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Wetland hydrologic connections to downstream waters influence stream
water quality. However, no systematic approach for characterizing

this connectivity exists. Here using physical principles, we categorized
conterminous US freshwater wetlands into four hydrologic connectivity
classes based on stream contact and flowpath depth to the nearest

stream: riparian, non-riparian shallow, non-riparian mid-depth and non-
riparian deep. These classes were heterogeneously distributed over the
conterminous United States; for example, riparian dominated the south-
eastern and Gulf coasts, while non-riparian deep dominated the Upper
Midwest and High Plains. Analysis of a national stream dataset indicated
acidification and organic matter brownification increased with connectivity.
Eutrophication and sedimentation decreased with wetland areabut did
notrespond to connectivity. This classification advances our mechanistic
understanding of wetland influences on water quality nationally and could

be applied globally.

Freshwater wetlands (hereafter wetlands) are critical watershed com-
ponents contributing valuable ecosystem services to society'. They
attenuate stormflows, augment baseflows and reduce damages from
drought and low flows®*. Wetlands support biodiversity, providing hab-
itat forendemic and endangered species, and contribute to wetland-
upland ecosystem mosaics occupyinginland landscapes®”. However,
wetlands are perhaps best known forimproving water quality. Within
watersheds, wetlands are sources of ecologically beneficial materials
(forexample, dissolved organic matter) and sinks of detrimental materi-
als, such as excess nutrients (for example, nitrogen and phosphorus),
sediments and contaminants, including certain metals>**'°. Wetlands

areintegral towatershed resilience through dampening of hydrologi-
cal and biogeochemical variability". Despite these ecosystemservices,
wetlands are vulnerable to degradation or destruction because they
are frequently unmapped and poorly protected™.

Wetlands alter energy and material transport to downstream
waters (for example, streams, rivers, lakes and coastal waters) via their
functions and connectivity”. Wetlands perform a variety of source,
sink, lag, transformation and refuge functions—processes that respec-
tively increase, decrease, affect the timing of (storage and gradual
release), alter (change in form) or prevent the loss of (provide suit-
able habitat to survive adverse conditions) energy, material fluxes or
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Fig.1| Wetland hydrologic connectivity classification. a, Four hydrologic
connectivity classes: Riparian wetlands have an outlet within one 30 m pixel
from a stream and bidirectional flows. The three non-riparian classes are greater
than one pixel from a stream and all have unidirectional flows. NRShw have
permeable and poorly drained soils on the flowpath between the wetland and
downstream water. Owing to poor drainage, subsurface flows are shallow and
surface flows can occur relatively frequently through saturation excess overland
flow”. NRMid have permeable and well-drained soils on the flowpath. Owing to
good drainage, subsurface flows are deeper (mid-depth), but surface flows can
occur occasionally through infiltration excess overland flow”. NRDeep have
impermeable soils on the flowpath. Non-channelized surface flows can occur
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when the wetland basin is filled with water and additional water input causes

the wetland to either spill over or merge into downstream waters'®, but this is
limited to rare and episodic flooding events. Water transport is more common
via deep subsurface flowpaths from the bottom of the wetland to downstream
waters. Note that depth in the non-riparian class name refers to flowpath and not
wetland depth. b, Flow chart summarizing classification of wetland hydrologic
connectivity classes. Note wetlands are defined on the basis of 2011 NLCD*
classes 90 (woody wetland) and 95 (emergent herbaceous wetland); however,
woody versus emergent herbaceous type is not incorporated into the resulting
classification. For details, see Methods.

species. The connectivity from wetlands to downstream systems pro-
vides the pathways for energy and material transport to downstream
waters. Inthis Article, we use astructural definition of connectivity: ‘the
degree to which components of a system are connected and interact
through various transport mechanisms’>. In contrast, functional defini-
tions of connectivity relate to the frequency, magnitude and duration
of actual material flows between system components.

Connectivity occursalongagradient. At one extreme, hydrologi-
cally connected systems facilitate energy or material transport. At the
other extreme, hydrologically isolated systems reduce energy or mate-
rial transport but canincrease transformation functions. Connectivity
between wetlands and downstream waters influences the structure,
function and dynamics of watersheds and broadly contributes to
the physical, chemical and biological integrity of those downstream
waters*'%"*5, Owing toits effect on the integrity of downstream waters,
connectivity can also be animportant factor in determining whether
wetlands are considered ‘waters of the United States’, that is, federally
regulated under the US Clean Water Act'. Here, we focus on wetland
hydrologic connectivity to downstream waters (hereafter wetland con-
nectivity), since water movement determines fluxes of water quality
constituents within watersheds.

Aswetlands continue to be drained, filled and destroyed, the need
to understand how wetland connectivity mediates water quality has
grown>>%17¢ Yet thereis little research quantifying or classifying wet-
land connectivity in watersheds, regional wetland landscapes or at
national scales. This limits us from addressing crucial questions con-
cerningtherole of wetland connectivity inwatershed fate and transport
processes. For example, a recent conterminous US (CONUS) analysis®
suggested that spatially targeting wetland restoration towards nitro-
gen hotspots would remove more nitrogen than randomly distributed
wetland restoration. This analysis did not distinguish between wetland

types nor their connections; we argue that wetland connectivity can
influence water quality andisintegral to understanding the role wetlands
play in watersheds. A wetland connectivity classification would help
determine whether connectivity influences water quality and should
alsobe considered when prioritizing wetland restoration and protection.

Here, we (1) develop anationwide wetland connectivity classifica-
tion that can also be applied at other scales; (2) map and characterize
the geospatial distribution of wetland connectivity throughout the
CONUS; and (3) use this classification toillustrate the potential effects
of wetland connectivity on stream water constituents associated with
acidification, excess organic matter-based brownification, eutrophica-
tion and sedimentation. This CONUS-wide classification advances our
understanding of how wetland connectivity contributes to watershed
functions that, in turn, can lead to improved management of waters
across the United States and, with increasing data availability, globally.

Connectivity classification

Our classification uses CONUS-wide geospatial data of stream net-
works, wetlands and flowpath characteristics to define four wetland
classes on the basis of their hydrologic connectivity to downstream
waters (Fig. 1, Table 1and Methods); note that depth in the class name
refers to flowpath and not wetland depth:

(1) Riparian wetlands (Riparian) adjoin rivers and streams, have
very frequent bidirectional connections to them, and provide
unidirectional transport from upgradient hillslopes.

