiv-
ity of these populations would greatly improve management
efforts.

Connectivity for deep-sea octocorals is still not well
known, as only a handful of studies, discussed below, have
been published. Deep and mesophotic species have shown
significant genetic differentiation over small geographic
scales (5-20 km) and small depth changes (20-100 m)
(Quattrini et al. 2015; Pérez-Portela et al. 2016). In contrast
to these studies showing high differentiation, other studies
show higher connectivity between distant populations of
octocorals over scales of 50-300 km and depth gradients of
600 m (Wright et al. 2015; Holland et al. 2017; Yesson et al.
2018). With so few connectivity studies done for deep-water
and mesophotic octocorals, and with such disparate results,
it is difficult to derive a general pattern of genetic connectiv-
ity by distance and/or depth gradients.

A common and important structure-forming octocoral in
the North Pacific is Hemicorallium laauense Bayer 1956,
in the family Coralliidae (Parrish and Baco 2007; Parrish
et al. 2015). It can be found throughout the Pacific Ocean at
depths of 300-2000 m, (though most records are between
300 and 900 m) (OBIS 2021). The genera of the family Cor-
alliidae were recently revised and the genus Hemicorallium
was resurrected and reorganized, with several species that
were once in the genus Corallium moved into Hemicoral-
lium (Ardila et al. 2012; Figueroa and Baco 2014; Tu et al.
2016). These revisions also showed that the species Hemic-
orallium laauense is likely a complex of at least two species
(Tu et al. 2016). H. laauense is known to be slow growing,
long lived, slow maturing, and to have size-dependent fecun-
dity (Grigg 2002; Torrents et al. 2005; Roark et al. 2006).
Little data exist on the reproductive strategy for Hemicoral-
lium (Waller and Baco 2007). Corallium rubrum from the
Mediterranean, in the same family, are known to brood their
larvae and release developed planulae which are negatively
gravitaxic (Santangelo et al. 2003; Tsounis et al. 2006). In
contrast, confamilial Pleurocorallium secundum are periodic
spawners that are thought to release planktotrophic larvae
(Waller and Baco 2007).

Hemicorallium laauense, along with numerous other spe-
cies of Coralliidae, has been heavily harvested throughout
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the Hawaiian Archipelago and into the Emperor Seamount
Chain, for the jewelry and curio trades (Grigg 1976, 1993,
2002; Parrish and Baco 2007; Parrish et al. 2009; Bruckner
2016), which has likely had a significant toll on the genetic
diversity of these populations. The ability of the harvested
populations to recover is not well known, as the connectiv-
ity between coral gardens within the Hawaiian Archipel-
ago is not well defined. An earlier study found high levels
of genetic diversity for H. laauense across 12 sites in the
Hawaiian Archipelago, yet significant heterozygosity defi-
ciencies, suggesting inbreeding depression for many popu-
lations (Baco and Shank 2005). The study also found vary-
ing levels of genetic differentiation, with most differences
occurring between islands separated by 300-1000 km, but
differences were also found within the Makapu’u coral bed
less than 2 km apart (Baco and Shank 2005). Surprisingly,
some populations separated by nearly 1000 km did not show
differentiation, which may suggest episodic long-distance
migration between features.

Corallium rubrum, in the same family, is also known to
have population genetic structuring throughout the Mediter-
ranean, at scales as small as tens of meters within two popu-
lations off the Italian coast (Costantini et al. 2007; Ledoux
et al. 2010), and at larger scales between populations sepa-
rated by hundreds of kilometers (Ledoux et al. 2010; Cos-
tantini et al. 2011) and between basins of the Mediterranean
Sea (Costantini and Abbiati 2016). Corallium rubrum also
shows significant heterozygote deficiencies and a decrease
in genetic diversity with depth, which are likely due to their
brooding reproductive strategy (Costantini et al. 2007,
2011). Off the coast of Kochi, Japan Corallium japonicum
populations assessed by genome-wide single-nucleotide
polymorphisms showed local population structure and a
population break at 11 km of distance (Takata et al. 2021).

Studies of population genetic structure for shallow-water
marine species in the Hawaiian Archipelago may provide
additional insights into connectivity patterns of deeper spe-
cies on the same seamounts. Toonen et al. (2011) found four
barriers to dispersal that broke the Main Hawaiian Islands
(MHI) into three regions and the Northwestern Hawaiian
Islands (NWHI) into two regions of dispersal. Their study
also showed very few species showed a pattern of isola-
tion by distance (IBD), even though the stepping-stone geo-
graphic layout of the Archipelago was expected to enhance
IBD, and in fact distance was a poor predictor of connectiv-
ity (Toonen et al. 2011). There is also evidence that multi-
ple models of genetic structuring can be found within the
Archipelago, and that the type of structuring may not easily
be predicted by life histories (Selkoe et al. 2014). In gen-
eral, Selkoe et al. (2014) found regional structuring was the
most common pattern for the species examined, and IBD the
least common, which further supported the genetic breaks
found in Toonen et al. (2011). Most recently, biophysical
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modeling for dispersal across the Archipelago found most
features were likely to be dominated by self-recruitment, and
that most external recruitment would move propagules from
the MHI to the NWHI rather than in the reverse direction
as had been hoped (Wren et al. 2016). These models con-
trast with the genetic data in that they support IBD patterns.
However, the expected breaks in dispersal match well with
previous studies that separate the MHI from the NWHI and
separate the westernmost atolls in the NWHI from more
central features (Wren et al. 2016).

The challenges of delimiting the species within Hemicor-
allium as well as the lack of background population structure
data for H. laauense make predicting connectivity patterns
difficult, due to difficulty in defining any species bounda-
ries, which in turn can hamper effective management when
considering anthropogenic stressors. The previous stud-
ies on connectivity on shallow reef-associated species in
the Hawaiian Archipelago and on species and population
delimitation in members of the family Coralliidae highlight
the complex factors that may influence this species popula-
tions genetics. To gain clearer insights into the population
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connectivity of this deep-sea coral, we use microsatellites
from 16 populations of Hemicorallium laauense throughout
the Hawaiian Archipelago to test the hypothesis of limited
connectivity between seamounts. We test for (1) a pattern of
IBD with increasing distance between seamounts over large
spatial scales, (2) to see if instead there is a more regional
structuring between the MHI and the NWHI; and finally,
(3) we test for finer-scale genetic structuring within three
seamounts with multiple populations.

Methods
Sampling locations

H. laauense samples were collected by the submersibles
Pisces 1V and Pisces V during cruises onboard the RV
Ka’imikai-O-Kanaloa in 1998, 2000, 2002, 2003, 2004,
2016, and 2017 at a total of 16 locations ranging in depth
from 300 to 650 m (Fig. 1; Table 1). In general, target loca-
tions for this study have no history of coral harvesting with

160°0'W

Fig.1 Map of sites within the Hawaiian Archipelago. Land forms are shown in green, and the boundary of the Papahanaumokuakea Marine

National Monument is shown as a thin black line
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the exceptions of Keahole and Makapu’u Points. How-
ever, this species primarily occurs at these sites below the
maximum harvest depth (~400 m) and a comparison of the
size frequency distribution of individuals in Keahole and
Makapu’u (Baco et al. 2023) indicated that the coral size
distributions of the collected samples were similar to unhar-
vested beds. Therefore, these sites were retained.

It is possible temporal genetic change may have happened
over the ~ 20 years of sampling for this study (1998-2017).
However, as noted in the Introduction, coralliids are long
lived species (> 100 years) and very slow growing. It is also
very rare to observe locations with new recruitment of this
species (ARB pers. obs.). Thus, there are probably very few
specimens that were sampled that recruited during the time
frame of this study for these sites. Additionally, as most col-
lections within a single seamount happened within a span
of 1-2 years, if any change happened in the long sampling
period, it would primarily affect comparisons of samples
between seamounts.

Microsatellite preparation

Small fragments of each colony were collected using the
submersible manipulator arm and placed in individual num-
bered jars in an insulated biobox to prevent contamination
between samples. Pieces were also taken from colonies
that were sampled whole for other research projects. Sam-
ple sizes were generally comparable between populations
(15-20 individuals) though Ka’ena Point and Twin Banks
had fewer than ten samples (Table 1). Fragments were either
cryogenically preserved at —80 °C or in 100% non-dena-
tured ethanol. Coral polyps were dissected from the colony
and DNA extraction from 270 individuals was carried out
using a Qiagen DNeasy Blood and Tissue DNA Extraction
Kit. Modifications to the prescribed method included over-
night lysis with proteinase K and a reduction of the recom-
mended final elution buffer volume to 150 pL (instead of 200
pL) was used to increase final DNA concentrations.

Nine total loci were amplified for all samples, five pre-
viously described (A2, B1, C2, C12, and O3) (Baco et al.
2006) and four were newly developed (Table 2). To develop
new microsatellite loci, genomic libraries from two H.
laauense individuals were constructed following protocols
in the New England Biolabs Illumina Library Prep Kit and
sequenced using the Rapid Run paired end method on an
Illumina HiSeq 2500. Raw reads were then analyzed for
microsatellite sequences of at least six dinucleotide or trinu-
cleotide repeats using the PAL finder program (Castoe et al.
2012). 54 primer pairs were screened as possible candidates,
and out of those four new loci (N14, N27, N44, and N54)
were obtained.

PCR amplifications for each locus for a 25 pL final vol-
ume included 50 ng of DNA, 1X Promega GoTaq PCR

Buffer, I mM dNTPs, 1 mM of each primer, and 1.5 U Pro-
mega GoTlaq polymerase. Forward primers were labeled with
HEX fluorescent dye. PCR protocols for each primer pair are
available in Table 2. PCR products were sent to the Univer-
sity of Florida Interdisciplinary Center for Biotechnology
Research for genotyping using an Agilent 3730 Analyzer
with ROX 500 ladder.

Microsatellite analysis

Fragment length was analyzed using the R package ‘Frag-
man’ with default scoring settings for peak calls (Covarru-
bias-Pazaran et al. 2016) in R version 3.5.2 (R Core Team
2018). All calls were then checked by eye for stutter peaks or
amplification of more than two alleles. Null allele frequen-
cies, genotyping error, linkage disequilibrium, and number
of migrants were analyzed using Genepop 4.2 online (Ray-
mond and Rousset 1995; Rousset 2008).

To test the ability of these loci to find population differ-
entiation, a power analysis was run. First, effective popula-
tion size (N,) was estimated using the molecular coancestry
method from NeEstimator v2 (Do et al. 2014). This method
was used as it is less biased by population substructure, age
structure, or small sample sizes (Luikart et al. 2010). The
first two are unknown for this species and some locations
have relatively small sample sizes (< 20 individuals). The
power analysis was run using POWSIM v4.1 (Ryman and
Palm 2006) with an N, of 60, based on results from NeEsti-
mator, and 1000 replications.