(2) Non-riparian shallow wetlands (NRShw) have permeable
and poorly drained soils on flowpaths between wetlands and
downstream waters. Owing to poor drainage, subsurface flows
are shallow and relatively infrequent surface flows can occur
through saturation excess overland flow (that is, when soil water
holding capacity is full)".
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Table 1| Expected connectivity and biogeochemical behaviours of four wetland hydrologic connectivity classes

Wetland Flowpath Expected connectivity behaviour Expected biogeochemical behaviour

:Z::Ioel:g‘i,?ty albes Periodicity Direction Velocity Residence time Reaction matrix®

Riparian Surface Frequent Bidirectional Rapid Short Organic
Subsurface Frequent Bidirectional Intermediate® Short Organic/mineral

NRShw Surface® Infrequent Lateral Intermediate Short Organic
Subsurface Frequent Lateral Intermediate Intermediate Organic/mineral

NRMid Surface? Infrequent Lateral Intermediate Short Organic
Subsurface Frequent Lateral Slow Long Mineral

NRDeep Surface® Very infrequent Lateral Intermediate Short Organic
Subsurface Constant Lateral Very slow Very long Mineral/bedrock

“Reaction matrix refers to the soil characteristics of the flowpath from the wetland to the downstream water. These include general physical characteristics of the soil profile, specifically
whether organic, mineral, bedrock or a mix of these materials are assumed to be present, given the particular flowpath depth. "Including hyporheic flows. °Surface flows due to saturation
excess overland flow". “Surface flows due to infiltration excess overland flow". ®Surface flows due to fill and spill'®.

(3) Non-riparian mid-depth wetlands (NRMid) have permeable and
well-drained soils on flowpaths between wetlands and down-
stream waters. Good drainage allows deeper, mid-depth sub-
surface flows, but surface flows can occur occasionally through
infiltration excess overland flow (that is, when rainfall intensity
exceeds soil infiltration)".

(4) Non-riparian deep wetlands (NRDeep) have impermeable soils
on flowpaths between wetlands and downstream waters. Non-
channelized surface flows can occur when the wetland basin is
filled with water and spills over”'®, but this is limited to rare and
episodic flooding events. Water transport via deep subsurface
flowpaths from the bottom of the wetland to downstream wa-
ters is more common.

We hypothesized that Riparian connectivity is the highest, since
these wetlands have frequent, short-distance, surface and subsur-
face hydrologic connections to streams. In contrast, we hypothesized
that non-riparian wetland connectivity decreases with increasing
depth of the subsurface flowpath, assuming non-riparian con-
nectivity is dominated by subsurface hydrologic connections to
the stream. Consequently, we rank wetland connectivity as Ripar-
ian >NRShw > NRMid > NRDeep. Note that our classification does not
consider distances between wetlands and downstream waters, other
than determining whether awetland adjoins astream (Methods). Nor
does it account for travel times between wetlands and downstream
waters. Rather, it qualitatively represents how quickly water would be
expected to travel through flowpaths of similar lengths.

To validate our classification, we qualitatively estimated the
expected magnitudes of the wetland connectivity classes and com-
pared these with quantitative results on the areal distributions of
these classes for six case study regions (Methods, Supplementary
Information, Supplementary Fig. 1 and Supplementary Table 1). We
overpredicted wetland areain three cases and underpredicted area
in one. Overall, there was good concurrence between the expected
magnitudes of wetland connectivity classes and quantitative results.

Distribution of connectivity classes

Riparian was the dominant connectivity class based on total wetland
number, total wetland area and per cent of CONUS area (Table 2).
NRShw had the smallest total wetland number and among the small-
est total wetland area. NRMid and NRDeep had similar wetland num-
bers, but NRMid had about 1.2 times the total wetland area compared
with NRDeep. Riparian was made up 3.8% of the CONUS land
area, compared with about 0.5% each for the three non-riparian
classes. The mean area of 0.11 km? per Riparian wetland was 1.8,
3.7 and 5.5 times larger than mean areas of NRShw, NRMid and
NRDeep, respectively.

Wetlands are unevenly distributed across the CONUS (Fig.2a) and
by connectivity classes (Fig.2b and Supplementary Figs.2 and 3). Areas
with the highest wetland occurrence (>50%) were parts of the South-
eastern United States, anarrow band along the Atlanticand Gulf coasts,
and areasinnorthern Minnesotaand the upper peninsula of Michigan.
These locations grade into more extensive areas with >25% wetlands.
Among wetland connectivity classes, riparian dominated throughout
much of the CONUS. NRShw was most widespread in only afew areas,
including portions of Florida and the Atlantic coast, as well as parts
of Minnesota, Nebraska and the lower peninsula of Michigan. NRMid
dominated in western Texas and eastern New Mexico, the southern tip
of Texas, around the Great Salt Lake in Utah, and parts of Minnesota
and Nebraska. NRDeep was most prevalent in the eastern Dakotas,
western Minnesota, the Texas panhandle and the southern portion of
California’s Central Valley.

Wetland connectivity and stream water quality
Toassess the influence of wetland connectivity classes on downstream
water quality, we developed a set of linear mixed effects regression
models for 11 in-stream water quality constituents (Supplementary
Table 2) that were placed into four functional groups (acidifica-
tion, brownification, eutrophication and sedimentation; Methods).
Although the precision of these models (Supplementary Table 3) was
similar to those for models with all wetlands combined (Supplementary
Table 4), the purpose of these models was not to produce better pre-
dictions of water quality. Rather, our purpose was to decompose and
test theindividual effects of the four wetland classes on water quality.
The acidification constituents were related to wetland connec-
tivity classes, reflecting the role of residence time on acidic and basic
water conditions” (Fig. 3a). Alhad a negative standardized population
mean regression slope (hereafter mean slope)—that is, an inverse
relationship—with the lowest level of wetland connectivity (NRDeep),
but the mean slopes switched signs and became increasingly positive
withtheincreasing presence of wetlands with higher connectivity. Al,
whichis typically mobilized in acidic soils and soil waters®, increased
with increasing wetland connectivity through an acidifying organic
soil matrix. In contrast, Mg, Ca, acid neutralizing capacity (ANC) and
specific conductance (cond) had a positive mean slope with the lowest
level of wetland connectivity (NRDeep), and the mean slopes switched
signs and became increasingly negative with increasing wetland con-
nectivity (Fig. 3a). Mg, Ca, ANC and cond are typically mobilized via
bedrock weathering®, with greater mobilization associated with
longer residence times” and lower acidification?’. The negative mean
slope between NRDeep and Al, together with the positive mean slope
between NRDeep and Mg, Ca, ANC and cond, may reflect how water
quality constituents are influenced by the longer water residence time
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Table 2 | Geospatial and modelling analysis results by wetland hydrologic connectivity class and CONUS.