Summary statistics for populations and loci were calcu-
lated using the R packages ‘adegenet’” (Jombart 2008), ‘Pop-
GenReport” (Adamack and Gruber 2014), and the ‘Shan-
nonGen’ function (Zahl 1977; Konopirski 2020). Tests for
per-locus, per-population Hardy—Weinberg Equilibrium
(HWE) were run using ‘pegas’ (Paradis 2010). Population
pairwise G’ g7 values and per-locus G’ g1 values were calcu-
lated with ‘mmod’ (Winter 2012). G’y is preferable to Fgp
values for highly variable loci as Fgr is unlikely to ever reach
its maximum value of 1.0 for more than two alleles with high
heterozygosity, while G’y is standardized by the maximal
heterozygosity of the locus (Hedrick 2005), which allows
G’ gr to reach 1.0 in differentiated populations.

Population differentiation by locations was analyzed using
Analysis of Molecular Variance (AMOVA) in the package
‘poppr’ (Kamvar et al. 2014). Clusters were assigned using
find.cluster from ‘adegenet’ based on the BIC criterion and
using the Ward method. Discriminant analysis (DAPC) and
admixture were analyzed in ‘adegenet’ both by site and by
cluster. These methods are better suited than STRUCTURE
for this dataset as they are not affected by deviations from
Hardy—Weinberg equilibrium or by linkage disequilibrium
(Jombart et al. 2010). IBD was calculated through mantel
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tests in ‘adegenet’ and linear regressions from the R ‘stats’
package.

Finally, migration models were analyzed using
MIGRATE v. 4.4.4 with constant mutation rate, a Brown-
ian motion stepwise mutation model, estimated migration
rates between sites, and 5,000,000 Markov chain steps with a
burn in of 100,000 steps. The population structures tested in

Table 3 Results of migration models analyzed using MIGRATE

18 different models can be seen in Table 3, which included
models based on predicted connectivity breaks from Toonen
et al. (2011) and Selkoe et al. (2014) as well as a single pop-
ulation model and a 16-population model. The best migra-
tion model was chosen using the Bayes Factor comparison
of the thermodynamic integration likelihood (Beerli 2006;

Beerli and Palczewski 2010).

Model Log(mL) LBF Rank Locations in population Migration model

1pop -2717,556.39 —234,081.20 19 All All sites are one population

3pop east to west plus —-139,731.81 -96,256.62 18 Breaks in between Raita Bank and ~ All populations send larvae to the

Twin Banks west

3pop west to east circle -137,117.32 -93,642.13 17 Migrants move in a stepping stone
from west to east, then circle
back

3pop east to west -134,611.38 -91,136.19 16 Migrants move between adjacent
populations from east to west

3pop west to east plus —132,988.21 -89,513.02 15 All populations send larvae to the
east

3pop west to east -132,456.43 —-88,981.24 14 Migrants move between adjacent
populations from west to east

3pop east to west circle —131,517.23  -88,042.04 13 Migrants move in a stepping stone
from east to west, then circle
back

3pop two-way stepping stone  —125,702.35  —82,227.16 12 Migrants move between adjacent
populations in either direction

3pop all-ways -123,466.22 -79,991.03 11 All populations have migration
between each other

Spop east to west -116,158.20 -72,683.01 10 Breaks at Raita Bank, Twin Banks, = Migrants move between adjacent

Kaua’i, and Makapu’u Point populations from east to west

Spop west to east -112,787.97 -69,312.78 9 Migrants move between adjacent
populations from west to east

Spop two-way stepping stone  —108,467.49  -64,992.30 8 Migrants move between adjacent
populations in either direction

Spop all-ways —103,998.82  -60,523.63 7 All populations have migration
between each other

16pop west to east —47,687.87 -4212.68 6 Each seamount is one population Migrants move between adjacent
populations from west to east

16pop east to west -47.414.74 -3939.55 5 Migrants move between adjacent
populations from east to west

16pop west to east circle —44,223.31 -748.12 4 Migrants move in a stepping stone
from west to east, then circle
back

16pop all-ways —43,682.59 -207.40 3 All populations have migration
between each other

16pop east to west circle —43,654.65 -179.46 2 Migrants move in a stepping stone
from east to west, then circle
back

16pop two-way stepping stone ~ —43,475.19 0.00 1 Migrants move between adjacent

populations in either direction

LBF Log Bayes Factor
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Results
Summary statistics and locus evaluation

All nine loci were highly variable with 14-74 alleles per
locus (Table 2). Observed heterozygosity (H,) ranged
from 0.69 to 0.92, which was much lower than expected
heterozygosity (H,) (0.68-0.98) for all loci except N44
(Table 2). Allelic richness by site and Zahl’s estimated
diversity were both high for all locations, including those
with low sample sizes (Table 1). Genotypic diversity was
also high between all individuals as no multilocus geno-
type was shared between any corals, indicating no asexual
reproduction and no clonal individuals within H. laauense
were sampled at any site on these seamounts (Table 1).
Most locations had private alleles except for Brooks Banks
NW and Twin Banks, but overall, few private alleles were
found for any location, with a maximum of 6 at each of
East and West Northampton (Table 1). Estimated N, values
were variable between sites: five locations had an infinite
population size, four had an N, near 65, five sites were
near 20, and Ka’ena Pt. and Brooks Banks NW had an
estimated N, of 6.9 and 10, respectively (Table 1).

Null allele frequencies above 0.1 were found for most
populations for two loci, C12 and N14; thus, those two
loci were removed from subsequent analyses (Supplemen-
tary Table 1). Linkage disequilibrium results were only
significant in three of the sixteen populations and only
between B1 and O3, B1 and A2, and A2 and O3; thus, no
additional loci were removed (Supplementary Table 2).
Power analysis for the final seven loci showed a strong
ability to detect population structure at a p-value <0.05
(X2 =1.000, Fisher’s exact test=1.000).

Global tests showed no locus to be in HWE, which is
likely related to the low H, compared to H, found for most
loci (Table 2). When considering each population separately,
deviations from HWE were found in most populations for
1-3 loci, but no one locus was out of HWE for most of the
populations, and no population deviated from HWE across
all loci (Supplementary Fig. 1). Sites did not show as large
of a difference between H, and H, as was seen for individual
loci. Brooks Banks NW, Keahole Point, and Pohue Bay had
the largest differences of 0.13, 0.14, and 0.11, respectively
(Table 1). Fig values by site were generally low to moderate
(range 0.01-0.17) with the highest values also at Brooks
Banks NW, Pohue Bay, and Keahole Point (Table 1).

Genetic structure

The effective number of migrants estimated from private
alleles by Genepop was on average 5.17 (range 1.96-7.84).

@ Springer

AMOVA attributed the most genetic variation to within
individuals (88.2%), but showed significant genetic dif-
ferentiation between sites, and showed that variation
between individuals within sites was significantly higher
than expected (Fig. 2; Tables 2, 3, 4 and 5).

G’ gy values indicated moderate but significant popu-
lation differentiation (Global=0.166, Range 0.0-0.489,
p=0.01), with the greatest differences often occurring in
pairwise comparisons between other populations and the
Ka’ena Point or Kaua’i populations (0.15-0.49) (Table 4).
Twin Banks also had G’ gy values greater than 0.2 in 7 of
15 pairwise comparisons and NW Laysan in 6 pairwise
comparisons. Interestingly, for discrete populations within
a single seamount, G’ ¢ values were still moderate to high;
between the three Brooks Banks populations the average
G’gr was 0.139+0.009, between Pohue Bay and Keahole
Point on the Island of Hawai’i G’g was 0.116, and between
Makapu’u Point and Ka’ena Point on the Island of O’ahu
G’y was 0.223.

The visual representation of all populations by site using
DAPC showed Ka’ena Point to be a strong outlier from all
other populations (Supplementary Fig. 2). This could be
due to extreme inbreeding but could also suggest a cryptic
species was sampled within that location. After removing
that population, DAPC showed overlap between many loca-
tions with a horseshoe pattern to the distribution of popula-
tions (Fig. 3). A general clustering of the MHI can be seen
in the upper left of the ordination; however, Bank 8 and
Twin Banks from the NWHI also fall into this cluster rather
than with the other NWHI. The remaining NWHI locations
comprise the lower ordination sectors, with East and West
Northampton forming a sub-cluster at the tail end of the
horseshoe.

Admixture charts for a 16-population model (Fig. 4A)
showed that most individuals had a larger probability of
belonging to their own population than to any other. Inter-
estingly, this is still true for populations within sites on
a single seamount, as individuals from the southeast and
southwest sides of Brooks Banks showed little admixture;
while, individuals from the northwest side showed high-
est levels of admixture with Bank 8 rather than the other
two sides of Brooks Banks. On the Island of Hawai’i, Kea-
hole Point also showed much less admixture than expected
with Pohue Bay, while Pohue Bay showed similar levels of
admixture with Keahole Point and Kaua’i (Fig. 4B). Simi-
larly, Makapu’u and Ka’ena on the Island of O’ahu did not
show any admixture.

The lowest BIC for k-means clustering, indicated an opti-
mum of five clusters. These clusters did not show a clear
geographic pattern. The DAPC scatterplot (Supplementary
Fig. 3) shows clusters one and two to be most similar to each
other, and clusters three and five group together, while clus-
ter 4 appears to be the most different. The admixture chart
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(Supplementary Fig. 4A) shows all clusters can be found at
most locations except for Northwest Laysan Island, Kaua’i,
and Pohue Bay, Twin Banks, and Ka’ena Pt (Supplementary
Fig. 4B). Further discussion on k-means clustering results
can be found in the supplementary material.

Though the site-based DAPC shows a slight geographic
trend (Fig. 3), tests for patterns of IBD showed mixed results
(Fig. 4). The Mantel test and linear regression showed no
evidence of IBD (R*>= —0.005, p=0.28) (Fig. 5A, B). Man-
tel tests and linear regression were conducted to look for iso-
lation by depth as well, but no evidence was seen for genetic
structuring by depth (R?>=—0.055, p=0.54) (Fig. 5C, D).

Of the 18 migration models tested using MIGRATE, the
models with 16 population were the strongest models. In
contrast to the Mantel test results, among the MIGRATE
models, the one with gene flow moving in a two-way step-
ping-stone pattern between each adjacent seamount had
the best likelihood value. (Table 3; Fig. 6, Supplementary
Table 1). Migration rates between features were generally

even and low to moderate (M =0.55-2.26) while the muta-
tion-scaled effective population size varied widely between
locations (© =2.85-41.78).