Wetland statistics®

Wetland hydrologic connectivity class®

Riparian NRShw NRMid NRDeep Unclassified CONUS
Total wetlands (number)® 2,679,963 621,659 1,646,321 1,702,633 12,417 6,662,993
Total wetland area (km?) 294,410 35,767 43,399 38,992 644 413,21
Mean area per wetland (km?)° on 0.06 0.03 0.02 0.05 0.06
Wetlands (%)° 3.84 0.47 0.57 0.51 0.01 5.39

Biogeochemical responses®
Wetland hydrologic connectivity class®

Connectivity trend' Riparian NRShw NRMid NRDeep
Acidification? A A A A v
Brownification” A A A A A
Eutrophication’ > < > < > < > < >«
Sedimentation’ > < v > < > < >«

2Wetland statistics based on analysis of 2011 NLCD wetland data (Methods). "Riparian wetlands (highest connectivity); NRShw (moderate-high connectivity); NRMid (moderate-low
connectivity); NRDeep (lowest connectivity); CONUS, wetlands aggregated over the entire CONUS. “Wetland number is limited based on the 30 m pixel size of the NLCD used for detecting
wetlands. This was not sufficient for detecting small wetlands, such as vernal pools. It also creates a bias in our values of total wetlands, which will be too small, and mean area per wetland,
which will be too large. “Wetland classes as a per cent of total CONUS area. *Summary of overall biogeochemical responses from linear mixed effects modelling (for details on the modelling
approach, see Methods and for specific results, see Supplementary Table 3). Symbols: A, ¥ >50% of the constituents within the functional group have a positive or negative median
relationship with the wetland class, respectively. A,V >0-50% of the constituents within the functional group have a positive or negative median relationship with the wetland class,
respectively. > None of the constituents within the functional group has a median relationship with the wetland class that is significantly different than zero. ‘The trend of the standardized
population mean regression slope as connectivity increases with wetland hydrologic connectivity class; Fig. 3. SAluminium; cond, calcium, magnesium, pH and ANC are basic constituents and

have the opposite relationship to aluminium (Fig. 3). "DOC and colour. 'Nitrate. 'TSS.

and potentially greater bedrock weathering reaction potential along
the deep pathway of wetland connections to streams”. However, the
model fixed effects explained a low proportion of the variance in Al
(Supplementary Table 3), and relationships should be interpreted
with caution.

The brownification constituents, colour and dissolved organic
carbon (DOC), were positively related to greater presence of each
wetland connectivity class but had higher mean slopes in the pres-
ence of increased wetland connectivity (Fig. 3b). Higher browning as
afunction ofincreased wetland connectivity through shallow subsur-
face soils reflects the high DOC production potential of wetlands and
the interaction with carbon-rich organic layers as water flows from
the wetland to the stream. The low mean slope between NRDeep and
browning further underscores this finding, as adsorption of DOC to
sediments* and microbial decomposition of DOC* remove carbon
alongthe deep flowpath.

Comparing mean slopes between classes, NRDeep and NRShw
were significantly different for all acidification and brownification
constituents (Supplementary Table 5). NRDeep and NRMid meanslopes
were significantly different for most acidification and brownification
constituents; the lack of significance for Ca and Mg could mean that
these effects are weaker or that these constituents are not as sensitive
for these classes. None were significantly different between NRMid
and NRShw wetlands except Al. These similar behaviours could mean
that the STATSGO2 soil drainage class is not the proper attribute to
distinguish between NRMid and NRShw, or NRMid and NRShw do not
represent two distinct classes.

While wetlands are considered important sites for denitrification
and nitrate removal®>*"° as well as sediment filtration®, these capaci-
ties did not vary with wetland connectivity class. Mean slopes of NO,,
turbidity (turb) and total suspended solids (TSS) were not significantly
different from zero for any connectivity class, except for asignificant
negative TSS mean slope for Riparian (Fig. 3c,d and Supplementary
Table 3). Although NO; and TSS were not related to wetland connectiv-
ity class, they both had significant negative mean slopes when all wet-
lands were combined into asingle watershed measure (Supplementary

Table 4 and Methods). This reaffirms the importance of wetland pres-
ence—but not connectivity—to the functions of nitrate and sediment
removal’. As with Al, model fixed effects explained a low proportion
ofthevarianceinturband TSS and should be interpreted with caution.
Riparian flowpath linkages to water quality were strong (Fig. 3 and
Supplementary Table 3). These flowpaths are dominated by carbon-rich
organic soils with relatively few base cations and lower pH, and they
are expected to have short residence times and lower adsorption and
weathering potential. Thus, streams with higher Riparian connections
tended to have higher DOCand Al, and lower base cations. Riparian gen-
erally had astronger filtering effect than other classes, as suggested by
the negative TSS slope for Riparian. This may be because of the runoff
capturing capacity of Riparian wetlands and their short connections
tostreams. Rapid DOC transport fromits source can occur when there
is limited residence time for biogeochemical transformations, and if
hydrological transport mechanisms are frequently available”.

Discussion and conclusions
Restoring and protecting wetlands has been important for managing
water quality for decades®. This includes spatial targeting of wetland
restorationor protection, which canimprove water quality better than
non-targeted efforts. For example, targeting restoration in nitrogen
hotspots, where nutrient sources are abundant, is probably more effec-
tive than restoring wetlands randomly or in non-agricultural areas®. Our
wetland connectivity classification provides a critical dimension for
improving landscape-scale targeting for water quality management.
Thestrong relationship between wetland connectivity and acidifi-
cation (Aland basic constituents) and brownification (colour and DOC)
suggests watershed managers should consider wetland connectivity
class for restoration or protection of stream water quality related to
these constituent groups. For example, restoring NRDeep wetlands
would produce less colour and DOC, if these were of concern, than
the sameincrease in Riparian wetlands, since NRDeep has the smaller
mean slope (Fig. 3). Targeting could be aided by maps showing the
distribution of individual wetland classes (Supplementary Fig. 2), num-
ber of classes present (Supplementary Fig. 3) and dominant wetland
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Fig.2|Wetland characteristics of stream catchments across the CONUS.
a, Wetlands as a per cent of total land cover within the NHDPlusV2 catchment.
b, Dominant wetland hydrologic connectivity class within NHDPlusV2
catchments (parenthetical values in key indicate per cent of catchments across
the CONUS dominated by that particular connectivity class).

NRDeep (9.5%)

NRshw (9%) [l NRwid (10.5%)

class (Fig. 2b). Forinstance, inlocations where wetlands are at riskand
stream acidification is a threat, these maps could be used to identify
NRDeep wetlands for protection or restoration, since NRDeep has a
negative relationship with Al and a positive relationship with basic
constituents®**° (Fig. 3).

In contrast, watershed managers should spatially target restora-
tion or protection of wetlands, regardless of connectivity, toimprove
water quality related to NO, removal® or filtration of TSS or turb. To
maximize these functions, our analysis of combined wetlands (Supple-
mentary Table 4) suggests that areas of restored or protected wetlands
of any class should be maximized. In all such cases, both positive and
negative effects of increasing a constituent need to be balanced, for
example, increasing DOC concentrations may elevate methylmercury
or drinking water disinfectant byproducts.

This national wetland connectivity classification system pro-
vides researchers and resource managers insight on a primary
mechanism by which wetlands affect downstream water quality:
wetland-to-stream hydrologic connectivity. The system affords
improved methods for spatially targeting wetland restoration
and protection. Our finding that 8 of 11 individual constituents
responded to differences in connectivity supports incorporating
wetland connectivity into watershed management decisions for
constituents or constituent groups not yet researched. Our results
alsounderscore thatlosing the ‘portfolio’—or full array—of wetland
connectivity could cause negative impacts on downstream waters'*.
Creed et al. proposed maintaining this complete portfolio of wetland

connectivity as an approach for watershed management'?. Our clas-
sification could also prove useful in determining whether particular
wetlands are considered waters of the United States under the US
Clean Water Act’®; this will depend on the standards for identifying
waters of the United States established by regulation (86 FR 69372)
or the US Supreme Court.

Limitations and future developments

Our classificationisadiscrete characterization of continuous patterns
andsoisanapproximation. For example, the Central Florida Everglades
consists of a ridge-slough mosaic that might be considered riparian,
but the National Hydrography Dataset Plus Version 2 (NHDPlusV2)
indicated afew rivers. Consequently, the region was classified mostly
as NRShw, indicative of the area’s shallow water table.

Our modelling approach demonstrates correlative relationships,
afoundation of most statistical models. We supported our findings
using (1) independent variables representing underlying hydrological
processes driving wetland connectivity to streams and (2) foundational
literature corroborating potential physically based explanations that
underly our models’ statistical relationships. We further underscore
that we have made associations between wetland connectivity and
water quality across the entire CONUS.

Several developments would improve this approach. (1) Because
ourresultsare based on empirical models and correlation, our findings
need tobe validated with process-based approaches that can support
causal mechanisms linking wetland connectivity to downstream water
quality. Field studies are especially needed to investigate NRMid and
NRShw wetlands, their effects on water quality, alternative geospatial
indicators and whether these wetlands represent separate classes. (2)
Distance or travel times between wetlands and downstream waters
couldbeincorporatedintothe approach, although thiswould increase
the complexity of the analysis and might not lead to a meaningful
improvement. However, it might also serve as a metric of sensitivity
to climate change asresidence times and/or infrastructure canchange
withdroughtand floods. (3) Hydrologic alterations, such as canals, tile
drains and drainage ditches, can affect wetland connectivity, so our
method could include new information on these factors asit becomes
available, for example, agricultural tile drainage data®. (4) Our clas-
sification system could incorporate smaller wetlands (<900 m?) by
using higher-resolution datasets, such as Lidar-based depressional
analyses™. In fact, the classification system could be applied to indi-
vidual wetlands of any size by evaluating whether they adjoinastream
and the flowpath soil properties using field methods. The classification
systemis flexible and could be applied at multiple scales using various
data sources. However, smaller wetlands, which are important bio-
geochemicalreactors'®, willnot be captured at coarser scales, thereby
influencing observed wetland-water quality relations. (5) Our clas-
sification approach could be expanded using international datasets,
for example, WorldCover land cover data (https://esa-worldcover.
org/en)and SoilGrids Global Soil Data (https://www.isric.org/explore/
soilgrids, which includes soil properties that are empirically related
toK,,.). We are not aware of global-scale soil drainage class maps, but it
isavailable at specificlocations, forexample, Africa SoilGrids drainage
classes (https://data.isric.org/geonetwork/srv/api/records/953d0964-
6746-489a-a8d1-f188595516a9). Our existing classification system
could be implemented at international locations having complete
data, or NRShw and NRMid could be combined where drainage class
dataareunavailable.

Our national-scale wetland connectivity classification system
provides a critical link to improving water quality beyond individual
wetland restoration alone. Elucidating the ‘black box’ between wet-
lands and water quality responses provides improved information for
watershed-scale water quality management. Through our analysis, we
demonstrated strong relationships between our wetland connectiv-
ity classes and most stream water quality constituents. Until now, no
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Fig.3|Relationships between four groups of stream constituents and
wetland hydrologic connectivity based onstandardized population
meanregression slopes from linear mixed effects models. a-d, Mean slope
represents the standardized relationship between the constituent and wetland
connectivity class averaged across all regions. A filled (dark) circle indicates that
theregression slope is significantly different than zero, that is, the regression
slope plus or minus the confidence interval (two times the standard error of the
slope estimate) does not overlap with zero; points represented by an open (light)

circle are not significantly different than zero (Supplementary Table 3). Wetland
connectivity for the four classes is NRDeep < NRMid < NRShw < Riparian. For
details on the modelling approach, see Methods. Dashed line represents zero
intercept. Acidification (a): cond (n=1,764), Ca(n =1,787), Mg (n=1,787), Al
(n=1,180), pH (n=1,764) and ANC (n =1,788). Brownification (b): DOC (n =1,788)
and colour (n=1,786). Eutrophication (c): NO, (n =1,338). Sedimentation (d):
turb (n=1,764) and TSS (n =1,694).

standardized approach existed to characterize hydrologic connectivity
between wetlands and downstream waters at the CONUS scale. Con-
sequently, determining regional and nationwide effects of wetland
connectivity on endpoints such as water quality was impossible. Our
systematic approach to quantifying the distribution of the wetland
connectivity classes across the CONUS using hydrologic principles
and geospatial analyses provides importantinsights on how wetlands
affect stream water quality at the CONUS scale. The flexibility of the
classification approach in handling diverse data can make it useful at
different scales and across the globe.