Discussion
Genetic diversity

This study provides new insights into the genetic diver-
sity and population connectivity of the precious Red Coral
Hemicorallium laauense throughout a broad expanse of the
Hawaiian Archipelago. Data from 7 microsatellite loci from
16 locations indicated very high allelic richness that was
comparable across the Archipelago, even for the sites with
low sample sizes. H. laauense has very high allelic diversity
(14-74 alleles per locus) compared to other mesophotic and
deep-sea octocoral species. For example, Funiculina quad-
rangularis had 3—40 alleles per locus (Wright et al. 2015),
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Table 4 Pairwise G’y values across 16 populations
Site B8 Pio WN EN NWL Raita BBNW BBSE BBSW TB Kauvai Kaena MK KP PB
Pio 0.05
WN 0.07  0.08
EN 0.11 0.05 0.01
NWL 0.14 0.11 020 0.09
Raita 0.01 0.08 0.06 010 0.12
BBNW 003 0.15 015 020 0.27 0.14
BBSE 002 013 013 0.15 0.10 0.09 0.15
BBSW 0.11 0.05 019 020 0.19 0.14 0.15 0.13
TB 000 0.13 028 022 0.20 0.13 0.01 0.15 0.21

Kauai 028 034 034 028 0.20 0.23 0.41
Kaena 030 036 036 026 0.20 0.24 0.49

MK 001 016 012 015 0.20 0.08 0.17
KP 001 0.06 017 0.19 0.18 0.10 0.09
PB 008 015 017 0.14 0.04 0.13 0.16
CS 006 0.09 015 0.14 0.17 0.12 0.13

0.28 0.46 0.31

0.21 0.38 028 0.23

0.06 0.18 0.10 0.15 0.22

0.13 0.06 0.10 0.32 0.36 0.11

0.13 0.14 021 0.16 0.28 0.10 0.12

0.06 0.11 0.12  0.24 0.27 0.04 0.09 0.14

B8 Bank 8, Pio Pioneer Bank, WN West Northampton, EN East Northampton, NWL Northwest Laysan, BBNW Brooks Banks Northwest, BBSE
Brooks Banks Southeast, BBSW Brooks Banks Southwest, 7B Twin Banks, MK Mapapu’u, KP Keahole Pointe, and PB Pohue Bay

Table 5 AMOVA results

Sample type Df Sum of squares Mean of squares
Between site 15 127.91 8.53
Between samples within site 254 1472.08 5.80
Within samples 270 1269.38 4.70
Total 539 2869.38 5.32
Components of covariance Sigma % P-value
Variations between site 0.08 1.53 0.01
Variations between samples within site 0.55 10.26 0.01
Variations within samples 4.70 88.20 0.01
Total variations 5.33 100.00

Phi stats Value

Phi-samples-total 0.12

Phi-samples-site 0.10

Phi-site-total 0.02

Callogorgia delta and C. americana had 3-22 alleles per
locus (Quattrini et al. 2015), and Narella versluysi had 5-24
alleles per locus (Yesson et al. 2018). High genetic diversity
may be a common character of the coralliids, as populations
within C. rubrum showed similar levels of allelic diversity
(767 alleles per locus) (Ledoux et al. 2010). High allelic
diversity also led to a higher average H, (0.68-0.98) in H.
laauense compared to most other octocoral species ((Euni-
cella verrucosa: 0.367-0.459 and Alcyonium digitatum:
0.594-0.668 (Holland et al. 2017), and Eunicella singula-
ris: 0.28-0.57 (Costantini and Abbiati 2016)), except for C.
rubrum (0.62-0.82) (Ledoux et al. 2010) and Paramuricea

@ Springer

clavata (0.56-0.81) (Mokhtar-Jamai et al. 2011). The high
number of alleles could suggest a higher mutation rate for
H. laauense than typically seen in deep-sea corals, or a large
population size that provides exceptionally high genetic
diversity (Hague and Routman 2016). However, large pop-
ulation sizes are not supported by NeEstimator results for
most populations (Table 1). With H. laauense being long
lived but slow growing, and possibly continuous spawn-
ers, there are likely many overlapping generations of cor-
als within any seamount population that are difficult to tell
apart by size alone. Long life spans and multiple generations
within a population may allow for high genetic diversity
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(Ellner and Hairston 1994; Lippe et al. 2006), and longevity
could also allow for greater accumulation of neutral muta-
tions, which would also increase allelic diversity (Klekowski
and Godfrey 1989).

H, was generally higher than H, for most sites, with the
largest differences at Brooks Banks NW, Pohue Bay, and
Keahole Point. Pohue Bay and Keahole Point also showed
higher Fg values (F;g=0.17). Brooks Banks NW shows the
second highest level of heterozygote deficiency and had the
highest Fig value (F;g=0.20). The two other Brooks Banks
locations also have moderate Fg values (F;g=0.13), thus,
populations within this seamount may have a higher level
of self-recruitment than other locations. Higher F;g values
at both locations on the Island of Hawai’i may also indicate
higher levels of inbreeding. High F;g values combined with
higher G’ ¢ values among sites within a single seamount
suggest a lack of external sources for propagules for each
population, even from within the same seamount, which

may lead to inbreeding. The alternative that high Fiq val-
ues at these locations would be due to the Wahlund effect,
of combining data from different populations (Wahlund
1928), seems unlikely as most samples were collected from
a relatively small area. The exception is the high Fig value
at Pioneer, which may indicate further population structur-
ing within the site. Two groups of samples from this site are
separated by ~ 1 km, but one group only included 4 indi-
viduals which precluded separating samples into 2 popu-
lations for analyses. The range of F;g values found in H.
laauense are similar to a preliminary study based on three
loci (Baco and Shank 2005) and to other octocorals showing
low to moderate inbreeding including Eunicella verrucosa
(Fig=-0.20to 0.14) (Holland et al. 2017) and Paramuricea
clavata (Fig=—-0.02 to 0.10) (Pérez-Portela et al. 2016) and
slightly lower than values for C. rubrum (Fig=0.20-0.47),
which has high local recruitment. Fig values for octocor-
als showing almost no inbreeding are generally much lower
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(Funiculina quadrangularis (Fig= —0.004 to 0.045) (Wright
et al. 2015) and Alcyonium digitatum (Fig=—0.001 to 0.068)
(Holland et al. 2017)).

Genetic structuring within a seamount

Multiple discrete populations were sampled on different
sides for each of three seamounts: Hawai’i, O’ahu, and
Brooks Banks. Pairwise G’ ¢y values for the different popu-
lations within each feature were similar to the global G’ g7
and at the higher end of the range of pairwise values. The
pairwise comparison of Ka’ena Point to Makapu’u Point
on O’ahu (113 km distance), had the highest for within
feature G’gr comparisons (G’gp=0.22). The structure
between these populations is possibly enhanced by the
likelihood of a cryptic species at Ka’ena Point as shown

plot of G’ genetic distance versus pairwise depth differences among
populations split into depth bins every 50 m. D Histogram of random
tests for correlations between G’gr and depth bins with the original
value shown by the black diamond

in DAPC and admixture results (Fig. 4A, Supplementary
Fig. 2). While Ka’ena individuals are all assigned to their
own population, Makapu’u has some with mixed assign-
ments to nearby Cross Seamount (Fig. 4B). Bottom cur-
rents at some locations could have a strong effect on the
larval dispersal distances for this species. Makapu’u Point
was dominated by a moderate (13.6 cm/s) north—south
flow over the course of a year (Parrish and Oliver 2020),
which could be limiting gene flow to this location, mak-
ing local recruitment more likely. Unless larvae are fur-
ther advected to the east or west during dispersal, they
would be pushed off the seamount into much deeper water.
Parrish and Oliver (2020) also suggested that Makapu’u
Point was not an optimal settling location for H. laauense
because another coralliid species, P. secundum, is far more
abundant at this site. P. secundum may be able to better
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Fig.6 Depiction of direction and scale of estimated migrations from
the two-way stepping-stone model determined by MIGRATE. B8
Bank 8, Pio Pioneer Bank, WN West Northampton, EN East North-

handle stronger currents due to its more robust branching
morphology. H. laauense also has different preferences for
slope and bottom relief (Parrish 2007). If Makapu’u Point
is a marginal habitat for H. laauense, then self- recruit-
ment it more likely to dominate in that area (Holland et al.
2017).

Keahole Point and Pohue Bay in the Island of Hawai’i
are separated by 99 km and had a pairwise G’gr value of
0.12. These two populations cluster quite closely together
in the DAPC (Fig. 3) and show moderate admixture
between each other (Fig. 4A, B). Keahole Point has also
had bottom current measurements and showed low flow
(average 4.6 cm/s) with northward pulses (Parrish and
Oliver 2020). Low flow could cause larvae to be mostly
retained within Keahole Point or trapped between Hawai’i
and Maui Islands if they are advected north and off the
seamount (Qiu et al. 1997). Four colonies from Pohue Bay
were assigned to Keahole Point, which suggests that there
is some recruitment towards the south even though the
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165"W

160°W

ampton, NWL Northwest Laysan, BBNW Brooks Banks Northwest,
BBSE Brooks Banks Southeast, BBSW Brooks Banks Southwest, 7B
Twin Banks, MK Mapapu’u, KP Keahole Pointe, and PB Pohue Bay

dominant bottom current at Keahole Point is northward
(Fig. 4B).

The structuring between the three populations on Brooks
Banks is the most surprising as they are separated by only
3-8 km of distance yet have moderate pairwise G’ g values
(G’4r=0.15, 0.15, and 0.13). The three populations cluster
in the same area of the DAPC (Fig. 3), but Brooks Banks
NW seems more similar to populations of the MHI while
the southern Brooks Banks cluster more closely to Raita
Bank of the NWHI. The three populations show some of the
highest levels of admixture of any feature (Fig. 4A), espe-
cially Brooks Banks NW which has individuals that were
assigned to BB SW, Bank 8, Keahole Point, and Cross Sea-
mount (Fig. 4B). Brooks Banks SE and SW each have one
coral colony that may have originated from Brooks Banks
NW. Brooks Banks is not an emergent feature, but the sum-
mit does reach less than 100 m depth, which could act as
a barrier to deep-sea larval dispersal among sides. There
are also some depth differences among the populations on



Marine Biology (2023) 170:150

Page150f21 150

Brooks Banks, which could also be limiting larval dispersal
between the populations (e.g., Cho and Shank 2010; Miller
et al. 2011; Quattrini et al. 2015; Miller and Gunasekera
2017). The depth range of Brooks Banks NW sampling
(417-442 m) is non-overlapping with the depth range of
Brooks SE (454-462 m) and Brooks SW (448-590 m)
(Table 1).