Methods

Wetland dataset

Wetlands and streams. We used the publicly available, 2011 National
Land Cover Dataset (NLCD)** and NHDPlusV2 (ref. 34) to create the
hydrologic framework of wetlands and downstream waters. We used
NLCD, rather than the National Wetlands Inventory (https://www.fws.
gov/wetlands/), because it has a more consistent methodology than
the National Wetlands Inventory across the United States and controls
better forindividual year and density, which affect our assessment. A
disadvantage of NLCD is that the 900 m? pixel was not sufficient for
detecting small wetlands, which are important for water quality'®'>'.,
While small wetlands are numerous and can be regionally important,
NLCDis appropriate fora CONUS-scale analysis. Our use of NLCD from

asingle year means that we cannot indicate change from wetlands to
other land covers or vice versa; we can only examine extant wetland
area. Wetlands, both inland and coastal, were identified using the
woody (class 90) and emergent herbaceous (class 95) NLCD classes
combined. However, class 90 versus class 95 were not separately incor-
porated into the resulting classification. Sets of adjoining wetland
pixels that were completely surrounded by non-wetland pixels were
grouped into contiguous wetland patches within the landscape and
assigned a wetland identification number (Wetld).

We used NHDPIusV2 as the hydrologic framework upon which
we characterized wetland connectivity. NHDPlusV2 is a value-added
version of the National Hydrography Dataset (NHD). The NHD depicts
the stream network of the CONUS using 1:100,000 scale blue lines (for
example, rivers and streams) of US Geological Survey topographic
quadrangle maps. To make the NHDPlusV2, these blue lines were linked
to 30 m digital elevation models and major river basin boundaries to
derive local catchment boundaries for each stream segment, that
is, the local area draining to a stream segment excluding upstream
contributions. This process created 2.6 million catchments that are
eachtiedtoarespective stream segment. Just as the NLCD omits small
wetlands, the 1:100,000 scale NHDPIusV2 excludes small streams. As
aresult, it underestimates total stream length and, in combination
with the omission of small wetlands, reduces the number of observed
wetland-stream connections™.
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Contiguous wetland patches identified in the earlier step were
subdivided when their areas crossed NHDPlusV2 hydrologic catchment
boundaries. Subdividing wetlands among NHDPlusV2 catchments
created hydrologically distinct wetlands from contiguous patches
and a wetland framework that worked within the existing hydrologic
framework of streams and local catchments of the NHDPlusV2. The
subdivision of contiguous wetlands among hydrologic boundaries
produced about 6.7 million unique wetland units (Table 2). This nested
framework allowed usto calculate wetland-specific characteristics and
to hydrologically aggregate these wetland characteristics to the 2.6
million receiving stream segments and their associated watersheds
of the NHDPlusV2.

Characterizing the connectivity of wetland units to receiving
watersrequired ageospatial representation of streams. We identified
receiving waters with acombination of NLCD water pixels and araster
representation of stream lines extracted from the NHDPlusV2. The
combination of these datasets (hereafter buffered streams) provided
width for rivers that were large enough to be detected with Landsat
imagery. For streams and rivers too narrow to be detected with Landsat
imagery, a raster version of the NHDPlusV2 stream lines provided an
estimate of stream locations. Note that while most of the NLCD water
pixels represented rivers or streams, they could also represent lakes
or estuaries.

Geospatial processing was performed with scripts in the Python
programming language®, using the NumPy module® and ESRI Arc-
GIS*® tools. Other processing steps were done in the R programming
language®.

Flowpaths. Flowpaths from wetland outlets (pour points) to streams
were necessary to conduct the connectivity classification. A second-
ary product of the NHDPIusV2 is a set of hydrologically corrected
digital elevation models and rasters depicting flow (both direction and
accumulation) acrosslandscapes ata30 mresolution®. We used these
hydrologic rasters to define flowpaths connecting streams and wet-
lands. Within each wetland, we first defined the wetland outlet as the
pixel with the highest flow accumulation value. We then used the ArcGIS
Cost Pathtool** to delineate flowpaths from wetland outlets to the edge
ofreceiving streams; we assumed that these surficial flowpaths also rep-
resented subsurface flowpaths. In some cases, NHDPlusV2 catchments
do not contain a stream segment. In these catchments, wetland flow-
paths extended into downstream catchments until they encountered
astream segment. Flowpaths that passed through multiple wetlands
were topologically connected on the basis of hydrologic rasters that
depict the pixel-to-pixel flow directions across land surfaces*°.

Wetland hydrologic connectivity classification
Several methods have been used to quantify wetland connectivity, at
wetland to watershed scales (Table 2 in the US Environmental Protec-
tion Agency (EPA) ref.16). Yet approaches for characterizing connectiv-
ity atlarge, national scales do not exist. Our classification system was
inspired by the conceptual model of Cohen et al.* Like all classification
systems, ours prioritizes certain attributes over others. Specifically, we
emphasize landscape attributes that (1) identify a gradient of high to
low hydrologic connectivity on the basis of hydrologic principles, (2)
qualitatively indicate how quickly water travels through unit flowpaths
(ourapproachdoesnotaccount for travel times between wetlands and
downstream waters), and (3) are available as CONUS-wide datasets.
Thus, factors that would be critical to travel time, such as slope and
distance, were not included in our classification. Further, we define
connectivity structurally®, rather than functionally, which represents
hydrologic connectivity given sufficient surface water and/or ground-
water availability. This removes the necessity for dynamic attributes
such as climate-based indicators.

Given the above, we emphasized datasets that are used to deter-
mine whether a wetland directly adjoins a stream and, if not, the

soil-based attributes that influence the flowpaths that water takes
from the wetland to the downstream water. If a wetland outlet (pour
point) was positioned within one 30 m pixel (ordinal and cardinal
directions) from abuffered stream, it was classified as riparian (Fig. 1).
In contrast, anon-riparian wetland had an outlet more than one 30 m
pixel from a buffered stream.

Non-riparian wetlands were further distinguished on the basis
of the soil characteristics of their flowpaths, specifically K,. and soil
drainage class, which were both based on STATSGO2 data (https:/www.
nrcs.usda.gov/resources/data-and-reports/description-of-statsgo2-
database). For that effort, we used a K, cut-off value of 5.08 cmh™ to
distinguish between permeable and impermeable soils, that is, the
threshold between very fine sandy loams and sandy loams (C.Johnson,
USDA-NRCS Soil Survey, personal communication). In cases where
more than one K, value occurred over the flowpath, the minimum
value was used, with the assumption that the smaller value would be
limiting to hydrologic flow (that is, lead to longer travel times). We
defined poorly drained soils as consisting of somewhat poorly drained,
poorly drained and very poorly drained NRCS classifications, and well-
drained soils consisted of excessively drained, somewhat excessively
drained, well drained and moderately well drained, NRCS classes™. If
more than one drainage class value occurred over the length of the
flowpath, the drainage class that occurred over the greatest length
of the path was used. Our assumption was that drainage class was not
limiting like K, because the latter was used to distinguish between
surface and subsurface flows, while the former was used to represent
differences between subsurface flows and so should be based on the
most common occurrence.

NRShw have permeable (K, > 5.08 cm h™) and poorly drained soils
on the flowpath between the wetland and downstream water. Owing
to poor drainage, subsurface flows are shallow and surface flows can
occur relatively frequently through saturation excess overland flow".
NRMid have permeable (K,,, > 5.08 cm h™) and well-drained soils on
the flowpath between the wetland and downstream water. Owing to
good drainage, subsurface flows are deeper (mid-depth), but surface
flows can occur occasionally through infiltration excess overland
flow"”. NRDeep have impermeable soils (K, < 5.08 cm h™) on the flow-
path between the wetland and downstream water. Non-channelized
surface flows can occur whenthe wetland basinis filled with water and
additional water inputs cause the wetland to either spill over or merge
into downstream waters'®, but this is limited to rare and episodic
flooding events. Instead, water transport is more commonly via deep
subsurface flowpaths from the bottom of the wetland to downstream
waters. Our four classes are similar to theideas presented in the Cohen
etal." conceptual model, but they add additional information. Further,
these four classes logically resulted fromthe application of the riparian,
K,,.and drainage data.

Since our classification of connectivity is structural, it was not pos-
sible to validate it by comparing our results with those fromafunctional
approachsuchas Vanderhoofand colleagues, who examined changes
in surface water connectivity as a function of climate variation*’. To
validate our approach, we conducted a qualitative validation assess-
mentinsix case study regions (Supplementary Fig.1): California vernal
pools, Louisiana bottomland hardwoods and swamps, playa lakes,
pocosins and Carolina bays, prairie potholes and Southern Florida
(although each region, except Southern Florida, is named for iconic
wetlands, other wetlands occur within the regions and were incor-
porated into the analysis). Wetland area within these regions ranged
from 621 km?for the playa lakes region to 42,169 km?for the pocosins
and Carolina bays region (Supplementary Table 1). For each of these
regions, we assembled the following information (Supplementary
Information): (1) Background on each wetland type (for example,
prairie potholes), including climatic, geologic and/or topographic
controls. (2) The expected magnitude of the four wetland classes in
eachregion. Expected magnitude was a categorical assessment (high,
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medium or low) of the relative area of wetlands on the basis of a quali-
tative evaluation of the factors affecting wetland connectivity in each
region. We determined this magnitude on the basis of a combination
oftheliterature, first principals, our own familiarity with these regions
and, inthe case of the playalakes region, in consultation with aregional
expert. (3) Evaluation of the expected magnitude values compared with
the actual areal distributions of the four connectivity classes resulting
fromouranalysis. For this evaluation, we considered the low, medium
and high categories to comprise 0-10%, 11-50% and 51-100% wetland
area, respectively.

Supplementary Figs.4-9 show the wetland hydrologic connectiv-
ity classes in six different regional wetland landscapes. These figures
illustrate several elements of the wetland dataset, including the con-
nectivity classes, the NHDPlusV2 streams and NLCD water that combine
to make the buffered streams, and the flowpaths between wetlands and
downstream waters. A CONUS-wide dataset containing this informa-
tion is available. For each of 59 hydrologic subregions of the CONUS,
the dataset consists of three components: (1) A raster that contains
NHDPIlusV2streams, NLCD water pixels and the flowpaths that connect
wetlands and downstream waters. (2) A wetland raster that contains
the Wetld of each wetland, where each Wetld corresponds to a single
stand-alone wetland pixel or agroup of adjoining wetland pixels. Note
that Wetlds are not globally unique, but are unique withineach of the 59
subunits of NHDPlusV2 Hydrologic Regions (that s, raster processing
units). Within these raster processing units, each Wetld contains only
asingle pour point. (3) A table of wetland characteristics indexed by
Wetld, including wetland area, and wetland hydrologic connectivity
class. These three components of the wetland dataset and details on
their use are available by NHDPlusV2 Hydrologic Region at https://doi.
org/10.23719/1528587 ref. 43.

Empirical assessment

To explore the role of wetland connectivity on downstream water
quality, we tested hypotheses that structural characteristics of wet-
land connectivity influence downstream biogeochemistry (Table 1).
Riparian wetlands have a high degree of connectivity and convey
water to downstream waters quickly, with minor processing relative
to other wetland connectivity types®. Non-riparian wetlands have a
lower degree of connectivity, convey water into surface waters via
subsurface flowpaths more slowly and the water is altered during
the longer residence times in the geologic deposits it traverses along
the way”. We hypothesized Riparian connections would be brief and
frequent, passing primarily through organic-rich surface soils, with
less potential for adsorption-desorption processes or weathering in
mineralsoil. This could resultin relatively high concentrations of DOC
and low concentrations of base cations. In contrast, we hypothesized
NRDeep connections would pass slowly through deeper mineral soil
andbedrock, with more potential for weathering release of base cations
along the flowpath. NRShw and NRMid should fall between Riparian
and NRDeep. We tested these hypotheses of coupled hydrologic con-
nectivity-biogeochemical behaviours against measured stream water
quality data (‘Wetland connectivity and stream water quality’).