Similarly on Hawai’i, colonies collected from Pohue Bay
(420-525 m) were deeper than Keahole Point (385-410 m).
Again, the shallower location shows more gene flow than
the deeper location, which may indicate that larvae from H.
laauense are not particularly buoyant, not effective swim-
mers, or are more gravitaxic, similar to C. rubrum (Santan-
gelo et al. 2003). Depth may contribute to differentiation
among populations; however, Makapu’u Point and Ka’ena
Point have fully overlapping depth distributions, and no
isolation by depth was found overall for samples from the
Archipelago (Fig. 5C, D). Thus, depth does not appear to be
a consistent driver of differences between populations over
broader scales.

Fine-scale population differences have been seen in other
temperate and deep-sea coral species. H. laauense showed a
significant Rgr value (0.170) between two populations less
than 2 km apart on Makapu’u Point (Baco and Shank 2005)
P. clavata from throughout the Mediterranean has shown
genetic differentiation at scales as small as 5 km for popu-
lations within canyons (Pérez-Portela et al. 2016) and off
islands and continental shelves (Mokhtar-Jamai et al. 2011).
Callogorgia delta showed population structure at locations
just 15 km apart in the Gulf of Mexico, both when those
locations were separated by a large depth difference (189 m)
and small depth differences (14 m). Recently, the deep-sea
scleractinian Solensosmilia variabilis was also found to
have significant population structuring within a few hun-
dred meters on two seamounts in the Tasmanian Sea (Miller
and Gunasekera 2017). These corals may rely upon asexual
reproduction more heavily than most octocoral species,
which would contribute to differentiation at such a small
scale (Miller and Gunasekera 2017).

Genetic structuring among seamounts

When comparing genetic structuring between seamounts,
G’gr values indicate low to moderate levels of population
differentiation, with a wide range of values in pairwise com-
parisons (G’ gr=0.0-0.489) (Table 3). The results for tests
of IBD were inconsistent, with Mantel tests not following
a pattern of IBD, but MIGRATE contrastingly showing
highest exchange among neighboring populations (Supple-
mental Table 3; Fig. 6). Results from MIGRATE are also
very similar to dispersal models in shallow-water Hawaiian
species showing greater dispersal to the northwest overall,
but high levels of self-recruitment that would typically lead

to IBD patterns. However, a lack of an IBD pattern in H.
laauense matches with evidence from other studies in the
Archipelago that show IBD is not a dominant structuring
mechanism despite the stepping-stone geographic layout
of the seamounts (Toonen et al. 2011; Selkoe et al. 2014).
Another consideration for IBD patterns might be whether
precious corals that have experienced over-harvesting from
tangle-net trawling, might have resulted in any seamount
populations being lost, which would heavily affect stepping-
stone patterns and between-seamount population structuring.
This study focused on sites that are expected to have nearly
pristine populations, however, with little to no history of
trawl harvests; thus, it is unlikely any stepping-stone popu-
lations have been lost. The lack of an IBD pattern despite
significant genetic differences among most pairwise popu-
lation comparisons may be tied to the high allelic diversity
of this species, or potentially to recruitment processes that
cause a sweepstakes effect on reproductive success and can
lead to "genetic patchiness" (Hedgecock et al. 2007). This
then can lead to a chaotic population structure, typically
seen as genetic structure at small scales in populations that
show low differentiation at larger scales (Johnson and Black
1982; Hedgecock and Pudovkin 2011). This chaotic pattern
of genetic structure at multiple spatial scales is more similar
to shallow-water species in the Archipelago (Rivera et al.
2011; Skillings et al. 2011; Conception et al. 2014; Selkoe
et al. 2014). Chaotic patterns may be caused by sweepstakes
recruitment (Hedgecock et al. 2007) but are also often found
when population genetic structure is more strongly tied to
aspects of the environment, or seascape, than they are to
geographic distance (Selkoe et al. 2008; Iannucci et al.
2020). A seascape analysis of this species may reveal new
insights into these processes.

Kaua’i and Ka’ena Point show the strongest differen-
tiation from most other locations, and these features are
typically highlighted as areas of breaks in dispersal and
connectivity for many marine species along the Hawaiian
Archipelago (Treml et al. 2008; Toonen et al. 2011; Selkoe
et al. 2014; Wren et al. 2016). Kaua’i has also been high-
lighted as having very high expected self-recruitment in bio-
physical models of connectivity compared to many other
features in the Archipelago (Wren et al. 2016). Interestingly,
in this study, Kaua’i and Ka’ena Point do not have heterozy-
gote deficiencies, nor do they have high F;g values, which
suggests these locations are not solely self-recruiting. Based
on three microsatellite loci, previous work on H. laauense
showed high F;g values and heterozygote deficiencies for
one locus for corals from Ka’ena Point, but not for other loci
nor at Kaua’i for any locus. Rg values were significant and
as high as 0.14 for comparing Kaua’i to several other sites.
Fewer comparisons to Ka’ena were significant, but the range
was higher (up to 0.21) (Baco and Shank 2005). Combined
with Ka’ena Point’s outlier position in the DAPC, these
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corals are more likely a recently diverged cryptic species
of Hemicorallium rather than an isolated population. The
high variability of allele frequencies within each feature may
deflate pairwise G’ gy values (Willis et al. 2017). While G’ g
allows for greater sensitivity in highly heterozygous popula-
tions because it is standardized by the maximal heterozy-
gosity (Hedrick 2005), the extreme allelic diversity within
populations of H. laauense could still make comparisons
based on allele frequencies less robust. AMOVA showed
the variation within locations was significantly higher than
expected (Fig. 2), and that variation within each site could
confound tests for genetic structuring between features by
increasing noise within the data.