We focused on 11 water quality constituents that are known to
affect stream ecosystem functions and associated services** and are
oftensampled in stream assessments (Supplementary Table 2). These
constituents were taken from distinct samples once during summer
low flows at 1,788 sites as part of the US EPA’'s 2008/09 National Rivers
and Streams Assessment (NRSA). NRSA is a national survey that uses
aspatially balanced, probabilistic sampling design®* and represents
a spatially extensive set of synoptic water quality samples across the
CONUS. The strength of the NRSA water quality data are in their spa-
tial extent across the CONUS. The samples are taken during summer
to capture water quality constituent concentrations under baseflow
conditions. Since the samples are meant to represent spatial variability,
only onesampleis taken at each site (except 10% of sites were revisited

for quality assurance purposes*), rendering before and after data
unavailable—publicly or otherwise—across sites. Concomitant national
dataonsoil solution chemistry are also not available.

These 11 constituents were placed in one of four functional groups
reflecting processes known to affect stream ecosystem productivity,
food web energy transfer and biodiversity**: (1) acidification: cond,
Ca, Mg, Al, pH and ANC; (b) brownification*”**: DOC and colour; (c)
eutrophication: NO; and (d) sedimentation: turb and TSS. To inves-
tigate the effects of wetland connectivity on these constituents, we
used linear mixed effects models to determine the influence of the four
wetland connectivity classes on the 11 stream water quality constituents
(Supplementary Table 2). We then examined the standardized popula-
tion mean regression slopes (hereafter mean slopes) that represent
the standardized relationship between the constituent and wetland
connectivity type averaged across CONUS regions (Supplementary
Table 3). We chose linear models to test the importance of wetland
connectivity on water quality because (1) the test for the connectivity
main effect on water quality is equivalent to the one-way analysis of
covariance when each watershed is composed of asingle connectivity
class, (2) residual analysis did not indicate the assumption of a linear
response was violated; and (3) generalized additive models do not allow
for randomslopes and also would have complicated the comparison of
effect sizes among wetland classes and constituent types.

Ineach model, weincluded watershed-level summaries of the four
wetland connectivity classes as predictors of in-stream water quality
to assess the effect of wetland connectivity on downstream waters.
Wetland connectivity classes were quantified within watersheds as
the per cent of watershed area composed of each class. Thus, each
wetland connectivity class was summarized as a continuous measure-
ment (0-100%). Critically, the percentages of the four connectivity
classesincluded the entire watershed area and would not sum to100%
on their own unless a watershed was comprised entirely of wetlands,
which never occurred. Quantifying the wetland connectivity classes as
percentages of the watershed allowed us to include all four classes as
predictors for each water sample in all models and to test the impor-
tance of wetland connectivity on downstream water quality. The omis-
sion of small wetlands from the NLCD dataset would only be expected
toimpact model results in areas where these small wetlands make up
asubstantial proportion of total wetland area.

Inthe simple case where each watershed is composed of a single
connectivity class, the basic linear modelis equivalent to the analysis of
variance (ANOVA) model with connectivity class as a qualitative factor
having four levels. The F-test for the connectivity main effectis used to
test whether the water quality is different between the four connectiv-
ity classes. As an extension of the ANOVA model to the situation where
each watershed is composed of one or more connectivity classes, the
O-lindicator variables for each connectivity class are replaced by the
per cent of watershed area composed of each class. We further extend
the basic model by selecting as covariates a unique set of additional
predictor variables (Supplementary Table 2), on the basis of previous
work*’ or our professional expertize for each constituent of interest;
this was done to minimize the chance of excluded variable bias in
our models. The alternate models always included the four wetland
connectivity class variables to test the connectivity main effect on
water quality, analogous to a one-way ANOVA with covariates. These
additional variables included one in-stream measurement of median
sediment substrate size collected at the time of NRSA sampling as well
asseveral watershed landscape variables from the StreamCat dataset™.
Note that there was no covariate on wetland quality, due to the lack of
such a national dataset. Although this could also affect water quality,
we felt that this was not amajorissue since the covariates in the model
included factors that would affect wetland quality (Supplementary
Table 2); for example, meanimperviousness of anthropogenic surfaces,
point source N and per cent of watershed area classified as crop and
hay land use. Further, this was a national-scale analysis with almost
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7million wetlands, and suchissues should balance out at that scale and
sampling magnitude.

Allresponse variables were natural log transformed, except for pH
whichwasraised tothe power of four, to meet assumptions of normality
of residual errors. Selected covariates (Supplementary Table 2) were
also natural log transformed to achieve normality. Plots of residual
errors versus fitted values identified diagonal stripes in TSS, Al and
NO,, indicating inflation due to zeros or detection limits (censored
values). Although techniques exist to model censored or zero-inflated
data, we chose to remove these observations for simplicity and to use
the same statistical methods across all constituent types. We visually
confirmed that removal of these sites did not substantially alter or bias
the distribution of samples across the United States. Doing soresulted
in1,694, 1,180 and 1,338 out of 1,788 possible observations to model
TSS, Aland NO;, respectively. The remaining models were constructed
with1,764-1,788 samples depending on the number of valid measure-
ments achieved for each constituent and available watershed metrics
for sampled sites (Supplementary Table 3). Inaddition to transforma-
tions, response and predictor variables were standardized to have a
mean of zero and standard deviation (s.d.) of one. Standardizing both
response and predictor variables allowed for comparison of regres-
sion slopes across models and was necessary because the ranges of
both response and predictor variables varied by several orders of
magnitude (thatis, pH had arange of one order of magnitude while at
the opposite extreme, turb had arange of seven orders of magnitude).
Standardized slopes of this form can be interpreted as the proportional
changeinthes.d. of the response variable for a one s.d. change in the
predictor variable. For example, aregression parameter of 0.5 means
that the response variable changed by one-half s.d. in response to a
ones.d.changein theassociated predictor variable. Finally, multicol-
linearity among predictors was tested at the time of modelling with
variable inflation factors®. In all cases, variable inflation factors were
below two, including those for wetlands, indicating low correlations
among predictors.