DAPC also suggests a more complicated relationship
between populations that implies processes other than sim-
ply geographic distance influence the genetic structure of
this species. Once the outlier of Ka’ena Point is removed,
the ordination plot shows a clear horseshoe pattern with
East and West Northampton at one end, and the MHI and
Twin Banks at the other (Fig. 3). While discriminant analy-
ses are not known to have a relationship between gradients
and horseshoe patterns as PCA and NMDS plots do (Podani
and Miklds 2002), this horseshoe pattern was also demon-
strated for simulated stepping-stone dispersal data (Jombart
et al. 2010) and could support the stepping-stone pattern
supported by the MIGRATE model. There does appear to
be a smaller-scale geographic trend in differentiation, where
closer sites are more similar in the DAPC plot, apart from
Bank 8 and Twin Banks of the NWHI clustering within the
MHTI sites.

For the admixture analysis by site, individuals are typi-
cally assigned to their original location (Fig. 4A). Northwest
Laysan Island and Brooks Banks NW show the highest level
of admixture for the NWHI, while Keahole Point and Pohue
Bay show the highest for the MHI. Admixture between other
neighboring locations is less than would be expected from
the lower G’ gy values. The Northampton locations have
very little overlap and Raita Bank also shows little admix-
ture. Interestingly, some locations that have admixture have
individuals assigned to more distant populations rather than
adjacent ones: Bank 8 shares allele frequencies mostly with
Brooks Banks NW, Kaua’i shows admixture with Pohue
Bay, and the 3 Brooks Banks locations show little admixture
with each other. For most sites, only 2 — 4 individuals are
assigned to a location they were not sampled from (Fig. 4B).
Pohue Bay is the only location with five individuals reas-
signed to a new location, four of those going to nearby Kea-
hole Point.

Conservation considerations

The life history and habitat role of H. laauense make it
a VME indicator species, and it should be protected and
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conserved according to the resolutions enacted by the
United Nations General Assembly (UN General Assembly
2005, 2007, 2010). Populations within the MHI are less
protected, and precious coral harvesting is still permitted
within Hawaiian waters, though the expensive gear required
for selective harvesting of precious corals has halted harvests
in this region (Bruckner 2016). The distributional range of
H. laauense also extends into high seas areas that are still
experiencing active trawl fisheries. The designation of pre-
cious corals as VME species should provide greater pro-
tections to these coral beds from human impacts, including
commercial harvests. Loss of individuals within a feature
could then cause a sharp loss in local genetic diversity as
rare alleles are lost, and the most likely MIGRATE model
suggests limited external locations for new propagules as
only adjacent features showed migration. Some populations
of H. laauense may already have inbreeding depression as
shown by moderate F;g and low N, values (i.e., Keahole
Point and Brooks Banks NW (Table 1)), and these popula-
tions would be even more susceptible to further isolation
should adjacent populations be reduced.

Hemicorallium seems to require consistent environments
with low variability in temperature and salinity (Parrish
and Oliver 2020). Despite many populations being pro-
tected from direct human impacts, climate change could
affect these sensitive populations as even deep waters
(200-1000 m) continue to warm (Brito-Morales et al. 2020;
Morato et al. 2020) with changes at the depth ranges of
Hemicorallium in the Pacific of up to 3.63 °C (Sweetman
et al 2017). Small thermal differences could limit successful
recruitment of H. laauense to previously suitable locations.
Acidification is also expected to cause changes in ocean pH,
including at bathyal depths of 200-3000 m (Sweetman et al.
2017), and could cause increased dissolution of coral skel-
etons, especially as high-magnesium calcite, the main form
of calcium carbonate in Coralliidae (Weinbauer et al. 2000),
is more readily dissolved than aragonite (Morse et al. 2006).
Acidification could also affect larval transport post spawning
(Byrne 2011). Decreases in oxygen are also expected to be
greatest between 200 and 700 m depth (Levin and Bris 2015;
Sweetman et al 2017), which is the prime depth range for
these corals. While the oxygen tolerance of Hemicorallium
laauense specifically is not known, other corals have been
shown to be sensitive to lower oxygen levels (Vaquer-Sunyer
and Duarte 2008).

Conclusions

H. laauense is widely distributed in the Hawaiian Archi-
pelago, but little information is known about the reproduc-
tive strategy, fecundity, settlement strategy, or true habitat
suitability despite its long history as a fisheries species in
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Hawaiian waters. From the microsatellite data used in this
study, it appears that most sites have moderate population
differentiation, some inbreeding, and low migration between
them, but occasional connectivity at long distances suggests
a more chaotic population structure caused by episodic
recruitment. Low migration rates and overlapping genera-
tions could also be limiting genetic drift within each popula-
tion, masking true population structure, and causing inflated
connectivity estimates. While the markers used in this study
were shown to have statistical power to find differences in
populations, new loci may be required to fully describe pop-
ulation connectivity for H. laauense in the Hawaiian Archi-
pelago. Nevertheless, this is an important VME species that
should be protected from further direct human impacts so
that populations may be resilient enough to handle indirect
impacts from climate change and ocean acidification.
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