Across large, physically complex regions, such as the CONUS,
geophysical settings and processes that control relationships between
landscapes and downstream waters can vary substantially. This geo-
physical variability is often reflected statistically asnon-independence
of sites within regions and as cross-regional variability in relation-
ships between response and predictor variables (that is, slopes). In
such cases, standard linear regression models may not be sufficient
to characterize these complex relationships and mixed effects models
are needed. Mixed effects modelling can account for variation in the
response-predictor variable relationships by fitting randomintercepts
and slopes with respect to a grouping variable, such as eco-region
or physiographic region®?. This approach allows model parameters
(intercepts, slopes or both) for certain factors to vary stochastically by
region and come from some assumed distribution (that is, Gaussian)
ifneeded.Ifapredictor variable hasaconsistent relationship with the
response variable across regions, it can be modelled as a fixed effect
without a random effect. A model that uses both fixed and random
effectsis called amixed effects model. As agrouping variable, we tested
the nine ecoregions of the US EPA National Aquatic Resource Surveys*
and 24 US Geological Survey Physiographic Divisions and Provinces
(https://water.usgs.gov/GlS/metadata/usgswrd/XML/physio.xml).
When assessed with Akaike’s Information Criterion®?, Physiographic
Provinces were the best grouping variable in all models, except for
NO,which was best modelled with the nine National Aquatic Resource
Surveys ecoregions.

To develop the models, we began by fitting the most complex
model possible that included both fixed and random coefficients for
each covariateand theintercept with respect to the grouping variable
(R package::function Ime4::Imer>*). We then conducted backward
selection on the random effects followed by the fixed effects, while
forcing the modeltoretain the fixed effects of the four wetland classes

(R package::functionlmerTest::step®). Forcing the model to retain fixed
effects allowed us to extract parameter estimates for plotting even
when they were not significantly different from zero. This process uses
alikelihood ratio test to remove fixed and random effects with mean
and/or variance, respectively, not significantly different from zero
at the 0.05 level of significance®. The most parsimonious model was
chosen by backwards hierarchical elimination of non-significant terms.
Unlike model selection for choosing the set of predictor variables,
a backward-forward model selection process is not recommended
for the inclusion or exclusion of a random slope term to achieve a
more parsimonious model. Indeed, Kuznetsova et al.” suggest that
backwards selection of mixed effects models, as used here, avoids
therisk of applying amodel that is too simple and that could produce
excluded variable bias. We then extracted the standardized parameter
estimates and standard errors for plotting and model interpretation
(Fig. 3). When a fixed effect also has a random component in a mixed
effects model, the slope of the fixed effect is the population mean
of random slopes across the grouping variable. In some models, the
selection procedure determined that random components of wetland
measures were not needed. In those cases, the parameters of the fixed
effects alone were extracted and used. All analyses were conducted in
the R statistical language®.

Reporting summary
Furtherinformation onresearch designis availablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All datasets are available at the US EPA’s ScienceHub website https://
doi.org/10.23719/1528587 ref. 43.

Code availability
Allanalysis code and processing steps are available in the GitHub repos-
itory https://github.com/USEPA/WetlandConnectivity/tree/v1.0 ref.57.
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Study description We assessed the effect of wetland connectivity on downstream water quality by using linear mixed effects regression models to
determine the relationship between four wetland connectivity classes and 11 instream water quality constituents sampled across the
conterminous US (CONUS).

Research sample Constituents (Al, acid neutralizing capacity, pH, Ca, Mg, specific conductance, dissolved organic carbon, color, NO3, total suspended
solids, and turbidity) were taken from distinct samples once during summer low flows at <1788 sample sites as part of the US
Environmental Protection Agency’s 2008/09 National Rivers and Streams Assessment (NRSA). NRSA is a national survey that uses a
spatially balanced, probabilistic sampling design and represents a spatially extensive set of synoptic water quality samples across the
CONUS. NRSA is designed to represent spatial variability of perennial streams across the CONUS. Data are available through https://
www.epa.gov/national-aquatic-resource-surveys/national-rivers-and-streams-assessment-2008-2009-results. Wetland data were
derived from the 2011 National Land Cover Dataset (NLCD), and their connectivity was classified based on a combination of
information from the National Hydrography Dataset Plus Version 2 (NHDPlusV2), NLCD, and STATSGO?2 data.

Sampling strategy NRSA data are publicly available and were not sampled by the authors. NRSA has a rigorous, spatially balanced, probabilistic sampling
design for selecting the numbers and locations of sampling sites. Starting with all available 2008/09 samples, we transformed all
response and predictor variables to meet assumptions of normality of residual errors. Plots of residual errors vs. fitted values
identified diagonal stripes in TSS, Al, and NO3, indicating inflation due to zeros or detection limits (censored values). Although
techniques exist to model censored or zero-inflated data, we chose to remove these observations for simplicity and to use the same
statistical methods across all constituent types. We visually confirmed that removal of these sites did not substantially alter or bias
the distribution of samples across the US. Doing so resulted in 1694, 1180, and 1338 out of 1788 possible observations to model TSS,
Al, and NO3, respectively. The remaining models were constructed with 1764-1788 samples depending on the number of valid
measurements achieved for each constituent and available watershed metrics for sampled sites.

Data collection All data for the 11 water quality constituents was downloaded from the NRSA website (https://www.epa.gov/national-aquatic-
resource-surveys/national-rivers-and-streams-assessment-2008-2009-results). Wetland connectivity data was developed onsite by
US Environmental Protection Agency personnel and Oak Ridge Institute for Science and Education post-doctoral participants at EPA’s
Center for Public Health and Environmental Assessment’s Pacific Ecological Systems Division.

Timing and spatial scale  Timing and spatial scale: NRSA sites were sampled once during summer of either 2008 or 2009 over the conterminous US. Wetland
information was derived for the watershed of each of the NRSA sampling sites using 2011 NLCD data.

Data exclusions See “Sampling strategy” regarding censored values.

Reproducibility This is not an experiment-based study. However, all data and code are available at the GitHub repository (https://github.com/USEPA/
WetlandConnectivity, to be made public upon publication), so the study could be reproduced by others accordingly.
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Randomization This study uses a natural experiment design, that is, it combines existing field data of continuous water quality measurements with
geospatial representations of wetlands and their associated connections. Within the mixed model analysis, we tested ecoregions and
physiographic regions to account for variation in the response-predictor variable relationship with random intercepts and slopes.
These are predefined regions based on the topo-climatic, geologic, and biotic settings and were, therefore, not selected or defined
by the authors.
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